Ragaini, R.C.
1994-06-01
The International School of Innovative Technology for Cleaning the Environment was founded at the Ettore Majorana Centre for Scientific Culture (EMCSC), the seat of the World Laboratory Mediterranean Branch, in 1989. The School primarily organizes and hosts training courses and advanced study courses addressing state-of-the-art technologies to clean the environment, minimize waste generation, prevent pollution, and identify strategies to choose environmentally resilient sites and processes for new industrial installations. The School also participates in facilitating multi-national research projects for developing countries under the auspices of the World Laboratory and other sponsoring agencies.
Ettore Majorana centennial and neutrino legacy
NASA Astrophysics Data System (ADS)
Esposito, Salvatore
2007-06-01
"In the world there are various categories of scientists: people of secondary or tertiary standing, who do their best but do not go very far. There are also those of high standing, who come to discoveries of great importance. But then there are geniuses like Galileo and Newton. Well, Ettore was one of them. Majorana had what no one else in the world has...". In this talk we try to put some light on this quite unusual statement by Enrico Fermi about Ettore Majorana, by exploring mainly personal notes left unpublished by the great sicilian physicist. Some emphasis is given on recent achievements about Majorana as a research scientist as well as a teacher in Theoretical Physics.
The Disappearance and Death of Ettore Majorana
NASA Astrophysics Data System (ADS)
Guerra, Francesco; Robotti, Nadia
2013-06-01
At the end of March 1938, Ettore Majorana disappeared under still mysterious circumstances while he was Professor of Theoretical Physics at the University of Naples. We exploit new archival documents that provide evidence that without any doubt he was deceased before September 1939. These include documents pertaining to the foundation of a Fellowship in his name, announced on November 3, 1939, in the journal, The Missions of the Society of Jesus, and documents pertaining to the Police and Vatican inquires after his disappearance. We conclude by discussing the biographical sketch of Majorana that his uncle Giuseppe Majorana wrote before his death in 1940.
A peculiar lecture by Ettore Majorana
NASA Astrophysics Data System (ADS)
Esposito, S.
2006-09-01
We give, for the first time, the English translation of a manuscript by Ettore Majorana, which probably corresponds to the text for a seminar lecture delivered at the University of Naples in 1938, where he lectured on theoretical physics. Some passages reveal a physical interpretation of quantum mechanics which anticipates for several years the Feynman approach in terms of path integrals, independent of the underlying mathematical formulation.
The Physics of Ettore Majorana
NASA Astrophysics Data System (ADS)
Esposito, Salvatore
2014-12-01
Part I. Introducing the Character: 1. Life and myth; 2. The visible side; Part II. Atomic Physics: 3. Two-electron problem; 4. Thomas-Fermi model; Part III. Nuclear and Statistical Physics: 5. Quasi-stationary nuclear states; 6. Theory of ferromagnetism; Part IV. Relativistic Fields and Group Theory; 7. Groups and their applications to quantum mechanics; 8. Dirac equations and some alternatives; Part V. Quantum Field Theory: 9. Scalar electrodynamics; 10. Photons and electrons; Part VI. Fundamental Theories and Other Topics: 11. A 'path integral' approach to quantum mechanics; 12. Fundamental lengths and times; 13. Some more; Part VII. Beyond Majorana: 14. Majorana and condensed matter physics; 15. Majorana neutrinos and other Majorana particles; Appendix; References; Index.
Ettore Majorana: The scientist and the man
NASA Astrophysics Data System (ADS)
Recami, Erasmo
2014-12-01
Ettore Majorana was the brightest Italian theoretical physicist of the XX century (actually, Enrico Fermi regarded him as the brightest in the world of his time, and compared him to Galileo and Newton), even if to some people Majorana is often known mainly for his mysterious disappearance, in 1938, when he was 31. In this paper, we present a panoramic view of the main scientific articles published by him, as well as their significance. We also briefly outline his life, the biographical data being based on letters, documents, testimonies discovered or collected by the author during more than four decades, and contained since 1986 in Recami's book quoted in the text. Finally, extensive information and comments are added with regard to the scientific manuscripts left unpublished by Majorana. Two pictures complete the paper.
Ettore Majorana's Course on Theoretical Physics: A Recent Discovery
NASA Astrophysics Data System (ADS)
Drago, Antonino; Esposito, Salvatore
2007-09-01
We analyze in some detail the course of Theoretical Physics held by Ettore Majorana at the University of Naples in 1938, just before his mysterious disappearance. In particular we present the recently discovered "Moreno Paper", where all the lecture notes are reported. Six of these lectures are not present in the collection of the original manuscripts conserved at the Domus Galilaeana in Pisa, consisting of only ten lectures.
[Ettore Majorana and philosophy : Between elective affinities and philosophical reflections].
Alunni, Charles
2013-01-01
This article seeks to "take on" Ettore Majorana by establishing his "philosophical profile." Doing so, one not only finds that the question of "fiction" was central to his work, but one also discovers the important superationalist - and European - dimension of his elective affinities with Giovanni Gentile Junior. Indeed their work was part of a constructive and inductive mathematism (Gaston Bachelard, later Robert Blanché) that was in opposition to classical geometricism (Emile Meyerson), and spiritualist Pythagoreanism (Arthur Eddington).
The disappearance of Ettore Majorana: an analytic examination
NASA Astrophysics Data System (ADS)
Esposito, S.
2010-05-01
The many recent researches into the mysterious disappearance of Ettore Majorana, one of the greatest minds of theoretical physics in the twentieth century, are summarised and discussed in some detail. The fate of the Italian scientist is argued to be intimately related to the final months of his life in Naples, from where he decided to disappear in March 1938. This analysis of accurate and detailed investigations performed in the last few years, together with facts already known, reveals a fascinating and intriguing picture, which was previously unexpected. New light on the disappearance of Majorana, a mystery that has lasted for more than 70 years, then emerges.
Teaching theoretical physics: The cases of Enrico Fermi and Ettore Majorana
NASA Astrophysics Data System (ADS)
De Gregorio, Alberto; Esposito, Salvatore
2007-09-01
We report on theoretical courses by Enrico Fermi and Ettore Majorana, which give evidence of the first appearance and further development of quantum mechanics teaching in Italy. On the basis of original documents, we compare Fermi and Majorana's approaches. A detailed analysis is made of Fermi's course on theoretical physics attended by Majorana in 1927-28. Three (previously unknown) programs on advanced physics courses submitted by Majorana to the University of Rome between 1933 and 1936 and the course he taught in Naples in 1938 complete our analysis. Fermi's phenomenological approach resounded in Majorana, who combined it with a deeper theoretical approach, closer to the contemporary way of presenting quantum mechanics.
[Ettore Majoran's transversal epistemology].
Bontems, Vincent
2013-01-01
« Il valore delle leggi statistiche nella fisica e nelle scienze sociali » is Ettore Majorana's only work on science. It offers a critique of classical determinism, establishing an analogy between the laws of quantum mechanics and social science and arguing that both are intrinsically linked to probability. This article first studies this argument from the standpoing of metaphysics, physics, and sociology, and then assesses the significance of this transversal epistemology.
NASA Astrophysics Data System (ADS)
Recami, Erasmo
2010-04-01
I was delighted to read Salvatore Esposito's review (March pp44-45) of A Brilliant Darkness, João Magueijo's book about the Italian physicist Ettore Majorana. As no less a figure than Enrico Fermi regarded Majorana as the brightest theoretical physicist of his time, I was happy to see that Majorana's name is at last becoming famous outside Italy. The fact is that although most commentaries about Majorana's work appear in English, over the past 50 years nearly everyone who has written about Majorana's life has done so in Italian.
Majorana: From Atomic and Molecular, to Nuclear Physics
NASA Astrophysics Data System (ADS)
Pucci, R.; Angilella, G. G. N.
2006-10-01
In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi's solution of the celebrated Thomas-Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana's seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg-Majorana forces) in his later workson theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.
Majorana Fermions in Particle Physics, Solid State and Quantum Information
NASA Astrophysics Data System (ADS)
Borsten, L.; Duff, M. J.
This review is based on lectures given by M. J. Duff summarising the far reaching contributions of Ettore Majorana to fundamental physics, with special focus on Majorana fermions in all their guises. The theoretical discovery of the eponymous fcrmion in 1937 has since had profound implications for particlc physics, solid state and quantum computation. The breadth of these disciplines is testimony to Majorana's genius, which continues to permeate physics today. These lectures offer a whistle-stop tour through some limited subset of the key ideas. In addition to touching on these various applications, we will draw out some fascinating relations connecting the normed division algebras R, ℂ, H, O to spinors, trialities. K-theory and the classification of stable topological states of symmetry-protected gapped free-fermion systems.
NASA Astrophysics Data System (ADS)
Liu, Xin; Li, Xiaopeng; Deng, Dong-Ling; Liu, Xiong-Jun; Das Sarma, S.
2016-07-01
We propose a systematic magnetic-flux-free approach to detect, manipulate, and braid Majorana fermions in a semiconductor-nanowire-based topological Josephson junction by utilizing the Majorana spin degree of freedom. We find an intrinsic π -phase difference between spin-triplet pairings enforced by the Majorana zero modes (MZMs) at the two ends of a one-dimensional spinful topological superconductor. This π phase is identified to be a spin-dependent superconducting phase, referred to as the spin phase, which we show to be tunable by controlling spin-orbit coupling strength via electric gates. This electric controllable spin phase not only affects the coupling energy between MZMs but also leads to a fractional Josephson effect in the absence of any applied magnetic flux, which enables the efficient topological qubit readout. We thus propose an all-electrically controlled superconductor-semiconductor hybrid circuit to manipulate MZMs and to detect their non-Abelian braiding statistics properties. Our work on spin properties of topological Josephson effects potentially opens up a new thrust for spintronic applications with Majorana-based semiconductor quantum circuits.
Aalseth, Craig E.; Aguayo Navarrete, Estanislao; Amman, M.; Avignone, F. T.; Back, Henning O.; Bai, Xinhua; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hong, H.; Hoppe, Eric W.; Hossbach, Todd W.; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Medlin, D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Perevozchikov, O.; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Reid, Douglas J.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Ronquest, M. C.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Sobolev, V.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, V.; Zhang, C.
2011-08-01
The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in 76Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.
Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.
2013-11-15
We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.
NASA Astrophysics Data System (ADS)
Baireuther, P.; Tworzydło, J.; Breitkreiz, M.; Adagideli, İ.; Beenakker, C. W. J.
2017-02-01
A Weyl semimetal wire with an axial magnetization has metallic surface states (Fermi arcs) winding along its perimeter, connecting bulk Weyl cones of opposite topological charge (Berry curvature). We investigate what happens to this ‘Weyl solenoid’ if the wire is covered with a superconductor, by determining the dispersion relation of the surface modes propagating along the wire. Coupling to the superconductor breaks up the Fermi arc into a pair of Majorana modes, separated by an energy gap. Upon variation of the coupling strength along the wire there is a gap inversion that traps the Majorana fermions.
Majorana fermions in vortex lattices
NASA Astrophysics Data System (ADS)
Biswas, Rudro
2013-03-01
We consider Majorana fermions tunneling between vortices, within an array of such vortices in a 2D chiral p-wave superconductor. We calculate that the tunneling amplitude for Majorana fermions in a pair of vortices is proportional to the sine of half the difference between the global order parameter phases at the two vortices. Using this result we study tight-binding models of Majorana fermions in vortices arranged in a triangular or square lattice. In both cases we find that this phase-tunneling relationship leads to the creation of superlattices where the Majorana fermions form macroscopically degenerate `flat' bands at zero energy, in addition to other dispersive bands. This finding suggests that in vortex arrays tunneling processes do not change the energies of a finite fraction of Majorana fermions and hence brighten the prospects of topological quantum computing with a large number of Majorana states.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Simulating the exchange of Majorana zero modes with a photonic system
NASA Astrophysics Data System (ADS)
Xu, Jin-Shi; Sun, Kai; Han, Yong-Jian; Li, Chuan-Feng; Pachos, Jiannis K.; Guo, Guang-Can
2016-10-01
The realization of Majorana zero modes is in the centre of intense theoretical and experimental investigations. Unfortunately, their exchange that can reveal their exotic statistics needs manipulations that are still beyond our experimental capabilities. Here we take an alternative approach. Through the Jordan-Wigner transformation, the Kitaev's chain supporting two Majorana zero modes is mapped to the spin-1/2 chain. We experimentally simulated the spin system and its evolution with a photonic quantum simulator. This allows us to probe the geometric phase, which corresponds to the exchange of two Majorana zero modes positioned at the ends of a three-site chain. Finally, we demonstrate the immunity of quantum information encoded in the Majorana zero modes against local errors through the simulator. Our photonic simulator opens the way for the efficient realization and manipulation of Majorana zero modes in complex architectures.
Simulating the exchange of Majorana zero modes with a photonic system
Xu, Jin-Shi; Sun, Kai; Han, Yong-Jian; Li, Chuan-Feng; Pachos, Jiannis K.; Guo, Guang-Can
2016-01-01
The realization of Majorana zero modes is in the centre of intense theoretical and experimental investigations. Unfortunately, their exchange that can reveal their exotic statistics needs manipulations that are still beyond our experimental capabilities. Here we take an alternative approach. Through the Jordan–Wigner transformation, the Kitaev's chain supporting two Majorana zero modes is mapped to the spin-1/2 chain. We experimentally simulated the spin system and its evolution with a photonic quantum simulator. This allows us to probe the geometric phase, which corresponds to the exchange of two Majorana zero modes positioned at the ends of a three-site chain. Finally, we demonstrate the immunity of quantum information encoded in the Majorana zero modes against local errors through the simulator. Our photonic simulator opens the way for the efficient realization and manipulation of Majorana zero modes in complex architectures. PMID:27779181
Orrell, John; Hoppe, Eric
2013-11-20
Working as part of a collaborative team, PNNL is bringing its signature capability in ultra-low-level detection to help search for a rare form of radioactive decay-never before detected-called "neutrinoless double beta decay" in germanium. If observed, it would demonstrate neutrinos are Majorana-type particles. This discovery would show neutrinos are unique among fundamental particles, having a property whereby the matter and anti-matter version of this particle are indistinguishable. Physicist John L. Orrell explains how they rely on the Shallow Underground Laboratory to conduct the research.
Orrell, John; Hoppe, Eric
2016-07-12
Working as part of a collaborative team, PNNL is bringing its signature capability in ultra-low-level detection to help search for a rare form of radioactive decay-never before detected-called "neutrinoless double beta decay" in germanium. If observed, it would demonstrate neutrinos are Majorana-type particles. This discovery would show neutrinos are unique among fundamental particles, having a property whereby the matter and anti-matter version of this particle are indistinguishable. Physicist John L. Orrell explains how they rely on the Shallow Underground Laboratory to conduct the research.
Elliott, Steven Ray; Elliott, Steve; Gehman, V M; Guiseppe, V E; Hime, A; Rielage, K; Rodriguez, L; Wouters, J M; Aalseth, C E; Akashi - Ronquest, M; Amman, M; Amsbaugh, J F; Avignone Ill, F T; Back, H O; Baktash, C; Barabash, A S; Barbeau, P; Beene, J R; Bergevin, M; Bertrand, F E; Boswell, M; Brudanin, V; Bugg, W; Burritt, T H; Chan, Y - D; Cianciolo, T V; Collar, J; Creswick, R; Cromaz, M; Detwiler, J A; Doe, P J; Dunmore, J A; Efremenko, Yu; Egorov, V; Ejiri, H; Ely, J; Esterline, J; Farach, H; Farmer, T; Fast, J; Finnerty, P; Fujikawa, B; Greenberg, C; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hossbach, T; Hoppe, E; Howe, M A; Hurley, D; Hyronimus, B; Johnson, R A; Keillor, M; Keller, C; Kephart, J; Kidd, M; Kochetov, O; Konovalov, S I; Kouzes, R T; Lesko, K T; Leviner, L; Luke, P; Macmullin, S; Marino, M G; Mcdonald, A B; Mei, D - M; Miley, H S; Myers, A W; Nomachi, M; Odom, B; Orrell, J; Poon, A W P; Prior, G; Radford, D C; Reeves, J H; Riley, N; Robertson, R G H; Rykaczewski, K P; Schubert, A G; Shima, T; Shirchenko, M; Timkin, V; Thompson, R; Tornow, W; Tull, C; Van Wechel, T D; Vanyushin, I; Varner, R L; Vetter, K; Warner, R; Wilkerson, J F; Yakushev, E; Young, A R; Yu, C - H; Yumatov, V; Yin, Z - B
2008-01-01
Building a 0{nu}{beta}{beta} experiment with the ability to probe neutrino mass in the inverted hierarchy region requires the combination of a large detector mass sensitive to 0{nu}{beta}{beta}, on the order of 1 ton, and unprecedented background levels, on the order of or less than 1 count per year in the 0{nu}{beta}{beta} signal region. The MAJORANA Collaboration proposes a design based on using high-purity enriched {sup 76}Ge crystals deployed in ultra-low background electroformed Cu cryostats and using modern analysis techniques that should be capable of reaching the required sensitivity while also being scalable to a 1-ton size. To demonstrate feasibility, the collaboration plans to construct a prototype system, the MAJORANA Demonstrator, consisting of 30 kg of 86% enriched {sup 76}Ge detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to deploy and evaluate two different Ge detector technologies, one based on a p-type configuration and the other on n-type.
Majorana Fermions in Vortex Lattices
NASA Astrophysics Data System (ADS)
Biswas, Rudro R.
2013-09-01
We consider Majorana fermions tunneling among an array of vortices in a 2D chiral p-wave superconductor or equivalent material. The amplitude for Majorana fermions to tunnel between a pair of vortices is found to necessarily depend on the background superconducting phase profile; it is found to be proportional to the sine of half the difference between the phases at the two vortices. Using this result we study tight-binding models of Majorana fermions in vortices arranged in triangular or square lattices. In both cases we find that the aforementioned phase-tunneling relationship leads to the creation of superlattices where the Majorana fermions form macroscopically degenerate localizable flat bands at zero energy, in addition to other dispersive bands. This finding suggests that tunneling processes in these vortex arrays do not change the energies of a finite fraction of Majorana fermions, contrary to previous expectation. The presence of flat Majorana bands, and hence less-than-expected decoherence in these vortex arrays, bodes well for the prospects of topological quantum computation with large numbers of Majorana states.
Majorana fermions in vortex lattices.
Biswas, Rudro R
2013-09-27
We consider Majorana fermions tunneling among an array of vortices in a 2D chiral p-wave superconductor or equivalent material. The amplitude for Majorana fermions to tunnel between a pair of vortices is found to necessarily depend on the background superconducting phase profile; it is found to be proportional to the sine of half the difference between the phases at the two vortices. Using this result we study tight-binding models of Majorana fermions in vortices arranged in triangular or square lattices. In both cases we find that the aforementioned phase-tunneling relationship leads to the creation of superlattices where the Majorana fermions form macroscopically degenerate localizable flat bands at zero energy, in addition to other dispersive bands. This finding suggests that tunneling processes in these vortex arrays do not change the energies of a finite fraction of Majorana fermions, contrary to previous expectation. The presence of flat Majorana bands, and hence less-than-expected decoherence in these vortex arrays, bodes well for the prospects of topological quantum computation with large numbers of Majorana states.
Majorana Braiding with Thermal Noise
NASA Astrophysics Data System (ADS)
Pedrocchi, Fabio L.; DiVincenzo, David P.
2015-09-01
We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture.
Status of the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Vasilyev, S.; Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Balderrot-Barrera, C. X.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. E.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
2017-01-01
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultralow background, 40-kg modular high purity Ge (HPGe) detector array to search for neutrinoless double-beta decay (0νββ-decay) in 76Ge. The goal of the experiment is to demonstrate a background rate at or below 3 counts/(t-y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge 0νββ-decay. In this paper, the status of the MAJORANA DEMONSTRATOR, including its design and measurements of properties of the HPGe crystals is presented.
Detecting Majorana nonlocality using strongly coupled Majorana bound states
NASA Astrophysics Data System (ADS)
Rubbert, S.; Akhmerov, A. R.
2016-09-01
Majorana bound states (MBS) differ from the regular zero energy Andreev bound states in their nonlocal properties, since two MBS form a single fermion. We design strategies for detection of this nonlocality by using the phenomenon of Coulomb-mediated Majorana coupling in a setting which still retains falsifiability and does not require locally separated MBS. Focusing on the implementation of MBS based on the quantum spin Hall effect, we also design a way to probe Majoranas without the need to open a magnetic gap in the helical edge states. In the setup that we analyze, long range MBS coupling manifests in the h /e magnetic flux periodicity of tunneling conductance and supercurrent. While h /e is also the periodicity of Aharonov-Bohm effect and persistent current, we show how to ensure its Majorana origin by verifying that switching off the charging energy restores h /2 e periodicity conventional for superconducting systems.
Commissioning the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Xu, Wenqin; Majorana Collaboration
2016-03-01
The
Majorana neutrinos and magnetic fields
NASA Astrophysics Data System (ADS)
Schechter, J.; Valle, J. W. F.
1981-10-01
It is stressed that if neutrinos are massive they are probably of "Majorana" type. This implies that their magnetic-moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to take place. We point out that Majorana neutrinos can, however, have transition moments. This enables an inhomogeneous magnetic field to rotate both spin and "flavor" of a neutrino. In this case the spin rotation changes particle to antiparticle. The spin-flavor-rotation effect is worked out in detail. We also discuss the parametrization and calculation of the electromagnetic form factors of Majorana neutrinos. Our discussion takes into account the somewhat unusual quantum theory of massive Majorana particles.
NASA Astrophysics Data System (ADS)
Plugge, Stephan; Rasmussen, Asbjørn; Egger, Reinhold; Flensberg, Karsten
2017-01-01
Quantum information protected by the topology of the storage medium is expected to exhibit long coherence times. Another feature is topologically protected gates generated through braiding of Majorana bound states (MBSs). However, braiding requires structures with branched topological segments which have inherent difficulties in the semiconductor-superconductor heterostructures now believed to host MBSs. In this paper, we construct quantum bits taking advantage of the topological protection and non-local properties of MBSs in a network of parallel wires, but without relying on braiding for quantum gates. The elementary unit is made from three topological wires, two wires coupled by a trivial superconductor and the third acting as an interference arm. Coulomb blockade of the combined wires spawns a fractionalized spin, non-locally addressable by quantum dots used for single-qubit readout, initialization, and manipulation. We describe how the same tools allow for measurement-based implementation of the Clifford gates, in total making the architecture universal. Proof-of-principle demonstration of topologically protected qubits using existing techniques is therefore within reach.
NASA Astrophysics Data System (ADS)
Nemevšek, Miha; Nesti, Fabrizio; Vasquez, Juan Carlos
2017-04-01
Collider signals of heavy Majorana neutrino mass origin are studied in the minimal Left-Right symmetric model, where their mass is generated spontaneously together with the breaking of lepton number. The right-handed triplet Higgs boson Δ, responsible for such breaking, can be copiously produced at the LHC through the Higgs portal in the gluon fusion and less so in gauge mediated channels. At Δ masses below the opening of the V V decay channel, the two observable modes are pair-production of heavy neutrinos via the triplet gluon fusion gg → Δ → NN and pair production of triplets from the Higgs h → ΔΔ → 4 N decay. The latter features tri- and quad same-sign lepton final states that break lepton number by four units and have no significant background. In both cases up to four displaced vertices may be present and their displacement may serve as a discriminating variable. The backgrounds at the LHC, including the jet fake rate, are estimated and the resulting sensitivity to the Left-Right breaking scale extends well beyond 10 TeV. In addition, sub-dominant radiative modes are surveyed: the γγ, Zγ and lepton flavour violating ones. Finally, prospects for Δ signals at future e + e - colliders are presented.
Status of the Majorana Demonstrator
Cuesta, C.; Buuck, M.; Detwiler, J. A.; Gruszko, J.; Guinn, I. S.; Leon, J.; Robertson, R. G. H.; Abgrall, N.; Bradley, A. W.; Chan, Y.-D.; Mertens, S.; Poon, A. W. P.; Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Avignone, F. T.; Baldenegro-Barrera, C. X.; Bertrand, F. E.; and others
2015-10-28
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg {sup 76}Ge and 15 kg {sup nat}Ge) to search for neutrinoless double beta decay in {sup 76}Ge. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Shalaby, A. M.; Wiese, U.-J.
2017-03-01
Motivated by potential applications to ultracold matter, we perform a theoretical study of Majorana fermions confined to a finite volume, whose boundary conditions are characterized by self-adjoint extension parameters. While the boundary conditions for Dirac fermions in (1 +1 )-d are characterized by a 1-parameter family, λ =-λ*, of self-adjoint extensions, for Majorana fermions λ is restricted to ±i . Based on this result, we compute the frequency spectrum of Majorana fermions confined to a 1-d interval. The boundary conditions for Dirac fermions confined to a 3-d region of space are characterized by a 4-parameter family of self-adjoint extensions, which is reduced to two distinct 1-parameter families for Majorana fermions. We also consider the problems related to the quantum mechanical interpretation of the Majorana equation as a single-particle equation. Furthermore, the equation is related to a relativistic Schrödinger equation that does not suffer from these problems. Here we restrict ourselves to theoretical considerations without yet focusing on concrete cold matter applications.
Status of the MAJORANA DEMONSTRATOR
Cuesta, C; Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A.S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, Adam S; Chan, Y-D; Christofferson, C. D.; Chu, P.-H.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A; Gilliss, T.; Green, M. P.; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R.; Howard, S.; Howe, M. A.; Keeter, K.J.; Kidd, M. F.; Konovalov, S.I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Massarczyk, R.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Radford, D. C.; Rager, J.; Robertson, R.G.H.; Romero-Romero, E.; Snyder, N; Suriano, A. M.; Tedeschi, D; Trimble, J. E.; Vasilyev, S.; et al.
2015-01-01
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg Ge-76 and 15 kg Ge-nat) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJO-RANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
Microwave readout of Majorana qubits
NASA Astrophysics Data System (ADS)
Ohm, C.; Hassler, F.
2015-02-01
Majorana qubits offer a promising way to store and manipulate quantum information by encoding it into the state of Majorana zero modes. As the information is stored in a topological property of the system, local noise cannot lead to decoherence. Manipulation of the information is achieved by braiding the zero modes. The measurement, however, is challenging as the information is well hidden and thus inherently hard to access. Here, we discuss a setup for measuring the state of a Majorana qubit by employing standard tools of microwave engineering. The basic physical effect that we employ is the fact that a voltage-biased Josephson junction hosting Majorana fermions allows photons to be emitted and absorbed at half the Josephson frequency. We show that in the dispersive regime, our setup allows us to perform a quantum nondemolition measurement and to reach the quantum limit. An appealing feature of our setup is that the interaction of the Majorana qubit with the measurement device can be turned on and off at will by changing the dc bias of the junction.
Majorana Electroformed Copper Mechanical Analysis
Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.
2012-04-30
The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.
NASA Astrophysics Data System (ADS)
Daido, Akito; Yanase, Youichi
2017-04-01
We study two-dimensional noncentrosymmetric nodal superconductors under Zeeman field and clarify the field-angle dependence of topological properties. It has been shown that the nodal excitation acquires an excitation gap due to the Zeeman field perpendicular to antisymmetric spin-orbit coupling, and then gapful topological superconductivity is realized [A. Daido and Y. Yanase, Phys. Rev. B 94, 054519 (2016), 10.1103/PhysRevB.94.054519]. We show that the system undergoes a gapful-gapless transition against tilting of the field. The gapless phase remains to show a finite band gap and unusual Majorana edge states in between the bulk bands. The Majorana edge states naturally propagate in a same direction between oppositely oriented edges. We elucidate relations of such unidirectional Majorana edge states with chiral edge states in the gapful topological superconducting phase and previously studied Majorana flat bands at zero Zeeman field. A compact formula of topological invariants characterizing the edge states is given. The gapful-gapless topological phase transition and associated evolution of Majorana states are demonstrated in a model for D +p -wave superconductivity. Experimental realization in recently fabricated cuprate heterostructures and heavy-fermion thin films is discussed.
Majorana Thermosyphon Prototype Experimental Setup
Reid, Douglas J.; Guzman, Anthony D.; Munley, John T.
2011-08-01
This report presents the experimental setup of Pacific Northwest National Laboratory’s MAJORANA DEMONSTRATOR thermosyphon prototype cooling system. A nitrogen thermosyphon prototype of such a system has been built and tested at PNNL. This document presents the experimental setup of the prototype that successfully demonstrated the heat transfer performance of the system.
Majorana Zero Modes in Graphene
NASA Astrophysics Data System (ADS)
San-Jose, P.; Lado, J. L.; Aguado, R.; Guinea, F.; Fernández-Rossier, J.
2015-10-01
A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s -wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene's zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.
Dynamical generation of Majorana masses
Abada, A.; Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J. )
1990-09-01
We address the general question of the dynamical generation of Majorana masses through quartic interactions of the Nambu--Jona-Lasinio (NJL) type that have both chiral and lepton-number invariances. We make composite the Higgs field of the schemes of spontaneous breaking of the leptonic number; we can thus assign to it a leptonic number {vert bar}{ital L}{vert bar}=2 in a natural way. We consider a Weyl field and write a quartic self-interaction for this field that dynamically breaks chiral and fermion-number invariances and exhibits a whole spectrum of composite particles with different quantum numbers, in addition to a Goldstone Majoron. We compare in detail the Dirac and the Majorana cases. The vacuum degeneracy is the same in both cases, but the vacuum invariances are not. For a single fermion species, we have for the Dirac case a U(1){sub {ital V}{minus}{ital A}}{times}U(1){sub {ital V}+{ital A}} invariance that breaks down to U(1){sub {ital V}} and for the Majorana case a single U(1) invariance that breaks down to the identity {ital open}1. In general the Schwinger-Dyson equation is not the same for both cases, since for Majorana fermions we have propagators of several types. However, in the particular case of a NJL {ital contact} interaction (for Majorana fermions this is {ital the} {ital only} {ital nonvanishing} {ital contact} {ital quartic}/{ital B} {ital interaction}), and with a convenient convention for the coupling, the Schwinger-Dyson equation turns out to have the same form for Dirac and for Majorana fermions. The bound-state boson spectrum is quite different in both cases: for the Dirac case, one has a spectrum {sup 2{ital S}+1}{ital L}{sub {ital J}}({ital S}=0,1) {ital J}{sup {ital P}{ital C}}=0{sup {minus}+},1{sup {minus}{minus}},0{sup ++},1{sup ++},1{sup +{minus}},2{sup ++},. . .
Direct Cavity Detection of Majorana Pairs
NASA Astrophysics Data System (ADS)
Dartiailh, Matthieu C.; Kontos, Takis; Douçot, Benoit; Cottet, Audrey
2017-03-01
No experiment could directly test the particle-antiparticle duality of Majorana fermions, so far. However, this property represents a necessary ingredient towards the realization of topological quantum computing schemes. Here, we show how to complete this task by using microwave techniques. The direct coupling between a pair of overlapping Majorana bound states and the electric field from a microwave cavity is extremely difficult to detect due to the self-adjoint character of Majorana fermions which forbids direct energy exchanges with the cavity. We show theoretically how this problem can be circumvented by using photoassisted tunneling to fermionic reservoirs. The absence of a direct microwave transition inside the Majorana pair in spite of the light-Majorana coupling would represent a smoking gun for the Majorana self-adjoint character.
Roadmap to Majorana surface codes
NASA Astrophysics Data System (ADS)
Plugge, S.; Landau, L. A.; Sela, E.; Altland, A.; Flensberg, K.; Egger, R.
2016-11-01
Surface codes offer a very promising avenue towards fault-tolerant quantum computation. We argue that two-dimensional interacting networks of Majorana bound states in topological superconductor/semiconductor heterostructures hold several key advantages in that direction, concerning both the hardware realization and the actual operation of the code. We here discuss how topologically protected logical qubits in this Majorana surface code architecture can be defined, initialized, manipulated, and read out. All physical ingredients needed to implement these operations are routinely used in topologically trivial quantum devices. By means of quantum interference terms in linear conductance measurements, single-electron pumping protocols, and gate-tunable tunnel barriers, the full set of quantum gates required for universal quantum computation can be achieved. In particular, we show that designated multistep pumping sequences via tunnel-coupled quantum dots realize high-fidelity ancilla states for phase gates.
The MAJORANA DEMONSTRATOR radioassay program
NASA Astrophysics Data System (ADS)
Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunmore, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P.; Galindo-Uribarri, A.; Gehman, V. M.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Johnson, R. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Massarczyk, R.; Meijer, S.; Mertens, S.; Miller, M. L.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Steele, D.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
2016-08-01
The MAJORANA collaboration is constructing the MAJORANA DEMONSTRATOR at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope 76Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting, neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. We interpret these numbers in the context of the expected background for the experiment.
The Majorana Parts Tracking Database
Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J. Diaz; Leviner, L. E.; Loach, J. C.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O׳Shaughnessy, C.; Overman, N. R.; Petersburg, R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Suriano, A. M.; Tedeschi, D.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.
2015-04-01
The MAJORANA DEMONSTRATOR is an ultra-low background physics experiment searching for the neutrinoless double beta decay of 76Ge. The MAJORANA Parts Tracking Database is used to record the history of components used in the construction of the DEMONSTRATOR. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radiopurity required for this rare decay search.
Status of the Majorana Demonstrator
Cuesta, C.; Abgrall, N.; Arnquist, I. J.; ...
2015-08-06
In this study, the Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based neutrinoless double-beta decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. Lastly, the current status of the Demonstrator is discussed, as are plansmore » for its completion.« less
Status of the Majorana Demonstrator
Cuesta, C.; Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Schmitt, C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Timkin, V.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.
2015-08-06
In this study, the Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in ^{76}Ge. In view of the next generation of tonne-scale Ge-based neutrinoless double-beta decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. Lastly, the current status of the Demonstrator is discussed, as are plans for its completion.
The MAJORANA Demonstrator Radioassay Program
Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Bradley, A. W.; Brudanin, V.; Busch, Matthew; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, C. D.; Chu, P. H.; Cuesta, C.; Detwiler, Jason A.; Dunmore, J. A.; Efremenko, Yuri; Ejiri, H.; Elliott, S.; Finnerty, P.; Galindo-Uribarri, A.; Gehman, Victor M.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, Eric W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Johnson, R. A.; Keeter, K.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Massarcyk, R.; Meijer, S. J.; Mertens, S.; Miller, M. L.; Orrell, John L.; O'Shaughnessy, C.; Overman, Nicole R.; Poon, Alan W.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Suriano, Anne-Marie; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, K.; Vorren, Kris R.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, Chang-Hong; Yumatov, Vladimir; Zhitnikov, I.
2016-05-03
The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope 76Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are suffciently pure is described. The resulting measurements of the radioactiveisotope contamination for a number of materials studied for use in the detector are reported.
The Majorana Demonstrator radioassay program
Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Bertrand, F. E.; Boswell, Melissa; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, Pinghan; Cuesta, C.; Detwiler, J. A.; Dunmore, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P.; Galindo-Uribarri, A.; Gehman, V. M.; Gilliss, T.; Giovanetti, G. K.; Goett, John Jerome; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Johnson, R. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Massarczyk, Ralph; Meijer, S.; Mertens, S.; Miller, M. L.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, Keith Robert; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Steele, D.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.
2016-05-03
The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope ^{76}Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting, neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. In conclusion, we interpret these numbers in the context of the expected background for the experiment.
The Majorana Demonstrator radioassay program
Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Bertrand, F. E.; Boswell, Melissa; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, Pinghan; Cuesta, C.; Detwiler, J. A.; Dunmore, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P.; Galindo-Uribarri, A.; Gehman, V. M.; Gilliss, T.; Giovanetti, G. K.; Goett, John Jerome; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Johnson, R. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Massarczyk, Ralph; Meijer, S.; Mertens, S.; Miller, M. L.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, Keith Robert; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Steele, D.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.
2016-05-03
The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope ^{76}Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting, neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. In conclusion, we interpret these numbers in the context of the expected background for the experiment.
The Majorana Parts Tracking Database
Abgrall, N.
2015-01-16
The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of 76Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation.more » In summary, a web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.« less
The Majorana Parts Tracking Database
Abgrall, N.
2015-01-16
The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of ^{76}Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. In summary, a web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.
The Majorana Demonstrator radioassay program
Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...
2016-05-03
The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope 76Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting,more » neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. In conclusion, we interpret these numbers in the context of the expected background for the experiment.« less
Non-equilibrium Majorana fluctuations
NASA Astrophysics Data System (ADS)
Smirnov, Sergey
2017-06-01
Non-equilibrium physics of random events, or fluctuations, is a unique fingerprint of a given system. Here we demonstrate that in non-interacting systems with dynamics driven essentially by Majorana states the effective charge {e}* , characterizing the electric current fluctuations, is fractional. This is in contrast to non-interacting Dirac systems with the trivial electronic charge {e}* =e. In the Majorana state, however, we predict two different fractional effective charges at low and high energies, {e}{{l}}* =e/2 and {e}{{h}}* =3e/2, accessible at low and high bias voltages, respectively. We show that while the low-energy effective charge {e}{{l}}* is sensitive to thermal fluctuations of the current, the high-energy effective charge {e}{{h}}* is robust against thermal noise. A unique fluctuation signature of Majorana fermions is therefore encoded in the high-voltage tails of the electric current noise easily accessible in experiments on strongly non-equilibrium systems even at high temperatures.
Current distributions in stripe Majorana junctions
NASA Astrophysics Data System (ADS)
Osca, Javier; Llorenç, Serra
2017-02-01
We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite ( y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.
Controlling Majorana states in topologically inhomogeneous superconductors
NASA Astrophysics Data System (ADS)
Marra, Pasquale; Cuoco, Mario
2017-04-01
Majorana bound states have been recently observed at the boundaries of one-dimensional topological superconductors. Yet, controlling the localization of the Majorana states, which is essential to the realization of any topological quantum device, is an ongoing challenge. To this end, we introduce a mechanism which can break a topologically homogeneous state via the formation of topological domains, and which can be exploited to control the position of Majorana states. We found, in fact, that in the presence of amplitude-modulated fields, contiguous magnetic domains can become topologically inequivalent and, as a consequence, Majorana states can be pinned to the domain walls of the magnetic structure. The formation of topological domains and the position of Majorana states can be externally controlled by tuning an applied field (e.g., magnetic or gate).
The Majorana Demonstrator calibration system
Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; ...
2017-08-08
The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-ton 76Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source aremore » designed to be controlled by the data acquisition system and do not require any direct human interaction. In this study, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.« less
Majorana Thermosyphon Prototype Experimental Results
Fast, James E.; Reid, Douglas J.; Aguayo Navarrete, Estanislao
2010-12-17
Objective The Majorana demonstrator will operate at liquid Nitrogen temperatures to ensure optimal spectrometric performance of its High Purity Germanium (HPGe) detector modules. In order to transfer the heat load of the detector module, the Majorana demonstrator requires a cooling system that will maintain a stable liquid nitrogen temperature. This cooling system is required to transport the heat from the detector chamber outside the shield. One approach is to use the two phase liquid-gas equilibrium to ensure constant temperature. This cooling technique is used in a thermosyphon. The thermosyphon can be designed so the vaporization/condensing process transfers heat through the shield while maintaining a stable operating temperature. A prototype of such system has been built at PNNL. This document presents the experimental results of the prototype and evaluates the heat transfer performance of the system. The cool down time, temperature gradient in the thermosyphon, and heat transfer analysis are studied in this document with different heat load applied to the prototype.
Signatures for Majorana neutrinos at hadron colliders.
Han, Tao; Zhang, Bin
2006-10-27
The Majorana nature of neutrinos may only be experimentally verified via lepton-number violating processes involving charged leptons. We explore the Delta L = 2 like-sign dilepton production at hadron colliders to search for signals of Majorana neutrinos. We find significant sensitivity for resonant production of a Majorana neutrino in the mass range of 10-80 GeV at the current run of the Tevatron with 2 fb(-1) integrated luminosity and in the range of 10-400 GeV at the CERN LHC with 100 fb(-1).
Helicity oscillations of Dirac and Majorana neutrinos
NASA Astrophysics Data System (ADS)
Dobrynina, Alexandra; Kartavtsev, Alexander; Raffelt, Georg
2016-06-01
The helicity of a Dirac neutrino with mass m evolves under the influence of a B field because it has a magnetic dipole moment proportional to m . Moreover, it was recently shown that a polarized or anisotropic medium engenders the same effect for both Dirac and Majorana neutrinos. Because a B field polarizes a background medium, it instigates helicity oscillations even for Majorana neutrinos unless the medium is symmetric between matter and antimatter. Motivated by these observations, we review the impact of a B field and of an anisotropic or polarized medium on helicity oscillations for Dirac and Majorana neutrinos from the common perspective of in-medium dispersion.
Status of the MAJORANA DEMONSTRATOR experiment
Martin, R. D.; Abgrall, N.; Chan, Y-D.; Hegai, A.; Mertens, S.; Poon, A. W. P.; Vetter, K.; Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A.; Avignone III, F. T.; Barabash, A. S.; Konovalov, S. I.; Yumatov, V.; Bertrand, F. E.; and others
2014-06-24
The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.
Majorana Fermions and Topology in Superconductors
NASA Astrophysics Data System (ADS)
Sato, Masatoshi; Fujimoto, Satoshi
2016-07-01
Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.
Two-photon interactions with Majorana fermions
NASA Astrophysics Data System (ADS)
Latimer, David C.
2016-11-01
Because Majorana fermions are their own antiparticles, their electric and magnetic dipole moments must vanish, leaving the anapole moment as their only static electromagnetic property. But the existence of induced dipole moments is not necessarily prohibited. Through a study of real Compton scattering, we explore the constraints that the Majorana fermion's self-conjugate nature has on induced moments. In terms of the Compton amplitude, we find no constraints if the interactions are separately invariant under charge conjugation, parity, and time reversal. However, if the interactions are odd under parity and even under time reversal, then these contributions to the Compton amplitude must vanish. We employ a simple model to confirm these general findings via explicit calculation of the Majorana fermion's polarizabilities. We then use these polarizabilities to estimate the cross section for s -wave annihilation of two Majorana fermions into photons. The cross section is larger than a naive estimate might suggest.
Status of the MAJORANA DEMONSTRATOR experiment
Martin, R. D.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir
2014-07-08
The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.
Hunting for heavy composite Majorana neutrinos at the LHC
NASA Astrophysics Data System (ADS)
Leonardi, R.; Alunni, L.; Romeo, F.; Fanò, L.; Panella, O.
2016-11-01
We investigate the search for heavy Majorana neutrinos stemming from a composite model scenario at the upcoming LHC Run II at a centre of mass energy of 13 TeV. While previous studies of the composite Majorana neutrino were focussed on gauge interactions via magnetic type transition coupling between ordinary and heavy fermions (with mass m^*) here we complement the composite model with contact interactions at the energy scale Λ and we find that the production cross sections are dominated by such contact interactions by roughly two/three orders of magnitude. This mechanism provides therefore very interesting rates at the prospected luminosities. We study the same-sign di-lepton and di-jet signature (pp → ℓ ℓ jj) and perform a fast detector simulation based on Delphes. We compute 3σ and 5σ contour plots of the statistical significance in the parameter space (Λ ,m^*). We find that the potentially excluded regions at √{s} =13 TeV are quite larger than those excluded so far at Run I considering searches with other signatures.
NASA Astrophysics Data System (ADS)
Lopez, Andrew; Majorana Demonstrator Collaboration
2016-03-01
Majorana Demonstrator (MJD) is one of the major efforts of the DOE NP to demonstrate very high sensitivity for the search of the neutrino less double beta decay. The ultimate goal of MJD is to prove that background levels for a tonne-scale experiment with a similar design can be as low as 1.0 count/(4 keV*t*y). One source of background is cosmic muons that can interact in the detectors or in the shielding. In order to tag cosmic muon induced background, an efficient veto system is necessary. The MJD veto system is made out of thirty two panels of 1'' plastic scintillator. Understanding the performance of MJD veto system is vital for reducing the background count. Initial data of veto system performance during the commissioning stage will be presented. This material is based upon work supported by the U.S. Dept. of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.
Iterants, Fermions and Majorana Operators
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.
High voltage testing for the Majorana Demonstrator
Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.; Barabash, A.; Bertrand, F.; Bradley, A. W.; Brudanin, V.; Busch, Matthew; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, C. D.; Chu, Pamela M.; Cuesta, C.; Detwiler, Jason A.; Doe, P. J.; Dunagan, C.; Efremenko, Yuri; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, Eric W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K.; Kidd, M. F.; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Li, Alexander D.; MacMullin, J.; Martin, R. D.; Massarcyk, R.; Meijer, S. J.; Mertens, S.; Orrell, John L.; O'Shaughnessy, C.; Poon, Alan W.; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero Romo, M.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, Anne-Marie E.; Tedeschi, D.; Thompson, Andrew; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, Chang-Hong; Yumatov, V.
2016-07-01
The Majorana Collaboration is constructing theMajorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of theMajorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during theMajorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.
High voltage testing for the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.
2016-07-01
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.
High voltage testing for the Majorana Demonstrator
Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; ...
2016-04-04
The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less
High voltage testing for the Majorana Demonstrator
Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliot, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.
2016-04-04
The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in ^{76}Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.
Search for Majorana Fermions in S-Wave Fermionic Superfluids
2016-04-01
Atomic and molecular physics Objectives and research goals Majorana fermions were envisioned by E. Majorana in 1935 to describe neutrinos . The Majorana...were initially conceived to describe neutrinos in particle physics. Recently, Weyl fermions have been widely examined in a class of solid-state
THE MAJORANA DEMONSTRATOR: OVERVIEW AND STATUS UPDATE
Keeter, K.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Cuesta, C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, Matthew P.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; O'Shaughnessy, Mark D.; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Strain, J.; Suriano, Anne-Marie; Swift, Gary; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir
2013-04-12
The MAJORANA DEMONSTRATOR is being constructed at the Sanford Underground Research Facility (SURF) in Lead, SD by the MAJORANA Collaboration to demonstrate the feasibility of a tonne-scale neutrinoless double beta decay experiment based on 76Ge. The observation of neutrinoless double beta decay would indicate that neutrinos can serve as their own antiparticles, thus proving neutrinos to be Majorana particles, and would give information on neutrino masses. Attaining sensitivities for neutrino masses in the inverted hierarchy region requires large tonne-scale detectors with extremely low backgrounds. The DEMONSTRATOR project will show that sufficiently low backgrounds are achievable. A brief description of the detector and a status update on the construction will be given, including the work done at BHSU on acid-etching of Pb shielding bricks.
Majorana quasiparticles of an inhomogeneous Rashba chain
NASA Astrophysics Data System (ADS)
Maśka, Maciej M.; Gorczyca-Goraj, Anna; Tworzydło, Jakub; Domański, Tadeusz
2017-01-01
We investigate the inhomogeneous Rashba chain coupled to a superconducting substrate, hosting the Majorana quasiparticles near its edges. We discuss its subgap spectrum and study how robust the zero-energy quasiparticles are against the diagonal and off-diagonal disorder. Studying the Z2 topological invariant we show that disorder-induced transition from the topologically nontrivial to trivial phases is manifested by characteristic features in the spatially resolved quasiparticle spectrum at zero energy. We provide evidence for the nonlocal nature of the zero-energy Majorana quasiparticles that are well preserved upon partitioning the chain into separate pieces. Even though the Majorana quasiparticles are not completely immune to inhomogeneity, we show that they can spread onto other (normal) nanoscopic objects via the proximity effect.
MAJORANA Collaboration's experience with germanium detectors
Mertens, S.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.
2015-05-01
The goal of the Majorana Demonstrator project is to search for 0νββ decay in ^{76}Ge. Of all candidate isotopes for 0νββ, ^{76}Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.
MAJORANA Collaboration's Experience with Germanium Detectors
Mertens, S.; Abgrall, N.; Avignone, III, F. T.; Bertrand, F. E.; Efremenko, Yuri; Galindo-Uribarri, A; Radford, D. C.; Romero-Romero, E.; White, B. R.; Wilkerson, J. F.; Majorana,
2015-01-01
The goal of the Majorana Demonstrator project is to search for 0v beta beta decay in Ge-76. Of all candidate isotopes for 0v beta beta, Ge-76 has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0v beta beta, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC (R)(R). The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.
Majorana qubit rotations in microwave cavities.
Schmidt, Thomas L; Nunnenkamp, Andreas; Bruder, Christoph
2013-03-08
Majorana bound states have been proposed as building blocks for qubits on which certain operations can be performed in a topologically protected way using braiding. However, the set of these protected operations is not sufficient to realize universal quantum computing. We show that the electric field in a microwave cavity can induce Rabi oscillations between adjacent Majorana bound states. These oscillations can be used to implement an additional single-qubit gate. Supplemented with one braiding operation, this gate allows us to perform arbitrary single-qubit operations.
The Majorana Neutrinoless Double-beta Decay Experiment
NASA Astrophysics Data System (ADS)
Guiseppe, Vincente
2008-04-01
Neutrinoless double-beta decay searches play a major role in determining the effective Majorana neutrino mass, the Majorana nature of neutrinos, and a lepton violating process. The Majorana experiment proposes to assemble an array of HPGe detectors to search for neutrinoless double-beta decay in ^76Ge. Initially, Majorana aims to construct a prototype system containing 60 kg of Ge detectors to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of the prototype system will be presented. This talk will also discuss material purity, detector optimization, background rejection, identification of rare backgrounds, and other key technologies to be utilized in the Majorana experiment.
Spin and Majorana polarization in topological superconducting wires.
Sticlet, Doru; Bena, Cristina; Simon, Pascal
2012-03-02
We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which supports Majorana fermions when subject to a Zeeman magnetic field and in the proximity of a superconductor. Using both analytical and numerical techniques we calculate the electronic spin texture of the Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local "Majorana polarization" and "Majorana density" and argue that they can be used as order parameters to characterize the topological transition between the trivial system and the system exhibiting Majorana bound modes. We find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.
Odd frequency pairing of interacting Majorana fermions
NASA Astrophysics Data System (ADS)
Huang, Zhoushen; Woelfle, Peter; Balatsky, Alexandar
Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing. Work supported by USDOE DE-AC52-06NA25396 E304, Knut and Alice Wallenberg Foundation, and ERC DM-321031.
Initial Results from the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Elliott, S. R.; Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Fullmer, A.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
2017-09-01
Neutrinoless double-beta decay searches seek to determine the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator is composed of 44.8 kg (29.7 kg enriched in 76Ge) of Ge detectors in total, split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals of the Demonstrator are to establish the required background and scalability of a Ge-based, next-generation, tonne-scale experiment. Following a commissioning run that began in 2015, the first detector module started physics data production in early 2016. We will discuss initial results of the Module 1 commissioning and first physics run, as well as the status and potential physics reach of the full Majorana Demonstrator experiment. The collaboration plans to complete the assembly of the second detector module by mid-2016 to begin full data production with the entire array.
Majorana Fermions in Chiral Topological Ferromagnetic Nanowires
NASA Astrophysics Data System (ADS)
Dumitrescu, Eugen; Roberts, Brenden; Tewari, Sumanta; Sau, Jay D.
2015-03-01
Motivated by a recent experiment in which zero-bias peaks have been observed in STM experiments performed on chains of magnetic atoms on a superconductor, we show that a multichannel ferromagnetic wire deposited on a spin-orbit coupled superconducting substrate can realize a non-trivial chiral topological superconducting state with Majorana bound states localized at the wire ends. The non-trivial topological state occurs for generic parameters requiring no fine tuning, at least for very large exchange spin splitting in the wire. We theoretically obtain the signatures which appear in the presence of an arbitrary number of Majorana modes in multi-wire systems incorporating the role of finite temperature, finite potential barrier at the STM tip, and finite wire length. These signatures are presented in terms of spatial profiles of STM differential conductance which clearly reveal zero energy Majorana end modes and the prediction of a multiple Majorana based fractional Josephson effect. Co-author: S. Das Sarma. Work supported by AFOSR (FA9550-13-1-0045) at Clemson University and by LPS-CMTC and JQI-NSF-PFC at the University of Maryland.
Coherent-State Approach for Majorana Representation
NASA Astrophysics Data System (ADS)
Liu, Hao-Di; Fu, Li-Bin; Wang, Xiao-Guang
2017-06-01
By representing a quantum state and its evolution with the Majorana stars on the Bloch sphere, the Majorana representation provides us an intuitive way to study a physical system with SU(2) symmetry. In this work, based on coherent states, we propose a method to establish the generalization of Majorana representation for a general symmetry. By choosing a generalized coherent state as a reference state, we give a more general Majorana representation for both finite and infinite systems and the corresponding star equations are given. Using this method, we study the squeezed vacuum states for three different symmetries, Heisenberg-Weyl, SU(2) and SU(1,1), and express the effect of squeezing parameter on the distribution of stars. Furthermore, we also study the dynamical evolution of stars for an initial coherent state driven by a nonlinear Hamiltonian, and find that at a special time point, the stars are distributed on two orthogonal large circles. Supported by the National Fundamental Research Program of China under Grant No. 2013CBA01502, the National Natural Science Foundation of China under Grant Nos. 11575027, 11475146, and 11405008, the Fundamental Research Funds for the Central Universities under Grant No. 2017FZA3005, and the Plan for Scientific and Technological Development of Jilin Province under Grant No. 20160520173JH
Robust signatures detection of Majorana fermions in superconducting iron chains
Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong
2016-01-01
We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains. PMID:27857149
Robust signatures detection of Majorana fermions in superconducting iron chains
NASA Astrophysics Data System (ADS)
Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong
2016-11-01
We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains.
First data of the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Cuesta, Clara; Majorana Collaboration
2016-09-01
The MAJORANA Collaboration is constructing a system containing 44 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection. The analysis tools are based on run ranking, data reduction, pulse shape analysis, event coincidences, and time correlations. The first data corresponding to the commissioning of the DEMONSTRATOR analyzed using these techniques will be presented. The cuts developed to reject delayed charge recovery and multisite events will be described.
Milestones Toward Majorana-Based Quantum Computing
NASA Astrophysics Data System (ADS)
Aasen, David; Hell, Michael; Mishmash, Ryan V.; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason
2016-07-01
We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well.
Majorana fermions in condensed matter: An outlook
NASA Astrophysics Data System (ADS)
Ma, Ning
2017-05-01
The Majorana fermions (MFs) were firstly envisioned by Majorana in 1937 as fundamental constituents of nature, whereas experimentally thus far unobserved in the realm of fundamental particles. More recent studies have revealed that the MFs could occur in condensed matter physics as emergent quasiparticle excitations in effectively spinless p-wave topological superconductors (TS). They are shown to behave as effectively fractionalized anyons following non-Abelian braiding statistics rather than the usual Fermi or Bose exchange statistics. This extraordinary property would directly lead to a perpetually coherent and fault tolerant topological quantum computation in 2D systems. Currently the experiments searching for MFs on much more special systems are ongoing and the investigations of MFs' behavior in TS-coupled systems are also been actively pursued, with the goal of deeply understanding the fundamental physics of fractional statistics in nature, and further paving more feasible ways toward a working universal topological quantum computer.
Majorana fermions coupled to electromagnetic radiation
NASA Astrophysics Data System (ADS)
Ohm, Christoph; Hassler, Fabian
2014-01-01
We consider a voltage-biased Josephson junction between two nanowires hosting Majorana zero modes which occur as topological protected zero-energy excitations at the junction. We show that two Majorana fermions localized at the junction, despite being neutral particles, interact with the electromagnetic field and generate coherent radiation similar to the conventional Josephson radiation. Within a semiclassical analysis of the radiation field, we find that the phase of the radiation gets locked to the superconducting phase difference and that the radiation is emitted at half the Josephson frequency. In order to confirm the coherence of the radiation, we study correlations of the radiation emitted by two spatially separated junctions in a dc-SQUID geometry taking into account decoherence due to spontaneous state-switches as well as due to quasi-particle poisoning.
MAJORANA Collaboration's experience with germanium detectors
Mertens, S.; Abgrall, N.; Avignone, F. T.; ...
2015-05-01
The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANAmore » mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.« less
Background model for the Majorana Demonstrator
Cuesta, C.; Abgrall, N.; Aguayo, E.; ...
2015-01-01
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example usingmore » powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.« less
Background model for the Majorana Demonstrator
Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y -D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V.; Gusev, K.; Hallin, A.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, W. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. K.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.
2015-01-01
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.
Majorana fermions in noisy Kitaev wires
NASA Astrophysics Data System (ADS)
Hu, Ying; Cai, Zi; Baranov, Mikhail A.; Zoller, Peter
2015-10-01
Robustness of edge states and non-Abelian excitations of topological states of matter promises quantum memory and quantum processing, which are naturally immune to microscopic imperfections such as static disorder. However, topological properties will not in general protect quantum systems from time-dependent disorder or noise. Here we take the example of a network of Kitaev wires with Majorana edge modes storing qubits to investigate the effects of classical noise in the crossover from the quasistatic to the fast fluctuation regime. We present detailed results for the Majorana edge correlations, and fidelity of braiding operations for both global and local noise sources preserving parity symmetry, such as random chemical potentials and phase fluctuations. While in general noise will induce heating and dephasing, we identify examples of long-lived quantum correlations in the presence of fast noise due to motional narrowing, where external noise drives the system rapidly between the topological and nontopological phases.
Braiding errors in interacting Majorana quantum wires
NASA Astrophysics Data System (ADS)
Sekania, Michael; Plugge, Stephan; Greiter, Martin; Thomale, Ronny; Schmitteckert, Peter
2017-09-01
Avenues of Majorana bound states (MBSs) have become one of the primary directions towards a possible realization of topological quantum computation. For a Y junction of Kitaev quantum wires, we numerically investigate the braiding of MBSs while considering the full quasiparticle background. The two central sources of braiding errors are found to be the fidelity loss due to the incomplete adiabaticity of the braiding operation as well as the finite hybridization of the MBSs. The explicit extraction of the braiding phase from the full many-particle states allows us to analyze the breakdown of the independent-particle picture of Majorana braiding. Furthermore, we find nearest-neighbor interactions to significantly affect the braiding performance for better or worse, depending on the sign and magnitude of the coupling.
Charge carrier holes and Majorana fermions
NASA Astrophysics Data System (ADS)
Liang, Jingcheng; Lyanda-Geller, Yuli
2017-05-01
Understanding Luttinger holes in low dimensions is crucial for numerous spin-dependent phenomena and nanotechnology. In particular, hole quantum wires that are proximity coupled to a superconductor is a promising system for the observation of Majorana fermions. Earlier treatments of confined Luttinger holes ignored a mutual transformation of heavy and light holes at the heteroboundaries. We derive the effective hole Hamiltonian in the ground state. The mutual transformation of holes is crucial for Zeeman and spin-orbit coupling, and results in several spin-orbit terms linear in momentum in hole quantum wires. We discuss the criterion for realizing Majorana modes in charge carrier hole systems. GaAs or InSb hole wires shall exhibit stronger topological superconducting pairing, and provide additional opportunities for its control compared to InSb electron systems.
Physics of Majorana modes in interacting helical liquid
Sarkar, Sujit
2016-01-01
As an attempt to understand and search for the existence of Majorana zero mode, we study the topological quantum phase transition and also the nature of this transition in helical liquid system, which appears in different physical systems. We present Majorana-Ising transition along with the phase boundary in the presence of interaction. We show the appearance of Majorana mode under the renormalization of the parameters of the system and also the topological protection of it. We present the length scale dependent condition for the appearance of Majorana edge state and also the absence of edge state for a certain regime of parameter space. PMID:27460508
Remark on Majorana CP phases in neutrino mixing and leptogenesis
NASA Astrophysics Data System (ADS)
Kitabayashi, Teruyuki; Koizumi, Naoto
2014-05-01
We estimate Majorana CP phases for a simple flavor neutrino mixing matrix which has been reported by Qu and Ma. Sizes of Majorana CP phases are evaluated in the study of the neutrinoless double beta decay and a particular leptogenesis scenario. We find the dependence of the physically relevant Majorana CP phase on the mass of lightest right-handed neutrino in the minimal seesaw model and the effective Majorana neutrino mass which is related with the half-life of the neutrinoless double beta decay.
Majorana qubits in a topological insulator nanoribbon architecture
NASA Astrophysics Data System (ADS)
Manousakis, J.; Altland, A.; Bagrets, D.; Egger, R.; Ando, Yoichi
2017-04-01
We describe designs for the realization of topological Majorana qubits in terms of proximitized topological insulator nanoribbons pierced by a uniform axial magnetic field. This platform holds promise for particularly robust Majorana bound states, with easily manipulable interstate couplings. We propose proof-of-principle experiments for initializing, manipulating, and reading out Majorana box qubits defined in floating devices dominated by charging effects. We argue that the platform offers design advantages which make it particularly suitable for extension to qubit network structures realizing a Majorana surface code.
Majorana zero modes in spintronics devices
NASA Astrophysics Data System (ADS)
Wu, Chien-Te; Anderson, Brandon M.; Hsiao, Wei-Han; Levin, K.
2017-01-01
We show that topological phases should be realizable in readily available and well-studied heterostructures. In particular we identify a new class of topological materials which are well known in spintronics: helical ferromagnet-superconducting junctions. We note that almost all previous work on topological heterostructures has focused on creating Majorana modes at the proximity interface in effectively two-dimensional or one-dimensional systems. The particular heterostructures we address exhibit finite-range proximity effects leading to nodal superconductors with Majorana modes localized well away from this interface. To show this, we implement a Bogoliubov-de Gennes (BdG) proximity numerical scheme, which importantly involves two finite dimensions in a three-dimensional junction. Incorporating this level of numerical complexity serves to distinguish ours from alternative numerical BdG approaches which are limited by generally assuming translational invariance or periodic boundary conditions along multiple directions. With this access to the edges, we are then able to illustrate in a concrete fashion the wave functions of Majorana zero modes and, moreover, address finite-size effects. In the process we establish consistency with a simple analytical model.
Majorana Kramers pair in a nematic vortex
Wu, Fengcheng; Martin, Ivar
2017-06-05
A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi2Se3, asmore » suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less
Majorana Kramers pair in a nematic vortex
NASA Astrophysics Data System (ADS)
Wu, Fengcheng; Martin, Ivar
2017-06-01
A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi2Se3 , as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Finally, we discuss possible experiments to probe the zero modes.
The τ neutrino as a Majorana particle
NASA Astrophysics Data System (ADS)
Carena, M.; Lampe, B.; Wagner, C. E. M.
1993-11-01
A Majorana mass term for the τ neutrino would induce neutrino-antineutrino mixing and thereby a process which violates fermion number by two units. We study the possibility of distinguishing between a massive Majorana and a Dirac τ neutrino, by measuring fermion number violating processes in a deep inelastic scattering experiment νp→ τX. We show that, if the neutrino beam is obtained from the decay of high energetic pions, the probability of obtaining “wrong sign” τ leptons is suppressed by a factor O( mντ2θ2/ mμ2) instead of the naively expected suppression factor θ2mντ2/ Eν2, where E ν is the τ neutrino energy, mντ and mμ are the τ neutrino and muon masses, respectively, and θ is the ν μ-ν τ mixing angle. If mντ is of the order of 10 MeV and θ is of the order of 0.01-0.04 (the present bounds are ( mντ < 35 MeV, θ < 0.04) the next round of experiments may be able to distinguish between Majorana and Dirac τ neutrinos.
Introduction to topological superconductivity and Majorana fermions
NASA Astrophysics Data System (ADS)
Leijnse, Martin; Flensberg, Karsten
2012-12-01
This short review paper provides a pedagogical introduction to the rapidly growing research field of Majorana fermions in topological superconductors. We first discuss in some detail the simplest ‘toy model’ in which Majoranas appear, namely a one-dimensional tight-binding representation of a p-wave superconductor, introduced more than 10 years ago by Kitaev. We then give a general introduction to the remarkable properties of Majorana fermions in condensed matter systems, such as their intrinsically non-local nature and exotic exchange statistics, and explain why these quasiparticles are suspected to be especially well suited for low-decoherence quantum information processing. We also discuss the experimentally promising (and perhaps already successfully realized) possibility of creating topological superconductors using semiconductors with strong spin-orbit coupling, proximity-coupled to standard s-wave superconductors and exposed to a magnetic field. The goal is to provide an introduction to the subject for experimentalists or theorists who are new to the field, focusing on the aspects which are most important for understanding the basic physics. The text should be accessible for readers with a basic understanding of quantum mechanics and second quantization, and does not require knowledge of quantum field theory or topological states of matter.
Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at √s = 8 TeV
Aad, G.
2015-07-29
A search for heavy Majorana neutrinos in events containing a pair of high-pT leptons of the same charge and high-pT jets is presented. The search uses 20.3 fb-1 of pp collision data collected with the ATLAS detector at the CERN Large Hadron Collider with a centre-of-mass energy of √s = 8 TeV. The data are found to be consistent with the background-only hypothesis based on the Standard Model expectation. In the context of a Type-I seesaw mechanism, limits are set on the production cross-section times branching ratio for production of heavy Majorana neutrinos in the mass range between 100 andmore » 500 GeV. The limits are subsequently interpreted as limits on the mixing between the heavy Majorana neutrinos and the Standard Model neutrinos. In the context of a left-right symmetric model, limits on the production cross-section times branching ratio are set with respect to the masses of heavy Majorana neutrinos and heavy gauge bosons WR and Z'.« less
Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at √s = 8 TeV
Aad, G.
2015-07-29
A search for heavy Majorana neutrinos in events containing a pair of high-p_{T} leptons of the same charge and high-p_{T} jets is presented. The search uses 20.3 fb^{-1} of pp collision data collected with the ATLAS detector at the CERN Large Hadron Collider with a centre-of-mass energy of √s = 8 TeV. The data are found to be consistent with the background-only hypothesis based on the Standard Model expectation. In the context of a Type-I seesaw mechanism, limits are set on the production cross-section times branching ratio for production of heavy Majorana neutrinos in the mass range between 100 and 500 GeV. The limits are subsequently interpreted as limits on the mixing between the heavy Majorana neutrinos and the Standard Model neutrinos. In the context of a left-right symmetric model, limits on the production cross-section times branching ratio are set with respect to the masses of heavy Majorana neutrinos and heavy gauge bosons W_{R} and Z'.
Three-dimensional Majorana fermions in chiral superconductors.
Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang
2016-12-01
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.
Three-dimensional Majorana fermions in chiral superconductors
Kozii, Vladyslav; Venderbos, Jörn W. F.; Fu, Liang
2016-01-01
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions. PMID:27957543
Universal quantum computation with hybrid spin-Majorana qubits
NASA Astrophysics Data System (ADS)
Hoffman, Silas; Schrade, Constantin; Klinovaja, Jelena; Loss, Daniel
2016-07-01
We theoretically propose a set of universal quantum gates acting on a hybrid qubit formed by coupling a quantum-dot spin qubit and Majorana fermion qubit. First, we consider a quantum dot that is tunnel coupled to two topological superconductors. The effective spin-Majorana exchange facilitates a hybrid cnot gate for which either qubit can be the control or target. The second setup is a modular scalable network of topological superconductors and quantum dots. As a result of the exchange interaction between adjacent spin qubits, a cnot gate is implemented that acts on neighboring Majorana qubits and eliminates the necessity of interqubit braiding. In both setups, the spin-Majorana exchange interaction allows for a phase gate, acting on either the spin or the Majorana qubit, and for a swap or hybrid swap gate which is sufficient for universal quantum computation without projective measurements.
Berry phase and quantum entanglement in Majorana's stellar representation
NASA Astrophysics Data System (ADS)
Liu, H. D.; Fu, L. B.
2016-08-01
By presenting the evolution of a quantum state with the trajectories of the Majorana stars on the Bloch sphere, the Majorana's stellar provides an intuitive geometric picture to study a quantum system with high-dimensional Hilbert space. We study the Berry phase and quantum entanglement by distributions and motions of these stars on the Bloch sphere. It is shown that both of these unique characters of quantum state can be perfectly represented by the Majorana stars. The former is expressed by the solid angles of Majorana star loops and the distance between stars. For the latter, the distances between stars are also found to be a tool for measuring and classifying the multiparticle entanglement of a symmetric multiqubit pure state. To demonstrate our theory, we study a typical spin model which is equivalent to an interacting boson model or an interacting multiqubit system. The self-trapping phenomenon within is also discussed via the Majorana stars.
Comments on a Paper by Majorana Concerning Elementary Particles
NASA Astrophysics Data System (ADS)
Fradkin, David M.
2006-05-01
An early paper (1932) by Majorana, that has received but scant attention, is reexamined in light of later developments. This pioneering paper constructs a relativistically invariant theory of arbitrary spin particles, develops and utilizes infinite dimensional representations of the homogeneous Lorentz group, and provides a mass spectrum for elementary particles. The relevance of Majorana's approach and results to later and current research is explained. "Reprinted with permission from the AMERICAN JOURNAL OF PHYSICS, Volume 34, Issue 4, pp. 314-318. Copyright 1966, American Association of Physics Teachers" We reproduce here the historical D. M. Fradkin 1966 paper whose role among the physicists of high energy was decisive; since then espressions like "Majorana mass", "Majorana spinors" and "Majorana neutrino" have become usual. The paper is based upon the work Teoria di Particelle con Momento Intrinseco Arbitrario, translated by Italiam from Edoardo Amaldi. Ignazio Licata
Floquet Majorana Fermions for Topological Qubits
NASA Astrophysics Data System (ADS)
Liu, D. E.; Levchenko, A.; Baranger, H. U.
2013-03-01
We develop an approach to realizing a topological phase transition and non-Abelian statistics with dynamically induced Floquet Majorana Fermions (FMFs). When the periodic driving potential does not break fermion parity conservation, FMFs can encode quantum information. Quasi-energy analysis shows that a stable FMF zero mode and two other satellite modes exist in a wide parameter space with large quasi-energy gaps, which prevents transitions to other Floquet states under adiabatic driving. We also show that in the asymptotic limit FMFs preserve non-Abelian statistics and, thus, behave like their equilibrium counterparts.
Engineering the coupling between Majorana bound states
NASA Astrophysics Data System (ADS)
Shi, Z. C.; Shao, X. Q.; Xia, Y.; Yi, X. X.
2017-09-01
We study the coupling between Majorana bound states (CMBS), which is mediated by a topologically trivial chain in the presence of pairing coupling and long-range coupling. The results show that CMBS can be enhanced by the pairing coupling and long-range coupling of the trivial chain. When driving the trivial chain by periodic driving field, we deduce the analytical expressions of CMBS in the high-frequency limit, and demonstrate that CMBS can be modulated by the frequency and amplitude of driving field. Finally we exhibit the application of tunable CMBS in realizing quantum logic gates.
Neutrino oscillations from Dirac and Majorana masses
Ring, D.
1997-05-01
We present a scenario of neutrino masses and mixing angles. Each generation includes a sterile right-handed neutrino in addition to the usual left-handed one. We assume a hierarchy in their Dirac masses similar to, but much larger than, the hierarchies in the quarks and charged leptons. In addition, we include a Majorana mass term for the sterile neutrinos only. These assumptions prove sufficient to accommodate scales of mass differences and mixing angles consistent with all existing neutrino oscillation data. {copyright} {ital 1997} {ital The American Physical Society}
Interferometric resonance signatures of Majorana bound states
NASA Astrophysics Data System (ADS)
Golub, Anatoly; Horovitz, Baruch
2015-07-01
We calculate the current noise power spectrum in a nanoscopic interferometer consisting of a Majorana bound state (MBS) and a localized spin. We show that for large voltage (though less than the superconducting gap) several strong resonance peaks appear at frequencies that depend on the Zeeman splitting of the localized spin and on its tunneling to the localized spin. We also evaluate the differential conductance and find the unitary limit peak 2{{e}2}/h at zero voltage as well as peaks at voltages corresponding to the resonances. We propose that detection of the resonances and related peaks in the differential conductance provide as strong support for the presence of an MBS.
Baryon number violation via Majorana neutrinos
Zhang, Yue
2016-06-21
We propose and investigate a novel, minimal, and experimentally testable framework for baryo- genesis, dubbed dexiogenesis, using baryon number violating effective interactions of right-handed Majorana neutrinos responsible for the seesaw mechanism. The distinct LHC signature of our framework is same-sign top quark final states, possibly originating from displaced vertices. The region of parameters relevant for LHC phenomenology can also yield concomitant signals in nucleon decay experiments. We provide a simple ultraviolet origin for our effective operators, by adding a color-triplet scalar, which could ultimately arise from a grand unified theory.
Background model for the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Cuesta, C.; Majorana Collaboration
2017-09-01
The Majorana Collaboration is constructing a system containing 44 kg of high-purity Ge (HPGe) detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale to ∼15 meV. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y) in the 4 keV region of interest (ROI) around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials and analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact (PPC) HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements. Preliminary background results obtained during the engineering runs of the Demonstrator are presented.
Background Model for the Majorana Demonstrator
Cuesta, C.; Abgrall, N.; Aguayo, Estanislao; Avignone, Frank T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, C.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir
2015-06-01
The Majorana Collaboration is constructing a prototype system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment to search for neutrinoless double-beta (0v BB) decay in 76Ge. In view of the requirement that the next generation of tonne-scale Ge-based 0vBB-decay experiment be capable of probing the neutrino mass scale in the inverted-hierarchy region, a major goal of theMajorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using Geant4 simulations of the different background components whose purity levels are constrained from radioassay measurements.
Classical probabilities for Majorana and Weyl spinors
Wetterich, C.
2011-08-15
Highlights: > Map of classical statistical Ising model to fermionic quantum field theory. > Lattice-regularized real Grassmann functional integral for single Weyl spinor. > Emerging complex structure characteristic for quantum physics. > A classical statistical ensemble describes a quantum theory. - Abstract: We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function q{sub {tau}}(t) for the Ising states {tau}. The time dependent probability distribution of a generalized Ising model obtains as p{sub {tau}}(t)=q{sub {tau}}{sup 2}(t). The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.
Propagator mixing renormalization for Majorana fermions
NASA Astrophysics Data System (ADS)
Kniehl, Bernd A.
2014-06-01
We consider a mixed system of unstable Majorana fermions in a general parity-nonconserving theory and renormalize its propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses are identified with the complex pole positions and the wave-function renormalization matrices are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. In contrast to the case of unstable Dirac fermions, the wave-function renormalization matrices of the in and out states are uniquely fixed, while they again bifurcate in the sense that they are no longer related by pseudo-Hermitian conjugation. We present closed analytic expressions for the renormalization constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions, as well as their expansions through two loops. In the case of stable Majorana fermions, the well-known one-loop results are recovered.
Chern and Majorana modes of quasiperiodic systems
NASA Astrophysics Data System (ADS)
Naumis, Gerardo; Satija, Indubala
2014-03-01
In this work, we investigate the self-similar states found in quasiperiodic systems characterized by topological invariants-the Chern numbers. We show that the topology introduces a competing length in the self-similar band edge states transforming peaks into doublets of size equal to the Chern number. This length intertwines with quasiperiodicity and introduces an intrinsic scale, producing Chern beats related to Friedel oscillations. An explanation based on Thouless equations for band edge modes of the Harper equation is provided to understand the Chern dressing of the fractal spectrum. Chern numbers also influence the zero-energy mode that, for quasiperiodic systems, is related to the Majorana modes: the remnant of the edge localized topological state that delocalizes at the onset to a topological transition. In superconducting wires, the exponentially decaying profile of the edge localized Majorana modes also encode fingerprints of the Chern states that reside in close proximity to zero energy. Apdo. Postal 20-364, 01000, Mexico D.F., Mexico.
Search for Majorana fermions in topological superconductors.
Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick
2014-10-01
The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).
Random-matrix theory of Majorana fermions and topological superconductors
NASA Astrophysics Data System (ADS)
Beenakker, C. W. J.
2015-07-01
The theory of random matrices originated half a century ago as a universal description of the spectral statistics of atoms and nuclei, dependent only on the presence or absence of fundamental symmetries. Applications to quantum dots (artificial atoms) followed, stimulated by developments in the field of quantum chaos, as well as applications to Andreev billiards—quantum dots with induced superconductivity. Superconductors with topologically protected subgap states, Majorana zero modes, and Majorana edge modes, provide a new arena for applications of random-matrix theory. These recent developments are reviewed, with an emphasis on electrical and thermal transport properties that can probe the Majorana fermions.
Majorana bound states in magnetic skyrmions (Conference Presentation)
NASA Astrophysics Data System (ADS)
Stano, Peter
2016-10-01
Magnetic skyrmions are highly mobile nanoscale topological spin textures. We show, both analytically and numerically, that a magnetic skyrmion of an even azimuthal winding number placed in proximity to an s-wave superconductor hosts a zero-energy Majorana bound state in its core, when the exchange coupling between the itinerant electrons and the skyrmion is strong. This Majorana bound state is stabilized by the presence of a spin-orbit interaction. We propose the use of a superconducting tri-junction to realize non-Abelian statistics of such Majorana bound states. http://arxiv.org/abs/1602.00968
Nonlinear Landau-Zener tunneling in Majorana's stellar representation
NASA Astrophysics Data System (ADS)
Guo, Qiuyi; Liu, Haodi; Zhou, Tianji; Chen, Xu-Zong; Wu, Biao
2016-06-01
By representing the evolution of a quantum state with the trajectories of the stars on a Bloch sphere, the Majorana's stellar representation provides an intuitive way to understand quantum motion in a high dimensional projective Hilbert space. In this work we show that the Majorana's representation offers a very interesting and intuitive way to understand the nonlinear Landau-Zener tunneling. In particular, the breakdown of adiabaticity in this tunneling phenomenon can be understood as some of the stars never reaching the south pole. We also establish a connection between the Majorana stars in the second quantized model and the single star in the mean field model by using the reduced density matrix.
Majorana Flat Bands and Uni-directional Majorana Edge States in Gapless Topological Superconductors
NASA Astrophysics Data System (ADS)
Law, Kam; Wong, Chris; Liu, Jie; Lee, Patrick
2013-03-01
In this work, we show that an in-plane magnetic field can drive a fully gapped p +/- ip topological superconductor into a gapless phase which supports Majorana flat bands (MFBs). Unlike previous examples, the MFBs in the gapless regime are protected from disorder by a chiral symmetry. In addition, novel uni-directional Majorana edge states (MESs) which propagate in the same direction on opposite edges appear when the chiral symmetry is broken by Rashba terms. Unlike the usual chiral or helical edge states, uni-directional MESs appear only in systems with a gapless bulk. We show that the MFBs and the uni-directional MESs induce nearly quantized zero bias conductance in tunneling experiments. The authors thank Hong Kong GRC and DOE of United States for financial support.
Majoranas with and without a ‘character’: hybridization, braiding and chiral Majorana number
NASA Astrophysics Data System (ADS)
Sedlmayr, N.; Guigou, M.; Simon, P.; Bena, C.
2015-11-01
In this paper we demonstrate under what conditions a pseudo-spin degree of freedom or character can be ascribed to Majorana bound states (MBS). These exotic states can be created at the boundaries of non-interacting systems, corresponding to D, DIII and BDI in the usual classification scheme, and we focus on one dimension. We have found that such a character is directly related to the class of the topological superconductor and its description by a {Z} , rather than a {{{Z}}2} , invariant which corresponds to the BDI class. We have also found that the DIII case with mirror symmetry, which supports multiple MBS, is in fact equivalent to the BDI class with an additional time-reversal symmetry. In all cases where a character can be given to the Majorana states we show how to construct the appropriate local operator explicitly with various examples. We also examine the consequences of the Majorana character by considering possible hybridization of MBS brought into proximity and find that two MBS with the same character do not hybridize. Finally, we show that having this character or not has no consequence on the braiding properties of MBS.
New scheme for braiding Majorana fermions
Wu, Long-Hua; Liang, Qi-Feng; Hu, Xiao
2014-01-01
Non-Abelian statistics can be achieved by exchanging two vortices in topological superconductors with each grabbing a Majorana fermion (MF) as zero-energy quasi-particle at the cores. However, in experiments it is difficult to manipulate vortices. In the present work, we propose a way to braid MFs without moving vortices. The only operation required in the present scheme is to turn on and off local gate voltages, which liberates a MF from its original host vortex and transports it along the prepared track. We solve the time-dependent Bogoliubov–de Gennes equation numerically, and confirm that the MFs are protected provided the switching of gate voltages for exchanging MFs are adiabatic, which takes only several nano seconds given reasonable material parameters. By monitoring the time evolution of MF wave-functions, we show that non-Abelian statistics is achieved. PMID:27877725
Detector Characterization for the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Gilliss, Thomas; Majorana Collaboration
2015-04-01
The MAJORANA DEMONSTRATOR (MJD) is a neutrinoless double-beta decay (0 νββ) search, in the isotope 76Ge . Seeking measurement of the 0 νββ lifetime, and exploration of additional physics, MJD employs high-purity Ge detectors possessing superior energy resolution down to a low threshold. Characterization of these p-type point contact detectors is essential to understanding the backgrounds and sensitivity of the experiment. Progress in characterizing MJD detectors will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.
Current correlations in a Majorana beam splitter
NASA Astrophysics Data System (ADS)
Haim, Arbel; Berg, Erez; von Oppen, Felix; Oreg, Yuval
2015-12-01
We study current correlations in a T junction composed of a grounded topological superconductor and of two normal-metal leads which are biased at a voltage V . We show that the existence of an isolated Majorana zero mode in the junction dictates a universal behavior for the cross correlation of the currents through the two normal-metal leads of the junction. The cross correlation is negative and approaches zero at high bias voltages as -1 /V . This behavior is robust in the presence of disorder and multiple transverse channels, and persists at finite temperatures. In contrast, an accidental low-energy Andreev bound state gives rise to nonuniversal behavior of the cross correlation. We employ numerical transport simulations to corroborate our conclusions.
Role of dissipation in realistic Majorana nanowires
NASA Astrophysics Data System (ADS)
Liu, Chun-Xiao; Sau, Jay D.; Das Sarma, S.
2017-02-01
We carry out a realistic simulation of Majorana nanowires in order to understand the latest high-quality experimental data [H. Zhang et al., arXiv:1603.04069 (2016)] and, in the process, develop a comprehensive picture for what physical mechanisms may be operational in realistic nanowires leading to discrepancies between minimal theory and experimental observations (e.g., weakness and broadening of the zero-bias peak and breaking of particle-hole symmetry). Our focus is on understanding specific intriguing features in the data, and our goal is to establish matters of principle controlling the physics of the best possible nanowires available in current experiments. We identify dissipation, finite temperature, multi-sub-band effects, and the finite tunnel barrier as the four most important physical mechanisms controlling the zero-bias conductance peak. Our theoretical results including these realistic effects agree well with the best available experimental data in ballistic nanowires.
Majorana physics through the Cabibbo Haze
NASA Astrophysics Data System (ADS)
Kile, Jennifer; Pérez, M. Jay; Ramond, Pierre; Zhang, Jue
2014-02-01
We present a model in which the Supersymmetric Standard Model is aug-mented by the family symmetry . Motivated by SO(10), where the charge two-thirds and neutral Dirac Yukawa matrices are related, we propose, using family symmetry, a special form for the seesaw Majorana matrix; it contains a squared correlated hierarchy, allowing it to mitigate the severe hierarchy of the quark sector. It is reproduced naturally by the invariant operators of , with the hierarchy carried by familon fields. In addition to relating the hierarchy of the Δ I w = 1 /2 to the Δ I w = 0 sector, it contains a Gatto-Sartori-Tonin like relation, predicts a normal hierarchy for Tri-bimaximal and Golden Ratio mixings, and gives specific values for the light neutrino masses.
Majorana Physics Through the Cabibbo Haze
NASA Astrophysics Data System (ADS)
Kile, Jennifer; Perez, Michael; Ramond, Pierre; Zhang, Jue
2014-03-01
We present a model in which the Supersymmetric Standard Model is augmented by the family symmetry Z7Z3 . Motivated by SO (10) , where the charge two-thirds and neutral Dirac Yukawa matrices are related, we propose, using family symmetry, a special form for the seesaw Majorana matrix; it contains a squared correlated hierarchy, allowing it to mitigate the severe hierarchy of the quark sector. It is reproduced naturally by the invariant operators of Z7Z3 , with the hierarchy carried by familon fields. In addition to relating the hierarchy of the ΔIw = 1 / 2 to the ΔIw = 0 sector, it contains a Gatto-Sartori-Tonin like relation, predicts a normal hierarchy for Tri-bimaximal and Golden Ratio mixings, and gives specific values for the light neutrino masses.
Correlations between Majorana Fermions Through a Superconductor
NASA Astrophysics Data System (ADS)
Zyuzin, A. A.; Rainis, Diego; Klinovaja, Jelena; Loss, Daniel
2013-08-01
We consider a model of ballistic quasi-one-dimensional semiconducting wire with intrinsic spin-orbit interaction placed on the surface of a bulk s-wave superconductor (SC), in the presence of an external magnetic field. This setup has been shown to give rise to a topological superconducting state in the wire, characterized by a pair of Majorana-fermion (MF) bound states formed at the two ends of the wire. Here, we demonstrate that besides the well-known direct-overlap-induced energy splitting, the two MF bound states may hybridize via elastic tunneling processes through virtual quasiparticle states in the SC, giving rise to an additional energy splitting between MF states from the same as well as from different wires.
Robust Majorana Conductance Peaks for a Superconducting Lead
NASA Astrophysics Data System (ADS)
Peng, Yang; Pientka, Falko; Vinkler-Aviv, Yuval; Glazman, Leonid I.; von Oppen, Felix
2015-12-01
Experimental evidence for Majorana bound states largely relies on measurements of the tunneling conductance. While the conductance into a Majorana state is in principle quantized to 2 e2/h , observation of this quantization has been elusive, presumably due to temperature broadening in the normal-metal lead. Here, we propose to use a superconducting lead instead, whose gap strongly suppresses thermal excitations. For a wide range of tunneling strengths and temperatures, a Majorana state is then signaled by symmetric conductance peaks at e V =±Δ of a universal height G =(4 -π )2 e2/h . For a superconducting scanning tunneling microscope tip, Majorana states appear as spatial conductance plateaus while the conductance varies with the local wave function for trivial Andreev bound states. We discuss effects of nonresonant (bulk) Andreev reflections and quasiparticle poisoning.
Majorana dc Josephson current mediated by a quantum dot.
Xu, Luting; Li, Xin-Qi; Sun, Qing-Feng
2017-05-17
The Josephson supercurrent through a hybrid Majorana-quantum dot-Majorana junction is investigated. We particularly analyze the effect of spin-selective coupling between the Majorana and quantum dot states, which only emerges in the topological phase and will influence the current through bent junctions and/or in the presence of magnetic fields in the quantum dot. We find that the characteristic behavior of the supercurrent through this system is quite counterintuitive, differing remarkably from the resonant tunneling, e.g. through the similar (normal phase) superconductor-quantum dot-superconductor junction. Our analysis is carried out under the influence of the full set-up parameters and for both the [Formula: see text] and [Formula: see text] periodic currents. The present study is expected to be relevant to the future exploration of applications of Majorana-nanowire circuits.
Odd-frequency pairing of interacting Majorana fermions
Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.
2015-09-14
In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical valuemore » gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.« less
Odd-frequency pairing of interacting Majorana fermions
Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.
2015-09-14
In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value g_{c}. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.
All Majorana Models with Translation Symmetry are Supersymmetric
NASA Astrophysics Data System (ADS)
Hsieh, Timothy H.; Halász, Gábor B.; Grover, Tarun
2016-10-01
We establish results similar to Kramers and Lieb-Schultz-Mattis theorems but involving only translation symmetry and for Majorana modes. In particular, we show that all states are at least doubly degenerate in any one- and two-dimensional array of Majorana modes with translation symmetry, periodic boundary conditions, and an odd number of modes per unit cell. Moreover, we show that all such systems have an underlying N =2 supersymmetry and explicitly construct the generator of the supersymmetry. Furthermore, we establish that there cannot be a unique gapped ground state in such one-dimensional systems with antiperiodic boundary conditions. These general results are fundamentally a consequence of the fact that translations for Majorana modes are represented projectively, which in turn stems from the anomalous nature of a single Majorana mode. An experimental signature of the degeneracy arising from supersymmetry is a zero-bias peak in tunneling conductance.
Odd-frequency pairing of interacting Majorana fermions
NASA Astrophysics Data System (ADS)
Huang, Zhoushen; Wölfle, P.; Balatsky, A. V.
2015-09-01
Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.
Selective equal-spin Andreev reflections induced by Majorana fermions.
He, James J; Ng, T K; Lee, Patrick A; Law, K T
2014-01-24
In this work, we find that Majorana fermions induce selective equal spin Andreev reflections (SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as counterpropagating holes with the same spin. The spin polarization direction of the electrons of this Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite spin polarization are always reflected as electrons with unchanged spin. As a result, the charge current in the lead is spin polarized. Therefore, a topological superconductor which supports Majorana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic leads. We point out that SESARs can also be used to detect Majorana fermions in topological superconductors.
Electron teleportation via Majorana bound states in a mesoscopic superconductor.
Fu, Liang
2010-02-05
Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.
Fault tolerant quantum random number generator certified by Majorana fermions
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Duan, Lu-Ming
2013-03-01
Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a new perspective to apply Majorana fermions for robust generation of certified random numbers, which has important applications in cryptography and other related areas. This work was supported by the NBRPC (973 Program) 2011CBA00300 (2011CBA00302), the IARPA MUSIQC program, the ARO and the AFOSR MURI program.
Robust Majorana Conductance Peaks for a Superconducting Lead.
Peng, Yang; Pientka, Falko; Vinkler-Aviv, Yuval; Glazman, Leonid I; von Oppen, Felix
2015-12-31
Experimental evidence for Majorana bound states largely relies on measurements of the tunneling conductance. While the conductance into a Majorana state is in principle quantized to 2e^{2}/h, observation of this quantization has been elusive, presumably due to temperature broadening in the normal-metal lead. Here, we propose to use a superconducting lead instead, whose gap strongly suppresses thermal excitations. For a wide range of tunneling strengths and temperatures, a Majorana state is then signaled by symmetric conductance peaks at eV=±Δ of a universal height G=(4-π)2e(2)/h. For a superconducting scanning tunneling microscope tip, Majorana states appear as spatial conductance plateaus while the conductance varies with the local wave function for trivial Andreev bound states. We discuss effects of nonresonant (bulk) Andreev reflections and quasiparticle poisoning.
The Majorana Neutrinoless Double-Beta Decay Program
NASA Astrophysics Data System (ADS)
Guiseppe, Vincente
2014-09-01
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, containing 40 kg (30 kg enriched in 76Ge) of Ge detectors, is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals are to demonstrate the required background and scalability of a Ge-based, tonne-scale experiment. The status and potential physics reach of the Majorana Demonstrator experiment will be presented. Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, containing 40 kg (30 kg enriched in 76Ge) of Ge detectors, is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals are to demonstrate the required background and scalability of a Ge-based, tonne-scale experiment. The status and potential physics reach of the Majorana Demonstrator experiment will be presented. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.
Arbitrary dimensional Majorana dualities and architectures for topological matter
NASA Astrophysics Data System (ADS)
Nussinov, Zohar; Ortiz, Gerardo; Cobanera, Emilio
2012-08-01
Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive universal spin duals. We prove that these interacting Majorana systems, quantum Ising gauge theories, and transverse-field Ising models with annealed bimodal disorder are all dual to one another on general planar graphs. This leads to an interesting connection between heavily disordered annealed Ising systems and uniform Ising theories with nearest-neighbor interactions. As any Dirac fermion (including electronic) operator can be expressed as a linear combination of two Majorana fermion operators, our results further lead to dualities between interacting Dirac fermionic systems on rather general lattices and graphs and corresponding spin systems. Such general complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing topological quantum order. The spin duals allow us to predict the feasibility of various standard transitions as well as spin-glass-type behavior in interacting Majorana fermion or electronic systems. Several systems that can be simulated by arrays of Majorana wires are further introduced and investigated: (1) the XXZ honeycomb compass model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev's honeycomb model), (2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p+ip) arrays, and a (3) compass-type two-flavor Hubbard model with both pairing and hopping terms. By the use of our dualities (tantamount to high-dimensional fermionization), we show that all of these systems lie in the three-dimensional Ising universality class. We further discuss how the existence of topological orders and bounds on autocorrelation times can be
Reprint of : Floquet Majorana fermions in superconducting quantum dots
NASA Astrophysics Data System (ADS)
Benito, Mónica; Platero, Gloria
2016-08-01
We consider different configurations of ac driven quantum dots coupled to superconductor leads where Majorana fermions can exist as collective quasiparticles. The main goal is to tune the existence, localization and properties of these zero energy quasiparticles by means of periodically driven external gates. In particular, we analyze the relevance of the system and driving symmetry. We predict the existence of different sweet spots with Floquet Majorana fermions in configurations where they are not present in the undriven system.
Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment.
Stanescu, T D; Tewari, S
2013-06-12
After a recent series of rapid and exciting developments, the long search for the Majorana fermion-the elusive quantum entity at the border between particles and antiparticles-has produced the first positive experimental results, but is not over yet. Originally proposed by E Majorana in the context of particle physics, Majorana fermions have a condensed matter analogue in the zero-energy bound states emerging in topological superconductors. A promising route to engineering topological superconductors capable of hosting Majorana zero modes consists of proximity coupling semiconductor thin films or nanowires with strong spin-orbit interaction to conventional s-wave superconductors in the presence of an external Zeeman field. The Majorana zero mode is predicted to emerge above a certain critical Zeeman field as a zero-energy state localized near the order parameter defects, namely, vortices for thin films and wire ends for the nanowire. These Majorana bound states are expected to manifest non-Abelian quantum statistics, which makes them ideal building blocks for fault-tolerant topological quantum computation. This review provides an update on the current status of the search for Majorana fermions in semiconductor nanowires by focusing on the recent developments, in particular the period following the first reports of experimental signatures consistent with the realization of Majorana bound states in semiconductor nanowire-superconductor hybrid structures. We start with a discussion of the fundamental aspects of the subject, followed by considerations on the realistic modeling, which is a critical bridge between theoretical predictions based on idealized conditions and the real world, as probed experimentally. The last part is dedicated to a few intriguing issues that were brought to the fore by the recent encouraging experimental advances.
Rephasing-invariant CP violating parameters with Majorana neutrinos
NASA Astrophysics Data System (ADS)
Nieves, José F.; Pal, Palash B.
2001-10-01
We analyze the dependence of the squared amplitudes on the rephasing-invariant CP-violating parameters of the lepton sector, involving Majorana neutrinos, for various lepton-conserving and lepton-violating processes. We analyze the conditions under which the CP-violating effects in such processes vanish, in terms of the minimal set of rephasing invariants, giving special attention to the dependence on the extra CP-violating parameters that are due to the Majorana nature of the neutrinos.
Majorana fermions in hybrid superconductor-semiconductor nanowire devices
NASA Astrophysics Data System (ADS)
Mourik, V.; Zuo, K.; van Woerkom, D. J.; de Vries, F. R.; Gul, O.; Zhang, H.; de Moor, M. A. W.; Car, D.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.
2015-03-01
Our experiment carried out in hybrid superconductor-semiconductor nanowire devices gave the first experimental indications for the existence of Majorana fermions, but many open questions need to be answered. Majorana fermions have to come in pairs, before we were only capable of probing one Majorana fermion. Majorana fermions should be fully gate controllable, which could not be demonstrated convincingly. Upon bringing Majorana fermions closer together, an energy splitting between the two is expected, giving rise to a pair of split peaks instead of a single zero bias peak (ZBP). We are performing new experiments in similar but improved three terminal normal-superconductor-normal InSb nanowire devices. This enables the possibility to probe Majorana fermions occurring at the ends of the superconducting contact by using tunneling spectroscopy. Furthermore, the devices have an improved gate design enabling more efficient gating under the superconducting contact and they have improved contact interfaces resulting in less undesired resonant states. We have observed ZBP's in a large magnetic field range, an oscillatory behavior from ZBP to split peak and back, and tunability of ZBP's by gates underneath the superconducting contact.
Majorana Fermions in Disordered Quasi-One-Dimensional Topological Superconductors
NASA Astrophysics Data System (ADS)
Potter, Andrew; Lee, Patrick
2012-02-01
Majorana fermions have long been predicted to emerge in certain quantum Hall states and other naturally occurring p-wave superconductors. However, these materials are quite delicate and consequently the experimental realization of Majorana fermions remains elusive. The possibility of engineering 1D networks of topological superconducting wires from conventional materials offers a promising alternative route to realize Majorana fermions and probe their predicted non-Abelian statistics. In practice, it is impossible to fabricate perfectly clean and strictly one-dimensional structures; how do these non-idealities affect the proposed Majorana states? This talk will show that Majorana end states are robust away from the strict 1D limit, so long as the sample width is not much larger than the superconducting coherence length. The effects of disorder are potentially more severe, as impurity scattering is generally pair-breaking and tends to suppress the gap protecting the Majorana modes. Finally, we propose new candidate materials and geometries that greatly simplify the experimental setup and mitigate the harmful effects of disorder.
Majorana fermion exchange in quasi-one-dimensional networks
NASA Astrophysics Data System (ADS)
Clarke, David J.; Sau, Jay D.; Tewari, Sumanta
2011-07-01
Heterostructures of spin-orbit coupled materials with s-wave superconductors are thought to be capable of supporting zero-energy Majorana bound states. Such excitations are known to obey non-Abelian statistics in two dimensions, and are thus relevant to topological quantum computation (TQC). In a one-dimensional system, Majorana states are localized to phase boundaries. In order to bypass the constraints of one dimension, a wire network may be created, allowing the exchange of Majoranas by way of junctions in the network. Alicea have proposed such a network as a platform for TQC, showing that the Majorana bound states obey non-Abelian exchange statistics even in quasi-one-dimensional systems. Here we show that the particular realization of non-Abelian statistics produced in a Majorana wire network is highly dependent on the local properties of individual wire junctions. For a simply connected network, the possible realizations can be characterized by the chirality of individual junctions. There is in general no requirement for junction chiralities to remain consistent across a wire network. We show how the chiralities of different junctions may be compared experimentally and discuss the implications for TQC in Majorana wire networks.
NASA Astrophysics Data System (ADS)
Samanta, Rome; Chakraborty, Mainak; Ghosal, Ambar
2016-03-01
We evaluate the Majorana phases for a general 3 × 3 complex symmetric neutrino mass matrix on the basis of Mohapatra-Rodejohann's phase convention using the three rephasing invariant quantities I12, I13 and I23 proposed by Sarkar and Singh. We find them interesting as they allow us to evaluate each Majorana phase in a model independent way even if one eigenvalue is zero. Utilizing the solution of a general complex symmetric mass matrix for eigenvalues and mixing angles we determine the Majorana phases for both the hierarchies, normal and inverted, taking into account the constraints from neutrino oscillation global fit data as well as bound on the sum of the three light neutrino masses (Σimi) and the neutrinoless double beta decay (ββ0ν) parameter |m11 |. This methodology of finding the Majorana phases is applied thereafter in some predictive models for both the hierarchical cases (normal and inverted) to evaluate the corresponding Majorana phases and it is shown that all the sub cases presented in inverted hierarchy section can be realized in a model with texture zeros and scaling ansatz within the framework of inverse seesaw although one of the sub cases following the normal hierarchy is yet to be established. Except the case of quasi degenerate neutrinos, the methodology obtained in this work is able to evaluate the corresponding Majorana phases, given any model of neutrino masses.
Exponential protection of zero modes in Majorana islands.
Albrecht, S M; Higginbotham, A P; Madsen, M; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Marcus, C M
2016-03-10
Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.
Exponential protection of zero modes in Majorana islands
NASA Astrophysics Data System (ADS)
Albrecht, S. M.; Higginbotham, A. P.; Madsen, M.; Kuemmeth, F.; Jespersen, T. S.; Nygård, J.; Krogstrup, P.; Marcus, C. M.
2016-03-01
Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a ‘Majorana island’) that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.
Clarida, Warren James
2012-12-01
This paper consists of two studies: the results of a search for heavy Majorana neutrinos (N) using an event signature defined by two like-sign charged muons and two jets, and the results from studies of a prototype quartz plate calorimeter. The data in the Majorana search correspond to an integrated luminosity of 5.0 fb$^{−1}$ of pp collisions at a centre-of-mass energy of 7 TeV collected with the CMS detector at the Large Hadron Collider. No excess of events are observed beyond the expected standard model background and therefore upper limits are set on the square of the mixing element, $|V_{\\mu N} |$as a function of Majorana neutrino mass. These are the first direct upper limits on the heavy Majorana-neutrino mixing for m$_N$ > 90 GeV . The second part of this thesis is the results of performance tests of a 20-layer quartz plate calorimeter prototype. The calorimeter prototype was tested at the CERN H2 area in hadronic and electromagnetic configurations, at various en ergies of pion and electron beams. The beam test and simulation results of this prototype are reported.
Precision energy measurement using the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Guinn, Ian
2016-09-01
The MAJORANA DEMONSTRATOR is seeking neutrinoless double beta decay (0 νββ) in 76Ge. The 0 νββ signal consists of a peak in a 4 keV region of interest (ROI) at the 76Ge double-beta decay Q-value of 2039 keV. The DEMONSTRATOR will consist of an array of high purity germanium (HPGe) detectors with a P-type point contact (PPC) geometry. The experiment's goal is to reduce the background in the ROI to < 3 counts/ROI-tonne-yr. Precise calculation of the energy of each event can help to shrink the size of the ROI, thus reducing the background counts. A precise measurement of the response function of the detectors is important for calculating the ROI and controlling systematic errors on the limits produced. This presentation will describe the measurement of the response function using calibration data, along with several techniques used to improve the energy calculations, such as correcting for charge trapping in detectors and digitizer non-linearities. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.
Majorana Fermions in Condensed-Matter Physics
NASA Astrophysics Data System (ADS)
Leggett, A. J.
It is an honor and a pleasure to have been invited to give a talk in this conference celebrating the memory of the late Professor Abdus Salam. To my regret, I did not know Professor Salam personally, but I am very aware of his work and of his impact on my area of specialization, condensed matter physics, both intellectually through his ideas on spontaneously broken symmetry and more practically through his foundation of the ICTP. Since I assume that most of this audience are not specialized in condensed-matter physics, I thought I would talk about one topic which to some extent bridges this field and the particle-physics interests of Salam, namely Majorana fermions (M.F.s). However, as we shall see, the parallels which are often drawn in the current literature may be a bit too simplistic. I will devote most of this talk to a stripped-down exposition of the current orthodoxy concerning M.F.s. in condensed-matter physics and their possible applications to topological quantum computing (TQC), and then at the end briefly indicate why I believe this orthodoxy may be seriously misleading...
Majorana fermions in condensed-matter physics
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2016-06-01
It is an honor and a pleasure to have been invited to give a talk in this conference celebrating the memory of the late Professor Abdus Salam. To my regret, I did not know Professor Salam personally, but I am very aware of his work and of his impact on my area of specialization, condensed matter physics, both intellectually through his ideas on spontaneously broken symmetry and more practically through his foundation of the ICTP. Since I assume that most of this audience are not specialized in condensed-matter physics, I thought I would talk about one topic which to some extent bridges this field and the particle-physics interests of Salam, namely Majorana fermions (M.F.s). However, as we shall see, the parallels which are often drawn in the current literature may be a bit too simplistic. I will devote most of this talk to a stripped-down exposition of the current orthodoxy concerning M.F.s. in condensed-matter physics and their possible applications to topological quantum computing (TQC), and then at the end briefly indicate why I believe this orthodoxy may be seriously misleading.
Viewing Majorana Bound States by Rabi Oscillations
NASA Astrophysics Data System (ADS)
Wang, Zhi; Liang, Qi-Feng; Yao, Dao-Xin; Hu, Xiao
2015-07-01
We propose to use Rabi oscillation as a probe to view the fractional Josepshon relation (FJR) associated with Majorana bound states (MBSs) expected in one-dimensional topological superconductors. The system consists of a quantum dot (QD) and an rf-SQUID with MBSs at the Josephson junction. Rabi oscillations between energy levels formed by MBSs are induced by ac gate voltage controlling the coupling between QD and MBS when the photon energy proportional to the ac frequency matches gap between quantum levels formed by MBSs and QD. As a manifestation of the Rabi oscillation in the whole system involving MBSs, the electron occupation on QD oscillates with time, which can be measured by charge sensing techniques. With Floquet theorem and numerical analysis we reveal that from the resonant driving frequency for coherent Rabi oscillation one can directly map out the FJR cos(πΦ/Φ0) as a signature of MBSs, with Φ the magnetic flux through SQUID and Φ0 = hc/2e the flux quantum. The present scheme is expected to provide a clear evidence for MBSs under intensive searching.
Experimental monitoring for the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Xu, Wenqin; MAJORANA Collaboration
2017-01-01
The MAJORANA DEMONSTRATOR neutrinoless double beta (0 νββ) decay experiment has instrumented two modules of high purity germanium (HPGe) detectors to search for 0 νββ decay in 76Ge. The experiment has started accumulating quality data towards its goal of demonstrating the technical feasibility and low backgrounds for a next generation Ge-based 0 νββ experiment. It is critical to extensively monitor the performance of the experimental apparatus without disturbing the blindness data-taking scheme. The experimental monitoring is composed of several stages including, for example, the live monitoring embedded in the Data-Acquisition system, onsite near-live monitoring and data production monitoring. In all stages, automatic alerting mechanisms and scheduled manual checks are implemented in a coordinated way. In this talk, we will discuss the internal management of each experimental monitoring stage and their relationships to each other. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and Sanford Underground Research Facility.
Andreev-Majorana bound states in superfluids
Silaev, M. A. Volovik, G. E.
2014-12-15
We consider Andreev-Majorana (AM) bound states with zero energy on surfaces, interfaces, and vortices in different phases of the p-wave superfluids. We discuss the chiral superfluid {sup 3}He-A and time reversal invariant phases: superfluid {sup 3}He-B, planar and polar phases. The AM zero modes are determined by topology in the bulk and disappear at the quantum phase transition from the topological to nontopological state of the superfluid. The topology demonstrates the interplay of dimensions. In particular, the zero-dimensional Weyl points in chiral superfluids (the Berry phase monopoles in momentum space) give rise to the one-dimensional Fermi arc of AM bound states on the surface and to the one-dimensional flat band of AM modes in the vortex core. The one-dimensional nodal line in the polar phase produces a two-dimensional flat band of AM modes on the surface. The interplay of dimensions also connects the AM states in superfluids with different dimensions. For example, the topological properties of the spectrum of bound states in three-dimensional {sup 3}He-B are connected to the properties of the spectrum in the two-dimensional planar phase (thin film)
Optimal diabatic dynamics of Majorana-based quantum gates
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Seradjeh, Babak; Franz, Marcel
2017-08-01
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.
Quasiclassical theory of disordered multi-channel Majorana quantum wires
NASA Astrophysics Data System (ADS)
Neven, Patrick; Bagrets, Dmitry; Altland, Alexander
2013-05-01
Multi-channel spin-orbit quantum wires, when subjected to a magnetic field and proximity coupled to an s-wave superconductor, may support Majorana states. We study what happens to these systems in the presence of disorder. Inspired by the widely established theoretical methods of mesoscopic superconductivity, we develop á la Eilenberger a quasiclassical approach to topological nanowires valid in the limit of strong spin-orbit coupling. We find that the ‘Majorana number’ {\\cal M} , distinguishing between the state with Majorana fermions (symmetry class B) and no Majorana fermions (class D), is given by the product of two Pfaffians of gapped quasiclassical Green's functions fixed by the right and left terminals connected to the wire. A numerical solution of the Eilenberger equations reveals that the class D disordered quantum wires are prone to the formation of the zero-energy anomaly (class D impurity spectral peak) in the local density of states that shares the key features of the Majorana peak. In this way, we confirm the robustness of our previous conclusions (Bagrets and Altland 2012 Phys. Rev. Lett. 109 227005) on a more restrictive system setup. Generally speaking, we find that the quasiclassical approach provides a highly efficient means to address disordered class D superconductors both in the presence and in the absence of topological structures.
Majorana Fermion Rides on a Magnetic Domain Wall
NASA Astrophysics Data System (ADS)
Kim, Se Kwon; Tewari, Sumanta; Tserkovnyak, Yaroslav
Owing to the recent progress on endowing the electronic structure of magnetic nanowires with topological properties, the associated topological solitons in the magnetic texture--magnetic domain walls--appear as very natural hosts for exotic electronic excitations. Here, we propose to use the magnetic domain walls to engender Majorana fermions, which has several notable advantages compared to the existing approaches. First of all, the local tunneling density-of-states anomaly associated with the Majorana zero mode bound to a smooth magnetic soliton is immune to most of parasitic artifacts associated with the abrupt physical ends of a wire, which mar the existing experimental probes. Second, a viable route to move and braid Majorana fermions is offered by domain-wall motion. In particular, we envision the recently demonstrated heat-current induced motion of domain walls in insulating ferromagnets as a promising tool for nonintrusive displacement of Majorana modes. This leads us to propose a feasible scheme for braiding domain walls within a magnetic nanowire network, which manifests the nob-Abelian exchange statistics within the Majorana subspace. This work has been supported in part by the U.S. DOE-BES, FAME, and AFOSR grants.
Sensing Floquet-Majorana fermions via heat transfer
NASA Astrophysics Data System (ADS)
Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.
2017-09-01
Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.
Survival probability in a quenched Majorana chain with an impurity
NASA Astrophysics Data System (ADS)
Rajak, Atanu; Nag, Tanay
2017-08-01
We investigate the dynamics of a one-dimensional p -wave superconductor with next-nearest-neighbor hopping and superconducting interaction derived from a three-spin interacting Ising model in transverse field by mapping to Majorana fermions. The next-nearest-neighbor hopping term leads to a new topological phase containing two zero-energy Majorana modes at each end of an open chain, compared to a nearest-neighbor p -wave superconducting chain. We study the Majorana survival probability (MSP) of a particular Majorana edge state when the initial Hamiltonian (Hi) is changed to the quantum critical as well as off-critical final Hamiltonian (Hf), which additionally contains an impurity term (Himp) that breaks the time-reversal invariance. For the off-critical quenching inside the new topological phase with Hf=Hi+Himp , and small impurity strength (λd), we observe a perfect oscillation of the MSP as a function of time with a single frequency (determined by the impurity strength λd) that can be analyzed from an equivalent two-level problem. On the other hand, the MSP shows a beating like structure with time for quenching to the phase boundary separating the topological phase (with two edge Majoranas at each edge) and the nontopological phase where the additional frequency is given by inverse of the system size. We attribute this behavior of the MSP to the modification of the energy levels of the final Hamiltonian due to the application of the impurity term.
A note on the path integral representation for Majorana fermions
NASA Astrophysics Data System (ADS)
Greco, Andrés
2016-04-01
Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.
Majorana Fermions on Zigzag Edge of Monolayer Transition Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Chu, Ruilin
2014-03-01
Majorana fermions, quantum particles with non-Abelian exchange statistics, are not only of fundamental importance, but also building blocks for fault-tolerant quantum computation. Although certain experimental breakthroughs for observing Majorana fermions have been made recently, their conclusive detection is still challenging due to the lack of proper material properties of the underlined experimental systems. Here we propose a new platform for Majorana fermions based on edge states of certain non-topological two-dimensional semiconductors with strong spin-orbit coupling, such as monolayer group-VI transition metal dichalcogenides (TMD). Using first-principles calculations and tight-binding modeling, we show that zigzag edges of monolayer TMD can host well isolated single edge band with strong spin-orbit coupling energy. Combining with proximity induced s-wave superconductivity and in-plane magnetic fields, the zigzag edge supports robust topological Majorana bound states at the edge ends, although the two-dimensional bulk itself is non-topological. Our findings points to a controllable and integrable platform for searching and manipulating Majorana fermions.
Dynamical Majorana edge modes in a broad class of topological mechanical systems
NASA Astrophysics Data System (ADS)
Prodan, Emil; Dobiszewski, Kyle; Kanwal, Alokik; Palmieri, John; Prodan, Camelia
2017-02-01
Mechanical systems can display topological characteristics similar to that of topological insulators. Here we report a large class of topological mechanical systems related to the BDI symmetry class. These are self-assembled chains of rigid bodies with an inversion centre and no reflection planes. The particle-hole symmetry characteristic to the BDI symmetry class stems from the distinct behaviour of the translational and rotational degrees of freedom under inversion. This and other generic properties led us to the remarkable conclusion that, by adjusting the gyration radius of the bodies, one can always simultaneously open a gap in the phonon spectrum, lock-in all the characteristic symmetries and generate a non-trivial topological invariant. The particle-hole symmetry occurs around a finite frequency, and hence we can witness a dynamical topological Majorana edge mode. Contrasting a floppy mode occurring at zero frequency, a dynamical edge mode can absorb and store mechanical energy, potentially opening new applications of topological mechanics.
Dynamical Majorana edge modes in a broad class of topological mechanical systems.
Prodan, Emil; Dobiszewski, Kyle; Kanwal, Alokik; Palmieri, John; Prodan, Camelia
2017-02-23
Mechanical systems can display topological characteristics similar to that of topological insulators. Here we report a large class of topological mechanical systems related to the BDI symmetry class. These are self-assembled chains of rigid bodies with an inversion centre and no reflection planes. The particle-hole symmetry characteristic to the BDI symmetry class stems from the distinct behaviour of the translational and rotational degrees of freedom under inversion. This and other generic properties led us to the remarkable conclusion that, by adjusting the gyration radius of the bodies, one can always simultaneously open a gap in the phonon spectrum, lock-in all the characteristic symmetries and generate a non-trivial topological invariant. The particle-hole symmetry occurs around a finite frequency, and hence we can witness a dynamical topological Majorana edge mode. Contrasting a floppy mode occurring at zero frequency, a dynamical edge mode can absorb and store mechanical energy, potentially opening new applications of topological mechanics.
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.
2012-10-01
A search is performed for heavy Majorana neutrinos (N) using an event signature defined by two same-sign charged leptons of the same flavour and two jets. The data correspond to an integrated luminosity of 4.98 fb-1 of pp collisions at a centre-of-mass energy of 7 TeV collected with the CMS detector at the Large Hadron Collider. No excess of events is observed beyond the expected standard model background and therefore upper limits are set on the square of the mixing parameter, |VℓN | 2, for ℓ = e , μ, as a function of heavy Majorana-neutrino mass. These are the first direct upper limits on the heavy Majorana-neutrino mixing for mN > 90 GeV.
Majorana fermion exchange in strictly one-dimensional structures
NASA Astrophysics Data System (ADS)
Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.
2015-04-01
It is generally thought that the adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits the adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of “Majorana shuttle” whereby a π domain wall in the superconducting order parameter which hosts a pair of ancillary majoranas delivers one zero mode across the wire while the other one tunnels in the opposite direction. The method requires some tuning of parameters and does not, therefore, enjoy full topological protection. The resulting exchange statistics, however, remain non-Abelian for a wide range of parameters that characterize the exchange.
Analysis techniques for background rejection at the Majorana Demonstrator
Cuestra, Clara; Rielage, Keith Robert; Elliott, Steven Ray; Xu, Wenqin; Goett, John Jerome III
2015-06-11
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in ^{76}Ge. In view of the next generation of tonne-scale Ge-based 0νββ-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR's germanium detectors allows for significant reduction of gamma background.
Dislocation Majorana zero modes in perovskite oxide 2DEG
NASA Astrophysics Data System (ADS)
Chung, Suk Bum; Chan, Cheung; Yao, Hong
2016-05-01
Much of the current experimental efforts for detecting Majorana zero modes have been centered on probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in experimental detections such as scanning tunneling microscope (STM) measurements. We will show that, using the anisotropic dispersion of the t2g orbitals of Ti or Ta atoms, such a weak topological superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO3 or KTaO3 becomes superconducting, which can occur through either intrinsic pairing or proximity to existing s-wave superconductors.
Dislocation Majorana zero modes in perovskite oxide 2DEG.
Chung, Suk Bum; Chan, Cheung; Yao, Hong
2016-05-03
Much of the current experimental efforts for detecting Majorana zero modes have been centered on probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in experimental detections such as scanning tunneling microscope (STM) measurements. We will show that, using the anisotropic dispersion of the t2g orbitals of Ti or Ta atoms, such a weak topological superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO3 or KTaO3 becomes superconducting, which can occur through either intrinsic pairing or proximity to existing s-wave superconductors.
Majorana Quasiparticles Protected by Z2 Angular Momentum Conservation
NASA Astrophysics Data System (ADS)
Iemini, F.; Mazza, L.; Fallani, L.; Zoller, P.; Fazio, R.; Dalmonte, M.
2017-05-01
We show how angular momentum conservation can stabilize a symmetry-protected quasitopological phase of matter supporting Majorana quasiparticles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe—spin-orbit coupling and strong interorbital interactions—have been experimentally realized over the last two years.
Dislocation Majorana zero modes in perovskite oxide 2DEG
Chung, Suk Bum; Chan, Cheung; Yao, Hong
2016-01-01
Much of the current experimental efforts for detecting Majorana zero modes have been centered on probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in experimental detections such as scanning tunneling microscope (STM) measurements. We will show that, using the anisotropic dispersion of the t2g orbitals of Ti or Ta atoms, such a weak topological superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO3 or KTaO3 becomes superconducting, which can occur through either intrinsic pairing or proximity to existing s-wave superconductors. PMID:27139319
Measuring Majorana nonlocality and spin structure with a quantum dot
NASA Astrophysics Data System (ADS)
Prada, Elsa; Aguado, Ramón; San-Jose, Pablo
2017-08-01
Robust zero-bias transport anomalies in semiconducting nanowires with proximity-induced superconductivity have been convincingly demonstrated in various experiments. While these are compatible with the existence of Majorana zero modes at the ends of the nanowire, a direct proof of their nonlocality and topological protection is now needed. Here we show that a quantum dot at the end of the nanowire may be used as a powerful spectroscopic tool to quantify the degree of Majorana nonlocality through a local transport measurement. Moreover, the spin polarization of dot subgap states at singlet-doublet transitions in the Coulomb blockade regime allows the dot to directly probe the spin structure of the Majorana wave function and indirectly measure the spin-orbit coupling of the nanowire.
Analysis techniques for background rejection at the MAJORANA DEMONSTRATOR
Cuesta, C; Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A.S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y-D; Christofferson, C. D.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Green, M. P.; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R.; Howard, S.; Howe, M. A.; Keeter, K.J.; Kidd, M. F.; Konovalov, S.I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Radford, D. C.; Rager, J.; Robertson, R.G.H.; Romero-Romero, E.; Snyder, N; Suriano, A. M.; Tedeschi, D; Trimble, J. E.; Vasilyev, S.; Vetter, K. [University of California et al.
2015-01-01
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in Ge-76. In view of the next generation of tonne-scale Ge-based 0 nu beta beta-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR's germanium detectors allows for significant reduction of gamma background.
6 π Josephson Effect in Majorana Box Devices
NASA Astrophysics Data System (ADS)
Zazunov, A.; Buccheri, F.; Sodano, P.; Egger, R.
2017-02-01
We study Majorana devices featuring a competition between superconductivity and multichannel Kondo physics. Our proposal extends previous work on single-channel Kondo systems to a topologically nontrivial setting of a non-Fermi liquid type, where topological superconductor wires (with gap Δ ) represent leads tunnel coupled to a Coulomb-blockaded Majorana box. On the box, a spin degree of freedom with Kondo temperature TK is nonlocally defined in terms of Majorana states. For Δ ≫TK, the destruction of Kondo screening by superconductivity implies a 4 π -periodic Josephson current-phase relation. Using a strong-coupling analysis in the opposite regime Δ ≪TK, we find a 6 π -periodic Josephson relation for three leads, with critical current Ic≈e Δ2/ℏTK, corresponding to the transfer of fractionalized charges e*=2 e /3 .
Fingerprints of Majorana fermions in spin-resolved subgap spectroscopy
NASA Astrophysics Data System (ADS)
Chirla, Razvan; Moca, Cǎtǎlin Paşcu
2016-07-01
When a strongly correlated quantum dot is tunnel coupled to a superconductor, it leads to the formation of Shiba bound states inside the superconducting gap. They have been measured experimentally in a superconductor-quantum dot-normal lead setup. Side coupling the quantum dot to a topological superconducting wire that supports Majorana bound states at its ends, drastically affects the structure of the Shiba states and induces supplementary in-gap states. The anomalous coupling between the Majorana bound states and the quantum dot gives rise to a characteristic imbalance in the spin-resolved spectral functions for the dot operators. These are clear fingerprints for the existence of Majorana fermions and they can be detected experimentally in transport measurements. In terms of methods employed, we have used analytical approaches combined with the numerical renormalization group approach.
Landau Levels of Majorana Fermions in a Spin Liquid.
Rachel, Stephan; Fritz, Lars; Vojta, Matthias
2016-04-22
Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.
Majorana Quasiparticles Protected by Z_{2} Angular Momentum Conservation.
Iemini, F; Mazza, L; Fallani, L; Zoller, P; Fazio, R; Dalmonte, M
2017-05-19
We show how angular momentum conservation can stabilize a symmetry-protected quasitopological phase of matter supporting Majorana quasiparticles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe-spin-orbit coupling and strong interorbital interactions-have been experimentally realized over the last two years.
Electrically tunable topological superconductivity and Majorana fermions in two dimensions
NASA Astrophysics Data System (ADS)
Wang, Jing
2016-12-01
The external controllability of topological superconductors and Majorana fermions would be important both for fundamental and practical interests. Here we predict the electric-field control of Majorana fermions in two-dimensional topological superconductors utilizing a topological insulator thin-film proximity coupled to a conventional s -wave superconductor. With ferromagnetic ordering, the tunable structure inversion asymmetry by vertical electric field could induce topological quantum phase transition and realize a chiral topological superconductor state. A zero-energy Majorana bound state appears at the boundary of an applied electric-field spot, which can be observed by scanning tunneling microscopy. Furthermore, the structure inversion asymmetry could also enlarge the helical topological superconductor state in the phase diagram, making the realization of such an exotic state more feasible. The electrical control of topological phases could further apply to van der Waals materials such as two-dimensional transition-metal dichalcogenides.
Analysis techniques for background rejection at the MAJORANA DEMONSTRATOR
Cuesta, C.; Buuck, M.; Detwiler, J. A.; Gruszko, J.; Guinn, I. S.; Leon, J.; Robertson, R. G. H.; Abgrall, N.; Bradley, A. W.; Chan, Y-D.; Mertens, S.; Poon, A. W. P.; Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Avignone, F. T.; Baldenegro-Barrera, C. X.; Bertrand, F. E.; and others
2015-08-17
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40- kg modular HPGe detector array to search for neutrinoless double beta decay in {sup 76}Ge. In view of the next generation of tonne-scale Ge-based 0νβ β-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR’s germanium detectors allows for significant reduction of gamma background.
On Majorana Representations of A 6 and A 7
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2011-10-01
The Majorana representations of groups were introduced in Ivanov (The Monster Group and Majorana Involutions, 2009) by axiomatising some properties of the 2 A-axial vectors of the 196 884-dimensional Monster algebra, inspired by the sensational classification of such representations for the dihedral groups achieved by Sakuma (Int Math Res Notes, 2007). This classification took place in the heart of the theory of Vertex Operator Algebras and expanded earlier results by Miyamoto (J Alg 268:653-671, 2003). Every subgroup G of the Monster which is generated by its intersection with the conjugacy class of 2 A-involutions possesses the (possibly unfaithful) Majorana representation obtained by restricting to G the action of the Monster on its algebra. This representation of G is said to be based on an embedding of G in the Monster. So far the Majorana representations have been classified for the groups G isomorphic to the symmetric group S 4 of degree 4 (Ivanov et al. in J Alg 324:2432-2463, 2010), the alternating group A 5 of degree 5 (Ivanov AA, Seress Á in Majorana Representations of A 5, 2010), and the general linear group GL 3(2) in dimension 3 over the field of two elements (Ivanov AA, Shpectorov S in Majorana Representations of L 3(2), 2010). All these representations are based on embeddings in the Monster of either the group G itself or of its direct product with a cyclic group of order 2. The dimensions and shapes of these representations are given in the following table: "What is our life? A game!" (A.S. Pushkin, "The Queen of Spades")
Study of Majorana fermionic dark matter
NASA Astrophysics Data System (ADS)
Chua, Chun-Khiang; Wong, Gwo-Guang
2016-08-01
We construct a generic model of Majorana fermionic dark matter (DM). Starting with two Weyl spinor multiplets η1 ,2˜(I ,∓Y ) coupled to the Standard Model Higgs, six additional Weyl spinor multiplets with (I ±1 /2 ,±(Y ±1 /2 )) are needed in general. It has 13 parameters in total, five mass parameters and eight Yukawa couplings. The DM sector of the minimal supersymmetric Standard Model is a special case of the model with (I ,Y )=(1 /2 ,1 /2 ). Therefore, this model can be viewed as an extension of the neutralino DM sector. We consider three typical cases: the neutralinolike, the reduced, and the extended cases. For each case, we survey the DM mass mχ in the range of (1,2500) GeV by random sampling from the model parameter space and study the constraints from the observed DM relic density; the direct search of LUX, XENON100, and PICO experiments; and the indirect search of Fermi-LAT data. We investigate the interplay of these constraints and the differences among these cases. It is found that the direct detection of spin-independent DM scattering off nuclei and the indirect detection of DM annihilation to the W+W- channel will be more sensitive to the DM searches in the near future. The allowed mass for finding H ˜-, B ˜-, W ˜-, and non-neutralino-like DM particles and the predictions on ⟨σ (χ χ →Z Z ,Z H ,t t ¯)v ⟩ in the indirect search are given.
A Memory of Majorana Modes through Quantum Quench
Chung, Ming-Chiang; Jhu, Yi-Hao; Chen, Pochung; Mou, Chung-Yu; Wan, Xin
2016-01-01
We study the sudden quench of a one-dimensional p-wave superconductor through its topological signature in the entanglement spectrum. We show that the long-time evolution of the system and its topological characterization depend on a pseudomagnetic field Reff(k). Furthermore, Reff(k) connects both the initial and the final Hamiltonians, hence exhibiting a memory effect. In particular, we explore the robustness of the Majorana zero-mode and identify the parameter space in which the Majorana zero-mode can revive in the infinite-time limit. PMID:27389657
Discovering the Majorana neutrino: The next generation of experiments
Winslow, L. A.
2015-07-15
The discovery of a Majorana neutrino would be revolutionary with far-reaching consequences in both particle physics and cosmology. The only feasible experiments to determine the Majorana nature of the neutrino are searches for neutrinoless double-beta decay. The next generation of double-beta decay experiments are being prepared. The general goal is to search for neutrinoless double-beta decay throughout the parameter space corresponding to the inverted hierarchy for neutrino mass. There are a several strong proposals for how to achieve this goal. The status of these efforts is reviewed.
Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR
Guinn, I.; Abgrall, N.; Avignone, III, F. T.; Efremenko, Yuri; Galindo-Uribarri, A; Green, M. P.; Radford, D. C.; Romero-Romero, E.; White, B. R.; Wilkerson, J. F.; Majorana,
2015-01-01
The MAJORANA DEMONSTRATOR is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay (0 nu beta beta) in Ge-76. Such an experiment would require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the beta beta decay. Designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. This paper will discuss the MAJORANA collaboration's solutions to some of these challenges.
Teleportation-based quantum information processing with Majorana zero modes
NASA Astrophysics Data System (ADS)
Vijay, Sagar; Fu, Liang
2016-12-01
We present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for "braiding without braiding", the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. We propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.
Probing Majorana and Andreev bound states with waiting times
NASA Astrophysics Data System (ADS)
Chevallier, D.; Albert, M.; Devillard, P.
2016-10-01
We consider a biased normal-superconducting junction with various types of superconductivity. Depending on the class of superconductivity, a Majorana bound state may appear at the interface. We show that this has important consequences on the statistical distribution of time delays between detection of consecutive electrons flowing out of such an interface, namely the waiting time distribution. Therefore, this quantity is shown to be a clear fingerprint of Majorana bound-state physics and may be considered as an experimental signature of its presence.
Conductance fingerprint of Majorana fermions in the topological Kondo effect
NASA Astrophysics Data System (ADS)
Galpin, Martin R.; Mitchell, Andrew K.; Temaismithi, Jesada; Logan, David E.; Béri, Benjamin; Cooper, Nigel R.
2014-01-01
We consider an interacting nanowire/superconductor heterostructure attached to metallic leads. The device is described by an unusual low-energy model involving spin-1 conduction electrons coupled to a nonlocal spin-1/2 Kondo impurity built from Majorana fermions. The topological origin of the resulting Kondo effect is manifest in distinctive non-Fermi-liquid (NFL) behavior, and the existence of Majorana fermions in the device is demonstrated unambiguously by distinctive conductance line shapes. We study the physics of the model in detail, using the numerical renormalization group, perturbative scaling, and Abelian bosonization. In particular, we calculate the full scaling curves for the differential conductance in ac and dc fields, onto which experimental data should collapse. Scattering t matrices and thermodynamic quantities are also calculated, recovering asymptotes from conformal field theory. We show that the NFL physics is robust to asymmetric Majorana-lead couplings, and here we uncover a duality between strong and weak coupling. The NFL behavior is understood physically in terms of competing Kondo effects. The resulting frustration is relieved by inter-Majorana coupling which generates a second crossover to a regular Fermi liquid.
Pseudo-Symmetry and Majorana Operators in pf-Shell
Valencia, J. P.; Wu, H. C.
2007-10-26
The Majorana operator of the pseudo ds-shell preserves the SU-tilde(4) symmetry, and in a unified manner it reproduces reasonably well the ground state energies of the nine nuclei in this shell. The study of {beta} decay in the same shell provides further support for the SU-tilde(4) symmetry.
Majorana spectroscopy of three-dimensional Kitaev spin liquids
NASA Astrophysics Data System (ADS)
Smith, A.; Knolle, J.; Kovrizhin, D. L.; Chalker, J. T.; Moessner, R.
2016-06-01
We analyze the dynamical response of a range of three-dimensional Kitaev quantum spin liquids, using lattice models chosen to explore the different possible low-energy spectra for gapless Majorana fermions, with either Fermi surfaces, nodal lines, or Weyl points. We find that the behavior of the dynamical structure factor is distinct in all three cases, reflecting the quasiparticle density of states in two fundamentally different ways. First, the low-energy response is either straightforwardly related to the power with which the low-energy density of states vanishes; or for a nonvanishing density of states, to the phase shifts encountered in the corresponding x-ray edge problem, whose phenomenology we extend to the case of Majorana fermions. Second, at higher energies, there is a rich fine structure, determined by microscopic features of the Majorana spectrum. Our theoretical results test the usefulness of inelastic neutron scattering as a probe of these quantum spin liquids: we find that although spin flips fractionalize, the main features of the dynamical spin response nevertheless admit straightforward interpretations in terms of Majorana and flux loop excitations.
A Direct Search for Dark Matter with the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Vorren, Kristopher Reidar
The MAJORANA DEMONSTRATOR is a neutrinoless double-beta decay experiment currently operating 4850 ft underground in the Sanford Underground Research Facility in Lead, SD. Sub-keV thresholds and excellent low-energy resolution are features of the p-type point-contact high-purity germanium detectors deployed by MAJORANA, making them ideal for use in direct dark matter searches when combined with MAJORANA's ultra-low backgrounds. An analysis of data from a 2015 commissioning run of the DEMONSTRATOR with 478 kg d of exposure was performed to search for mono-energetic lines in the detectors' energy-spectrum from bosonic dark matter absorption. No dark matter signature was found in the 5-100 keV range, and upper limits were placed on dark bosonic pseudoscalar and vector-electric couplings. The same analysis produced null results and upper limits for three additional rare-event searches: Pauli-Exclusion Principle violating decay, solar axions, and electron decay. Improvements made to MAJORANA since commissioning will result in increased sensitivity to rare-event searches in future analyses.
The Majorana Double Beta Decay Experiment: Present Status
Aguayo, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Beene, Jim; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, C. D.; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips II, D. G.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.
2013-06-01
The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator
Probing the antisymmetric Fano interference assisted by a Majorana fermion
NASA Astrophysics Data System (ADS)
Dessotti, F. A.; Ricco, L. S.; de Souza, M.; Souza, F. M.; Seridonio, A. C.
2014-11-01
As the Fano effect is an interference phenomenon where tunneling paths compete for the electronic transport, it becomes a probe to catch fingerprints of Majorana fermions lying on condensed matter systems. In this work, we benefit of this mechanism by proposing as a route for that an Aharonov-Bohm-like interferometer composed by two quantum dots, being one of them coupled to a Majorana bound state, which is attached to one of the edges of a semi-infinite Kitaev wire within the topological phase. By changing the Fermi energy of the leads and the symmetric detuning of the levels for the dots, we show that opposing Fano regimes result in a transmittance characterized by distinct conducting and insulating regions, which are fingerprints of an isolated Majorana quasiparticle. Furthermore, we show that the maximum fluctuation of the transmittance as a function of the detuning is half for a semi-infinite wire, while it corresponds to the unity for a finite system. The setup proposed here constitutes an alternative experimental tool to detect Majorana excitations.
On the Majorana fermion subject to a linear confinement
NASA Astrophysics Data System (ADS)
Ribeiro, R. F.; Bakke, K.
2017-10-01
We analyse the linear confinement of a Majorana fermion in (1 + 1) -dimensions. We show that the Dirac equation can be solved analytically. Besides, we show that the spectrum of energy is discrete, however, the energy levels are not equally spaced.
Emergent Supersymmetry from Strongly Interacting Majorana Zero Modes
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Zhu, Xiaoyu; Franz, Marcel; Affleck, Ian
2015-10-01
We show that a strongly interacting chain of Majorana zero modes exhibits a supersymmetric quantum critical point corresponding to the c =7/1 0 tricritical Ising model, which separates a critical phase in the Ising universality class from a supersymmetric massive phase. We verify our predictions with numerical density-matrix-renormalization-group computations and determine the consequences for tunneling experiments.
The Majorana Demonstrator Neutrinoless Double-beta Decay Experiment
NASA Astrophysics Data System (ADS)
Guiseppe, V. E.
2012-03-01
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in ^76Ge. Our proposed method uses the well-established technique of searching for neutrinoless double-beta decay in high purity Ge-diode radiation detectors that play both roles of source and detector. The use of p-type point contact Ge detectors present advances in background rejection and a significantly lower energy threshold than conventional Ge detectors. The lower energy threshold opens up a broader and exciting physics program including searches for dark matter and axions concurrent with the double-beta decay search. Initially, Majorana is constructing a prototype module to demonstrate the potential of a future 1-tonne experiment. The status and potential physics reach of the Majorana Demonstrator module will be presented.
Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry
Gutierrez, Thomas D.
2006-03-02
Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.
Topological superconducting phase and Majorana bound states in Shiba chains
NASA Astrophysics Data System (ADS)
Pientka, Falko; Peng, Yang; Glazman, Leonid; von Oppen, Felix
2015-12-01
Chains of magnetic adatoms on a conventional superconducting substrate constitute a promising venue for realizing topological superconductivity and Majorana end states. Here, we give a brief overview over recent attempts to describe these systems theoretically, emphasizing how the topological phase emerges from the physics of individual magnetic impurities and their associated Shiba states.
Majorana edge modes in Kitaev model on honeycomb lattice
NASA Astrophysics Data System (ADS)
Thakurathi, Manisha; Sengupta, Krishnendu; Sen, Diptiman
2015-03-01
We study the Majorana modes, both equilibrium and Floquet, which can appear at the edges of the Kitaev model on the honeycomb lattice. We first present the analytical solutions known for the equilibrium Majorana edge modes for both zigzag and armchair edges of a semi-infinite Kitaev model and chart the parameter regimes of the model in which they appear. We then examine how edge modes can be generated if the Kitaev coupling on the bonds perpendicular to the edge is varied periodically in time as periodic δ-function kicks. We derive a general condition for the appearance and disappearance of the Floquet edge modes as a function of the drive frequency for a generic d-dimensional integrable system. We confirm this general condition for the Kitaev model with a finite width by mapping it to a one-dimensional model. Our numerical and analytical study of this problem shows that Floquet Majorana modes can appear on some edges in the kicked system even when the corresponding equilibrium Hamiltonian has no Majorana mode solutions on those edges. We support our analytical studies by numerics for finite sized system which show that periodic kicks can generate modes at the edges and the corners of the lattice. We thank CSIR, India and DST, India for financial support.
Probing the antisymmetric Fano interference assisted by a Majorana fermion
Dessotti, F. A.; Ricco, L. S.; Souza, M. de; Souza, F. M.; Seridonio, A. C.
2014-11-07
As the Fano effect is an interference phenomenon where tunneling paths compete for the electronic transport, it becomes a probe to catch fingerprints of Majorana fermions lying on condensed matter systems. In this work, we benefit of this mechanism by proposing as a route for that an Aharonov-Bohm-like interferometer composed by two quantum dots, being one of them coupled to a Majorana bound state, which is attached to one of the edges of a semi-infinite Kitaev wire within the topological phase. By changing the Fermi energy of the leads and the symmetric detuning of the levels for the dots, we show that opposing Fano regimes result in a transmittance characterized by distinct conducting and insulating regions, which are fingerprints of an isolated Majorana quasiparticle. Furthermore, we show that the maximum fluctuation of the transmittance as a function of the detuning is half for a semi-infinite wire, while it corresponds to the unity for a finite system. The setup proposed here constitutes an alternative experimental tool to detect Majorana excitations.
Low-background germanium radioassay for the MAJORANA Collaboration
NASA Astrophysics Data System (ADS)
Trimble, James E., Jr.
The focus of the MAJORANA COLLABORATION is the search for nuclear neutrinoless double beta decay. If discovered, this process would prove that the neutrino is its own anti-particle, or a M AJORANA particle. Being constructed at the Sanford Underground Research Facility, the MAJORANA DEMONSTRATOR aims to show that a background rate of 3 counts per region of interest (ROI) per tonne per year in the 4 keV ROI surrounding the 2039-keV Q-value energy of 76Ge is achievable and to demonstrate the technological feasibility of building a tonne-scale Ge-based experiment. Because of the rare nature of this process, detectors in the system must be isolated from ionizing radiation backgrounds as much as possible. This involved building the system with materials containing very low levels of naturally- occurring and anthropogenic radioactive isotopes at a deep underground site. In order to measure the levels of radioactive contamination in some components, the Majorana Demonstrator uses a low background counting facility managed by the Experimental Nuclear and Astroparticle Physics (ENAP) group at UNC. The UNC low background counting (LBC) facility is located at the Kimballton Underground Research Facility (KURF) located in Ripplemead, VA. The facility was used for a neutron activation analysis of samples of polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) tubing intended for use in the Demonstrator. Calculated initial activity limits (90% C.L.) of 238U and 232Th in the 0.002-in PTFE samples were 7.6 ppt and 5.1 ppt, respectively. The same limits in the FEP tubing sample were 150 ppt and 45 ppt, respectively. The UNC LBC was also used to gamma-assay a modified stainless steel flange to be used as a vacuum feedthrough. Trace activities of both 238U and 232Th were found in the sample, but all were orders of magnitude below the acceptable threshold for the Majorana experiment. Also discussed is a proposed next generation ultra-low background system designed
Majorana charges, winding numbers and Chern numbers in quantum Ising models.
Zhang, G; Li, C; Song, Z
2017-08-15
Mapping a many-body state on a loop in parameter space is a simple way to characterize a quantum state. The connections of such a geometrical representation to the concepts of Chern number and Majorana zero mode are investigated based on a generalized quantum spin system with short and long-range interactions. We show that the topological invariants, the Chern numbers of corresponding Bloch band, is equivalent to the winding number in the auxiliary plane, which can be utilized to characterize the phase diagram. We introduce the concept of Majorana charge, the magnitude of which is defined by the distribution of Majorana fermion probability in zero-mode states, and the sign is defined by the type of Majorana fermion. By direct calculations of the Majorana modes we analytically and numerically verify that the Majorana charge is equal to Chern numbers and winding numbers.
Observing Majorana bound states of Josephson vortices in topological superconductors
Grosfeld, Eytan; Stern, Ady
2011-01-01
In recent years there has been an intensive search for Majorana fermion states in condensed matter systems. Predicted to be localized on cores of vortices in certain nonconventional superconductors, their presence is known to render the exchange statistics of bulk vortices non-Abelian. Here we study the equations governing the dynamics of phase solitons (fluxons) in a Josephson junction in a topological superconductor. We show that the fluxon will bind a localized zero energy Majorana mode and will consequently behave as a non-Abelian anyon. The low mass of the fluxon, as well as its experimentally observed quantum mechanical wave-like nature, will make it a suitable candidate for vortex interferometry experiments demonstrating non-Abelian statistics. We suggest two experiments that may reveal the presence of the zero mode carried by the fluxon. Specific experimental realizations will be discussed as well. PMID:21730165
Transport Signatures of Quasiparticle Poisoning in a Majorana Island.
Albrecht, S M; Hansen, E B; Higginbotham, A P; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Danon, J; Flensberg, K; Marcus, C M
2017-03-31
We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (∼1 μs) and sets a bound for a weakly coupled island (>10 μs). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.
Milestones toward Majorana-based quantum computing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mishmash, Ryan V.; Aasen, David; Hell, Michael; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason
2016-10-01
We introduce a scheme for preparation, manipulation, and readout of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate-control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current; (2) validation of a prototype topological qubit; and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and readout schemes as well.
Data Acquisition and Environmental Monitoring of the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Meijer, Samuel; Majorana Collaboration
2015-04-01
Low-background non-accelerator experiments have unique requirements for their data acquisition and environmental monitoring. Background signals can easily overwhelm the signals of interest, so events which could contribute to the background must be identified. There is a need to correlate events between detectors and environmental conditions, and data integrity must be maintained. Here, we describe several of the software and hardware techniques achieved by the MAJORANA Collaboration for the MAJORANA DEMONSTRATOR, such as using the Object-oriented Realtime Control and Acquisition (ORCA) software package. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.
Thermoelectric transport in junctions of Majorana and Dirac channels
NASA Astrophysics Data System (ADS)
Shapiro, Dmitriy S.; Feldman, D. E.; Mirlin, Alexander D.; Shnirman, Alexander
2017-05-01
We investigate the thermoelectric current and heat conductance in a chiral Josephson contact on a surface of a three-dimensional topological insulator, covered with superconducting and magnetic insulator films. The contact consists of two junctions of Majorana and Dirac channels next to two superconductors. Geometric asymmetry results in a supercurrent without a phase bias. The interference of Dirac fermions causes oscillations of the electric and heat currents with an unconventional period 2 Φ0=h /e as functions of the Aharonov-Bohm flux. Due to the gapless character of Majorana modes, there is no threshold for the thermoelectric effect, and the current-flux relationship is nonsinusoidal. Depending on the magnetic flux, the direction of the electric current can be both from the hot to the cold lead and vice versa.
Low background signal readout electronics for the Majorana Demonstrator
Guinn, I.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y-D; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C-H; Yumatov, V.
2015-05-01
The Majorana Demonstrator is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay (0νββ) in ^{76}Ge. In such an experiment we require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the ββ decay. Moreover, designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. Finally, this paper will discuss the Majorana collaboration's solutions to some of these challenges.
Low background signal readout electronics for the Majorana Demonstrator
Guinn, I.; Abgrall, N.; Avignone, F. T.; ...
2015-05-01
The Majorana Demonstrator is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay (0νββ) in 76Ge. In such an experiment we require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the ββ decay. Moreover, designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. Finally, this paper will discuss the Majorana collaboration's solutions to some of these challenges.
Detecting Majorana fermions in topological superconductors using stress
NASA Astrophysics Data System (ADS)
Schmeltzer, D.; Saxena, Avadh
2017-10-01
One of the goals of modern spectroscopy is to invent techniques which detect neutral excitations that have been theoretically proposed. For superconductors, two-point transport measurements detect the Andreev crossed reflection which confirms the existence of Majorana fermions. We suggest that similar information can also be obtained from a measurement using two piezoelectric transducers. One transducer measures the stress tensor response from the strain field generated by the second transducer. The ratio between the stress response and strain velocity determines the dissipative response. We propose and show theoretically that the dissipative stress response can be used for studying excitations in a topological superconductor. We investigate a topological superconductor for the case when an Abrikosov vortex lattice is formed. In this case the Majorana fermions are dispersive, a fact that is used to compute the dissipative stress response.
Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor
NASA Astrophysics Data System (ADS)
Wakatsuki, Ryohei; Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto
2014-07-01
We study theoretically a one-dimensional dimerized Kitaev superconductor model which belongs to BDI class with time-reversal, particle-hole, and chiral symmetries. There are two sources of the particle-hole symmetry, i.e., the sublattice symmetry and superconductivity. Accordingly, we define two types of topological numbers with respect to the chiral indices of normal and Majorana fermions, which offers an ideal laboratory to examine the interference between the two different physics within the same symmetry class. Phase diagram, zero-energy bound states, and conductance at normal metal/superconductor junction of this model are unveiled from this viewpoint. Especially, the electron fractionalization to the Majorana fermions showing the splitting of the local density of states is realized at the soliton of the dimerization in this model.
Fermion Fractionalization to Majorana Fermions in Dimerized Kitaev Superconductor
NASA Astrophysics Data System (ADS)
Wakatsuki, Ryohei; Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto
2015-03-01
We study theoretically a one-dimensional dimerized Kitaev superconductor model which belongs to BDI class with time-reversal, particle-hole, and chiral symmetries. There are two sources of the particle-hole symmetry, i.e., the sublattice symmetry and superconductivity. Accordingly, we define two types of topological numbers with respect to the chiral indices of normal and Majorana fermions, which offers an ideal laboratory to examine the interference between the two different physics within the same symmetry class. Phase diagram, zero-energy bound states, and conductance at normal metal/superconductor junction of this model are unveiled from this viewpoint. Especially, the electron fractionalization to the Majorana fermions showing the splitting of the local density of states is realized at the soliton of the dimerization in this model.
Testing the Majorana nature of neutralinos in supersymmetric theories
NASA Astrophysics Data System (ADS)
Aguilar-Saavedra, Juan A.; Teixeira, Ana M.
2003-12-01
We discuss selectron pair production in e-e- scattering. These processes can only occur via t-channel neutralino exchange, provided that the neutralinos are Majorana fermions. We concentrate on the processes e -e -→ ẽLẽL, ẽRẽR→e -χ˜10e -χ˜20→e -χ˜10e -χ˜10f f¯, in which a complete determination of the final state momenta is possible without using the selectron masses as input. The experimental reconstruction of the selectron masses in this decay channel provides clear evidence of the Majorana character of the neutralinos, which is confirmed by the analysis of the electron energy spectrum.
Two-Dimensional Platform for Networks of Majorana Bound States
NASA Astrophysics Data System (ADS)
Hell, Michael; Leijnse, Martin; Flensberg, Karsten
2017-03-01
We model theoretically a two-dimensional electron gas (2DEG) covered by a superconductor and demonstrate that topological superconducting channels are formed when stripes of the superconducting layer are removed. As a consequence, Majorana bound states (MBSs) are created at the ends of the stripes. We calculate the topological invariant and energy gap of a single stripe, using realistic values for an InAs 2DEG proximitized by an epitaxial Al layer. We show that the topological gap is enhanced when the structure is made asymmetric. This can be achieved either by imposing a phase difference (by driving a supercurrent or using a magnetic-flux loop) over the strip or by replacing one superconductor by a metallic gate. Both strategies also enable control over the MBS splitting, thereby facilitating braiding and readout schemes based on controlled fusion of MBSs. Finally, we outline how a network of Majorana stripes can be designed.
Study of the ( μ-, e +) reaction mediated by Majorana neutrinos
NASA Astrophysics Data System (ADS)
Vergados, J. D.; Ericson, M.
1982-02-01
The exotic lepton violating ( μ-, e +) reaction has been studied in a gauge theory model which assumes the existence of a Majorana neutral lepton. In addition to the usual mechanism involving only two nucleons, the reaction mechanisms which consider a virtual Δ++ present in the nucleus or pions in flight between the interacting nucleons have also been included. The total ( μ-, e +) branching ratio was computed as a function of the various parameters of the theory. It was found to be very sensitively dependent on the mass mσ of the Majorana particle and it becomes very small for mσ > 10 GeV/ c2. The dependence of the branching ratio on the other parameters of the theory is also discussed.
Transport Signatures of Quasiparticle Poisoning in a Majorana Island
NASA Astrophysics Data System (ADS)
Albrecht, S. M.; Hansen, E. B.; Higginbotham, A. P.; Kuemmeth, F.; Jespersen, T. S.; Nygârd, J.; Krogstrup, P.; Danon, J.; Flensberg, K.; Marcus, C. M.
2017-03-01
We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1 e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (˜1 μ s ) and sets a bound for a weakly coupled island (>10 μ s ). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.
Manipulation of Majorana states in X-junction geometries
NASA Astrophysics Data System (ADS)
Aristov, D. N.; Gutman, D. B.
2016-08-01
We study quantum manipulation based on four Majorana bound states in X-junction geometry. The parameter space of this setup is bigger than of the previously studied Y-junction and is described by SO(4) symmetry group. In order for quantum computation to be dephasing free, two Majorana states have to stay degenerate at all times. We find a condition necessary for that and compute the Berry’s phase, 2α , accumulated during the manipulation. We construct simple protocols for the variety of values of α, including π /8 needed for the purposes of quantum computation. Although the manipulations in general X-junction geometry are not topologically protected, they may prove to be a feasible compromise for aims of quantum computation.
Two-Dimensional Platform for Networks of Majorana Bound States.
Hell, Michael; Leijnse, Martin; Flensberg, Karsten
2017-03-10
We model theoretically a two-dimensional electron gas (2DEG) covered by a superconductor and demonstrate that topological superconducting channels are formed when stripes of the superconducting layer are removed. As a consequence, Majorana bound states (MBSs) are created at the ends of the stripes. We calculate the topological invariant and energy gap of a single stripe, using realistic values for an InAs 2DEG proximitized by an epitaxial Al layer. We show that the topological gap is enhanced when the structure is made asymmetric. This can be achieved either by imposing a phase difference (by driving a supercurrent or using a magnetic-flux loop) over the strip or by replacing one superconductor by a metallic gate. Both strategies also enable control over the MBS splitting, thereby facilitating braiding and readout schemes based on controlled fusion of MBSs. Finally, we outline how a network of Majorana stripes can be designed.
Majorana fermion surface code for universal quantum computation
Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang
2015-12-10
In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z2 topological order with a Z2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physical ancilla qubits,more » increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less
Low-field topological threshold in Majorana double nanowires
NASA Astrophysics Data System (ADS)
Schrade, Constantin; Thakurathi, Manisha; Reeg, Christopher; Hoffman, Silas; Klinovaja, Jelena; Loss, Daniel
2017-07-01
A hard proximity-induced superconducting gap has recently been observed in semiconductor nanowire systems at low magnetic fields. However, in the topological regime at high magnetic fields, a soft gap emerges and represents a fundamental obstacle to topologically protected quantum information processing with Majorana bound states. Here we show that in a setup of double Rashba nanowires that are coupled to an s -wave superconductor and subjected to an external magnetic field along the wires, the topological threshold can be significantly reduced by the destructive interference of direct and crossed-Andreev pairing in this setup, precisely down to the magnetic field regime in which current experimental technology allows for a hard superconducting gap. We also show that the resulting Majorana bound states exhibit sufficiently short localization lengths, which makes them ideal candidates for future braiding experiments.
Majorana-Oppenheimer Approach to Proca Field Equations
NASA Astrophysics Data System (ADS)
Tomazelli, J. L.; Fernandes, G. A. M. A.
2014-09-01
A Dirac-like equation for a massive field obeying the classical Proca equations of motion (PMO) is proposed in close analogy with Majorana's construct for Maxwell electrodynamics. Its underlying algebraic structure is examined and a plausible physical interpretation is discussed. The behavior of the PMO equations in the presence of an external electromagnetic field is also investigated in the low energy limit, via unitary transformations similar to the Foldy-Wouthuysen canonical transformation for a Dirac fermion.
Supersymmetry between Jackiw-Nair and Dirac-Majorana anyons
Horvathy, Peter A.; Valenzuela, Mauricio; Plyushchay, Mikhail S.
2010-06-15
The Jackiw-Nair description of anyons combines spin-1 topologically massive fields with the discrete series representation of the Lorentz algebra, which has fractional spin. In the Dirac-Majorana formulation the spin-1 part is replaced by the spin 1/2 planar Dirac equation. The two models are shown to belong to an N=1 supermultiplet, which carries a super-Poincare symmetry.
Majorana fermion wavefunctions in carbon nanotubes and carbynes
NASA Astrophysics Data System (ADS)
Sadykov, N. R.; Aporoski, A. V.
2017-02-01
Electron properties of semiconducting zigzag carbon nanotubes (CNTs) can be described by two uncoupled Dirac equations of dimension (1+1) for the particle with nonzero mass. The solutions of these equations are two charge-neutral Majorana fields. An analogous equation is obtained for the carbon chains. We use the approach, wherein wavefunction of charged particle is represented as the production of a rapidly oscillating exponent and the slowly varying function amplitude depending on the longitudinal coordinate.
Direct Observation of a Majorana Quasiparticle Heat Capacity in 3He
NASA Astrophysics Data System (ADS)
Bunkov, Y. M.
2014-04-01
The Majorana fermion, which acts as its own antiparticle, was suggested by Majorana in 1937 (Nuovo Cimento 14:171). While no stable particle with Majorana properties has yet been observed, Majorana quasiparticles (QP) may exist at the boundaries of topological insulators. Here we report the preliminary results of direct observation of Majorana QPs by a precise measurements of superfluid 3He heat capacity. The bulk superfluid 3He heat capacity falls exponentially with cooling at the temperatures significantly below the energy gap. Owing to the zero energy gap mode the Majorana heat capacity falls in a power law. The Majorana heat capacity can be larger than bulk one at some temperature, which depends on surface to volume ratio of the experimental cell. Some times ago we developed the Dark matter particles detector (DMD) on a basis of superfluid 3He which is working at the frontier of extremely low temperatures (Winkelmann et al., Nucl. Instrum. Meth. A 559:384-386, 2006). Here we report the observation of zero gap mode of Majorana, follows from the new analyses of DMD heat capacity, published early. We have found a 10 % deviation from the bulk superfluid 3He heat capacity at the temperature of 135 μK. This deviation corresponds well to the theoretical value for Majorana heat capacity at such low temperature. (Note, there were no fitting parameters).
Fault-tolerant quantum random-number generator certified by Majorana fermions
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Duan, Lu-Ming
2013-07-01
Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for the implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a perspective to apply Majorana fermions for the robust generation of certified random numbers, which has important applications in cryptography and other related areas.
Lee, Minchul; Choi, Mahn-Soo
2014-08-15
We investigate the mesoscopic resistor-capacitor circuit consisting of a quantum dot coupled to spatially separated Majorana fermion modes in a chiral topological superconductor. We find substantially enhanced relaxation resistance due to the nature of Majorana fermions, which are their own antiparticles and are composed of particle and hole excitations in the same abundance. Further, if only a single Majorana mode is involved, the zero-frequency relaxation resistance is completely suppressed due to a destructive interference. As a result, the Majorana mode opens an exotic dissipative channel on a superconductor which is typically regarded as dissipationless due to its finite superconducting gap.
Status and Initial Results from the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Detwiler, Jason
2016-09-01
The MAJORANA DEMONSTRATOR is performing a sensitive search for the neutrinoless double-beta decay of 76Ge using an ultra-low background array of enriched HPGe detectors deployed at the Sanford Underground Research Facility in Lead, SD. This rare process is generically predicted to occur by large classes of beyond-the-Standard-Model theories, and its observation would indicate that lepton number is not a conserved quantity in nature, with implications for the matter-dominance of the universe. The techniques used for the MAJORANA DEMONSTRATOR include selection and production of materials extremely low in natural radioactivity, choice of detector technology enabling active rejection of background, and graded active and passive shielding, which together give a projected background rate that is the lowest among existing techniques. First data from the DEMONSTRATOR is in-hand, and I will present our preliminary background performance and sensitivity both to neutrinoless double-beta decay as well as other physics targets. I will discuss the current detector status and plans for future upgrades, and our ultimate goal to field a much larger array with even lower background that will be sensitive to MAJORANA neutrinos with an inverted mass ordering.
Transport through a Majorana Island in the Strong Tunneling Regime
NASA Astrophysics Data System (ADS)
Lutchyn, Roman M.; Glazman, Leonid I.
2017-08-01
In the presence of Rashba spin-orbit coupling, a magnetic field can drive a proximitized nanowire into a topological superconducting phase [R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)., 10.1103/PhysRevLett.105.077001 and Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)., 10.1103/PhysRevLett.105.177002]. We study the transport properties of such nanowires in the Coulomb blockade regime. The associated with topological superconductivity Majorana modes significantly modify transport and lead to single-electron coherent transmission through the nanowire—a nonlocal signature of topological superconductivity. In this Letter, we focus on the case of strong hybridization of the Majorana modes with normal leads. The induced by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients, and the geometric capacitance of and the induced superconducting gap in the nanowire.
Ising anyons in frustration-free Majorana-dimer models
NASA Astrophysics Data System (ADS)
Ware, Brayden; Son, Jun Ho; Cheng, Meng; Mishmash, Ryan V.; Alicea, Jason; Bauer, Bela
2016-09-01
Dimer models have long been a fruitful playground for understanding topological physics. Here, we introduce a class, termed Majorana-dimer models, wherein bosonic dimers are decorated with pairs of Majorana modes. We find that the simplest examples of such systems realize an intriguing, intrinsically fermionic phase of matter that can be viewed as the product of a chiral Ising theory, which hosts deconfined non-Abelian quasiparticles, and a topological px-i py superconductor. While the bulk anyons are described by a single copy of the Ising theory, the edge remains fully gapped. Consequently, this phase can arise in exactly solvable, frustration-free models. We describe two parent Hamiltonians: one generalizes the well-known dimer model on the triangular lattice, while the other is most naturally understood as a model of decorated fluctuating loops on a honeycomb lattice. Using modular transformations, we show that the ground-state manifold of the latter model unambiguously exhibits all properties of the Ising×(px-i py) theory. We also discuss generalizations with more than one Majorana mode per site, which realize phases related to Kitaev's 16-fold way in a similar fashion.
Majorana metals in spin-orbit entangled quantum matter
NASA Astrophysics Data System (ADS)
Trebst, Simon
2015-03-01
The largely accidental balance of electronic correlations, spin-orbit entanglement, and crystal field effects of 5d transition metal oxides results in a remarkably broad variety of metallic and insulating states. In this talk, we will discuss the physics of spin-orbit entangled j=1/2 Mott insulators whose microscopic description gives rise to three-dimensional variants of the Kitaev model. The analytical tractability of this model allows to study the fractionalization of these moments into Majorana fermions (and a Z2 gauge field) and their emergent collective behavior. We show that the Majorana fermions generically form metallic states who precise character intimately depends on the underlying lattice structure. Examples range from the well known Dirac semimetal of the two-dimensional Kitaev honeycomb model to three-dimensional metals, in which the gapless modes either form a Fermi line or a Fermi surface akin to a conventional metal. We further discuss our recent finding of a Weyl spin liquid - a state with topologically protected Weyl nodes in the bulk and associated Fermi arcs on the surface. Finally, we comment on the thermodynamic and transport signatures of these various Majorana metals. Joint work with M. Hermanns and K. O'Brien.
Low Background Signal Readout Electronics for the Majorana Demonstrator
Guinn, Ian; Rielage, Keith Robert; Elliott, Steven Ray; Xu, Wenqin; Goett, John Jerome III
2015-06-11
The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in ^{76}Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed. The DEMONSTRATOR has a background goal of < 3 counts/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a one tonne experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This paper discusses the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.
Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR
Guinn, I.; Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A.S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y-D; Christofferson, C. D.; Cuesta, C; Detwiler, J. A.; Efremenko, M.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Green, M. P.; Gruszko, J; Guiseppe, V E; Henning, R.; Howard, S.; Howe, M. A.; Keeter, K.J.; Kidd, M. F.; Konovalov, S.I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Radford, D. C.; Rager, J.; Robertson, R.G.H.; Romero-Romero, E.; Snyder, N; Suriano, A. M.; Tedeschi, D; Trimble, J.; Vasilyev, S.; Vetter, K. [University of California Vorren, K. [University of North Carolina et al.
2015-01-01
The MAJORANA Collaboration will seek neutrinoless double beta decay (0 nu beta beta) in Ge-76 using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of <3 counts/ROI-tonne-year, which is expected to scale down to <1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.
Electron transport in multiterminal networks of Majorana bound states
NASA Astrophysics Data System (ADS)
Weithofer, Luzie; Recher, Patrik; Schmidt, Thomas L.
2014-11-01
We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic nonlocal signatures in electronic transport. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions.
Discriminating Majorana neutrino textures in light of the baryon asymmetry
NASA Astrophysics Data System (ADS)
Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar
2015-06-01
We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.
Majorana edge states in superconductor-noncollinear magnet interfaces
NASA Astrophysics Data System (ADS)
Chen, Wei; Schnyder, Andreas P.
2015-12-01
Through s -d coupling, a superconducting thin film interfaced to a noncollinear magnetic insulator inherits its magnetic order, which may induce unconventional superconductivity that hosts Majorana edge states. We present a unified formalism that covers the cycloidal, helical, and tilted conical order discovered in multiferroics, as well as Bloch and Neel domain walls of ferromagnetic insulators, and show that they induce (px+py )-wave pairing that supports Majorana edge modes. The advantages over one-dimensional proposals are that the Majorana states can exist without fine tuning of the chemical potential, can be stabilized in a much larger parameter space, and can be separated over the distance of long-range noncollinear order that is known to reach a macroscopic scale. A skyrmion spin texture, on the other hand, induces a nonuniform (pr+i pφ )-wave-like pairing under the influence of an emergent electromagnetic field, yielding a vortex state that displays both a bulk persistent current and a topological edge current.
Low background signal readout electronics for the MAJORANA DEMONSTRATOR
Guinn, I.; Buuck, M.; Cuesta, C.; Detwiler, J. A.; Gruszko, J.; Leon, J.; Robertson, R. G. H.; Abgrall, N.; Bradley, A. W.; Chan, Y-D.; Mertens, S.; Poon, A. W. P.; Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Avignone, F. T.; Baldenegro-Barrera, C. X.; Bertrand, F. E.; and others
2015-08-17
The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in {sup 76}Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of < 3 count/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.
Detection of Majorana Kramers Pairs Using a Quantum Point Contact
NASA Astrophysics Data System (ADS)
Li, Jian; Pan, Wei; Bernevig, B. Andrei; Lutchyn, Roman M.
2016-07-01
We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy bound states when the superconducting phases in the two arms differ by an odd multiple of π across the Josephson junction. We investigate the detection of these Majorana pairs with the integrated QPC, and find a robust switching from normal to Andreev scattering across the edges due to the presence of Majorana Kramers pairs. Such a switching of the current represents a qualitative signature where multiterminal differential conductances oscillate with alternating signs when the external magnetic field is tuned. We show that this qualitative signature is also present in current cross-correlations. Thus, the change of the backscattering current nature affects both conductance and shot noise, the measurement of which offers a significant advantage over quantitative signatures such as conductance quantization in realistic measurements.
The 2017 solar eclipse and Majorana & Allais gravity anomalies
NASA Astrophysics Data System (ADS)
Munera, Hector A.
2017-01-01
Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce
Khachatryan, Vardan
2016-04-27
In this study, a search is performed for heavy Majorana neutrinos (N) decaying into a W boson and a lepton using the CMS detector at the Large Hadron Collider. A signature of two jets and either two same sign electrons or a same sign electron-muon pair is searched for using 19.7 inverse femtobarns of data collected during 2012 in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data are found to be consistent with the expected standard model (SM) background and, in the context of a Type-1 seesaw mechanism, upper limits are set on the cross section timesmore » branching fraction for production of heavy Majorana neutrinos in the mass range between 40 and 500 GeV. The results are additionally interpreted as limits on the mixing between the heavy Majorana neutrinos and the SM neutrinos. In the mass range considered, the upper limits range between 0.00015 - 0.72 for |VeN|2 and 6.6x10-5 - 0.47 for |VeN V*μN|2 / ( |VeN|2 + |VμN|2), where VlN is the mixing element describing the mixing of the heavy neutrino with the SM neutrino of flavour l. These limits are the most restrictive direct limits for heavy Majorana neutrino masses above 200 GeV.« less
Can neutrino-electron scattering tell us whether neutrinos are Dirac or Majorana particles
Kayser, B.
1988-04-01
There has recently been interest in the possibility that neutrino-electron scattering experiments could determine whether neutrinos are Dirac or Majorana particles by providing information on their electromagnetic structure. We try to explain why studies of neutrino electromagnetic structure actually cannot distinguish between Dirac and Majorana neutrinos. 9 refs.
CPT, CP, and C phases, and their effects, in Majorana-particle processes
Kayser, B.
1984-09-01
In neutrinoless double-..beta.. decay, the contributions of two virtual Majorana neutrinos with opposite CP parity will interfere destructively. This makes it evident that the amplitudes for reactions involving Majorana particles contain significant new phase factors, reflecting the special discrete-symmetry properties of these particles. To study this phenomenon, we derive and examine the CPT, CP, and C properties of Majorana particles. We then apply these properties, especially to the study of neutrinoless double-..beta.. decay, and to the neutral weak and electromagnetic interactions of Majorana particles. We show how the new phase factors in the Feynman amplitudes for Majorana-particle processes arise, and see that their precise form and location within these amplitudes depends on one's choice of formalism.
Coherent tunneling through a double quantum dot coupled to Majorana bound states
NASA Astrophysics Data System (ADS)
Ivanov, T. I.
2017-07-01
We consider a double quantum dot coupled to a one-dimensional superconducting quantum wire with Majorana bound states at the ends of the wire. We compute the conductance of the double dot in the coherent tunneling regime. When only one of the dots is coupled to one Majorana bound state the conductance is enhanced/diminished in the vicinity of zero voltage if it has minimum/maximum at this voltage with no Majorana bound state and has two local maximums/minimums at voltage equal plus or minus the Majorana bound states overlapping energy. When each dot is coupled to one Majorana bound state with zero overlapping energy it is possible by tuning the magnetic flux through the system to change the zero-voltage conductance from minimum to local maximum. We show that when both electron levels in the double quantum dot are below the right chemical potential the Fano resonance occurs only for the lower energy level.
Polygon sign rules of Majorana fermions in two-dimensional topological superconductors
NASA Astrophysics Data System (ADS)
Cheng, Qiu-Bo; He, Jing; Yu, Jing; Zhao, Xiao-Ming; Kou, Su-Peng
2016-09-01
Recently, Majorana fermions (MFs) have attracted intensive attention due to their exotic statistics and possible applications in topological quantum computation. They are proposed to exist in various two-dimensional (2D) topological systems, such as px + ipy topological superconductor (SC) and nanowire-superconducting hybridization system. In this paper, we point out that Majorana fermions in different topological systems obey different types of polygon sign rules. A numerical approach is described to identify the type of polygon sign rule of the Majorana fermions. Applying the approach to study two 2D topological systems, we find that vortex-induced Majorana fermions obey topological polygon sign rule and line-defect-induced Majorana fermions obey normal polygon sign rule.
Effect of interdots electronic repulsion in the Majorana signature for a double dot interferometer
NASA Astrophysics Data System (ADS)
Ricco, L. S.; Marques, Y.; Dessotti, F. A.; de Souza, M.; Seridonio, A. C.
2016-04-01
We investigate theoretically the features of the Majorana hallmark in the presence of Coulomb repulsion between two quantum dots describing a spinless double dot interferometer, where one of the dots is strongly coupled to a Kitaev wire within the topological phase. Such a system has been originally proposed without Coulomb interaction in Dessotti et al. (2014 [16]) . Our findings reveal that for dots in resonance, the ratio between the strength of Coulomb repulsion and the dot-wire coupling changes the width of the Majorana zero-bias peak for both Fano regimes studied, indicating thus that the electronic interdots correlation influences the Majorana state lifetime in the dot hybridized with the wire. Moreover, for the off-resonance case, the swap between the energy levels of the dots also modifies the width of the Majorana peak, which does not happen for the noninteracting case. The results obtained here can guide experimentalists that pursuit a way of revealing Majorana signatures.
NASA Astrophysics Data System (ADS)
Ginossar, Eran; Grosfeld, Eytan
2014-09-01
Solid-state Majorana fermions are generating intensive interest because of their unique properties and possible applications in fault tolerant quantum memory devices. Here we propose a method to detect signatures of Majorana fermions in hybrid devices by employing the sensitive apparatus of the superconducting charge-qubit architecture and its efficient coupling to microwave photons. In the charge and transmon regimes of this device, we find robust signatures of the underlying Majorana fermions that are, remarkably, not washed out by the smallness of the Majorana contribution to the Josephson current. It is predicted that at special gate bias points the photon-qubit coupling can be switched off via quantum interference, and in other points it is exponentially dependent on the control parameter EJ/EC. We propose that this device could be used to manipulate the quantum state of the Majorana fermion and realize a tunable high coherence four-level system in the superconducting-circuit architecture.
Dynamical Majorana edge modes in a broad class of topological mechanical systems
Prodan, Emil; Dobiszewski, Kyle; Kanwal, Alokik; Palmieri, John; Prodan, Camelia
2017-01-01
Mechanical systems can display topological characteristics similar to that of topological insulators. Here we report a large class of topological mechanical systems related to the BDI symmetry class. These are self-assembled chains of rigid bodies with an inversion centre and no reflection planes. The particle-hole symmetry characteristic to the BDI symmetry class stems from the distinct behaviour of the translational and rotational degrees of freedom under inversion. This and other generic properties led us to the remarkable conclusion that, by adjusting the gyration radius of the bodies, one can always simultaneously open a gap in the phonon spectrum, lock-in all the characteristic symmetries and generate a non-trivial topological invariant. The particle-hole symmetry occurs around a finite frequency, and hence we can witness a dynamical topological Majorana edge mode. Contrasting a floppy mode occurring at zero frequency, a dynamical edge mode can absorb and store mechanical energy, potentially opening new applications of topological mechanics. PMID:28230164
Annihilation of colliding Bogoliubov quasiparticles reveals their Majorana nature.
Beenakker, C W J
2014-02-21
The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calculate the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1±cosϕ dependence on the phase difference ϕ of the superconductors from which the excitations originated (with the ± sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.
The trigger card system for the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Thompson, William; Anderson, John; Howe, Mark; Meijer, Sam; Wilkerson, John; Majorana Collaboration
2014-09-01
The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may otherwise be mistaken for 0 νββ when viewed independently. Here, we present both the hardware and software of the trigger card system, which provides a common clock to all digitizers and the muon veto system, thereby enabling the rejection of background events through coincidence testing. Current experimental results demonstrate the accuracy of the distributed clock to be within two clock pulses (20 ns) across all system components. A test system is used to validate the data acquisition system. The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may
Annihilation of Colliding Bogoliubov Quasiparticles Reveals their Majorana Nature
NASA Astrophysics Data System (ADS)
Beenakker, C. W. J.
2014-02-01
The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calculate the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1±cosϕ dependence on the phase difference ϕ of the superconductors from which the excitations originated (with the ± sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.
Lepton number violation by heavy Majorana neutrino in B decays
NASA Astrophysics Data System (ADS)
Asaka, Takehiko; Ishida, Hiroyuki
2016-12-01
Heavy Majorana neutrinos are predicted in addition to ordinary active neutrinos in the models with the seesaw mechanism. We investigate the lepton number violation (LNV) in B decays induced by such a heavy neutrino N with GeV-scale mass. Especially, we consider the decay channel B+ →μ+ N →μ+μ+π- and derive the sensitivity limits on the mixing angle Θμ by the future search experiments at Belle II and in e+e- collisions at the Future Circular Collider (FCC-ee).
Encrypting Majorana fermion qubits as bound states in the continuum
NASA Astrophysics Data System (ADS)
Guessi, L. H.; Dessotti, F. A.; Marques, Y.; Ricco, L. S.; Pereira, G. M.; Menegasso, P.; de Souza, M.; Seridonio, A. C.
2017-07-01
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
Same-Sign Charginos And Majorana Neutralinos at the LHC
Alwall, Johan; Rainwater, Dave; Plehn, Tilman; /Edinburgh U.
2007-06-18
We demonstrate the possibility of studying weakly interacting new particles in weak boson fusion, using the example of supersymmetric same-sign charginos. This signal can establish the existence of Majorana neutralinos and give access to their electroweak couplings. It can be observed over (supersymmetric) QCD backgrounds provided the charginos are light and not too close to the squark mass. We finally show how same-sign fermion production can be distinguished from samesign scalars or vectors arising in other models of new physics.
Classical impurities and boundary Majorana zero modes in quantum chains
NASA Astrophysics Data System (ADS)
Müller, Markus; Nersesyan, Alexander A.
2016-09-01
We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.
Cosmogenic Induced Background Estimation for the MAJORANA DEMONSTRATOR Experiment
NASA Astrophysics Data System (ADS)
White, Brandon; Majorana Collaboration
2016-09-01
Neutrino-less double beta (0 νββ) decay experiments probe for such rare events that the suppression and understanding of backgrounds are major experimental concerns. Cosmogenic induced isotopes have the potential to be a major background for such experiments. For the MAJORANA DEMONSTRATOR Experiment 76Ge isotope is used as both detector and source and pure electroformed copper is primarily used for detector housing. The isotopes 68Ge and 60Co are cosmogenically produced when the Germanium and Copper components are near Earth's surface. The decay of these isotopes can mimic events in the region of interest. The experiment is located at the 4850 foot level at the Sanford Underground Research Facility in Lead, South Dakota to suppress cosmogenic activation. In this talk I will present the calculations of cosmogenic backgrounds for the enriched 76Ge and electroformed Copper materials used in the MAJORANA DEMONSTRATOR. The activation is determined by the surface exposure time of materials. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.
Conductance spectroscopy on Majorana wires and the inverse proximity effect
NASA Astrophysics Data System (ADS)
Danon, Jeroen; Hansen, Esben B.; Flensberg, Karsten
2017-09-01
Recent experimental searches for signatures of Majorana-type excitations in proximitized semiconducting nanowires involve conductance spectroscopy, where the evidence sought after is a robust zero-bias peak (in longer wires) and its characteristic field-dependent splitting (in shorter wires). Although experimental results partially confirm the theoretical predictions, commonly observed discrepancies still include (i) a zero-bias peak that is significantly lower than the predicted value of 2 e2/h and (ii) the absence of the expected "Majorana oscillations" of the lowest-energy modes at higher magnetic fields. Here, we investigate how the inevitable presence of a normal drain lead connected to the hybrid wire can affect the conductance spectrum of the hybrid wire. We present numerical results using a one-band model for the proximitized nanowire, where the superconductor is considered to be in the diffusive regime, described by semiclassical Green functions. We show how the presence of the normal drain could (at least partially) account for the observed discrepancies, and we complement this with analytic results providing more insights in the underlying physics.
Designer non-Abelian anyon platforms: from Majorana to Fibonacci
NASA Astrophysics Data System (ADS)
Alicea, Jason; Stern, Ady
2015-12-01
The emergence of non-Abelian anyons from large collections of interacting elementary particles is a conceptually beautiful phenomenon with important ramifications for fault-tolerant quantum computing. Over the last few decades the field has evolved from a highly theoretical subject to an active experimental area, particularly following proposals for trapping non-Abelian anyons in ‘engineered’ structures built from well-understood components. In this short overview we briefly tour the impressive progress that has taken place in the quest for the simplest type of non-Abelian anyon—defects binding Majorana zero modes—and then turn to similar strategies for pursuing more exotic excitations. Specifically, we describe how interfacing simple quantum Hall systems with conventional superconductors yields ‘parafermionic’ generalizations of Majorana modes and even Fibonacci anyons—the latter enabling fully fault tolerant universal quantum computation. We structure our treatment in a manner that unifies these topics in a coherent way. The ideas synthesized here spotlight largely uncharted experimental territory in the field of quantum Hall physics that appears ripe for discovery.
The MAJORANA Demonstrator Low-Energy Rare Event Search
NASA Astrophysics Data System (ADS)
Wiseman, Clinton; Majorana Collaboration
2016-09-01
The extremely low backgrounds of the MAJORANA DEMONSTRATOR neutrinoless double beta decay experiment, combined with the excellent energy resolution of its high-purity germanium (HPGe) detectors, provide an opportunity for a dark matter search at low energy (<100 keV). The DEMONSTRATOR is in the final stages of construction at the 4850-ft. level of the Sanford Underground Research Facility in Lead, SD. The first detector module, consisting of 16.8 kg of HPGe enriched to 88% 76Ge and 5.7 kg of natural HPGe, took 100.6 live days of commissioning data before going blind on April 14th, 2016, and the second module is nearing completion at the time of this writing. The enriched detectors have particularly low levels of cosmogenic activation from their specialized manufacturing process. These ultra-low background designs are suited to rare event searches at low energies, including light WIMPs (<10 GeV/c2) and solar axions. In this talk an update of the MAJORANA low-energy research program will be presented. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.
Coulomb interaction effects on the Majorana states in quantum wires.
Manolescu, A; Marinescu, D C; Stanescu, T D
2014-04-30
The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands.
Phase diagram of the interacting Majorana chain model
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Zhu, Xiaoyu; Franz, Marcel; Affleck, Ian
2015-12-01
The Hubbard and spinless fermion chains are paradigms of strongly correlated systems, very well understood using the Bethe ansatz, density matrix renormalization group (DMRG), and field theory/renormalization group (RG) methods. They have been applied to one-dimensional materials and have provided important insights for understanding higher-dimensional cases. Recently, an interacting fermion model has been introduced, with possible applications to topological materials. It has a single Majorana fermion operator on each lattice site and interactions with the shortest possible range that involve four sites. We present a thorough analysis of the phase diagram of this model in one dimension using field-theory/RG and DMRG methods. It includes a gapped supersymmetric region and a gapless phase with coexisting Luttinger liquid and Ising degrees of freedom. In addition to a first-order transition, three critical points occur: tricritical Ising, Lifshitz, and a generalization of the commensurate-incommensurate transition. We also survey various gapped phases of the system that arise when the translation symmetry is broken by dimerization and find both trivial and topological phases with 0, 1, and 2 Majorana zero modes bound to the edges of the chain with open boundary conditions.
Distinguishing Dirac/Majorana sterile neutrinos at the LHC
NASA Astrophysics Data System (ADS)
Dib, Claudio O.; Kim, C. S.; Wang, Kechen; Zhang, Jue
2016-07-01
We study the purely leptonic decays of W±→e±e±μ∓ν and μ±μ±e∓ν produced at the LHC, induced by sterile neutrinos with mass mN below MW in the intermediate state. Since the final state neutrino escapes detection, one cannot tell whether this process violates lepton number, which would indicate a Majorana character for the intermediate sterile neutrino. Our study shows that when the sterile neutrino mixings with electrons and muons are different enough, one can still discriminate between the Dirac and Majorana character of this intermediate neutrino by simply counting and comparing the above decay rates. After performing collider simulations and statistical analysis, we find that at the 14 TeV LHC with an integrated luminosity of 3000 fb-1, for two benchmark scenarios mN=20 and 50 GeV, at least a 3 σ level of exclusion on the Dirac case can be achieved for disparities as mild as, e.g., |UN e|2<0.7 |UN μ|2 or |UN μ|2<0.7 |UN e|2 , provided that |UN e|2 and |UN μ|2 are both above ˜2 ×10-6.
Josephson junction detectors for Majorana modes and Dirac fermions
NASA Astrophysics Data System (ADS)
Maiti, M.; Kulikov, K. M.; Sengupta, K.; Shukrinov, Yu. M.
2015-12-01
We demonstrate that the current-voltage (I -V ) characteristics of resistively and capacitively shunted Josephson junctions (RCSJs) hosting localized subgap Majorana states provide a phase-sensitive method for their detection. The I -V characteristics of such RCSJs, in contrast to their resistively shunted counterparts, exhibit subharmonic odd Shapiro steps. These steps, owing to their subharmonic nature, exhibit qualitatively different properties compared to harmonic odd steps of conventional junctions. In addition, the RCSJs hosting Majorana bound states also display an additional sequence of steps in the devil's staircase structure seen in their I -V characteristics; such a sequence of steps makes their I -V characteristics qualitatively distinct from that of their conventional counterparts. A similar study for RCSJs with graphene superconducting junctions hosting Dirac-like quasiparticles reveals that the Shapiro step width in their I -V curves bears a signature of the transmission resonance phenomenon of their underlying Dirac quasiparticles; consequently, these step widths exhibit a π periodic oscillatory behavior with variation of the junction barrier potential. We discuss experiments which can test our theory.
Germanium Detector Crystal Axis Orientation for the MAJORANA Demonstrator
NASA Astrophysics Data System (ADS)
Letourneau, Hannah
2013-10-01
The MAJORANA Demonstrator, currently being constructed at Sanford Underground Research Facility in Lead, South Dakota, is an array of germanium detectors which will be used to search for neutrinoless double beta decay, which would demonstrate that neutrinos have a Majorana mass term and lepton number is not conserved. An important characteristic of semiconductor detectors is the crystal axis orientation, because the propagation of electromagnetic signals is attenuated by the location of the interaction relative to the axis of the crystal. Conventionally, a goniometer is used to position a collimated low energy gamma source in many small increments around the detector to measure the rise time at each position. However, due to physical constraints from the casing of the Demonstrator, a different method must be developed. At the University of Washington this summer, I worked with a 76 Ge point-contact detector. I found the crystal axis orientation first with Americium 241, a lower energy gamma source. Then, I used a higher energy source, Thorium 232, in conjunction with the only a few angular reference points to also calculate rise time. Also, I wrote code to process the data. The success of this method will be evaluated and discussed. NSF
The status and initial results of the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyu; MAJORANA Collaboration
2017-01-01
The MAJORANA DEMONSTRATOR is an ultra-low background experiment searching for neutrinoless double-beta decay in 76Ge at the Sanford Underground Research Facility. The search for neutrinoless double-beta decay could determine the Dirac vs Majorana nature of neutrino mass and provide insight to the matter-antimatter asymmetry in the Universe. The DEMONSTRATOR is comprised of 44.8 kg (30 kg enriched in 76Ge) of high purity Ge detectors separated into two modules. Construction and commissioning of both modules completed in Summer 2016 and both modules are now acquiring physics data. In my talk, I will discuss the initial results of the first physics run utilizing both modules focusing primarily on the studies of the background and projections to a ton-scale experiment. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.
New directions in the pursuit of Majorana fermions in solid state systems.
Alicea, Jason
2012-07-01
The 1937 theoretical discovery of Majorana fermions-whose defining property is that they are their own anti-particles-has since impacted diverse problems ranging from neutrino physics and dark matter searches to the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation of Majorana fermions nevertheless remains an outstanding goal. This review paper highlights recent advances in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon bear fruit. We begin by introducing in some detail exotic 'topological' one- and two-dimensional superconductors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights that arose during the past few years; namely, that it is possible to 'engineer' such exotic superconductors in the laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals of this type are discussed, based on diverse materials such as topological insulators, conventional semiconductors, ferromagnetic metals and many others. The all-important question of how one experimentally detects Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide smoking-gun Majorana signatures: tunneling, Josephson effects and interferometry. Finally, we discuss the most remarkable properties of condensed matter Majorana fermions-the non-Abelian exchange statistics that they generate and their associated potential for quantum computation.
Photon-assisted tunneling through a topological superconductor with Majorana bound states
Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun
2015-12-15
Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.
Photon-assisted tunneling through a topological superconductor with Majorana bound states
NASA Astrophysics Data System (ADS)
Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun
2015-12-01
Employing the Keldysh Nonequilibrium Green's function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.
Majorana fermions in the nonuniform Ising-Kitaev chain: exact solution.
Narozhny, Boris
2017-05-03
A quantum computer based on Majorana qubits would contain a large number of zero-energy Majorana states. This system can be modelled as a connected network of the Ising-Kitaev chains alternating the "trivial" and "topological" regions, with the zero-energy Majorana fermions localized at their interfaces. The low-energy sector of the theory describing such a network can be formulated in terms of leading-order couplings between the Majorana zero modes. I consider a minimal model exhibiting effective couplings between four Majorana zero modes - the nonuniform Ising-Kitaev chain, containing two "topological" regions separated by a "trivial" region. Solving the model exactly, I show that for generic values of the model parameters the four zero modes are localized at the four interface points of the chain. In the special case where additional inversion symmetry is present, the Majorana zero modes are "delocalized" between two interface points. In both cases, the low-energy sector of the theory can be formulated in terms of the localized Majorana fermions, but the couplings between some of them are independent of their respective separations: the exact solution does not support the "nearest-neighbor" form of the effective low-energy Hamiltonian.
Shot noise as a measure of the lifetime and energy splitting of Majorana bound states
Lü, Hai-Feng; Guo, Zhen; Ke, Sha-Sha; Zhang, Huai-Wu; Guo, Yong
2015-04-28
We propose a scheme to measure the lifetime and energy splitting of a pair of Majorana bound states at the ends of a superconducting nanowire by using the shot noise in a dynamical channel blockade system. A quantum dot is coupled to one end of the wire and connected with two electron reservoirs. It is found that a finite Majorana energy splitting tends to produce a super-Poissonian shot noise, while Majorana relaxation process relieves the dynamical channel blockade and suppresses the noise Fano factor. When the dot energy level locates in the middle of the gap of topological superconductor, the Fano factor is independent on Majorana lifetime and Majorana energy splitting is thus extracted. For a finite energy splitting, we could evaluate the Majorana relaxation rate from the suppression of Fano factor. Under a realistic condition, the expected resolution of Majorana energy splitting and its relaxation rate calculated from our model are about 1μeV and 0.01−1μeV, respectively.
Proposal to measure the quasiparticle poisoning time of Majorana bound states
NASA Astrophysics Data System (ADS)
Colbert, Jacob R.; Lee, Patrick A.
2014-04-01
We propose a method of measuring the fermion parity lifetime of Majorana fermion modes due to quasiparticle poisoning. We model quasiparticle poisoning by coupling the Majorana modes to electron reservoirs, explicitly breaking parity conservation in the system. This poisoning broadens and shortens the resonance peak associated with Majorana modes. In a two-lead geometry, the poisoning decreases the correlation in current noise between the two leads from the maximal value characteristic of crossed Andreev reflection. The latter measurement allows for calculation of the poisoning rate even if the temperature is much higher than the resonance width.
NASA Astrophysics Data System (ADS)
Sahoo, Sharmistha; Zhang, Zhao; Teo, Jeffrey
Time reversal symmetric topological superconductors in three spatial dimensions carry gapless surface Majorana fermions. They are robust against any time reversal symmetric single-body perturbation weaker than the bulk energy gap. We mimic the massless surface Majorana's by coupled wire models in two spatial dimensions. We introduce explicit many-body interwire interactions that preserve time reversal symmetry and give energy gaps to all low energy degrees of freedom. The gapping 4-fermion interactions are constructed by interwire Kac-Moody current backscattering and rely on the fractionalization or conformal embedding of the Majorana wires.
Demonstrating non-Abelian statistics of Majorana fermions using twist defects
NASA Astrophysics Data System (ADS)
Zheng, Huaixiu; Dua, Arpit; Jiang, Liang
We study the twist defects in the toric code model introduced by Bombin [Phys. Rev. Lett.105, 030403 (2010)]. Using a generalized 2D Jordan-Wigner transformation and a projective construction, we show explicitly the twist defects carry unpaired Majorana zero modes. In addition, we propose a quantum non-demolition measurement scheme of the parity of Majorana modes. Such a scheme provides an alternative avenue to demonstrate the non-Abelian statistics of Majorana fermions. The braiding operation is simulated by an efficient measurement-based approach that removes the uncertainty associated with the previous forced measurement scheme.
Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2017-04-01
We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.
Revision of the LHCb limit on Majorana neutrinos
NASA Astrophysics Data System (ADS)
Shuve, Brian; Peskin, Michael E.
2016-12-01
We revisit the recent limits from LHCb on a Majorana neutrino N in the mass range 250-5000 MeV [1 R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 131802 (2014)., 10.1103/PhysRevLett.112.131802]. These limits are among the best currently available, and they will be improved soon by the addition of data from Run 2 of the LHC. LHCb presented a model-independent constraint on the rate of like-sign leptonic decays, and then derived a constraint on the mixing angle Vμ 4 based on a theoretical model for the B decay width to N and the N lifetime. The model used is unfortunately unsound. We revise the conclusions of the paper based on a decay model similar to the one used for the τ lepton and provide formulas useful for future analyses.
Searching for Solar Axions using the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Christopher; Majorana Collaboration
2015-10-01
The choice of P-Type Point Contact (PPC) detectors for the
Parity-doublet representation of Majorana fermions and neutron oscillation
NASA Astrophysics Data System (ADS)
Fujikawa, Kazuo; Tureanu, Anca
2016-12-01
We present a parity-doublet theorem for the representation of the intrinsic parity of Majorana fermions, which is expected to be useful also in condensed matter physics, and it is illustrated to provide a criterion of neutron-antineutron oscillation in a Bardeen-Cooper-Schrieffer type of effective theory with Δ B =2 baryon number-violating terms. The C P violation in the present effective theory causes no direct C P -violating effects in the oscillation itself, which is demonstrated by the exact solution, although it influences the neutron electric dipole moment in the leading order of small Δ B =2 parameters. An analog of Bogoliubov transformation, which preserves P and C P , is crucial in the analysis.
Revision of the LHCb limit on Majorana neutrinos
Shuve, Brian; Peskin, Michael E.
2016-12-16
We revisit the recent limits from LHCb on a Majorana neutrino N in the mass range 250–5000 MeV [R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 131802 (2014).]. These limits are among the best currently available, and they will be improved soon by the addition of data from Run 2 of the LHC. LHCb presented a model-independent constraint on the rate of like-sign leptonic decays, and then derived a constraint on the mixing angle V_{ μ 4 }based on a theoretical model for the B decay width to N and the N lifetime. The model used is unfortunately unsound. We revise the conclusions of the paper based on a decay model similar to the one used for the τ lepton and provide formulas useful for future analyses.
The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment
Abgrall, N.; Aguayo, Estanislao; Avignone, Frank T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, C.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir
2014-06-01
The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta (ββ(0ν)) decay of the isotope ^{76}Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the DEMONSTRATOR and the details of its design.
The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment
Abgrall, N.; Aguayo, Estanislao; Avignone, III, F. T.; Barabash, A.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir
2014-01-01
The Majorana Demonstrator will search for the neutrinoless double-beta (ββ (0ν)) decay of the isotope ^{76}Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. TheDemonstrator is being assembled at the 4850-foot level of the SanfordUnderground Research Facility in Lead, SouthDakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design.
Testing the Ge detectors for the MAJORANA DEMONSTRATOR
Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W.P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G.H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.
2015-03-24
High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.
Reprint of : Full counting statistics of Majorana interferometers
NASA Astrophysics Data System (ADS)
Strübi, Grégory; Belzig, Wolfgang; Schmidt, Thomas L.; Bruder, Christoph
2016-08-01
We study the full counting statistics of interferometers for chiral Majorana fermions with two incoming and two outgoing Dirac fermion channels. In the absence of interactions, the FCS can be obtained from the 4×4 scattering matrix S that relates the outgoing Dirac fermions to the incoming Dirac fermions. After presenting explicit expressions for the higher-order current correlations for a modified Hanbury Brown-Twiss interferometer, we note that the cumulant-generating function can be interpreted such that unit-charge transfer processes correspond to two independent half-charge transfer processes, or alternatively, to two independent electron-hole conversion processes. By a combination of analytical and numerical approaches, we verify that this factorization property holds for a general SO(4) scattering matrix, i.e. for a general interferometer geometry.
Testing the Ge detectors for the MAJORANA DEMONSTRATOR
Xu, W.; Abgrall, N.; Aguayo, E.; ...
2015-03-24
High purity germanium (HPGe) crystals will be used for the Majorana Demonstrator, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performances of the HPGe crystals. A variety of crystal properties are being investigated, including both basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distribution. In this talk, we will present our measurements that characterize the HPGe crystals. In addition, we will discussmore » the experiment’s simulation package for the detector characterization setup, where additional information is learned from data simulation comparisons.« less
Tunable magnetic textures: From Majorana bound states to braiding
NASA Astrophysics Data System (ADS)
Matos-Abiague, Alex; Shabani, Javad; Kent, Andrew D.; Fatin, Geoffrey L.; Scharf, Benedikt; Žutić, Igor
2017-08-01
A versatile control of magnetic systems, widely used to store information, can also enable manipulating Majorana bounds states (MBS) and implementing fault-tolerant quantum information processing. The proposed platform relies on the proximity-induced superconductivity in a two-dimensional electron gas placed next to an array of magnetic tunnel junctions (MTJs). A change in the magnetization configuration in the MTJ array creates tunable magnetic textures thereby removing several typical requirements for MBS: strong spin-orbit coupling, applied magnetic field, and confinement by one-dimensional structures which complicates demonstrating non-Abelian statistics through braiding. Recent advances in fabricating two-dimensional epitaxial superconductor/semiconductor heterostructures and designing tunable magnetic textures support the feasibility of this novel platform for MBS.
Operations of Majorana Bound States in Charge-qubit Arrays
NASA Astrophysics Data System (ADS)
Mao, Ting; Wang, Zidan
2014-03-01
The experimental pursuit of Majorana bound state (MBS) in one-dimensional (1D) solid state systems has been brought into the limelight since the proposal of Kitaev's toy lattice model. Here we use the inductively coupled charge-qubit array to realize a tunable Kitaev model. With the advantages of the superconducting-qubit circuit, we can manipulate the parameters of Kitaev model and change the symmetry class to which the model Hamiltonian belongs from the class D to the class BDI. We also discuss a simple class DIII model constructed by coupling two copies of the class D charge-qubit array. Using the time reversal symmetry and a residual U(1) spin rotation symmetry of the model, we explore the possibility of implementing universal single topological qubit operations.
Search for Majorana neutrinos with the SNO+ detector at SNOLAB
NASA Astrophysics Data System (ADS)
Maio, A.; SNO+ Collaboration
2015-02-01
The SNO+ experiment is adapting the Sudbury Neutrino Observatory (SNO) detector, in order to use isotope-loaded liquid scintillator as the active medium. SNO+ has multiple scientific goals, the main one being the search for neutrinoless double beta decay, the most promising signature for the possible Majorana character of neutrinos and for the absolute neutrino mass. Measurements of neutrinos from the Sun, the Earth, Supernovae and nuclear reactors are additional goals of the experiment. The detector consists of a 12m diameter spherical vessel, filled with 780 tonnes of Tellurium-loaded liquid scintillator, and surrounded by about 9500 PMTs. It is shielded by a large volume of ultra-pure water and the underground location at SNOLAB, Canada. This talk will review the Physics goals and current status of SNO+.
Fano fingerprints of Majoranas in Kitaev dimers of superconducting adatoms
NASA Astrophysics Data System (ADS)
Dessotti, F. A.; Ricco, L. S.; Marques, Y.; Machado, R. S.; Guessi, L. H.; Figueira, M. S.; de Souza, M.; Seridonio, A. C.
2016-09-01
We investigate theoretically a Fano interferometer composed by STM and AFM tips close to a Kitaev dimer of superconducting adatoms, in which the adatom placed under the AFM tip, encloses a pair of Majorana fermions (MFs). For the binding energy Δ of the Cooper pair delocalized into the adatoms under the tips coincident with the tunneling amplitude t between them, namely Δ=t, we find that only one MF beneath the AFM tip hybridizes with the adatom coupled to the STM tips. As a result, a gate invariance feature emerges: the Fano profile of the transmittance rises as an invariant quantity depending upon the STM tips Fermi energy, due to the symmetric swap in the gate potential of the AFM tip.
Quantum simulations of neutrino oscillations and the Majorana equation
NASA Astrophysics Data System (ADS)
Noh, Changsuk; Rodriguez-Lara, Blas; Angelakis, Dimitris
2013-03-01
Two recent works on quantum simulations of relativistic equations are presented. The first is on neutrino oscillations with trapped ions as a generalization of Dirac equation simulation in 1 spatial dimension. It is shown that with two or more ion qubits it is possible to mimic the flavour oscillations of neutrinos. The second part is on quantum simulations of the Majorana equation based on the earlier work by Casanova et al. (PRX 1, 021018). We show that by decoupling the equation, it is possible to simulate with a smaller number of qubits given that one can perform complete tomography, including the spatial degrees of freedom. We acknowledge the financial support by the National Research Foundation and Ministry of Education, Singapore.
Majorana approach to the stochastic theory of line shapes
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Coleman, Piers
2016-08-01
Motivated by recent Mössbauer experiments on strongly correlated mixed-valence systems, we revisit the Kubo-Anderson stochastic theory of spectral line shapes. Using a Majorana representation for the nuclear spin we demonstrate how to recast the classic line-shape theory in a field-theoretic and diagrammatic language. We show that the leading contribution to the self-energy can reproduce most of the observed line-shape features including splitting and line-shape narrowing, while the vertex and the self-consistency corrections can be systematically included in the calculation. This approach permits us to predict the line shape produced by an arbitrary bulk charge fluctuation spectrum providing a model-independent way to extract the local charge fluctuation spectrum of the surrounding medium. We also derive an inverse formula to extract the charge fluctuation from the measured line shape.
Topological superfluids with finite-momentum pairing and Majorana fermions.
Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei
2013-01-01
Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.
Conductance of a superconducting Coulomb-blockaded Majorana nanowire
NASA Astrophysics Data System (ADS)
Chiu, Ching-Kai; Sau, Jay D.; Das Sarma, S.
2017-08-01
In the presence of an applied magnetic field introducing Zeeman spin splitting, a superconducting (SC) proximitized one-dimensional (1D) nanowire with spin-orbit coupling can pass through a topological quantum phase transition developing zero-energy topological Majorana bound states (MBSs) on the wire ends. One of the promising experimental platforms in this context is a Coulomb-blockaded island, where by measuring the two-terminal conductance one can in principle investigate the MBS properties. Here, we theoretically study the tunneling transport of a single electron across the superconducting Coulomb-blockaded nanowire at finite temperature in order to obtain the generic conductance equation. By considering all possible scenarios where only MBSs are present at the ends of the nanowire, we compute the nanowire conductance as a function of the magnetic field, the temperature, and the gate voltage. In the simplest 1D topological SC model, the oscillations of the conductance peak spacings (OCPSs) arising from the Majorana overlap from the two wire ends manifest an increasing oscillation amplitude with increasing magnetic field (in disagreement with a recent experimental observation). We develop a generalized finite-temperature master-equation theory including not only multiple subbands in the nanowire, but also the possibility of ordinary Andreev bound states in the nontopological regime. Inclusion of all four effects (temperature, multiple subbands, Andreev bound states, and MBSs) provides a complete picture of the tunneling transport properties of the Coulomb-blockaded nanowire. Based on this complete theory, we indeed obtain OCPSs whose amplitudes decrease with increasing magnetic field in qualitative agreement with recent experimental results, but this happens only for rather high temperatures with multisubband occupancy and the simultaneous presence of both Andreev bound states and MBSs in the system. Thus, the experimentally observed OCPSs manifesting
Traveling Majorana Solitons in a Low-Dimensional Spin-Orbit-Coupled Fermi Superfluid.
Zou, Peng; Brand, Joachim; Liu, Xia-Ji; Hu, Hui
2016-11-25
We investigate traveling solitons of a one- or two-dimensional spin-orbit-coupled Fermi superfluid in both topologically trivial and nontrivial regimes by solving the static and time-dependent Bogoliubov-de Gennes equations. We find a critical velocity v_{h} for traveling solitons that is much smaller than the value predicted using the Landau criterion due to spin-orbit coupling. Above v_{h}, our time-dependent simulations in harmonic traps indicate that traveling solitons decay by radiating sound waves. In the topological phase, we predict the existence of peculiar Majorana solitons, which host two Majorana fermions and feature a phase jump of π across the soliton, irrespective of the velocity of travel. These unusual properties of Majorana solitons may open an alternative way to manipulate Majorana fermions for fault-tolerant topological quantum computations.
Non-Kondo many-body physics in a Majorana-based Kondo type system
NASA Astrophysics Data System (ADS)
van Beek, Ian J.; Braunecker, Bernd
2016-09-01
We carry out a theoretical analysis of a prototypical Majorana system, which demonstrates the existence of a Majorana-mediated many-body state and an associated intermediate low-energy fixed point. Starting from two Majorana bound states, hosted by a Coulomb-blockaded topological superconductor and each coupled to a separate lead, we derive an effective low-energy Hamiltonian, which displays a Kondo-like character. However, in contrast to the Kondo model which tends to a strong- or weak-coupling limit under renormalization, we show that this effective Hamiltonian scales to an intermediate fixed point, whose existence is contingent upon teleportation via the Majorana modes. We conclude by determining experimental signatures of this fixed point, as well as the exotic many-body state associated with it.
Majorana modes in InSb nanowires (II): resolving the topological phase diagram
NASA Astrophysics Data System (ADS)
Zhang, Hao; Gül, Önder; de Moor, Michiel; de Vries, Fokko; van Veen, Jasper; van Woerkom, David; Zuo, Kun; Mourik, Vincent; Cassidy, Maja; Geresdi, Attila; Car, Diana; Bakkers, Erik; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo
Majorana modes in hybrid superconductor-semiconductor nanowire devices can be probed via tunnelling spectroscopy which shows a zero bias peak (ZBP) in differential conductance (1). Majoranas are formed when the Zeeman energy EZ and the chemical potential μ satisfy the condition EZ >√{Δ2 +μ2 } , with Δ the superconducting gap. This Majorana condition outlines the topologically non-trivial phase and predicts a particular dependence of ZBPs on the gate voltage and the external magnetic field. In this talk we show that the magnetic field range of ZBPs can be tuned by gate voltage and vice versa, consistent with these Majorana predictions. Supported by measurements in different external magnetic field orientations, these observations pave the way for exploring the topological phase diagram of spin-orbit coupled semiconductor nanowires with induced superconductivity.
Hung, Hsiang-Hsuan; Wu, Jiansheng; Sun, Kuei; Chiu, Ching-Kai
2017-06-14
We study a vortex chain in a thin film of a topological insulator with proximity-induced superconductivity-a promising platform to realize Majorana zero modes (MZMs)-by modeling it as a two-leg Majorana ladder. While each pair of MZMs hybridizes through vortex tunneling, we hereby show that MZMs can be stabilized on the ends of the ladder with the presence of tilted external magnetic field and four-Majorana interaction. Furthermore, a fruitful phase diagram is obtained by controlling the direction of magnetic field and the thickness of the sample. We reveal many-body Majorana states and interaction-induced topological phase transitions and also identify trivial-superconducting and commensurate/incommensurate charge-density-wave states in the phase diagram.
Tunable Majorana fermion from Landau quantization in 2D topological superconductors
NASA Astrophysics Data System (ADS)
Akzyanov, R. S.; Rakhmanov, A. L.; Rozhkov, A. V.; Nori, Franco
2016-09-01
We study Majorana fermions in a two-dimensional topological superconductor placed in a transverse magnetic-field B . We consider a topological insulator/superconductor heterostructure and a two-dimensional p -wave superconductor. A single field-generated vortex creates two Majorana fermions, one of which is hosted at the vortex core. The wave function of the second Majorana state is localized in the superconductor volume along a circle with a radius of r*∝B-1 centered at the vortex core. In the case of many vortices, the sensitivity of r* to the magnetic field B may be used to control the coupling between the Majorana fermions. The latter property could be an asset for quantum computations.
Effects of nonequilibrium noise on a quantum memory encoded in Majorana zero modes
NASA Astrophysics Data System (ADS)
Konschelle, François; Hassler, Fabian
2013-08-01
In order to increase the coherence time of topological quantum memories in systems with Majorana zero modes, it has recently been proposed to encode the logical qubit states in nonlocal Majorana operators which are immune to localized excitations involving the unpaired Majorana modes. In this encoding, a logical error only happens when the quasiparticles, subsequent to their excitation, travel a distance of the order of the spacing between the Majorana modes. Here, we study the decay time of a quantum memory encoded in a clean topological nanowire interacting with an environment with a particular emphasis on the propagation of the quasiparticles above the gap. We show that the nonlocal encoding does not provide a significantly longer coherence time than the local encoding. In particular, the characteristic speed of propagation is of the order of the Fermi velocity of the nanowire and not given by the much slower group velocity of quasiparticles which are excited just above the gap.
Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure.
He, Qing Lin; Pan, Lei; Stern, Alexander L; Burks, Edward C; Che, Xiaoyu; Yin, Gen; Wang, Jing; Lian, Biao; Zhou, Quan; Choi, Eun Sang; Murata, Koichi; Kou, Xufeng; Chen, Zhijie; Nie, Tianxiao; Shao, Qiming; Fan, Yabin; Zhang, Shou-Cheng; Liu, Kai; Xia, Jing; Wang, Kang L
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Barański, J.; Kobiałka, A.; Domański, T.
2017-02-01
We investigate the subgap spectrum and transport properties of the quantum dot on the interface between the metallic and superconducting leads and additionally side-coupled to the edge of the topological superconducting (TS) chain, hosting the Majorana quasiparticle. Due to the chiral nature of the Majorana states only one spin component of the quantum dot electrons (say \\uparrow ) is directly affected, however the proximity induced on-dot pairing transmits its influence on the opposite spin as well. We investigate the unique interferometric patterns driven by the Majorana quasiparticle that are different for each spin component. We also address the spin-sensitive interplay with the Kondo effect manifested at the same zero-energy and we come to the conclusion that quantum interferometry can unambiguously identify the Majorana quasiparticle.
Majorana fermions in spin-singlet nodal superconductors with coexisting non-collinear magnetic order
NASA Astrophysics Data System (ADS)
Wang, Ziqiang; Lu, Yuan-Ming
2013-03-01
Realizations of Majorana fermions in solid state materials have attracted great interests recently in connection to topological order and quantum information processing. We propose a novel way to create Majorana fermions in superconductors. We show that an incipient non-collinear magnetic order turns a spin-singlet superconductor with nodes into a topological superconductor with a stable Majorana bound state (MBS) in the vortex core or on the edge. Moreover the topologically-stable point defect of non-collinear magnetic order also hosts a zero-energy MBS. We argue that such an exotic non-Abelian phase can be realized in extended t- J models on the triangular and square lattices. Our proposal suggests a new avenue for the search of Majorana fermions in correlated electron materials where nodal superconductivity and magnetism are two common caricatures.
Traveling Majorana Solitons in a Low-Dimensional Spin-Orbit-Coupled Fermi Superfluid
NASA Astrophysics Data System (ADS)
Zou, Peng; Brand, Joachim; Liu, Xia-Ji; Hu, Hui
2016-11-01
We investigate traveling solitons of a one- or two-dimensional spin-orbit-coupled Fermi superfluid in both topologically trivial and nontrivial regimes by solving the static and time-dependent Bogoliubov-de Gennes equations. We find a critical velocity vh for traveling solitons that is much smaller than the value predicted using the Landau criterion due to spin-orbit coupling. Above vh, our time-dependent simulations in harmonic traps indicate that traveling solitons decay by radiating sound waves. In the topological phase, we predict the existence of peculiar Majorana solitons, which host two Majorana fermions and feature a phase jump of π across the soliton, irrespective of the velocity of travel. These unusual properties of Majorana solitons may open an alternative way to manipulate Majorana fermions for fault-tolerant topological quantum computations.
Status of Underground Lab Construction at WIPP in Support of the Majorana Project
NASA Astrophysics Data System (ADS)
Gehman, Victor
2003-10-01
The Majorana Project will endeavor to provide direct limits on the effective Majorana mass of the electron neutrino at the level of 50 meV through the measurement of neutrinoless double-beta decay in ^76Ge. An important part of the R preparation for Majorana is the development of low-background test-bed and experimental facilities. Construction of these facilities has begun underground at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico. We present a report on the design and current progress in the construction of the underground lab at WIPP, as well as an overview of the R and science goals to be undertaken there in connection to the Majorana project.
Model independent explorations of Majorana neutrino mass origins
NASA Astrophysics Data System (ADS)
Jenkins, James Phearl, Jr.
The recent observation of nonzero neutrino mass is the first concrete indication of physics beyond the Standard Model. Their properties, unique among the other fermions, leads naturally to the idea of a Majorana neutrino mass term. Despite the strong theoretical prejudice toward this concept, it must be tested experimentally. This is indeed possible in the context of next generation experiments. Unfortunately, the scale of neutrino mass generation may be too large to explore directly, but useful information may still be extracted from independent experimental channels. Here I survey various model independent probes of Majorana neutrino mass origins. A brief introduction to the concepts relevant to the analysis is followed by a discussion of the physical ranges of neutrino mass and mixing parameters within the context of standard and non-standard interactions. Armed with this, I move on to systematically analyze the properties of radiatively generated neutrino masses induced by nonrenormalizable lepton number violating effective operators of mass dimensions five through eleven. By fitting these to the observed light mass scale, I extract predictions for neutrino mixing as well as neutrinoless double beta decay, rare meson/tau decays and collider phenomenology. I find that many such models are already constrained by current data and many more will be probed in the near future. I then move on demonstrate the utility of a low scale see saw mechanism via a viable 3+2+1 sterile neutrino model that satisfies all oscillation data as well as solves problems associated with supernova kicks and heavy element nucleosynthesis. From this I extract predictions for tritium and neutrinoless double beta decay searches. This is supplemented throughout by descriptions of practical limitations in addition to suggestions for future work.
Fano interference and a slight fluctuation of the Majorana hallmark
Seridonio, A. C.; Siqueira, E. C.; Dessotti, F. A.; Machado, R. S.; Yoshida, M.
2014-02-14
According to the Liu and Baranger [Phys. Rev. B 84, 201308(R) (2011)], an isolated Majorana state bound to one edge of a long enough Kitaev chain in the topological phase and connected to a quantum dot, results in a robust transmittance of 1/2 at zero-bias. In this work, we show that the removal of such a hallmark can be achieved by using a metallic surface hosting two adatoms in a scenario where there is a lack of symmetry in the Fano effect, which is feasible by coupling the Kitaev chain to one of these adatoms. Thus in order to detect this feature experimentally, one should apply the following two-stage procedure: (i) first, attached to the adatoms, one has to lock AFM tips in opposite gate voltages (symmetric detuning of the levels Δε) and measure by an STM tip, the zero-bias conductance; (ii) thereafter, the measurement of the conductance is repeated with the gates swapped. For |Δε| away from the Fermi energy and in the case of strong coupling tip-host, this approach reveals in the transmittance, a persistent dip placed at zero-bias and immune to the aforementioned permutation, but characterized by an amplitude that fluctuates slightly around 1/2. However, in the case of a tip acting as a probe, the adatom decoupled from the Kitaev chain becomes completely inert and no fluctuation is observed. Therefore, the STM tip must be considered in the same footing as the “host+adatoms” system. As a result, we have found that despite the small difference between these two Majorana dips, the zero-bias transmittance as a function of the symmetric detuning yields two distinct behaviors, in which one of them is unpredictable by the standard Fano's theory. Therefore, to access such a non trivial pattern of Fano interference, the hypothesis of the STM tip acting as a probe should be discarded.
Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model
NASA Astrophysics Data System (ADS)
Hayata, Tomoya; Yamamoto, Arata
2017-07-01
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.
Majorana wave-function oscillations, fermion parity switches, and disorder in Kitaev chains
NASA Astrophysics Data System (ADS)
Hegde, Suraj S.; Vishveshwara, Smitha
2016-09-01
We study the decay and oscillations of Majorana fermion wave functions and ground-state (GS) fermion parity in one-dimensional topological superconducting lattice systems. Using a Majorana transfer matrix method, we find that Majorana wave-function properties are encoded in the associated Lyapunov exponent, which in turn is the sum of two independent components: a "superconducting component," which characterizes the gap induced decay, and the "normal component," which determines the oscillations and response to chemical potential configurations. The topological phase transition separating phases with and without Majorana end modes is seen to be a cancellation of these two components. We show that Majorana wave-function oscillations are completely determined by an underlying nonsuperconducting tight-binding model and are solely responsible for GS fermion parity switches in finite-sized systems. These observations enable us to analytically chart out wave-function oscillations, the resultant GS parity configuration as a function of parameter space in uniform wires, and special parity switch points where degenerate zero energy Majorana modes are restored in spite of finite size effects. For disordered wires, we find that band oscillations are completely washed out leading to a second localization length for the Majorana mode and the remnant oscillations are randomized as per Anderson localization physics in normal systems. Our transfer matrix method further allows us to (i) reproduce known results on the scaling of midgap Majorana states and demonstrate the origin of its log-normal distribution, (ii) identify contrasting behavior of disorder-dependent GS parity switches for the cases of even versus odd number of lattice sites, and (iii) chart out the GS parity configuration and associated parity switch points as a function of disorder strength.
Majorana bound states from exceptional points in non-topological superconductors
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-01-01
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity. PMID:26865011
Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires
NASA Astrophysics Data System (ADS)
Halperin, Bertrand I.; Oreg, Yuval; Stern, Ady; Refael, Gil; Alicea, Jason; von Oppen, Felix
2012-04-01
It has been proposed that localized zero-energy Majorana states can be realized in a two-dimensional network of quasi-one-dimensional semiconductor wires that are proximity coupled to a bulk superconductor. The wires should have strong spin-orbit coupling with appropriate symmetry, and their electrons should be partially polarized by a strong Zeeman field. Then, if the Fermi level is in an appropriate range, the wire can be in a topological superconducting phase, with Majorana states that occur at wire ends and at Y junctions, where three topological superconductor segments may be joined. Here we generalize these ideas to consider a three-dimensional network. The positions of Majorana states can be manipulated, and their non-Abelian properties made visible, by using external gates to selectively deplete portions of the network or by physically connecting and redividing wire segments. Majorana states can also be manipulated by reorientations of the Zeeman field on a wire segment, by physically rotating the wire about almost any axis, or by evolution of the phase of the order parameter in the proximity-coupled superconductor. We show how to keep track of sign changes in the zero-energy Hilbert space during adiabatic manipulations by monitoring the evolution of each Majorana state separately, rather than keeping track of the braiding of all possible pairs. This has conceptual advantages in the case of a three-dimensional network, and may be computationally useful even in two dimensions, if large numbers of Majorana sites are involved.
Detector String Design and Prototype Tests for the MAJORANA Science Program
NASA Astrophysics Data System (ADS)
Gehman, Victor; Majorana Collaboration
2011-04-01
The MAJORANA experiment is a next-generation 0 νββ search that will probe the effective Majorana neutrino mass parameter,
Majorana bound states from exceptional points in non-topological superconductors
NASA Astrophysics Data System (ADS)
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-02-01
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity.
Majorana bound states from exceptional points in non-topological superconductors.
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-02-11
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of 'exceptional points' (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity.
NASA Astrophysics Data System (ADS)
Pekker, David; Hou, Chang-Yu; Manucharyan, Vladimir E.; Demler, Eugene
2013-09-01
We propose to use an ancilla fluxonium qubit to interact with a Majorana qubit hosted by a topological one-dimensional wire. The coupling is obtained using the Majorana qubit-controlled 4π Josephson effect to flux bias the fluxonium qubit. We demonstrate how this coupling can be used to sensitively identify topological superconductivity, to measure the state of the Majorana qubit, to construct 2-qubit operations, and to implement quantum memories with topological protection.
Khachatryan, Vardan
2016-04-27
In this study, a search is performed for heavy Majorana neutrinos (N) decaying into a W boson and a lepton using the CMS detector at the Large Hadron Collider. A signature of two jets and either two same sign electrons or a same sign electron-muon pair is searched for using 19.7 inverse femtobarns of data collected during 2012 in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data are found to be consistent with the expected standard model (SM) background and, in the context of a Type-1 seesaw mechanism, upper limits are set on the cross section times branching fraction for production of heavy Majorana neutrinos in the mass range between 40 and 500 GeV. The results are additionally interpreted as limits on the mixing between the heavy Majorana neutrinos and the SM neutrinos. In the mass range considered, the upper limits range between 0.00015 - 0.72 for |V_{eN}|^{2} and 6.6x10^{-5} - 0.47 for |V_{eN} V*_{μN}|^{2} / ( |V_{eN}|^{2} + |V_{μN}|^{2}), where V_{lN} is the mixing element describing the mixing of the heavy neutrino with the SM neutrino of flavour l. These limits are the most restrictive direct limits for heavy Majorana neutrino masses above 200 GeV.
Charge-4 e superconductors: A Majorana quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Jiang, Yi-Fan; Li, Zi-Xiang; Kivelson, Steven A.; Yao, Hong
2017-06-01
Many features of charge-4 e superconductors remain unknown because even the "mean-field Hamiltonian" describing them is an interacting model. Here we introduce an interacting model to describe a charge-4 e superconductor (SC) deep in the superconducting phase and explore its properties using quantum Monte Carlo (QMC) simulations. The QMC is sign-problem-free but only when a Majorana representation is employed. As a function of the chemical potential we observe two sharply-distinct behaviors: a "strong" quarteting phase in which charge-4 e quartets are tightly bound (like molecules) so that charge-2 e pairing does not occur even in the temperature T →0 limit, and a "weak" quarteting phase in which a further transition to a charge-2 e superconducting phase occurs at a lower critical temperature. Analogous issues arise in a putative Z4 spin liquid with a pseudo-Fermi surface and other interacting models with composite order parameters. Under certain circumstances, we also identified a stable T =0 charge-4 e SC phase with gapless nodal quasiparticles. We further discuss possible relevance of our results to various experimental observations in 1/8 -doped LBCO.
Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis
Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.
2012-06-01
The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.
Novel Majorana mode and magnetoresistance in ferromagnetic superconducting topological insulator
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Khezerlou, M.; Asgarifar, S.
2017-03-01
Among the potential applications of topological insulators, we investigate theoretically the effect of coexistence of proximity-induced ferromagnetism and superconductivity on the surface states of 3-dimensional topological insulator, where the superconducting electron-hole excitations can be significantly affected by the magnetization of ferromagnetic order. We find that, Majorana mode energy, as a verified feature of TI F/S structure, along the interface sensitively depends on the magnitude of magnetization mzfs in FS region, while its slope in perpendicular incidence presents steep and no change. Since the superconducting gap is renormalized by a factor η (mzfs) , hence Andreev reflection is more or less suppressed, and, in particular, resulting subgap tunneling conductance is more sensitive to the magnitude of magnetizations in FS and F regions. Furthermore, an interesting scenario happens at the antiparallel configuration of magnetizations mzf and mzfs resulting in magnetoresistance in N/F/FS junction, which can be controlled and decreased by tuning the magnetization magnitude in FS region.
High-resolution studies of the Majorana atomic chain platform
NASA Astrophysics Data System (ADS)
Feldman, Benjamin E.; Randeria, Mallika T.; Li, Jian; Jeon, Sangjun; Xie, Yonglong; Wang, Zhijun; Drozdov, Ilya K.; Andrei Bernevig, B.; Yazdani, Ali
2016-11-01
Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive `double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements.
Majorana Fermions at the End of Topological Insulator Nanoribbon
NASA Astrophysics Data System (ADS)
Liu, Xiongjun; Chen, Yuqin
Majorana zero modes can exist at the end of a 1D p-wave SC. 1D semiconductor nanowire approximated a s-wave superconductor is a famous one of those proposals. In which, strong Zeeman field is required to have a large topological region, but unfortunately suppresses superconducting pairing and makes the system more sensitive to disorder. Here we propose a Nanoribbon system made of 2D topological insulator where finite size effect due to the narrow width between two edges plays an important role. A ferromagnetic insulator and an s-wave superconductor are attached at each edge, respectively. We introduce a low energy effective model to investigate the superconducting phase diagram. And, the disorder effect is studied analytically by using the self-consistent Born approximation(SCBA). Furthermore, realistic numerically calculation is carried out with a tight-binding model. We demonstrate that, strong Zeeman field generates a large topological region, and at the same time enhances superconducting pairing and makes the system more immune to disorder.
Generic Theory for Majorana Zero Modes in 2D Superconductors
NASA Astrophysics Data System (ADS)
Chan, Cheung; Zhang, Lin; Poon, Ting Fung Jeffrey; He, Ying-Ping; Wang, Yan-Qi; Liu, Xiong-Jun
2017-07-01
It is well known that non-Abelian Majorana zero modes (MZM) are located at vortex cores in a px+𝒾 py topological superconductor, which can be realized in a 2D spin-orbit coupled system with a single Fermi surface and by proximity coupling to an s -wave superconductor. Here we show that the existence of non-Abelian MZMs is unrelated to the bulk topology of a 2D superconductor, and propose that such exotic modes can result in a much broader range of superconductors, being topological or trivial. For a generic 2D system with multiple Fermi surfaces that is gapped out by superconducting pairings, we show that at least a single MZM survives if there are only an odd number of Fermi surfaces of which the corresponding superconducting orders have vortices; such a MZM is protected by an emergent Chern-Simons invariant, irrespective of the bulk topology of the superconductor. This result enriches new experimental schemes for realizing non-Abelian MZMs. In particular, we propose a minimal scheme to realize the MZMs in a 2D superconducting Dirac semimetal with trivial bulk topology, which can be well achieved based on recent cold-atom experiments.
High-resolution studies of the Majorana atomic chain platform
NASA Astrophysics Data System (ADS)
Feldman, Benjamin E.; Randeria, Mallika T.; Li, Jian; Jeon, Sangjun; Xie, Yonglong; Wang, Zhijun; Drozdov, Ilya K.; Andrei Bernevig, B.; Yazdani, Ali
2017-03-01
Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive `double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements.
The low-energy program of the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Massarczyk, Ralph; MAJORANA Collaboration
2017-01-01
The MAJORANA Collaboration constructed an ultra-low background, modular high-purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. Located at the 4850-ft level of the Sanford Underground Research Facility, the DEMONSTRATOR detector assembly has the goal to show that it is possible to achieve background rates necessary for future ton-scale experiments. The ultra-clean assembly in combination with low-noise p-type point contact detectors allows measurements with thresholds in the keV range. The talk will give an overview of the low-energy physics and recent achievements made since the completed DEMONSTRATOR array started data taking in mid 2016. Recent results from campaign will be presented, including new limits on bosonic dark matter interaction rates. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.
Readout scheme for Majorana parity states using a quantum dot
NASA Astrophysics Data System (ADS)
Hoving, Darryl; Gharavi, Kaveh; Baugh, Jonathan
We propose and numerically study a scheme for reading out the parity state of a pair of Majorana bound states using a tunnel coupled quantum dot. The dot is coupled to one end of the topological wire but isolated from any reservoir, and is capacitively coupled to a charge sensor for measurement. The combined parity of the MBS-dot system is conserved and charge transfer between MBS and dot only occurs through resonant tunnelling. Resonance is controlled by the dot potential through a local gate and by the MBS splitting due to the overlap of the MBS pair wavefunctions. The latter splitting can be controlled by changing the position of the spatially separated, uncoupled MBS via a set of keyboard gates. Our simulations show that the oscillatory nature of the MBS splitting versus separation does not prevent high-fidelity readout. Indeed, the scheme can also be applied to measure the splitting versus separation, which would yield a clear signature of the topological state. With experimentally realistic parameters we find parity readout fidelities >99% should be feasible. This work was supported by the Natural Sciences and Engineering Research Council of Canada.
Transport spectroscopy of NS nanowire junctions with Majorana fermions
NASA Astrophysics Data System (ADS)
Prada, Elsa; San-Jose, Pablo; Aguado, Ramón
2012-11-01
We investigate transport through normal-superconductor nanowire junctions in the presence of spin-orbit coupling and magnetic field. As the Zeeman field crosses the critical bulk value Bc of the topological transition, a Majorana bound state (MBS) is formed, giving rise to a sharp zero-bias anomaly (ZBA) in the tunneling differential conductance. We identify novel features beyond this picture in wires with inhomogeneous depletion, such as the appearance of two MBSs inside a long depleted region for B
Kondo physics from quasiparticle poisoning in Majorana devices
Plugge, S.; Tsvelik, A. M.; Zazunov, A.; ...
2016-03-24
Here, we present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M = 2 attached leads, such “dangerous” quasiparticle poisoning processes cause a spin S = 1/2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effectmore » of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M > 3, the topological Kondo fixed point re-emerges, though now it involves only M–1 leads. As a consequence, for M = 3, the low-energy fixed point becomes trivial corresponding to decoupled leads.« less
Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR
Guinn, I.; Abgrall, N.; Arnquist, Isaac J.; Avignone, Frank T.; Baldenegro-Barrera, C. X.; Barabash, Alexander S.; Bertrand, F.; Bradley, A. W.; Brudanin, V.; Busch, Matthew; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, C. D.; Cuesta, C.; Detwiler, Jason A.; Efremenko, Yuri; Ejiri, H.; Elliott, Steven R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Jasinski, B. R.; Keeter, K.; Kidd, M. F.; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, John L.; O'Shaughnessy, C.; Poon, Alan; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, Anne-Marie; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, Chang-Hong; Yumatov, Vladimir; Zhitnikov, I.
2015-03-18
The Majorana Demonstrator (MJD)[1] is an array of p-type point contact (PPC) high purity Germanium (HPGe) detectors intended to search for neutrinoless double beta decay (0vBB decay) in 76Ge. MJD will consist of 40 kg of detectors, 30 kg of which will be isotopically enriched to 87% 76Ge. The array will consist of 14 strings of four or ve detectors placed in two separate cryostats. One of the main goals of the experiment is to demonstrate the feasibility of building a tonne-scale array of detectors to search for 0vBB decay with a much higher sensitivity. This involves acheiving backgrounds in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the BB decay of less than 1 count/ROI-t-y. Because many backgrounds will not directly scale with detector mass, the specific background goal of MJD is less than 3 counts/ROI-t-y.
Data Acquisition Visualization Development for the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Wendlandt, Laura; Howe, Mark; Wilkerson, John; Majorana Collaboration
2013-10-01
The MAJORANA Project is building an array of germanium detectors with very low backgrounds in order to search for neutrinoless double-beta decay, a rare process that, if detected, would give us information about neutrinos. This decay would prove that neutrinos are their own anti-particles, would show that lepton number is not conserved, and would help determine absolute neutrino mass. An object-oriented, data acquisition software program known as ORCA (Object-oriented Real-time Control and Acquisition) will be used to collect data from the array. This paper describes the implementation of computer visualizations for detector calibrations, as well as tools for more general computer modeling in ORCA. Specifically, it details software that converts a CAD file to OpenGL, which can be used in ORCA. This paper also contains information about using a barium-133 source to take measurements from various locations around the detector, to better understand how data varies with detector crystal orientation. Work made possible by National Science Foundation Award OCI-1155614.
Kondo physics from quasiparticle poisoning in Majorana devices
NASA Astrophysics Data System (ADS)
Plugge, S.; Zazunov, A.; Eriksson, E.; Tsvelik, A. M.; Egger, R.
2016-03-01
We present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M =2 attached leads, such "dangerous" quasiparticle poisoning processes cause a spin S =1 /2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effect of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M >3 , the topological Kondo fixed point re-emerges, though now it involves only M -1 leads. As a consequence, for M =3 , the low-energy fixed point becomes trivial corresponding to decoupled leads.
Kondo physics from quasiparticle poisoning in Majorana devices
Plugge, S.; Tsvelik, A. M.; Zazunov, A.; Eriksson, E.; Egger, R.
2016-03-24
Here, we present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M = 2 attached leads, such “dangerous” quasiparticle poisoning processes cause a spin S = 1/2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effect of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M > 3, the topological Kondo fixed point re-emerges, though now it involves only M–1 leads. As a consequence, for M = 3, the low-energy fixed point becomes trivial corresponding to decoupled leads.
Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry.
Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi
2016-04-22
We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (AB) flux ϕ. We show that by varying the AB flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2e^{2}/h. We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the AB effect between the MBS and ABS.
Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry
NASA Astrophysics Data System (ADS)
Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi
2016-04-01
We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.
The MAJORANA DEMONSTRATOR: A Search for Neutrino less Double-beta Decay of Ge-76
Xu, W.; Abgrall, N.; Avignone, III, F. T.; Bertrand, F. E.; Efremenko, Yuri; Galindo-Uribarri, Alfredo {nmn}; Green, M. P.; Radford, D. C.; Romero-Romero, E.; White, B. R.; Wilkerson, J. F.
2015-01-01
Neutrino less double-beta (Ov beta beta) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the Ov beta beta decay of Ge-76 and to demonstrate a background rate at or below 3 counts/ (ROI.t.y) in the 4 keV region of interest (ROT) around the 2039 keV Q-value for Ge-76 Ov beta beta decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.
The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of ⁷⁶Ge
Xu, W.; Abgrall, N.; Avignone, F. T.; ...
2015-05-01
Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors,more » to search for the 0νββ decay of ⁷⁶Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for ⁷⁶Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.« less
Majorana modes and p-wave superfluids for fermionic atoms in optical lattices.
Bühler, A; Lang, N; Kraus, C V; Möller, G; Huber, S D; Büchler, H P
2014-07-25
The quest for realization of non-Abelian phases of matter, driven by their possible use in fault-tolerant topological quantum computing, has been spearheaded by recent developments in p-wave superconductors. The chiral p(x)+ip(y)-wave superconductor in two-dimensions exhibiting Majorana modes provides the simplest phase supporting non-Abelian quasiparticles and can be seen as the blueprint of fractional topological order. Alternatively, Kitaev's Majorana wire has emerged as an ideal toy model to understand Majorana modes. Here we present a way to make the transition from Kitaev's Majorana wires to two-dimensional p-wave superconductors in a system with cold atomic gases in an optical lattice. The main idea is based on an approach to generate p-wave interactions by coupling orbital degrees of freedom with strong s-wave interactions. We demonstrate how this design can induce Majorana modes at edge dislocations in the optical lattice, and we provide an experimentally feasible protocol for the observation of the non-Abelian statistics.
Extracting Majorana properties from strong bounds on neutrinoless double beta decay
NASA Astrophysics Data System (ADS)
Ge, Shao-Feng; Lindner, Manfred
2017-02-01
Assuming that neutrinos are Majorana particles, we explore what information can be inferred from future strong limits (i.e. nonobservation) for neutrinoless double beta decay. Specifically we consider the case where the mass hierarchy is normal and the different contributions to the effective mass ⟨m ⟩e e partly cancel. We discuss how this fixes the two Majorana C P phases simultaneously from the Majorana triangle and how it limits the lightest neutrino mass m1 within a narrow window. The two Majorana C P phases are in this case even better determined than in the usual case for larger ⟨m ⟩ee. We show that the uncertainty in these predictions can be significantly reduced by the complementary measurement of reactor neutrino experiments, especially the medium baseline version JUNO/RENO-50. We also estimate the necessary precision on ⟨m ⟩ee to infer nontrivial Majorana C P phases and the upper limit ⟨m ⟩ee≲1 meV sets a target for the design of future neutrinoless double beta decay experiments.
The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of ⁷⁶Ge
Xu, W.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W.P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Yu, C. -H.; Yumatov, V.
2015-05-01
Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the 0νββ decay of ⁷⁶Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for ⁷⁶Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.
Multiple Majorana zero modes in atomic Fermi double wires with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Liang-Liang; Gong, Ming; Liu, W.-M.
2017-08-01
Majorana zero modes, quasiparticles with non-Abelian statistics, have gained increasing interest for their fundamental role as building blocks in topological quantum computation. Previous studies have mainly focused on two well-separated Majorana zero modes, which could form two degenerate states serving as one nonlocal qubit for fault-tolerant quantum memory. However, creating and manipulating multiple Majorana zero modes, which could encode more qubits, remain an ongoing research topic. Here we report that multiple Majorana zero modes can exist in atomic Fermi double wires with spin-orbit coupling and perpendicular Zeeman field. This system belongs to the topological BDI class, thus all the topological superfluids are classified by integer numbers. Especially, diverse topological superfluids can be formed in a trap, where the zero energy modes can be found at the interfaces between different topological superfluids. The structure of these zero energy modes in the trap can be engineered by the trapping potential as well as other system parameters. This system would be a significant step towards utilization of Majorana zero modes in quantum computation.
NASA Astrophysics Data System (ADS)
Hell, Michael; Flensberg, Karsten; Leijnse, Martin
2017-07-01
Two-dimensional electron gases with strong spin-orbit coupling covered by a superconducting layer offer a flexible and potentially scalable platform for Majorana networks. We predict Majorana bound states (MBSs) to appear for experimentally achievable parameters and realistic gate potentials in two designs: either underneath a narrow stripe of a superconducting layer (S stripes) or where a narrow stripe has been removed from a uniform layer (N stripes). The coupling of the MBSs can be tuned for both types in a wide range (<1 neV to >10 μ eV ) using gates placed adjacent to the stripes. For both types, we numerically compute the local density of states for two parallel Majorana-stripe ends as well as Majorana trijunctions formed in a tuning-fork geometry. The MBS coupling between parallel Majorana stripes can be suppressed below 1 neV for potential barriers in the meV range for separations of about 200 nm. We further show that the MBS couplings in a trijunction can be gate controlled in a range similar to the intrastripe coupling while maintaining a sizable gap to the excited states (tens of μ eV ). Altogether, this suggests that braiding can carried out on a time scale of 10-100 ns.
New topological types of Majorana modes at ends of one-dimensional topological superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yuxin; Wang, Zidan
2014-03-01
As being known, topological insulators/superconductors are completely classified into various topological types with respect to their anti-unitary symmetries and dimensions, and for a certian dimension different topological types correspond to different boundary gapless modes, which is quantitatively described as a general index theorem. Based on this and Kitaev's model in class D, we construct models for all the other types of D1 topological superconductors and analyze their topologically protected Majorana zero-modes at ends. We highlight that: 1)The two kinds of Z2 topological numbers imply distinct forms of Majorana zero-modes. 2) The two-fold degenerate ground state of the DIII model with Majorana fermions can be effectively regarded as a spin when the model is coupled to a weak external magnetic field. 3)The BDI model with Z-type unit topological number can be assigned topological charges +/- 1 to its Majorana zero-modes at two ends in agreement with the general index theorem. 4)The CII model with Z-type topological number 2 may be regarded as two copies of the BDI model with certain spin-pairing patterns, and consistently the topological charge of its Majorana zero-modes is defined in the same sense of that of the BDI model.
Science Learning Centres Roundup
ERIC Educational Resources Information Center
Education in Science, 2010
2010-01-01
The national network of Science Learning Centres aims to raise the quality of science teaching from Key Stage 1 through post-16 (ages 5-19). Short courses are provided locally through the regional Science Learning Centres and longer, more intensive programmes are available at the National Science Learning Centre in York. There are a growing number…
NASA Astrophysics Data System (ADS)
Carmele, Alexander; Heyl, Markus; Kraus, Christina; Dalmonte, Marcello
2015-11-01
We investigate the resilience of symmetry-protected topological edge states at the boundaries of Kitaev chains in the presence of a bath which explicitly introduces symmetry-breaking terms. Specifically, we focus on single-particle losses and gains, violating the protecting parity symmetry, which could generically occur in realistic scenarios. For homogeneous systems we show that the Majorana mode decays exponentially fast. By the inclusion of strong disorder, where the closed system enters a many-body localized phase, we find that the Majorana mode can be stabilized substantially. The decay of the Majorana converts into a stretched exponential form for particle losses or gains occurring in the bulk. In particular, for pure loss dynamics we find a universal exponent α ≃2 /3 . We show that this holds both in the Anderson and many-body localized regimes. Our results thus provide a first step to stabilize edge states even in the presence of symmetry-breaking environments.
Majorana modes at the ends of superconductor vortices in doped topological insulators.
Hosur, Pavan; Ghaemi, Pouyan; Mong, Roger S K; Vishwanath, Ashvin
2011-08-26
Recent experiments have observed bulk superconductivity in doped topological insulators. Here we ask whether vortex Majorana zero modes, previously predicted to occur when s-wave superconductivity is induced on the surface of topological insulators, survive in these doped systems with metallic normal states. Assuming inversion symmetry, we find that they do but only below a critical doping. The critical doping is tied to a topological phase transition of the vortex line, at which it supports gapless excitations along its length. The critical point depends only on the vortex orientation and a suitably defined SU(2) Berry phase of the normal state Fermi surface. By calculating this phase for available band structures we determine that superconducting p-doped Bi(2)Te(3), among others, supports vortex end Majorana modes. Surprisingly, superconductors derived from topologically trivial band structures can support Majorana modes too. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Park, Sunghun; Recher, Patrik
2015-12-01
A phase from an adiabatic exchange of Majorana bound states (MBS) reveals their exotic anyonic nature. For detecting this exchange phase, we propose an experimental setup consisting of a Corbino geometry Josephson junction on the surface of a topological insulator, in which two MBS at zero energy can be created and rotated. We find that if a metallic tip is weakly coupled to a point on the junction, the time-averaged differential conductance of the tip-Majorana coupling shows peaks at the tip voltages e V =±(α -2 π l )ℏ/TJ, where α =π /2 is the exchange phase of the two circulating MBS, TJ is the half rotation time of MBS, and l an integer. This result constitutes a clear experimental signature of Majorana fermion exchange.
The search for Majorana zero-energy modes in solid-state systems
NASA Astrophysics Data System (ADS)
Lutchyn, Roman
2014-03-01
The search for topological phases of matter has become an active and exciting pursuit in condensed matter physics. Among the notable recent developments in this direction are the discoveries of topological insulators and superconductors. In this talk, I will focus on topological superconductors and discuss how one can engineer non-trivial superconductivity in the laboratory at the interface of a conventional s-wave superconductor and a semiconductor with a spin-orbit interaction. I will show that the topological superconducting state emerging at the interface supports Majorana zero-energy modes. The defects carrying these modes are Ising anyons and obey unconventional (non-Abelian) exchange statistics. The unique properties of Majoranas can be exploited for implementing fault-tolerant quantum computation schemes that are inherently decoherence-free. I will conclude this talk by reviewing recent experimental efforts in realizing and detecting Majorana zero-energy modes in one-dimensional nanowires.
Visualizing Majorana fermions in a chain of magnetic atoms on a superconductor
NASA Astrophysics Data System (ADS)
Yazdani, Ali
2015-12-01
A chain of magnetic atoms on the surface of a superconductor provides a versatile platform for realizing a one-dimensional topological superconductivity phase with edge-bounded Majorana fermions zero modes. This platform lends itself to spatial resolved measurements with scanning tunneling microscope (STM) that enables direct visualization of the presence of a localized Majorana zero mode. Experiments on self-assembled chains of Fe atoms on the surface of Pb show that such a system can be experimentally fabricated and studied using various high-resolution STM measurement techniques. Spatial and energy resolved STM experiments provide strong evidence for Majorana bound states that emerge due to the combination of Fe’s ferromagnetism and spin-orbit coupling of the superconducting Pb substrate. These studies provide a roadmap for optimizing topological superconductivity in this one-dimensional platform and its extension to realize chiral two-dimensional superconductors.
Manipulating Majorana zero modes on atomic rings with an external magnetic field
NASA Astrophysics Data System (ADS)
Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali
2016-01-01
Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles--the Majorana bound states--can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field.
Manipulating Majorana zero modes on atomic rings with an external magnetic field
Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali
2016-01-01
Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles—the Majorana bound states—can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field. PMID:26791080
Geometry of the effective Majorana neutrino mass in the 0νββ decay
NASA Astrophysics Data System (ADS)
Xing, Zhi-zhong; Zhou, Ye-Ling
2015-01-01
The neutrinoless double-beta (0νββ) decay is a unique process used to identify the Majorana nature of massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass
Anomalous crossed Andreev reflection in a mesoscopic superconducting ring hosting Majorana fermions
NASA Astrophysics Data System (ADS)
Lee, Minchul; Khim, Heunghwan; Choi, Mahn-Soo
2014-01-01
We investigate the Majorana physics and its effect on the electron transport in the nontopological superconductor (NS)-topological superconductor (TS) double junctions of a loop geometry. We find that, depending on the ratio between the lengths of two topologically different regions and the localization lengths of the Majorana fermions formed between them, two completely different transport mechanisms are working: perfect crossed Andreev reflection (CAR) for the short NS segment and perfect normal Andreev reflection for the short TS segment. The difference is explained in terms of the topologically distinct properties of subgap states in two regions, which have not been revealed so far. The exotic dependence of the CAR process on the magnetic flux threading the loop is uncovered and can be used to detect the Majorana fermions.
Robustness of Majorana bound states in the short-junction limit
NASA Astrophysics Data System (ADS)
Sticlet, Doru; Nijholt, Bas; Akhmerov, Anton
2017-03-01
We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: g factor, effective electron mass, and the semiconductor-superconductor interface transparency.
Masses, mixing angles and phases of general Majorana neutrino mass matrix
NASA Astrophysics Data System (ADS)
Adhikary, Biswajit; Chakraborty, Mainak; Ghosal, Ambar
2013-10-01
General Majorana neutrino mass matrix is complex symmetric and for three generations of neutrinos it contains 12 real parameters. We diagonalize this general neutrino mass matrix and express the three neutrino masses, three mixing angles, one Dirac CP phase and two Majorana phases (removing three unphysical phases) in terms of the neutrino mass matrix elements. We apply the results in the context of a neutrino mass matrix derived from a broken cyclic symmetry invoking type-I seesaw mechanism. Phenomenological study of the above mass matrix allows enough parameter space to satisfy the neutrino oscillation data with only 10% breaking of this symmetry. In this model only normal mass hierarchy is allowed. In addition, the Dirac CP phase and the Majorana phases are numerically estimated. Σ m i and | m νee | are also calculated.
Signatures of majorana zero modes in spin-resolved current correlations.
Haim, Arbel; Berg, Erez; von Oppen, Felix; Oreg, Yuval
2015-04-24
We consider a normal lead coupled to a Majorana bound state. We show that the spin-resolved current correlations exhibit unique features which distinguish Majorana bound states from other low-energy resonances. In particular, the spin-up and spin-down currents from a Majorana bound state are anticorrelated at low bias voltages, and become uncorrelated at higher voltages. This behavior is independent of the exact form of coupling to the lead, and of the direction of the spin polarization. In contrast, an ordinary low-energy Andreev bound state gives rise to a positive correlation between the spin-up and spin-down currents, and this spin-resolved current-current correlation approaches a nonzero constant at high bias voltages. We discuss experimental setups in which this effect can be measured.
Extended Majorana zero modes in a topological superconducting-normal T-junction
NASA Astrophysics Data System (ADS)
Spånslätt, Christian; Ardonne, Eddy
2017-03-01
We investigate the sub gap properties of a three terminal Josephson T-junction composed of topologically superconducting wires connected by a normal metal region. This system naturally hosts zero energy Andreev bound states which are of self-conjugate Majorana nature and we show that they are, in contrast to ordinary Majorana zero modes, spatially extended in the normal metal region. If the T-junction respects time-reversal symmetry, we show that a zero mode is distributed only in two out of three arms in the junction and tuning the superconducting phases allows for transfer of the mode between the junction arms. We further provide tunneling conductance calculations showing that these features can be detected in experiments. Our findings suggest an experimental platform for studying the nature of spatially extended Majorana zero modes.
Performance of the Majorana Demonstrator Muon Veto System
NASA Astrophysics Data System (ADS)
Wiseman, Clinton; Majorana Collaboration
2015-10-01
The
Wireless majorana fermions: from magnetic tunability to braiding (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fatin, Geoffrey L.; Matos-Abiague, Alex; Scharf, Benedikt; Zutic, Igor
2016-10-01
In condensed-matter systems Majorana bound states (MBSs) are emergent quasiparticles with non-Abelian statistics and particle-antiparticle symmetry. While realizing the non-Abelian braiding statistics under exchange would provide both an ultimate proof for MBS existence and the key element for fault-tolerant topological quantum computing, even theoretical schemes imply a significant complexity to implement such braiding. Frequently examined 1D superconductor/semiconductor wires provide a prototypical example of how to produce MBSs, however braiding statistics are ill-defined in 1D and complex wire networks must be used. By placing an array of magnetic tunnel junctions (MTJs) above a 2D electron gas formed in a semiconductor quantum well grown on the surface of an s-wave superconductor, we have predicted the existence of highly tunable zero-energy MBSs and have proposed a novel scheme by which MBSs could be exchanged [1]. This scheme may then be used to demonstrate the states' non-Abelian statistics through braiding. The underlying magnetic textures produced by MTJ array provides a pseudo-helical texture which allows for highly-controllable topological phase transitions. By defining a local condition for topological nontriviality which takes into account the local rotation of magnetic texture, effective wire geometries support MBS formation and permit their controlled movement in 2D by altering the shape and orientation of such wires. This scheme then overcomes the requirement for a network of physical wires in order to exchange MBSs, allowing easier manipulation of such states. [1] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Zutic, arXiv:1510.08182, preprint.
Readout of Majorana parity states using a quantum dot
NASA Astrophysics Data System (ADS)
Gharavi, Kaveh; Hoving, Darryl; Baugh, Jonathan
2016-10-01
We theoretically examine a scheme for projectively reading out the parity state of a pair of Majorana bound states (MBSs) using a tunnel-coupled quantum dot. The dot is coupled to one end of the topological wire but isolated from any reservoir and is capacitively coupled to a charge sensor for measurement. The combined parity of the MBS-dot system is conserved, and charge transfer between the MBS and dot only occurs through resonant tunneling. Resonance is controlled by the dot potential through a local gate and by the MBS energy splitting due to the overlap of the MBS pair wave functions. The latter splitting can be tuned from zero (topologically protected regime) to a finite value by gate-driven shortening of the topological wire. Simulations show that the oscillatory nature of the MBS splitting is not a fundamental obstacle to readout but requires precise gate control of the MBS spatial position and dot potential. With experimentally realistic parameters, we find that high-fidelity parity readout is achievable given nanometer-scale spatial control of the MBS and that there is a trade-off between required precisions of temporal and spatial control. Use of the scheme to measure the MBS splitting versus separation would present a clear signature of topological order and could be used to test the robustness of this order to spatial motion, a key requirement in certain schemes for scalable topological qubits. We show how the scheme can be extended to distinguish valid parity measurements from invalid ones due to gate calibration errors.
Probing Non-Abelian Statistics of Majorana Fermions in Ultracold Atomic Superfluid
Zhu Shiliang; Shao, L.-B.; Wang, Z. D.; Duan, L.-M.
2011-03-11
We propose an experiment to directly probe the non-Abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show that different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana states in an s-wave superfluid requires strong spin-orbital coupling and a controllable Zeeman field in the perpendicular direction. We present a simple laser configuration to generate the artificial spin-orbital coupling and the required Zeeman field in the dark-state subspace.
Electrical Signal Path Study and Component Assay for the MAJORANA N-Type Segmented Contact Detector
Amman, Mark; Bergevin, Marc; Chan, Yuen-Dat; Detwiler, Jason A.; Fujikawa, Brian .; Lesko, Kevin T.; Luke, Paul N.; Prior, Gersende; Poon, Alan W.; Smith, Alan R.; Vetter, Kai; Yaver, Harold; Zimmermann, Sergio
2009-02-24
The purpose of the present electrical signal path study is to explore the various issues related to the deployment of highly-segmented low-background Ge detectors for the MAJORANA double-beta decay experiment. A significant challenge is to simultaneously satisfy competing requirements for the mechanical design, electrical readout performance, and radiopurity specifications from the MAJORANA project. Common to all rare search experiments, there is a very stringent limit on the acceptable radioactivity level of all the electronics components involved. Some of the findings are summarized in this report.
Unpaired Majorana modes in Josephson-Junction Arrays with gapless bulk excitations
Pino, M.; Tsvelik, A.; Ioffe, L. B.
2015-11-06
In this study, the search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L~10.
The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay
Phillips, D.; Aguayo Navarrete, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.
2012-12-01
The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana Experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to validate whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.
NASA Astrophysics Data System (ADS)
Kraus, Christina V.; Zoller, P.; Baranov, Mikhail A.
2013-11-01
We propose an efficient protocol for braiding Majorana fermions realized as edge states in atomic wire networks, and demonstrate its robustness against experimentally relevant errors. The braiding of two Majorana fermions located on one side of two adjacent wires requires only a few local operations on this side which can be implemented using local site addressing available in current experiments with cold atoms and molecules. Based on this protocol we provide an experimentally feasible implementation of the Deutsch-Jozsa algorithm for two qubits in a topologically protected way.
Odd-frequency superconductivity in a nanowire coupled to Majorana zero modes
NASA Astrophysics Data System (ADS)
Lee, Shu-Ping; Lutchyn, Roman M.; Maciejko, Joseph
2017-05-01
Odd-frequency superconductivity, originally proposed by Berezinskii in 1974, is an exotic phase of matter in which Cooper pairing between electrons is entirely dynamical in nature. The pair potential is an odd function of frequency, leading to a vanishing static superconducting order parameter and exotic types of pairing seemingly inconsistent with Fermi statistics. Motivated by recent experimental progress in the realization of Majorana zero modes in semiconducting nanowires, we show that odd-frequency superconductivity generically appears in a spin-polarized nanowire coupled to Majorana zero modes. We explicitly calculate the superfluid response and show that it is characterized by a paramagnetic Meissner effect.
Majorana zero modes in a two-dimensional p -wave superconductor
NASA Astrophysics Data System (ADS)
Phong, Võ Tiáº¿n.; Walet, Niels R.; Guinea, Francisco
2017-08-01
We analyze the formation of Majorana zero modes at the edge of a two-dimensional topological superconductor. In particular, we study a time-reversal-invariant triplet phase that is likely to exist in doped Bi2Se3 . Upon the introduction of an in-plane magnetic field to the superconductor, a gap is opened in the surface modes, which induces localized Majorana modes. The position of these modes can be simply manipulated by changing the orientation of the applied field, yielding novel methods for braiding these states with possible applications to topological quantum computation.
Surface Majorana fermions and bulk collective modes in superfluid 3He-B
NASA Astrophysics Data System (ADS)
Park, YeJe; Chung, Suk Bum; Maciejko, Joseph
2015-02-01
The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.
Status of the MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay
NASA Astrophysics Data System (ADS)
Efremenko, Yu.; Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Baldenegro-Barrera, C. X.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Laferriere, B. D.; Leon, J.; Macmullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
2015-04-01
If neutrinos are Majorana particles, i.e. fermions that are their own antiparticles, then neutrinoless double-beta (0νββ) decay is possible. In such a process, two neutrons can simultaneously decay into two protons and two electrons without emitting neutrinos. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The MAJORANA DEMONSTRATOR experiment is under construction at the Sanford Underground Research Facility in Lead, SD and will search for the neutrinoless double-beta (0νββ) decay of the 76Ge isotope. The goal of the experiment is to demonstrate that it is possible to achieve a sufficiently low background rate in the 4 keV region of interest (ROI) around the 2039 keV Q-value to justify building a tonne-scale experiment. In this paper, we discuss the physics and design of the MAJORANA DEMONSTRATOR, its approach to achieving ultra-low background and the status of the experiment.
Status of the MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-Beta Decay
NASA Astrophysics Data System (ADS)
Efremenko, Yu.; Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Baldenegro-Barrera, C. X.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Laferriere, B. D.; Leon, J.; Macmullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
If neutrinos are Majorana particles, i.e. fermions that are their own antiparticles, then neutrinoless double-beta (0νββ) decay is possible. In such a process, two neutrons can simultaneously decay into two protons and two electrons without emitting neutrinos. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The MAJORANA DEMONSTRATOR experiment is under construction at the Sanford Underground Research Facility in Lead, SD and will search for the neutrinoless double-beta (0νββ) decay of the 76Ge isotope. The goal of the experiment is to demonstrate that it is possible to achieve a sufficiently low background rate in the 4 keV region of interest (ROI) around the 2039 keV Q-value to justify building a tonne-scale experiment. In this paper, we discuss the physics and design of the MAJORANA DEMONSTRATOR, its approach to achieving ultra-low background and the status of the experiment.
Andreev and Majorana bound states in single and double quantum dot structures.
Silva, Joelson F; Vernek, E
2016-11-02
We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green's function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.
Josephson current through a quantum dot coupled to a Majorana zero mode.
Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun
2016-05-05
Employing the Green's function method, we investigate the Josephson current through a quantum dot side coupled to a topological superconducting nanowire sustaining a pair of Majorana zero modes. It is found that the Josephson current is blocked when the quantum dot is side coupled to a superconducting nanowire in a topologically trivial phase. However, when the topological superconducting nanowire transitions from a topologically trivial to a topologically non-trivial phase, an Andreev bound state arises at the zero Fermi energy of the quantum dot due to leakage of the Majorana zero mode. Thus a Josephson current can be induced by leakage of the Majorana zero mode into the quantum dot. The Josephson current shows a plateau-like structure and a clear-cut trivial/non-trivial phase transition, as a function of a Zeeman field imposed on the system. The transition and plateau-like structure can be used to probe the existence of the Majorana zero mode. The current-phase relation has also been studied.
Transport through a quantum dot coupled to two Majorana bound states
NASA Astrophysics Data System (ADS)
Zeng, Qi-Bo; Chen, Shu; You, L.; Lü, Rong
2017-08-01
We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2 π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4 π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD-Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.
Majorana STM as a perfect detector of odd-frequency superconductivity
NASA Astrophysics Data System (ADS)
Kashuba, Oleksiy; Sothmann, Björn; Burset, Pablo; Trauzettel, Björn
2017-05-01
We propose a novel scanning tunneling microscope (STM) device in which the tunneling tip is formed by a Majorana bound state (MBS). This peculiar bound state emerges at the boundary of a one-dimensional topological superconductor. Since the MBS has to be effectively spinless and local, we argue that it is the smallest unit that shows itself the properties of odd-frequency superconducting pairing. Odd-frequency superconductivity is characterized by an anomalous Green's function, which is an odd function of the time arguments of the two electrons building the Cooper pair. Interestingly, our Majorana STM can be used as the perfect detector of odd-frequency superconductivity. The reason is that a supercurrent between the Majorana STM and any other superconductor can only flow if the latter system exhibits itself odd-frequency pairing. To illustrate our general idea, we consider the tunneling problem of the Majorana STM coupled to a quantum dot placed on a surface of a conventional superconductor.
Unitarity triangles and geometrical description of CP violation with Majorana neutrinos
NASA Astrophysics Data System (ADS)
Aguilar-Saavedra, J. A.; Branco, G. C.
2000-11-01
We generalize the geometrical description of CP violation in the standard model in terms of a unitarity triangle. For three left-handed Majorana neutrinos CP violation in the lepton sector is determined by three unitarity triangles. With three additional right-handed neutrinos 15 quadrangles are required to characterize CP violation. We show the relation of the unitarity polygons with physical observables.
The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of germanium-76
NASA Astrophysics Data System (ADS)
Schubert, Alexis; Majorana Collaboration
2011-04-01
Observation of neutrinoless double-beta decay (0 νββ) could determine whether the neutrino is a Majorana particle and may provide information on neutrino mass. The MAJORANA Collaboration will search for 0 νββ of 76Ge in an array of germanium detectors enriched to 86% in 76Ge. Germanium detectors are a well-understood technology and have the benefits of excellent energy resolution, a high Q-value, and the ability to act as source and detector. The p-type point contact germanium detectors chosen by the MAJORANA Collaboration provide low noise, low energy threshold, and some ability to distinguish between the signal and background events. MAJORANA is constructing the DEMONSTRATOR, which will be used to conduct research and development toward a tonne-scale Ge experiment. The DEMONSTRATOR will be installed deep underground and will contain 40 kg of Ge deployed in an ultra-low-background shielded environment. Research supported by DOE under contracts DE-AC05-00OR22725 and DE-FG02-97ER41020.
Josephson current through a quantum dot coupled to a Majorana zero mode
NASA Astrophysics Data System (ADS)
Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun
2016-05-01
Employing the Green’s function method, we investigate the Josephson current through a quantum dot side coupled to a topological superconducting nanowire sustaining a pair of Majorana zero modes. It is found that the Josephson current is blocked when the quantum dot is side coupled to a superconducting nanowire in a topologically trivial phase. However, when the topological superconducting nanowire transitions from a topologically trivial to a topologically non-trivial phase, an Andreev bound state arises at the zero Fermi energy of the quantum dot due to leakage of the Majorana zero mode. Thus a Josephson current can be induced by leakage of the Majorana zero mode into the quantum dot. The Josephson current shows a plateau-like structure and a clear-cut trivial/non-trivial phase transition, as a function of a Zeeman field imposed on the system. The transition and plateau-like structure can be used to probe the existence of the Majorana zero mode. The current-phase relation has also been studied.
NASA Astrophysics Data System (ADS)
Xiong, Ye; Tong, Peiqing
2015-01-01
Coupling Majorana qubits with other qubits is absolutely essential for storing, manipulating and transferring information for topological quantum computing. We theoretically propose a manner to couple Majorana qubits with solitons, another kind of topological impurity, which was first studied in the spinless Su-Schrieffer-Heeger model. We present a NOT operation on the Majorana qubit by moving the soliton through a heterostructure adiabatically. Based on these two topological impurities, the operation is robust against local disorder. Furthermore, we find that the soliton may carry nonuniversal fractional electric charge instead of fractional charge 1/2, because of the breaking of gauge invariance induced by superconducting proximity.
Majorana vortex-bound states in three-dimensional nodal noncentrosymmetric superconductors
NASA Astrophysics Data System (ADS)
Chang, Po-Yao; Matsuura, Shunji; Schnyder, Andreas P.; Ryu, Shinsei
2014-11-01
Noncentrosymmetric superconductors (NCSs), characterized by antisymmetric spin-orbit coupling and a mixture of spin-singlet and spin-triplet pairing components, are promising candidate materials for topological superconductivity. An important hallmark of topological superconductors is the existence of protected zero-energy states at surfaces or in vortex cores. Here we investigate Majorana vortex-bound states in three-dimensional nodal and fully gapped NCSs by combining analytical solutions of Bogoliubov-de Gennes (BdG) equations in the continuum with exact diagonalization of BdG Hamiltonians. We show that depending on the crystal point-group symmetries and the topological properties of the bulk Bogoliubov-quasiparticle wave functions, different types of zero-energy Majorana modes can appear inside the vortex core. We find that for nodal NCSs with tetragonal point group C4 v the vortex states are dispersionless along the vortex line, forming one-dimensional Majorana flat bands, while for NCSs with D4 point-group symmetry the vortex modes are helical Majorana states with a linear dispersion along the vortex line. NCSs with monoclinic point group C2, on the other hand, do not exhibit any zero-energy vortex-bound states. We show that in the case of the C4 v (D4) point group the stability of these Majorana zero modes is guaranteed by a combination of reflection (π rotation), time-reversal, and particle-hole symmetry. Considering continuous deformations of the quasiparticle spectrum in the presence of vortices, we show that the flat-band vortex-bound states of C4 v point-group NCSs can be adiabatically connected to the dispersionless vortex-bound states of time-reversal symmetric Weyl superconductors. Experimental implications of our results for thermal transport and tunneling measurements are discussed.
NASA Astrophysics Data System (ADS)
Li, Zi-Xiang; Jiang, Yi-Fan; Yao, Hong
2016-12-01
A fundamental open issue in physics is whether and how the fermion sign problem in quantum Monte Carlo (QMC) simulations can be solved generically. Here, we show that Majorana-time-reversal (MTR) symmetries can provide a unifying principle to solve the fermion sign problem in interacting fermionic models. By systematically classifying Majorana-bilinear operators according to the anticommuting MTR symmetries they respect, we rigorously prove that there are two and only two fundamental symmetry classes which are sign-problem-free and which we call the "Majorana class" and "Kramers class," respectively. Novel sign-problem-free models in the Majorana class include interacting topological superconductors and interacting models of charge-4 e superconductors. We believe that our MTR unifying principle could shed new light on sign-problem-free QMC simulation on strongly correlated systems and interacting topological matters.
NASA Astrophysics Data System (ADS)
Zhang, Kunhua; Zeng, Junjie; Ren, Yafei; Qiao, Zhenhua
2017-08-01
We demonstrate that a zero-energy Majorana bound state in a ferromagnetic insulator (FI)-superconductor (SC) junction formed on the edge of a two-dimensional topological insulator exhibits three types of spin-triplet pairing correlations, its spin-polarization direction is position independent in a ferromagnetic insulator, and demonstrates a spin-helix structure in a superconductor. These spin properties of Majorana bound states lead to anomalous selective equal-spin Andreev reflection. Similar behavior is found when the coupling between two Majorana bound states in a FI-SC-FI junction is invoked, though an additional weak spin-singlet pairing correlation is generated. These signatures can readily facilitate the experimental detection of spin-triplet correlations and spin polarization of Majorana bound states.
NASA Astrophysics Data System (ADS)
Gong, Wei-Jiang; Gao, Zhen; Shan, Wan-Fei; Yi, Guang-Yu
2016-03-01
One Majorana doublet can be realized at each end of the time-reversal-invariant Majorana nanowires. We investigate the Josephson effect in the Majorana-doublet-presented junction modified by different inter-doublet coupling manners. It is found that when the Majorana doublets couple indirectly via a non-magnetic quantum dot, only the normal Josephson effect occurs, and the fermion parity in the system just affects the current direction and amplitude. However, one magnetic field applied on the dot can induce the fractional Josephson effect in the odd-parity case. Next if the direct and indirect couplings between the Majorana doublets coexist, no fractional Josephson effect takes place, regardless of the presence of magnetic field. Instead, there almost appears the π-period-like current in some special cases. All the results are clarified by analyzing the influence of the fermion occupation in the quantum dot on the parity conservation in the whole system. We ascertain that this work will be helpful for describing the dot-assisted Josephson effect between the Majorana doublets.
Current experiments in germanium 0 ν β β search -- GERDA and MAJORANA
NASA Astrophysics Data System (ADS)
von Sturm, K.
2015-01-01
There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ . In this article the state of the art of germanium 0νββ search, namely the GERDA experiment and MAJORANA demonstrator, is presented. In particular, recent results of the GERDA collaboration, which strongly disfavour the above mentioned claim, are discussed.
NASA Astrophysics Data System (ADS)
Bellini, F.
2012-11-01
The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0νββ), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0νββ search will be given as well as an overview of present status and future perpectives of experiments.
Nadj-Perge, Stevan; Drozdov, Ilya K; Li, Jian; Chen, Hua; Jeon, Sangjun; Seo, Jungpil; MacDonald, Allan H; Bernevig, B Andrei; Yazdani, Ali
2014-10-31
Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains. Copyright © 2014, American Association for the Advancement of Science.
Casimir effect for parallel plates involving massless Majorana fermions at finite temperature
Cheng Hongbo
2010-08-15
We study the Casimir effect for parallel plates with massless Majorana fermions obeying the bag boundary conditions at finite temperature. The thermal influence will modify the effect. It is found that the sign of the Casimir energy remains negative if the product of the plate distance and the temperature is larger than a special value, otherwise the energy will change to positive. The Casimir energy rises with the stronger thermal influence. We show that the attractive Casimir force between two parallel plates becomes greater with increasing temperature. In the case of the piston system involving the same Majorana fermions with the same boundary conditions, the attractive force on the piston will be weaker in higher-temperature surroundings.
NASA Astrophysics Data System (ADS)
Campo, V. L.; Ricco, L. S.; Seridonio, A. C.
2017-07-01
The zero-bias peak (ZBP) is understood as the definite signature of a Majorana bound state (MBS) when attached to a semi-infinite Kitaev nanowire (KNW) nearby zero temperature. However, such characteristics concerning the realization of the KNW constitute a profound experimental challenge. We explore theoretically a QD connected to a topological KNW of finite size at nonzero temperatures and show that overlapped MBSs of the wire edges can become effectively decoupled from each other and the characteristic ZBP can be fully recovered if one tunes the system into the leaked Majorana fermion fixed point. At very low temperatures, the MBSs become strongly coupled. We derive universal features of the conductance as a function of the temperature and the relevant crossover temperatures. Our findings offer additional guides to identify signatures of MBSs in solid state setups.
Many-terminal Majorana island: From topological to multichannel Kondo model
NASA Astrophysics Data System (ADS)
Herviou, Loïc; Le Hur, Karyn; Mora, Christophe
2016-12-01
We study Kondo screening obtained by coupling Majorana bound states, located on a topological superconducting island, to interacting electronic reservoirs. At the charge degeneracy points of the island, we formulate an exact mapping onto the spin-1 /2 multichannel Kondo effect. The coupling to Majorana fermions transforms the tunneling terms into effective fermionic bilinear contributions with a Luttinger parameter K in the leads that is effectively doubled. For strong interactions K =1 /2 , the intermediate fixed point of the standard multichannel Kondo model is exactly recovered. It evolves with K and connects to strong coupling in the noninteracting case K =1 , with maximum conductance between the leads and robustness against channel asymmetries similarly to the topological Kondo effect. For a number of leads above four, there exists a window of Luttinger parameters in which a quantum phase transition can occur between the strong coupling topological Kondo state and the partially conducting multichannel Kondo state.
Real Space Renormalization of Majorana Fermions in Quantum Nano-Wire Superconductors
NASA Astrophysics Data System (ADS)
Jafari, R.; Langari, A.; Akbari, Alireza; Kim, Ki-Seok
2017-02-01
We develop the real space quantum renormalization group (QRG) approach for majorana fermions. As an example we focus on the Kitaev chain to investigate the topological quantum phase transition (TQPT) in the one-dimensional spinless p-wave superconductor. Studying the behaviour of local compressibility and ground-state fidelity, show that the TQPT is signalled by the maximum of local compressibility at the quantum critical point tuned by the chemical potential. Moreover, a sudden drop of the ground-state fidelity and the divergence of fidelity susceptibility at the topological quantum critical point are used as proper indicators for the TQPT, which signals the appearance of Majorana fermions. Finally, we present the scaling analysis of ground-state fidelity near the critical point that manifests the universal information about the TQPT, which reveals two different scaling behaviors as we approach the critical point and thermodynamic limit.
Solving fermion sign problem in quantum Monte Carlo by Majorana representation
NASA Astrophysics Data System (ADS)
Yao, Hong; Li, Zi-Xiang; Jiang, Yi-Fan
2015-03-01
We discover a new quantum Monte Carlo (QMC) method to solve the fermion sign problem in interacting fermion models by employing Majorana representation of complex fermions. We call it Majorana QMC (MQMC). Especially, MQMC is fermion sign free in simulating a class of spinless fermion models on bipartite lattices at half filling and with arbitrary range of (unfrustrated) interactions. To the best of our knowledge, MQMC is the first auxiliary field QMC method to solve fermion sign problem in spinless (more generally, odd number of species) fermion models. MQMC simulations can be performed efficiently both at finite and zero temperatures. We believe that MQMC could pave a new avenue to solve fermion sign problem in more generic fermionic models. (Zi-Xiang Li, Yi-Fan Jiang, and Hong Yao, arXiv:1408.2269).
Finite temperature Casimir effect for massless Majorana fermions in a magnetic field
Erdas, Andrea
2011-01-15
The zeta function regularization technique is used to study the finite temperature Casimir effect for a massless Majorana fermion field confined between parallel plates and satisfying bag boundary conditions. A magnetic field perpendicular to the plates is included. An expression for the zeta function is obtained, which is exact to all orders in the magnetic field strength, temperature and plate distance. The zeta function is used to calculate the Helmholtz free energy of the Majorana field and the pressure on the plates, in the case of weak magnetic field and strong magnetic field. In both cases, simple analytic expressions are obtained for the free energy and pressure which are very accurate and valid for all values of the temperature and plate distance.
ac Josephson Effect in Finite-Length Nanowire Junctions with Majorana Modes
NASA Astrophysics Data System (ADS)
San-Jose, Pablo; Prada, Elsa; Aguado, Ramón
2012-06-01
It has been predicted that superconducting junctions made with topological nanowires hosting Majorana bound states (MBS) exhibit an anomalous 4π-periodic Josephson effect. Finding an experimental setup with these unconventional properties poses, however, a serious challenge: for finite-length wires, the equilibrium supercurrents are always 2π periodic as anticrossings of states with the same fermionic parity are possible. We show, however, that the anomaly survives in the transient regime of the ac Josephson effect. Transients are, moreover, protected against decay by quasiparticle poisoning as a consequence of the quantum Zeno effect, which fixes the parity of Majorana qubits. The resulting long-lived ac Josephson transients may be effectively used to detect MBS.
NASA Astrophysics Data System (ADS)
Benalcazar, Wladimir A.; Teo, Jeffrey C. Y.; Hughes, Taylor L.
2014-06-01
We classify discrete-rotation symmetric topological crystalline superconductors (TCS) in two dimensions and provide the criteria for a zero-energy Majorana bound state (MBS) to be present at composite defects made from magnetic flux, dislocations, and disclinations. In addition to the Chern number that encodes chirality, discrete rotation symmetry further divides TCS into distinct stable topological classes according to the rotation eigenspectrum of Bogoliubov-de Gennes quasiparticles. Conical crystalline defects are shown to be able to accommodate robust MBS when a certain combination of these bulk topological invariants is nontrivial as dictated by the index theorems proved within. The number parity of MBS is counted by a Z2-valued index that solely depends on the disclination and the topological class of the TCS. We also discuss the implications for corner-bound Majorana modes on the boundary of topological crystalline superconductors.
Gate-defined wires in HgTe quantum wells as a robust Majorana platform
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Alicea, Jason; Yacoby, Amir
2013-03-01
We propose a new quasi-1D platform for Majorana zero-modes based on gate-defined wires in HgTe. Due to the Dirac-like band structure for HgTe such wires exhibit several remarkable properties. Most strikingly, modest gate-tuning allows one to modulate the Rashba spin-orbit energy from zero up to ~ 30 K , and the effective g-factor from zero up to giant values of ~ 600 . The large achievable spin-orbit coupling and g-factor together allow one to access Majorana modes in this setting at exceptionally low magnetic fields while maintaining robustness against disorder. Moreover, gate-defined wires may facilitate the fabrication of networks required for realizing non-Abelian statistics and quantum information devices. The exquisite tunablity of parameters further suggests applications in spintronics. Research supported by the Deutsche Akademie der Naturforscher Leopoldina through Grant No. LPDS 2011-14.
Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
NASA Astrophysics Data System (ADS)
Nadj-Perge, Stevan; Drozdov, Ilya K.; Li, Jian; Chen, Hua; Jeon, Sangjun; Seo, Jungpil; MacDonald, Allan H.; Bernevig, B. Andrei; Yazdani, Ali
2014-10-01
Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.
Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Vijay, Sagar; Fu, Liang
2016-12-01
We propose a physical realization of a commuting Hamiltonian of interacting Majorana fermions realizing Z 2 topological order, using an array of Josephson-coupled topological superconductor islands. The required multi-body interaction Hamiltonian is naturally generated by a combination of charging energy induced quantum phase-slips on the superconducting islands and electron tunneling between islands. Our setup improves on a recent proposal for implementing a Majorana fermion surface code (Vijay et al 2015 Phys. Rev. X 5 041038), a ‘hybrid’ approach to fault-tolerant quantum computation that combines (1) the engineering of a stabilizer Hamiltonian with a topologically ordered ground state with (2) projective stabilizer measurements to implement error correction and a universal set of logical gates. Our hybrid strategy has advantages over the traditional surface code architecture in error suppression and single-step stabilizer measurements, and is widely applicable to implementing stabilizer codes for quantum computation.
Assembly and design of the germanium detectors for the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Jasinski, Ben; Majorana Collaboration
2014-09-01
The Majorana Demonstrator is a neutrino-less double-beta decay experiment being carried out at the Sanford Underground Research Facility, in South Dakota. The Demonstrator will consist of 30 kg of germanium detectors enriched in 76 Ge. Each P-type Point Contact detector is arranged in a string configuration, utilizing novel front-end electronics, cables, connectors, and mounts, fabricated from radio-pure materials. The assembly of the strings is carried out 4850 feet underground to reduce cosmologically induced backgrounds. To further reduce backgrounds, strings are assembled in a nitrogen-filled glovebox. This talk will give an overview of the design and the assembly of the detector strings for the Majorana Demonstrator.
NASA Astrophysics Data System (ADS)
Detwiler, Jason
2009-10-01
The Majorana collaboration aims to perform a search for neutrinoless double-beta decay (0νββ) by fielding arrays of HPGe detectors mounted in ultra-clean electroformed-copper cryostats located deep underground. Recent advances in HPGe detector technology, in particular P-type Point-Contact (PPC) detectors, show great promise for identifying and reducing backgrounds to the 0νββ signal, which should result in improved sensitivity over previous generation experiments. The ultra-low energy threshold possible in PPC detectors also enables a broader physics program including sensitive searches for dark matter and axions. The Majorana Demonstrator R&D program will field three ˜20 kg modules of PPC detectors at Sanford Underground Laboratory. Half of the detector mass will be enriched to 86% in ^76Ge. I will present the motivation, design, recent progress and current status of this R&D effort, and discuss its physics reach.
Local quench, Majorana zero modes, and disturbance propagation in the Ising chain
NASA Astrophysics Data System (ADS)
Francica, G.; Apollaro, T. J. G.; Lo Gullo, N.; Plastina, F.
2016-12-01
We study the generation and propagation of local perturbations in a quantum many-body spin system. In particular, we study the Ising model in transverse field in the presence of a local field defect at one edge. This system possesses a rich phase diagram with different regions characterized by the presence of one or two Majorana zero modes. We show that their localized character (i) enables a characterization of the Ising phase transition through a local-only measurement performed on the edge spin, and (ii) strongly affects the propagation of quasiparticles emitted after the sudden removal of the defect, so that the dynamics of the local magnetization show clear deviations from a ballistic behavior in the presence of the Majorana fermions.
NASA Astrophysics Data System (ADS)
Karzig, Torsten; Knapp, Christina; Lutchyn, Roman M.; Bonderson, Parsa; Hastings, Matthew B.; Nayak, Chetan; Alicea, Jason; Flensberg, Karsten; Plugge, Stephan; Oreg, Yuval; Marcus, Charles M.; Freedman, Michael H.
2017-06-01
We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.
Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Neilinger, P.; Shevchenko, S. N.; Bogár, J.; Rehák, M.; Oelsner, G.; Karpov, D. S.; Hübner, U.; Astafiev, O.; Grajcar, M.; Il'ichev, E.
2016-09-01
We demonstrate amplification (and attenuation) of a probe signal by a driven two-level quantum system in the Landau-Zener-Stückelberg-Majorana regime by means of an experiment, in which a superconducting qubit was strongly coupled to a microwave cavity, in a conventional arrangement of circuit quantum electrodynamics. Two different types of flux qubit, specifically a conventional Josephson junctions qubit and a phase-slip qubit, show similar results, namely, lasing at the working points where amplification takes place. The experimental data are explained by the interaction of the probe signal with Rabi-like oscillations. The latter are created by constructive interference of Landau-Zener-Stückelberg-Majorana (LZSM) transitions during the driving period of the qubit. A detailed description of the occurrence of these oscillations and a comparison of obtained data with both analytic and numerical calculations are given.
Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations.
Wei, Z C; Wu, Congjun; Li, Yi; Zhang, Shiwei; Xiang, T
2016-06-24
The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and interacting topological insulators with spin-flip terms.
CP asymmetry in heavy Majorana neutrino decays at finite temperature: the hierarchical case
NASA Astrophysics Data System (ADS)
Biondini, S.; Brambilla, N.; Vairo, A.
2016-09-01
We consider the simplest realization of leptogenesis with one heavy Majorana neutrino species much lighter than the other ones. In this scenario, when the temperature of the early universe is smaller than the lightest Majorana neutrino mass, we compute at first order in the Standard Model couplings and, for each coupling, at leading order in the termperature the CP asymmetry in the decays of the lightest neutrino into leptons and anti-leptons. We perform the calculation using a hierarchy of two effective field theories organized as expansions in the inverse of the heavy-neutrino masses. In the ultimate effective field theory, leading thermal corrections proportional to the Higgs self coupling and the gauge couplings are encoded in one single operator of dimension five, whereas corrections proportional to the top Yukawa coupling are encoded in four operators of dimension seven, which we compute.
Front-End Electronics Characterization, Production, and QA for the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Elia, Sophia; Majorana Collaboration
2014-09-01
The Majorana Demonstrator will search for the neutrinoless double beta decay ββ (0 ν) of the isotope 76Ge. In anticipation of the future tonne-scale experiments, its goal is to demonstrate a path forward to a background rate of one cnt/(ROI-t-y) in a 4 keV region around the Q-value of the 76Ge ββ (0 ν) . Such a background requirement significantly constrains the design of the front end electronics. Low background and low noise qualifications are a necessity. This poster first presents the characterization and noise performance in single and multi detector systems of the front end electronics developed for Majorana. The poster next reviews the full production process and finally describes the Quality Assurance tests developed for the electronics before installation in the experiment. The Majorana Demonstrator will search for the neutrinoless double beta decay ββ (0 ν) of the isotope 76Ge. In anticipation of the future tonne-scale experiments, its goal is to demonstrate a path forward to a background rate of one cnt/(ROI-t-y) in a 4 keV region around the Q-value of the 76Ge ββ (0 ν) . Such a background requirement significantly constrains the design of the front end electronics. Low background and low noise qualifications are a necessity. This poster first presents the characterization and noise performance in single and multi detector systems of the front end electronics developed for Majorana. The poster next reviews the full production process and finally describes the Quality Assurance tests developed for the electronics before installation in the experiment. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.
A status update on the
NASA Astrophysics Data System (ADS)
Guinn, Ian; Majorana Collaboration
2015-10-01
The
Are massive Majorana neutrinos canceling each other in neutrinoless double-. beta. decay
Vergados, J.D.
1983-12-01
The possibility of various massive Majorana neutrinos canceling each other in neutrinoless double-..beta.. decay is examined. It is shown that if all neutrino eigenmasses are less than 10 MeV such a cancellation persists in the hadronic medium if initially present at the elementary (gauge) level. The same is true for neutrino mass greater than 10 GeV. In all other cases, such a cancellation will require a conspiracy between particle and nuclear physics.
NASA Astrophysics Data System (ADS)
Stanescu, Tudor D.; Das Sarma, Sankar
2017-07-01
A minimal model for the hybrid superconductor-semiconductor nanowire Majorana platform is developed that fully captures the effects of the low-energy renormalization of the nanowire modes arising from the presence of the parent superconductor. In this model, the parent superconductor is an active component that participates explicitly in the low-energy physics, not just a passive partner that only provides proximity-induced Cooper pairs for the nanowire. This treatment on an equal footing of the superconductor and the semiconductor has become necessary in view of recent experiments, which do not allow a consistent interpretation based just on the bare semiconductor properties. The general theory involves the evaluation of the exact semiconductor Green's function that includes a dynamical self-energy correction arising from the tunnel-coupled superconductor. Using a tight-binding description, the nanowire Green's function is obtained in various relevant parameter regimes, with the parent superconductor being treated within the BCS-BdG prescription. General conditions for the emergence of topological superconductivity are worked out for single-band as well as multiband nanowires and detailed numerical results are given for both infinite and finite wire cases. The topological quantum phase diagrams are provided numerically and the Majorana bound states are obtained along with their oscillatory energy-splitting behaviors due to wave function overlap in finite wires. Renormalization effects are shown to be both qualitatively and quantitatively important in modifying the low-energy spectrum of the nanowire. The results of the theory are found to be in good qualitative agreement with Majorana nanowire experiments, leading to the conclusion that the proximity-induced low-energy renormalization of the nanowire modes by the parent superconductor is of fundamental importance in superconductor-semiconductor hybrid structures, except perhaps in the uninteresting limit of
Detecting Majorana modes in one-dimensional wires by charge sensing
NASA Astrophysics Data System (ADS)
Ben-Shach, Gilad; Haim, Arbel; Appelbaum, Ian; Oreg, Yuval; Yacoby, Amir; Halperin, Bertrand I.
2015-01-01
The electron number parity of the ground state of a semiconductor nanowire proximity coupled to a bulk superconductor can alternate between the quantized values ±1 if parameters such as the wire length L , the chemical potential μ , or the magnetic field B are varied inside the topological superconductor phase. The parity jumps, which may be interpreted as changes in the occupancy of the fermion state formed from the pair of Majorana modes at opposite ends of the wire, are accompanied by jumps δ N in the charge of the nanowire, whose values decrease exponentially with the wire length. We study theoretically the dependence of δ N on system parameters, and compare the locations in the μ -B plane of parity jumps when the nanowire is or is not proximity coupled to a bulk superconductor. We show that, despite the fact that the wave functions of the Majorana modes are localized near the two ends of the wire, the charge-density jumps have spatial distributions that are essentially uniform along the wire length, being proportional to the product of the two Majorana wave functions. We explain how charge measurements, say by an external single-electron transistor, could reveal these effects. Whereas existing experimental methods require direct contact to the wire for tunneling measurements, charge sensing avoids this issue and provides an orthogonal measurement to confirm recent experimental developments. Furthermore, by comparing density of states measurements which show Majorana features at the wire ends with the uniformly distributed charge measurements, one can rule out alternative explanations for earlier results. We shed light on a parameter regime for these wire-superconductor hybrid systems, and propose a related experiment to measure spin density.
Rajaraman, A.; Whiteson, D.
2010-09-01
We analyze the power of the Tevatron data set to exclude or discover fourth generation neutrinos. In a general framework, one can have mixed left- and right-handed neutrinos, with Dirac and Majorana neutrinos as extreme cases. We demonstrate that a single Tevatron experiment can make powerful statements across the entire mixing space, extending LEP's mass limits of 60-80 GeV up to 150-175 GeV, depending on the mixing.
Andreev and Majorana bound states in single and double quantum dot structures
NASA Astrophysics Data System (ADS)
Silva, Joelson F.; Vernek, E.
2016-11-01
We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green’s function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.
Luttinger liquid in contact with a Kramers pair of Majorana bound states
NASA Astrophysics Data System (ADS)
Pikulin, Dmitry I.; Komijani, Yashar; Affleck, Ian
2016-05-01
We discuss the signatures of a Kramers pair of Majorana modes formed in a Josephson junction on top of a quantum spin Hall system. We show that, while ignoring interactions on the quantum spin Hall edge allows arbitrary Andreev processes in the system, moderate repulsive interactions stabilize Andreev transmission—the hole goes into the opposite lead from where the electron has arrived. We analyze the renormalization group equations and deduce the phase diagram as a function of interaction strength.
Majorana zero-modes and topological phases of multi-flavored Jackiw-Rebbi model
NASA Astrophysics Data System (ADS)
Ho, Shih-Hao; Lin, Feng-Li; Wen, Xiao-Gang
2012-12-01
Motivated by the recent Kitaev's K-theory analysis of topological insulators and superconductors, we adopt the same framework to study the topological phase structure of Jackiw-Rebbi model in 3+1 dimensions. According to the K-theory analysis based on the properties of the charge conjugation and time reversal symmetries, we classify the topological phases of the model. In particular, we find that there exist Z Majorana zero-modes hosted by the hedgehogs/t'Hooft-Polyakov monopoles, if the model has a T 2 = 1 time reversal symmetry. Guided by the K-theory results, we then explicitly show that a single Majorana zero mode solution exists for the SU(2) doublet fermions in some co- dimensional one planes of the mass parameter space. It turns out we can see the existence of none or a single zero mode when the fermion doublet is only two. We then take a step further to consider four-fermion case and find there can be zero, one or two normalizable zero mode in some particular choices of mass matrices. Our results also indicate that a single normalizable Majorana zero mode can be compatible with the cancellation of SU(2) Witten anomaly.
Majorana vs. Dirac sterile neutrinos lighter than MW at the LHC
NASA Astrophysics Data System (ADS)
Dib, C. O.; Kim, C. S.; Wang, K.; Zhang, J.
2017-09-01
We propose to study the leptonic decays W± → e±e±µ ∓ ν and W± → µ±µ±e ∓ ν at the LHC to discover sterile neutrinos with masses below MW , and discriminate their Majorana or Dirac character. These decays are induced by a sterile neutrino N that goes on mass shell in the intermediate state. We find that, even though the final (anti-)neutrino goes undetected and thus lepton number is unchecked, one can distinguish between the Majorana vs. Dirac character of the intermediate sterile neutrino by comparing the production of e±e±µ ∓ vs. µ±µ±e ∓, provided the N-e and N-µ mixings are different enough. Alternatively, one can also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even if the N-e and N-µ mixings are equal.
Tunable transport through a quantum dot chain with side-coupled Majorana bound states
Jiang, Cui; Lu, Gang; Gong, Wei-Jiang
2014-09-14
We investigate the transport properties of a quantum dot (QD) chain side-coupled to a pair of Majorana bound states (MBSs). It is found that the zero-bias conductance is tightly dependent on the parity of QD number. First, if a Majorana zero mode is introduced to couple to one QD of the odd-numbered QD structure, the zero-bias conductance is equal to (e{sup 2})/(2h) , but the zero-bias conductance will experience a valley-to-peak transition if the Majorana zero mode couples to the different QDs of the even-numbered QD structure. On the other hand, when the inter-MBS coupling is nonzero, the zero-bias conductance spectrum shows a peak in the odd-numbered QD structure, and in the even-numbered QD structure one conductance valley appears at the zero-bias limit. These results show the feasibility to manipulate the current in a multi-QD structure based on the QD-MBS coupling. Also, such a system can be a candidate for detecting the MBSs.
Line nodes and surface Majorana flat bands in static and kicked p -wave superconducting Harper model
NASA Astrophysics Data System (ADS)
Wang, Huai-Qiang; Chen, M. N.; Bomantara, Raditya Weda; Gong, Jiangbin; Xing, D. Y.
2017-02-01
We investigate the effect of introducing nearest-neighbor p -wave superconducting pairing to both the static and kicked extended Harper model with two periodic phase parameters acting as artificial dimensions to simulate three-dimensional systems. It is found that in both the static model and the kicked model, by varying the p -wave pairing order parameter, the system can switch between a fully gapped phase and a gapless phase with point nodes or line nodes. The topological property of both the static and kicked model is revealed by calculating corresponding topological invariants defined in the one-dimensional lattice dimension. Under open boundary conditions along the physical dimension, Majorana flat bands at energy zero (quasienergy zero and π ) emerge in the static (kicked) model at the two-dimensional surface Brillouin zone. For certain values of pairing order parameter, (Floquet) Su-Schrieffer-Heeger-like edge modes appear in the form of arcs connecting different (Floquet) Majorana flat bands. Finally, we find that in the kicked model, it is possible to generate two controllable Floquet Majorana modes, one at quasienergy zero and the other at quasienergy π , at the same parameter values.
Klein-Júnior, Luiz Carlos; Guecheva, Temenouga N.; dos Santos, Luciana D.; Zanette, Régis A.; de Mello, Fernanda B.; de Mello, João Roberto Braga
2016-01-01
The present study aimed to investigate the in vitro mutagenic activity of Origanum majorana essential oil. The most abundant compounds identified by GC-MS were γ-terpinene (25.73%), α-terpinene (17.35%), terpinen-4-ol (17.24%), and sabinene (10.8%). Mutagenicity was evaluated by the Salmonella/microsome test using the preincubation procedure on TA98, TA97a, TA100, TA102, and TA1535 Salmonella typhimurium strains, in the absence or in the presence of metabolic activation. Cytotoxicity was detected at concentrations higher than 0.04 μL/plate in the absence of S9 mix and higher than 0.08 μL/plate in the presence of S9 mix and no gene mutation increase was observed. For the in vitro mammalian cell micronucleus test, V79 Chinese hamster lung fibroblasts were used. Cytotoxicity was only observed at concentrations higher than or equal to 0.05 μg/mL. Moreover, when tested in noncytotoxic concentrations, O. majorana essential oil was not able to induce chromosome mutation. The results from this study therefore suggest that O. majorana essential oil is not mutagenic at the concentrations tested in the Salmonella/microsome and micronucleus assays. PMID:27891531
Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
NASA Astrophysics Data System (ADS)
Nadj-Perge, Stevan
2015-03-01
Majorana fermions are zero-energy excitations predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron atomic chains on the surface of superconducting lead. Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations and theoretical modeling, for the formation of a topological phase and edge-bound Majorana states in this system. Our results demonstrates that atomic chains are viable platform for future experiments to manipulate Majorana bound states and to realize other related 1D or 2D topological superconducting phases. This work has done in collaboration with Ilya K. Drozdov, Jian Li, Hua Chen, Sangjun Jeon, Jungpil Seo, Allan H. MacDonald, B. Andrei Bernevig and Ali Yazdani. We acknowledge ONR, NSF-MRSEC, ARO-MRUI, NSF-DMR and EU Marie Curie for support.
Exploring a Proximity-Coupled Co Chain on Pb(110) as a Possible Majorana Platform.
Ruby, Michael; Heinrich, Benjamin W; Peng, Yang; von Oppen, Felix; Franke, Katharina J
2017-07-12
Linear chains of magnetic atoms proximity coupled to an s-wave superconductor are predicted to host Majorana zero modes at the chain ends in the presence of strong spin-orbit coupling. Specifically, iron (Fe) chains on Pb(110) have been explored as a possible system to exhibit topological superconductivity and host Majorana zero modes [ Nadj-Perge , S. et al., Science 2014 , 346 , 602 - 607 ]. Here, we study chains of the transition metal cobalt (Co) on Pb(110) and check for topological signatures. Using spin-polarized scanning tunneling spectroscopy, we resolve ferromagnetic order in the d bands of the chains. Interestingly, also the subgap Yu-Shiba-Rusinov (YSR) bands carry a spin polarization as was predicted decades ago. Superconducting tips allow us to resolve further details of the YSR bands and in particular resonances at zero energy. We map the spatial distribution of the zero-energy signal and find it delocalized along the chain. Hence, despite the ferromagnetic coupling within the chains and the strong spin-orbit coupling in the superconductor, we do not find clear evidence of Majorana modes. Simple tight-binding calculations suggest that the spin-orbit-split bands may cross the Fermi level four times which suppresses the zero-energy modes.
Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment
Gruzko, Julieta; Rielage, Keith Robert; Xu, Wenqin; Elliott, Steven Ray; Massarczyk, Ralph; Goett, John Jerome III; Chu, Pinghan
2015-11-10
Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrino physics, with implications for Grand Unification and leptogenesis. The Majorana Collaboration is assembling a low-background array of high purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay in ^{76}Ge. The Majorana Demonstrator, which is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota, will contain 44 kg (30 kg enriched in ^{76}Ge) of HPGe detectors. Its primary goal is to demonstrate the scalability and background required for a tonne-scale Ge experiment. This is accomplished via a modular design and projected background of less than 3 cnts/tonne-yr in the region of interest. The experiment is currently taking data with the first of its enriched detectors.
The Majorana Demonstrator: A search for neutrinoless double-beta decay of germanium-76
Elliott, S. R.; Boswell, M.; Goett, J.; Rielage, K.; Ronquest, M. C.; Xu, W.; Abgrall, N.; Chan, Y-D.; Hegai, A.; Martin, R. D.; Mertens, S.; Poon, A. W. P.; Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A.; and others
2013-12-30
The MAJORANA collaboration is searching for neutrinoless double beta decay using {sup 76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ∼1 count/t-y or lower in the region of the signal. The MAJORANA collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the DEMONSTRATOR, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ∼30 kg will be enriched to 87% in {sup 76}Ge. The DEMONSTRATOR is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the DEMONSTRATOR is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.
Dantas, Andrea Dos Santos; Klein-Júnior, Luiz Carlos; Machado, Miriana S; Guecheva, Temenouga N; Dos Santos, Luciana D; Zanette, Régis A; de Mello, Fernanda B; Pêgas Henriques, João Antonio; de Mello, João Roberto Braga
The present study aimed to investigate the in vitro mutagenic activity of Origanum majorana essential oil. The most abundant compounds identified by GC-MS were γ-terpinene (25.73%), α-terpinene (17.35%), terpinen-4-ol (17.24%), and sabinene (10.8%). Mutagenicity was evaluated by the Salmonella/microsome test using the preincubation procedure on TA98, TA97a, TA100, TA102, and TA1535 Salmonella typhimurium strains, in the absence or in the presence of metabolic activation. Cytotoxicity was detected at concentrations higher than 0.04 μL/plate in the absence of S9 mix and higher than 0.08 μL/plate in the presence of S9 mix and no gene mutation increase was observed. For the in vitro mammalian cell micronucleus test, V79 Chinese hamster lung fibroblasts were used. Cytotoxicity was only observed at concentrations higher than or equal to 0.05 μg/mL. Moreover, when tested in noncytotoxic concentrations, O. majorana essential oil was not able to induce chromosome mutation. The results from this study therefore suggest that O. majorana essential oil is not mutagenic at the concentrations tested in the Salmonella/microsome and micronucleus assays.
Parity qubits and poor man's Majorana bound states in double quantum dots
NASA Astrophysics Data System (ADS)
Leijnse, Martin; Flensberg, Karsten
2012-10-01
We study a double quantum dot connected via a common superconducting lead and show that this system can be tuned to host one Majorana bound state (MBS) on each dot. We call them “poor man's Majorana bound states” since they are not topologically protected, but otherwise share the properties of MBS formed in topological superconductors. We describe the conditions for the existence of the two spatially separated MBS, which include breaking of spin degeneracy in the two dots, with the spins polarized in different directions. Therefore, we propose to use a magnetic field configuration where the field directions on the two dots form an angle. By control of this angle the cross Andreev reflection and the tunnel amplitudes can be tuned to be approximately equal, which is a requirement for the formation of the MBS. We show that the fermionic state encoded in the two Majoranas constitutes a parity qubit, which is nonlocal and can only be measured by probing both dots simultaneously. Using a many-particle basis for the MBS, we discuss the role of interactions and show that interactions between electrons on different dots always shift the condition for degeneracy. We also show how the MBS can be probed by transport measurements and discuss how the combination of several such double dot systems allows for entanglement of parity qubits and measurement of their dephasing times.
Shot noise in a quantum dot system coupled with Majorana bound states.
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-06
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green's function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ϵ(M) increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.
Tunable transport through a quantum dot chain with side-coupled Majorana bound states
NASA Astrophysics Data System (ADS)
Jiang, Cui; Lu, Gang; Gong, Wei-Jiang
2014-09-01
We investigate the transport properties of a quantum dot (QD) chain side-coupled to a pair of Majorana bound states (MBSs). It is found that the zero-bias conductance is tightly dependent on the parity of QD number. First, if a Majorana zero mode is introduced to couple to one QD of the odd-numbered QD structure, the zero-bias conductance is equal to e/22h, but the zero-bias conductance will experience a valley-to-peak transition if the Majorana zero mode couples to the different QDs of the even-numbered QD structure. On the other hand, when the inter-MBS coupling is nonzero, the zero-bias conductance spectrum shows a peak in the odd-numbered QD structure, and in the even-numbered QD structure one conductance valley appears at the zero-bias limit. These results show the feasibility to manipulate the current in a multi-QD structure based on the QD-MBS coupling. Also, such a system can be a candidate for detecting the MBSs.
Shot noise in a quantum dot system coupled with Majorana bound states
NASA Astrophysics Data System (ADS)
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-01
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green’s function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ɛM increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.
Gate-Defined Wires in HgTe Quantum Wells: From Majorana Fermions to Spintronics
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Alicea, Jason; Yacoby, Amir
2013-07-01
We introduce a promising new platform for Majorana zero modes and various spintronics applications based on gate-defined wires in HgTe quantum wells. Because of the Dirac-like band structure for HgTe, the physics of such systems differs markedly from that of conventional quantum wires. Most strikingly, we show that the subband parameters for gate-defined HgTe wires exhibit exquisite tunability: Modest gate voltage variation allows one to modulate the Rashba spin-orbit energies from zero up to about 30 K, and the effective g factors from zero up to giant values exceeding 600. The large achievable spin-orbit coupling and g factors together allow one to access Majorana modes in this setting at exceptionally low magnetic fields while maintaining robustness against disorder. As an additional benefit, gate-defined wires (in HgTe or other settings) should greatly facilitate the fabrication of networks for refined transport experiments used to detect Majoranas, as well as the realization of non-Abelian statistics and quantum information devices.
Electrical manipulation of Majorana fermions in an interdigitated superconductor-ferromagnet device.
Lee, Shu-Ping; Alicea, Jason; Refael, Gil
2012-09-21
We show that a topological phase supporting Majorana fermions can form in a two-dimensional electron gas (2DEG) adjacent to an interdigitated superconductor-ferromagnet structure. An advantage of this setup is that the 2DEG can induce the required Zeeman splitting and superconductivity from a single interface, allowing one to utilize a wide class of 2DEGs including the surface states of bulk InAs. We demonstrate that the interdigitated device supports a robust topological phase when the finger spacing λ is smaller than half of the Fermi wavelength λ(F). In this regime, the electrons effectively see a "smeared" Zeeman splitting and pairing field despite the interdigitation. The topological phase survives even in the opposite limit λ > λ(F)/2, although with a reduced bulk gap. We describe how to electrically generate a vortex in this setup to trap a Majorana mode, and predict an anomalous Fraunhofer pattern that provides a sharp signature of chiral Majorana edge states.
NASA Astrophysics Data System (ADS)
Yazdani, Ali
2015-03-01
Chain of magnetic atoms on the surface of a BCS superconductor is a versatile platform for the realization of one-dimensional superconductors with Majorana bound states that lends itself to high-resolution scanning tunneling microscopy studies. In this talk, I will describe experimental efforts to realize this platform using self-assembled chains of Fe atoms on the surface of Pb (110) and to directly visualize Majorana quasi-particle bound states at their edges. Using spin-polarized STM studies, we show that Fe chains are ferromagnetic while tunneling into Pb's substrate demonstrates signatures of strong spin-orbit interaction at its surface. Comparison of experimental measurements of structure and normal state electronic structure with DFT calculations suggest that these are triple zigzag chains with an odd number of band-crossings at the Fermi level. The onset of superconductivity in the Pb strongly modifies the low energy density of states of the Fe chains and induces a zero energy state at their ends. I will describe how these observations are consistent with the formation of a topological superconducting phase with Majorana edge states. Work supported by ONR, NSF-DMR, NSF-MRSEC, ARO-MURI, and LPS-ARO grants.
NASA Astrophysics Data System (ADS)
Queiroz, Raquel; Schnyder, Andreas P.
2015-01-01
Noncentrosymmetric superconductors with strong spin-orbit coupling and the B phase of 3He are possible realizations of topological superconductors with time-reversal symmetry. The nontrivial topology of these time-reversal invariant superconductors manifests itself at the material surface in the form of helical Majorana modes. In this paper, using extensive numerical simulations, we investigate the stability and properties of these Majorana states under strong surface disorder, which influences both bulk and surface states. To characterize the effects of strong disorder, we compute the level spacing statistics and the local density of states of both two- and three-dimensional topological superconductors. The Majorana surface states, which are located in the outermost layers of the superconductor, are protected against weak disorder due to their topological characteristic. Sufficiently strong disorder, on the other hand, partially localizes the surface layers, with a more pronounced effect on states with energies close to the gap than on those with energies close to zero. In particular, we observe that for all disorder strengths and configurations there always exist two extended states at zero energy that can carry thermal current. At the crossover from weak to strong disorder the surface state wave functions and the local density of states show signs of critical delocalization. We find that at this crossover the edge density of states of two-dimensional topological superconductors exhibits a zero-energy divergence, reminiscent of the Dyson singularity of quasi-one-dimensional dirty superconductors.
The Majorana low-noise low-background front-end electronics
Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; ...
2015-03-24
The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope ⁷⁶Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the ⁷⁶Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolutionmore » performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.« less
The Majorana low-noise low-background front-end electronics
Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, II, D. G.; Poon, A. W.P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G.H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.
2015-03-24
The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope ⁷⁶Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the ⁷⁶Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.
Majorana fermion realization and relevant transport processes in a triple-quantum dot system
NASA Astrophysics Data System (ADS)
Ming-Xun, Deng; Shi-Han, Zheng; Mou, Yang; Liang-Bin, Hu; Rui-Qiang, Wang
2015-03-01
Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Majorana fermions and show that the Majorana feimions will either survive separately on single dots or distribute themselves among different dots with tunable probabilities. As a result, different physical mechanisms appear, including local Andreev reflection (LAR), cross Andreev reflection (CAR), and cross resonant tunneling (CRT). The resulting characteristics may be used to reveal the unique properties of Majorana fermions. In addition, we discuss the spin-polarized transports and find a pure spin current and a spin filter effect due to the joint effect of CRT and CAR, which is important for designing spintronic devices. Project supported by the New Century Excellent Talents in University of China (Grant No. NCET-10-0090), the National Natural Science Foundation of China (Grant Nos. 11474106, 11174088, and 11274124), the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT1243), and the Natural Science Foundation of Guangdong Province, China (Grant No. S2012010010681).
Signatures of Dirac and Majorana sterile neutrinos in trilepton events at the LHC
NASA Astrophysics Data System (ADS)
Dib, Claudio O.; Kim, C. S.; Wang, Kechen
2017-06-01
Heavy sterile neutrinos with masses below MW can induce trilepton events at the 14 TeV LHC through purely leptonic W decays of W±→e±e±μ∓ν and μ±μ±e∓ν where the heavy neutrino will be in an intermediate state on its mass shell. Discovery and exclusion limits for the heavy neutrinos are found using both cut-and-count (CC) and multivariate analysis (MVA) methods in this study. We also show that it is possible to discriminate between a Dirac and a Majorana heavy neutrino, even when lepton number conservation cannot be directly tested due to unobservability of the final state neutrino. This discrimination is done by exploiting a combined set of kinematic observables that differ between the Majorana and Dirac cases. We find that the MVA method can greatly enhance the discovery and discrimination limits in comparison with the CC method. For a 14-TeV p p collider with integrated luminosity of 3000 fb-1 , sterile neutrinos can be found with 5 σ significance if heavy-to-light neutrino mixings |UN e|2˜|UN μ|2˜10-6 , while the Majorana vs Dirac type can be distinguished if |UN e|2˜|UN μ|2˜10-5 or even |UN ℓ|2˜10-6 if one of the mixing elements is at least an order of magnitude smaller than the other.
Effect of degenerate particles on internal bremsstrahlung of Majorana dark matter
NASA Astrophysics Data System (ADS)
Okada, Hiroshi; Toma, Takashi
2015-11-01
Gamma-rays induced by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-rays generated by internal bremsstrahlung of Majorana and real scalar dark matter is promising since it can be a leading emission of sharp gamma-rays. However in the case of Majorana dark matter, its cross section for internal bremsstrahlung cannot be large enough to be observed by future gamma-ray experiments if the observed relic density is assumed to be thermally produced. In this paper, we introduce some degenerate particles with Majorana dark matter, and show they lead enhancement of the cross section. As a result, increase of about one order of magnitude for the cross section is possible without conflict with the observed relic density, and it would be tested by the future gamma-ray experiments such as GAMMA-400 and Cherenkov Telescope Array (CTA). In addition, the constraints of perturbativity, positron observation by the AMS experiment and direct search for dark matter are discussed.
NASA Astrophysics Data System (ADS)
Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe
2016-06-01
This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.
Chalcogenide centred gold complexes.
Gimeno, M Concepción; Laguna, Antonio
2008-09-01
Chalcogenide-centred gold complexes are an important class of compounds in which a central chalcogen is surrounded by several gold atoms or gold and other metals. They have special characteristics such as unusual geometries, electron deficiency and properties such as luminescence or non-linear optical properties. The best known species are the trinuclear [E(AuPR3)3]+, 'oxonium' type species, that have high synthetic applicability, not only in other chalcogen-centred species, but in many other organometallic derivatives. The aurophilic interactions play an important role in the stability, preference for a particular geometry and luminescence properties in this type of derivatives (critical review, 117 references).
ERIC Educational Resources Information Center
Maguire, Molly; Gunton, Ric
2000-01-01
Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…
Implementing Responsibility Centre Budgeting
ERIC Educational Resources Information Center
Vonasek, Joseph
2011-01-01
Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…
The Iranian Documentation Centre.
ERIC Educational Resources Information Center
Harvey, John F.
The purpose of the Iranian Documentation Centr (Irandoc) was to collect that portion of the world's literature which was pertinent to Iran's research interests, to organize that material, and to promote its use by Iranian researchers. Stated more succinctly, Irandoc's purpose was to obtain ready access to the world's scientific literature in order…
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
The Winnipeg Centre Project is a field-based, work-study program that attempts to create more appropriate education for the inner-city child. Sponsored by the Planning and Research Branch of the Department of Colleges and Universities Affairs and administered by Brandon University in consultation with the Winnipeg School Division, the project is…
Discovering a Discovery Centre
ERIC Educational Resources Information Center
McCullagh, John; Stewart, James; Greenwood, Julian
2007-01-01
There has recently been a growth in the popularity of "science centres" and this development provides an excellent opportunity to support the primary science curriculum. Their use is therefore well worth including within initial teacher education courses. Hence, undergraduate student teachers at Stranmillis University College Belfast may…
Discovering a Discovery Centre
ERIC Educational Resources Information Center
McCullagh, John; Stewart, James; Greenwood, Julian
2007-01-01
There has recently been a growth in the popularity of "science centres" and this development provides an excellent opportunity to support the primary science curriculum. Their use is therefore well worth including within initial teacher education courses. Hence, undergraduate student teachers at Stranmillis University College Belfast may…
Implementing Responsibility Centre Budgeting
ERIC Educational Resources Information Center
Vonasek, Joseph
2011-01-01
Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…
ERIC Educational Resources Information Center
Sweetnam and Godfrey, Melbourne (Australia).
The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…
ERIC Educational Resources Information Center
Sweetnam and Godfrey, Melbourne (Australia).
The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…
NASA Astrophysics Data System (ADS)
Vernek, Edson; Ruiz-Tijerina, David; da Silva, Luis D.; Egues, José Carlos
2015-09-01
Quantum dot attached to topological wires has become an interesting setup to study Majorana bound state in condensed matter[1]. One of the major advantage of using a quantum dot for this purpose is that it provides a suitable manner to study the interplay between Majorana bound states and the Kondo effect. Recently we have shown that a non-interacting quantum dot side-connected to a 1D topological superconductor and to metallic normal leads can sustain a Majorana mode even when the dot is empty. This is due to the Majorana bound state of the wire leaking into the quantum dot. Now we investigate the system for the case in which the quantum dot is interacting[3]. We explore the signatures of a Majorana zero-mode leaking into the quantum dot, using a recursive Green's function approach. We then study the Kondo regime using numerical renormalization group calculations. In this regime, we show that a "0.5" contribution to the conductance appears in system due to the presence of the Majorana mode, and that it persists for a wide range of the dot parameters. In the particle-hole symmetric point, in which the Kondo effect is more robust, the total conductance reaches 3e^2/2h, clearly indicating the coexistence of a Majorana mode and the Kondo resonance in the dot. However, the Kondo effect is suppressed by a gate voltage that detunes the dot from its particle-hole symmetric point as well as by a Zeeman field. The Majorana mode, on the other hand, is almost insensitive to both of them. We show that the zero-bias conductance as a function of the magnetic field follows a well-known universal curve. This can be observed experimentally, and we propose that this universality followed by a persistent conductance of 0.5,e^2/h are evidence for the presence of Majorana-Kondo physics. This work is supported by the Brazilians agencies FAPESP, CNPq and FAPEMIG. [1] A. Y. Kitaev, Ann.Phys. {bf 303}, 2 (2003). [2] E. Vernek, P.H. Penteado, A. C. Seridonio, J. C. Egues, Phys. Rev. B {bf
NASA Astrophysics Data System (ADS)
Pedrocchi, Fabio L.; Bonesteel, N. E.; DiVincenzo, David P.
2015-09-01
The Majorana code is an example of a stabilizer code where the quantum information is stored in a system supporting well-separated Majorana bound states (MBSs). We focus on one-dimensional realizations of the Majorana code, as well as networks of such structures, and investigate their lifetime when coupled to a parity-preserving thermal environment. We apply the Davies prescription, a standard method that describes the basic aspects of a thermal environment, and derive a master equation in the Born-Markov limit. We first focus on a single wire with immobile MBSs and perform error correction to annihilate thermal excitations. In the high-temperature limit, we show both analytically and numerically that the lifetime of the Majorana qubit grows logarithmically with the size of the wire. We then study a trijunction with four MBSs when braiding is executed. We study the occurrence of dangerous error processes that prevent the lifetime of the Majorana code from growing with the size of the trijunction. The origin of the dangerous processes is the braiding itself, which separates pairs of excitations and renders the noise nonlocal; these processes arise from the basic constraints of moving MBSs in one-dimensional (1D) structures. We confirm our predictions with Monte Carlo simulations in the low-temperature regime, i.e., the regime of practical relevance. Our results put a restriction on the degree of self-correction of this particular 1D topological quantum computing architecture.
Afifi, A F; Dowidar, A E
1978-01-01
Oxygen uptake by the spores of Fusarium moniliforme, F. oxysporum, F. semitectum, F. solani, Mucor racemosus and Trichoderma viride was increased in the presence of volatile substances extracted from Origanum majorana and Ocimum basilicum. This increase was greater in the presence of volatile substances from O. basilicum than O. majorana, except in the case of F. semitectum where the reverse was true. A drop in the RQ of all the germinating spores was observed in the presence of these substances. Volatile substances from O. majorana reduced the spore germination of M. racemosus whereas the spores of T. viride were stimulated to germinate. Volatile substances from O. basilicum stimulated the spore germination of M. racemosus whereas T. viride spores were not affected.
Bruno, Patrick
2012-06-15
The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.
Odd-Even Effect of the Persistent Current in a Quantum Dot Ring with Embedded Majorana Bound States
NASA Astrophysics Data System (ADS)
Gong, Wei-Jiang; Zhao, Ying; Gao, Zhen; Yi, Guangyu; Zhang, Xin
2015-02-01
We investigate the persistent current in one mesoscopic ring formed by the couplings between the end dots of a quantum dot chain and one Majorana bound states (MBS). It is found that the persistent-current properties are dependent on the dot-number parity of the chain. When the dot number is odd, the persistent current emerges with its oscillation by tuning the magnetic flux in the ring. However, if the dot number is even, the persistent current will always be zero regardless of the presence of Majorana zero mode. By transforming the system Hamiltonian into the Majorana representation, all the results are analyzed in detail. We believe that these results provide new information for understanding the MBS-assisted electron motion property in the mesoscopic system.
NASA Astrophysics Data System (ADS)
Mao, Ting; Wang, Z. D.
2015-01-01
Majorana bound states have been a focus of condensed matter research for their potential applications in topological quantum computation. Here we utilize two charge-qubit arrays to explicitly simulate a DIII class one-dimensional superconductor model where Majorana end states can appear. Combined with one braiding operation, universal single-qubit operations on a Majorana-based qubit can be implemented by a controllable inductive coupling between two charge qubits at the ends of the arrays. We further show that in a similar way, a controlled-not gate for two topological qubits can be simulated in four charge-qubit arrays. Although the current scheme may not truly realize topological quantum operations, we elaborate that the operations in charge-qubit arrays are indeed robust against certain local perturbations.
Effect of a tunnel barrier on the scattering from a Majorana bound state in an Andreev billiard
NASA Astrophysics Data System (ADS)
Marciani, M.; Schomerus, H.; Beenakker, C. W. J.
2016-03-01
We calculate the joint distribution P(S , Q) of the scattering matrix S and time-delay matrix Q = - iℏS† dS / dE of a chaotic quantum dot coupled by point contacts to metal electrodes. While S and Q are statistically independent for ballistic coupling, they become correlated for tunnel coupling. We relate the ensemble averages of Q and S and thereby obtain the average density of states at the Fermi level. We apply this to a calculation of the effect of a tunnel barrier on the Majorana resonance in a topological superconductor. We find that the presence of a Majorana bound state is hidden in the density of states and in the thermal conductance if even a single scattering channel has unit tunnel probability. The electrical conductance remains sensitive to the appearance of a Majorana bound state, and we calculate the variation of the average conductance through a topological phase transition.
NASA Astrophysics Data System (ADS)
Marciani, M.; Schomerus, H.; Beenakker, C. W. J.
2016-08-01
We calculate the joint distribution P(S , Q) of the scattering matrix S and time-delay matrix Q = - iℏS† dS / dE of a chaotic quantum dot coupled by point contacts to metal electrodes. While S and Q are statistically independent for ballistic coupling, they become correlated for tunnel coupling. We relate the ensemble averages of Q and S and thereby obtain the average density of states at the Fermi level. We apply this to a calculation of the effect of a tunnel barrier on the Majorana resonance in a topological superconductor. We find that the presence of a Majorana bound state is hidden in the density of states and in the thermal conductance if even a single scattering channel has unit tunnel probability. The electrical conductance remains sensitive to the appearance of a Majorana bound state, and we calculate the variation of the average conductance through a topological phase transition.
NASA Astrophysics Data System (ADS)
Chen, Hua-Jun; Zhu, Ka-Di
2015-08-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions.
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
Chen, Hua-Jun; Zhu, Ka-Di
2015-08-27
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions.
NASA Technical Reports Server (NTRS)
Labrune, Yves; Labbe, X.; Roussel, A.; Vielcanet, P.
1994-01-01
In the context of the CNES SPOT4 program CISI is particularly responsible for the development of the SPOT4 Management Centre, part of the SPOT4 ground control system located at CNES Toulouse (France) designed to provide simultaneous control over two satellites. The main operational activities are timed to synchronize with satellite visibilities (ten usable passes per day). The automatic capability of this system is achieved through agenda services (sequence of operations as defined and planned by operator). Therefore, the SPOT4 Management Centre offers limited, efficient and secure human interventions for supervision and decision making. This paper emphasizes the main system characteristics as degree of automation, level of dependability and system parameterization.
NASA Astrophysics Data System (ADS)
Wagiman, Aliani; Haja Bava Mohidin, Hazrina; Ismail, Alice Sabrina
2016-02-01
The demand for elderly centre has increased tremendously abreast with the world demographic change as the number of senior citizens rose in the 21st century. This has become one of the most crucial problems of today's era. As the world progress into modernity, more and more people are occupied with daily work causing the senior citizens to lose the care that they actually need. This paper seeks to elucidate the best possible design of an elderly care centre with new approach in order to provide the best service for them by analysing their needs and suitable activities that could elevate their quality of life. All these findings will then be incorporated into design solutions so as to enhance the living environment for the elderly especially in Malaysian context.
International Seismological Centre
Spall, H.; Hughes, A.
1979-01-01
The International Seismological Centre had its origins when the British seismologist Professor John Milne returned to England from Japan in 1895 to retire at Shide on the Isle of Eight. In cooperation with the British Association for the Advancement of Science, Milne had set up a number of seismographic stations around the world and, while Tokyo, had published a Catalogue of 8,33 Earthquakes Recorded in Japan, 1885-1892.
NASA Astrophysics Data System (ADS)
Das Sarma, S.; Nag, Amit; Sau, Jay D.
2016-07-01
We consider a simple conceptual question with respect to Majorana zero modes in semiconductor nanowires: can the measured nonideal values of the zero-bias-conductance-peak in the tunneling experiments be used as a characteristic to predict the underlying topological nature of the proximity induced nanowire superconductivity? In particular, we define and calculate the topological visibility, which is a variation of the topological invariant associated with the scattering matrix of the system as well as the zero-bias-conductance-peak heights in the tunneling measurements, in the presence of dissipative broadening, using precisely the same realistic nanowire parameters to connect the topological invariants with the zero-bias tunneling conductance values. This dissipative broadening is present in both (the existing) tunneling measurements and also (any future) braiding experiments as an inevitable consequence of a finite braiding time. The connection between the topological visibility and the conductance allows us to obtain the visibility of realistic braiding experiments in nanowires, and to conclude that the current experimentally accessible systems with nonideal zero-bias conductance peaks may indeed manifest (with rather low visibility) non-Abelian statistics for the Majorana zero modes. In general, we find that a large (small) superconducting gap (Majorana peak splitting) is essential for the manifestation of the non-Abelian braiding statistics, and in particular, a zero-bias conductance value of around half the ideal quantized Majorana value should be sufficient for the manifestation of non-Abelian statistics in experimental nanowires. Our work also establishes that as a matter of principle the topological transition associated with the emergence of Majorana zero modes in finite nanowires is always a crossover (akin to a quantum phase transition at finite temperature) requiring the presence of dissipative broadening (which must be larger than the Majorana energy
Can Chemistry Teachers' Centres Survive?
ERIC Educational Resources Information Center
Garforth, F. M.
1972-01-01
The difficulties faced by the Hull Chemistry Teachers' Centre in England are discussed. The lack of finances and time, as well as organizational difficulties in relationship with Science Centres and universities are among the problems. (TS)
Effective response theory for zero-energy Majorana bound states in three spatial dimensions
NASA Astrophysics Data System (ADS)
Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei
2015-05-01
We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.
NASA Astrophysics Data System (ADS)
Awoga, Oladunjoye A.; Björnson, Kristofer; Black-Schaffer, Annica M.
2017-05-01
Majorana bound states (MBSs) are well established in the clean limit in chains of ferromagnetically aligned impurities deposited on conventional superconductors with finite spin-orbit coupling. Here we show that these MBSs are very robust against disorder. By performing self-consistent calculations we find that the MBSs are protected as long as the surrounding superconductor show no large signs of inhomogeneity. We also find that longer chains offer more stability against disorder for the MBSs, albeit the minigap decreases, as do increasing strengths of spin-orbit coupling and superconductivity.
Floquet Majorana Fermions for Topological Qubits in Superconducting Devices and Cold-Atom Systems
NASA Astrophysics Data System (ADS)
Liu, Dong E.; Levchenko, Alex; Baranger, Harold U.
2013-07-01
We develop an approach to realizing a topological phase transition and non-Abelian braiding statistics with dynamically induced Floquet Majorana fermions (FMFs). When the periodic driving potential does not break fermion parity conservation, FMFs can encode quantum information. Quasienergy analysis shows that a stable FMF zero mode and two other satellite modes exist in a wide parameter space with large quasienergy gaps, which prevents transitions to other Floquet states under adiabatic driving. We also show that in the asymptotic limit FMFs preserve non-Abelian braiding statistics and, thus, behave like their equilibrium counterparts.
Magnetic moment of the majorana neutrino in the left-right symmetric model
Boyarkin, O. M. Boyarkina, G. G.
2013-04-15
Corrections to the neutrino magnetic dipole moment from the singly charged Higgs bosons h{sup ({+-})} and {delta}-tilde{sup (}{+-}) were calculated within the left-right symmetric model involving Majorana neutrinos. It is shown that, if the h{sup ({+-})} and {delta}-tilde{sup (}{+-}) bosons lie at the electroweak scale, the contributions from Higgs sector are commensurate with the contribution of charged gauge bosons or may even exceed it. The behavior of the neutrino flux inmatter and in amagnetic field was studied. It was found that resonance transitions between light and heavy neutrinos are forbidden.
NASA Astrophysics Data System (ADS)
Devillard, P.; Chevallier, D.; Albert, M.
2017-09-01
We compute various current-correlation functions of electrons flowing from a topological nanowire to the tip of a superconducting scanning tunnel microscope and identify fingerprints of a Majorana bound state. In particular, the spin resolved cross correlations are shown to display a clear distinction between the presence of a such an exotic state (negative correlations) and an Andreev bound state (positive correlations). Similarity and differences with measurements with a normal tunnel microscope are also discussed, like the robustness to finite temperature, for instance.
Thermoelectric transport through Majorana bound states and violation of Wiedemann-Franz law
NASA Astrophysics Data System (ADS)
Ramos-Andrade, J. P.; Ávalos-Ovando, O.; Orellana, P. A.; Ulloa, S. E.
2016-10-01
We study features of thermoelectric transport through a one-dimensional topological system model hosting Majorana bound states (MBSs) at its ends. We describe the behavior of the Seebeck coefficient and the Z T figure of merit for two configurations between the MBS and normal current leads. We find an important violation of the Wiedemann-Franz law in one of these geometries, leading to sizable values of the thermoelectric efficiency over a narrow window in chemical potential away from neutrality. These findings could lead to interesting thermoelectric-based MBS detection devices, via measurements of the Seebeck coefficient and figure of merit.
Pseudo-Hermitian Landau-Zener-Stückelberg-Majorana model
NASA Astrophysics Data System (ADS)
Torosov, Boyan T.; Vitanov, Nikolay V.
2017-07-01
We derive the analytical solution of the model of a two-state system interacting with an external coherent field, in which the Hamiltonian is pseudo-Hermitian. We describe in detail the non-Hermitian generalization of the famed Landau-Zener-Stückelberg-Majorana model, but similar generalizations can be derived in a very simple fashion for the other analytically soluble two-state models. The analytical solutions possess a non-Hermitian dynamical invariant, which replaces the probability conservation condition in the Hermitian case. Implementations in waveguide optics and nonlinear frequency conversion are suggested.
A New Infinite-Randomness Fixed Point in an Interacting Majorana Chain
NASA Astrophysics Data System (ADS)
Vijay, S.; Fu, Liang
We perform a real-space renormalization group (RG) study of an interacting chain of Majorana fermions with strong randomness. Our theory naturally describes the interacting, disordered edge of a weak topological superconductor in the BDI symmetry class of fermion topological phases. Our RG scheme reveals a new infinite-randomness fixed-point, governed by flow equations for the probability distribution of couplings. A numerical implementation of our real-space RG yields critical exponents governing susceptibilities and correlation functions near the fixed-point.
Two-channel Kondo physics in a Majorana island coupled to a Josephson junction
NASA Astrophysics Data System (ADS)
Landau, L. A.; Sela, E.
2017-01-01
We study a Majorana island coupled to a bulk superconductor via a Josephson junction and to multiple external normal leads. In the absence of the Josephson coupling, the system displays a topological Kondo state, which had been largely studied recently. However, we find that this state is unstable even to small Josephson coupling, which instead leads at low temperature T to a new fixed point. Most interesting is the case of three external leads, forming a minimal electronic realization of the long sought two-channel Kondo effect. While the T =0 conductance corresponds to simple resonant Andreev reflection, the leading T dependence forms an experimental fingerprint for non-Fermi-liquid properties.
Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states
NASA Astrophysics Data System (ADS)
Mu, Jin-Tao; Han, Yu; Gong, Wei-Jiang
2017-03-01
We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.
NASA Astrophysics Data System (ADS)
Xue, Zheng-Yuan
2013-04-01
We propose a scheme to implement controlled not gate for topological qubits in a quantum-dot and Majorana fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. A measurement based two-qubit controlled not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov-Casher effect.
Afifi, A F
1978-01-01
Differences were found in the counts and occurrence of fungi in the phyllosphere and thizosphere of two representatives of the Lamiacea family, Origanum majorana and Ocimum basilicum, and in the phyllosphere and rhizosphere of Phaseolus vulgaris growing separately or in coenosis with O. majorana or O. basilicum. Both the volatile substances released from ground leaves of the two latter plant species and the root exudates affected considerably spore germination of isolated phylospheric and rhizospheric fungi. The results indicated a possible role of root exudates and volatile substances released from leaves in colonization of rhizosphere and/or phyllosphere by fungi, especially in associations of various plants.
Validation of Pulse Shape Simulation for Ge detectors in the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Shanks, Benjamin; Majorana Collaboration
2015-04-01
The MAJORANA DEMONSTRATOR expects to begin searching for neutrinoless double beta decay using 76 Ge-enriched detectors in 2015. The DEMONSTRATOR high purity germanium (HPGe) detectors are built in the p-type point contact (PPC) geometry. The electrode of a PPC detector is small and shallow, resulting in low intrinsic capacitance and bulk field strengths compared to the traditional coaxial HPGe configuration. These characteristics allow for discrimination of signal event candidates from background using pulse shape analysis (PSA). In order to fully understand the systematics and efficiencies of PSA cuts, the MAJORANA collaboration has developed a software package to simulate signal generation in PPC detectors. This code has been validated by comparing simulated pulses to the pulse shapes generated for given detectors using an external source. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.
Status Update of the MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment
NASA Astrophysics Data System (ADS)
Vorren, Kristopher; Majorana Collaboration
2015-04-01
The MAJORANA collaboration has made significant progress over the past year on the MAJORANA DEMONSTRATOR. The goal of the DEMONSTRATOR is to demonstrate backgrounds low enough to justify building a tonne-scale experiment, establish the feasibility to construct and field modular arrays of Ge detectors, and perform searches for additional physics beyond the standard model. The DEMONSTRATOR is currently being built at the 4850 ft level of the Sanford Underground Research Facility (SURF) in Lead, SD. The first of three custom cryostats, the prototype module, is currently taking data, while assembly and commissioning of the second cryostat, module 1, is ongoing. Hardware fabrication for the third cryostat, module 2, is nearing completion. Combined, module 1 and module 2 will contain 40 kg of Ge detectors with 30 kg enriched to 87 % 76 Ge, the double-beta decaying isotope. An active simulation and analysis campaign is underway for the prototype and module 1 cryostats. This talk will provide an overview and status update on the DEMONSTRATOR. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.
The cosmogenic induced background estimation for the MAJORANA DEMONSTRATOR enriched 76Ge
NASA Astrophysics Data System (ADS)
White, Brandon; Majorana Collaboration
2016-03-01
Neutrino-less double beta (0 νββ) decay experiments probe for such rare events that the suppression of backgrounds are major experimental concerns. Cosmogenic induced isotopes have the potential to be a major background for such experiments. For the MAJORANA DEMONSTRATOR Experiment 76Ge isotope is used as both detector and source. The isotope 68Ge is cosmogenically produced when the Ge is on the Earth's surface. The decay of this isotope can mimic events in the region of interest. The experiment is located at the 4850 foot level at the Sanford Underground Research Facility in Lead, South Dakota to suppress cosmogenic activation. In this talk I will present the calculations of cosmogenic background for the enriched 76Ge materials used in the MAJORANA DEMONSTRATOR HPGe detectors. The activation is determined by the surface exposure from the time of production, storage, and delivery of the enriched Ge detectors to the underground experimental site. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Faci.
Probing the non-locality of Majorana fermions via quantum correlations
Li, Jun; Yu, Ting; Lin, Hai-Qing; You, J. Q.
2014-01-01
Majorana fermions (MFs) are exotic particles that are their own anti-particles. Recently, the search for the MFs occurring as quasi-particle excitations in solid-state systems has attracted widespread interest, because of their fundamental importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Here we study the quantum correlations between two spatially separate quantum dots induced by a pair of MFs emerging at the two ends of a semiconductor nanowire, in order to develop a new method for probing the MFs. We find that without the tunnel coupling between these paired MFs, quantum entanglement cannot be induced from an unentangled (i.e., product) state, but quantum discord is observed due to the intrinsic nonlocal correlations of the paired MFs. This finding reveals that quantum discord can indeed demonstrate the intrinsic non-locality of the MFs formed in the nanowire. Also, quantum discord can be employed to discriminate the MFs from the regular fermions. Furthermore, we propose an experimental setup to measure the onset of quantum discord due to the nonlocal correlations. Our approach provides a new, and experimentally accessible, method to study the Majorana bound states by probing their intrinsic non-locality signature. PMID:24816484
NASA Astrophysics Data System (ADS)
Cormann, Mirko; Caudano, Yves
2017-07-01
We express modular and weak values of observables of three- and higher-level quantum systems in their polar form. The Majorana representation of N-level systems in terms of symmetric states of N - 1 qubits provides us with a description on the Bloch sphere. With this geometric approach, we find that modular and weak values of observables of N-level quantum systems can be factored in N - 1 contributions. Their modulus is determined by the product of N - 1 ratios involving projection probabilities between qubits, while their argument is deduced from a sum of N - 1 solid angles on the Bloch sphere. These theoretical results allow us to study the geometric origin of the quantum phase discontinuity around singularities of weak values in three-level systems. We also analyze the three-box paradox (Aharonov and Vaidman 1991 J. Phys. A: Math. Gen. 24 2315-28) from the point of view of a bipartite quantum system. In the Majorana representation of this paradox, an observer comes to opposite conclusions about the entanglement state of the particles that were successfully pre- and postselected.
Quantum memories with zero-energy Majorana modes and experimental constraints
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo
2016-06-01
In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.
A search for a heavy Majorana neutrino and a radiation damage simulation for the HF detector
NASA Astrophysics Data System (ADS)
Wetzel, James William
A search for heavy Majorana neutrinos is performed using an event signature defined by two same-sign muons accompanied by two jets. This search is an extension of previous searches, (L3, DELPHI, CMS, ATLAS), using 19.7 fb -1 of data from the 2012 Large Hadron Collider experimental run collected by the Compact Muon Solenoid experiment. A mass window of 40-500 GeV/ c2 is explored. No excess events above Standard Model backgrounds is observed, and limits are set on the mixing element squared, |VmuN|2, as a function of Majorana neutFnrino mass. The Hadronic Forward (HF) Detector's performance will degrade as a function of the number of particles delivered to the detector over time, a quantity referred to as integrated luminosity and measured in inverse femtobarns (fb-1). In order to better plan detector upgrades, the CMS Forward Calorimetry Task Force (FCAL) group and the CMS Hadronic Calorimeter (HCAL) group have requested that radiation damage be simulated and the subsequent performance of the HF subdetector be studied. The simulation was implemented into both the CMS FastSim and CMS FullSim simulation packages. Standard calorimetry performance metrics were computed and are reported. The HF detector can expect to perform well through the planned delivery of 3000 fb-1.
Baâtour, Olfa; Tarchoune, Imen; Mahmoudi, Hela; Nassri, Nawel; Abidi, Wissal; Kaddour, Rym; Hamdaoui, Ghaith; Nasri-Ayachi, Mouhiba Ben; Lachaâl, Mohtar; Marzouk, Brahim
2012-06-01
O. majorana shoots were investigated for their essential oil (EO) composition. Two experiments were carried out; the first on hydroponic medium in a culture chamber and the second on inert sand in a greenhouse for 20 days. Plants were cultivated for 17 days in hydroponic medium supplemented with NaCl 100 mmol L⁻¹. The results showed that the O. majorana hydroponic medium offered higher essential oil yield than that from the greenhouse. The latter increased significantly in yield (by 50 %) under saline constraint while it did not change in the culture chamber. Under greenhouse conditions and in the absence of salt treatment, the major constituents were terpinen-4-ol and trans-sabinene hydrate. However, in the culture chamber, the major volatile components were cis-sabinene hydrate and terpinen-4-ol. In the presence of NaCl, new compounds appeared, such as eicosane, spathulenol, eugenol, and phenol. In addition, in the greenhouse, with or without salt, a very important change of trans-sabinene hydrate concentration in EO occurred, whereas in the culture chamber change appeared in cis-sabinene hydrate content.
Extended scaling and residual flavor symmetry in the neutrino Majorana mass matrix
NASA Astrophysics Data System (ADS)
Samanta, Rome; Roy, Probir; Ghosal, Ambar
2016-12-01
The residual symmetry approach, along with a complex extension for some flavor invariance, is a powerful tool to uncover the flavor structure of the 3 × 3 neutrino Majorana mass matrix M_ν toward gaining insights into neutrino mixing. We utilize this to propose a complex extension of the real scaling ansatz for M_ν which was introduced some years ago. Unlike the latter, our proposal allows a nonzero mass for each of the three light neutrinos as well as a nonvanishing θ _{13}. The generation of light neutrino masses via the type-I seesaw mechanism is also demonstrated. A major result of this scheme is that leptonic Dirac CP-violation must be maximal while atmospheric neutrino mixing does not need to be exactly maximal. Moreover, each of the two allowed Majorana phases, to be probed by the search for nuclear 0ν β β decay, has to be at one of its two CP-conserving values. There are other interesting consequences such as the allowed occurrence of a normal mass ordering which is not favored by the real scaling ansatz. Our predictions will be tested in ongoing and future neutrino oscillation experiments at T2K, NOν A and DUNE.
Detecting a Majorana-Fermion Zero Mode Using a Quantum Dot
NASA Astrophysics Data System (ADS)
Liu, Dong E.; Baranger, Harold U.
2012-02-01
We propose an setup for detecting a Majorana zero mode consisting of a spinless quantum dot coupled to the end of a p-wave superconducting nanowire [1]. The conductance through the dot is monitored by adding two external leads. We find that the Majorana bound state at the end of the wire strongly influences the conductance through the quantum dot: driving the wire through the topological phase transition causes a sharp jump in the conductance by a factor of 1/2. In the topological phase, the zero temperature peak value of the dot conductance (i.e. on resonance and symmetric coupling) is e^2/2h. In contrast, if the wire is in its trivial phase, the peak is e^2/h, or if a regular fermionic zero mode occurs, the conductance is 0. We also consider coupling the dot to both ends of the wire (two MBS), with a magnetic flux f through the loop. The conductance as a function of phase shows peaks at f/f0 = (2n+1)*pi which can be used to tune Flensberg's qubit system [PRL (2011)] to the energy degeneracy point. [4pt] [1] D. E. Liu and H. U. Baranger, PRB in press (2011); arXiv/1107.4338.
Molecular Andreev bound states and Majorana modes in a double dot system
NASA Astrophysics Data System (ADS)
Vernek, Edson; Silva, Joelson F.
Nanostructured systems such as quantum dots (QD) connected to superconductors has attracted a lot of attention in the recent years. One of the well known phenomena in such a system is the formation of a pair of bound called Andreev bound states (ABS). Recently, it have been shown that when a QD is coupled to a topological superconductor wire, a Majorana bound state (MBS) leaks from the end of the wire into the dot. The character of these bound states is much reacher in structures like molecules and is far from being completely understood. In this work we study a system composed by a two inter-connected QDs in which one of then is coupled to a normal superconductor and to a normal lead while the other is coupled to a topological superconductor and to a distinct normal metallic lead. We show that in the atomic limit (for small interdot coupling), one of the dot has a pair of ABS whereas the other has a single a MBS. More interestingly, in the molecular regime (large inter-dot coupling) we observe a localized Majorana mode coexisting with a delocalized molecular ABS. We would like to thank financial support from the Brazilian agencies CNPq, CAPES and FAPEMIG.
NASA Astrophysics Data System (ADS)
Benalcazar, Wladimir; Teo, Jeffrey; Hughes, Taylor; InstituteCondensed Matter Physics Team
2014-03-01
We classify discrete-rotation symmetric topological crystalline superconductors (TCS) in two dimensions and provide the criteria for a zero energy Majorana bound state (MBS) to be present at composite defects made from magnetic flux, dislocations, and disclinations. In addition to the Chern number that encodes chirality, discrete rotation symmetry further divides TCS into distinct stable topological classes according to the rotation eigenspectrum of Bogoliubov-de Gennes quasi-particles. Conical crystalline defects are shown to be able to accommodate robust MBS when a certain combination of these bulk topological invariants is non-trivial as dictated by the index theorems proved within. The number parity of MBS is counted by a Z2-valued index that solely depends on the disclination and the topological class of the TCS. We also discuss the implications for corner-bound Majorana modes on the boundary of topological crystalline superconductors J.C.Y.T. acknowledges support from the Simons Foundation Fellowship. T.L.H. was supported by ONR Grant No. N0014-12-1-0935. We also thanks the support of the UIUC ICMT.
Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Imura, Ken-Ichiro; Fukui, Takahiro; Fujiwara, Takanori
2012-01-01
We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chern number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension d of the system is left arbitrary throughout the paper.
ν-K0 Analogy, Dirac-Majorana Neutrino Duality and the Neutrino Oscillations
NASA Astrophysics Data System (ADS)
Lipmanov, E. M.
The intent of this paper is to convey a new primary physical idea of a Dirac-Majorana neutrino duality in relation to the topical problem of neutrino oscillations. In view of the new atmospheric, solar and the LSND neutrino oscillation data, the Pontecorvo ν - K0 oscillation analogy is generalized to the notion of neutrino duality with substantially different physical meaning ascribed to the long-baseline and the short-baseline neutrino oscillations. At the level of CP-invariance, the suggestion of dual neutrino properties defines the symmetric two-mixing-angle form of the widely discussed four-neutrino (2 +2)-mixing scheme, as a result of the lepton charge conservation selection rule and a minimum of two Dirac neutrino fields. With neutrino duality, the two-doublet structure of the Majorana neutrino mass spectrum is a vestige of the two-Dirac-neutrino origin. The fine neutrino mass doublet structure is natural because it is produced by a lepton charge symmetry violating perturbation on a zero-approximation system of two twofold mass-degenerate Dirac neutrino-antineutrino pairs. A set of inferences related to the neutrino oscillation phenomenology in vacuum is considered.
NASA Astrophysics Data System (ADS)
Mishmash, Ryan V.; Aasen, David; Hell, Michael; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason
We introduce a scheme for preparation, manipulation, and readout of Majorana zero modes in semiconducting wires coated with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate-control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. Recently, we have outlined a sequence of relatively modest milestones which interpolate between zero-mode detection and longer term quantum computing applications. In this talk, I will discuss two of these milestones: (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensing or Majorana-mediated charge pumping and (2) validation of a prototype topological qubit via unconventional scaling relations between the time-averaged qubit splitting and its decoherence times T1 and T2. Both of these proposed experiments require only a single wire with two islands--a hardware configuration already available in the laboratory. Furthermore, these pre-braiding experiments can be adapted to other manipulation and readout schemes as well.
Symmetry-protected non-Abelian braiding of Majorana Kramers pairs
NASA Astrophysics Data System (ADS)
Gao, Pin; He, Ying-Ping; Liu, Xiong-Jun
2016-12-01
We develop a complete theory for symmetry protected non-Abelian statistics of Majorana Kramers' pairs (MKPs) in time-reversal (TR) invariant topological superconductors, with fundamental results being uncovered. By introducing an effective Hamiltonian approach to describe the braiding of MKPs, we show that the non-Abelian braiding is protected when the effective Hamiltonian exhibits a new TR-like antiunitary symmetry, which is satisfied if the system is free of dynamical noise. Importantly, even the dynamical noise cannot cause error in braiding, unless the noise correlation function breaks a dynamical TR symmetry. This is a profound result and generalizes the TR symmetry protection of MKPs to the dynamical regime. Moreover, the resulted error by noise is shown to be a higher-order effect, compared with the decoherence of Majorana qubits without TR symmetry protection. This study completes the theory of symmetry-protected non-Abelian statistics of MKPs, and shows that the non-Abelian braiding of MKPs is well observable and may have versatile applications to future quantum computation technologies.
NASA Astrophysics Data System (ADS)
Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.
2015-03-01
We show that precision measurement of (1) the sum of neutrino masses by cosmological observation and (2) the lifetime of neutrinoless double beta decay in ton-scale experiments, with supplementary use of (3) effective mass measured in a single beta decay experiment, would allow us to obtain information on the Majorana phase of neutrinos. To quantify the sensitivity to the phase, we use the CP exclusion fraction, a fraction of the CP phase parameter space that can be excluded for a given set of assumed input parameters, a global measure for CP violation. We illustrate the sensitivity under varying assumptions, from modest to optimistic ones, on experimental errors and theoretical uncertainty of nuclear matrix elements. Assuming that the latter can be reduced to a factor of {˜eq }1.5, we find that one of the two Majorana phases (denoted as α _{21}) can be constrained by excluding {˜eq }10-40{%} of the phase space at the 2σ confidence level even with a modest choice of experimental error for the lowest neutrino mass of 0.1 eV. The characteristic features of the sensitivity to α _{21}, such as dependences on the true values of α _{21}, are addressed.
Spin-orbit coupling in InSb semiconductor nanowires: physical limits for majorana states
NASA Astrophysics Data System (ADS)
Sipahi, Guilherme; de Campos, Tiago; Faria Junior, Paulo E.; Gmitra, Martin; Zutic, Igor; Fabian, Jaroslav
The search for Majorana fermions is a hot subject nowadays. One of the possibilities for their realization is the use of semiconductor nanowires and p-type superconductors coupled together. Following this path, the first step is the determination of realistic band structures of these wires including spin-orbit effects. To consider the spin-orbit effects, its common to use models that take into account only the first conduction band. Although these reduced models have been successfully used to determine some physical properties, a more realistic description of the spin-orbit coupling between the bands is required to further investigate possible ways to realize the Majorana fermions. In this study we use a state of the art 14 band k.p formalism together with the envelope function approach to determine the band structure of InAs semiconductor nanowires and analyze how the quantum confinement change the coupling between the bands. As a result we have extracted the effective masses and the spin-orbit splitting for a large range of nanowire radial sizes and for several conduction bands that can be used in effective models. FAPESP (No. 2011/19333-4, No. 2012/05618-0 and No. 2013/23393-8), CNPq (No. 246549/2012-2 and No. 149904/2013-4), CAPES(PVE 88881.068174/2014-01) and DFG SFB 689.
Cosmic ray electron and positron excesses from a fourth generation heavy Majorana neutrino
Masina, Isabella; Sannino, Francesco E-mail: sannino@cp3-origins.net
2011-08-01
Unexpected features in the energy spectra of cosmic rays electrons and positrons have been recently observed by PAMELA and Fermi-LAT satellite experiments, opening to the exciting possibility of an indirect manifestation of new physics. A TeV-scale fourth lepton family is a natural extension of the Standard Model leptonic sector (also linked to the hierarchy problem in Minimal Walking Technicolor models). The heavy Majorana neutrino of this setup mixes with Standard Model charged leptons through a weak charged current interaction. Here, we first study analytically the energy spectrum of the electrons and positrons originated in the heavy Majorana neutrino decay modes, also including polarization effects. We then compare the prediction of this model with the experimental data, exploiting both the standard direct method and our recently proposed Sum Rules method. We find that the decay modes involving the tau and/or the muon charged leptons as primary decay products fit well the PAMELA and Fermi-LAT lepton excesses while there is tension with respect to the antiproton to proton fraction constrained by PAMELA.
Optimizing spin-orbit splittings in InSb Majorana nanowires
NASA Astrophysics Data System (ADS)
Soluyanov, Alexey A.; Gresch, Dominik; Troyer, Matthias; Lutchyn, Roman M.; Bauer, Bela; Nayak, Chetan
2016-03-01
Semiconductor-superconductor heterostructures represent a promising platform for the detection of Majorana zero modes and subsequently the processing of quantum information using their exotic non-Abelian statistics. Theoretical modeling of such low-dimensional heterostructures is generally based on phenomenological effective models. However, a more microscopic understanding of the band structure and, especially, of the spin-orbit coupling of electrons in these devices is important for optimizing their parameters for applications in quantum computing. In this paper, we approach this problem by first obtaining a highly accurate effective tight-binding model of bulk InSb from ab initio calculations. This model is symmetrized and correctly reproduces both the band structure and the wave function character. It is then used to simulate slabs of InSb in external electric fields. The results of this simulation are used to determine a growth direction for InSb nanowires that optimizes the conditions for the experimental realization of Majorana zero modes.
Effect of chiral symmetry on chaotic scattering from Majorana zero modes.
Schomerus, H; Marciani, M; Beenakker, C W J
2015-04-24
In many of the experimental systems that may host Majorana zero modes, a so-called chiral symmetry exists that protects overlapping zero modes from splitting up. This symmetry is operative in a superconducting nanowire that is narrower than the spin-orbit scattering length, and at the Dirac point of a superconductor-topological insulator heterostructure. Here we show that chiral symmetry strongly modifies the dynamical and spectral properties of a chaotic scatterer, even if it binds only a single zero mode. These properties are quantified by the Wigner-Smith time-delay matrix Q=-iℏS^{†}dS/dE, the Hermitian energy derivative of the scattering matrix, related to the density of states by ρ=(2πℏ)^{-1}TrQ. We compute the probability distribution of Q and ρ, dependent on the number ν of Majorana zero modes, in the chiral ensembles of random-matrix theory. Chiral symmetry is essential for a significant ν dependence.
Surface Andreev bound states of superfluid 3He and Majorana fermions.
Okuda, Y; Nomura, R
2012-08-29
Superfluid (3)He is an intensively investigated and well characterized p-wave superfluid. In the bulk Balian-Werthamer state, which is commonly called the (3)He B phase, the superfluid gap is opened isotropically but near a flat boundary such as a wall of a container it can harbor interesting quasi-particle states inside the gap. These states are called surface Andreev bound states, and have not been experimentally explored in detail. Transverse acoustic impedance measurement has revealed their existence and provided spectroscopic details of the dispersion of the bound states. Recent theoretical arguments claim that the surface Andreev bound states of the superfluid (3)He B phase can be recognized as the edge states of the topological superfluid and be regarded as a Majorana fermion, a fancy particle which has not been confirmed in elementary particle physics. In this review, we present up-to-date knowledge on the surface Andreev bound states of the (3)He B phase revealed by acoustic spectroscopy and the possible realization of a Majorana fermion, along with related studies on this topic.
NASA Astrophysics Data System (ADS)
Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin
2017-03-01
Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.
NASA Astrophysics Data System (ADS)
Zichichi, A.
2014-06-01
The Ettore Majorana Foundation and Centre for Scientific Culture (EMFCSC) is celebrating its 50th Anniversary over the three years 2011-2013. This year will be the second of the three devoted to the celebrations of the 50th Anniversary. Why three years? The EMFCSC started in 1961 when, with my great friend John Bell, I discussed the problem of creating a bridge between university courses and activities in advanced physics laboratories such as CERN. A year later, on May 8th at CERN, Bell, Patrick Blackett, Victor Weisskopf, Isidor Rabi and Zichichi formally established the EMFCSC. The Centre's first activity was the School of Subnuclear Physics at Erice in 1963. This is why the celebrations are over three years. In 2011, the discovery of the negative sign of the β-function and of asymptotic freedom was celebrated. In 2013, the SSB plus Instantons will be celebrated. In 2012 we celebrate QCD...
NASA Astrophysics Data System (ADS)
Rajak, Atanu; Dutta, Amit
2014-04-01
We consider the temporal evolution of a zero-energy edge Majorana of a spinless p-wave superconducting chain following a sudden change of a parameter of the Hamiltonian. Starting from one of the topological phases that has an edge Majorana, the system is suddenly driven to the other topological phase or to the (topologically) trivial phases and to the quantum critical points (QCPs) separating these phases. The survival probability of the initial edge Majorana as a function of time is studied following the quench. Interestingly when the chain is quenched to the QCP, we find a nearly perfect oscillation of the survival probability, indicating that the Majorana travels back and forth between two ends, with a time period that scales with the system size. We also generalize to the situation when there is a next-nearest-neighbor hopping in a superconducting chain and there results in a pair of edge Majorana at each end of the chain in the topological phase. We show that the frequency of oscillation of the survival probability gets doubled in this case. We also perform an instantaneous quenching of the Hamiltonian (with two Majorana modes at each end of the chain) to an another Hamiltonian which has only one Majorana mode in equilibrium; the MSP shows oscillations as a function of time with a noticeable decay in the amplitude. On the other hand for a quenching which is reverse to the previous one, the MSP decays rapidly and stays close to zero with fluctuations in amplitude.
NASA Astrophysics Data System (ADS)
Nori, Franco
2014-03-01
We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.
Ortiz, Gerardo; Cobanera, Emilio
2016-09-15
We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules. Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson–Gaudin–Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.