Science.gov

Sample records for eu tm yb

  1. Spectroscopic properties Eu 3+ doped and Tm 3+/Yb 3+ codoped oxyfluoride glass ceramics containing Ba 2GdF 7 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhao, Shilong; Xu, Shiqing; Deng, Degang; Wang, Huanping; Huang, Lihui; Fan, Xianping

    2010-07-01

    Transparent Eu 3+ doped and Tm 3+/Yb 3+ codoped oxyfluoride glass ceramics were prepared and spectroscopic properties were investigated. The XRD and TEM results demonstrated the formation of Ba 2GdF 7 nanocrystals, and the reduction of the ratio β between 5D0→7F2 and 5D0→7F1 transitions of Eu 3+ ions evidenced rare-earth ions incorporation into Ba 2GdF 7 nanocrystals. For Tm 3+/Yb 3+ codoped glass ceramic, unusual ultraviolet upconversion emissions from 6PJ→8S transition of Gd 3+ at 308 nm and 1D2→3H6, 1D2→3F4 and 1G4→3H6 transitions of Tm 3+ at 359 nm, 449 nm and 476 nm were observed under 980 nm excitation, respectively. And upconversion mechanism of Tm 3+-Yb 3-Gd 3++ system was analyzed.

  2. Facile synthesis and multicolor luminescent properties of uniform Lu2O3:Ln (Ln=Eu3+, Tb3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanospheres.

    PubMed

    Li, Rumin; Gai, Shili; Wang, Liuzhen; Wang, Jun; Yang, Piaoping

    2012-02-15

    Multicolor Lu(2)O(3):Ln (Ln=Eu(3+), Tb(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) nanocrystals (NCs) with uniform spherical morphology were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize these samples. The XRD results reveal that the as-prepared nanospheres can be well indexed to cubic Lu(2)O(3) phase with high purity. The SEM images show the obtained Lu(2)O(3):Ln samples consist of regular nanospheres with the mean diameter of 95 nm. And the possible formation mechanism is also proposed. Upon ultraviolet (UV) excitation, Lu(2)O(3):Ln (Ln=Eu(3+) and Tb(3+)) NCs exhibit bright red (Eu(3+), (5)D(0)→(7)F(2)), and green (Tb(3+), (5)D(4)→(7)F(5)) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu(2)O(3):Ln (Ln=Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) NCs display the typical up-conversion (UC) emissions of green (Er(3+), (4)S(3/2),(2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow-green (Ho(3+), (5)F(4), (5)S(2)→(5)I(8)), respectively.

  3. White light upconversion in Yb-sensitized (Tm, Ho)-doped KLu(WO4)2 nanocrystals: the effect of Eu incorporation.

    PubMed

    Barrera, E W; Pujol, M C; Carvajal, J J; Mateos, X; Solé, Rosa; Massons, J; Speghini, A; Bettinelli, M; Cascales, C; Aguiló, M; Díaz, F

    2014-01-28

    Monoclinic Yb-sensitized (Tm, Ho)-doped KLu(WO4)2 nanocrystals of ~100 nm size have been synthesized by the modified Pechini sol-gel method. Their diode laser near-infrared (~980 nm) excited upconversion emission properties have been characterized at power densities in the range 30-355 W cm(-2). Bright white light composed of blue ~475 nm, green ~540 nm, and red ~650 nm emissions, corresponding to Tm(3+ 1)G4 → (3)H6, Ho(3+ 5)S2, (5)F4 → (5)I8, and Ho(3+ 5)F5 → (5)I8 electronic transitions, respectively, was generated by adjusting the Yb, Tm, and Ho contents in KLu(WO4)2 nanocrystalline samples. Chromaticity coordinates of the emitted white light can be tuned by modifying the excitation power density. The effect of Tm and Ho on the luminescence dynamics has been described by analyzing the upconverted emission intensity dependence on the excitation power, as well as from Stokes and decay time measurements. The effect on upconversion properties of further codoping with Eu in these (Tm, Ho, Yb)-doped KLu(WO4)2 nanocrystals has also been studied.

  4. Highly uniform and monodisperse beta-NaYF(4):Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties.

    PubMed

    Li, Chunxia; Quan, Zewei; Yang, Jun; Yang, Piaoping; Lin, Jun

    2007-08-06

    beta-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu3+ (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to 5D0-3 --> 7FJ (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively. When doped with 5% Tb3+ ions, the strong DC fluorescence corresponding to 5D4 --> 7FJ (J = 6, 5, 4, 3) transitions with 5D4 --> 7F5 (green emission at 544 nm) being the most prominent group that has been observed. In addition, under 980 nm laser excitation, the Yb3+/Er3+- and Yb3+/Tm3+-codoped beta-NaYF4 samples exhibit bright green and whitish blue up-conversion (UC) luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.

  5. Physicochemical Properties of Near-Linear Lanthanide(II) Bis(silylamide) Complexes (Ln = Sm, Eu, Tm, Yb).

    PubMed

    Goodwin, Conrad A P; Chilton, Nicholas F; Vettese, Gianni F; Moreno Pineda, Eufemio; Crowe, Iain F; Ziller, Joseph W; Winpenny, Richard E P; Evans, William J; Mills, David P

    2016-10-17

    Following our report of the first near-linear lanthanide (Ln) complex, [Sm(N(††))2] (1), herein we present the synthesis of [Ln(N(††))2] [N(††) = {N(Si(i)Pr3)2}; Ln = Eu (2), Tm (3), Yb (4)], thus achieving approximate uniaxial geometries for a series of "traditional" Ln(II) ions. Experimental evidence, together with calculations performed on a model of 4, indicates that dispersion forces are important for stabilization of the near-linear geometries of 1-4. The isolation of 3 under a dinitrogen atmosphere is noteworthy, given that "[Tm(N″)(μ-N″)]2" (N″ = {N(SiMe3)2}) has not previously been structurally authenticated and reacts rapidly with N2(g) to give [{Tm(N″)2}2(μ-η(2):η(2)-N2)]. Complexes 1-4 have been characterized as appropriate by single-crystal X-ray diffraction, magnetic measurements, electrochemistry, multinuclear NMR, electron paramagnetic resonance (EPR), and electronic spectroscopy, along with computational methods for 3 and 4. The remarkable geometries of monomeric 1-4 lead to interesting physical properties, which complement and contrast with comparatively well understood dimeric [Ln(N″)(μ-N″)]2 complexes. EPR spectroscopy of 3 shows that the near-linear geometry stabilizes mJ states with oblate spheroid electron density distributions, validating our previous suggestions. Cyclic voltammetry experiments carried out on 1-4 did not yield Ln(II) reduction potentials, so a reactivity study of 1 was performed with selected substrates in order to benchmark the Sm(III) → Sm(II) couple. The separate reactions of 1 with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), azobenzene, and benzophenone gave crystals of [Sm(N(††))2(TEMPO)] (5), [Sm(N(††))2(N2Ph2)] (6), and [Sm(N(††)){μ-OPhC(C6H5)CPh2O-κO,O'}]2 (7), respectively. The isolation of 5-7 shows that the Sm(II) center in 1 is still accessible despite having two bulky N(††) moieties and that the N-donor atoms are able to deviate further from linearity or ligand

  6. Up-Conversion Luminescence in Oxyfluoride Glass-Ceramics with PbF2:(Yb3+, Eu3+, RE3+) (RE = Tm, Ho, OR Er) Nanocrystals

    NASA Astrophysics Data System (ADS)

    Vilejshikova, E. V.; Loiko, P. A.; Rachkovskay, G. E.; Zakharevich, G. B.; Yumashev, K. V.

    2016-11-01

    Transparent oxyfluoride glass-ceramics containing PbF2:(Yb3+, Eu3+, RE3+) (RE = Tm, Ho, Er) nanocrystals were synthesized by secondary thermal treatment of low-melting SiO2-PbO-PbF2-CdF2 glasses. The optical absorption and luminescence of the rare earth ions were investigated. Multi-color (orange, yellow, green, and blue) upconversion luminescence was detected with excitation at 960 nm by an InGaAs laser diode. The luminescence color characteristics could be controlled by varying the heat treatment regime.

  7. Facile synthesis and luminescence properties of Y2O3:Ln(3+) (Ln(3+) = Eu(3+), Tb(3+), Dy(3+), Sm(3+), Er(3+), Ho(3+), Tm(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), Yb(3+)/Ho(3+)) microspheres.

    PubMed

    Xu, Zhenhe; Zhao, Qian; Ren, Baoyi; You, Lixin; Sun, Yaguang

    2014-08-01

    Multicolor and monodisperse Y2O3:Ln(3+) (Ln(3+) = Eu(3+), Tb(3+), Dy(3+), Sm(3+), Er(3+), Ho(3+), Tm(3+), Yb(3+)/Er(3+), Yb(3+)/Ho(3+)) microspheres were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric analysis (TGA), photoluminescence (PL) and cathodoluminescence (CL) spectra were employed to characterize the samples. The XRD results reveal that the as-prepared spheres can be well indexed to cubic Y2O3 phase with high purity. The SEM and TEM images show the obtained Y2O3:Ln(3+) samples consist of regular nanospheres with the mean diameter of 350 nm. And the possible formation mechanism is also proposed. Upon ultraviolet and low-voltage electron beams excitation, Y2O3:Ln(3+) (Ln(3+) = Eu(3+), Tb(3+), Dy(3+), Sm(3+), Er(3+), Ho(3+), Tm(3+)) samples exhibit respective bright red (Eu(3+), (5)D0 --> (7)F2), green (Tb(3+), (5)D4 --> (7)F5), blue (Dy(3+), (4)F9/2 --> (6)H13/2), yellow (Sm(3+), (4)G5/2 --> (6)H7/2), green (Er(3+), (4)S3/2 --> (4)I15/2), green (Ho(3+), (5)S2 --> (5)I8), blue (Tm(3+), (1)D2 --> (3)F4) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Y2O3:Ln(3+) (Ln(3+) = Yb(3+)/Er(3+), Yb(3+)/Tm(3+) and Yb(3+)/Ho(3+)) exhibit characteristic up-conversion (UC) emissions of green (Er(3+), (2)H11/2, (4)S3/2, (2)H11/2 --> (4)I5/2), blue (Tm(3+), (1)G4 --> (3)H6) and green (Ho(3+), (5)F4, (5)S2 --> (5)I8), respectively. These merits of multicolor emissions in the visible region endow this kind of material with potential applications in the field of light display systems, lasers, and optoelectronic devices.

  8. Infrared and Raman spectra of tris(dipivaloylmethanato) lanthanides, Ln(thd)3 (Ln = La, Nd, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu)

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Sliznev, Valery V.; Christen, Dines

    2017-03-01

    The infrared and Raman vibrational spectra of the series of solid tris(dipivaloylmethanato) lanthanides, Ln(thd)3 (Ln = La, Nd, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu), have been recorded at room temperature over wide ranges (4000-50 cm-1 and 3500-80 cm-1, respectively). The experimental spectra obtained in the present study were successfully assigned based on the quantum chemical calculations (DFT/PBE0) performed for the monomer Ln(thd)3 molecules. The experimental vibrational spectra for all complexes studied are rather similar as are the theoretical simulations. The data analysis shows that the main contributions to vibrational modes arise from the vibrations of the ligand possessing practically the same geometry for all complexes. According to the calculation results the structure of the coordination polyhedron is increasingly distorted in the series from La(thd)3 to Lu(thd)3. Although the contributions of the polyhedron vibrations in vibrational modes are not predominant, there is rise in the frequencies associated with vibrations of the coordination polyhedron LnO6 in this series. This increase has been explained by the concept of lanthanide contraction.

  9. Large-scale synthesis of Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+}, Tb{sup 3+}, Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) microspheres and their photoluminescence properties

    SciTech Connect

    Gao, Yu; Gong, Jian; Fan, Miaomiao; Fang, Qinghong; Wang, Na; Han, Wenchi; Xu, Zhenhe

    2012-12-15

    Graphical abstract: In this work, multicolor and monodisperse Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+}, Tb{sup 3+}, Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) microspheres were prepared by a homogeneous precipitation method followed by a subsequent calcination process. Display Omitted Highlights: ► Lu{sub 2}O{sub 3}:Ln{sup 3+} microspheres were prepared by a precipitation followed by a calcination process. ► Lu{sub 2}O{sub 3}:Eu{sup 3+}/Tb{sup 3+} samples exhibit respective red or green emissions. ► Lu{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} exhibit emissions of green, blue, yellow-green, respectively. ► These finding may find potential applications in bioanalysis and field emission displays. -- Abstract: In this work, multicolor and monodisperse Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+}, Tb{sup 3+}, Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) microspheres were prepared by a homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and cathodoluminescence (CL) spectra were employed to characterize the samples. Upon ultraviolet and low-voltage electron beams excitation, Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+} and Tb{sup 3+}) samples exhibit respective bright red (Eu{sup 3+}, {sup 5}D{sub 0} → {sup 7}F{sub 2}) and green (Tb{sup 3+}, {sup 5}D{sub 4} → {sup 7}F{sub 5}) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) exhibit characteristic up-conversion (UC) emissions of green (Er{sup 3+}, {sup 4}S{sub 3/2}, {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}), blue (Tm{sup 3+}, {sup 1}G{sub 4} → {sup

  10. Controlled synthesis and luminescence properties of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) phosphors by hydrothermal method versus pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mahalingam, Venkatakrishnan; Thirumalai, Jagannathan; Krishnan, Rajagopalan; Chandramohan, Rathinam

    2016-01-01

    Herein, we report on rare-earth (RE) activated Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, Dy, Yb/Er, Yb/Ho, and Yb/Tm) phosphors synthesized using a surfactant-mediated hydrothermal route. Timedependent experiments were performed, and the morphological evolution of the phosphors was studied. From prepared powder samples of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu and Yb/Er), nano-sized thin phosphor films were grown using pulsed laser deposition (PLD). The surface topography of the as-grown thin phosphor films was analyzed. The asprepared phosphors were characterized by structural and optical studies. The powder phosphor exhibited bi pyramid-like micro-architectures. Structural studies indicated that Ca0.5Y1-x(MoO4)2 possesses the scheelite tetragonal crystal structure. The down-conversion luminescence of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, and Dy) as powder phosphors and Eu3+ doped Ca0.5Y1-x(MoO4)2 thin phosphor film were studied. Upon irradiation with a 980 nm laser, the Ca0.5Y1-x(MoO4)2: xRE3+ (RE = Yb/Er, Yb/Ho, and Yb/Tm) powder phosphors and Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Yb/Er) thin phosphor film showed intense up-converted visible emissions in green, yellow, and blue regions. The fluorescence decay time and color co-ordinates were determined for all synthesized phosphors. From the obtained results, the prepared powder and thin film phosphors are suggested to be suitable candidates for display and electro-luminescence applications. [Figure not available: see fulltext.

  11. Magnetism in the KBaRE(BO3)2 (RE  =  Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) series: materials with a triangular rare earth lattice

    NASA Astrophysics Data System (ADS)

    Sanders, M. B.; Cevallos, F. A.; Cava, R. J.

    2017-03-01

    We report the magnetic properties of compounds in the KBaRE(BO3)2 family (RE  =  Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), materials with a planar triangular lattice composed of rare earth ions. The samples were analyzed by x-ray diffraction and crystallize in the space group R-3m. Physical property measurements indicate the compounds display predominantly antiferromagnetic interactions between spins without any signs of magnetic ordering above 1.8 K. The ideal 2D rare earth triangular layers in this structure type make it a potential model system for investigating magnetic frustration in rare-earth-based materials.

  12. Raman spectra of 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ compounds (Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, Yb, Tb)

    SciTech Connect

    Mel'nik, N.N.; Tsapenko, L.M.

    1988-03-01

    This work uses Raman and x-ray phase analysis methods to investigate compounds of the type 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ (where Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, and Yb). The compounds were synthesized by melting in an optical beam on a water-cooled substrate (quench rate approx. 10/sup 2/ deg/sec) and by rapid quenching of a melt cupel by slamming with water-cooled blocks quench rate approx. 10/sup 5/ - 10/sup 6/ deg/sec. The x-ray diffraction study was done on a DRON-2 diffractometer. The Raman light spectra were recorded with a DFS-24 double monochromator employing argon laser excitation.

  13. Superconducting Critical Temperature of Overdoped LnBa2Cu3Oy+Δy (Ln=La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm and Yb)

    NASA Astrophysics Data System (ADS)

    Okai, Bin; Ono, Akira

    1999-09-01

    A series of overdoped LnBa2Cu3Oy+Δy (Ln=La˜Yb) was synthesized at high oxygen pressure for investigating the relationship between the superconducting critical temperature Tc, overdoping oxygen content Δy, and Ln. Tc of 1-2-3 compound LnBa2Cu3Oy+Δy remains almost unchanged through various levels of overdoping for small ionic radii of Ln. As the ionic radus of Ln increases, Tc decreases with the level of overdoping. The decrease changes systematically from EuBa2Cu3Oy+Δy to LaBa2Cu3Oy+Δy; the decrease for LaBa2Cu3Oy+Δy is the steepest. Tc is also reduced probably by the mixing of Ln and Ba, as observed in NdBa2Cu3Oy+Δy and LaBa2Cu3Oy+Δy.

  14. Upconversion processes in Yb-sensitized Tm:ZBLAN

    SciTech Connect

    Carrig, T.J.; Cockroft, N.J.

    1996-10-01

    A spectroscopic study of 22 rare-earth-ion doped ZBLAN (fluorozirconate) glass was done to study feasibility of sensitizing Tm:ZBLAN with Yb to facilitate development of an efficient, conveniently pumped blue upconversion fiber laser. it was found that, under single-color pumping, 480 nm emission from Tm{sup 3+} was strongest when Yb,Tm:ZBLAN is excited at 975 nm; the strongest blue blue emission was obtained from a glass sample with 2.0 wt% Yb + 0.3 wt% Tm. Also, for weak 975 nm pump intensities, strength of blue upconversion emission can be greatly enhanced by simultaneously pumping at 785 nm. This increased upconversion efficiency is due to reduced number of energy transfer steps needed to populate the Tm{sup 3+} {sup 1}G{sub 4} energy level. Measurements of fluorescence lifetimes vs dopant concentration were also made for Yb{sup 3+}, Tm{sup 3+}, and Pr{sup 3+} transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm{sup 3+} and Pr{sup 3+} in ZBLAN is also described.

  15. Synthesis and characterization of KY3F10:Yb:Nd:Tm crystals

    NASA Astrophysics Data System (ADS)

    Silva, H. M.; Courrol, L. C.; Gomes, L.; Bertram, R.; Baldochi, S. L.; Ranieri, I. M.

    2010-11-01

    Energy transfer processes that generate thulium blue and ultraviolet emissions by upconversion were studied in KY3F10:Tm (KY3F:Tm), using Nd3+ and Yb3+ as sensitizers of Tm3+. The upconversion mechanisms were determined by exciting into the Nd and Tm absorption bands with a diode laser at 797nm. It was observed that the intensity of the Tm3+ blue and ultraviolet emissions in 484, 453, 366 and 350 nm were very dependent of the Yb3+ concentration in the samples, confirming that the main energy transfer processes involve Nd3+ and Yb3+ ions. KY3F10:Nd (1.3 mol%):Tm (0.5 mol%) crystals codoped with 5, 10, 20 and 30 mol% Yb were prepared by slow cooling from the melt, to establish the optimal Yb concentration that maximizes the Nd3+→Yb3+→Tm3+ energy transfer.

  16. Solvothermal synthesis and upconversion properties of YF3:Ln (Ln = Yb/Er,Yb/Tm,Yb/Ho) nanoparticles.

    PubMed

    He, Fei; Wang, Lin; Niu, Na; Gai, Shili; Wang, Yan; Yang, Piaoping

    2014-05-01

    YF3 nanoparticles with different morphology, dimension, and dispersity have been synthesized through a simple solvothermal method by using n-octanol and n-octylamine as a mixed solvent and lanthanide acetylacetonate as the RE3+ source. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectrum (EDS) and up-conversion (UC) photoluminescence spectra were used to characterize the samples. The results reveal that the morphology and dimension of the as-prepared nanoparticles can be regulated by adjusting n-octanol/ n-octylamine volume ratio in the initial system. Besides, by doping with different rare-earth elements (Yb/Er, Yb/Tm, Yb/Ho), the as-prepared YF3 samples can emit characteristic green, blue, and yellow light under 980 nm laser excitation. Additionally, when being co-doped with the activator ion-pairs Tm/Er and Tm/Ho, the color of the emission light can be further modified by adjusting the Yb3+ ion content.

  17. Blue and green up-conversion in ZBLAN Tm3+,Yb3+-codoped glasses pumped with LD 970-nm laser

    NASA Astrophysics Data System (ADS)

    Cao, Wanghe; Kan, Shidong; Zang, Chuanyi

    1998-08-01

    The quality of synthesized ZBLAN:Tm3+,Yb3+ glasses is analyzed and an efficient up-concentration in the blue and green light of Tm3+ containing different concentration ratio of Tm3+:Yb3+ demonstrated under LD 970 nm pumping. The up-conversion process of Tm3+ in ZBLAN:Tm3+,Yb3+ glasses are presented. The up-conversion in green can be limited restrained by the concentration of Yb3+.

  18. Spectral and Luminescent Properties of Oxyfluoride Glasses Codoped with (Yb3+, Eu3+) and (Yb3+, Tb3+)

    NASA Astrophysics Data System (ADS)

    Vilejshikova, E. V.; Loiko, P. A.; Rachkovskaya, G. E.; Zakharevich, G. B.; Yumashev, K. V.

    2016-09-01

    The spectral and luminescent properties of SiO2-PbO-PbF2-CdF2 oxyfl uoride glasses doped with Yb3+, Eu3+, and Tb3+ were investigated. The lifetime τ( 5D0) of Eu3+ in glasses doped with Eu2O3 was 1.73 ms; τ( 5D4) of Tb3+, 2.25 ms. Intense red and green up-conversion luminescence due to cooperative energy transfer from Yb3+—Yb3+ pairs to Eu3+ and Tb3+ was observed for glasses codoped with (Yb3+, Eu3+) and (Yb3+, Tb3+) upon excitation at 960 nm into the Yb3+ absorption band. Down-conversion luminescence of Yb3+ ions in the vicinity of ~1 μm was detected upon excitation by UV light of wavelength 355 nm.

  19. Spectral luminescent properties of Pr{sup 3+}, Sm{sup 3+}, Eu{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Er{sup 3+}, Tm{sup 3+}, and Yb{sup 3+} ions in SO{sub 2}Cl{sub 2}-GaCl{sub 3}-LnCl{sub n}

    SciTech Connect

    Batyaev, I.M.; Morev, S.Yu.

    1995-12-01

    Luminescence spectra of several rare-earth ions (REI) in the sulfurylchloride-galliumchloride system in the IR and visible spectral ranges are studied. The oscillator strengths of the main electronic transitions of the Eu{sup 3+}, Dy{sup 3+}, and Tm{sup 3+} ions in the absorption spectra in the 5000 - 24000 cm{sup {minus}1} region are calculated at 300 K, and on this basis the spectroscopic intensity parameters {tau}{lambda} in the theory of stimulated electric dipole transitions are estimated. On the basis of the data obtained, the main luminescent parameters of the resonance radiative transitions in Pr{sup 3+}, HO{sup 3+}, Er{sup 3+}, and Yb{sup 3+} ions in the SO{sub 2}Cl{sub 2}-GaCl{sub 3}-LnCl{sub n} systems are calculated. 16 refs., 5 figs., 4 tabs.

  20. Observation of bistable upconversion emission in Tm,Yb codoped yttria nanocrystal

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, H.; Zhang, X. L.; Peng, Y. F.; Nie, M.; Jiang, B.; Zhang, X. W.; Li, R. M.

    2010-11-01

    Nonlinear upconversion emission properties in Tm and Yb codoped yttria nanocrystal have been studied under 973 nm laser excitation. Intrinsic bistability and hysteresis have been observed for the bright blue upconversion luminescence of Tm3+ ions at room temperature. The mechanism of the Tm3+ bistable emission is mainly related to laser-induced local thermal effects which cause the enhancement of sequential multi-photon energy transfer upconversion of Yb3+-Tm3+ pairs.

  1. Energy transfer rates of KY3F10:Yb:Nd:Tm crystals

    NASA Astrophysics Data System (ADS)

    Courrol, L. C.; Linhares, H. M. S. M. D.; Librantz, A. F. H.; Baldochi, S. L.; Gomes, L.; Ranieri, I. M.

    2010-11-01

    In this work we present the spectroscopic properties of KY3F10 (KY3F) single crystals doped with thulium and also co-doped with ytterbium and/or neodymium, KY3F:Yb:Nd:Tm and KY3F:Nd:Tm. The most important processes that lead to the thulium up conversion emissions were identified. The absorption spectra of the samples were measured at room temperature in the range of 200 nm-1200 nm. The emission spectra were obtained by exciting the samples with a 797 nm laser diode and were analyzed using a lock-in amplifier technique. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the mechanisms involved in the energy transfer up-conversion processes. Analysis of the energy transfer processes dynamics in KY3F:Yb:Tm:Nd crystal, using selective pulsed-laser excitations, shows that the energy transfer from Nd3+ to Yb3+ ions is the mechanism responsible for the enhancement of the blue up-conversion efficiency when compared with the Yb:Tm system. In the case of KY3F:Nd:Tm it is observed emissions at 350, 355 and 452 nm excited by an additional Yb:Tm step cross relaxation, Yb (2F5/2) : Tm (1G4) that populates the 1D2 (Tm3+) excited level. A study of the energy transfer processes in KY3F:Yb:Tm:Nd crystal showed that the 1G4 excited level is mainly populated by the sequence of two nonradiative energy processes that starts well after the Nd3+ and Tm3+ excitation at 797nm: Nd (4F3/2) → Yb (2F7/2) followed by Yb (2F5/2) → Tm (3H4) → Tm (1G4).

  2. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-01-01

    We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.

  3. Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass

    NASA Astrophysics Data System (ADS)

    Huang, Q. J.; Wang, Q. P.; Chang, J.; Zhang, X. Y.; Liu, Z. J.; Yu, G. Y.

    2010-04-01

    Tm3+/Yb3+ codoped tellurite glass has been prepared. Density, refractive index, optical absorption, Judd-Ofelt parameters and spontaneous transition probabilities of Tm3+ have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and S-band (1470 nm) fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Judd-Ofelt parameters, strong blue three-photon upcoversion emission of Tm3+ in glass indicate that Tm3+/Yb3+ codoped tellurite glass is a promising blue color upconversion optical and laser material. In addition, experiment results showed the 980 nm laser was more efficient than 808 nm laser when pumping Tm3+/Yb3+ codoped tellurite glass, Tm3+/Yb3+ codoped tellurite glass also could be a promising material for S-band amplification.

  4. Upconversion energy transfer in Yb3+/Tm3+ doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Żmojda, J.; Dorosz, D.; Kochanowicz, M.; Dorosz, J.

    2011-06-01

    The paper presents energy transfer in tellurite glass from the system TeO2 - GeO2 - PbO - PbF2- BaO - Nb2O5 - LaF3 doped with Yb3+/Tm3+ ions. Under the excitation of 976 nm laser a strong blue emission (477 nm) corresponding to the transition 1G4 --> 3H6 in thulium ions was observed. Analysing the influence of the content of Tm3+ ions on the level of luminescence obtained by the mechanism of upconversion it was established that the most effective energy transfer between Yb 3+--> Tm3+ ions took place in the matrix doped in the following proportion: 1 Yb3+:0.1 Tm3+ (%mol). Based on the non-resonant process of energy transfer between Yb3+ and Tm3+ ions the mechanism of upconversion was discussed.

  5. A comparison of mode instability in Yb- and Tm-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Smith, Arlee V.; Smith, Jesse J.

    2016-03-01

    We use a detailed numerical model of stimulated thermal Rayleigh scattering to compare mode instability thresholds in cladding pumped Tm3+-doped and Yb3+-doped fiber amplifiers. The Tm-doped fiber amplifies 2040 nm light using a 790 nm pump; the Yb-doped fiber amplifies 1060 nm light using a 976 nm pump. The predicted instability threshold of the Tm-doped fiber is found to be higher than that of the Yb-doped fiber, even though its heat load is much higher. We attribute the higher threshold in part to its longer signal wavelength, and in part to stronger gain saturation.

  6. Up-conversion in YLF:Yb3+,Tm3+ laser crystals

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.; Razumova, Irene K.; Joubert, Maria-France; Moncorge, Richard

    1998-12-01

    We have studied the Yb3+ (reversible reaction) Tm3+ nonradiative energy transfer processes responsible for population of the 1G4 thulium level under Yb3+ or Tm3+ selective laser excitation of YLF:Tm3+,Yb3+ crystal. The microparameters and the rates of the energy transfer via cross-relaxation schemes are determined. It is concluded that the process of populating the 1G4 thulium level is greatly affected by up-conversion processes not only from the 3H4 but also from the 3F4 level, proceeding within the static decay model.

  7. Possible undercompensation effect in the Kondo insulator (Yb,Tm)B12

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Nemkovski, K. S.; Mignot, J.-M.; Clementyev, E. S.; Ivanov, A. S.; Rols, S.; Bewley, R. I.; Filipov, V. B.; Shitsevalova, N. Yu.

    2014-03-01

    The effects of Tm substitution on the dynamical magnetic response of Yb1-xTmxB12 (x=0, 0.08, 0.15, and 0.75) and Lu0.92Tm0.08B12 compounds have been studied using time-of-flight inelastic neutron scattering. Major changes were observed in the spectral structure and temperature evolution of the Yb contribution to the inelastic response for a rather low content of magnetic Tm ions. A sizable influence of the RB12 host (YbB12, as compared to LuB12 or pure TmB12) on the crystal-field splitting of the Tm3+ ion is also reported. The results point to a specific effect of impurities carrying a magnetic moment (Tm, as compared to Lu or Zr) in a Kondo insulator, which is thought to reflect the "undercompensation" of Yb magnetic moments, originally Kondo screened in pure YbB12. A parallel is made with the strong effect of Tm substitution on the temperature dependence of the Seebeck coefficient in Yb1-xTmxB12, which was reported previously.

  8. Thermal expansion, heat capacity and magnetostriction of RAl3 (R = Tm, Yb, Lu) single crystals

    SciTech Connect

    Bud'ko, S.; Frenerick, J.; Mun, E.; Canfield, P.; Schmiedeshoff, G.

    2007-12-13

    We present thermal expansion and longitudinal magnetostriction data for cubic RAl{sub 3} (R = Tm, Yb, Lu) single crystals. The thermal expansion coefficient for YbAl{sub 3} is consistent with an intermediate valence of the Yb ion, whereas the data for TmAl{sub 3} show crystal electric field contributions and have strong magnetic field dependences. de Haas-van Alphen like oscillations were observed in the magnetostriction data for YbAl{sub 3} and LuAl{sub 3}, several new extreme orbits were measured and their effective masses were estimated. Specific heat data taken at 0 and 140 kOe for both LuAl{sub 3} and TmAl{sub 3} for T {le} 200 K allow for the determination of a crystal electric field splitting scheme for TmAl{sub 3}.

  9. Equiatomic intermetallic compounds REPtMg (RE = Y, Eu, Tb-Tm, Lu) - Structure and magnetism

    NASA Astrophysics Data System (ADS)

    Stein, Sebastian; Heletta, Lukas; Block, Theresa; Gerke, Birgit; Pöttgen, Rainer

    2017-05-01

    Eight new equiatomic REPtMg intermetallics with RE = Y, Eu, Tb-Tm, Lu were synthesized from the elements in sealed niobium ampoules (induction melting followed by different annealing sequences). All samples were characterized through X-ray powder patterns and the structures of YPtMg, EuPtMg, DyPtMg, HoPtMg and TmPtMg were refined from single crystal X-ray diffractometer data. The REPtMg phases crystallize with two different structure types. The representatives with RE = Y, Tb-Ho crystallize with the hexagonal ZrNiAl type, space group P 6 bar 2 m , while those with RE = Eu, Yb and Lu adopt the orthorhombic TiNiSi type, space group Pnma. ErPtMg and TmPtMg are dimorphic with a ZrNiAl type high and a TiNiSi type low-temperature modification. Temperature-dependent magnetic susceptibility measurements indicate Pauli paramagnetism for YPtMg and LuPtMg while EuPtMg, TbPtMg, DyPtMg and HoPtMg are Curie-Weiss paramagnets. Antiferromagnetic (TN = 12.6 K for EuPtMg) respectively ferromagnetic ordering (TC = 56.3 K for TbPtMg, 28.8 K for DyPtMg and 19.9 K for HoPtMg) occurs in the low-temperature regime. 151Eu Mössbauer spectra confirm divalent europium (δ = -8.03 mm s-1 at 78 K) in EuPtMg and show strong magnetic hyperfine field splitting below the Néel temperature.

  10. Infrared luminescence of Tm{sup 3+}/Yb{sup 3+} codoped lanthanum aluminum germanate glasses

    SciTech Connect

    Zhang Qiang; Zhang Guang; Chen Guorong; Qiu Jianrong; Chen Danping

    2010-01-15

    Tm{sup 3+} doped and Tm{sup 3+}/Yb{sup 3+} codoped lanthanum aluminum germanate (LAG) glasses are prepared by melt-quenching method and characterized optically. Based on the measurement of absorption spectrum, Judd-Ofelt intensity parameters ({Omega}{sub 2},{Omega}{sub 4},{Omega}{sub 6}) are calculated. The radiation emission rates, branching ratios, and lifetimes of Tm{sup 3+} are calculated to evaluate the spectroscopic properties of Tm{sup 3+} in LAG glass. The infrared emission properties of the samples are investigated and the results show that the 1.8 {mu}m emission can be greatly enhanced by adding proper amount of Yb{sup 3+} under the excitation of 980 nm. The energy transfer processes of Yb{sup 3+}-Yb{sup 3+} and Yb{sup 3+}-Tm{sup 3+} are analyzed, and the results show that Yb{sup 3+} ions can transfer their energy to Tm{sup 3+} ions with high efficiency and large energy transfer coefficient.

  11. Upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses.

    PubMed

    Xu, Shiqing; Fang, Dawei; Zhang, Zaixuan; Jiang, Zhonghong

    2005-11-01

    To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses were investigated under 980 nm excitation. The results showed that upconversion blue and red emission intensities of Tm(3+) first increase, reach its maximum at Tm(2)O(3)%=0.1 mol %, and then decrease with increasing Tm(2)O(3) content. The effect of Tm(2)O(3) content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm(3+).

  12. Ultraviolet and visible upconversion luminescence of Tm(0.1)Yb(5):FOV oxyfluoride nanophase vitroceramics

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobo; Song, Zengfu; Wu, Jinguang; Sawanoboi, N.; Ohtsuka, M.; Li, Yongliang; Zhou, Jing; Wang, Ce; Liu, Jinying; Tian, Qiang; Sun, Ping; Jing, Hongmei

    2008-12-01

    The ultraviolet upconversion luminescence of Tm3+ ions sensitized by Yb3+ ions in oxyfluoride nanophase vitroceramics when excited by a 975 nm diode laser was studied. An ultraviolet upconversion luminescence line positioned at 363.6 nm was found. It was attributed to the fluorescence transition of 1D2→3H6 of Tm3+ ion. Several visible upconversion luminescence lines at 450.7 nm, (477.0 nm, 462.5 nm), 648.5 nm, (680.5 nm, 699.5 nm) and (777.2 nm, 800.7 nm) were also found, which result respectively from the fluorescence transitions of 1D2→3F4, 1G4→3H6, 1G4→3F4, 3F3→3H6 and 3H4→3H6 of Tm3+ ion. The careful measurement and analysis of the variation of upconversion luminescence intensity F as a function of the 975 nm pumping laser power P prove that the upconversion luminescence of 1D2 state is partly a five-photon upconversion luminescence, and the upconversion luminescence of 1G4 state and 3H4 state are respectively the three-photon and two-photon upconversion luminescence. The theoretical analysis suggested that the upconversion mechanism of the 363.6 nm 1D2→3H6 upconversion luminescence is partly the cross energy transfer of {3H4(Tm3+), 3F4(Tm3+), 1G4(Tm3+)→1D2(Tm3+)} and {1G4(Tm3+)→3F4(Tm3+), 3H4(Tm3+)→1D2(Tm3+)} between Tm3+ ions. In addition, the upconversion luminescence of 1G4 and 3H4 state results respectively from the sequential energy transfer {2F5/2(Yb3+)→2F7/2(Yb3+), 3H4(Tm3+)→1G4(Tm3+)} and {2F5/2(Yb3+) →2F7/2(Yb3+), 3F4(Tm3+)→3F2(Tm3+)} from Yb3+ ions to Tm3+ ions.

  13. Intense upconversion luminescence and origin study in Tm3+/Yb3+ codoped calcium scandate

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Jiahua; Hao, Zhendong; Zhang, Xia; Zhao, Jihong; Luo, Yongshi

    2012-09-01

    Doping concentration optimized CaSc2O4:0.004Tm3+/0.1Yb3+ shows stronger upconversion luminescence (UCL) than doping concentration also optimized typical oxide upconverting phosphor Y2O3:0.004Tm3+/0.1Yb3+ upon 980 nm laser diode pump. The two-step up converted 3H4 → 3H6 near infrared emission peaked around 800 nm and the three-step up converted 1G4 → 3H6 blue emission around 480 nm of Tm3+ is enhanced by a factor of 3.5 and 2.2, respectively. On analyzing the 2F5/2 → 2F7/2 emission intensities and decay curves of Yb3+ in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits both a larger absorption cross section at 980 nm and Yb3+ → Tm3+ first step energy transfer coefficient (9.29 × 10-17 cm3 s-1) than that (2.87 × 10-17 cm3 s-1) in Y2O3, indicating that CaSc2O4 is an excellent host for achieving very intense UCL in Tm3+/Yb3+ codoped oxide upconverting materials.

  14. Up-conversion emission in KGd(WO 4 ) 2 single crystals triply-doped with Er 3+ /Yb 3+ /Tm 3+ , Tb 3+ /Yb 3+ /Tm 3+ and Pr 3+ /Yb 3+ /Tm 3+ ions

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Brik, M. G.; Majchrowski, A.; Michalski, E.; Głuchowski, P.

    2011-09-01

    Triply-doped single crystals KGd(WO 4) 2:Er 3+/Yb 3+/Tm 3+, KGd(WO 4) 2:Tb 3+/Yb 3+/Tm 3+ and KGd(WO 4) 2:Pr 3+/Yb 3+/Tm 3+ were grown by the Top Seeded Solution Growth (TSSG) method, with an aim of getting efficient up-converted multicolored luminescence, which subsequently can be used for generation of white light. Such an aim determined the choice of the triply doped compounds: excitation of the Yb 3+ ions in the infrared spectral region is followed by red, green and blue emission from other dopants. It was shown that all these systems exhibit multicolor up-conversion fluorescence under 980 nm laser irradiation. Detailed spectroscopic studies of their absorption and luminescence spectra were performed. From the analysis of the dependence of the intensity of fluorescence on the excitation power the conclusion was made about significant role played by the host's conduction band and other possible defects of the KGd(WO 4) 2 crystal lattice in the up-conversion processes.

  15. Yb3+ sensitized Tm3+ upconversion in tellurite lead oxide glass.

    PubMed

    Mohanty, Deepak Kumar; Rai, Vineet Kumar; Dwivedi, Y

    2012-04-01

    Triply ionized thulium/thulium--ytterbium doped/codoped TeO2-Pb3O4 (TPO) glasses have been fabricated by classical quenching method. The upconversion emission spectra in the Tm3+/Tm3+-Yb3+ doped/codoped glasses upon excitation with a diode laser lasing at ∼980 nm has been studied. Effect of the addition of the Yb3+ on the upconversion emission intensity in the visible and near infrared regions of the Tm3+ doped in TPO glass has been studied and the processes involved explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Infrared to visible upconversion fluorescence in Yb,Tm:YAG single crystal

    NASA Astrophysics Data System (ADS)

    Xu, Wenwei; Xu, Xiaodong; Wu, Feng; Zhao, Guangjun; Zhao, Zhiwei; Zhou, Guoqing; Xu, Jun

    2007-04-01

    Absorption spectrum from 400 to 2000 nm and upconversion fluorescence spectra under 940 nm pumping of YAG single crystal codoped with 5 at.% Yb3+ and 4 at.% Tm3+ were studied at room temperature. The blue upconversion emission centered at 483 nm corresponds to the transition 1G4 → 3H6, the emission band around 646 nm corresponds to the transition 1G4 → 3F4 of Tm3+. Energy transfer from Yb3+ to Tm3+ is mainly nonradiative and the transfer efficiency was experimentally assessed. The line strengths, transition probabilities and radiative lifetimes of 1G4 level were calculated by using Judd-Ofelt theory. Gain coefficient calculated from spectra shows that the upconversion corresponding with transitions 1G4 → 3H6 in YAG doped with Yb3+ and Tm3+ is potentially useful for blue light output.

  17. Up-conversion processes in Yb-sensitized Tm:ZBLAN

    NASA Astrophysics Data System (ADS)

    Carrig, Timothy J.; Cockroft, Nigel J.

    1996-11-01

    A systematic spectroscopic study of 22 rate-earth-ion doped ZBLAN glass samples was conducted to investigate the feasibility of sensitizing Tm:ZBLAN with Yb to facilitate the development of an efficient and conveniently pumped blue upconversion fiber laser. It was determined that, under conditions of single-color pumping, 480 nm emission from Tm3+ is strongest when Yb, Tm:ZBLAN is excited at a wavelength of approximately 975 nm. In this case, the strongest blue emission was obtained from a ZBLAN glass sample with a nominal dopant concentration of approximately 2.0 wt percent Yb + 0.3 wt percent Tm. Additionally, it was demonstrated that for weak 975 nm pump intensities, the strength of the blue upconversion emission can be greatly enhanced by simultaneously pumping at approximately 785 nm. This increase in upconversion efficiency is due to a reduction in the number of energy transfer steps needed to populate the Tm3+ 1G4 energy level. Measurements of fluorescence lifetimes as a function of dopant concentration wee also made for Yb3+, and Pr3+ transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm3+ and Pr3+ in ZBLAN is also described.

  18. Upconversion emission properties of CeO2: Tm3+, Yb3+ inverse opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo

    2014-10-01

    The ordered and disordered templates were assembled by vertical deposition of polystyrene microspheres. The CeO2: Tm3+, Yb3+ precursor solution was used to infiltrate into the voids of the ordered and disordered templates, respectively. Then the ordered and disordered templates were calcined at 950°C in an air furnace, and the CeO2: Tm3+, Yb3+ inverse opals were obtained. The upconversion emissions from CeO2: Tm3+, Yb3+ inverse opals were suppressed due to the photon trapping caused by Bragg reflection of lattice planes when the upconversion emission band was in the range of the photonic band gaps in the inverse opals.

  19. Dopant distribution in a Tm(3+)-Yb(3+) codoped silica based glass ceramic: an infrared-laser induced upconversion study.

    PubMed

    Lahoz, F; Martin, I R; Mendez-Ramos, J; Nunez, P

    2004-04-01

    The optically active dopant distribution in a Tm(3+)-Yb(3+) doped silica based glass ceramic sample has been investigated. A systematic analysis of the upconversion fluorescence of the Tm(3+)-Yb(3+) codoped glass and glass ceramic has been performed at room temperature. Tm(3+) and Yb(3+) single doped glass and glass ceramics have also been included in the study. Upon infrared excitation at 790 nm into the (3)H(4) level of the Tm(3+) ions a blue upconversion emission is observed, which is drastically increased in the Yb(3+) codoped samples. A rate equation model confirmed the energy transfer upconversion mechanism. Based on these results, the temporal dynamic curves of the levels involved in the upconversion process, (3)H(4), (2)F(5/2), and (1)G(4) were interpreted in the glass ceramic samples. The contribution of the optically active Tm(3+) and Yb(3+) ions in the crystalline and in the vitreous phase of the glass ceramic was distinguished and the ratio of Tm(3+) ions in the crystalline phase could be quantified for the 1 mol % Tm(3+)-2.5 mol % Yb(3+) glass ceramic. A surprising result was obtained for that concentration: the main contribution to the upconversion emission of the glass ceramic is due to Tm(3+)-Yb(3+) ions in the vitreous phase.

  20. Intense upconversion fluorescence in Tm 3+/Yb3+ codoped alumina lead borate glasses

    NASA Astrophysics Data System (ADS)

    Krishna Murthy Goud, K.; Shekhar Reddy, M. Chandra; Appa Rao, B.

    2016-09-01

    The Tm3+/Yb3+ codoped alumina lead borate glasses were prepared by the conventional melt quenching technique. Optical absorption and FTIR spectra were recorded. The upconversion fluorescence spectra exhibited weak blue (480 nm) and intense red (660 nm) emissions due to 1G4 → 3H6 and 1G4 → 3H4 transitions, respectively. The results concluded that both emissions are due to three photon absorption process. It has been observed that in the upconversion efficiency increases with the increase in the concentration of Yb3+ ions. The strong red upconversion fluorescence indicate that Tm3+/Yb3+ codoped alumina lead borate glasses can be used as potential host material for upconversion lasers.

  1. Buffer-gas loaded MOTs for Ho, Yb,Tm, and Er

    NASA Astrophysics Data System (ADS)

    Chae, Eunmi; Drayna, Garrett; Hemmerling, Boerge; Hutzler, Nick; Ravi, Aakash; Collopy, Alejandra; Hummon, Matthew; Stuhl, Benjamin; Yeo, Mark; Ye, Jun; Doyle, John

    2014-05-01

    We report on direct loading of lanthanide atoms into MOTs from a two-stage slow buffer-gas beam source, which has a peak forward velocity of ~ 30 - 60 m/s, considerably lower than other beam implementations. The low velocity combined with species generality makes this source useful for loading magneto-optical traps (MOTs), especially for species that are not well suited to the traditional approach of oven plus Zeeman slower. We report loading MOTs with Yb, Tm, Er, and Ho, without any additional slowing stages. Application of a single frequency slowing laser to the buffer-gas beam of Yb results in an unprecedentedly high loading rate of 2 . 0 (1 . 0) ×1010 Yb atoms/s and 1 . 3 (0 . 7) ×108 Yb atoms in the MOT. We plan to use this versatile source to load a MOT with CaF, following the same general approach to that used with YO and SrF.

  2. Mid-infrared luminescence and energy transfer of Tm3+ in silicate glasses by codoping with Yb3+ ions

    NASA Astrophysics Data System (ADS)

    Cao, Ruijie; Lu, Yu; Tian, Ying; Huang, Feifei; Guo, Yanyan; Xu, Shiqing; Zhang, Junjie

    2017-09-01

    A kind of novel silicate glasses doped with Tm3+ sensitized by Yb3+ were prepared by conventional melt quenching method. The optical properties of the synthesized glasses were theoretically and experimentally investigated. Based on the absorption spectra and the Judd-Ofelt theory, the J-O intensity parameters (Ωt), radiative transition probability (400.4 s-1), fluorescence lifetime (4.99 ms) and absorption and emission cross sections (σe = 2.51 × 10-20 cm2) were calculated. According to fluorescence spectra, the 1.8 μm emission of Tm3+ could be greatly enhanced by adding proper amount of Yb3+ under the excitation of 980 nm and the optimized concentration ratio of Tm3+ and Yb3+ was found to be 1:3 in the present silicate glass system. Besides, the energy transfer mechanism between Yb3+ and Tm3+ were thoroughly discussed. With the assistance of Yb3+, the lifetime of Tm3+ from 0.54 ms increased to 1.42 ms. The energy transfer efficiency from Yb3+ to Tm3+ could reach 90.94%, and the energy transfer coefficient was 5.43 × 10-41 cm6/s. The content of OH- was measured. The above results showed that Tm3+/Yb3+ co-doping could be expected to a promising way to achieve high efficient 2 μm lasing pumped by a 980 nm LD.

  3. Efficient near-infrared emission in Eu3+-Yb3+-Y3+ tri-doped cubic ZrO2 via down-conversion for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Liao, Jinsheng; Zhou, Dan; Liu, Shaohua; Wen, He-Rui; Qiu, Xin; Chen, Jinglin

    2014-03-01

    Eu3+-Yb3+-Y3+ tri-doped cubic ZrO2 (abbreviated as YSZ:Eu,Yb) phosphors with different doping concentrations of Yb3+ can be synthesized via the Pechini sol-gel method. Efficient near-infrared (NIR) emission in YSZ:Eu,Yb phosphors was demonstrated. The dependence of the intensities of visible and NIR emissions, decay lifetimes and energy-transfer efficiencies on the Yb3+ doping concentration was investigated in detail. It is found that Eu3+, acting as a sensitizer, can efficiently transfer its energy to Yb3+ activator ions in YSZ:Eu,Yb phosphors.

  4. Optical gain by upconversion in Tm-Yb oxyfluoride glass ceramic

    NASA Astrophysics Data System (ADS)

    Haro-González, P.; Martín, I. R.; Lahoz, F.; Capuj, N. E.

    2011-07-01

    Evidence of positive optical gain is observed in Tm3+-Yb3+-codoped oxyfluoride glass ceramic in an upconversion pump and probe experiment. The 1G4 level of the Tm3+ ions is populated by an upconversion mechanism under excitation of the Yb3+ ions at 975 nm with a high-power pulsed laser and give rise to an intense emission from the 1G4 to the 3F4 levels. The 1G4→3F4 electronic transition is stimulated with a low signal at 650 nm as a probe. Under this condition, we reach the population inversion necessary between the Tm3+ levels of the transition 1G4→3F4 and we observed an increase of the emission intensity at the signal wavelength due to the stimulated emission. A positive optical gain of around 4 cm-1 (˜17 dB/cm) has been measured in Tm-Yb-codoped oxyfluoride glass ceramic.

  5. Luminescence properties of Tm3+/Yb3+ codoped lead alumina bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2016-05-01

    This paper reports on the spectroscopic properties of Yb3+ and Tm3+ codoped lead alumina bismuth borate glasses. Optical absorption spectra of these Samples were recorded at room temperature in the wavelength range 350-2000 nm. The absorption spectra exhibited the bands at 658 nm (3H6→3F2), 686 nm (3H6→3F3), 792 nm (3H6→3H4), 1211 nm (3H6→3H5) and 1663 nm (3H6→3F4) due to Tm3+ ions. The band at 977 nm (2F7/2→2F5/2) is due to Yb3+ ions. Optical band gap (Eopt) and Urbach energy (ΔE) values were calculated from the spectra. It was observed that the value of optical band gap decreases with increase in the concentration of Tm3+ ions. The upconversion luminescence spectra were measured under excitation of 980 nm laser diode, and the intense blue (470 nm) and green (656 nm) emission were simultaneously observed at room temperature. A proposed upconversion mechanism involving energy transfer from Yb3+ to Tm3+ has been presented.

  6. Blue upconversion luminescence in 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Liang; Sun, Jinchao; Qian, Yannan; Zhang, Yushen; Xu, Yanling

    2012-03-01

    The effect of Yb 3 + concentration on the fluorescence of 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G 4 → 3H 6 of Tm 3 + . The ratio of blue to red emission increases with the increasing of Yb 3 + and remains constant at 10 mol% Yb 3 + . The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al 2O 3:1 mol% Tm 3 + /10 mol% Yb 3 + can emit high-purity blue light.

  7. Emission decay and energy transfer in Yb/Tm Y-codoped fibers based on nano-modified glass

    NASA Astrophysics Data System (ADS)

    Klimentov, Dmitry; Dvoyrin, Vladislav V.; Halder, Arindam; Paul, Mukul Chandra; Das, Shyamal; Bhadra, Shyamal K.; Sorokina, Irina T.

    2015-04-01

    We report the results of an experimental investigation and theoretical analysis of luminescence decay in Yb/Tm Y-codoped fibers based on nano-modified glass. Based on the experimental results, numerical simulations allowed us to estimate the energy transfer efficiency between Yb3+ and Tm3+ ions. It was shown that yttria enhances the Yb/Tm energy transfer making fibers with Y-codoping a promising candidate for the development of light sources for laser applications and up-conversion emitters for visualization applications. These fibers demonstrate energy transfer efficiency of ∼50%, which makes them attractive for diode-pumping of Yb-ions at a wavelength of 975 nm.

  8. Strong visible up-conversion emission in Tb3+, Tm3+ and Tb3+-Tm3+ co-doped tellurite glasses sensitized by Yb3+.

    PubMed

    Wang, Xunsi; Liu, Liren; Nie, Qiuhua; Xu, Tiefeng; Shen, Xiang; Dai, Shixun; Zhang, Xianghua

    2007-07-01

    Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: (5)D(4)-->(7)F(4)) and red (660 nm: (5)D(4)-->(7)F(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to (5)D(4) (Tb(3+)) and the 477-nm UC luminescence of Tm3+ was nearly quenched.

  9. Multiphoton upconversion emission switching in Tm,Yb co-doped nanocrystalline yttria

    NASA Astrophysics Data System (ADS)

    Li, L.; Dong, G. Z.; Zhang, X. L.; Nie, M.; Cui, J. H.; Zhang, X. W.; Li, R. M.

    2010-10-01

    Multiphoton upconversion luminescence (UL) properties from the Yb3+-sensitized Tm3+ ions in nanocrystalline yttria host were studied experimentally under 973 nm laser excitation. Bright pure blue luminescence in the visible spectral region was performed even at low pump excitation level. An interesting chromatic switching behavior was observed for the near-infrared and blue spectral bands at room temperature, showing a pump intensity-controlled emission wavelength switcher. The chromatic switching is intrinsically associated with the competition of two-photon UL and three-photon UL processes. Moreover, the wavelength switching of Stark emission of Tm3+ 1G4 state took place as the pump intensity rises enough. This phenomenon is attributed to pump induced photothermal effect changing the distribution of Stark level populations in Tm3+ 1G4 energy state.

  10. Multicolor upconversion emission and energy transfer mechanism in Er3+/Tm3+/Yb3+ codoped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Peng, Shengxi; Yang, Fengjing; Wu, Libo; Qi, Yawei; Zheng, Shichao; Yin, Dandan; Wang, Xunsi; Zhou, Yaxun

    2014-11-01

    A novel Er3+, Tm3+ and Yb3+ codoped tellurite glasses with composition of TeO2-Bi2O3-ZnO-Na2O was prepared by conventional melt-quenching technique to realize the multicolor upconversion (UC) emissions. The absorption spectrum, UC emission spectrum, Raman spectrum, X-ray diffraction (XRD) and differential scanning calorimeter (DSC) curves were measured to characterize the prepared glass samples. Under the excitation of 980 nm laser diode (LD), bright multicolor luminescence composed of red, green and/or blue UC emissions corresponding to the transitions 4F9/2→4I15/2, 2H11/2(4S3/2)→4I15/2 of Er3+ and 1G4→3H6 of Tm3+ were observed in the Er3+/Yb3+, Tm3+/Yb3+ and Er3+/Tm3+/Yb3+ codoped glass samples, which were mainly attributed to the successive energy transfers from Yb3+ to Er3+ and Tm3+, respectively. The energy transfer mechanisms from the Yb3+:2F5/2 level to Er3+:4I11/2 and Tm3+:3H5 levels were further investigated by quantitatively calculating the energy transfer micro-parameters and phonon contribution ratios. Meanwhile, the difference (ΔT =Tx -Tg) between the glass crystallization onset temperature (Tx) and the transition temperature (Tg) which increase slightly with rare-earth (RE) doped concentration, was larger than 140 °C for all glass samples. Furthermore, the amorphous nature of glass structure was demonstrated by the measured XRD curves. The excellent thermal stability and multicolor luminescent characteristic indicate that the present investigated Er3+/Tm3+/Yb3+ codoped tellurite glasses could be used in the fields of solid state multicolor displays and other luminescent devices.

  11. Optical parameters and upconversion fluorescence in Tm3+/Yb3+-doped alkali-barium-bismuth-tellurite glasses.

    PubMed

    Lin, Hai; Liu, Ke; Lin, Lin; Hou, Yanyan; Yang, Dianlai; Ma, Tiecheng; Pun, Edwin Yun Bun; An, Qingda; Yu, Jiayou; Tanabe, Setsuhisa

    2006-11-01

    Tm(3+)/Yb(3+)-doped alkali-barium-bismuth-tellurite (LKBBT) glasses have been fabricated and characterized. Density, refractive index, optical absorption, absorption and emission cross-sections of Yb(3+), Judd-Ofelt parameters and spontaneous transition probabilities of Tm(3+) have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and near-infrared two-photon upconversion fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Wide infrared transmission window, high refractive index and strong blue three-photon upconversion emission of Tm(3+) indicate that Tm(3+)/Yb(3+) co-doped LKBBT glasses are promising upconversion optical and laser materials.

  12. Synthesis, persistent luminescence, and thermoluminescence properties of yellow Sr3SiO5:Eu2+,RE3+ (RE=Ce, Nd, Dy, Ho, Er, Tm, Yb) and orange-red Sr(3-x)Ba(x)SiO5:Eu2+, Dy3+ phosphor.

    PubMed

    Li, Ye; Li, Baohong; Ni, Chenchen; Yuan, Shuxia; Wang, Jing; Tang, Qiang; Su, Qiang

    2014-02-01

    Sunlight-excitable orange or red persistent oxide phosphors with excellent performance are still in great need. Herein, an intense orange-red Sr3-xBaxSiO5:Eu(2+),Dy(3+) persistent luminescence phosphor was successfully developed by a two-step design strategy. The XRD patterns, photoluminescence excitation and emission spectra, and the thermoluminescence spectra were investigated in detail. By adding non-equivalent trivalent rare earth co-dopants to introduce foreign trapping centers, the persistent luminescence performance of Eu(2+) in Sr3SiO5 was significantly modified. The yellow persistent emission intensity of Eu(2+) was greatly enhanced by a factor of 4.5 in Sr3SiO5:Eu(2+),Nd(3+) compared with the previously reported Sr3SiO5:Eu(2+), Dy(3+). Furthermore, Sr ions were replaced with equivalent Ba to give Sr3-xBaxSiO5 :Eu(2+),Dy(3+) phosphor, which shows yellow-to-orange-red tunable persistent emissions from λ=570 to 591 nm as x is increased from 0 to 0.6. Additionally, the persistent emission intensity of Eu(2+) is significantly improved by a factor of 2.7 in Sr3-xBaxSiO5 :Eu(2+),Dy(3+) (x=0.2) compared with Sr3SiO5 :Eu(2+),Dy(3+). A possible mechanism for enhanced and tunable persistent luminescence behavior of Eu(2+) in Sr3-xBaxSiO5:Eu(2+),RE(3+) (RE=rare earth) is also proposed and discussed.

  13. Intense red upconversion emission of Yb/Tm/Ho triply-doped tellurite glasses.

    PubMed

    Zhan, Huan; Zhou, Zhiguang; He, Jianli; Lin, Aoxiang

    2012-05-20

    By conventional melting and quenching methods, 3Yb2O3-0.2Tm2O3-xHo2O3 (wt%, x=0.2~1.2) was doped into an easily fiberized tellurite glass with composition of 78TeO2-10ZnO-12Na2O (mol%) to form YTH-TZN78 glasses. Under 976 nm excitation, the direct sensitizing effect of Yb ions (Yb→Ho) and indirect sensitizing and self-depopulating effects of Tm ions (Yb→Tm→Ho) were found to present intense red upconversion emission at 657 nm (Red, Ho:5F5→5I8) and were responsible for the absence of the usually observed 484 nm emission (Blue, Tm:1G4→3H36). Regardless of the dopant concentration of Ho ions, the intensity of the red emission at 657 nm (Red, Ho:5F5→5I8) is about three times stronger than that of the green one at 543 nm (Green, Ho:5S2→5I8). For this certain red emission at 657 nm, 0.4 wt% Ho2O3-doped YTH-TZN78 glass was found to present the highest emission intensity and is therefore determined as a promising active tellurite glass for red fiber laser development.

  14. Three- and two-photon upconversion luminescence switching in Tm/Yb-codoped sodium niobate nanophosphor

    NASA Astrophysics Data System (ADS)

    Kumar, Kagola Upendra; Silva, Wagner Ferreira; Venkata Krishnaiah, Kummara; Jayasankar, Chalicheemalapalli Kulala; Jacinto, Carlos

    2014-01-01

    Intense infrared-to-visible upconversion (UC) emission in Tm/Yb-codoped sodium niobate (NaNbO) nanocrystals under resonant excitation at 976 nm is presented. The results showed that by increasing the pump power/intensity, a strong reduction is observed at the 800/480 nm emitted intensity ratio, characterizing what can be denominated as laser pump power-induced color tunability or luminescent switching. The physical origin is discussed with a focus on tailoring of luminescent switchers to operate at a large pump power range and, indeed, it is intrinsically associated with the competition of the two- and three-photon UC processes and with highly efficient UC emissions in the investigated material. The effect of Yb-ion concentration along with the theoretical aspects on luminescence switching has been investigated. The results obtained here could be useful in the field of sensors and networks for optical processing and optical communications.

  15. Trapping processes in CaS:Eu{sup 2+},Tm{sup 3+}

    SciTech Connect

    Jia, Dongdong; Jia, Weiyi; Evans, D. R.; Dennis, W. M.; Liu, Huimin; Zhu, Jing; Yen, W. M.

    2000-09-15

    CaS:Eu{sup 2+},Tm{sup 3+} is a persistent red phosphor. Thermoluminescence was measured under different excitation and thermal treatment conditions. The results reveal that the charge defects, created by substituting Tm{sup 3+} for Ca{sup 2+}, serve as hole traps for the afterglow at room temperature. Tm{sup 3+} plays the role of deep electron trapping centers, capturing electrons either through the conduction band or directly from the excited Eu{sup 2+} ions. These two processes, in which two different sites of Tm{sup 3+} are involved, correspond to two traps with different depths. (c) 2000 American Institute of Physics.

  16. White Lighting Upconversion in Tm3+/Ho3+/Yb3+ Co-Doped CaWO4

    NASA Astrophysics Data System (ADS)

    Chung, Jun Ho; Yeop Lee, Sang; Shim, Kwang Bo; Ryu, Jeong Ho

    2012-05-01

    Controllable white upconversion (UC) luminescence was obtained from Tm3+/Ho3+/Yb3+-codoped CaWO4. Under the excitation of a 980 nm single wavelength laser diode, the Tm3+/Ho3+/Yb3+-codoped CaWO4 exhibited bright white UC luminescence composed of blue emission from Tm3+ and green and red emissions from Ho3+ visible to the naked eye. The intensity ratios of green, red, and blue UC emissions varied with Tm3+/Ho3+ concentrations, which can control white UC emission ranging from the cool to the warm region. Various white UC colors can be easily changed by adjusting the Tm3+/Ho3+ concentrations in the CaWO4 matrix.

  17. Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations

    NASA Astrophysics Data System (ADS)

    Giri, N. K.; Rai, D. K.; Rai, S. B.

    2008-06-01

    Multicolor emission has been produced using 798 nm and 980 nm laser excitation in a Tm3++Ho3++Yb3+ codoped tellurite based glass. This glass generates simultaneously red, green and blue (RGB) emission on 798 nm excitation. Multicolor emission thus obtained was tuned to white luminescence by adjusting the Ho3+ ion concentration. There is a close match between the calculated color coordinate for the white luminescence obtained here and the point of equal energy which represents white in the 1931 CIE chromaticity diagram. The 980 nm excitation of the same sample on the other hand gives intense green and red emission and the glass appears greenish.

  18. Energy transfer and lasing in LiYbF4:Ho, LiYbF4:Ho,Tm, and KYb(WO4)3 crystals

    NASA Astrophysics Data System (ADS)

    Sandulenko, Alexander V.; Sandulenko, V. A.; Tkachuk, Alexandra M.; Titov, Alexandre N.; Reiterov, V. M.; Ivanov, V. N.

    1998-12-01

    We have studied both theoretically and experimentally the energy transfer processes in YbLiF4:Ho3+ (0.4%) and YbLiF4:Ho3+ (0.4%),Tm3+ (10%) crystals and in the series of crystals KYb(WO4)2:Tm3+,Ho3+ (0.4%) with the thulium concentration 5; 10; and 20%. The population kinetics of the 5I7 holmium level was studied under the 1.047 micrometers Q-switched YLF:Nd3+ laser pumping. The efficiency of energy transfer processes in Ho3+ doped crystals, codoped with Yb3+ and Tm3+, was demonstrated. With an YbLiF4:Ho3+ (0.4%) laser rod we have obtained lasing at 2.06 micrometers with the total efficiency of 4.8% and the slope efficiency of 11%. In the KYb(WO4)2:Tm3+ (10%),Ho3+ (0.4%) crystal, lasing was obtained for the first time at 2 micrometers . The pumping threshold being approximately 150 mJ, total efficiency 6% and slope efficiency 9.7% was achieved.

  19. Blue Upconversion Luminescence in Tm3+/Yb3+ Codoped CaWO4 Polycrystals

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Ling; Wang, Yun-Long; Shi, Lian-Sheng; Tan, Xiang

    2013-08-01

    We investigate the upconversion emission of CaWO4:Tm3+/Yb3+ polycrystals prepared by the high-temperature solid-state method. The crystal structure of the polycrystals is characterized by means of x-ray diffraction. Under the excitation of a 980 nm continuous wave diode laser, the samples show intense blue upconversion emissions centered at 473 nm, corresponding to the 1G4→3H6 transition of Tm3+. The dependence of the upconversion emission intensity on the pump power of a laser diode is measured, and the results indicate that the two-photon and three-photon processes contribute simultaneously to the blue upconversion emissions. The possible multi-photon upconversion process and upconversion mechanisms are discussed.

  20. Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF 4:Nd 3+,Tm 3+,Yb 3+

    NASA Astrophysics Data System (ADS)

    Sun, Jiayue; Zhang, Weihang; Du, Haiyan; Yang, Zhiping

    2010-09-01

    Nd 3+, Tm 3+ and Yb 3+ co-doped NaYF 4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF 4:Nd 3+,Tm 3+,Yb 3+ and NaYF 4:Tm 3+,Yb 3+, it was indicated that the existence of Nd 3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.

  1. Specific features of magnetoresistance during the antiferromagnet—paramagnet transition in Tm1 - x Yb x B12

    NASA Astrophysics Data System (ADS)

    Sluchanko, N. E.; Azarevich, A. N.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Levchenko, A. V.; Filippov, V. B.; Shitsevalova, N. Yu.

    2013-05-01

    The transverse magnetoresistance Δρ/ρ( H, T) of Tm1 - x Yb x B12 single crystals is studied in the ytterbium concentration range corresponding to the antiferromagnet-paramagnet transition in a magnetic field up to 80 kOe at low temperatures. A magnetic H- T phase diagram is constructed for the antiferromagnetic state of substitutional Tm1 - x Yb x B12 solid solutions with x ≤ 0.1. The contributions to the magnetoresistance in the antiferromagnetic and paramagnetic phases of the dodecaborides under study are separated. Along with negative quadratic magnetoresistance -Δρ/ρ ∝ H 2, the magnetically ordered phase of these compounds is found to have component Δρ/ρ ∝ H that linearly changes in a magnetic field. The negative contribution to the magnetoresistance of Tm1 - x Yb x B12 is analyzed in terms of the Yosida model for a local magnetic susceptibility.

  2. Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals.

    PubMed

    Chen, Daqin; Lei, Lei; Zhang, Rui; Yang, Anping; Xu, Ju; Wang, Yuansheng

    2012-11-07

    Novel Yb/Er(Tm):Na(3)MF(7) (M = Zr, Hf) nanocrystals with intrinsic single-band upconversion emission, in contrast to the routine lanthanide-doped fluoride nanocrystals which show typical multi-band upconversion emissions, are reported for the first time. Specifically, the red upconversion intensity of the Yb/Er:Na(3)ZrF(7) nanocrystals is about 5 times as high as that of the hexagonal Yb/Er:NaYF(4) ones with a similar crystal size.

  3. Upconversion emission from amorphous Y 2O 3:Tm 3+, Yb 3+ prepared by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, C. B.; Xia, Y. Q.; Qin, F.; Yu, Y.; Miao, J. P.; Zhang, Z. G.; Cao, W. W.

    2011-06-01

    Y 2O 3:Tm 3+, Yb 3+ was prepared by nanosecond pulsed laser irradiation. The X-ray diffraction pattern shows that the material produced by laser irradiation is amorphous, which presents strong blue upconversion emission under the excitation of 976 nm diode laser. The relative intensity of the blue emission to the infrared one is linearly dependent on the pump power and is an order of magnitude higher than that of the bulk material. The analyses of rate equations and the time-resolved spectroscopic results indicate that the enhancement of the blue upconversion is attributed to the longer lifetime of the levels of the Tm 3+ and Yb 3+ ions.

  4. Bright white upconversion luminescence from Er 3+-Tm 3+-Yb 3+ doped CaSnO 3 powders

    NASA Astrophysics Data System (ADS)

    Pang, X. L.; Jia, C. H.; Li, G. Q.; Zhang, W. F.

    2011-11-01

    Bright white upconversion luminescence from Er 3+-Tm 3+-Yb 3+ doped CaSnO 3 powders is obtained under the diode laser excitation of 980 nm. It is composed of three primary colors of red, green and blue emissions, which originate from the transitions of 4F 9/2 → 4I 15/2, ( 2H 11/2, 4S 3/2) → 4I 15/2 of Er 3+ ions and 1G 4 → 3H 6 of Tm 3+ ions, respectively. The efficient upconversion emission is attributed to the energy transfer between Yb 3+ and Er 3+ or Tm 3+ions. Moreover, it is observed that Tm 3+ acts as the quenching center for the green upconversion luminescence from Er 3+ ions, and the sensitizer for the red and blue luminescence when the Tm 3+ doping content is less than 0.3 mol%. This is interpreted in terms of the efficient energy transfer between Tm 3+ and Er 3+ ions. The calculated color coordinates fall within the white region in the standard 1931 CIE chromaticity diagram, indicating the potential applications of Er 3+-Tm 3+-Yb 3+ doped CaSnO 3 in the field of displaying and lasers, etc.

  5. White upconversion emission in Li+/Yb3+/Tm3+/Er3+-doped Gd6MoO12 phosphors

    NASA Astrophysics Data System (ADS)

    Sun, Jiayue; Xue, Bing; Du, Haiyan

    2013-07-01

    The Yb3+/Er3+/Tm3+-doped Gd6MoO12 phosphors and Li+/Yb3+/Er3+/Tm3+-doped Gd6MoO12 phosphors were synthesized by the high-temperature solid-state method. Under 980 nm laser diode excitation, the Gd6MoO12:Li+/Yb3+/Er3+/Tm3+ phosphors show the white upconversion (UC) emission at the pump power of 200 mW/cm2, which is composed of the blue (1G4→3H6 of Tm3+), green (2H11/2, 4S3/2→4I15/2 of Er3+), and red (4F9/2→4I15/2 of Er3+) UC emissions. The calculated CIE color coordinates of Gd6MoO12:Tm3+/Er3+/Yb3+ phosphors changed from blue area to white area after the Li+ ion doping. Then, the effect of Li+ ions mixing on the emission was analysed. The relative UC mechanisms and properties were also investigated and proposed based on their spectral. The additional mixed Li+ ions enhanced the red and green upconversion emission largely in this phosphor and then formed the white UC emission, which indicated that the Li+ is a promising dopant for tuning white light luminescence in some case.

  6. Application of doped rare-earth oxide TiO2:(Tm3+, Yb3+) in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Guixiang; Wei, Yuelin; Fan, Leqing; Wu, Jihuai

    2012-01-01

    Tm3+ and Yb3+ are codoped into TiO2 film in a dye-sensitized solar cell (DSSC). The emission and excitation spectra of TiO2:(Tm3+, Yb3+) power shows that the rare-earth ions possess up-conversion luminescence function, which results in harvesting more incident light and increasing photocurrent for the DSSC. On the other hand, owing to the p-type doping effect by Tm3+ and Yb3+, the photovoltage of the DSSC is enhanced. Under a simulated solar light irradiation of 100 mW·cm-2, a DSSC containing Tm3+/Yb3+ achieves a conversion efficiency of 7.05 %, which is increased by 10.0% compared with a DSSC lacking Tm3+/Yb3+.

  7. Synthesis of β-NaYF4: Yb3+, Tm3+ @ TiO2 and β-NaYF4: Yb3+, Tm3+ @ TiO2 @ Au nanocomposites and effective upconversion-driven photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Duo, Shuwang; Zhang, JieJun; Zhang, Hao; Chen, Zhong; Zhong, Cuiping; Liu, Tingzhi

    2016-12-01

    The β-NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite has been prepared by a facile hydrothermal method followed by the hydrolysis of TBOT, and then NaYF4: Yb3+, Tm3+ @ TiO2, HAuCl4 and sodium citrate were put into an oil bath for reaction to obtain the β-NaYF4: Yb3+, Tm3+ @ TiO2 @ Au core-shell nanocomposite. XRD and HRTEM show that the samples exhibit the hexagonal phase NaYF4, anatase TiO2 and cubic Au, indicating that the core-shell phases of NaYF4-TiO2 or NaYF4-TiO2-Au coexist in these samples. EDS and XPS results show the presence of Na, Y, F, Ti, O and Au elements. When TiO2 was coated on the surface of upconversion nanomaterials of NaYF4: Yb3+, Tm3+, the photocatalytic activity was improved significantly, and the β-NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite gives the highest photodegradation efficiency for MB and RhB, and decomposes about 73% of MB or 80% of RhB within 4.5 h under simulated solar light irradiation respectively. When the ultraviolet light from simulated sunlight irradiation was removed by the addition of a UV filter, the β-NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite decomposes about 42% of MB or 48% of RhB within 4.5 h. It means that the upconversion-driven photocatalytic performance (decomposes 42% of MB or 48% of RhB) is more effective than UV light-driven photocatalytic performance (31% of MB or 32% of RhB) in the photodegradation process. In addition, the β-NaYF4: Yb3+, Tm3+ @ TiO2 @ Au core-shell nanocomposite does not exhibit the better photocatalytic activity, and the optimal research will be carried out in the future.

  8. Violet and blue upconversion luminescence in Tm3+/Yb3+ codoped Y2O3 transparent ceramic

    NASA Astrophysics Data System (ADS)

    Hou, Xiaorui; Zhou, Shengming; Lin, Hui; Teng, Hao; Li, Yukun; Li, Wenjie; Jia, Tingting

    2010-04-01

    Tm3+/Yb3+ codoped Y2O3 transparent ceramics were fabricated and characterized from the point of upconversion luminescence. All the samples exhibited high transparency not only in near-infrared band but also in visible region. Under 980 nm excitation, the ceramics gave upconversion luminescence with very intense blue (485 nm) and considerably intense violet (360 nm) emissions. It was worthy to point out that the upconversion luminescence contained six emission bands, which dispersed in the region from 294 to 809 nm. The strongest blue emission (485 nm) was obtained with (Tm0.002Yb0.03Y0.958Zr0.01)2O3 ceramic (Yb/Tm=15). The mechanism of all upconversion emission bands were investigated in detail. The absorption, emission, and gain cross-section of blue emission (485 nm) were calculated, which indicated that Tm3+/Yb3+ codoped Y2O3 transparent ceramic has tremendous potential in short wavelength laser.

  9. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm3+-Yb3+ doped optical fiber beyond plasmonics

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.; Das, Shyamal; Bhadra, Shyamal K.

    2015-12-01

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb3+) and Thulium (Tm3+) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailed laser diode with input power of 20-100 mW to excite the Yb3+. Four times enhancement of Yb3+ emission of 900-1100 nm and Tm3+ upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs.

  10. Population inversion of 1G4 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal

    NASA Astrophysics Data System (ADS)

    Librantz, André Felipe Henriques; Gomes, Laércio; Courrol, Lilia Coronato; Ranieri, Izilda Marcia; Baldochi, Sonia Lícia

    2009-06-01

    In this work we present the spectroscopic properties of LiYF4 (YLF) single crystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates G14(Tm3+) excited state. Analysis of the energy transfer processes dynamics using selective pulsed laser excitations in Yb:Tm:Nd, Tm:Nd, and Tm:Yb YLF crystals shows that the energy transfer from Nd3+ to Yb3+ ions is the mechanism responsible for the enhancement in the blue upconversion efficiency in the Yb:Tm:Nd:YLF when compared with the Yb:Tm system. A study of the energy transfer processes in YLF:Yb:Tm:Nd crystal showed that the G14 excited level is mainly populated by a sequence of two nonradiative energy transfers that start well after the Nd3+ and Tm3+ excitations at 797 nm according to Nd3+(F43/2)→Yb3+(F27/2), followed by Yb3+(F25/2)→Tm(H34)→Tm3+(G14) . Results of numerical simulation of the rate equations system showed that a population inversion for 481.4 nm laser emission line is attained for a pumping rate threshold of 26 s-1, which is equivalent to an intensity of 880 W cm-2 for a continuous laser pumping at 797 nm. On the other hand, a population inversion was not observed for the case of 960 nm (Yb3+) pumping.

  11. Preparation and characterization of upconversion luminescent NaYF4:Yb, Er (Tm)/PS bulk transparent nanocomposites through in situ polymerization.

    PubMed

    Chai, Ruitao; Lian, Hongzhou; Cheng, Ziyong; Zhang, Cuimiao; Hou, Zhiyao; Xu, Zhenhe; Lin, Jun

    2010-05-15

    The in situ polymerization method was applied to synthesize bulk nanocomposites consisting of hydrophobic NaYF(4):Yb, Er (Tm) nanoparticles as the filler and polystyrene (PS) as the host material. The oleic acid stabilized NaYF(4):Yb, Er (Tm) nanoparticles and NaYF(4):Yb, Er (Tm)/PS nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), the thermogravimetric analysis (TGA), upconversion photoluminescence spectra and luminescence decays. The well-crystallized NaYF(4):Yb, Er (Tm) nanoparticles are spherical with a mean diameter of 40 nm. NaYF(4):Yb, Er/PS and NaYF(4):Yb, Tm/PS nanocomposites exhibit strong green and blue upconversion photoluminescence upon 980 nm laser excitation, due to the integration of luminescent NaYF(4):Yb, Er and NaYF(4):Yb, Tm nanoparticles, respectively. These nanocomposites can be potentially used as 3D display materials.

  12. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions

    SciTech Connect

    Jong Hyeon Lee; Byrne, R.H. )

    1993-01-01

    Carbonate stability constants for five rare earth elements (Ce[sup 3+], Eu[sup 3+], Gd[sup 3+], Tb[sup 3+], and Yb[sup 3+]) have been determined at t = 25[degrees]C and 0.70 [plus minus] 0.02 M ionic strength through solvent exchange techniques. Estimated stability constants for Ce, Eu, and Yb are in close agreement with previous work. Analyses using Gd and Tb provide the first carbonate stability constants for these elements based on direct measurements. The authors' measured stability constants were used to estimate carbonate stability constants for the entire suite of REEs. Their Eu, Gd, and Tb carbonate stability constants demonstrate the existence of a Gd-break': Carbonate stability constants for Gd are smaller than those for Eu and Tb. In analogy to Gd concentration anomalies reported in field observations, Gd stability constant anomalies have been defined in terms of the difference log [sub L][beta][sub n](Gd) [minus] log [l brace]([sub L][beta][sub n](Eu) + [sub L][beta][sub n](Tb))/2[r brace], where [sub L][beta][sub n](M) = [ML[sub n

  13. White light upconversion emission in Yb3+/ Er3+/ Tm3+ codoped oxy-fluoride lithium tungsten tellurite glass ceramics

    NASA Astrophysics Data System (ADS)

    Ansari, Ghizal F.; Mahajan, S. K.

    2012-02-01

    The bright white upconversion emission ( tri-colour UC) is generated in Er/Tm/Yb tri -doped oxy-fluoride lithium tungsten tellurite (TWLOF)glass ceramics containing crystalline phase LiYbF4 under the excitation of 980nm laser diode. The most appropriate combination of rare-earth ions (2mol% YbF3 1mol% ErF3 and 1mol%TmF3 )of glass ceramic sample has been determined to tune the primary colour (RGB and generate white light emission. By varying the pump power, intense and weak blue (487nm, 437nm), green (525nm and 545nm) and red (662nm) emission are simultaneously observed at room temperature. The dependence of upconversion emission intensity suggest that a theephoton process is responsible for the blue emission of Tm3+ ions and red emission due to both Tm3+ and Er3+ ions , while green emission originated from two photon processes in Er3+ ions. Also tri colour upconvesion and energy transfer in this glass ceramics sample were studied under 808nm laser diode excitation. The Upconversion mechanisms and Tm3+ ions plays role of both emitter and activator (transfer energy to Er) were discussed.

  14. Near infrared quantum cutting of Na+ and Eu2+-Yb3+ couple activated SrF2 crystal

    NASA Astrophysics Data System (ADS)

    Yagoub, M. Y. A.; Swart, H. C.; Dhlamini, M. S.; Coetsee, E.

    2016-10-01

    Na+ and Eu2+-Yb3+ couple activated SrF2 phosphor powders were synthesized by the co-precipitation method. The structure and luminescence properties of the system were investigated. X-ray diffraction data indicated that a mixture of cubic SrF2 and NaYbF4 phases gradually formed with an increase in the Yb3+ ion doping concentration. Diffuse reflectance has been used to confirm the existence of europium in the divalent state. The possibility of quantum cutting in the Eu2+-Yb3+ ions co-doped SrF2 crystal was discussed. Energy transfer that occurred subsequently from Eu2+ to Yb3+ was followed by an intense near-infrared (NIR) (∼1000 nm) emission spectral range. Emission spectra and the fluorescence decay measurements have been utilized to demonstrate the cooperative energy transfer in the Eu2+-Yb3+ couple ions. The energy transfer was completed at high concentration and the Yb3+ ions emission's intensity was reduced as a result of concentration quenching. In addition from the photoluminescence data it was also evident that Na+ induced a significant change to the NIR emission.

  15. Optical transitions of Tm3+ in oxyfluoride glasses and compositional and thermal effect on upconversion luminescence of Tm3+/Yb3+-codoped oxyfluoride glasses.

    PubMed

    Feng, Li; Wu, Yinsu; Liu, Zhuo; Guo, Tao

    2014-01-24

    Optical properties of Tm(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Tm(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980 nm excitation. The effects of composition, concentration of the doping ions, temperature, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Synthesis and upconversion luminescence of NaYF4:Yb, Tm/TiO2 core/shell nanoparticles with controllable shell thickness.

    PubMed

    Zhang, Daisheng; Zhao, Dan; Zheng, Kezhi; Liu, Ning; Qin, Weiping

    2011-11-01

    NaYF4:Yb, Tm/TiO2 core/shell nanoparticles were synthesized by a two-step method. First, the NaYF4:Yb, Tm nanocrystals were prepared using solvothermal technology; then, TiO2 shells were deposited on the nanocrystals by the hydrolysis of titanium ethoxide (TEOT) to form core/shell structures. By controlling the reaction time, we can adjust the thickness of TiO2 shell and thereby the weight percentage of TiO2 in the core/shell nanoparticles. The effect of shell thickness on the upconversion fluorescence of NaYF4:Yb, Tm nanocrystals was investigated in detail.

  17. Er3+-Tm3+-Yb3+ tri-doped CaMoO4 upconverting phosphors in optical devices applications

    NASA Astrophysics Data System (ADS)

    Dey, Riya; Rai, Vineet Kumar; Kumar, Kaushal

    2016-11-01

    The structural and optical properties of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphors prepared by chemical route have been explored. The crystalline structures of the prepared phosphors have been investigated with the help of X-ray diffraction analysis. The presence of different vibrational modes and absorption bands arising due to the transitions from the ground state to different excited states of rare earth ions have been identified using the Raman and UV-VIS-NIR absorption spectra of the developed phosphor, respectively. The concentration quenching effect on the luminescence property of the prepared materials has been explained in detail. The upconversion luminescence property of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphor annealed at different temperatures under 980 nm and 808 nm excitations have been reported. The energy transfer Er3+ → Tm3+, Yb3+ → Er3+ and Tm3+ has been found to be responsible for efficient UC emission. The dipole-dipole interaction is observed to be responsible for the concentration quenching of the luminescence intensity. The effect of annealing temperature on the upconversion luminescence property has been explained in detail. The results suggest that the developed tri-doped phosphor may be suitable in making the efficient NIR to visible upconverter and lighting based optical devices.

  18. Energy transfer and visible-infrared quantum cutting photoluminescence modification in Tm-Yb codoped YPO(4) inverse opal photonic crystals.

    PubMed

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2015-08-01

    YPO4:  Tm, Yb inverse opal photonic crystals were successfully synthesized by the colloidal crystal templates method, and the visible-infrared quantum cutting (QC) photoluminescence properties of YPO4:  Tm, Yb inverse opal photonic crystals were investigated. We obtained tetragonal phase YPO4 in all the samples when the samples sintered at 950°C for 5 h. The visible emission intensity of Tm3+ decreased significantly when the photonic bandgap was located at 650 nm under 480 nm excitation. On the contrary, the QC emission intensity of Yb3+ was enhanced as compared with the no photonic bandgap sample. When the photonic bandgap was located at 480 nm, the Yb3+ and Tm3+ light-emitting intensity weakened at the same time. We demonstrated that the energy transfer between Tm3+ and Yb3+ is enhanced by the suppression of the red emission of Tm3+. Additionally, the mechanisms for the influence of the photonic bandgap on the energy transfer process of the Tm3+, Yb3+ codoped YPO4 inverse opal are discussed.

  19. Energy transfer rates and population inversion investigation of 1G4 and 1D2 excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals

    NASA Astrophysics Data System (ADS)

    Marconi da Silva, Horácio; Linhares, M. D.; Henriques Librantz, André Philipe; Gomes, Laércio; Coronato Courrol, Lilia; Baldochi, Sonia Lícia; Ranieri, Izilda Marcia

    2011-04-01

    In this work we present the spectroscopic properties of KY3F10 (KY3F) single crystals activated with thulium and co-doped with ytterbium and neodymium ions. The most important processes that lead to the thulium up-conversion emissions in the blue and ultraviolet regions were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the up-conversion process that populates 1G4 and 1D2 (Tm3+) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Tm:Nd, Tm:Nd, and Tm:Yb KY3F crystals show that the energy transfer from Nd3+ to Yb3+ ions is the mechanism responsible for the enhancement of the blue up-conversion efficiency in the Yb:Tm:Nd:KY3F when compared with the Yb:Tm system. A study of the energy transfer processes in Yb:Tm:Nd:KY3F crystal showed that the 1G4 excited level is mainly populated by a sequence of two nonradiative energy transfers that starts well after the Nd3+ and Tm3+ excitation at 797 nm according to: Nd3+ (4F3/2) → Yb3+ (2F7/2) followed by Yb3+ (2F5/2) → Tm (3H4) → Tm3+ (1G4). Results of numerical simulation of the rate equations system showed that a population inversion for 483.1 nm laser emission line is attained for a pumping rate threshold of 98 s-1, which is equivalent to an intensity of 3.3 KW cm-2 for a continuous laser pumping at 797 nm for Yb(30 mol%):Tm(0.5 mol%):Nd(1 mol%):KY3F. Nevertheless, best Yb3+ concentration for the laser emission near 483.1 nm was estimated to be within 40 and 50 mol%. On the other hand, a population inversion was not observed for the case of 960 nm (Yb3+) pumping.

  20. Study of optical and luminescent properties of nanocrystals NaYF4:Tm3+, Yb3+ in the UV range in the application of integrated optics

    NASA Astrophysics Data System (ADS)

    Asharchuk, I. M.; Molchanova, S. I.; Rocheva, V. V.; Baranov, M. S.; Sarycheva, M. E.; Khaydukov, K. V.

    2016-12-01

    Studied the photoluminescence properties of synthesized nanocrystals doped with rare-earth ions NaYF4:Tm3+, Yb3+, measured luminescence spectra and absorption in the visible and near infrared regions of 300-1000 nm. Were measured the energy of phonons these nanocrystals, the average phonon energy was 332cm-1. Made optical waveguide impregnated with nanoparticles NaYF4: Yb3+, Tm3+ as the prospect of a compact source of radiation in the visible and UV range.

  1. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Intrinsic Bistability and Critical Slowing in Tm3+/Yb3+ Codoped Laser Crystal with the Photon Avalanche Mechanism

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Xin-Lu; Chen, Li-Xue

    2009-06-01

    We present theoretically a novel intrinsic optical bistability (IOB) in the Tm3+/Yb3+ codoped system with a photon avalanche mechanism. Numerical simulations based on the rate equation model demonstrate distinct IOB hysteresis and critical slowing dynamics around the avalanche thresholds. Such an IOB characteristic in Tm3+/Yb3+ codoped crystal has potential applications in solid-state bistable optical displays and luminescence switchers in visible-infrared spectra.

  2. Mechanochemical preparation of nanocrystalline NaYF4:Gd3+/Yb3+/Tm3+: An efficient upconversion phosphor

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Riesen, Hans

    2015-11-01

    We report on a mechanochemical preparation route for NaYF4:Gd3+/Yb3+/Tm3+ nanoparticles by ball-milling NaF, YF3, GdF3, YbF3 and TmF3 at room temperature. An analysis by XRD and TEM demonstrates that the resulting materials are mainly (∼88% after 4 h ball-milling) in the hexagonal phase and are on the nanoscale with an average crystallite size of ∼20 nm. The prepared nanoparticles display efficient upconversion emission; upon excitation by a 980 nm laser diode, bright visible blue light emission can be observed. However, in accord with previous results, the strongest emission is observed in the NIR at 800 nm.

  3. Optical temperature sensor through infrared excited blue upconversion emission in Tm3 +/Yb3 + codoped Y2O3

    NASA Astrophysics Data System (ADS)

    Li, Dongyu; Wang, Yuxiao; Zhang, Xueru; Yang, Kun; Liu, Lu; Song, Yinglin

    2012-04-01

    An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K- 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.

  4. Multicolour upconversion emission from Ho3+-Tm3+-Yb3+ codoped CaMoO4 phosphor

    NASA Astrophysics Data System (ADS)

    Dey, Riya; Rai, Vineet Kumar

    2015-05-01

    The Ho3+-Tm3+-Yb3+ codoped CaMoO4 phosphor powder has been synthesized by chemical coprecipitation technique. For the structural investigation the X-ray diffraction analysis has been done. Multicolour upconversion (UC) emission in the visible region from the prepared material has been observed under the 980 nm near infrared (NIR) excitation. The UC emission bands ˜ 474 nm (blue), ˜ 541 nm (green) and ˜ 661 nm (red) region have been assigned as 1G4→3H6 (Tm3+), 5F45S2→5I8 (Ho3+) and 5F5→5I8 (Ho3+) transitions respectively.

  5. Vacuum ultraviolet and near-infrared excited luminescence properties of Ca 3(PO 4) 2: RE3+, Na + ( RE=Tb, Yb, Er, Tm, and Ho)

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Wang, Yuhua; Guo, Linna; Zhang, Feng; Wen, Yan; Liu, Bitao; Huang, Yan

    2011-08-01

    Tb 3+, Yb 3+, Tm 3+, Er 3+, and Ho 3+ doped Ca 3(PO 4) 2 were synthesized by solid-state reaction, and their luminescence properties were studied by spectra techniques. Tb 3+-doped samples can exhibit intense green emission under VUV excitation, and the brightness for the optimal Tb 3+ content is comparable with that of the commercial Zn 2SiO 4:Mn 2+ green phosphor. Under near-infrared laser excitation, the upconversion luminescence spectra of Yb 3+, Tm 3+, Er 3+, and Ho 3+ doped samples demonstrate that the red, green, and blue tricolored fluorescence could be obtained by codoping Yb 3+-Ho 3+, Yb 3+-Er 3+, and Yb 3+-Tm 3+ in Ca 3(PO 4) 2, respectively. Good white upconversion emission with CIE chromaticity coordinates (0.358, 0.362) is achieved by quadri-doping Yb 3+-Tm 3+-Er 3+-Ho 3+ in Ca 3(PO 4) 2, in which the cross-relaxation process between Er 3+ and Tm 3+, producing the 1D2- 3F4 transition of Tm 3+, is found. The upconversion mechanisms are elucidated through the laser power dependence of the upconverted emissions and the energy level diagrams.

  6. Fabrication and evaluation of chitosan/NaYF4:Yb(3+)/Tm(3+) upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF4:Yb(3+)/Tm(3+) UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF4:Yb(3+)/Tm(3+) composite beads (CS/NaYF4:Yb(3+)/Tm(3+) CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF4:Yb(3+)/Tm(3+) UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF4:Yb(3+)/Tm(3+) UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF4:Yb(3+)/Tm(3+) CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance.

  7. Properties of single crystalline AZn2Sb2 (A=Ca,Eu,Yb)

    SciTech Connect

    May, Andrew F; McGuire, Michael A; Ma, Jie; Delaire, Olivier A; Huq, Ashfia; Custelcean, Radu

    2012-01-01

    Single crystals of CaZn{sub 2}Sb{sub 2}, EuZn{sub 2}Sb{sub 2}, and YbZn{sub 2}Sb{sub 2} were grown from melts of nominal composition AZn{sub 5}Sb{sub 5} (A = Ca,Eu,Yb) with the excess melt being removed at 1073 K. The electrical transport properties are consistent with those previously reported for polycrystalline samples. This confirms that the p-type carrier concentrations ranging from 2 x 10{sup 19} cm{sup -3} to -1 x 10{sup 20} cm{sup -3} are intrinsic to these materials. Also consistent with transport in polycrystalline materials, the carrier mobility is found to be lowest in CaZn{sub 2}Sb{sub 2}, suggesting the trends in mobility and thermoelectric efficiency within these compounds are inherent to the material systems and not due to inhomogeneity or impurities in polycrystalline samples. These results suggest CaZn{sub 2}Sb{sub 2} has the strongest coupling between the doping/defects and the electronic framework. Magnetization measurements reveal an antiferromagnetic transition near 13 K in EuZn{sub 2}Sb{sub 2}, and the observed magnetic anisotropy indicates the spins align parallel and anti-parallel to c in the trigonal lattice. Powder neutron diffraction on polycrystalline samples of CaZn{sub 2}Sb{sub 2} and YbZn{sub 2}Sb{sub 2} reveals smooth lattice expansion to 1000 K, with c expanding faster than a. The Debye temperatures calculated from specific heat capacity data and the isotropic displacement parameters are found to correlate with the carrier mobility, with the CaZn{sub 2}Sb{sub 2} displaying the largest Debye temperature and smallest mobility.

  8. Formation enthalpies of LaLn'O3 (Ln'=Ho, Er, Tm and Yb) interlanthanide perovskites

    NASA Astrophysics Data System (ADS)

    Qi, Jianqi; Guo, Xiaofeng; Mielewczyk-Gryn, Aleksandra; Navrotsky, Alexandra

    2015-07-01

    High-temperature oxide melt solution calorimetry using 3Na2O·MoO3 at 802 °C was performed for interlanthanide perovskites LaLn'O3 (Ln'=Ho, Er, Tm and Yb) and lanthanide oxides (La2O3, Ho2O3, Er2O3, Tm2O3 and Yb2O3). The enthalpies of formation of these interlanthanide perovskites from binary lanthanide oxides at room temperature (25 °C) were determined to be -8.3±3.4 kJ/mol for LaHoO3, -9.9±3.0 kJ/mol for LaErO3, -10.8±2.7 kJ/mol for LaTmO3 and -12.3±2.9 kJ/mol for LaYbO3. There is a roughly linear relationships between these enthalpy values and the tolerance factor for these and for other LaM3+O3 (M=In, Sc, Ga, Al, Fe and Cr) perovskites, confirming that the distortion of the perovskites as results from ionic radius difference of A-site and B-site cations, is the main factor determining the stability of these compounds.

  9. Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation.

    PubMed

    Silva, W F; Eliel, G S N; dos Santos, P V; de Araujo, M T; Vermelho, M V D; Udo, P T; Astrath, N G C; Baesso, M L; Jacinto, C

    2010-07-21

    Pump and thermally induced color tunabilities were demonstrated in Yb(3+)/Tm(3+) codoped low silica calcium aluminosilicate (LSCAS) glass under anti-Stokes excitation at 1.064 microm. The effects of pump intensity and sample's temperature on the upconversion emissions and mainly on the color tunabilities (from 800 to 480 nm) were investigated. The results revealed a 20- and a threefold reductions at 800/480 nm ratio as, respectively, the pump intensity and sample's temperature were increased from 27 to 700 kW/cm(2) and from 296 to 577 K. These behaviors with pump intensity and temperature (a strong increase of the 480 nm emission in comparison with the 800 nm one) were attributed to the several efficient processes occurring in the LSCAS system (Yb(3+)-->Tm(3+) energy-transfer processes, easy saturations of the Yb(3+) and Tm(3+) excited states, and radiative emissions). Besides these assigns, the temperature dependence is mainly assigned to the temperature-dependent effective absorption cross section of the ytterbium sensitizer through the so-called multiphonon-assisted anti-Stokes excitation process. Theoretical analyses and fits of the experimental data provided quantitative information.

  10. WHITE UPCONVERSION LUMINESCENCE FROM (Yb3+/Tm3+/Ho3+) TRIDOPED GdF3 NANORODS AFTER HEAT TREATMENT

    NASA Astrophysics Data System (ADS)

    Guo, Linna; Wang, Yuhua; Zhang, Jia; Wang, Yanzhao; Dong, Pengyu

    2012-09-01

    A series of Ho3+/Yb3+/Tm3+ tridoped GdF3 nanorods with different dopant concentrations were synthesized by a hydrothermal method. Transmission electron microscope (TEM) images indicate that the length and diameter of the nanorods is about 90 nm and 31 nm, respectively on average. No bright white upconversion light was observed from the samples with different Yb3+, Ho3+ or Tm3+ concentrations. Unexpectedly, the emission color coordinates of the samples after heat treatment move toward the central white region of the chromaticity diagram, and among these samples, the color coordinate (0.349, 0.329) of GdF3:15% Yb3+, 0.1% Ho3+, 0.8% Tm3+ is the most close to the standard white light (0.333, 0.333). This is unlike previous reports in which white light was achieved via tuning dopant concentration or excitation power. The reasons for the above phenomenon are presented by means of FT-IR spectra and the energy level diagram of dopants.

  11. Downshifting by energy transfer in Eu3+/Yb3+ codoped Ba4La6(SiO4)6O glass ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Li, X. B.; Wu, L. J.; Yu, Y. Y.; Wang, X. Z.; Liu, S. Q.; Wang, Z.; Wang, W. C.; Liu, Y.

    2017-03-01

    We report on an efficient near-infrared downshifting in Eu3+/Yb3+ codoped glass ceramics containing Ba4La6(SiO4)6O crystals. The structural and luminescence properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), static and dynamic photoemission and excitation spectroscopy. After crystallization, the doping ions are found to be selectively incorporated into the precipitated oxyapatite crystals on La3+ sites, contributing to the remarkably enhanced visible emission of Eu3+ under 394 nm excitation. The Eu3+/Yb3+ codoped glass ceramics additionally exhibits efficient near-infrared luminescence of Yb3+ around 1000 nm upon photon excitation of Eu3+ within the 300-550 nm range. The reduced visible emission and decay time of 5D0 state with Yb3+ codoping further confirm the energy transfer from Eu3+ to Yb3+, which is promoted due to the shortened distance between Eu3+ and Yb3+ within crystals. The maximum energy transfer efficiency is evaluated to be 61%. It is revealed that energy transfer process occurs predominantly through the cross relaxation of Eu3+(5D0) + Yb3+(2F7/2) → Eu3+(7F6) + Yb3+(7F5/2).

  12. Study on up-conversion emissions of Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4

    NASA Astrophysics Data System (ADS)

    Cao, Chunyan; Qin, Weiping; Zhang, Jisen

    2010-02-01

    The Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4 samples were synthesized through a combination method of a co-precipitation and an argon atmosphere annealing procedures. X-ray diffraction analysis indicated that the Yb 3+/Tm 3+ co-doped GdF 3 sample crystallized well and was orthorhombic phase, and the Yb 3+/Tm 3+ co-doped NaGdF 4 sample was hexagonal phase. With a 980-nm semiconductor continuous wave laser diode as the excitation source, the up-conversion emission spectra of the two samples in the wavelength range of 240-510 nm were recorded. In the up-conversion emissions of the samples, Yb 3+ transferred energies to Tm 3+ resulting in their ultraviolet, violet, and blue up-conversion emissions. And, Tm 3+ simultaneously transferred energies to Gd 3+, which finally resulted in ultraviolet up-conversion emissions of Gd 3+. The study on the excitation power dependence of up-conversion fluorescence intensity indicated that there were multi-photon (three-, four-, five-, and six-) processes in the up-conversion emissions of the samples. And the up-conversion emissions of Gd 3+ and Tm 3+ in the Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4 samples were compared studied, too.

  13. Composition tuning the upconversion emission in NaYF4:Yb/Tm hexaplate nanocrystals.

    PubMed

    Zhang, Hua; Li, Yujing; Lin, Yungchen; Huang, Yu; Duan, Xiangfeng

    2011-03-01

    Single crystal hexagonal NaYF4:Yb/Tm nanocrystals have been synthesized with uniform size, morphology and controlled chemical composition. Spectroscopic studies show that these nanocrystals exhibit strong energy upconversion emission when excited with a 980 nm diode laser, with two primary emission peaks centered around 452 nm and 476 nm. Importantly, the overall and relative emission intensity at these wavelengths can be readily tuned by controlling the concentration of the trivalent rare earth element dopants at the beginning of the synthesis which has been confirmed by EDX for the first time. Through systematic studies, the optimum rare earth ion doping concentration can be determined for the strongest emission intensity at the selected peak(s). Confocal microscopy studies show that the upconversion emission from individual NCs can be readily visualized. These studies demonstrate a rational approach for fine tuning the upconversion properties in rare-earth doped nanostructures and can broadly impact areas ranging from energy harvesting, energy conversion to biomedical imaging and therapeutics.

  14. White light upconversion emissions in Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoping; Xu, Wei; Zhu, Shuang; Song, Qiutong; Wu, Xijun; Liu, Hailong

    2015-10-01

    Rare earth ions doped glasses producing visible upconversion emissions are of great interest due to their potential applications in the photonics filed. In fact, practical application of upconversion emissions has been used to obtain color image displays and white light sources. However, there are few reports on the thermal effect on tuning the emission color of the RE doped materials. In this work, the Er3+/Tm3+/Yb3+ tridoped oxyfluoride glasses were prepared through high temperature solid-state method. Under a 980 nm diode laser excitation, the upconversion emissions from the samples were studied. At room-temperature, bright white luminescence, whose CIE chromaticity coordinate was about (0.28, 0.31), can be obtained when the excitation power was 120 mW. The emission color was changed by varying the intensity ratios between RGB bands, which are strongly dependent on the rare earth ions concentration. The temperature dependent color emissions were also investigated. As temperature increased, the intensities for the emission bands presented different decay rates, finally resulting in the changing of the CIE coordinate. When the temperature was 573 K, white light with color coordinate of (0.31, 0.33) was achieved, which matches well with the white reference (0.33, 0.33). The color tunability, high quality of white light and intense emission intensity make the transparent oxyfluoride glasses excellent candidates for applications in solid-state lighting.

  15. Solvent extraction behavior of trivalent Nd, Eu, Ho, and Yb with dibenzoylmethane at 80{degree}C

    SciTech Connect

    Gao, J.; Choppin, G.R.

    1995-05-01

    The extraction behavior of trivalent lanthanide ions (Nd, Eu, Ho and Yb) has been studied with dibenzoylmethane (DBM) at 80{degree}C using molten paraffin wax as diluent. In the range of pH 7 to 8, the extraction of lanthanide cations is greater than 90%. The ratio of Ln:DBM in the extracted species was determined to be 1:3 by the slope analysis method. The pH{sub 1/2} values of extraction and the extraction constants of Nd(III), Eu(III), Ho(III) and Yb(III) are reported. 22 refs., 2 figs., 1 tab.

  16. Controllable synthesis and up-conversion properties of tetragonal BaYF5:Yb/Ln (Ln=Er, Tm, and Ho) nanocrystals.

    PubMed

    Niu, Na; Yang, Piaoping; Liu, Yanchao; Li, Chunxia; Wang, Dong; Gai, Shili; He, Fei

    2011-10-15

    The nanocrystals (NCs) of tetragonal barium yttrium fluoride (BaYF(5)) doped 1 mol% Ln(3+) (Ln=Er, Tm, Ho) and 20 mol% Yb(3+) with different morphologies and sizes have been successfully synthesized through a facile hydrothermal method. The influences of pH values of the initial solution and fluorine sources on the final structure and morphology of the products have been well investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure and morphology of these samples prepared at different conditions. And it is found that BaYF(5):Yb/Ln NCs prepared at pH value of 10 using NaBF(4) as F(-) source have a uniform spherical morphology with average diameter of 25 nm. Additionally, the up-conversion (UC) properties of Yb/Er, Yb/Tm, and Yb/Ho doped BaYF(5) nanoparticles were also discussed. Under 980 nm laser excitation, the BaYF(5):Yb/Er, BaYF(5):Yb/Tm, and BaYF(5):Yb/Ho NCs exhibit green, whitish blue, and yellow green UC luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.

  17. Intense white light emission in Tm3+/Er3+/Yb3+ co-doped Y2O3-ZnO nano-composite

    NASA Astrophysics Data System (ADS)

    Yadav, R. S.; Verma, R. K.; Rai, S. B.

    2013-07-01

    The Tm3+/Er3+/Yb3+ co-doped Y2O3-ZnO nano-composite is synthesized using the solution combustion technique. The structural morphology is monitored using x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The Yb3+/Tm3+ co-doped nano-phosphor emits intense blue as well as weak red emissions, while Yb3+/Er3+ co-doped nano-phosphor emits strong green along with red emissions on excitation with 976 nm laser. Joining these together (i.e. Tm3+/Er3+/Yb3+ co-doped phosphor) give very strong white light, which is further verified by CIE coordinates (0.32, 0.36). The addition of ZnO with Y2O3 phosphor gives further enhancement in the intensity of white light. The possible reason for this enhancement is the removal of optical quenching sites.

  18. Dually functioned core-shell NaYF4:Er(3+)/Yb(3+)@NaYF4:Tm(3+)/Yb(3+) nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy.

    PubMed

    Zhang, Yanqiu; Chen, Baojiu; Xu, Sai; Li, Xiangping; Zhang, Jinsu; Sun, Jiashi; Zheng, Hui; Tong, Lili; Sui, Guozhu; Zhong, Hua; Xia, Haiping; Hua, Ruinian

    2017-09-19

    To realize photothermal therapy (PTT) of cancer/tumor both the photothermal conversion and temperature detection are required. Usually, the temperature detection in PTT needs complicated instruments, and the therapy process is out of temperature control in the present investigations. In this work, we attempt to develop a novel material for achieving both the photothermal conversion and temperature sensing and control at the same time. To this end, a core-shell structure with NaYF4:Er(3+)/Yb(3+) core for temperature detection and NaYF4:Tm(3+)/Yb(3+) shell for photothermal conversion was designed and prepared. The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, the temperature sensing properties for the NaYF4:Er(3+)/Yb(3+) and core-shell NaYF4:Er(3+)/Yb(3+)@NaYF4:Tm(3+)/Yb(3+) nanoparticles were studied. It was found that the temperature sensing performance of the core-shell nanoparticles did not become worse due to coating of NaYF4:Tm(3+)/Yb(3+) shell. The photothermal conversion behaviors were examined in cyclohexane solution based on the temperature response, the NaYF4:Er(3+)/Yb(3+)@NaYF4:Tm(3+)/Yb(3+) core-shell nanoparticles exhibited more effective photothermal conversion than that of NaYF4:Er(3+)/Yb(3+) nanoparticles, and a net temperature increment of about 7 °C was achieved by using the core-shell nanoparticles.

  19. Infrared-to-visible up-conversion luminescence and energy transfer of RE3+/Yb3+(RE = Ho, Tm) co-doped SrIn2O4

    NASA Astrophysics Data System (ADS)

    Guan, Ming; Zheng, Hong; Mei, Lefu; Huang, Zhaohui; Yang, Tao; Fang, Minghao; Liu, Yangai

    2014-11-01

    Near-infrared excited up-conversion phosphors of RE3+/Yb3+(RE = Ho, Tm) co-doped SrIn2O4 were synthesized by a solid-state reaction method. X-ray diffraction analysis revealed the phase composition of those samples, and the up-conversion spectroscopic properties were studied in terms of up-conversion emission spectra. Under 980 nm near-infrared laser excitation, strong green emission with the peak at 546 nm was observed in SrIn2O4: Ho3+/Yb3+, which can be assigned to the characteristic 5S2(5F4) → 5I8 transition of Ho3+. Furthermore, SrIn2O4: Tm3+/Yb3+ showed bright blue emission with the peak at 486 nm, which is associated with the 1G4 → 3H6 transition of Tm3+. The UC power studies indicated that the luminescence of SrIn2O4: Ho3+/Yb3+ and SrIn2O4: Tm3+/Yb3+ are attributed to two-photon and three-photon process, respectively. The possible UC luminescence mechanism and energy transfer in SrIn2O4: RE3+/Yb3+ were discussed.

  20. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals.

    PubMed

    Yin, Anxiang; Zhang, Yawen; Sun, Lingdong; Yan, Chunhua

    2010-06-01

    Monodisperse beta-NaYF4:Yb,Tm nanocrystals with controlled size (25-150 nm), shape (sphere, hexagonal prism, and hexagonal plate), and composition (Yb: 20-40%, Tm: 0.2-5%) were synthesized from the thermolysis of metal trifluoroacetates in hot surfactant solutions. The upconversion (UC) of near-infrared light (980 nm) to ultra-violet (360 nm), blue (450 and 475 nm), red (650 and 695 nm) and infrared (800 nm) light in the beta-NaYF4:Yb,Tm nanocrystals has been studied by UC spectroscopy. Both the total intensity of UC emissions and the relative intensities of emissions at different wavelengths have shown a strong dependence on different particle sizes and different Tm3+ and Yb3+ concentrations. As a result, different overall output colors of UC emissions can be achieved by altering sizes and Yb3+/Tm3+ doping concentrations of the beta-NaYF4:Yb,Tm nanocrystals. The intensity-power curves of a series of samples have proved that emissions at 360 and 450 nm can be ascribed to four-photon process (1D2 to 3H6 and 1D2 to 3H4, respectively), while emissions at 475 and 650 nm are three-photon processes (1G4 to 3H6 and 1G4 to 3H4, respectively) and emissions at 695 and 800 nm are two-photon ones (3F2 to 3H6 and 3F4 to 3H6, respectively). A UC saturation effect would occur under a certain excitation intensity of the 980 nm CW diode laser for the as-obtained beta-NaYF4:Yb,Tm nanocrystals, leading to the decrease of the slopes of the I-P curves. The results of our study also revealed that the successive transfer model instead of the cooperative sensitization model can be applied to explain the UC behaviors of the beta-NaYF4:Yb,Tm nanocrystals. Further, an unexpected stronger emissions of four-photon process at 360 and 450 nm for approximately 50 nm beta-NaYF4:Yb,Tm nanocrystals than those for the bigger (approximately 150 nm) nanocrystals was observed and explained in terms of the effects of crystallite size, surface-to-volume ratio and homogeneity of the doping cations.

  1. Multicolor up conversion emission and color tunability in Yb 3+/Tm 3+/Ho 3+ triply doped heavy metal oxide glasses

    NASA Astrophysics Data System (ADS)

    Ledemi, Yannick; Manzani, Danilo; Ribeiro, Sidney J. L.; Messaddeq, Younes

    2011-10-01

    Multicolor and white light emissions have been achieved in Yb 3+, Tm 3+ and Ho 3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO 2-GeO 2-Bi 2O 3-K 2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb 2O 3, 0.6 wt% Tm 2O 3 and 0.1 wt% Ho 2O 3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm 3+ ions and a two-photon green and red up conversions of Ho 3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards.

  2. MOLTEN SALT SYNTHESIS OF YF3:Yb3+/Ln3+(Ln = Er3+, Tm3+) MICROSHEETS WITH MULTICOLOR UPCONVERSION LUMINESCENCE

    NASA Astrophysics Data System (ADS)

    Ding, Mingye; Lu, Chunhua; Cao, Linhai; Ni, Yaru; Xu, Zhongzi

    2013-09-01

    In this paper, highly crystalline YF3:Yb3+/Ln3+(Ln = Er3+, Tm3+) microsheets were successfully synthesized by a surfactant-free molten salt method for the first time. The results indicated that the as-obtained samples belonged to orthorhombic system and exhibited microsheets morphology with side lengths of 30 to 80 μm and wall thickness from 1 to 1.5 μm. By changing the dopant's species (Ln3+), multicolor (yellow and blue) upconversion emission can be observed in YF3:Yb3+/Ln3+ microsheets under 980 nm laser diode (LD) excitation. The upconversion mechanisms in co-doping YF3 samples were analyzed in detail based on the emission spectra. Importantly, this approach not only proposes a new alternative in synthesizing such materials, but also opens the possibility to meet the increasing commercial demand.

  3. Facet engineered interface design of NaYF4:Yb,Tm upconversion nanocrystals on BiOCl nanoplates for enhanced near-infrared photocatalysis.

    PubMed

    Bai, Lijie; Jiang, Wenya; Gao, Chunxiao; Zhong, Shuxian; Zhao, Leihong; Li, Zhengquan; Bai, Song

    2016-12-07

    The combination of upconversion nanocrystals with a wide-bandgap semiconductor is an efficient strategy to develop near-infrared (NIR)-responsive photocatalysts. The photocatalytic activity of the hybrid structures is greatly determined by the efficiency of the energy transfer on the interface between upconversion nanocrystals and the semiconductor. In this work, we demonstrate the interface design of a NaYF4:Yb,Tm-BiOCl hybrid structure based on the choice of suitable BiOCl facets in depositing NaYF4:Yb,Tm upconversion nanocrystals. It was found that the selective deposition of NaYF4:Yb,Tm nanocrystals on the BiOCl(110) facet can greatly enhance the photocatalytic performance in dye degradation compared with the sample with NaYF4:Yb,Tm nanocrystals loaded on the BiOCl(001) facet. Two effects were believed to contribute to this enhancement: (1) a stronger UV emission absorption ability of the BiOCl(110) facet from NaYF4:Yb,Tm in generating more photo-induced charge carriers resulted from the narrower bandgap; (2) a shorter diffusion distance of photogenerated charge carriers to the BiOCl(110) reactive facet for surface catalytic reactions owing to the spatial charge separation between different facets. This work highlights the rational interfacial design of an upconversion nanocrystal-semiconductor hybrid structure for enhanced energy transfer in photocatalysis.

  4. Magnetic order and magnetoelectric properties of R2CoMn O6 perovskites (R =Ho , Tm, Yb, and Lu)

    NASA Astrophysics Data System (ADS)

    Blasco, J.; García-Muñoz, J. L.; García, J.; Subías, G.; Stankiewicz, J.; Rodríguez-Velamazán, J. A.; Ritter, C.

    2017-07-01

    We present a detailed study on the magnetic structure and magnetoelectric properties of several double perovskites R2CoMn O6 (R =Ho , Tm, Yb, and Lu). All of these samples show an almost perfect (˜94 %) ordering of C o2 + and M n4 + cations in the unit cell. Our research reveals that the magnetic ground state strongly depends on the R size. For samples with larger R (Ho and Tm), the ground state is formed by a ferromagnetic order (F type) of C o2 + and M n4 + moments, while R either remains mainly disordered (Ho) or is coupled antiferromagnetically (Tm) to the Co/Mn sublattice. For samples with smaller R (Yb or Lu), competitive interactions lead to the formation of an E -type arrangement for the C o2 + and M n4 + moments with a large amount of extended defects such as stacking faults. The Y b3 + is partly ordered at very low temperature. The latter samples undergo a metamagnetic transition from the E into the F type, which is coupled to a negative magnetodielectric effect. Actually, the real part of dielectric permittivity shows an anomaly at the magnetic transition for the samples exhibiting an E -type order. This anomaly is absent in samples with F -type order, and, accordingly, it vanishes coupled to the metamagnetic transition for R =Yb or Lu samples. At room temperature, the huge values of the dielectric constant reveal the presence of Maxwell-Wagner depletion layers. Pyroelectric measurements reveal a high polarization at low temperature, but the onset of pyroelectric current is neither correlated to the kind of magnetic ordering nor to the magnetic transition. Our study identified the pyroelectric current as thermally stimulated depolarization current and electric-field polarization curves show a linear behavior at low temperature. Therefore, no clear ferroelectric transition occurs in these compounds.

  5. Upconversion emissions from high-energy states of Eu3+ sensitized by Yb3+ and Ho3+ in β-NaYF4 microcrystals under 980 nm excitation.

    PubMed

    Wang, Lili; Liu, Zhenyu; Chen, Zhe; Zhao, Dan; Qin, Guanshi; Qin, Weiping

    2011-12-05

    Under 980 nm excitation, multiple ultraviolet and visible upconversion luminescence from Ho3+ and Eu3+ ions were observed in Yb3+/Ho3+/Eu3+ tri-doped NaYF4 microcrystals (MCs). The high-energy states (5H3-7, 5L6, 5D3 and 5D2) of Eu3+ ions could be efficiently populated by two-step energy transfer (ET) processes of Yb → Ho → Eu. Four-, three-, two-photon UC processes of Eu3+ ions were confirmed by the dependence of 5H3-7, 5L6 and 5D0 levels emission intensities on the pumping power.

  6. Formation enthalpies of LaLn'O{sub 3} (Ln'=Ho, Er, Tm and Yb) interlanthanide perovskites

    SciTech Connect

    Qi, Jianqi; Guo, Xiaofeng; Mielewczyk-Gryn, Aleksandra

    2015-07-15

    High-temperature oxide melt solution calorimetry using 3Na{sub 2}O·MoO{sub 3} at 802 °C was performed for interlanthanide perovskites LaLn'O{sub 3} (Ln'=Ho, Er, Tm and Yb) and lanthanide oxides (La{sub 2}O{sub 3}, Ho{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Tm{sub 2}O{sub 3} and Yb{sub 2}O{sub 3}). The enthalpies of formation of these interlanthanide perovskites from binary lanthanide oxides at room temperature (25 °C) were determined to be −8.3±3.4 kJ/mol for LaHoO{sub 3}, −9.9±3.0 kJ/mol for LaErO{sub 3}, −10.8±2.7 kJ/mol for LaTmO{sub 3} and −12.3±2.9 kJ/mol for LaYbO{sub 3}. There is a roughly linear relationships between these enthalpy values and the tolerance factor for these and for other LaM{sup 3+}O{sub 3} (M=In, Sc, Ga, Al, Fe and Cr) perovskites, confirming that the distortion of the perovskites as results from ionic radius difference of A-site and B-site cations, is the main factor determining the stability of these compounds. - Graphical abstract: A linear relationship between the enthalpy of formation and the tolerance factor for interlanthanide LaLn'O{sub 3} (Ln'=Ho, Er, Tm, and Yb) and other LaM{sup 3+}O{sub 3} (M=In, Sc, Ga, Al, Fe and Cr) perovskites. - Highlights: • Interlanthanide perovskites were synthesized by solid state reactions. • Their enthalpies of formation were measured by oxide melt solution calorimetry. • ΔH{sub f,ox} shows a linear relationship with tolerance factor.

  7. Upconversion white-light emission in Ho3+/Yb3+/Tm3+ tridoped LiNbO3 single crystal.

    PubMed

    Xing, Lili; Wu, Xiaohong; Wang, Rui; Xu, Wei; Qian, Yannan

    2012-09-01

    Ho3+/Yb3+/Tm3+ tridoped LiNbO3 single crystal exhibiting intense upconversion white light under 980 nm excitation has been successfully fabricated by the Czochralski method. The tridoped LiNbO3 single crystal offers power dependent color tuning properties by simply changing excitation power. Efficient three-photon blue upconversion emission and two-photon green and red upconversion emissions have been observed. In addition, the red emission of Ho3+ originates dominantly from the nonradiative decay of green emission. The LiNbO3 with upconversion white light will be a potential laser candidate material.

  8. Visible and ultraviolet upconversion emission in LiNbO3 triply doped with Tm3+, Yb3+, and Nd3+

    NASA Astrophysics Data System (ADS)

    Li, Ai-Hua; Zheng, Zhi-Ren; Lü, Qiang; Sun, Liang; Liu, Wei-Long; Wu, Wen-Zhi; Yang, Yan-Qiang; Lü, Tian-Quan

    2009-01-01

    Visible and ultraviolet upconversion (UC) emission is observed under 800 nm femtosecond laser excitation in LiNbO3 crystals triply doped with Tm3+, Yb3+, and Nd3+ at room temperature. Energy transfer (ET) from Nd3+ to Yb3+ then to Tm3+ is very important in this UC emission process. The overlapping between the emissions of D12→F34 and G14→H36, which makes up of blue emission band, is confirmed by transient investigation. From the pump energy dependence investigation, it is known that the dominant populating mechanism for the G14 state is the two-photon process, and that for D12 is the three-photon process. In our UC emission model, the G14 state is populated by the ET of F25/2(Yb3+)+H34(Tm3+)→F27/2(Yb3+)+G14(Tm3+), D12 state is populated by the ET of F32+H34→D12+H36 among Tm3+ ions. For LiNbO3 crystals doped with Tm3+ to the concentration of 0.9 mol %, the measured lifetimes of G14 and D12 are ˜80 and 4 μs.

  9. Superconducting EuBa 2Cu 3O 7-δ and YbBa 2Cu 3O 7-δ produced by oxidation of microcrystalline precursor alloys

    NASA Astrophysics Data System (ADS)

    Weiss, F.; Yavari, A. R.; Rouault, A.; Hadar, R.; Senateur, J. P.; Desre, P.

    1988-06-01

    EuBa2Cu3 and YbBa2Cu3 microcrystalltne alloys obtained by rapid solidification have been oxidized completely in flowing oxygen at a temperature higher than 900° C with subsequent slow cooling and have yield the high temperature oxides EuBa2Cu37-δ and YbBa2Cu3O7-δ. The onset of superconductivity occured at 92 K in the case of Eu and at 89 K in the case of Yb. The resistivity in the normal state ( ρ at 100 K) is lower than in sintered powder materials Sue to a better compaction and to a better intergrain coupling.

  10. Infrared-to-visible up-conversion luminescence of CaIn2O4 co-doped with RE3+/Yb3+ (RE=Tm, Pr, Nd)

    NASA Astrophysics Data System (ADS)

    Li, Ting; Guo, Chongfeng; Jiao, Huan; Li, Lin; Agrawal, Dinesh K.

    2014-02-01

    Infrared-to-visible up-conversion luminescence (UCL) of RE3+ singly-doped and RE3+/Yb3+ co-doped CaIn2O4 (RE=Tm, Pr and Nd) phosphors were investigated under 980 nm excitation. The energy transfer from Yb3+ to RE3+ plays an important role in the UC process and the introduction of Yb3+ significantly enhances the UCL intensities of CaIn2O4: RE3+. The energy level diagrams and the possible UCL mechanisms of CaIn2O4: RE3+, Yb3+ (RE=Tm, Pr and Nd) were proposed based on the results of power dependence of the UCL intensities.

  11. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb,Tm nanocrystals

    NASA Astrophysics Data System (ADS)

    Yin, Anxiang; Zhang, Yawen; Sun, Lingdong; Yan, Chunhua

    2010-06-01

    Monodisperse β-NaYF4 : Yb,Tm nanocrystals with controlled size (25-150 nm), shape (sphere, hexagonal prism, and hexagonal plate), and composition (Yb: 20-40%, Tm: 0.2-5%) were synthesized from the thermolysis of metal trifluoroacetates in hot surfactant solutions. The upconversion (UC) of near-infrared light (980 nm) to ultra-violet (360 nm), blue (450 and 475 nm), red (650 and 695 nm) and infrared (800 nm) light in the β-NaYF4 : Yb,Tm nanocrystals has been studied by UC spectroscopy. Both the total intensity of UC emissions and the relative intensities of emissions at different wavelengths have shown a strong dependence on different particle sizes and different Tm3+ and Yb3+ concentrations. As a result, different overall output colors of UC emissions can be achieved by altering sizes and Yb3+/Tm3+ doping concentrations of the β-NaYF4 : Yb,Tm nanocrystals. The intensity-power curves of a series of samples have proved that emissions at 360 and 450 nm can be ascribed to four-photon process (1D2 to 3H6 and 1D2 to 3H4, respectively), while emissions at 475 and 650 nm are three-photon processes (1G4 to 3H6 and 1G4 to 3H4, respectively) and emissions at 695 and 800 nm are two-photon ones (3F2 to 3H6 and 3F4 to 3H6, respectively). A UC saturation effect would occur under a certain excitation intensity of the 980 nm CW diode laser for the as-obtained β-NaYF4 : Yb,Tm nanocrystals, leading to the decrease of the slopes of the I-P curves. The results of our study also revealed that the successive transfer model instead of the cooperative sensitization model can be applied to explain the UC behaviors of the β-NaYF4 : Yb,Tm nanocrystals. Further, an unexpected stronger emissions of four-photon process at 360 and 450 nm for ~50 nm β-NaYF4 : Yb,Tm nanocrystals than those for the bigger (~150 nm) nanocrystals was observed and explained in terms of the effects of crystallite size, surface-to-volume ratio and homogeneity of the doping cations.Monodisperse β-NaYF4 : Yb,Tm

  12. Upconversion color tunability and white light generation in Tm 3+/Ho 3+/Yb 3+ doped aluminum germanate glasses

    NASA Astrophysics Data System (ADS)

    Gong, Hua; Yang, Dianlai; Zhao, Xin; Yun Bun Pun, Edwin; Lin, Hai

    2010-02-01

    Tm 3+/Ho 3+/Yb 3+ triply doped aluminum germanate glasses exhibiting multicolor upconversion fluorescences have been fabricated and characterized. Efficient three-photon blue upconversion emission of Tm 3+ and two-photon green and red upconversion fluorescences of Ho 3+ have been observed. The strong red emission of Ho 3+, which is more than eight times higher than that of the green emission, is desirable in achieving high color rendering index. By varying the excitation power of the 974 nm wavelength laser diode, a series of white fluorescences with a large range of correlated color temperature ( CCT) was obtained, and the fluorescence colors can be tuned from yellowish white to warm white, pure white, cool white, and bluish white with different CCT. The upconversion color tunability via pump power adjustment will promote the development of three-dimensional solid-state displays and upconversion illumination devices.

  13. Upconversion luminescent property and EPR study of NaGdF4:Yb3+/Tm3+ synthesized by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Zhang, Jing-Ying; Liu, Kai; Gao, Hong-Jian; Yu, Xiao-Long; Cao, Yang; Liu, Zhong-Xin

    2015-09-01

    Water soluble upconversion (UC) luminescence hexagonal-phase NaGdF4: Yb3+/Tm3+ nanoparticles have been successfully synthesized by the hydrothermal method. XRD, SEM, UC photoluminescence spectra and electron paramagnetic resonance (EPR) spectrum were used to characterize the nanoparticles. The intensity of UC emission region could be controlled through different sodium source and the fluorine source, 6PJ→8S7/2 emission of Gd3+ is also observed at 310 nm. A broad spectrum with a dominant resonance at g of about 2 was observed by the EPR spectrum of the NaGdF4:Yb3+/Tm3+ nanoparticles. The transparent NaGdF4:Yb3+/Tm3+ solution presented naked eye-visible violet-blue light under the 980 nm LD excitation. The current work paves the way for their potential application in infrared tomography and magnetic resonance imaging (MRI).

  14. Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films.

    PubMed

    Huang, Wenjuan; Lu, Chunhua; Jiang, Chenfei; Wang, Wei; Song, Jianbin; Ni, Yaru; Xu, Zhongzi

    2012-06-15

    Monodisperse oleic acid stabilized pure NaYF(4) nanoparticles with controlled size and shape have been successfully synthesized by changing the initial reaction temperature. Transparent nanocomposite thin films consisting of NaYF(4):Yb, Er (Tm) upconverting nanoparticles (UCNPs) and fluorocarbon resin (FC) are deposited on the slide glass by dip-coating method. The results show that these nanocomposite thin films exhibit intense green and blue upconversion photoluminescence under 980 nm laser excitation and higher transparency than blank substrate. The NaYF(4):Yb,Er (Tm) nanoparticles and NaYF(4):Yb,Er (Tm)/FC nanocomposite thin films have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), SEM/back-scattered electron (BSE), atomic force microscopy (AFM), UV-Vis spectrophotometer (UVPC), and photoluminescence (PL) spectra. These nanocomposite thin films can be potentially used in solar cells field.

  15. Influence of gold nanoparticles on the 805 nm gain in Tm3+/Yb3+ codoped PbO-GeO2 pedestal waveguides

    NASA Astrophysics Data System (ADS)

    de Assumpção, T. A. A.; Camilo, M. E.; Alayo, M. I.; da Silva, D. M.; Kassab, L. R. P.

    2017-10-01

    The production and characterization of pedestal waveguides based on PbO-GeO2 amorphous thin films codoped with Tm3+/Yb3+, with and without gold nanoparticles (NPs), are reported. Pedestal structure was obtained by conventional photolithography and plasma etching. Tm3+/Yb3+ codoped PGO amorphous thin film was obtained by RF Magnetron Sputtering deposition and used as core layer in the pedestal optical waveguide. The minimum propagation losses in the waveguide were 3.6 dB/cm at 1068 nm. The internal gain at 805 nm was enhanced and increased to 8.67 dB due to the presence of gold NPs. These results demonstrate for the first time that Tm3+/Yb3+ codoped PbO-GeO2 waveguides are promising for first telecom window and integrated photonics, especially for applications on fiber network at short distances.

  16. Blue upconversion luminescence of CaMoO4:Li+/Yb3+/Tm3+ phosphors prepared by complex citrate method

    NASA Astrophysics Data System (ADS)

    Chung, Jun Ho; Lee, Sang Yeop; Shim, Kwang Bo; Kweon, Soon-Yong; Ur, Soon-Chul; Ryu, Jeong Ho

    2012-08-01

    Li+/Tm3+/Yb3+ co-doped CaMoO4 upconversion (UC) phosphor was prepared by complex citrate-gel method and UC luminescence properties were investigated. Li+/Tm3+/Yb3+ co-doped CaMoO4 has intense blue emission induced by 1G4→3H6 transition at 476 nm that is improved 10 times more than that of Li+ undoped sample and weak red emission at 647 nm generated by 3F2→3H6 transition under excitation at 980 nm. The optimum doping concentration of Li+ ions was investigated and UC mechanism of Li+/Tm3+/Yb3+ co-doped CaMoO4 was discussed in detail.

  17. Optical properties of NaLuF4: Yb3+: Tm3+/Ho3+ rare earth nanocrystals in microstructure hollow fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yundong; Li, Hui; Li, Hanyang; Wu, Yongfeng; Yu, Changqiu; Zhang, Tuo; Yuan, Ping

    2016-11-01

    In the present paper, we first demonstrate NaLuF4: Yb3+: Tm3+/Ho3+ rare earth nanocrystals in microstructure hollow fiber. An analysis of the intense blue upconversion emission at 450 and 475 nm in Tm3+/Yb3+ codoped NaLuF4 under excitation power 0.65W available from solid laser emitting at 980nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 450and 475 nm in this material was recorded in the temperature range from 300 to 345 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.005 K-1. The results imply that Tm3+/Yb3+ codoped NaLuF4 is a potential candidate for the optical temperature sensor.

  18. Synthetic and spectroscopic studies of vanadate glaserites I: Upconversion studies of doubly co-doped (Er, Tm, or Ho):Yb:K3Y(VO4)2

    NASA Astrophysics Data System (ADS)

    Kimani, Martin M.; Chen, Hongyu; McMillen, Colin D.; Anker, Jeffery N.; Kolis, Joseph W.

    2015-03-01

    The synthesis and upconversion properties of trigonal glaserite-type K3Y(VO4)2 co-doped with Er3+/Yb3+, Ho3+/Yb3+, or Tm3+/Yb3+ were studied. Powder samples were synthesized by solid state reactions at 1000 °C for 48 h, while well-formed hexagonal single crystals of the same were grown hydrothermally using 10 M K2CO3 at 560-650 °C. Infrared-to-visible upconversion by Er3+/Yb3+, Ho3+/Yb3+, or Tm3+/Yb3+ codoped-K3Y(VO4)2 glaserite powder and single crystals was observed, and the upconversion spectral properties were studied as a function of different Er3+, Tm3+, Ho3+, and Yb3+ ion concentrations. The process is observed under 980 nm laser diode excitation and leads to strong green (552 nm) and red (659 nm) emission for Er3+/Yb3+, green (549 nm) and red (664 nm) emission for Ho3+/Yb3+, and blue (475 nm) and red (647 nm) emission for Tm3+/Yb3+. The main mechanism that allows for up-conversion is attributed the energy transfer among Yb3+ and the various Er3+/Ho3+/Tm3+ ions in excited states. These results illustrate the large potential of co-doped alkali double vanadates for photonic applications involving optoelectronics devices.

  19. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging

    PubMed Central

    Fukushima, S.; Furukawa, T.; Niioka, H.; Ichimiya, M.; Sannomiya, T.; Tanaka, N.; Onoshima, D.; Yukawa, H.; Baba, Y.; Ashida, M.; Miyake, J.; Araki, T.; Hashimoto, M.

    2016-01-01

    This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy. PMID:27185264

  20. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging

    NASA Astrophysics Data System (ADS)

    Fukushima, S.; Furukawa, T.; Niioka, H.; Ichimiya, M.; Sannomiya, T.; Tanaka, N.; Onoshima, D.; Yukawa, H.; Baba, Y.; Ashida, M.; Miyake, J.; Araki, T.; Hashimoto, M.

    2016-05-01

    This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy.

  1. Tunable multicolor and white-light upconversion luminescence in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 micro-crystals.

    PubMed

    Lin, Hao; Xu, Dekang; Teng, Dongdong; Yang, Shenghong; Zhang, Yueli

    2015-09-01

    NaYF4 micro-crystals with various concentrations of Yb(3+) /Tm(3+) /Ho(3+) were prepared successfully via a simple and reproducible hydrothermal route using EDTA as the chelating agent. Their phase structure and surface morphology were studied using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns revealed that all the samples were pure hexagonal phase NaYF4. SEM images showed that Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 were hexagonal micro-prisms. Upconversion photoluminescence spectra of Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 micro-crystals with various dopant concentrations under 980 nm excitation with a 665 mW pump power were studied. Tunable multicolor (purple, purplish blue, yellowish green, green) and white light were achieved by simply adjusting the Ho(3+) concentration in 20%Yb(3+)/1%Tm(3+)/xHo(3+) tri-doped NaYF4 micro-crystals. Furthermore, white-light emissions could be obtained using different pump powers in 20%Yb(3+)/1%Tm(3+)/1%Ho(3+) tri-doped NaYF4 micro-crystals at 980 nm excitation. The pump power-dependent intensity relationship was studied and relevant energy transfer processes were discussed in detail. The results suggest that Yb(3+)/Tm(3+) Ho(3+) tri-doped NaYF4 micro-crystals have potential applications in optoelectronic devices such as photovoltaic, plasma display panel and white-light-emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Simultaneous size and luminescence control of NaYF4:Yb3+/RE3+ (RE = Tm, Ho) microcrystals via Li+ doping

    NASA Astrophysics Data System (ADS)

    Lin, Hao; Xu, Dekang; Teng, Dongdong; Yang, Shenghong; Zhang, Yueli

    2015-07-01

    Enhancement of upconversion (UC) luminescence is imperative for the applications of UC microcrystals (MCs). In this work, NaYF4:Yb3+/RE3+ (RE = Tm, Ho) MCs via Li+ doping were successfully prepared by a simple hydrothermal process with the assistance of citric acid. The UC luminescence intensities of NaYF4:Yb3+/RE3+ (RE = Tm, Ho) are significantly enhanced via Li+ doping at different concentrations. Compared to Li+-absent sample, UC luminescence intensities of blue emission (477 nm) and red emission (649 nm) in NaYF4:Yb3+/Tm3+ MCs via 15 mol% Li+ doping are improved by 10 and 9 times, respectively; UC luminescence intensities of green emission (538 nm) and red emission (644 nm) in NaYF4:Yb3+/Ho3+ MCs via 15 mol% Li+ doping are improved by 12 and 3 times, respectively. The mechanism of the enhancement via Li+ doping is discussed in details, which may be attributed to the fact that Li+ doping can cause the distortion of the local symmetry around RE ions. Our results indicate that the enhanced UC luminescence of NaYF4:Yb3+/RE3+ (RE = Tm, Ho) MCs via Li+ doping may have potential applications in optoelectronic devices such as solar cells and plasma display panel.

  3. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration

    PubMed Central

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N.; Chen, Guanying

    2014-01-01

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%)/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%)/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles. PMID:28348285

  4. Band structure and near infrared quantum cutting investigation of GdF3:Yb3+, Ln3+ (Ln = Ho, Tm, Er, Pr, Tb) nanoparticles.

    PubMed

    Guo, Linna; Wang, Yuhua; Zeng, Wei; Zhao, Lei; Han, Lili

    2013-09-14

    A series of GdF3:Yb(3+), Ln(3+) (Ln = Ho, Tm, Er, Pr, Tb) nanoparticles were prepared by a simple and green hydrothermal method without any additives, which exhibited an ellipse-like shape with a diameter of 63 nm and a length of 101 nm on average. To prove the existence (or not) of near infrared quantum cutting for various lanthanide ion couples (Yb/Ho; Yb/Tm; Yb/Er; Yb/Pr; Yb/Tb) in one host lattice (GdF3), the measured luminescence spectra and decay lifetimes of these samples were analysed. Furthermore, the band structures and densities of state of GdF3 were also studied with the help of first-principles calculations, and the direct band gap of GdF3 was estimated to be 7.443 eV wide. Based on this, detailed processes and possible mechanisms of the luminescence phenomena are discussed. GdF3:Yb(3+), Ln(3+) nanoparticles may have potential applications in modifying the solar spectrum to enhance the efficiency of silicon solar cells.

  5. Uniform NaYF{sub 4}:Yb, Tm hexagonal submicroplates: Controlled synthesis and enhanced UV and blue upconversion luminescence

    SciTech Connect

    Huang, Wenjuan; Ding, Mingye; Huang, Hengming; Jiang, Chenfei; Song, Yan; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► β-NaYF{sub 4} phosphors as an excellent upconversion materials. ► Oleic acid can promote the transformation of α → β phase NaYF{sub 4}. ► The shape and size of β-NaYF{sub 4} submicroplate can be tuned by reactant concentration. ► Enhanced UV and blue peaks can be obtained by varying Yb{sup 3+} and Tm{sup 3+} concentration. -- Abstract: We reported the preparation of cubic (α-) and hexagonal (β-) NaYF{sub 4} particles in high boiling organic solvents 1-octadecene (ODE) and oleic acid (OA), through a thermal decomposition synthesis route. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL) spectra. By tuning the OA/ODE volume ratio and reactant concentration, we could manipulate the morphology, size, and crystal structure of the products. Highly uniform β-NaYF{sub 4} submicroplates were obtained from α-NaYF{sub 4} nanoparticles by increasing the OA/ODE volume ratio, while the phase kept unchanged with the increasing of reactant concentration. Upconversion emissions from UV to NIR emissions were observed in β-NaYF{sub 4} hexagonal submicroplates under 980 nm laser diode excitation. In addition, the enhanced UV and blue upconversion emissions were obtained by varying Tm{sup 3+} and Yb{sup 3+} ion concentration.

  6. Intense ultraviolet and blue upconversion emissions in Yb 3+-Tm 3+ codoped stoichiometric Y 7O 6F 9 powder

    NASA Astrophysics Data System (ADS)

    Ma, Mo; Xu, Changfu; Yang, Liwen; Ren, Guozhong; Lin, Jianguo; Yang, Qibin

    2011-09-01

    Stoichiometric Y 7O 6F 9 powder codoped with Yb 3+-Tm 3+ was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF 3 nanoparticles can be completely oxidized into orthorhombic Y 7O 6F 9 powder. Under the excitation of a 980 nm laser, Y 7O 6F 9 powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF 3, Y 7O 6F 9 and Y 2O 3 powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y 7O 6F 9 and the main phonon vibration of Y 7O 6F 9 lies at 472 cm -1, which is far lower that of Y 2O 3 (at 708 cm -1). Our results indicate that orthorhombic rare earth ions doped Y 7O 6F 9 is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.

  7. Hydrothermal synthesis of Yb3+, Tm3+ co-doped Gd6MoO12 and its upconversion properties

    NASA Astrophysics Data System (ADS)

    Di, Qiu-Mei; Sun, Yu-Mei; Xu, Qi-Guang; Han, Liu; Xue, Bing; Sun, Jia-Yue

    2015-06-01

    Yb3+, Tm3+ co-doped Gd6MoO12 phosphors with different morphologies are prepared by the hydrothermal method. The dendrites present different morphologies (including hexagonal prisms, spindles, and spheres) after changing the pH value and edetate disodium (EDTA) usage. It is found that each of the two factors plays a crucial role in forming different morphologies. The up-conversion (UC) luminescence is studied. Under 980-nm semiconductor laser excitation, relatively strong blue emission and weak red emission are observed. Finally, the effect of pumping power on the UC luminescence properties and the level diagram mechanism of Gd6MoO12:Yb3+/Tm3+ phosphor are also discussed. Project supported by the National Natural Science Foundation of China (Grant No. 20976002), the Beijing Natural Science Foundation, China (Grant No. 2122012), the Key Projects for Science and Technology of Beijing Education Commission, China (Grant No. KZ201310011013), and the Education and Research Fund of Guangdong Province, China (Grant No. 2011B090400100).

  8. Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation.

    PubMed

    Simpson, D A; Gibbs, W E; Collins, S F; Blanc, W; Dussardier, B; Monnom, G; Peterka, P; Baxter, G W

    2008-09-01

    The spectroscopic properties of Tm(3+)/Yb(3+) co-doped silica fibers under excitation at 980 nm are reported. Three distinct up-conversion fluorescence bands were observed in the visible to near infra-red regions. The blue and red fluorescence bands at 475 and 650 nm, respectively, were found to originate from the (1)G(4) level of Tm(3+). A three step up-conversion process was established as the populating mechanism for these fluorescence bands. The fluorescence band at 800 nm was found to originate from two possible transitions in Tm(3+); one being the transition from the (3)H(4) to (3)H(6) manifold which was found to dominate at low pump powers; the other being the transition from the (1)G(4) to (3)H(6) level which dominates at higher pump powers. The fluorescence lifetime of the (3)H(4) and (3)F(4) levels of Tm(3+) and (2)F(5/2) level of Yb(3+) were studied as a function of Yb(3+) concentration, with no significant energy back transfer from Tm(3+) to Yb(3+) observed.

  9. Influence of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu 2O 3:2%Yb, 0.2%Tm nanopowders

    NASA Astrophysics Data System (ADS)

    Li, Li; Xiaochun, Wang; xiantao, Wei; Yonghu, Chen; Changxin, Guo; Min, Yin

    2011-02-01

    Lutetium oxide nanopowders codoped with Tm 3+ and Yb 3+ were synthesized by the reverse-strike co-precipitation method. Effects of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu 2O 3:2%Yb, 0.2%Tm nanopowders had been investigated. The results show that pH value of the precipitant (NH 4HCO 3) solution has a significant effect on the particle size, morphology and upconversion emission intensity of the Lu 2O 3:2%Yb, 0.2%Tm nanopowders. All the samples obtained from different pH value of precipitant solution can be readily indexed to pure cubic phase of Lu 2O 3, indicating good crystallinity. The upconversion emission intensity of Lu 2O 3:2%Yb, 0.2%Tm nanopowders obtained from the precipitant solution with pH=11 is the strongest. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing the number of OH - groups and the enlarged nanopowder size. The strong blue, weak red and near infrared emissions from the prepared nanopowders were observed under 980 nm laser excitation, and attributed to the 1G 4→ 3H 6, 1G 4→ 3F 4 and 3H 4→ 3H 6 transitions of Tm 3+ ion, respectively.

  10. Hall and transverse even effects in the vicinity of a quantum critical point in Tm{sub 1-x}Yb{sub x}B{sub 12}

    SciTech Connect

    Sluchanko, N. E. Azarevich, A. N.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Anisimov, M. A.; Levchenko, A. V.; Filipov, V. B.; Shitsevalova, N. Yu.

    2012-09-15

    The angular, temperature, and magnetic field dependences of the resistance recorded in the Hall effect geometry are studied for the rare-earth dodecaboride Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions where the metal-insulator and antiferromagnetic-paramagnetic phase transitions are observed in the vicinity of the quantum critical point x{sub c} Almost-Equal-To 0.3. The measurements performed on high-quality single crystals in the temperature range 1.9-300 K for the first time have revealed the appearance of the second harmonic contribution, a transverse even effect in these fcc compounds near the quantum critical point. This contribution a is found to increase drastically both under the Tm-to-ytterbium substitution in the range x > x{sub c} and with an increase in the external magnetic field. Moreover, as the Yb concentration x increases, a negative peak of a significant amplitude appears on the temperature dependences of the Hall coefficient R{sub H}(T) for the Tm{sup 1-x}Yb{sub x}B{sub 12} compounds, in contrast to the invariable behavior R{sub H}(T) Almost-Equal-To const found for TmB{sub 12}. The complicated activation-type behavior of the Hall coefficient is observed at intermediate temperatures for x {>=} 0.5 with activation energies E{sub g}/k{sub B} Almost-Equal-To 200 K and E{sub a}/k{sub B} 55-75 K, and the sign inversion of R{sub H}(T) is detected at liquid-helium temperatures in the coherent regime. Renormalization effects in the electron density of states induced by variation of the Yb concentration are analyzed. The anomalies of the charge transport in Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions in various regimes (charge gap formation, intra-gap many-body resonance, and coherent regime) are discussed in detail and the results are interpreted in terms of the electron phase separation effects in combination with the formation of nanosize clusters of rare earth ions in the cage-glass state of the studied dodecaborides. The data obtained allow

  11. Single color upconversion emission in Ho 3+/Yb 3+ and Tm 3+/Yb 3+ doped P 2O 5-MgO 2-Sb 2O 3-MnO 2-AgO glasses

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Song, Feng; Hou, Jing; Yu, Yin; Zhang, Gong; Yu, Hua; Sun, Tongqing; Tian, Jianguo

    2011-06-01

    The Ho 3+/Yb 3+ and Tm 3+/Yb 3+ doped P 2O 5-MgO 2-Sb 2O 3-MnO 2-AgO glasses were prepared by high temperature melting method. Under a 975 nm laser diode (LD) excitation, the single red and single blue upconversion (UC) emissions were observed in Ho 3+/Yb 3+ and Tm 3+/Yb 3+ doped samples, respectively. By studying the spontaneous radiative and multiphonon relaxation probabilities, we find that the multiphonon relaxation probability of 5I 6 (Ho 3+) state is very large (1.39 × 10 6 s - 1 ), which is helpful to the population of 5I 7 state. The multiphonon relaxation probability of 3H 5 and 3F 2,3 (Tm 3+) is also very large, which results in lots of population in 3F 4 and 3H 4 states. The results are that the red UC emission of Ho 3+ and the blue UC emission of Tm 3+ are stronger.

  12. White up-conversion emission in Ho3+/Tm3+/Yb3+ tri-doped glass ceramics embedding BaF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Chenxia; Xu, Shiqing; Ye, Rengguang; Deng, Degang; Hua, Youjie; Zhao, Shilong; Zhuang, Songlin

    2011-04-01

    Ho3+/Tm3+/Yb3+ tri-doped glass ceramics with white light emitting have been developed and demonstrated. Pumped by 980 nm laser diode (LD), intensive red, green and blue up-conversions (UC) were obtained. The green emission is assigned to Ho3+ ion and the blue emission is assigned to Tm3+ ion, whereas the red emission is the combination contribution of the Ho3+ and Tm3+ ions. The RGB intensities could be adjusted by tuning the rare-earth ion concentration and pump power intensity. Thus, multicolor of the luminescence, including perfect white light with CIE-X=0.329 and CIE-Y=0.342 in the 1931 CIE chromaticity diagram can be obtained in 0.15 Ho3+/0.2Tm3+/3Yb3+ tri-doped glass ceramics embedding BaF2 nanocrystals pumped by a single infrared laser diode source of 980 nm at 500 mW. The up-conversion luminescence mechanism of Yb3+ sensitize Ho3+ and Tm3+ ions and the energy transfer from Ho3+ to Tm3+ in oxy-fluoride silicate glass ceramics were analyzed.

  13. Near infrared to blue upconverting Tm3+/Yb3+/Li+:Gd2(MoO4)3 phosphors for light emitting display devices

    NASA Astrophysics Data System (ADS)

    Kumari, Anita; Soni, Abhishek Kumar; Rai, Vineet Kumar

    2017-03-01

    Tm3+-Yb3+/Tm3+-Yb3+_Li+ codoped/tridoped Gd2(MoO4)3 phosphors using chemical co-precipitation method have been synthesized and characterised by XRD, FTIR, diffuse reflectance spectra and FE-SEM analysis. The downconversion emission spectra recorded by using 390 nm radiation shows blue colour emission band due to the 1G4 → 3H6 transition of Tm3+ ion. Frequency upconversion emission study show overall intense blue, red and NIR upconversion emission bands due to the 1G4 → 3H6, 1G4 → 3F4 and 3H4 → 3H6 transitions of Tm3+ ion under 980 nm laser diode excitation. The effect of incorporation of Li+ ions in the codoped phosphors produces small shifting in the XRD peaks towards the higher diffraction angle side and also intensity of the blue upconversion emission bands is enhanced around ∼510 times in the Tm3+-Yb3+_Li+:Gd2(MoO4)3 phosphors as compared to the Tm3+ doped phosphors. The confirmation of overall blue colour emission has been identified by colour co-ordinate analysis. The result shows that the developed tri-doped phosphors show improved blue colour emission and hence could be a proper material for near infrared to blue upconverter and blue colour emitting device fabrications.

  14. Pulsed-laser-assisted synthesis of a Tm3+/Yb3+ co-doped CaMoO4 colloidal nanocrystal and its upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Cho, Kyoungwon; Choi, Jaeha; Lee, Jung-Il; Ryu, Jeong Ho

    2016-01-01

    We report a novel synthetic route for the synthesis of Tm3+/Yb3+ co-doped calcium molybdate (CaMoO4) nanoparticles by using pulsed laser ablation in ethanol. The crystalline phase, particle morphology, particle size distribution, laser ablation mechanism, and upconversion (UC) luminescent properties are investigated. Stable colloidal suspensions consisting of well-dispersed Tm3+/Yb3+ co-doped CaMoO4 nanoparticles with a narrow size distribution could be obtained without any surfactant. Under 980-nm excitation, a Tm3+/Yb3+ co-doped nanocolloidal CaMoO4 suspension showed bright blue emission at a wavelength near 475 nm, which was generated by the 1G4 → 3H6 transition, and a weak red emission at a wavelength near 650 nm due to the 3F2 → 3H6 transition. The Tm3+/Yb3+ co-doped nanocrystalline CaMoO4 suspension exhibited a strong blue emission visible to the naked eyes, and a possible UC mechanism that depends on the pump-power dependence is discussed in detail.

  15. Properties of a new, efficient, blue-emitting material for applications in upconversion displays: Yb, Tm:KY3F10.

    PubMed

    Rapaport, Alexandra; Milliez, Janet; SzipOcs, Ferenc; Bass, Michael; Cassanho, Arlete; Jenssen, Hans

    2004-12-10

    The properties of Yb, Tm:KY3F1o, a cubic fluoride crystal, are described that make it attractive as the blue emitter in two-dimensional photonic displays. Its peak excitation wavelength for blue upconversion emission is 974.7 nm, where efficient diode laser pump sources are available. The maximum upconversion efficiency measured thus far is 4.4%.

  16. Upconversion-luminescent/magnetic dual-functional sub-20 nm core-shell SrF2:Yb,Tm@CaF2:Gd heteronanoparticles.

    PubMed

    Li, Ai-Hua; Lü, Mengyun; Yang, Jun; Chen, Lin; Cui, Xiaohong; Sun, Zhijun

    2016-04-07

    Sub-20 nm core-shell and water-soluble SrF2:Yb,Tm@CaF2:Gd heteronanoparticles with both upconversion luminescence (UCL) and magnetic resonance imaging (MRI) capabilities were designed and synthesized via a two-step hydrothermal method. In the design of the heteronanoparticles, SrF2:Yb,Tm nanoparticles with high UCL efficiency are chosen as the core material for strong UCL output; and by epitaxially coating the SrF2:Yb,Tm core particles with inert and biocompatible shells of CaF2:Gd, the core-shell heteronanoparticles are endowed with a magnetic capability (longitudinal relaxivity of 2.4 mM(-1) s(-1)) for MRI, as well as an enhancement of the near infrared (NIR) UCL by 9.2 times. The aqueous dispersion of SrF2:Yb,Tm@CaF2:Gd heteronanoparticles with a concentration of 2.6 wt% can emit NIR UCL so as to be easily detected with a fiber optical spectrometer under illumination of a 975 nm laser diode with a power density of 8.8 W cm(-2). Such a dispersion with a Gd(3+) concentration of 0.0143 mM in the shell region of the heteronanoparticles can also generate the detectable quickening of longitudinal relaxation. The results promise the strong potential of this nanomaterial for applications in bioimaging as a dual-functional probe.

  17. Lasing in a Tm : Yb{sub 3}Al{sub 5}O{sub 12} crystal pumped at 1.678 μm

    SciTech Connect

    Zavartsev, Yu D; Zagumennyi, A I; Kalachev, Yu L; Kutovoi, S A; Mikhailov, V A; Shcherbakov, I A

    2014-10-31

    The Yb{sub 3}Al{sub 5}O{sub 12} (YbAG) crystal is proposed as a matrix of Tm{sup 3+}-doped laser elements for two-micron lasers. A Tm : YbAG crystal of high optical quality is grown by the Czochralski method and its spectral and luminescent characteristics are studied. The luminescence decay time for the upper laser level {sup 3}F{sub 4} is measured to be 4.7 ms. Lasing in this crystal pumped by a 1.678-μm fibre laser is obtained at a wavelength of 2.02 μm for the first time. The total and slope efficiencies of the laser at room temperature and an output power up to 330 mW reach 33% and 41%, respectively. (lasers)

  18. Observation of multi-mode: Upconversion, downshifting and quantum-cutting emission in Tm3+/Yb3+ co-doped Y2O3 phosphor

    NASA Astrophysics Data System (ADS)

    Yadav, Ranvijay; Singh, S. K.; Verma, R. K.; Rai, S. B.

    2014-04-01

    Micro-crystalline Y2O3 phosphor co-doped with Yb3+/Tm3+ has been synthesized and characterized. The phosphor material gives efficient multimodal emission via downshifting (DS), upconversion (UC), and downconversion (DC)/quantum cutting (QC) luminescence processes. Cross relaxation and co-operative energy transfer (CET) have been ascribed as the possible mechanism for QC; as result of which a UV/blue photon absorbed by Tm3+ splits into two near infrared photons (wavelength range 950-1050 nm) emitted by Yb3+. The Yb3+ concentration dependent ET efficiency and QC efficiency has also been evaluated. Such multi-mode emitting phosphors could have potential applications in increasing the conversion efficiency of solar cells via spectral modification.

  19. Frequency upconversion luminescence from Yb{sup +3}-Tm{sup +3} codoped PbO-GeO{sub 2} glasses containing silver nanoparticles

    SciTech Connect

    Assumpcao, Thiago A. A.; Silva, Davinson M. da; Kassab, Luciana R. P.

    2009-09-15

    Infrared-to-visible and infrared-to-infrared frequency upconversion processes in Yb{sup 3+}-Tm{sup 3+} doped PbO-GeO{sub 2} glasses containing silver nanoparticles (NPs) were investigated. The experiments were performed by exciting the samples with a diode laser operating at 980 nm (in resonance with the Yb{sup 3+} transition {sup 2}F{sub 7/2}->{sup 2}F{sub 5/2}) and observing the photoluminescence (PL) in the visible and infrared regions due to energy transfer from Yb{sup 3+} to Tm{sup 3+} ions followed by excited state absorption in the Tm{sup 3+} ions. The intensified local field in the vicinity of the metallic NPs contributes for enhancement in the PL intensity at 480 nm (Tm{sup 3+}:{sup 1}G{sub 4}->{sup 3}H{sub 6}) and at 800 nm (Tm{sup 3+}:{sup 3}H{sub 4}->{sup 3}H{sub 6}).

  20. α-NaYF4:Yb3+-Tm3+@CaF2 nanocrystals for NIR-to-NIR temperature sensing

    NASA Astrophysics Data System (ADS)

    Wu, Ruozhen; Zhou, Jiajia; Lei, Lei; Zhang, Shengjun; Xiao, Zhen; Zhang, Junjie; Xu, Shiqing

    2017-01-01

    The approach of lanthanides doping upconversion temperature sensing exhibits high superiority in bioscience. However, most of the upconversion nanothermometers show their fluorescences temperature sensing beyond biological transparent window (650-950 nm) while suffering from the interference of surrounding environment. Here we report a nanoprobe with ultrasmall size, i.e. α-NaYF4:Yb-Tm@CaF2 nanocrystal, which has a sensitive capability to realize NIR-to-NIR temperature sensing. Temperature sensing sensitivities through 3H4 → 3H6 and 1G4 → 3H6 transitions of Tm3+ ions are evaluated in temperature region of 313-373 K. The results indicate that α-NaYF4:Yb-Tm@CaF2 nanocrystal is a promising candidate for biological temperature sensing.

  1. Investigation on upconversion luminescence properties of Gd2O3: Ho3+/Yb3+/Tm3+ nanotubes

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Fang, Yu; Liu, Xiao-bo; Xu, Fang; Song, Ying-lin

    2013-09-01

    Lanthanide doped oxides nano materials have novel optical, physical and structural properties. Cubic Ho3+-Yb3+-Tm3+ co-doped Gd2O3 nanotubes are synthetize by a simple wet-chemical route at low temperature and ambient pressure followed by subsequent annealing heat treatment in muffle furnace. Nanotubes are formed by adjusting the pH value of reacting solution. The introduction of Yb3+ leads to strong visible upconversion luminescence and change the intensity ratio of the green, blue and red luminescence. In trichromatic laser display, research of how to enhance blue light is in the bottleneck period. In the experiment, the blue emission has been successfully improved. In certain doping ratio, distinct enhancement of blue emission and obvious degradation of green light have been observed, which is discussed in detail. X-Ray powder diffraction (XRD), scanning electron microscope (SEM) and upconversion (UC) emission spectra are used to characterize the sample. Strong and adjusted upconversion luminescence determine that the nano material is a potential candidate for applications of biological probe, color displays, lighting and photonics.

  2. van der Waals interactions and dipole polarizabilities of lanthanides: Tm(2F)-He and Yb(1S)-He potentials.

    PubMed

    Buchachenko, Alexei A; Szcześniak, Małgorzata M; Chałasiński, Grzegorz

    2006-03-21

    Anisotropic dipole polarizabilities of Tm(2F), Tm+2(2F), and Yb(1S) are calculated using the finite-field multireference averaged quadratic coupled cluster (MR-AQCC) (Tm and Tm+2) and RCCSD(T) (Yb) methods with small-core relativistic pseudopotentials ECP28MWB combined with the augmented ANO basis sets. The lanthanide atoms are strongly polarizable with the scalar part originating from the 6s electrons and the tensorial part from the open 4f shells. The adiabatic interaction potentials 2Sigma+, 2Pi, 2Delta, and 2Phi of Tm(2F)-He and Tm+2(2F)-He were examined by the multireference approaches, multireference configuration interaction and MR-AQCC, using the basis sets designed in the polarizability calculations. A closed-shell lanthanide system Yb(1S)-He was included for comparison. The Tm-He 2Sigma+, 2Pi, 2Delta, and 2Phi interaction potentials are very shallow and nearly degenerate (within 0.01 cm(-1)), with the well depths in the range of 2.35-2.36 cm(-1) at R=6.17 A. The basis-set saturated well depths are expected to be larger by ca. 25%, as estimated using the bond-function augmented basis set. The interactions of lanthanide atoms with He are one order of magnitude less anisotropic than those involving first-row transition metal atoms. The suppression of anisotropy is chiefly attributed to the screening effected by the 6s shell. When these electrons are removed as in the di-cation complex Tm+2(2F)-He, the potentials deepen to a thousand wave number range and their anisotropy is enhanced 500-fold.

  3. Broadband 1.20 μm emission in Tm3+-doped and Tm3+/Tb3+, Eu3+ codoped gallogermanate glasses

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Tao, Lili; Tsang, Yuen Hong; Pun, Edwin Yue-Bun

    2012-09-01

    Broadband 1.20 μm emission originating from the Thulium (Tm3+): 1G4 → 3H4 transition was observed in Tm3+-doped gallogermanate glasses under 476.5 nm excitation. The stimulated emission cross-section is calculated to be 2.85 × 10-21 cm2 using the Füchtbauer-Ladenburg approach. Difficulty in the population inversion between the upper 1G4 and lower 3H4 levels resulting from the cross relaxation process Tm3+ [1G4, 3H6] → [3H4, 3H5] was overcome by the incorporation of Terbium (Tb3+) and Europium (Eu3+) ions. A Judd-Ofelt analysis was performed based on the absorption spectrum and the derived intensity parameters (Ω2 = 4.65 × 10-20, Ω4 = 1.51 × 10-20, and Ω6 = 1.42 × 10-20 cm2) reveal a strong asymmetry and covalent environment between Tm3+ ions and ligands in the host matrix. The results indicate that the Tm3+/Tb3+, Eu3+ codoping scheme is promising in the development of amplifiers and lasers operating at the relatively unexplored 1.2 μm wavelength region.

  4. Colour emission tunability in Ho3+-Tm3+-Yb3+ co-doped Y2O3 upconverted phosphor

    NASA Astrophysics Data System (ADS)

    Pandey, Anurag; Rai, Vineet Kumar

    2012-12-01

    The frequency upconversion (UC) emission throughout the visible region from the Y2O3:Ho3+-Tm3+-Yb3+ co-doped phosphors synthesized by using low temperature combustion process upon excitation with a diode laser operating at 980 nm have been presented. The colour emission tunability in co-doped phosphor has been observed on increasing the pump power and seen by the naked eyes. The tunability in colour emission has also been visualized by CIE chromaticity diagram. The variation in UC emission intensity of the 1G4 → 3H6 (Tm3+) and 5F3 → 5I8 (Ho3+) transitions lying in the blue region has been monitored with increase in the pump power and marked that their ratio can be used to determine the temperature. The developed phosphor has been used to record fingerprints. The observed most intense visible colour emission from the developed material may be used for photodynamic therapy and as an alternative of traditional fluorescent biolabels.

  5. Multifunctional SiO2@Gd2O3:Yb/Tm hollow capsules: controllable synthesis and drug release properties.

    PubMed

    Yang, Guixin; Lv, Ruichan; Gai, Shili; Dai, Yunlu; He, Fei; Yang, Piaoping

    2014-10-20

    A series of hollow and luminescent capsules have been fabricated by covering luminescent Gd2O3:Yb/Tm nanoparticles on the surface of uniform hollow mesoporous silica capsules (HMSCs), which were obtained from an etching process using Fe3O4 as hard templates. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), up-conversion (UC) fluorescence spectra, and N2 adsorption-desorption were used to characterize these samples. It is found that the as-prepared products have mesoporous pores, large specific surface, and high dispersity. In particular, the size, shape, surface area, and interior space of the composites can be finely tuned by adjusting the size and morphology of the magnetic cores. Under 980 nm near-infrared (NIR) laser irradiation, the composites show characteristic blue UC emissions of Tm(3+) even after carrying doxorubicin hydrochloride (DOX). The drug-release test reveals that the capsules showed an apparent sustained release character and released in a pH-sensitive manner. Interestingly, the UC luminescence intensity of the drug-carrying system increases with the released DOX, realizing the possibility to track or monitor the released drug by the change of UC fluorescence simultaneously, which should be highly promising in anticancer drug delivery and targeted cancer therapy.

  6. Bright white upconversion emission from Yb(3+), Er(3+), and Tm(3+)-codoped Gd(2)O(3) nanotubes.

    PubMed

    Zheng, Kezhi; Zhang, Daisheng; Zhao, Dan; Liu, Ning; Shi, Feng; Qin, Weiping

    2010-07-21

    Yb(3+), Er(3+), and Tm(3+)-codoped Gd(2)O(3) nanotubes were synthesized via a simple wet-chemical route at low temperature and ambient pressure followed by a subsequent heat treatment at 800 degrees C. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), upconversion (UC) emission spectra, and kinetic decay were used to characterize the samples. Bright white UC luminescence in the nanotubes was observed under diode laser excitation of 980 nm. The white light consists of the blue ((1)G(4)-->(3)H(6) of Tm(3+)), green ((2)H(11/2)/(4)S(3/2)-->(4)I(15/2) of Er(3+)), and red ((4)F(9/2)-->(4)I(15/2) of Er(3+)) UC emissions. As the excitation power density changed in the range of 20-200 W cm(-2), the calculated CIE color coordinates shift only slightly and fall well within the white region. This material may be a potential candidate for applications of color displays, lighting and photonics.

  7. Bright white upconversion luminescence in Ho3+/Yb3+/Tm3+ triple doped CaWO4 polycrystals

    NASA Astrophysics Data System (ADS)

    Xu, Yanling; Wang, Yunlong; Shi, Liansheng; Xing, Lili; Tan, Xiang

    2013-12-01

    Ho3+/Yb3+/Tm3+ triple doped CaWO4 polycrystals are synthesized by a sample high temperature solid state method. The crystal structure of the polycrystals is characterized by means of X-ray diffraction.Under single-wavelength diode laser excitation of 980 nm, the bright white light consists of the blue, green, and red upconversion radiations which correspond to the transitions 1G4→3H6 of Tm3+ ions, 5S2/5F4→5I8 and 5F5→5I8 of Ho3+ ions, respectively. The pump power plays an important role in the blue upconversion emission intensity, and it helps to the adjustment of the white upconversion emission chrominance. The calculated color coordinates display that white light can be achieved by adjusting pump powers. The CIE coordinate close to (0.33, 0.33) is potentially suitable for the widely realistic application in the field of displays, lasers, and lighting technology. The possible upconversion mechanisms are investigated and discussed.

  8. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  9. Bright white upconversion luminescence from Er3+/Tm3+/Yb3+-doped titanate-based glasses prepared by aerodynamic levitation method

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Yu, Jianding; Jiang, Wan; Liu, Yan; Ai, Fei; Wen, Haiqin; Jiang, Meng; Yu, Huimei; Pan, Xiuhong; Tang, Meibo; Gai, Lijun

    2017-10-01

    Aerodynamic levitation method was employed to prepare Er3+/Tm3+/Yb3+-doped titanate-based glasses. DTA results show that the glass performs high thermal stability with the glass transition temperature of 799 °C. The interaction among rare earth ions has been discussed by adjusting the relative concentration. Er3+ ions can quench the upconversion luminescence of Tm3+ ions. Tm3+ ions play a strong role in quenching the emissions of Er3+ and Tm3+ when the content of Tm3+ ions is greater than or equal 0.05. From the view of the ratio of red emission to green emission, Tm3+ ions can improve the red emission of Er3+ ions to some extent in contrast with the green emissions of Er3+ ions. 980 nm incident laser can be efficiently absorbed by Yb3+ ions. The relative intensity of red, green, and blue upconversion luminescence has been tuned to obtain white light. The composition with white upconversion luminescence of the color coordinate (0.291, 0.3292) has been found. Moreover, white upconversion luminescence mechanism is a two-photon process of ET, ESA, and cooperative sensitization. Rare earth ions doped titanate-based glasses with bright upconversion luminescence perform potential applications in color display, back light, et al.

  10. Survey and research on up-conversion emission character and energy transition of Yb3+/Er3+/Tm3+ co-doped phosphate glass and glass ceramic

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Song, Feng; Ming, Chengguo; Liu, Jiadong; Li, Wei; Liu, Yanling; Zhao, Hongyan

    2012-11-01

    By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.

  11. Blue and NIR emission from nanostructured Tm3+/  Yb3+ co-doped SiO2-Ta2O5 for photonic applications

    NASA Astrophysics Data System (ADS)

    Cardoso Muscelli, Wesley; de Oliveira Lima, Karmel; Thomaz Aquino, Felipe; Rocha Gonçalves, Rogéria

    2016-05-01

    This paper reports on the synthesis of Tm3+/Yb3+ co-doped SiO2-Ta2O5 nanocomposites prepared by a sol-gel route. XRD analysis revealed initial crystallization of the L-Ta2O5 structure dispersed in the silica host, which depended on lanthanide concentration. Vibrational spectroscopy showed low OH groups content, SiO2-Ta2O5 nanocomposite formation, and controlled phase separation characterized by the presence of Ta2O5 nanoparticles. Emission in the near infrared was evident and also depended on lanthanide concentration and excitation wavelength. Direct excitation on the host promoted NIR luminescence; higher intensity emerged at 980 nm, attributed to Yb3+ ions. Excitation of the Tm3+ excited levels elicited energy transfer between Tm3+ and Yb3+ ions. Excitation of the Tm3+ levels (visible range) and the host (UV) promoted emission in the S telecom band for all the samples. Excitation at 980 nm gave rise to upconversion emissions at 476 nm (blue) and 793 nm (NIR). At higher lanthanide concentration, the presence of a dominant cross-relaxation process reduced the blue emission with respect to the NIR emission. The color coordinates were similar to the coordinates of standard blue. All these luminescent properties make the synthesized materials potential candidates for photonic applications like energy converting devices, solar concentrators, and blue emitters.

  12. Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Hu, Yue-Bo; Qiu, Jian-Bei; Zhou, Da-Cheng; Song, Zhi-Guo; Yang, Zheng-Wen; Wang, Rong-Fei; Jiao, Qing; Zhou, Da-Li

    2014-02-01

    Transparent Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm3+/Er3+/Yb3+co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark-split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm3+, Er3+ and (or) Yb3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm3+, Er3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.

  13. Near-infrared to visible upconversion in Tm3+ and Yb3+ codoped Lu2O3 nanocrystals synthesized by hydrothermal method.

    PubMed

    Li, Li; Zhang, Xingli; Wei, Xiantao; Wang, Guangchuan; Guo, Changxin

    2014-06-01

    Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ have been successfully synthesized via adjusting the pH values of the precursor solution in a hydrothermal method followed by a subsequent calcination process. The samples were systematically characterized by X-ray diffraction, field-emission scanning microscopy, Fourier transform infrared transmittance spectroscopy, and upconversion luminescent spectra. The experimental results show that the pH values of the precursor solution have great effects on the structural, morphological, and upconversion luminescent properties of Lu2O3:2%Yb3+, 0.2%Tm3+ nanocrystals. The as-formed lutetium oxide precursors could transform to cubic Lu2O3 with the same morphology and a slight shrinkage in size after a calcination process. The upconversion emission intensity of Lu2O3:2%Yb3+, 0.2%Tm3+ nanocrystals obtained from the precursor solution with pH = 9 is the strongest. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing the number of OH- groups and the enlarged nanocrystals size. Strong blue and weak red emissions from the prepared nanocrystals were observed under 980 nm laser excitation, which were attributed to the 1G4 --> 3H6 and 1G4 --> 3F4 transitions of Tm3+ ion, respectively.

  14. Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation

    NASA Astrophysics Data System (ADS)

    Shuai, Jing; Geng, Huiyuan; Lan, Yucheng; Zhu, Zhuan; Wang, Chao; Liu, Zihang; Bao, Jiming; Chu, Ching-Wu; Sui, Jiehe; Ren, Zhifeng

    2016-07-01

    Complex Zintl phases, especially antimony (Sb)-based YbZn0.4Cd1.6Sb2 with figure-of-merit (ZT) of ˜1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic “electron-crystal, phonon-glass” nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg2Bi2 with a record thermoelectric performance. Phase-pure EuMg2Bi2 is successfully prepared with suppressed bipolar effect to reach ZT ˜ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ˜1.3 for Eu0.2Yb0.2Ca0.6Mg2Bi2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye-Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg2Bi2 is better than the Sb-based Zintl phases.

  15. Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications

    NASA Astrophysics Data System (ADS)

    Kumar Rai, Vineet; Pandey, Anurag; Dey, Riya

    2013-02-01

    The Er3+, Eu3+, and Yb3+ codoped Y2O3 phosphors have been synthesized by combustion synthesis process. For the structural information, the XRD analysis of the developed phosphor has been done. The frequency upconversion (UC) emissions in the codoped Y2O3 phosphor on excitation with 980 nm diode laser in the visible region have been performed and explained on the basis of excited state absorption and energy transfer process. The mechanism responsible in UC emissions was observed to involve two photon absorption and efficiency of the UC luminescence is significantly enhanced by introducing the Yb3+ ions. The tunability in colour of emitted radiation has been visualized by chromaticity diagram on increasing power of excitation source. The temperature sensing behaviour of developed phosphor material has been investigated using fluorescence intensity ratio technique.

  16. Highly efficient Yb3+/Tm3+ co-doped NaYF4 nanotubes: Synthesis and intense ultraviolet to infrared up-conversion luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Wang, Y.; Deng, J. Q.; Wang, J.; Ni, S. C.

    2014-02-01

    Nanocrystals of up-conversion (UC) phosphor Yb3+/Tm3+ co-doped NaYF4 are prepared by a facile hydrothermal method using oleic acid as a stabilizing agent. The as-prepared nanocrystals are of hexagonal phase, and have tube-like morphology and strong ultraviolet (UV) and blue UC fluorescence intensity, which have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence spectroscopy. The effect of Yb3+ concentration on the UC emission properties is also analyzed. Our results reveal that the intensity of emission peaks can be controlled by varying the Yb3+ concentration and these NaYF4 nanotubes are highly efficient host material. The as-prepared NaYF4 nanotubes show potential applications in UV compact solid state lasers and multi-channel fluorescent label.

  17. Infrared-to-Ultraviolet upconversion luminescence of La 0.95Yb 0.49Tm 0.01F 3 nanostructures

    NASA Astrophysics Data System (ADS)

    De, Gejihu; Qin, Weiping; Wang, Weihua; Gui, Bao

    2009-07-01

    In this work, we used the hydrothermal method to synthesize Yb 3+ and Tm 3+ doped LaF 3 nanostructures, which is an ultraviolet upconversion luminescent material. Two distinct shapes such as nanosheets, nanoparticles and bulk samples formed in the products by adjusting the concentrations of the surfactant of the reaction solution. Powder X-ray diffraction analysis showed that the products were pure hexagonal phase, while electron microscopy measurements confirm the formation of different morphologies. These nanostructures exhibit strong ultraviolet upconversion luminescence under the excitation of a 978-nm diode laser. In Yb 3+ and Tm 3+ codoped LaF 3 materials, the relative intensity of ultraviolet and blue upconversion emissions became stronger as the size and morphology of sample changed from bulk to sheets.

  18. Enhancement of 2.0 μm fluorescence emission in new Ho3+/Tm3+/Yb3+ tri-doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Yang, Feng-jing; Zhou, Zi-zhong; Huang, Bo; Wu, Li-bo; Zhou, Ya-xun

    2016-09-01

    For enhancing the 2.0 μm band fluorescence of Ho3+, a certain amount of WO3 oxide was introduced into Ho3+/Tm3+/Yb3+ tri-doped tellurite glass prepared using melt-quenching technique. The prepared tri-doped tellurite glass was characterized by the absorption spectra, fluorescence emission and Raman scattering spectra, together with the stimulated absorption, emission cross-sections and gain coefficient. The research results show that the introduction of WO3 oxide can further improve the 2.0 μm band fluorescence emission through the enhanced phonon-assisted energy transfers between Ho3+/Tm3+/Yb3+ ions under the excitation of 980 nm laser diode (LD). Meanwhile, the maximum gain coefficient of Ho3+ at 2.0 μm band reaches about 2.36 cm-1. An intense 2.0 μm fluorescence emission can be realized.

  19. White upconversion luminescence in Tm3+/Ho3+/Yb3+ triply doped K+-Na+ ion-exchanged aluminum germanate glass channel waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Chen, Baojie; Pun, Edwin Yue Bun; Lin, Hai

    2013-01-01

    Rare-earth ions doped K+-Na+ ion-exchanged aluminum germanate (NMAG) glass channel waveguides have been designed and fabricated. Under 980 nm laser pumping, an intense upconversion white light transmission trace was observed in Tm3+/Ho3+/Yb3+ triply doped NMAG glass channel waveguide and a high-brightness light spot was achieved from the output end of the fiber connected to the waveguide channel. The fluorescent colors were diverse and located within or near the white region in CIE chromaticity diagram under various pumping powers. These admirable results indicate that Tm3+/Ho3+/Yb3+ triply doped NMAG channel waveguide is a promising light source for medical and high-precision processing illumination.

  20. Spin reorientation, magnetization reversal, and negative thermal expansion observed in R F e0.5C r0.5O3 perovskites (R =Lu ,Yb ,Tm )

    NASA Astrophysics Data System (ADS)

    Pomiro, Fernando; Sánchez, Rodolfo D.; Cuello, Gabriel; Maignan, Antoine; Martin, Christine; Carbonio, Raúl E.

    2016-10-01

    Three members of the perovskite family R F e0.5C r0.5O3 (R =Lu ,Yb , and Tm) have been synthesized and characterized. A systematic study of the crystal and magnetic structures was performed by neutron powder diffraction combined with magnetization measurements. All these compounds crystallize in a Pbnm orthorhombic unit cell and they are already antiferromagnetic at room temperature. The study of the magnetic structure vs temperature showed the occurrence of a progressive spin reorientation from Γ4TM to Γ2TM for the transition metal sublattice, and in the Tm-based sample, a long-range magnetic order of the T m3 + sublattice was found (Γ8R) . These results are in excellent agreement with the magnetic susceptibility measurements. No spin reorientation is observed in the Lu-based sample for which a magnetization reversal at a compensation temperature Tcomp= 225 K was detected. A clear magnetostrictive effect was observed in the samples with R =Yb and Tm associated with a negative thermal expansion and was assigned to a magnetoelastic effect produced by repulsion between the magnetic moments of neighboring transition metal ions.

  1. Spectroscopic analysis of Eu{sup 3+} -and Eu{sup 3+}:Yb{sup 3+}-doped yttrium silicate crystalline powders prepared by combustion synthesis

    SciTech Connect

    Rakov, Nikifor; Amaral, Dayanne F.; Guimaraes, Renato B.; Maciel, Glauco S.

    2010-10-15

    Yttrium silicate powders doped with Eu{sup 3+} and codoped with Eu{sup 3+} and Yb{sup 3+} were prepared by combustion synthesis. The x-ray powder diffraction data showed the presence of Y{sub 2}SiO{sub 5} and Y{sub 2}Si{sub 2}O{sub 7} crystalline phases. Singly doped (1 wt %) sample illuminated with ultraviolet light ({lambda}=256 nm) showed the characteristic red luminescence corresponding to {sup 5}D{sub 0}{yields}{sup 7}F{sub J} transitions of Eu{sup 3+}. The Judd-Ofelt intensity parameters were calculated from experimental data and the radiative and nonradiative relaxation rates were estimated. The results showed that the nonradiative relaxation rate is smaller in yttrium silicate compared to yttrium oxide powder, a reference material, prepared under similar conditions. Codoped samples were exposed to near-infrared laser excitation ({lambda}=975 nm) and the red luminescence of Eu{sup 3+} was also observed. In this case, the luminescence is achieved due to a cooperative upconversion (CUC) process involving energy transfer (ET) from pairs of ytterbium ions to europium ions. The ET rate was estimated by fitting a rate equation model with the dynamics of CUC red emission.

  2. Dual-mode, tunable color, enhanced upconversion luminescence and magnetism of multifunctional BaGdF5:Ln(3+) (Ln = Yb/Er/Eu) nanophosphors.

    PubMed

    Li, Honglan; Liu, Guixia; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2016-08-03

    A series of Yb(3+), Er(3+), and Eu(3+) ions doped BaGdF5 dual-mode (down-conversion (DC) and upconversion (UC)) luminescent nanophosphors were successfully prepared by a simple one-step hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometry (EDS), Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, fluorescence lifetime measurements, and vibrating sample magnetometry (VSM) were utilized to characterize the samples. Under 274 nm UV light excitation, BaGd0.78-zF5:0.2Yb(3+),0.02Er(3+),zEu(3+) phosphors emitted orange emission. Under 980 nm NIR irradiation, intense up-converted visible green emissions were observed in BaGdF5:Yb(3+),Er(3+)/Eu(3+) samples. The mechanism of UC emissions involved two-photon absorption. In the Yb(3+),Er(3+),Eu(3+) co-doped BaGdF5 phosphors, the energy transfer processes from Gd(3+) to Eu(3+) and from Yb(3+) to Er(3+) were discussed. Tunable colors were visualised with the help of the Commission Internationale de L'Eclairage (CIE) chromaticity diagram and the processes responsible for the DC and UC emissions were discussed in detail. The enhanced up-conversion luminescence of Yb(3+),Er(3+)/Eu(3+) co-doped BaGdF5 nanophosphors (NPs) was realized by modifying the trisodium citrate (Cit(3-)) surfactant. Moreover, the as-prepared samples exhibited paramagnetic properties at room temperature. This type of multifunctional orange-green emitting nanophosphor has promising applications in solid state lasers, lighting, MRI, anti-counterfeiting, biolabels, and so on.

  3. Up-conversion luminescence in Yb(3+)-Er(3+)/Tm(3+) co-doped Al2O3-TiO2 nano-composites.

    PubMed

    Mokoena, Teboho Patrick; Linganiso, Ella Cebisa; Kumar, Vinod; Swart, Hendrik C; Cho, So-Hye; Ntwaeaborwa, Odireleng Martin

    2017-06-15

    The sol gel method was used to prepare rare-earths (Yb(3+)-Er(3+) and Yb(3+)-Tm(3+)) co-doped Al2O3-TiO2 nano-composite powder phosphors and their up-conversion luminescence properties were investigated. Mixed oxides of titania (TiO2) rutile phase and an early stage crystallization of alumina (Al2O3) phase were confirmed from the X-ray diffraction data with the average crystallite size of ∼36nm. The rutile phase TiO2 was further confirmed by selected area diffraction analysis of the composites. Microscopy analysis showed interesting rod-like morphologies with rough surfaces indicating that a spherulitic growth process took place during the crystal growth. Photoluminescence characterization of the phosphors was carried out under near infra-red excitation at 980nm and the prominent emission bands were observed in the visible region at 523, 548 and 658nm for the Yb(3+)-Er(3+) co-doped systems. Emission in bands extending from the visible to near infra-red regions were observed at 480, 650, 693 and 800nm for the Yb(3+)-Tm(3+) co-doped systems. These upconverted emissions and energy transfer mechanisms taking place are discussed in detail.

  4. Frequency upconversion and fluorescence intensity ratio method in Yb3+-ion-sensitized Gd2O3:Er3+-Eu3+ phosphors for display and temperature sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Sushil Kumar; Soni, Abhishek Kumar; Rai, Vineet Kumar

    2017-09-01

    Near infrared (NIR) to visible frequency upconversion emission studies in Er3+-Eu3+/Er3+-Eu3+-Yb3+ co-doped/tri-doped Gd2O3 phosphors prepared by the co-precipitation technique have been explored under 980 nm laser diode radiation. The developed phosphors were characterized with the help of XRD, FE-SEM and FTIR analysis. No upconversion (UC) emission was found in the Eu3+-doped Gd2O3 phosphor. UC emission from Eu3+ ions along with Er3+ ions was observed in Er3+-Eu3+ and Er3+-Eu3+-Yb3+ co-doped/tri-doped phosphors. The UC emission arising from the Er3+ and Eu3+ ions was enhanced several times due to the incorporation of Yb3+ ions. The processes involved in the UC emission were obtained on the basis of the effect of energy transfer/sensitization through the Yb3+ → Er3+ → Eu3+ process. The red/green intensity ratio was improved from 0.16 to 1.50 and 1.01 to 1.50 for Er3+-Eu3+-Yb3+ tri-doped phosphors as compared to the Er3+-doped and Er3+-Yb3+ co-doped phosphors, respectively, at a fixed pump power density. A UC fluorescence intensity ratio (FIR)-based temperature sensing study was performed in the prepared Er3+-Eu3+-Yb3+ tri-doped Gd2O3 phosphors for green upconversion emission bands in the 300 K–443 K temperature range. A maximum sensor sensitivity of about ∼0.0043 K‑1 at 300 K was achieved for the synthesized tri-doped phosphors upon excitation with a 980 nm laser diode. The colour coordinates lying in the green–yellow region are invariant, with variation in pump power density and temperature. The observed results support the utility of the prepared tri-doped phosphors in optical temperature sensing, display devices and NIR to visible upconverters.

  5. CW and Q-switched 2.1 μm Tm3+/Ho3+/Yb3+-triply-doped tellurite fibre lasers

    NASA Astrophysics Data System (ADS)

    Richards, Billy D. O.; Tsang, Yuen H.; Binks, David J.; Lousteau, Joris; Jha, Animesh

    2008-10-01

    We present efficient CW lasing Tm3+/Ho3+/Yb3+-triply-doped tellurite fibre at ~2.1 μm. Two different pump schemes have been demonstrated for this laser: a 1.088 μm Yb3+-doped silica fibre laser simultaneously pumping the Tm3+: 3H5, Ho3+: 5I6 and Yb3+: 2F5/2 levels, and a 1.6 μm Er3+/Yb3+-doped silica fibre laser directly pumping the Tm3+: 3F4 level. For the 1.6 μm pumping, a slope efficiency of 62% has been achieved in a 76 cm long fibre which is close to the Stokes efficiency limit of ~75%. An output power of 160 mW has also been achieved, but with no signs of saturation or fibre damage suggesting that higher output powers should be possible. For the 1.088 μm pumping there is very strong pump ESA resulting in bright blue (480 nm) and near-IR (800 nm) fluorescence due to the 1G4 --> 3H6 and 3H4 --> 3H6 transitions of Tm3+, respectively, and this limits the achievable slope efficiency, which in this case was a maximum of 25% for a 17 cm long fibre. With this pump scheme, the highest observed output power was 60 mW, and further power scaling was limited due to the intense ESA and thermal damage to the pump end of the fibre. We also present results on the active Q-switching of the 1.6 μm pumped fibre laser using a mechanical chopper operating at 19.4 kHz. Average powers of 26 mW and pulse energies of 0.65 μJ were measured with pulse widths in the range 100-160 ns.

  6. White light upconversion emissions from Tm3++Ho3++Yb3+ codoped tellurite and germanate glasses on excitation with 798 nm radiation

    NASA Astrophysics Data System (ADS)

    Giri, Neeraj Kumar; Rai, D. K.; Rai, S. B.

    2008-12-01

    White light has been produced using 798 nm laser excitation in Tm3++Ho3++Yb3+ codoped tellurite and germanate glasses. These glasses simultaneously generate the three primary colors, red, green, and blue, on 798 nm excitation. Thus, multicolor emission obtained was tuned to white luminescence by adjusting the Ho3+ ion concentration and excitation power. UV excitation and fluorescence spectra of these triply doped glasses give additional emissions, which do not appear on 798 nm excitation.

  7. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2 +-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods

    NASA Astrophysics Data System (ADS)

    Cheng, Keyi; Zhang, Jianguo; Zhang, Liping; Wang, Lun; Chen, Hongqi

    2017-01-01

    A highly sensitive luminescent bioassay for the detection of Salmonella typhimurium was fabricated using Mn2 +-doped NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor and utilizing an energy transfer (LET) system. Mn2 +-doped NaYF4:Yb,Tm UCNPs with a strong emission peak at 807 nm were obtained by changing the doped ion ratio. Carboxyl-terminated Mn2 +-doped NaYF4:Yb,Tm UCNPs were coupled with S. typhimurium aptamers, which were employed to capture and concentrate S. typhimurium. The electrostatic interactions shorten the distance between the negatively charged donor and the positively charged acceptor, which results in luminescence quenching. The added S. typhimurium leads to the restoration of luminescence due to the formation of UCNPs-aptamers-S. typhimurium, which repels the UCNPs-aptamers from the Au NRs. The LET system does not occur because of the nonexistence of the luminescence emission band of Mn2 +-doped NaYF4:Yb,Tm UCNPs, which had large spectral overlap with the absorption band of Au NRs. Under optimal conditions, the linear range of detecting S. typhimurium was 12 to 5 × 105 cfu/mL (R = 0.99). The limit of detection for S. typhimurium was as low as 11 cfu/mL in an aqueous buffer. The measurement of S. typhimurium in milk samples was satisfied in accordance with the plate-counting method, suggesting that the proposed method was of practical value in the application of food security.

  8. White upconversion emission in Y{sub 2}O{sub 3}:Er{sup 3+}–Tm{sup 3+}–Yb{sup 3+}phosphor

    SciTech Connect

    Rai, Vineet Kumar; Dey, Riya; Kumar, Kaushal

    2013-06-01

    Graphical abstract: Schematic energy level diagram of Er{sup 3+}–Yb{sup 3+}–Tm{sup 3+} system upon excitation at 980 nm. Highlights: ► Prepared the Er{sup 3+}–Tm{sup 3+}–Yb{sup 3+} codoped Y{sub 2}O{sub 3} phosphor. ► Excitation of the sample by 980 nm diode laser is studied. ► Explored the possibility of getting white light emission from the synthesized phosphor. ► Colour tunability of the prepared phosphor is studied. ► Temperature sensing behaviour is investigated using FIR studied. - Abstract: Er{sup 3+}–Tm{sup 3+}–Yb{sup 3+} codoped Y{sub 2}O{sub 3} phosphor has been synthesized by optimized combustion synthesis process and its white light upconversion emission property is investigated using cheap 980 nm diode laser excitation. Efficient red, green and blue light emission bands, necessary for attaining white light emission, are observed in the codoped sample. The concentration of each rare earth ion is adjusted to get the required emission. In this phosphor, interestingly, emission colour coordinates are found to almost independent on the excitation power density. The temperature sensing behaviour of the prepared samples has also been studied using fluorescence intensity ratio (FIR) technique.

  9. Specific features of magnetoresistance during the antiferromagnet-paramagnet transition in Tm{sub 1-x}Yb{sub x}B{sub 12}

    SciTech Connect

    Sluchanko, N. E. Azarevich, A. N.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Levchenko, A. V.; Filippov, V. B.; Shitsevalova, N. Yu.

    2013-05-15

    The transverse magnetoresistance {Delta}{rho}/{rho}(H, T) of Tm{sub 1-x}Yb{sub x}B{sub 12} single crystals is studied in the ytterbium concentration range corresponding to the antiferromagnet-paramagnet transition in a magnetic field up to 80 kOe at low temperatures. A magnetic H-T phase diagram is constructed for the antiferromagnetic state of substitutional Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions with x {<=} 0.1. The contributions to the magnetoresistance in the antiferromagnetic and paramagnetic phases of the dodecaborides under study are separated. Along with negative quadratic magnetoresistance -{Delta}{rho}/{rho} {proportional_to} H{sub 2}, the magnetically ordered phase of these compounds is found to have component {Delta}{rho}/{rho} {proportional_to} H that linearly changes in a magnetic field. The negative contribution to the magnetoresistance of Tm{sub 1-x}Yb{sub x}B{sub 12} is analyzed in terms of the Yosida model for a local magnetic susceptibility.

  10. Effect of Li{sup +} ions on enhancement of near-infrared upconversion emission in Y{sub 2}O{sub 3}:Tm{sup 3+}/Yb{sup 3+} nanocrystals

    SciTech Connect

    Li Dongyu; Wang Yuxiao; Zhang Xueru; Dong Hongxing; Shi Guang; Liu Lu; Song Yinglin

    2012-11-01

    Near-infrared (NIR) to NIR upconversion emission is investigated in Tm{sup 3+}/Yb{sup 3+}/Li{sup +} triply doped Y{sub 2}O{sub 3} nanocrystals. Li{sup +} ions doped in Y{sub 2}O{sub 3}:Tm{sup 3+}/Yb{sup 3+} nanocrystals can greatly enhance the NIR upconversion emission intensity of Tm{sup 3+} ions. The abnormal shift of the (222) diffraction peak position determined from x-ray diffraction measurements is discussed, by introducing Li{sup +} ions in the Y{sub 2}O{sub 3}:Tm{sup 3+}/Yb{sup 3+} nanocrystals. The cause of the enhancement is the modification of the local symmetry induced by the Li{sup +} ions, which increases the intra-4f transitions of Tm{sup 3+} ion. Li{sup +} ions doped in Y{sub 2}O{sub 3}:Tm{sup 3+}/Yb{sup 3+} nanocrystals also can reduce the OH groups, dissociate the Yb{sup 3+} and Tm{sup 3+} ion clusters, and create the oxygen vacancies, which are the other reasons for enhancing the upconversion emission intensities. This material may be promising for in vitro and in vivo bioimaging probes.

  11. NIR to blue light upconversion in Tm3+/Yb3+ codoped BaTiO3 tellurite glass

    NASA Astrophysics Data System (ADS)

    Kumari, Astha; Rai, Vineet Kumar

    2015-05-01

    Upconversion is an interesting optical property, generally shown by rare-earth doped materials. This unusual optical behavior shown by these rare-earths doped materials are due to their peculiar atomic configuration and electronic transitions. Here, the Tm3+-Yb3+ codoped BaTiO3 glass with TeO2 as former has been prepared by conventional melt and quench technique and the upconversion property has been investigated with the help of near infrared (NIR) to Visible UC study. The generation of the visible UC bands around ˜ 476 nm, ˜ 653 nm, ˜ 702 nm and one NIR UC band at ˜795 nm are assigned due to the 1G4→ 3H6, 1G4→ 3F4, 3F2→ 3H6 and 3H4→ 3H6 transitions respectively. The generations of these upconversion bands have been discussed in detail with the help of energy level diagram. The colour coordinates corresponding to the prepared material have been shown with the help of CIE chromaticity diagram. These glasses can be very appropriately used in the fabrication of solid state laser and as NIR to blue light upconverter.

  12. Hexagonal versus perovskite phase of manganite RMnO3 (R=Y,Ho,Er,Tm,Yb,Lu)

    NASA Astrophysics Data System (ADS)

    Zhou, J.-S.; Goodenough, J. B.; Gallardo-Amores, J. M.; Morán, E.; Alario-Franco, M. A.; Caudillo, R.

    2006-07-01

    The floating-zone method and high-pressure synthesis have been used to obtain the hexagonal and the perovskite RMnO3 (R=Y,Ho,Er,Tm,Yb,Lu) compounds. We have refined the crystal structure and characterized the compounds with measurements of magnetic susceptibility χ(T) and thermal conductivity κ(T) . The systematic change of κ(T) below TN found in all members of the hexagonal RMnO3 family shows that some spin-independent bond-length fluctuation plays an important role in the suppression of κ(T) below TN as well as in the paramagnetic phase. The responsible soft vibrational mode is identified. In contrast, the perovskite RMnO3 shows a phonon-like κ(T) below room temperature, but with an anomalously large critical scattering at TN . A phase diagram of transition temperatures versus the R3+ -ion radius for both hexagonal and perovskite phases is also given.

  13. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm3+ and Yb3+

    NASA Astrophysics Data System (ADS)

    Soares, M. R. N.; Ferro, M.; Costa, F. M.; Monteiro, T.

    2015-11-01

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm3+ and Yb3+ single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm3+ (4f12) under resonant excitation into the high energy 2S+1LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ~800 nm due to the 1G4 --> 3H5/3H4 --> 3H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited 1G4 and 1D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm3+, a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits non-contact pressure

  14. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm(3+) and Yb(3+).

    PubMed

    Soares, M R N; Ferro, M; Costa, F M; Monteiro, T

    2015-12-21

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm(3+) and Yb(3+) single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm(3+) (4f(12)) under resonant excitation into the high energy (2S+1)LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ∼800 nm due to the (1)G4→(3)H5/(3)H4→(3)H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited (1)G4 and (1)D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm(3+), a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits

  15. Ultraviolet-driven white light generation from oxyfluoride glass co-doped with Tm3+-Tb3+-Eu3+

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. S.; Nikitin, A.; Tikhomirov, V. K.; Shestakov, M. V.; Moshchalkov, V. V.

    2013-04-01

    Tm3+-Tb3+-Eu3+ co-doped oxyfluoride glasses, doped with about 3.0 mol. % TmF3, 0.25 mol. % TbF3, and 0.25 mol. % EuF3, have been prepared by melt quenching technique. Under excitation at commercial 365 nm, the rare-earth co-dopants are all directly excited and emit in the blue, green, and red, respectively, without appreciable energy transfer amongst the co-dopants. Tint of the white luminescence can be adjusted by changing the ratio of the co-dopants. Properties of the glass host promote excellent dissolution of the co-dopants and low non-radiative decay rate. The white emission at 365 nm excitation is suitable for light emitting diodes applications.

  16. Cross-relaxation induced tunable emissions from the Tm(3+)/Er(3+)/Eu(3+) ions activated BaGd2O4 nanoneedles.

    PubMed

    Seeta Rama Raju, G; Pavitra, E; Yu, Jae Su

    2014-07-07

    Tm(3+), Er(3+), Tm(3+)/Er(3+), Tm(3+)/Er(3+)/Eu(3+) single, double and triple activator ion/ions doped nanocrystalline BaGd2O4 (BG) phosphors were prepared by a Pechini type sol-gel process. After annealing at 1300 °C, X-ray diffraction patterns confirmed their orthorhombic structure. Field-emission transmission electron microscope images of the BG sample indicated a nanoneedle-type morphology. Photoluminescence (PL) and cathodoluminescence (CL) measurements were utilized to establish the emission properties of rare-earth ions doped nanocrystalline BG host lattice. Under near-ultraviolet (NUV) excitations, BG:Tm(3+) and BG:Er(3+) exhibited their characteristic emissions in the blue and green regions, respectively, while BG:Tm(3+)/Er(3+) and BG:Tm(3+)/Er(3+)/Eu(3+) showed cyan and white light emissions, respectively, when doped with appropriate amounts of activator ions. In the PL, the cross-relaxation process is dominant rather than the energy transfer process. Due to the different mechanism from PL, the CL spectra showed different emission features of BG:Tm(3+)/Er(3+)/Eu(3+) phosphor. The CL spectra of BG:Tm(3+) and BG:Er(3+) established the high purity blue and green emissions, respectively. From the PL and CL investigations, the white-light emission was realized from the single-phase BG:Tm(3+)/Er(3+)/Eu(3+) phosphor under NUV and low voltage electron beam excitations.

  17. Multifunctional MWCNTs-NaGdF4:Yb(3+),Er(3+),Eu(3+) hybrid nanocomposites with potential dual-mode luminescence, magnetism and photothermal properties.

    PubMed

    Liu, Wenjia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2015-09-21

    A novel dual-mode luminescence multifunctional hybrid nanomaterial has been successfully prepared by coating the NaGdF4:Yb(3+),Er(3+),Eu(3+) nanoparticles (NPs) on the surface of MWCNTs. The as-synthesized MWCNTs-NaGdF4:Yb(3+),Er(3+),Eu(3+) nanocomposites (NCs) can simultaneously take advantage of both magnetic and optical properties of NaGdF4:Yb(3+),Er(3+),Eu(3+) NPs and the photothermal conversion property of MWCNTs. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), vibrating sample magnetometry (VSM), UV-Vis absorption, luminescence spectroscopy and fluorescence lifetime measurements. Meanwhile, the photothermal conversion was examined under irradiation with a 980 nm laser. The results show that the MWCNTs-NaGdF4:Yb(3+),Er(3+),Eu(3+) NCs have preferably magnetic, dual-mode (up- and down-conversion) luminescence and photothermal properties. And the NCs have good biocompatibility, low toxicity and up-conversion luminescence for cell imaging. As a consequence, the dual-mode luminescence multifunctional nanomaterials have potential applications in environmental science fields and clinical fields for magnetic resonance imaging, fluorescence imaging, photothermal therapy, bioseparation and targeted drug delivery.

  18. Magnetism induced by Ga vacancy in rare earth R(R=Gd,Eu,Tm)doped GaN

    NASA Astrophysics Data System (ADS)

    Hou, Z. T.; Li, Y. R.; Wang, T. X.; Li, Y.; Liu, H. Y.; Dai, X. F.; Liu, G. D.

    2017-05-01

    In recent years, GaN doped with rare earth has attracted much attention due to its potential application in spintronic devices and optoelectronic devices. Based on the density functional theory, we investigate the magnetic moment, formation energy, and electronic structure in R (R= Gd, Eu, Tm) doped GaN semiconductors. We focus on the contribution of Ga vacancy to the magnetism, and calculate the formation energy of different Ga vacancies in the presence of Gd, Eu, or Tm dopants, and that of Gd, Eu, Tm dopants in native defects of Ga vacancy. The possible stable defect structures in GaN are given according to their formation energy. It is found that the Ga vacancies prefer to form cluster, and the formation energy of concentrated Ga vacancies is low compared to separated Ga vacancies. The 5d electrons of rare earth as well as 4f electrons have a larger contribution to the magnetism of GaN:R with Ga vacancy than without Ga vacancy. In addition, intermediate bands were observed in GaN:R with intrinsic defects, which possibly opens the potential application of R-doped semiconductors in the third generation high efficiency photovoltaic devices.

  19. Lanthanide stannate pyrochlores Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: Synthesis, characterization, and photocatalytic properties

    SciTech Connect

    Wang, Wanjun; Liang, Shijing; Bi, Jinhong; Yu, Jimmy C.; Wong, Po Keung; Wu, Ling

    2014-08-15

    Highlights: • Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = Nd, Sm, Eu, Gd, Er, Yb) are synthesized by hydrothermal method. • Light absorption edge shows red shift with decreasing Ln{sup 3+} radius from Nd{sup 3+} to Yb{sup 3+}. • Ln{sub 2}Sn{sub 2}O{sub 7} shows increasing photocatalytic activity with the decease of Ln{sup 3+} radius. • Electronic configuration reaches 4f{sup 14} under light irradiation may decrease photocatalytic activity. • Hydroxyl radicals are detected to be the major reactive species. - Abstract: A series of lanthanide stannate pyrochlores Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals have been successfully synthesized via a facile hydrothermal route. With the decrease of Ln{sup 3+} radius, the light absorption edge of the as-prepared Ln{sub 2}Sn{sub 2}O{sub 7} shows a red shift from Nd{sup 3+} to Yb{sup 3+}. Their photocatalytic activities are found to be improved with the decrease of Ln{sup 3+} radius. However, the photocatalytic activity of Yb{sub 2}Sn{sub 2}O{sub 7} is a little lower than Er{sub 2}Sn{sub 2}O{sub 7}, although the Yb{sup 3+} radius is smaller than Er{sup 3+}, which may be attributed to the full-filled electronic configuration (4f{sup 14}) of surface Yb{sup 2+} intermediates (formed by Yb{sup 3+} trapping a photo-excited electron). The crystallite size and surface area play the most important role in determining the activities. Furthermore, hydroxyl radicals are detected to be the major reactive species during the photo-degradation process. Our findings provide insights in the fabrication of highly efficient stannate photocatalysts, thus enlarging the family of photocatalysts available.

  20. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm{sup 3+}-Yb{sup 3+} doped optical fiber beyond plasmonics

    SciTech Connect

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.; Das, Shyamal; Bhadra, Shyamal K.

    2015-12-07

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb{sup 3+}) and Thulium (Tm{sup 3+}) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailed laser diode with input power of 20–100 mW to excite the Yb{sup 3+}. Four times enhancement of Yb{sup 3+} emission of 900–1100 nm and Tm{sup 3+} upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs.

  1. Role of the stimulated radiation of Yb3+ ions in the formation of luminescence of the Y0.8Yb0.2F3:Tm3+ solid solution

    NASA Astrophysics Data System (ADS)

    Mikheev, A. V.; Kazakov, B. N.

    2015-09-01

    A new mechanism has been proposed for the transfer of the energy of exciting laser radiation through the donor subsystem (Yb3+) to acceptors (Tm3+), which induces multiphoton transitions in the acceptor subsystem. The coherence of the induced radiation of donors is of key importance in this mechanism. An analytical dependence of the intensity of the up-conversion luminescence of Tm3+ (1G4 → 3H6) ions in the Y0.8Yb0.2F3:Tm3+ system on the pump power at the steady-state excitation by 934-nm infrared radiation of a laser diode has been obtained using the mathematical technique of the theory of Poisson processes. In contrast to known mechanisms, this dependence approximates the experimental dependence well in a wide power range (200-1200 mW). The proposed model is applicable for any system where the energy of pump radiation is transferred to acceptors through the subsystem of donor ions.

  2. Synthetic and spectroscopic studies of vanadate glaserites I: Upconversion studies of doubly co-doped (Er, Tm, or Ho):Yb:K{sub 3}Y(VO{sub 4}){sub 2}

    SciTech Connect

    Kimani, Martin M. Chen, Hongyu McMillen, Colin D. Anker, Jeffery N. Kolis, Joseph W.

    2015-03-15

    The synthesis and upconversion properties of trigonal glaserite-type K{sub 3}Y(VO{sub 4}){sub 2} co-doped with Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} were studied. Powder samples were synthesized by solid state reactions at 1000 °C for 48 h, while well-formed hexagonal single crystals of the same were grown hydrothermally using 10 M K{sub 2}CO{sub 3} at 560–650 °C. Infrared-to-visible upconversion by Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} codoped-K{sub 3}Y(VO{sub 4}){sub 2} glaserite powder and single crystals was observed, and the upconversion spectral properties were studied as a function of different Er{sup 3+}, Tm{sup 3+}, Ho{sup 3+}, and Yb{sup 3+} ion concentrations. The process is observed under 980 nm laser diode excitation and leads to strong green (552 nm) and red (659 nm) emission for Er{sup 3+}/Yb{sup 3+}, green (549 nm) and red (664 nm) emission for Ho{sup 3+}/Yb{sup 3+}, and blue (475 nm) and red (647 nm) emission for Tm{sup 3+}/Yb{sup 3+}. The main mechanism that allows for up-conversion is attributed the energy transfer among Yb{sup 3+} and the various Er{sup 3+}/Ho{sup 3+}/Tm{sup 3+} ions in excited states. These results illustrate the large potential of co-doped alkali double vanadates for photonic applications involving optoelectronics devices. - Graphical abstract: Synthesis and upconversion in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} codoped with Er, Tm, or Ho:Yb were synthesized via solid-state and hydrothermal routes. • Upconversion properties are investigated. • The codoped compounds revealed efficient infrared-to-visible upconversion. • The presented compounds are potential host for solid state lighting.

  3. Synthesis of g-C3N4-based NaYF4:Yb,Tm@TiO2 ternary composite with enhanced Vis/NIR-driven photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Cheng, Erjian; Zhou, Shiqi; Li, Mohua; Li, Zhengquan

    2017-07-01

    Upconversion (UC) NaYF4:Yb,Tm nanocrystals (NCs) are capable of converting low-energy near-infrared (NIR) photons to high-energy ultraviolet (UV) and visible (Vis) photons. Integration of NaYF4:Yb,Tm with graphitic carbon nitride (g-C3N4) can extend the spectral response of g-C3N4 to the NIR range. However, photocatalytic activity of NaYF4:Yb,Tm/g-C3N4 is still severely limited by the high recombination rate of photo-generated (PG) electrons and holes (e-/h+) in the g-C3N4. Herein, we report a facile approach to fabricate a ternary nanocomposite consisting of NaYF4:Yb,Tm, TiO2 and g-C3N4. When NaYF4:Yb,Tm NCs were coated with a TiO2 shell and sequentially assembled with g-C3N4 nanosheets (NSs), a semiconductor heterojunction can be fabricated on the UC particles. The as-prepared nanocomposites possess an enhanced photocatalytic activity under Vis and/or NIR lights due to the formation of heterojunction and UC effect. The ternary nanocomposites have been characterized in detail and their photocatalytic mechanism is proposed. Such kind of ternary nanocomposites may provide a new scenario for the design and synthesis of composite photocatalysts for efficiently utilizing the Vis/NIR lights in environmental remedy.

  4. Investigation on up-conversion luminescence properties of novel transparent Ho3+-Tm3+-Yb3+ co-doped oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bo; Han, Wan-lei; Xu, Fang; Song, Ying-lin

    2011-06-01

    In the present letter, the transparent oxyfluoride glass ceramics containing Ho3+-Tm3+-Yb3+:NaYF4 were successfully prepared by melt-quenching at 1400°C and subsequent heating at 650-680°C for 1~2 hours . X-ray diffraction (XRD) with Cu Kα radiation (λ=0.154nm) investigation revealed that NaYF4 nano-crystals in the glass ceramics was fabricated. Their sizes were determined by Sherrer's equation. The emission spectra red green and blue up-conversion (UC) under 980nm laser diode (LD) pumping and absorption spectra were measured. Luminescence measurements confirmed the partition of RE ions in nano-crystals NaYF4. The blue red and green UC radiations correspond to the transitions 1G4-3H6, 1G4-3H4 of Tm3+, 5F4, 5S2-5I8, 5F5-5I8, of Ho3+ ions, respectively. This is similar to that in Tm3+-Yb3+ and/or Ho3+-Yb3+ co-doped glass ceramics. To obtain upconversion fluorescence mechanisms, upconversion fluorescence intensity versus LD pump power were analyzed in view of energy levels of rare earth. Up-conversion mechanisms were discussed and the ratio between red, green and blue UC emission bands was found to be varied as a function of temperature of heat treatment and pump power. This result could be mainly attributed to the cross-relaxation between Ho3+ ions. The excellent optical properties and its convenient, low-cost synthesis of the present glass ceramic imply that it is an excellent substitution material for the unobtainable bulk NaYF4 crystal and may have potentially applications in tunable visible laser or many other fields.

  5. Structure and Properties of Single Crystalline CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2

    SciTech Connect

    May, Andrew F; McGuire, Michael A; Singh, David J; Custelcean, Radu; Jellison Jr, Gerald Earle

    2011-01-01

    Single crystals of CaMg{sub 2}Bi{sub 2}, EuMg{sub 2}Bi{sub 2}, and YbMg{sub 2}Bi{sub 2} were obtained from a Mg-Bi flux cooled to 650 C. These materials crystallize in the CaAl{sub 2}Si{sub 2} structure-type (P3{bar m}1, No. 164), and crystal structures are reported from refinements of single crystal and powder X-ray diffraction data. EuMg{sub 2}Bi{sub 2} displays an antiferromagnetic transition near 7 K, which is observed via electrical resistivity, magnetization, and specific heat capacity measurements. Magnetization measurements on YbMg{sub 2}Bi{sub 2} reveal a weak diamagnetic moment consistent with divalent Yb. Despite charge-balanced empirical formulas, all three compounds are p-type conductors with Hall carrier concentrations of 2.0(3) x 10{sup 19} cm{sup -3} for CaMg{sub 2}Bi{sub 2}, 1.7(1) x 10{sup 19} cm{sup -3} for EuMg{sub 2}Bi{sub 2}, and 4.6(7) x 10{sup 19} cm{sup -3} for YbMg{sub 2}Bi{sub 2}, which are independent of temperature to 5 K. The electrical resistivity decreases with decreasing temperature and the resistivity ratios {rho}(300 K)/{rho}(10 K) {le} 1.6 in all cases, indicating significant defect scattering.

  6. Up-conversion luminescence properties and energy transfer of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5}

    SciTech Connect

    Xie, Jing; Mei, Lefu Deng, Junru; Liu, Haikun; Ma, Bin; Guan, Ming; Liao, Libing Lv, Guocheng

    2015-11-15

    Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} up-conversion (UC) phosphors were successfully synthesized by high temperature solid-state reaction method. The X-ray diffraction (XRD) results show that synthesized phosphor co-doped with 0.75% Tm/10% Yb has the optimum pure phase of BaLa{sub 2}ZnO{sub 5} among different co-doping concentrations. The structure of BaLa{sub 2}ZnO{sub 5}:0.75% Tm/10% Yb phosphor was refined by the Rietveld method and results show the decreased unit cell parameters and cell volume after doping Tm{sup 3+}/Yb{sup 3+}, indicating that Tm{sup 3+}/Yb{sup 3+} have successfully replaced La{sup 3+}. Under excitation at 980 nm, Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} phosphors present bright blue emission near 478 nm generated by the {sup 1}G{sub 4}→{sup 3}H{sub 6} transition and weak red emissions around 653 nm and 692 nm generated by the {sup 1}G{sub 4}→{sup 3}F{sub 4} and {sup 3}F{sub 3}→{sup 3}H{sub 6} transitions of Tm{sup 3+}, respectively. The UC luminescence properties of BaLa{sub 2}ZnO{sub 5} phosphors co-doped with different Tm{sup 3+}/Yb{sup 3+} concentrations were investigated, and the related UC mechanisms of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} depending on pump power were studied in detail. - Graphical abstract: Up-conversion luminescence of BaLa{sub 2}ZnO{sub 5}:Tm{sup 3+}/Yb{sup 3+} and its crystal structure and up-conversion mechanisms. - Highlights: • Up-conversion phosphors BaLa{sub 2}ZnO{sub 5} co-doped with Tm{sup 3+}/Yb{sup 3+} were synthesized by high temperature solid-state reaction method. • The crystal structure of BaLa{sub 2}ZnO{sub 5} and the changes of cell parameters and volume of BaLa{sub 2}ZnO{sub 5} after doping Tm{sup 3+} and Yb{sup 3+} have been discussed. • Up-conversion luminescence properties and energy transfer between Tm{sup 3+} and Yb{sup 3+} in BaLa{sub 2}ZnO{sub 5} have been discussed in detail.

  7. Jahn-Teller distortion and magnetic transitions in perovskite RMnO3 ( R=Ho , Er, Tm, Yb, and Lu)

    NASA Astrophysics Data System (ADS)

    Tachibana, Makoto; Shimoyama, Tomotaka; Kawaji, Hitoshi; Atake, Tooru; Takayama-Muromachi, Eiji

    2007-04-01

    The perovskite RMnO3 ( R=Ho , Er, Tm, Yb, and Lu) were prepared under high pressure and studied with heat capacity and synchrotron x-ray powder diffraction measurements. The temperature interval between the antiferromagnetic transition and the first-order transition to the presumably E -type structure narrows with the decreasing ionic radius of R , and almost closes for R=Lu . Combined with the data for the larger rare earth R , the results show intricate relationship between the complex magnetic phase diagram and significant increase of Jahn-Teller distortion found for the smallest members of RMnO3 .

  8. Synthesis of a New Cubic Conductive Cu6O8-yMX (M=Tb, Dy, Ho, Er, Tm, Yb, Lu, X=NO3, Cl) Family

    NASA Astrophysics Data System (ADS)

    Sugise, Ryoji; Ohdan, Kyoji; Hamamoto, Toshikazu; Kashiwagi, Kouichi; Shirai, Masashi; Yazawa, Ichiro; Ihara, Hideo

    1993-07-01

    A new cubic Cu6O8-yMX family (M=Tb, Dy, Ho, Er, Tm, Yb, Lu, X=NO3, Cl) was prepared. These compounds showed metallic resistivity and paramagnetism. The Cu6O8-yMX compounds could be easily synthesized when a trivalent metal element (M) whose oxide (M2O3) has a cubic Tl2O3-type structure was used. These compounds were prepared in the thermal decomposition process of a mixed copper nitrate, copper chloride and metal element oxide solution. The lattice constants of the Cu6O8-yMX compounds were related to those of M2O3.

  9. Preparation of core/shell NaYF4:Yb,Tm@dendrons nanoparticles with enhanced upconversion luminescence for in vivo imaging.

    PubMed

    Francolon, Nadège; Boyer, Damien; Leccia, Felicia; Jouberton, Elodie; Walter, Aurélie; Bordeianu, Catalina; Parat, Audrey; Felder-Flesch, Delphine; Begin-Colin, Sylvie; Miot-Noirault, Elisabeth; Chezal, Jean-Michel; Mahiou, Rachid

    2016-10-01

    Upconverting nanoparticles (UCNPs) were successfully dendronized for fluorescence medical imaging applications. The structural and morphological characterizations of resulting core/shell NaYF4:Yb,Tm@dendrons nanoparticles were performed by means of X-ray diffraction, infrared spectroscopy and transmission electron microscopy. In vitro cytotoxicity assays have evidenced their low toxicity. In vivo fluorescence imaging study was performed in mice upon IR excitation, showing promising imaging capacities at low concentrations (0.5mg/mL) and low power (50mW/cm(2)). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An experimental design approach for hydrothermal synthesis of NaYF4: Yb3+, Tm3+ upconversion microcrystal: UV emission optimization

    NASA Astrophysics Data System (ADS)

    Kaviani Darani, Masoume; Bastani, Saeed; Ghahari, Mehdi; Kardar, Pooneh

    2015-11-01

    Ultraviolet (UV) emissions of hydrothermally synthesized NaYF4: Yb3+, Tm3+ upconversion crystals were optimized using the response surface methodology experimental design. In these experimental designs, 9 runs, two factors namely (1) Tm3+ ion concentration, and (2) pH value were investigated using 3 different ligands. Introducing UV upconversion emissions as responses, their intensity were separately maximized. Analytical methods such as XRD, SEM, and FTIR could be used to study crystal structure, morphology, and fluorescent spectroscopy in order to obtain luminescence properties. From the photo-luminescence spectra, emissions centered at 347, 364, 452, 478, 648 and 803 nm were observed. Some results show that increasing each DOE factor up to an optimum value resulted in an increase in emission intensity, followed by reduction. To optimize UV emission, as a final result to the UV emission optimization, each design had a suggestion.

  11. Multicolour upconversion emission from Ho{sup 3+}-Tm{sup 3+}-Yb{sup 3+} codoped CaMoO{sub 4} phosphor

    SciTech Connect

    Dey, Riya; Rai, Vineet Kumar

    2015-05-15

    The Ho{sup 3+}-Tm{sup 3+}-Yb{sup 3+} codoped CaMoO4 phosphor powder has been synthesized by chemical coprecipitation technique. For the structural investigation the X-ray diffraction analysis has been done. Multicolour upconversion (UC) emission in the visible region from the prepared material has been observed under the 980 nm near infrared (NIR) excitation. The UC emission bands ∼ 474 nm (blue), ∼ 541 nm (green) and ∼ 661 nm (red) region have been assigned as {sup 1}G{sub 4}→{sup 3}H{sub 6} (Tm{sup 3+}), {sup 5}F{sub 4}{sup 5}S{sub 2}→{sup 5}I{sub 8} (Ho{sup 3+}) and {sup 5}F{sub 5}→{sup 5}I{sub 8} (Ho{sup 3+}) transitions respectively.

  12. High Contrast In vitro and In vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors

    PubMed Central

    Nyk, Marcin; Kumar, Rajiv; Ohulchanskyy, Tymish Y.; Bergey, Earl J.; Prasad, Paras N.

    2012-01-01

    A new approach for photoluminescence imaging in vitro and in vivo has been shown, utilizing near infrared to near infrared (NIR-to-NIR) up-conversion in nanophosphors. This NIR-to-NIR up-conversion process provides deeper light penetration into biological specimen and results in high contrast optical imaging due to absence of an autofluorescence background and decreased light scattering. Aqueous dispersible fluoride (NaYF4) nanocrystals (20–30 nm size) co-doped with the rare earth ions, Tm3+ and Yb3+, were synthesized and characterized by TEM, XRD and photoluminescence (PL) spectroscopy. In vitro cellular uptake was shown by the PL microscopy visualizing the characteristic emission of Tm3+ at ~ 800 nm excited with 975 nm. No apparent cytotoxicity was observed. Subsequent animal imaging studies were performed using Balb-c mice injected intravenously with up-converting nanophosphors, demonstrating the high contrast PL imaging in vivo. PMID:18928324

  13. Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles.

    PubMed

    He, Enjie; Zheng, Hairong; Dong, Jun; Gao, Wei; Han, Qingyan; Li, Junna; Hui, Le; Lu, Ying; Tian, Huani

    2014-01-31

    A novel hybrid nanostructure, that is a Ag nanoparticle decorated LaF(3):Yb(3+)/Ln(3+)@SiO(2) nanosphere (Ln=Er, Tm), was constructed by a facile strategy, and characterized by XRD, TEM, FTIR, XPS and UV-vis-NIR absorption. Obvious spectral broadening and red-shift on the surface plasmon resonance were obtained by adjusting the size and configuration of Ag nanoparticles. Effective upconversion luminescence enhancements for Er(3+) and Tm(3+) containing samples were obtained. It is suggested that the luminescence enhancement results from both the excitation and emission processes, and the configuration of the studied hybrid nanostructure is an efficient system to enhance the luminescence emission of rare earth doped nanomaterials. It is believed that the enhancement from the hybrid nanostructure will find great potential in the development of photovoltaic solar cells.

  14. Intense upconversion luminescence and effect of local environment for Tm3+/Yb3+ co-doped novel TeO2-BiCl3 glass system.

    PubMed

    Wang, Guonian; Dai, Shixun; Zhang, Junjie; Wen, Lei; Yang, Jianhu; Jiang, Zhonghong

    2006-05-15

    We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups.

  15. Toward NIR driven photocatalyst: Fabrication, characterization, and photocatalytic activity of β-NaYF4:Yb(3+),Tm(3+)/g-C3N4 nanocomposite.

    PubMed

    Huang, Min-Zhong; Yuan, Baoling; Dai, Leyang; Fu, Ming-Lai

    2015-12-15

    The β-NaYF4:Yb(3+),Tm(3+)/g-C3N4 (NYT/C3N4) photocatalyst has been successfully fabricated by a stepwise method. Firstly, the advanced near-infrared (NIR) driven photocatalyst was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-Vis-NIR diffuse reflectance spectroscopy. It was found that NYT/C3N4 photocatalyst consisted of uniform hexagonal phase NaYF4 nanocrystals with about 20nm diameter distributed on surface of g-C3N4 sheets, and the NYT/C3N4 composite exhibited strong near-infrared light absorption and the energy transfer from β-NaYF4:Yb(3+),Tm(3+) to g-C3N4 was confirmed. Secondly, the photocatalytic activities of the catalysts were evaluated by the degradation of methyl blue dye and colorless phenol under the irradiation of 980nm laser. The results suggested that NYT/C3N4 nanocomposite is an advanced NIR-driven photocatalyst. Moreover the NYT/C3N4 photocatalyst showed good stability for photocatalytic decoloration of dye in the recycled tests. This study suggested a promising system to utilize the NIR energy of sunlight for photochemical and photoelectrical applications based on g-C3N4, which will contribute to the utilization of solar energy in the future.

  16. Hydrothermal synthesis of BaYbF5:Tm3+ nanoparticles for dual-modal upconversion near-infrared luminescence and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Miu, Wei

    2016-04-01

    In this paper, we demonstrate multifunctional upconversion nanoparticles with intense near-infrared emission and unique magnetic properties for dual-modal upconversion luminescent bioimaging and T2-weighted magnetic resonance imaging. High-quality BaYbF5:Tm3+ nanoparticles are synthesized via a hydrophobic method and then converted to be hydrophilic via a hydrochloric acid treatment. The as-synthesized nanoparticles are cubic phase and about 6 nm in diameter with narrow size distribution. The intense near-infrared emission makes these nanoparticles can be acted as bio-probes in upconversion luminescent bioimaging with deep tissue penetration. Besides, these nanoparticles can also be used as T2-weighted contrast agents in magnetic resonance imaging due to the high value of relaxation rate (r2 = 4.05) in 0.55 T. This finding may have further bio-applications in the future due to the high performance of these BaYbF5:Tm3+ nanoparticles in dual-modal bioimaging.

  17. Quantum coherent control of blue, green and red emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ by two shaped infrared ultrashort laser beams

    NASA Astrophysics Data System (ADS)

    Cheng, Wenjing; Zhang, Shian; Jia, Tianqing; Ma, Jing; Sun, Zhenrong

    2014-01-01

    The enhancement and tunable color emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ have been studied extensively in recent decades. In this paper, we present a new scheme for quantum coherent control of two-photon absorption (TPA) and color emission in codoped lanthanide ions of Er3+/Tm3+/Yb3+ by properly phase shaping two infrared ultrashort laser beams at central frequencies of 10 650 cm-1 and 7650 cm-1, respectively. Compared with the results irradiated by transform-limited pulses, the TPA probabilities of the blue, green and red emissions are independently controlled in the ranges 0-13.3, 0-14.5 and 0-1.0, respectively. The effects of the energy states of lanthanide ions and the laser spectral bandwidths on the coherent features are also discussed. The TPA probabilities for the blue and green emissions increase with the laser spectral bandwidths and decrease with the energy bandwidths of the final level states. As the intermediate energy level shifts in the range 10 100-10 500 cm-1, the TPA probabilities for the blue and green emissions change in the ranges 7-15 and 8-17, respectively.

  18. Enhanced photocatalytic activities of the heterostructured upconversion photocatalysts with cotton mediated on TiO2/ZnWO4:Yb3+,Tm3.

    PubMed

    Feng, Kaili; Huang, Shouqiang; Lou, Ziyang; Zhu, Nanwen; Yuan, Haiping

    2015-08-14

    To improve the photocatalytic efficiency and make full use of solar energy, ZnWO(4):Yb(3+),Tm(3+) (ZYT) was introduced as the upconversion luminescence agent on TiO(2) with a cotton template, and novel upconversion photocatalysts of TiO(2)/ZnWO(4):Yb(3+),Tm(3+) (TZYT-C) were synthesized and optimized with 5%-30% of ZYT. The heterostructure between ZYT and TiO(2) was formed in the TZYT-C composites with the presence of tube-like morphologies due to the addition of the cotton template. UV (364 nm) and blue (484 nm) light was emitted from ZYT upon 980 nm NIR irradiation. The BET specific surface areas of all the TZYT-C composites increased from 37 m(2) g(-1) (TiO(2)-C) to the maximum value of 75 m(2) g(-1) on 5%TZYT-C. The photocatalytic activities of the TZYT-C composites were tested using the degradation process of methyl orange (MO). 5%TZYT-C showed the highest degradation efficiency, with a value of 55.6% under sun-like irradiation for 210 min. The same performance was observed on 5%TZYT-C under NIR (λ ≥ 780 nm) irradiation, with a maximum removal rate of 9.02%, since 5%TZYT-C showed the most efficient electron-hole (e(-)/h(+)) pair separation, compared to ZYT and other TZYT-C composites.

  19. Separation of the contributions to the magnetization of Tm1 - x Yb x B12 solid solutions in steady and pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Bogach, A. V.; Sluchanko, N. E.; Glushkov, V. V.; Demishev, S. V.; Azarevich, A. N.; Filippov, V. B.; Shitsevalova, N. Yu.; Levchenko, A. V.; Vanacken, J.; Moshchalkov, V. V.; Gabani, S.; Flachbart, K.

    2013-05-01

    The magnetization of substitutional Tm1 - x Yb x B12 solid solutions is studied in the composition range 0 < x ≤ 0.81. The measurements are performed at low temperatures (1.9-300 K) in steady (up to 11 T) and pulsed (up to 50 T, pulse duration of 20-100 ms) magnetic fields. An analysis of the experimental data allowed the contributions to the magnetization of the paramagnetic phase of the Tm1 - x Yb x B12 compounds to be separated. These contributions include a Pauli component, which corresponds to the response of the heavy-fermion manybody states that appears in the energy gap in the vicinity of the Fermi level (density of states (3-4) × 1021 cm-3 meV-1), and a contribution with saturation in high magnetic fields attributed to the localized magnetic moments ((0.8-3.7)μB per unit cell) of the nanoclusters formed by rare-earth ions with an antiferromagnetic interaction.

  20. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging.

    PubMed

    Yang, Yang; Sun, Yun; Cao, Tianye; Peng, Juanjuan; Liu, Ying; Wu, Yongquan; Feng, Wei; Zhang, Yingjian; Li, Fuyou

    2013-01-01

    Upconversion luminescence (UCL) properties and radioactivity have been integrated into NaLuF(4):(153)Sm,Yb,Tm nanoparticles by a facile one-step hydrothermal method, making these nanoparticles potential candidates for UCL and single-photon emission computed tomography (SPECT) dual-modal bioimaging in vivo. The introduction of small amount of radioactive (153)Sm(3+) can hardly vary the upconversion luminescence properties of the nanoparticles. The as-designed nanoparticles showed very low cytotoxicity, no obvious tissue damage in 7 days, and excellent in vitro and in vivo performances in dual-modal bioimaging. By means of a combination of UCL and SPECT imaging in vivo, the distribution of the nanoparticles in living animals has been studied, and the results indicated that these particles were mainly accumulated in the liver and spleen. Therefore, the concept of (153)Sm(3+)/Yb(3+)/Tm(3+) co-doped NaLuF(4) nanoparticles for UCL and SPECT dual-modality imaging in vivo of whole-body animals may serve as a platform for next-generation probes for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. It also introduces an easy methodology to quantify in vivo biodistribution of nanomaterials which still needs further understanding as a community.

  1. Enhanced near-infrared response of CdS/CdTe solar cell using Tm3+ and Yb3+ co-doped upconverting glass phosphors

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Whyte, D.; Morgan, S. H.; Li, J.; Alaswad, A.; Beach, J. D.; Ohno, T. R.; Wolden, C. A.

    2014-10-01

    Tm3+ and Yb3+ co-doped upconverting (UC) glass phosphors were used to converting near-infrared to visible light and input to a CdS/CdTe solar cell, therefore to enhance solar cell's response in the near-infrared of the sub-bandgap region. Current-voltage measurements were performed on the solar cell with a UC glass phosphor. A short-circuit photocurrent enhancement of 31 μA was obtained using a Tm3+and Yb3+ co-doped glass UC phosphor, illuminated by a 980 nm diode laser at 100 mW. This photocurrent response corresponds to external quantum efficiency (EQE) of 0.04 % at 980 nm. For full collection of the UC light in 4π solid angle, the EQE value is expected to reach 1.6 %. The photo-current observed was proportional to the effective UC light intensity from glass UC phosphor. A non-linear relation between the output photo-current and the incident power of the infrared light was observed, similar to the relation between UC intensity and the incident power. UC efficiency of the glass phosphor was calculated using EQE values at both UC wavelengths and at 980 nm.

  2. The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2: Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.

    2016-12-01

    Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.

  3. Multiple thermoluminescence glow peaks and afterglow suppression in CsI:Tl co-doped with Eu2+ or Yb2+

    NASA Astrophysics Data System (ADS)

    Bartram, R. H.; Kappers, L. A.; Hamilton, D. S.; Brecher, C.; Ovechkina, E. E.; Miller, S. R.; Nagarkar, V. V.

    2015-04-01

    CsI:Tl is a widely utilized scintillator material with many desirable properties but its applicability is limited by persistent afterglow. However, effective afterglow suppression has been achieved by co-doping with divalent lanthanides. The present report is concerned with observation of multiple thermoluminescence glow peaks in CsI:Tl,Eu and CsI:Tl,Yb, attributed to varying distributions of charge-compensating cation vacancies relative to divalent lanthanide co-dopants, and the subsequent modification of these distributions by repeated observations. It is observed that Yb2+ provides a slightly shallower electron trap than Eu2+, and that it can occupy a face-centered position by virtue of its relatively small ionic radius; the latter observation is confirmed by electrostatic calculations. It is also found that repeated observation of thermoluminescence in these materials has a modest adverse effect on afterglow suppression.

  4. Bonding in gold-rare earth [Au2M] (M = Eu, Yb, Lu) ions. A strong covalent gold-lanthanide bond

    NASA Astrophysics Data System (ADS)

    Páez-Hernández, Dayán; Muñoz-Castro, Alvaro; Arratia-Perez, Ramiro

    2017-09-01

    The electronic structure and bonding nature of a series of intermetallic gold-lanthanide [Au2Ln] molecules, where Ln = Eu, Yb, Lu is predicted via the DFT and CASSCF/CASPT2 calculations. The 2c-2e bond model shows a good description of the intermetallic bonding which have a large covalent component with important contribution from bonding interaction between the 6s-Au and the 6s-Ln shell of orbitals.

  5. Crystal growth and physical properties of europium-based quaternary Chevrel phases (RE 1- xEu xMo 6S 8; RE-Sm, Yb)

    NASA Astrophysics Data System (ADS)

    Schmitt, H.; Pen˜a, O.; Perrin, A.; Padiou, J.; Sergent, M.; Torikachvili, M.; Beille, J.

    1992-02-01

    Rare-earth-based Chevrel phases constitute model systems to study both superconductivity and magnetic order but results may be hindered by the quality of the sample. Materials elaboration is thus essential to separate out extrinsic effects (secondary phases) from those due to the Mo 6S 8 clusters and the rare-earth contribution. Crystal growth, transport and magnetic properties of the quaternary systems (RE, Eu)Mo 6S 8 (RE-Sm, Yb) are presented. Different RE/Eu nominal ratios allowed to cover a large range of concentrations for single crystals. Superconducting transitions are narrow and as high as 9 K for ytterbium-rich samples, while the structural transition of the ternary EuMo 6S 8 ( T s = 110 K) is largely diminished by the partial substitution of Eu by RE.

  6. Upconversion luminescence properties of Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ core-shell nanoparticles prepared via homogeneous co-precipitation

    NASA Astrophysics Data System (ADS)

    Tian, Ying; Lu, Fei; Xing, Mingming; Ran, Jincheng; Fu, Yao; Peng, Yong; Luo, Xixian

    2017-02-01

    The Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ core-shell upconversion (UC) nanoparticles with average diameter of 95 nm were synthesized by the homogeneous co-precipitation method combining with the solid-gas sulfidation route. The increases of nanocrystaline size after the shell coating was observed both in the X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. This indicates the composition homogeneity core-shell Y2O2S nanocrystals. Meanwhile, the luminescence of both the Er3+ and Tm3+ ions are realized for the first time in the novel core-shell Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ nanoparticles under the excitations of both 980 and 1550 nm. When excited by a 980 nm laser diode, the Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ phosphor exhibits blue (≈475 nm), green (≈548 nm) and red (≈670 nm) emissions in the visible region, which correspond to the 1G4 → 3H6 transition of Tm3+ions, 4S3/2, 2H11/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions, respectively. The very strong emission at the near infrared (NIR) region is mainly due to the 3H4 → 3H6 transition of Tm3+ ions. The emission from both of Er3+ and Tm3+ ions under 980 nm excitation reveals the energy transfers of Yb3+ → Tm3+ within the shell layer and Yb3+ → Er3+ between the shell and the core. When pumping at 1550 nm, although only Er3+ ions can efficiently absorb the excitation energy, the strong UC emissions from Tm3+ ions were also observed. This is owing to the energy transfer between the core and the shell through Er3+ → Yb3+ → Tm3+ ions.

  7. The action mechanism of TiO{sub 2}:NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} cathode buffer layer in highly efficient inverted organic solar cells

    SciTech Connect

    Liu, Chunyu; Chen, Huan; Zhao, Dan; Shen, Liang; He, Yeyuan; Guo, Wenbin E-mail: chenwy@jlu.edu.cn; Chen, Weiyou E-mail: chenwy@jlu.edu.cn

    2014-08-04

    We report the fabrication and characteristics of organic solar cells with 6.86% power conversion efficiency (PCE) by doping NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} into TiO{sub 2} cathode buffer layer. The dependence of devices performance on doping concentration of NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} is investigated. Results indicate that short-circuit current density (J{sub sc}) has an apparent improvement, leading to an enhancement of 22.7% in PCE for the optimized doping concentration of 0.05 mmol ml{sup −1} compared to the control devices. NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} nanoparticles (NPs) can play threefold roles, one is that the incident light in visible region can be scattered by NaYF{sub 4} NPs, the second is that solar irradiation in infrared region can be better utilized by Up-conversion effect of Yb{sup 3+} and Tm{sup 3+} ions, the third is that electron transport property in TiO{sub 2} thin film can be greatly improved.

  8. Stokes and anti-Stokes luminescence in Tm(3+)/Yb(3+)-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics.

    PubMed

    Rathaiah, Mamilla; Haritha, Pamuluri; Lozano-Gorrín, Antonio Diego; Babu, Palamandala; Jayasankar, Chalicheemalapalli Kulala; Rodríguez-Mendoza, Ulises Ruyman; Lavín, Victor; Venkatramu, Vemula

    2016-06-07

    Nanocrystalline Lu3Ga5O12 garnets doped with Tm(3+)/Yb(3+) ions have been synthesized by a low cost and environmentally benign sol-gel technique and characterized for their structural, Stokes and anti-Stokes luminescence properties. The diffuse reflectance spectra of doped Lu3Ga5O12 nano-garnets have been measured to derive the partial energy level structure of Tm(3+) and Yb(3+) ions and possible energy transfer channels between them. Upon laser excitation at 473 nm, weak red and intense near-infrared Stokes emissions have been observed in the nano-garnets. The decay curves of (3)H4 and (1)G4 levels of Tm(3+) ions and the (2)F5/2 level of Yb(3+) ions have been measured upon resonant laser excitation and are found to be non-exponential in nature due to multipolar interactions. In order to know the kind of multipolar interaction among optically active ions, the decay curves are analyzed through the generalized Yokota-Tanimoto model. Moreover, under 970 nm laser excitation, intense blue anti-Stokes emission is observed by the naked eye in Tm(3+)-Yb(3+) co-doped Lu3Ga5O12 nano-garnets. The results show that as-synthesized nano-garnets may be useful in the field of phosphors and photonics.

  9. Superconductivity of metal nitride chloride β-MNCl (M = Zr, Hf) with rare-earth metal RE (RE = Eu, Yb) doped by intercalation

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Tanaka, Masashi; Onimaru, Takahiro; Takabatake, Toshiro; Isikawa, Yosikazu; Yamanaka, Shoji

    2013-04-01

    Electrons were doped into the β-form layered metal nitride chloride MNCl (M = Zr, Hf) by intercalation of rare-earth metals RE (RE = Eu, Yb) using liquid ammonia solutions. The intercalated compounds REx(NH3)yMNCl show superconductivity with transition temperatures Tc of ˜13 and 24.3 K for M = Zr and Hf, respectively, quite similar to the alkali metal intercalated analogs. The paramagnetic characteristics for Eu2+ and Yb3+ can coexist with superconductivity. The magnetic resistance measured on the uniaxially oriented Eu0.08(NH3)yHfNCl with the magnetic field parallel to the ab plane (‖ ab) and the c axis (‖ c) shows a strong anisotropic effect on the upper critical field Hc2; a large anisotropic parameter \\gamma ={H}_{{c}2}^{\\parallel a b}/{H}_{{c}2}^{\\parallel c}\\sim 4 suggests a pseudo-two-dimensional superconductivity. The Tc of Eu0.13(THF)yHfNCl is shifted toward a higher value of 25.8 K upon expansion of the interlayer spacing from 11.9 to 17.5 Å by co-intercalation of voluminous organic molecules such as tetrahydrofuran.

  10. Vacuum ultraviolet and near-infrared excited luminescence properties of Ca{sub 3}(PO{sub 4}){sub 2}:RE{sup 3+}, Na{sup +} (RE=Tb, Yb, Er, Tm, and Ho)

    SciTech Connect

    Zhang Jia; Wang Yuhua; Guo Linna; Zhang Feng; Wen Yan; Liu Bitao; Huang Yan

    2011-08-15

    Tb{sup 3+}, Yb{sup 3+}, Tm{sup 3+}, Er{sup 3+}, and Ho{sup 3+} doped Ca{sub 3}(PO{sub 4}){sub 2} were synthesized by solid-state reaction, and their luminescence properties were studied by spectra techniques. Tb{sup 3+}-doped samples can exhibit intense green emission under VUV excitation, and the brightness for the optimal Tb{sup 3+} content is comparable with that of the commercial Zn{sub 2}SiO{sub 4}:Mn{sup 2+} green phosphor. Under near-infrared laser excitation, the upconversion luminescence spectra of Yb{sup 3+}, Tm{sup 3+}, Er{sup 3+}, and Ho{sup 3+} doped samples demonstrate that the red, green, and blue tricolored fluorescence could be obtained by codoping Yb{sup 3+}-Ho{sup 3+}, Yb{sup 3+}-Er{sup 3+}, and Yb{sup 3+}-Tm{sup 3+} in Ca{sub 3}(PO{sub 4}){sub 2}, respectively. Good white upconversion emission with CIE chromaticity coordinates (0.358, 0.362) is achieved by quadri-doping Yb{sup 3+}-Tm{sup 3+}-Er{sup 3+}-Ho{sup 3+} in Ca{sub 3}(PO{sub 4}){sub 2}, in which the cross-relaxation process between Er{sup 3+} and Tm{sup 3+}, producing the {sup 1}D{sub 2}-{sup 3}F{sub 4} transition of Tm{sup 3+}, is found. The upconversion mechanisms are elucidated through the laser power dependence of the upconverted emissions and the energy level diagrams. - Graphical abstract: The CPO:0.25Tb{sup 3+}, 0.25Na{sup +} exhibits a comparable brightness to the commercial Zn{sub 2}SiO{sub 4}:Mn{sup 2+} upon 147 nm excitation. Good white light color is achieved in CPO:Yb{sup 3+}-Tm{sup 3+}-Er{sup 3+}-Ho{sup 3+} under 980 nm excitation. Highlights: > Ca{sub 3}(PO{sub 4}){sub 2}:Tb{sup 3+},Na{sup +} exhibits a comparable brightness with commercial Zn{sub 2}SiO{sub 4}:Mn{sup 2+}. > Red, green and blue colors are achieved in Yb{sup 3+}, Ho{sup 3+}, Er{sup 3+}, Tm{sup 3+} doped Ca{sub 3}(PO{sub 4}){sub 2}. > Good white emission is obtained in Yb{sup 3+}-Ho{sup 3+}-Er{sup 3+}-Tm{sup 3+} quadri-doped Ca{sub 3}(PO{sub 4}){sub 2}. > Ca{sub 3}(PO{sub 4}){sub 2}:Tb{sup 3+}, Yb{sup 3+}, Ho

  11. Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4:Tm3+,Tb3+,Yb3+ microcrystals.

    PubMed

    Xue, Xiaojie; Thitsa, Makhin; Cheng, Tonglei; Gao, Weiqing; Deng, Dinghuan; Suzuki, Takenobu; Ohishi, Yasutake

    2016-11-14

    Energy transfer between Tm3+ and Tb3+ dependent on the power density of pump laser was investigated in NaYF4: Tb3+,Tm3+,Yb3+ microcrystals. Under the excitation of a 976-nm near-infrared laser at various power densities, Tb3+-Tm3+-Yb3+ doped samples exhibited intense visible emissions with tunable color between green and blue. The ratio of blue and green emission were determined by energy transfer between Tm3+ and Tb3+. When the power density of pump laser was low, the energy transfer process from Tm3+ (3F4) to Tb3+ (7F0) occurred efficiently. Upconversion processes in Tm3+ were inhibited, only visible emissions from Tb3+ with green color were observed. When the power density increased, energy transfer from the 3F4 (Tm3+) to 7F0 level (Tb3+) was restrained and population on high energy levels of Tm3+ was increased. Contribution of upconversion emissions from Tm3+ gradually became dominant. The emission color was tuned from green to blue with increasing the power density. Energy transfer processes between low-lying levels of activators, such as Tm3+ will greatly reduce the population on certain levels for further high-order upconversion processes. The Tb3+-Tm3+-Yb3+ doped phosphors are promising materials for detecting the condition of power density of the invisible near-infrared laser.

  12. Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging

    PubMed Central

    2015-01-01

    Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline. PMID:25027118

  13. Controlled growth, intense upconversion emissions and concentration induced luminescence switching of bifunctional Tm(3+) doped hexagonal NaYb0.55Gd0.45F4 nanorods.

    PubMed

    Qu, Xilong; Li, Yongchang; Yu, Suixi; Yang, Liwen

    2013-11-01

    Bifunctional hexagonal Tm(3+) doped NaYb0.55Gd0.45F4 nanorods with tunable size are prepared via in situ cation-exchange reaction using hydrothermal method. The measured field dependence of magnetization of the NaYb0.55Gd0.45F4 nanorods shows typical paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of rare-earth ions. When excited by a 980nm laser, these nanorods exhibit intense multi-color up-conversion (UC) emissions in infrared, red, blue and especially ultraviolet. In addition, luminescent switching between different UC emission wavelengths of 480nm and 450nm is observed by adjusting Tm(3+) doping concentration. Based on power-dependent spectral analyses, it is found that with the increase of Tm(3+) doping concentration, due to the suppressed saturation effect, the dominative UC process redistribute the populations at (1)G4 and (1)D2(Tm(3+)) states of Tm(3+) ion resulting in the above luminescent switching. Our results indicate that bifunctional hexagonal NaYb1-xGdxF4 nanocrystals have potential applications in miniaturized solid-state light sources, optical processing sensors and fluorescent biolabels.

  14. Controlled growth, intense upconversion emissions and concentration induced luminescence switching of bifunctional Tm3+ doped hexagonal NaYb0.55Gd0.45F4 nanorods

    NASA Astrophysics Data System (ADS)

    Qu, Xilong; Li, Yongchang; Yu, Suixi; Yang, Liwen

    2013-11-01

    Bifunctional hexagonal Tm3+ doped NaYb0.55Gd0.45F4 nanorods with tunable size are prepared via in situ cation-exchange reaction using hydrothermal method. The measured field dependence of magnetization of the NaYb0.55Gd0.45F4 nanorods shows typical paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of rare-earth ions. When excited by a 980 nm laser, these nanorods exhibit intense multi-color up-conversion (UC) emissions in infrared, red, blue and especially ultraviolet. In addition, luminescent switching between different UC emission wavelengths of 480 nm and 450 nm is observed by adjusting Tm3+ doping concentration. Based on power-dependent spectral analyses, it is found that with the increase of Tm3+ doping concentration, due to the suppressed saturation effect, the dominative UC process redistribute the populations at 1G4 and 1D2(Tm3+) states of Tm3+ ion resulting in the above luminescent switching. Our results indicate that bifunctional hexagonal NaYb1-xGdxF4 nanocrystals have potential applications in miniaturized solid-state light sources, optical processing sensors and fluorescent biolabels.

  15. Triple-doped KMnF3:Yb3+/Er3+/Tm3+ nanocubes: four-color upconversion emissions with strong red and near-infrared bands

    PubMed Central

    Wang, Hao; Hong, Xiaodong; Han, Renlu; Shi, Junhui; Liu, Zongjun; Liu, Shujuan; Wang, You; Gan, Yang

    2015-01-01

    Triple-doped (Yb3+/Er3+/Tm3+) KMnF3 nanocubes with uniform sizes of 250 nm were synthesized by a facile hydrothermal route using the oleic acid as the capping agent. It was found that these nanocubes can simultaneously exhibited four-color (blue, green, red and NIR) upconversion emissions under a single 980 nm near-infrared (NIR) laser excitation, which should have potential multicolor in vivo imaging applications. Specifically, the red (660 nm) and NIR (800 nm) peaks, known as two “optical windows” for imaging biological tissues, were strong. The spectral and pump analyses indicated the two-photon processes were responsible for the both red and NIR emissions. PMID:26608870

  16. Triple-doped KMnF3:Yb3+/Er3+/Tm3+ nanocubes: four-color upconversion emissions with strong red and near-infrared bands

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Hong, Xiaodong; Han, Renlu; Shi, Junhui; Liu, Zongjun; Liu, Shujuan; Wang, You; Gan, Yang

    2015-11-01

    Triple-doped (Yb3+/Er3+/Tm3+) KMnF3 nanocubes with uniform sizes of 250 nm were synthesized by a facile hydrothermal route using the oleic acid as the capping agent. It was found that these nanocubes can simultaneously exhibited four-color (blue, green, red and NIR) upconversion emissions under a single 980 nm near-infrared (NIR) laser excitation, which should have potential multicolor in vivo imaging applications. Specifically, the red (660 nm) and NIR (800 nm) peaks, known as two “optical windows” for imaging biological tissues, were strong. The spectral and pump analyses indicated the two-photon processes were responsible for the both red and NIR emissions.

  17. Syntonized white up-converted emission by Tm3+-Yb3+-Er3+-Ho3+ doped ZrO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Solís, D.; López-Luke, T.; De La Rosa, E.; Meza, O.; Anderson, S.

    2010-02-01

    Although the general properties of the rare earths' electronic states and transitions are well understood, much less is known regarding the relationships between them and the electronic band states of a crystal lattice. These interactions can enhance or inhibit performance and provide mechanisms for manipulating the material's optical properties. Up-conversion ZrO2:Tm3+, Yb3+, Er3+, Ho3+ nano-crystalline samples were synthesized by sol-gel method and emission properties were analyzed as function of different concentrations of rare earth ions. The samples were pumped at 970 nm with a semiconductor laser source. The introduction of different ion concentrations affects the shape and peak intensities of the measured blue, green and red bands. Results showed in this work tend to demonstrate a feasible control of the chromaticity coordinates of emission and present an approximation to the equipotential white chromaticity coordinates.

  18. Energy levels, oscillator strengths, line strengths, and transition probabilities in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Ma, Kun; Wang, Hong-Jian; Wang, Kai; Liu, Xiao-Bin; Zeng, Jiao-Long

    2017-01-01

    Detailed calculations using the multi-configuration Dirac-Fock (MCDF) method are carried out for the lowest 64 fine-structure levels of the 3s23p2, 3s23p3d, 3s3p3, 3s3p23d, 3s23d2, and 3p4 configurations in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI. Energies, oscillator strengths, wavelengths, line strengths, and radiative electric dipole transition rates are given for all ions. A parallel calculation using the many-body perturbation theory (MBPT) method is also carried out to assess the present energy levels accuracy. Comparisons are performed between these two sets of energy levels, as well as with other available results, showing that they are in good agreement with each other within 0.5%. These high accuracy results can be used to the modeling and the interpretation of astrophysical objects and fusion plasmas.

  19. Er(3+)-Tm(3+)-Yb(3+):CaMoO4 phosphor as an outstanding upconversion-based optical temperature sensor and optical heater.

    PubMed

    Dey, Riya; Kumar Rai, Vineet

    2017-03-22

    Optical temperature sensing in Er(3+)-Tm(3+)-Yb(3+)codoped CaMoO4 phosphor prepared by chemical co-precipitation route based on the near infrared (NIR) to green upconversion emission from Er(3+) ion is reported. The variation with respect to external temperature in emission intensity ratio of the green emissions around 530 nm and 552 nm, corresponding to the (2)H11/2 → (4)I15/2 and (4)S3/2 → (4)I15/2 transitions respectively, under 980 nm excitation has been studied in detail, to report the sensing property of the prepared material; the maximum sensor sensitivity ∼0.0182 K(-1) was attained at 413 K. The laser induced optical heating within the prepared phosphor has been explored and the heat generation caused by the laser effect has been verified by comparison of experimental and calculated data.

  20. High performance silica micro-tube optical temperature sensor based on β-NaLuF4:Yb3+/Tm3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Yundong; Shao, Lin; Wu, Yongfeng; Htwe, ZinMaung; Yuan, Ping

    2017-07-01

    Rare earth co-doped nanocrystals of β-NaLuF4: Yb3+/Tm3+ with a uniform morphology and hexagonal structure were synthesized by a solvothermal route. The structure of the synthesized material was investigated with X-ray diffraction, scanning electron microscope and transmission electron microscope techniques. The micro-tube structure including rare earth nanocrystals was achieved by drawing the SiO2 capillary under the flame. The fluorescence intensity ratio of non-thermal coupling levels of 1D2→3F4 and 1G4→3H6 were studied as a function of temperature around the range of 300-550 K. The maximum sensitivity was estimated to be 0.0047 K-1 at 525 K. These results indicated that the device may have great potential applications in optical temperature sensor.

  1. Er3+-Tm3+-Yb3+:CaMoO4 phosphor as an outstanding upconversion-based optical temperature sensor and optical heater

    NASA Astrophysics Data System (ADS)

    Dey, Riya; Rai, Vineet Kumar

    2017-03-01

    Optical temperature sensing in Er3+-Tm3+-Yb3+codoped CaMoO4 phosphor prepared by chemical co-precipitation route based on the near infrared (NIR) to green upconversion emission from Er3+ ion is reported. The variation with respect to external temperature in emission intensity ratio of the green emissions around 530 nm and 552 nm, corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions respectively, under 980 nm excitation has been studied in detail, to report the sensing property of the prepared material; the maximum sensor sensitivity ∼0.0182 K‑1 was attained at 413 K. The laser induced optical heating within the prepared phosphor has been explored and the heat generation caused by the laser effect has been verified by comparison of experimental and calculated data.

  2. [Effect of bivalent alkaline earth fluorides introduction on thermal stability and spectroscopic properties of Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses].

    PubMed

    Hu, Yue-bo; Zhang, Xin-na; Zhou, Da-li; Jiao, Qing; Wang, Rong-fei; Huang, Jin-feng; Long, Xiao-bo; Qiu, Jian-bei

    2012-01-01

    Transparent Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses alone containing MgF2, CaF2, SrF2 or BaF2 and nano-glass-ceramics only containing BaF2 were prepared. The thermal stabilities and the up-conversion emission properties of the samples were investigated. Analyses of absorbance spectra reveal that the UV cutoff band moves slightly to shortwave band with the doping bivalent cation mass increasing. The results show that the emission color can be adjusted by changing the alkaline earth cation species in the glass matrixes, especially as Mg2+ is concerned, and the emission intensity can increase notably by heating the glass containing alkaline-earth fluoride into glass ceramic containing alkaline-earth fluoride nanocrystals or increasing the content of bivalent alkaline earth fluorides.

  3. Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications

    NASA Astrophysics Data System (ADS)

    Karadimitriou, N.; Klinkenberg, B.; Papadopoulos, D. N.; Serafetinides, A. A.

    2007-07-01

    Laser ablation for the formation of apodized patterns on intraocular lenses, as an alternative of the conventional injection molding, has been proved to be a very promising new technique. For the precise lenses ablation, the use of suitable laser wavelength and pulse duration, resulting in a small optical penetration depth in the lens and in confinement of the energy deposition in a small volume, as well as the reduced thermal damage to the surrounding tissue, is essential. Mid-infrared laser wavelengths, at which the organic biological simulators absorption coefficient is large, meet well the above conditions. Towards the complete understanding of the intraocular lens ablation procedure and therefore the choice of the optimum laser beam characteristics for the most accurate, efficient and safe surgical application, the comparative study of various mid-infrared laser sources is of great interest. In this work we investigate the potential of the development of three different mid-infrared laser sources, namely the Yb:YAG, the Cr:Tm:Ho:YAG and the Er:Tm:Ho:YLF laser, operating at 1029 nm, 2060 nm and 2080 nm respectively and their ability in forming patterns on biomaterials. Pumping was achieved with conventional Xe flash lamps in a double elliptical pump chamber. A properly designed Pulse-Forming- Network capable of delivering energy up to 800 J, in variable lamp illumination durations is used. Several hundreds of mJoules were achieved from the Yb:YAG laser oscillator and several Joules from the Ho:YAG and Ho:YLF laser oscillators. Free running and Q-switched laser operation studies and preliminary experiments on laser and biomaterials (biopolymers and animal tissues) interactions will be reported.

  4. Real-time, non-invasive monitoring of hydrogel degradation using LiYF4:Yb(3+)/Tm(3+) NIR-to-NIR upconverting nanoparticles.

    PubMed

    Jalani, Ghulam; Naccache, Rafik; Rosenzweig, Derek H; Lerouge, Sophie; Haglund, Lisbet; Vetrone, Fiorenzo; Cerruti, Marta

    2015-07-14

    To design a biodegradable hydrogel as cell support, one should know its in vivo degradation rate. A technique commonly used to track gel degradation is fluorescence spectroscopy. However, the fluorescence from conventional fluorophores quickly decays, and the fluorophores are often moderately cytotoxic. Most importantly, they require ultraviolet or visible (UV-Vis) light as the excitation source, which cannot penetrate deeply through biological tissues. Lanthanide-doped upconverting nanoparticles (UCNPs) are exciting alternatives to conventional fluorophores because they can convert near-infrared (NIR) to UV-Vis-NIR light via a sequential multiphoton absorption process referred to as upconversion. NIR light can penetrate up to few cm inside tissues, thus making these UCNPs much better probes than conventional fluorophores for in vivo monitoring. Also, UCNPs have narrow emission bands, high photoluminescence (PL) signal-to-noise ratio, low cytotoxicity and good physical and chemical stability. Here, we show a nanocomposite system consisting of a biodegradable, in situ thermogelling injectable hydrogel made of chitosan and hyaluronic acid encapsulating silica-coated LiYF4:Yb(3+)/Tm(3+) UCNPs. We use these UCNPs as photoluminescent tags to monitor the gel degradation inside live, cultured intervertebral discs (IVDs) over a period of 3 weeks. PL spectroscopy and NIR imaging show that NIR-to-NIR upconversion of LiYF4:Yb(3+)/Tm(3+)@SiO2 UCNPs allows for tracking of the gel degradation in living tissues. Both in vitro and ex vivo release of UCNPs follow a similar trend during the first 5 days; after this time, ex vivo release becomes faster than in vitro, indicating a faster gel degradation ex vivo. Also, the amount of released UCNPs in vitro increases continuously up to 3 weeks, while it plateaus after 15 days inside the IVDs showing a homogenous distribution of UCNPs throughout the IVD tissue. This non-invasive optical method for real time, live tissue imaging holds

  5. Photoluminescence study in Ho3+/Tm3+/Yb3+/Li+:Gd2(MoO4)3 nanophosphors for near white light emitting diode and security ink applications.

    PubMed

    Kumari, Anita; Mondal, Manisha; Rai, Vineet Kumar; Singh, Satyendra Narayan

    2017-09-13

    Ho3+/Yb3+/Tm3+/Li+:Gd2(MoO4)3 nanophosphors successfully synthesized via solid state reaction method have been structurally and optically characterized. Under 980 nm diode laser excitation the nanophosphors emit intense blue, green, red and NIR emissions peaking at ~ 476 nm, ~ 543 nm, ~ 646 nm and ~ 798 nm corresponding to the 1G4→3H6 (Tm3+), 5F4, 5S2→5I8 (Ho3+), 5F5 →5I8 (Ho3+) and 3H4→3H6 (Tm3+) transitions respectively. The UC emission intensity enhancement in the Ho3+-Yb3+-Tm3+-Li+:Gd2(MoO4)3 nanophosphors for the green band is found to be ~ 367, ~ 50 and ~ 9 times compared to the singly Ho3+ doped, Ho3+-Yb3+ co-doped and Ho3+-Yb3+-Tm3+ tri-doped Gd2(MoO4)3 nanophosphors. The enhancement observed has been explained on the basis of energy transfer process and local field modifications around the rare earth ions. The energy transfer efficiency ~ 5% is determined in the tridoped nanophosphors. The interaction involved between rare earth ions for energy transfer process is found to be dipole-dipole type. On changing the Tm3+ ions concentration the colour emitted from the tridoped nanophosphors is tuned from near white to blue region. In the tridoped nanophosphors, on varying the pump power the colour tunability has been observed. © 2017 IOP Publishing Ltd.

  6. Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1−xCaxMg2Bi2 by band engineering and strain fluctuation

    PubMed Central

    Shuai, Jing; Geng, Huiyuan; Lan, Yucheng; Zhu, Zhuan; Wang, Chao; Liu, Zihang; Bao, Jiming; Chu, Ching-Wu; Sui, Jiehe; Ren, Zhifeng

    2016-01-01

    Complex Zintl phases, especially antimony (Sb)-based YbZn0.4Cd1.6Sb2 with figure-of-merit (ZT) of ∼1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic “electron–crystal, phonon–glass” nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg2Bi2 with a record thermoelectric performance. Phase-pure EuMg2Bi2 is successfully prepared with suppressed bipolar effect to reach ZT ∼ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ∼1.3 for Eu0.2Yb0.2Ca0.6Mg2Bi2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye–Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg2Bi2 is better than the Sb-based Zintl phases. PMID:27385824

  7. Triple-layered perovskite niobates CaRNb3O10 (R = La, Sm, Eu, Gd, Dy, Er, Yb, or Y): new self-activated oxides.

    PubMed

    Qin, Lin; Wei, Donglei; Huang, Yanlin; Kim, Sun Il; Yu, Young Moon; Seo, Hyo Jin

    2013-09-16

    Niobates CaRNb3O10 (R = La, Sm, Eu, Gd, Dy, Er, Yb, or Y) were prepared by conventional high-temperature solid-state reaction. The formation of a single-phase compound with triple-layered perovskite-type structure was verified through X-ray diffraction (XRD) studies. The luminescence characteristics such as photoluminescence excitation and emission spectra, X-ray-excited luminescence (XEL), Stokes shift, decay curves, and color coordinates were investigated. The niobates can be efficiently excited by UV light and present luminescence behaviors with rich luminescence colors. Under excitation by ultraviolet radiation, CaRNb3O10 (R = La, Gd, Yb, or Y) exhibits strong blue luminescence due to the self-activation center of the octahedral NbO6 groups, even at room temperature. For the materials of composition CaRNb3O10 (R = Sm, Eu, Dy, or Er), the excitation at the host band produces a characteristic luminescence of rare earth ions, indicating a host-guest energy transfer process. CaRNb3O10 (R = Eu) has the strongest luminescence intensity, which can be efficiently excitated by near UV wavelength. It could be suggested to be a potential candidate for the application on near-UV excited white LEDs.

  8. Preparation of Gd2O2S: Yb3+, Er3+, Tm3+ sub-micro phosphors by sulfurization of the oxides derived from sol-gel method and the upconversion luminescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Nengli; Liu, Zuojie; Tong, Huanzhe; Zhang, Xiyan; Bai, Zhaohui

    2017-07-01

    Yb3+, Er3+ and Tm3+ co-doped Gd2O2S sub-micro phosphors were synthesized by solid-state sulfurization of the oxide powders derived from sol-gel method. The crystal structure, morphology and upconversion luminescence properties of the phosphors were characterized by x-ray diffraction, scanning electron microscopic and fluorescence spectrum analysis methods. The phosphors exhibited typical hexagonal Gd2O2S phase when sulfurized at 800 °C for 2 h. Under the excitation of 980 nm laser diode, the Gd2O2S: Yb3+, Er3+, Tm3+ phosphors displayed distinct blue, green and red upconversion emissions centered at 481, 546 and 669 nm, respectively. The Gd2O2S phosphors using acetic acid as a chelating agent in the sol-gel process had the optimal upconversion emission property. The upconversion mechanism analysis revealed that the two-photon absorption was mainly responsible for the green and red upconversion emission of Er3+ ions, and the three-photon absorption was responsible for the blue upconversion emission of Tm3+ ions in the Gd2O2S: Yb3+, Er3+, Tm3+ phosphors.

  9. A quantum chemistry investigation on the structure of lanthanide triflates Ln(OTf)3 where Ln = La, Ce, Nd, Eu, Gd, Er, Yb and Lu.

    PubMed

    Hannachi, Douniazed; Ouddai, Nadia; Chermette, Henry

    2010-04-21

    Density functional theory has been used to probe the electronic structure, coordination number, optical properties and the vibration spectra of monolanthanide trifluoromethane sulfonate Ln(OTf)(3) complexes where Ln = La, Ce, Nd, Eu, Gd, Er, Yb and Lu. The study reveals that the OTf group is bonded to Ln as a bidentate ligand. TDDFT calculations show that, for La(OTf)(3), MLTC and HOMO-LUMO transitions in the UV-vis are strongly bathochromically shifted compared to those of Lu(OTf)(3.).

  10. Cross-section measurement of the 169 Tm p,n reaction for the production of the therapeutic radionuclide 169 Yb and comparison with its reactor-based generation.

    PubMed

    Spahn, I; Takács, S; Shubin, Yu N; Tárkányi, F; Coenen, H H; Qaim, S M

    2005-08-01

    The radionuclide (169)Yb (T(1/2)=32.0 d) is potentially important for internal radiotherapy. It is generally produced using a nuclear reactor. In this work the possibility of its production at a cyclotron was investigated. A detailed determination of the excitation function of the (169)Tm(p,n)(169)Yb reaction was done over the proton energy range up to 45 MeV using the stacked-foil technique and high-resolution gamma-ray spectrometry. The integral yield of (169)Yb was calculated. Over the optimum energy range E(P)=16-->7 MeV the yield amounts to 1.5 MBq/micro Ah and is thus rather low. A comparison of this production route with the established (168)Yb(n,gamma)(169)Yb reaction at a nuclear reactor is given. The (169)Yb yield via the reactor route is by several orders of magnitude higher than by the cyclotron method. The latter procedure, however, leads to "no-carrier-added" product.

  11. Multi-modal luminescence properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors—upconversion, downshifting and quantum cutting for spectral conversion

    NASA Astrophysics Data System (ADS)

    Dwivedi, A.; Mishra, Kavita; Rai, S. B.

    2015-11-01

    This work investigates the promising multi-modal luminescence (upconversion (UC), downshifting (DS) and quantum cutting (QC)) properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors synthesized using the well-known solid state reaction method. Structural characterization using x-ray diffraction measurements confirms the formation of the pure phase of the GdNbO4 host with no impurities. The optical band gap (E g) of GdNbO4 (with and without RE3+ ions) calculated from UV-Vis-near-infrared (NIR) measurements was found to be the same ~4.44 eV which indicates that GdNbO4 is a wide band gap material. Further, Bi3+ doping presents an interesting E g tuning of the GdNbO4 phosphor, i.e. E g increases up to 5.38 eV. In terms of luminescence, this material produces intense blue and NIR emission via multi-modal optical processes. On NIR excitation (λ exc  =  980 nm), Gd0.94Tm0.01Yb0.05NbO4 produces intense upconverted blue and NIR and relatively weak red emission. In addition to the UC process, Gd0.94Tm0.01Yb0.05NbO4 also exhibits pump power dependent variation in fluorescence intensity ratio for I 472/I 477 showing the applicability of this material as an optical heater. On UV excitation (λ exc  =  265 nm), Gd0.99Tm0.01NbO4 produces intense DS blue emission due to the Tm3+ ion, overlapped with the emission of the (NbO4)3- ion through strong energy transfer (ET) from (NbO4)3- to Tm3+ ions. Interestingly, NIR QC has also been successfully observed in Gd0.9Yb0.1NbO4, Gd0.89Bi0.01Yb0.1NbO4 and Gd0.79Tm0.01Yb0.2NbO4 phosphors through cooperative ET from the (NbO4)3- group to the Yb3+ ion, Bi(6s)-Nb(4d) to the Yb3+ ion and the Tm3+ ion to the Yb3+ ion, respectively. The mechanisms involved in these processes are explained in detail in this work. The QC efficiency in this work has been found to be ~177%. Thus, the multi-modal luminescence (UC, DS and QC) property of this material makes it a promising candidate for display devices, spectral

  12. EPR, magnetization, and resistivity studies in doped (4-f or 3-d ions) and undoped RBa2Cu3Oy high TC superconductors (R=Y,Pr,Nd,Eu,Gd,Ho,Er, or Yb) (abstract)

    NASA Astrophysics Data System (ADS)

    Vier, D. C.; Smyth, J. F.; Salling, C. T.; Schultz, S.; Dalichaouch, Y.; Lee, B. W.; Yang, K. N.; Torikachvili, M.; Maple, M. B.; Oseroff, S. B.; Fisk, Z.; Thompson, J. D.; Smith, J. L.; Zirngiebl, E.

    1988-04-01

    We have measured electron paramagnetic resonance (EPR), resistivity, and dc susceptibility from 2 to 300 K for the oxide high Tc superconductors (R)Ba2Cu3Oy (R=Y,Pr,Nd,Eu,Gd,Ho,Er,Tm, or Yb). Selected systems were doped with 3-d ions (Cr,Mn,Fe,Ni,Co, or Zn) or 4-f ions (Gd or Er) which presumably substitute for the Cu or R site, respectively. In the systems studied we have observed an EPR line at low temperatures (T<40 K), which exhibits an increase in intensity and decrease in field for resonance as the temperature is lowered. The ESR linewidth is also temperature dependent and exhibits a minimum at about 15 K. An additional EPR line that can be associated with a Gd3+, Mn2+ or Er3+ ion was observed for those samples where these ions were present as dilute impurities. In some of the samples another EPR signal is observed with properties that depend on sample preparation conditions. The behavior and origin of all lines will be discussed. The variation of Tc with concentration of the added impurities over the range (1%-15%) will also be presented, and compared with previous studies in other superconducting systems.

  13. Luminescence and Electroluminescence of Nd, Tm and Yb Doped GaAs and some II-Vi Compounds

    DTIC Science & Technology

    1994-02-28

    isoelectronic trap. We have evidence that II-VI semiconductors, ZnTe doped with oxygen -electron the other RE ions in IlI-V semiconductors can occupy traps...act as donors exciton. or acceptors. The important roles of oxygen on RE It has been well established that the "simple" isoelect- luminescence have...agreement with experimnt, over a wide rang of genration rates. T electric field InP:.Yb photoun~escence quenching was investigated and reported for the

  14. Tm3+, Yb3+ activated ANbO4 (A  =  Y, Gd, La) phosphors: a comparative study of optical properties (downshifting and upconversion emission) and laser induced heating effect

    NASA Astrophysics Data System (ADS)

    Dwivedi, Abhishek; Mishra, Kavita; Rai, S. B.

    2017-02-01

    A comparative study of optical properties and laser induced heating effects in Tm3+, Yb3+ doped YNbO4, GdNbO4 and LaNbO4 phosphors is presented in this work. The phosphors were structurally characterized by x-ray diffraction and scanning electron microscopy measurements. The vibrational structures of the phosphors were studied using FTIR measurements. The optical band gaps (E g), calculated from the Wood and Tauc plot, are found to be 3.78, 4.50 and 3.27 eV for YNbO4, GdNbO4 and LaNbO4, respectively. The luminescence property (downshifting (DS) and upconversion (UC)) was studied in the powder and the pellet forms of the phosphor samples. The DS emission of Tm3+ doped ANbO4 phosphors (λ ex  =  265 nm) consists of broad blue emission due to (NbO4)3- group overlapped with sharp peaks due to f-f transition of Tm3+ ion with most prominent emission one in the case of YNbO4 phosphor. The DS emission is comparatively more intense in the pellet form. The NIR excited UC emission spectra of Tm3+, Yb3+ co-doped ANbO4 phosphors contain intense blue and NIR emissions due to the Tm3+ ion. Contrary to the DS study, the best UC result is found for LaNbO4 phosphor in pellet form. Further, the laser induced heating effect in UC emission with respect to laser pump power and irradiation time has also been studied in Tm3+, and Yb3+ co-doped ANbO4 phosphors. It was found to be more effective in the case of the YNbO4 host where the heating effect is more prominent in the powder sample. We discuss the mechanisms involved in these observations in detail.

  15. Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm.

    PubMed

    Yang, Jun; Zhang, Cuimiao; Peng, Chong; Li, Chunxia; Wang, Lili; Chai, Ruitao; Lin, Jun

    2009-01-01

    Light fantastic! Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals with controllable red, green, blue (RGB) and bright white upconversion luminescence by a single laser excitation of 980 nm have been successfully synthesized (see picture). Due to abundant UC PL colors, it can potentially be used as fluorophores in the field of color displays, back light, UC lasers, photonics, and biomedicine.Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu(2)O(3):Yb(3+), Tm(3+) nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-->(3)H(6) transition of Tm(3+). The bright green UC emissions of Lu(2)O(3):Er(3+) nanocrystals appeared near 540 and 565 nm were observed and assigned to the (2)H(11/2)-->(4)I(15/2) and (4)S(3/2)-->(4)I(15/2) transitions, respectively, of Er(3+). The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb(3+) in Lu(2)O(3):Er(3+) nanocrystals. In sufficient quantities of Yb(3+) with resprct to Er(3+), the bright red UC emission of Lu(2)O(3):Yb(3+)/Er(3+) centered at 662 nm was predominant, due to the (4)F(9/2)-->(4)I(15/2) transition of Er(3+). Based on the generation of red, green, and blue emissions in the different doped Lu(2)O(3):RE(3+) nanocrystals, it is possible to produce the luminescence with a wide spectrum of colors, including white, by the appropriate doping of Yb(3+), Tm(3+), and Er(3+) in the present Lu(2)O(3) nanocrystals. Namely, Lu(2)O(3):3 %Yb(3+)/0.2 %Tm(3+)/0.4 %Er(3+) nanocrystals show suitable intensities of blue, green, and red (RGB) emission, resulting in the production of perfect and bright white light

  16. Sequential coating upconversion NaYF4:Yb,Tm nanocrystals with SiO2 and ZnO layers for NIR-driven photocatalytic and antibacterial applications.

    PubMed

    Tou, Meijie; Luo, Zhenguo; Bai, Song; Liu, Fangying; Chai, Qunxia; Li, Sheng; Li, Zhengquan

    2017-01-01

    ZnO is one of the most promising materials for both photocatalytic and antibacterial applications, but its wide bandgap requires the excitation of UV light which limits their applications under visible and NIR bands. Herein, we demonstrate a facile approach to synthesize core-shell-shell hybrid nanoparticles consisting of hexagonal NaYF4:Yb,Tm, amorphous SiO2 and wurtzite ZnO. The upconversion nanocrystals are used as the core seeds and sequentially coated with an insulting shell and a semiconductor layer. Such hybrid nanoparticles can efficiently utilize the NIR light through the upconverting process, and display notable photocatalytic performance and antibacterial activity under NIR irradiation. The developed NaYF4:Yb,Tm@SiO2@ZnO nanoparticles are characterized with TEM, XRD, EDS, XPS and PL spectra, and their working mechanism is also elucidated.

  17. Upconversion Nanophosphors Naluf4:Yb,Tm for Lymphatic Imaging In Vivo by Real-Time Upconversion Luminescence Imaging under Ambient Light and High-Resolution X-ray CT

    PubMed Central

    Sun, Yun; Peng, Juanjuan; Feng, Wei; Li, Fuyou

    2013-01-01

    Lanthanide upconversion nanophosphor (UCNP) has attracted increasing attention for potential applications in bioimaging due to its excellence in deep and high contrast imaging. To date, most upconversion imaging applications were demonstrated in dark surroundings without ambient light for higher signal-to-noise ratio, which hindered the application of optical imaging guided surgery. Herein, the new established NaLuF4-based UCNP (NaLuF4:Yb,Tm, ~17 nm) with bright upconversion emission around 800 nm as imaging signal was used to realize imaging under ambient light to provide more convenient for clinician. Moreover, due to the existance of heavy element lutetium (Lu) in the host lattice, the NaLuF4:Yb,Tm nanoparticles can also be used as an X-ray CT imaging agent to enhance the imaging depth and in vivo imaging resolution. PMID:23650481

  18. Upconversion nanophosphors Naluf₄:Yb,Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT.

    PubMed

    Sun, Yun; Peng, Juanjuan; Feng, Wei; Li, Fuyou

    2013-01-01

    Lanthanide upconversion nanophosphor (UCNP) has attracted increasing attention for potential applications in bioimaging due to its excellence in deep and high contrast imaging. To date, most upconversion imaging applications were demonstrated in dark surroundings without ambient light for higher signal-to-noise ratio, which hindered the application of optical imaging guided surgery. Herein, the new established NaLuF₄-based UCNP (NaLuF₄:Yb,Tm, ~17 nm) with bright upconversion emission around 800 nm as imaging signal was used to realize imaging under ambient light to provide more convenient for clinician. Moreover, due to the existance of heavy element lutetium (Lu) in the host lattice, the NaLuF₄:Yb,Tm nanoparticles can also be used as an X-ray CT imaging agent to enhance the imaging depth and in vivo imaging resolution.

  19. Enhancement of near-infrared to near-infrared upconversion emission in the CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opals.

    PubMed

    Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng

    2014-02-15

    In this Letter, CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opal with near-infrared to near-infrared upconversion emission was prepared by polystyrene colloidal crystal templates, and the influence of photonic bandgap on the upconversion emission was investigated. Comparing with the reference sample, suppression of the blue or red upconversion luminescence was observed in the inverse opals. It is interesting that the near-infrared upconversion emission located at about 803 nm was enhanced due to the inhibition of visible upconversion emission in the inverse opals. Additionally, the variety of upconversion emission mechanisms was observed and discussed in the CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opals.

  20. Energy transfer and colour tunability in UV light induced Tm(3+)/Tb(3+)/Eu(3+): ZnB glasses generating white light emission.

    PubMed

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm(3+)→Tb(3+)→Eu(3+)) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm(3+)/Tb(3+)/Eu(3+) ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(-II)]y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm(3+)/Tb(3+)/Eu(3+): ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: (1)D2→(3)F4), green (547nm: (5)D4→(7)F5) and red (616nm: (5)D0→(7)F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb(3+) in ET from Tm(3+)→Eu(3+) was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb(3+), Eu(3+)) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  1. Energy transfer and colour tunability in UV light induced Tm3 +/Tb3 +/Eu3 +: ZnB glasses generating white light emission

    NASA Astrophysics Data System (ADS)

    Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.

    2017-03-01

    A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  2. Lasing in a Tm:Ho:Yb{sub 3}Al{sub 5}O{sub 12} crystal pumped into the {sup 3}H{sub 6} – {sup 3}F{sub 4} transition

    SciTech Connect

    Zavartsev, Yu D; Zagumennyi, A I; Kalachev, Yu L; Kutovoi, S A; Mikhailov, V A; Shcherbakov, I A

    2016-03-31

    A growth technology has been developed, and a Tm:Ho:Yb{sub 3}Al{sub 5}O{sub 12} laser crystal of high optical quality has been grown by Czochralski method. Its spectral and luminescent characteristics are studied. Lasing at a wavelength of 2100 nm is obtained under pumping into the absorption line on the {sup 3}H{sub 6} – {sup 3}F{sub 4} transition of the Tm{sup 3+} ion at a wavelength of 1678 nm. The slope and total (optical) efficiencies of the laser at an output power of up to 320 mW reach 41% and 30%, respectively. (lasers)

  3. Near-infrared photocatalysts of BiVO4/CaF2:Er3+, Tm3+, Yb3+ with enhanced upconversion properties

    NASA Astrophysics Data System (ADS)

    Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Gu, Lin; Miao, Chen; Yuan, Haiping; Shan, Aidang

    2014-01-01

    Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO).Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO). Electronic supplementary information (ESI) available: Additional tables and figures. See

  4. Synchrotron X-Ray Topography Study of Structural Defects and Strain in Epitaxial Structures of Yb- and Tm-Doped Potassium Rare-Earth Double Tungstates and Their Influence on Laser Performance.

    SciTech Connect

    Raghothamachar, B.; Carvajal, J; Pujol, M; Mateos, X; Sole, R; Aguilo, M; Diaz, F; Dudley, M

    2010-01-01

    Monoclinic potassium rare-earth double tungstates [KRE(WO{sub 4}){sub 2}, RE = Y, Lu, Yb; KREW] are well suited as hosts for active lanthanide ion (Ln{sup 3+}) dopants for diode-pumped solid-state lasers, with particular interest in thin-disk laser configurations when they are grown as thin films. Using synchrotron white-beam x-ray topography, we have imaged defects and strain in top-seeded solution-grown (TSSG) bulk substrates of different rare-earth tungstates as well as within Yb{sup 3+}- and Tm{sup 3+}-doped epitaxies for thin-disk laser applications grown on these substrates by liquid-phase epitaxy. Higher structural stress in Yb:KYW/KYW epitaxies compared with Yb:KLuW/KLuW epitaxies is found to lower efficiency in laser operation. The quality of Tm:KLuW/KLuW epitaxial films is sensitive to doping level, film thickness, and growth rate. Inhomogeneous stresses within the layers are dominated by lattice-mismatch effects rather than by crystallographic anisotropy.

  5. Photoluminescence properties of BaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb, Tm) phosphors

    NASA Astrophysics Data System (ADS)

    Cho, Shinho

    2016-11-01

    Rare-earth (RE)-activated barium molybdate phosphors for multicolor display applications were synthesized with different activator ions via a solid-state reaction. The effects of the activator ions on the structural, morphological, and optical properties of barium molybdate phosphors were investigated. The XRD spectra of all the phosphors, regardless of the activator ion, exhibited that the main peak of the phosphors occurred at the (112) plane, indicating the tetragonal BaMoO4 structure. The crystalline particles exhibited a tendency to agglomerate with irregular shapes and sizes. The emission spectra of RE-ion-doped BaMoO4 phosphors under ultraviolet excitation consisted of multicolor emissions: blue for Tm3+ activator ions, green for Tb3+ activator ions, yellow for Dy3+ activator ions, reddish orange for Eu3+ activator ions, and red for Sm3+ activator ions. These results suggest that multicolor emission can be realized by incorporating appropriate activator ions into the BaMoO4 host lattice.

  6. Ultraviolet-driven white light generation from oxyfluoride glass co-doped with Tm{sup 3+}-Tb{sup 3+}-Eu{sup 3+}

    SciTech Connect

    Kuznetsov, A. S.; Nikitin, A.; Tikhomirov, V. K.; Shestakov, M. V.; Moshchalkov, V. V.

    2013-04-22

    Tm{sup 3+}-Tb{sup 3+}-Eu{sup 3+} co-doped oxyfluoride glasses, doped with about 3.0 mol. % TmF{sub 3}, 0.25 mol. % TbF{sub 3}, and 0.25 mol. % EuF{sub 3}, have been prepared by melt quenching technique. Under excitation at commercial 365 nm, the rare-earth co-dopants are all directly excited and emit in the blue, green, and red, respectively, without appreciable energy transfer amongst the co-dopants. Tint of the white luminescence can be adjusted by changing the ratio of the co-dopants. Properties of the glass host promote excellent dissolution of the co-dopants and low non-radiative decay rate. The white emission at 365 nm excitation is suitable for light emitting diodes applications.

  7. Structural and thermoelectric properties of BaRCo{sub 4}O{sub 7} (R = Dy, Ho, Er, Tm, Yb, and Lu)

    SciTech Connect

    Wong-Ng, W.; Yan, Y.; Liu, G.; Xie, W.; Tritt, T.; Kaduk, J.; Thomas, E.

    2011-12-01

    The structure and thermoelectric properties of a series of barium lanthanide cobaltites, BaRCo{sub 4}O{sub 7} (R = Dy, Ho, Er, Tm, Yb, and Lu), which were prepared using the spark plasma synthesis technique, have been investigated. The space group of these compounds was re-determined and confirmed to be P31c instead of the reported P6{sub 3}mc. The lattice parameters a and c range from 6.26279(2) Angst to 6.31181(6) Angst , and from 10.22468(6) Angst to 10.24446(15) Angst for R = Lu to Dy, respectively. The crystal structure of BaRCo{sub 4}O{sub 7} is built up from Kagome sheets of CoO{sub 4} tetrahedra, linked by triangular layers of CoO{sub 4} tetrahedra. The values of figure of merit (ZT) of the BaRCo{sub 4}O{sub 7} samples were determined to be around 0.02 at 800 K. X-ray diffraction patterns of these samples have been determined and submitted to the Powder Diffraction File.

  8. NIR to blue light upconversion in Tm{sup 3+}/Yb{sup 3+} codoped BaTiO{sub 3} tellurite glass

    SciTech Connect

    Kumari, Astha Rai, Vineet Kumar

    2015-05-15

    Upconversion is an interesting optical property, generally shown by rare-earth doped materials. This unusual optical behavior shown by these rare-earths doped materials are due to their peculiar atomic configuration and electronic transitions. Here, the Tm{sup 3+}-Yb{sup 3+} codoped BaTiO{sub 3} glass with TeO{sub 2} as former has been prepared by conventional melt and quench technique and the upconversion property has been investigated with the help of near infrared (NIR) to Visible UC study. The generation of the visible UC bands around ∼ 476 nm, ∼ 653 nm, ∼ 702 nm and one NIR UC band at ∼795 nm are assigned due to the {sup 1}G{sub 4}→ {sup 3}H{sub 6}, {sup 1}G{sub 4}→ {sup 3}F{sub 4}, {sup 3}F{sub 2}→ {sup 3}H{sub 6} and {sup 3}H{sub 4}→ {sup 3}H{sub 6} transitions respectively. The generations of these upconversion bands have been discussed in detail with the help of energy level diagram. The colour coordinates corresponding to the prepared material have been shown with the help of CIE chromaticity diagram. These glasses can be very appropriately used in the fabrication of solid state laser and as NIR to blue light upconverter.

  9. Utilization of visible to NIR light energy by Yb+3, Er+3 and Tm+3 doped BiVO4 for the photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Regmi, Chhabilal; Kshetri, Yuwaraj K.; Ray, Schindra Kumar; Pandey, Ramesh Prasad; Lee, Soo Wohn

    2017-01-01

    Lanthanide-doped BiVO4 semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO4 with 6:3:3 mol percentage of Yb+3:Er+3:Tm+3 in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  10. Measurement of Quantum Yield and Upconversion Brightness in Red, Blue and Green on NIR Excited M2O2S:Yb/Er/Ho/Tm Phosphors

    NASA Astrophysics Data System (ADS)

    Beeks, Ivan; Kumar, Ajith G.; Sardar, Dhiraj K.

    2015-03-01

    A series of broadly color tunable upconversion phosphors were synthesized from M2O2S (M=Y,Gd,La) using a flux fusion method. We investigate their upconversion properties as a function of the dopant concentrations and excitation power density. The phosphor compositions were determined for their upconversion characteristics under 800, 980 and 1550 nm excitations. By measuring the quantum yield and luminous brightness, we investigate their potential applications in biomedical imaging as well as NIR display applications. Results are compared with the well-known upconversion phosphor NaYF4:Yb/Er/Ho/Tm and found that the M2O2S phosphor systems are more efficient compared to NaYF4. By adopting various synthesis protocols, we were able to examine M2O2S in the size range of 10 nm to 10 μm. This research is supported by the National Science Foundation Partnerships for Research and Education in Materials (NSF-PREM) Grant N0-DMR-0934218.

  11. White light generation via up-conversion and blue tone in Er3+/Tm3+/Yb3+-doped zinc-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Rivera, V. A. G.; Ferri, F. A.; Nunes, L. A. O.; Marega, E.

    2017-05-01

    Yb3+, Er3+ and Tm3+ triply doped zinc-tellurite glass have been prepared containing up to 3.23 wt% of rare-earth ion oxides, were characterized by absorption spectroscopy, excitation, emission and up-conversion spectra. Transparent and homogeneous glasses have been produced, managing the red, green and blue emission bands, in order to generate white light considering the human eye perception. The energy transfer (resonant or non-resonant) between those rare-earth ions provides a color balancing mechanism that maintains the operating point in the white region, generating warm white light, cool white light and artificial daylight through the increase of the 976/980 nm diode laser excitation power from 4 to 470 mW. A light source at 4000 K is obtained under the excitation at 980 nm with 15 mW, providing a white light environment that is comfortable to the human eye vision. The spectroscopic study presented in this work describes the white light generation by the triply-doped zinc-tellurite glass, ranging from blue, green and red, by controlling the laser excitation power and wavelength at 976/980 nm. Such white tuning provokes healthy effects on human health throughout the day, especially the circadian system.

  12. The size confinement effect for Ln3+ (Ln = Tm or Eu) concentration quenching and energy transfer in Y2O3 nanocrystals.

    PubMed

    Wang, Changwen; Meng, Qingyu

    2014-05-01

    Y2O3:Ln (Ln = Tm or Eu) nano-powders with different particle sizes and various doping concentrations were prepared by using a combustion method. The bulk powders doped with the same concentrations were obtained by annealing the nano-powders at high temperatures. Emission spectra of the phosphors were measured. The crystal structure and morphology of the phosphors were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy), respectively. The concentration quenching of luminescent centers and energy transfer between luminescent centers in Y2O3:Ln nanocrystal powders were investigated. It is found that the behavior of luminescent concentration quenching for Eu3+ 5D0 --> 7F2 in nano-powders is similar to that in bulk powders. On the contrary, the quenching concentration for Tm3+ 1D2 --> 3H4 is distinctly higher than that in bulk powders. This owes to the size confinement effect which will restrain the electric dipole-dipole interaction as a long-rang interaction (e.g., energy transfer between Tm3+ ions), and will hardly affect the exchange interaction which is a short-rang interaction (e.g., energy transfer between Eu3+ ions).

  13. Photoluminescence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions

    NASA Astrophysics Data System (ADS)

    Arzumanyan, Grigory M.; Kuznetsov, Evgeny A.; Zhilin, Aleksandr A.; Dymshits, Olga S.; Shemchuk, Daria V.; Alekseeva, Irina P.; Mudryi, Alexandr V.; Zhivulko, Vadim D.; Borodavchenko, Olga M.

    2016-12-01

    Glasses of the K2Osbnd ZnOsbnd Al2O3sbnd SiO2 system co-doped with Eu2O3 and Yb2O3 were prepared by the melt-quenching technique. Transparent zincite (ZnO) glass-ceramics were obtained by secondary heat-treatments at 680-860 °C. At 860 °C, traces of Eu oxyapatite appeared in addition to ZnO nanocrystals. The average crystal size obtained from the X-ray diffraction data was found to range between 14 and 35 nm. Absorption spectra of the initial glasses are composed of an absorption edge and absorption bands due to electronic transitions of Eu3+ ions. With heat-treatment, the absorption edge pronouncedly shifts to the visible spectral range. The luminescence properties of the glass and glass-ceramics were studied by measuring their excitation and emission spectra at 300, 78, and 4.2 K. Strong red emission of Eu3+ ions dominated by the 5D0-7F2 (612 nm) electric dipole transition was detected. Changes in the luminescence properties of the Eu3+-related excitation and emission bands were observed after heat-treatments at 680 °C and 860 °C. The ZnO nanocrystals showed both broad luminescence (400-850 nm) and free-exciton emission near 3.3 eV at room temperature. The upconversion luminescence spectrum of the initial glass was obtained under excitation of the 976 nm laser source.

  14. Synthesis, Characterization, and Application of Core–Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents

    PubMed Central

    2015-01-01

    Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM–1 s–1 at 3T, a high affinity to [18F]-fluoride or radiometal-bisphosphonate conjugates (e.g., 64Cu and 99mTc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging. PMID:26172432

  15. Color-tunable up-conversion emission from Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped T-AgGd(W,Mo){sub 2}O{sub 8} phosphors

    SciTech Connect

    Zhang, Jijian; Liu, Ni; Xu, Ling Jiao, Huan

    2016-01-15

    Graphical abstract: The doping ions tune the UC luminescence of the T- AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} material. - Highlights: • AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} phosphors show color-tunable blue, green, and red UC emissions. • The samples’ UC emission color can be switched with the concentrations of doped ions. • The blue, green and red UC mechanisms are interpreted reasonably as three- and two- photon process. - Abstract: Tetragonal Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGd(W,Mo){sub 2}O{sub 8} phosphors were prepared by the high-temperature solid-state method. When the phosphors were excited at 980 nm, the UC emission of blue at 475 nm, green at 525 and 550 nm, and red at 656 nm were corresponding to the {sup 1}G{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} ions, the {sup 2}H{sub 11/2},{sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, and the {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transition of Er{sup 3+} ions, respectively. The blue UC emissions originate from a three-photon mechanism, while the green and red ones of Er{sup 3+} from two-photon process. The UC emission color of the Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGdW{sub 2}O{sub 8} samples switched from green to white, and then to red depending on the concentrations of Er{sup 3+} and Tm{sup 3+}. After doping with Mo(VI), tetragonal AgGdW{sub 2}O{sub 8} was transformed into tetragonal AgGdMo{sub 2}O{sub 8}, resulting in a slightly enhanced UC luminescence intensity with the favor of the red emission of Er{sup 3+} ion.

  16. Controlled synthesis and temperature-dependent spectra of NaYF4:Yb3+, Re3+@NaYF4@SiO2 (RE = Er, Tm) core-shell-shell nanophosphors

    NASA Astrophysics Data System (ADS)

    Bu, Y. Y.; Yan, X. H.

    2017-02-01

    The NaYF4 Yb3+, Re3+@NaYF4@SiO2 (RE = Er, Tm) core-shell-shell nanophosphors were synthesized by thermal decomposition of lanthanide trifluoroacetate precursors and subsequent hydrolysis coating process. Structures of resulting nanophosphors are studied by the X-ray diffraction and high-resolution transmission electron microscopy. Temperature-dependent photoluminescence spectra, thermal quenching ratios, fluorescence intensity ratios, and temperature sensitivity of resulting nanoparticles are studied in the temperature range from 298 to 623 K. The results suggest that the NaYF4:Yb3+, Er3+@NaYF4@SiO2 is a suitable candidate for making a low temperature sensor up to 450 K with a maximum sensitivity of 24 × 10-4 K-1, and the NaYF4:Yb3+, Tm3+@NaYF4@SiO2 is an excellent candidate for temperature sensors at high temperature. This work presents a new method to use the fluoride nanocrystals as the optical thermometry at high temperature.

  17. Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF 4 nano-crystals doped with Yb 3+, Ho 3+ and Tm 3+

    NASA Astrophysics Data System (ADS)

    Santana-Alonso, A.; Méndez-Ramos, J.; Yanes, A. C.; del-Castillo, J.; Rodríguez, V. D.

    2010-07-01

    NaYF 4 is an excellent host material for rare-earth ions presenting very high efficiencies in up-conversion processes. Thus, nano-glass-ceramics containing NaYF 4 nano-crystals emerge as promising candidates for general lighting appliances and integrated optical devices. Here we report highly transparent sol-gel derived nano-glass-ceramics comprising Yb 3+-Ho 3+ and Yb 3+-Ho 3+-Tm 3+ co-doped NaYF 4 nano-crystals. A structural analysis by means of X-ray diffraction measurements confirmed the formation of NaYF 4 nano-crystals during thermal treatment. Luminescence features have been related to the crystallinity degree of the samples. Violet, blue, green and red up-conversion emissions were obtained under infrared excitation at 980 nm and corresponding mechanisms involved have been analysed. Additionally, the total visible up-conversion emission has been quantified in terms of the standard chromaticity coordinates. In particular, an overall colour emission, very close to the standard equal energy white-light illumination point of the chromaticity diagram, was obtained in the Yb 3+-Ho 3+-Tm 3+ triply-doped samples.

  18. Rare-Earths Centers (Sm{sup 3+}, Eu{sup 3+}, Yb{sup 3+}) in MeF{sub 2}(Me = Ca, Sr, Ba, Cd) Crystals

    SciTech Connect

    Nikiforov, A. E.; Chernyshev, V. A.; Volodin, V. P.; Avram, N. M.; Avram, C. N.; Vaida, M.

    2010-08-04

    Rare-earth elements RE{sup 3+}(RE = Sm, Eu, Yb) form impurity centers in fluorite-like crystals MeF{sub 2}(Me = Ca, Sr, Ba, Cd). The crystal structure of cubic, trigonal and tetragonal centers in MeF{sub 2} has been investigated in the framework of shell model and pair potential approximation. The crystal field parameters were calculated with the exchange charges model, using the optimized geometry of the doped host matrix. With these parameters we have been calculated the optical spectra and spin-Hamiltonian (g-factors) of RE{sup 3+} in MeF{sub 2}, for some combination of R{sup 3+} and MeF{sup 2}. The obtained results were discussed and comparison with experimental data was made. A good agreement confirms the method and model of calculations.

  19. Structural and dielectric properties of Ba 2YbTaO 6, Ba 2YSbO 6 and Ba 2EuZrO 5.5

    NASA Astrophysics Data System (ADS)

    Konopka, Janusz; Jose, Rajan; Wołcyrz, Marek

    2006-03-01

    Structural and dielectric properties of Ba2YbTaO6, Ba2YSbO6 and Ba2EuZrO5.5 perovskites are presented. Because these materials were suggested as prospective buffer layers and substrates for HTS electronic devices such as SIS structures etc., their chemical stability with YBa2Cu3O7-δ (YBCO) and Bi2Sr2CanCun+1Ox (n = 1, 2; BiSCCO) was examined up to processing temperatures of listed superconductors. All three materials were found to be chemically stable with both YBCO and BiSCCO. Moreover, addition of ca. 20% of these perovskites to YBCO did not have any detrimental effect on the transition temperature. Dielectric properties of all a.m. materials were determined with high accuracy by measuring resonant frequencies of completely filled dielectric cavities at frequencies up to 40 GHz and at temperatures from 60 K to 350 K. The dielectric permittivities for particular materials are as follows: Ba2YbTaO6 → ε‧ = 29.4; Ba2EuZrO5.5 → ε‧ = 30.8; Ba2YSbO6 → ε‧ = 13.5. In microwave range all materials exhibit low or moderate losses. However, at temperatures where HTS materials enter into superconducting state (80-130 K), they exhibit some unusual features (a kind of a phase transition), which may either help or hamper their suggested applications in HTS electronics [J. Konopka, I. Wolff, S.J. Lewandowski, J. Appl. Phys. 72 (1992) 218].

  20. Up-conversion emission tuning in triply-doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate glass and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Ledemi, Yannick; Trudel, Andrée.-Anne; Rivera, Victor A. G.; Messaddeq, Younes

    2014-03-01

    New Yb3+, Er3+ and Tm3+ triply doped fluoro-phosphate glasses belonging to the system NaPO3-YF3-BaF2-CaF2 have been prepared by the classical melt-casting technique. Glasses containing up to 10 wt.% of rare-earth ions fluorides have been obtained and characterized by using differential scanning calorimetry (DSC), UV-visible-near-infrared spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and optically homogeneous glass-ceramics have been reproducibly obtained by appropriate heat treatment in view to manage the red, green and blue emissions upon 975 nm laser excitation. According to the applied thermal heat-treatment, a large enhancement of intensity of the up-conversion emission - from 10 to 160 times higher - has been achieved in the glassceramics compared to that of glasses, suggesting incorporation of the rare-earth ions into the crystalline phase. Furthermore, a large range of color rendering has been observed in these materials by controlling the laser excitation power and material crystallization rate. Time-resolved luminescence experiments as well as X-ray diffractometry and scanning electron microscopy techniques have been employed in order to understand and correlate the multicolor emission changes to the crystallization behavior of this material. A progressive phase transformation of the fluorite-type CaF2-based nanocrystals initially generated was observed along with increasing heat-treatment time, thus modifying the rare earth ions spectroscopic features.

  1. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    SciTech Connect

    Tai, Yuping; Zheng, Guojun; Wang, Hui; Bai, Jintao

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfer (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.

  2. Single-component and warm-white-emitting phosphor NaGd(WO4)2:Tm3+, Dy3+, Eu3+: synthesis, luminescence, energy transfer, and tunable color.

    PubMed

    Liu, Yan; Liu, Guixia; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2014-11-03

    Tm(3+), Dy(3+), and Eu(3+) codoped NaGd(WO4)2 phosphors were prepared by a facile hydrothermal process; they were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectrometer (EDS), photoluminescence spectra, and fluorescence lifetime. The results show that the novel octahedral microcrystals with a mean side length of 2 μm are obtained. Under the excitation of ultraviolet, individual RE(3+) ion (Tm(3+), Dy(3+), and Eu(3+)) activated NaGd(WO4)2 phosphors exhibit excellent emission properties in their respective regions. Moreover, when codoping Dy(3+) and Eu(3+)/Tm(3+) in the single component, the energy migration from Dy(3+) to Eu(3+) has been demonstrated to be a resonant type via a dipole-quadrupole mechanism as well as that from Tm(3+) to Dy(3+) ions, of which the critical distance (R(Dy-Eu)) is calculated to be 11.08 Å. More significantly, in the Tm(3+), Dy(3+), and Eu(3+) tridoped NaGd(WO4)2 phosphors, the energy migration of Tm(3+)-Dy(3+)-Eu(3+), utilized for sensitizing Eu(3+) ions besides compensating the red component at low Eu(3+) doping concentration, has been discussed first. In addition, under 365 nm near-ultraviolet radiation (nUV), the color-tunable emissions in octahedral NaGd(WO4)2 microcrystals are realized by giving abundant blue, green, white, yellow, and red emissions, especially warm white emission, and could be favorable candidates in full-color phosphors for nUV-LEDs.

  3. Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12- (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb).

    PubMed

    Cardona-Serra, S; Clemente-Juan, J M; Coronado, E; Gaita-Ariño, A; Camón, A; Evangelisti, M; Luis, F; Martínez-Pérez, M J; Sesé, J

    2012-09-12

    A robust, stable and processable family of mononuclear lanthanoid complexes based on polyoxometalates (POMs) that exhibit single-molecule magnetic behavior is described here. Preyssler polyanions of general formula [LnP(5)W(30)O(110)](12-) (Ln(3+) = Tb, Dy, Ho, Er, Tm, and Yb) have been characterized with static and dynamic magnetic measurements and heat capacity experiments. For the Dy and Ho derivatives, slow relaxation of the magnetization has been found. A simple interpretation of these properties is achieved by using crystal field theory.

  4. Effects of Bi2O3 on Up-conversion Luminescence Properties of Tm3+/Yb3+-codoped Ga2O3-GeO2-Bi2O3-PbO Glass

    NASA Astrophysics Data System (ADS)

    Shi, D. M.; Zhao, Y. G.; Wang, X. F.; Liu, J.

    This paper reports on frequency up-conversion (UC) emission properties in Tm3+/Yb3+-codoped Ga2O3-GeO2-Bi2O3-PbO glass upon excitation of 980 nm laser diode. A close correlation is observed between the Bi2O3 substituted content for PbO and UC luminescence properties of Tm3+. It was found that the decreasing PbO and increasing Bi2O3 content improve the blue and red UC emission intensity. The maximum of UC emission intensity is obtained when substituted PbO content is at 35%. In addition, the dependence of the UC emission intensity upon the excitation power has been examined and the involved mechanisms have also been discussed.

  5. Photoluminescence properties of rare earths (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+}) activated NaInW{sub 2}O{sub 8} wolframite host lattice

    SciTech Connect

    Asiri Naidu, S.; Boudin, S.; Varadaraju, U.V.; Raveau, B.

    2012-01-15

    The photoluminescence (PL) studies on NaIn{sub 1-x}RE{sub x}W{sub 2}O{sub 8}, with RE=Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+} phases have shown that the relative contribution of the host lattice and of the intra-f-f emission of the activators to the PL varies with the nature of the rare earth cation. In the case of Dy{sup 3+} and Tm{sup 3+} activators, with yellow and blue emission, respectively, the energy transfer from host to the activator plays a major role. In contrast for Eu{sup 3+}, with intense red emission, the host absorption is less pronounced and the intra-f-f transitions of the Eu{sup 3+} ions play a major role, whereas for Tb{sup 3+} intra-f-f transitions are only observed, giving rise to green emission. - Graphical abstract: NaInW{sub 2}O{sub 8} double tungstate doped with Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}and Tm{sup 3+} shows characteristic emission of intense red for Eu{sup 3+}, yellow for Dy{sup 3+}, green for Tb{sup 3+} and blue for Tm{sup 3+}. Highlights: Black-Right-Pointing-Pointer Characteristic emissions of rare earths (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+}) are observed NaInW{sub 2}O{sub 8} wolframite. Black-Right-Pointing-Pointer Energy transfer from host to the activators (Eu{sup 3+} Dy{sup 3+} Tm{sup 3+} is observed. Black-Right-Pointing-Pointer PL properties of rare earth ions depend on minor structural variations in the host lattice.

  6. Electrochemical and spectroscopic investigation of Ln3+ (Ln = Sm, Eu, and Yb) solvation in bis(trifluoromethylsulfonyl)imide-based ionic liquids and coordination by N,N,N',N'-tetraoctyl-3-oxa-pentane diamide (TODGA) and chloride.

    PubMed

    Pan, Yunfeng; Hussey, Charles L

    2013-03-18

    The electrochemistry and electronic absorption spectroscopy of samarium, europium, and ytterbium were investigated in the 1-(1-butyl)trimethylammonium bis(trifluoromethylsulfonyl)imide (BuMe3NTf2N) and 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BuMePyroTf2N) ionic liquids and in these solvents containing the neutral tridentate ligand N,N,N',N'-tetraoctyl-3-oxo-pentane diamide (TODGA) and the anionic hard ligand chloride. Lanthanide ions were introduced into the ionic liquids by controlled potential oxidation of the respective metals to yield solutions containing Eu(2+), Sm(3+), and Yb(3+), and it was possible to cycle between Eu(2+) and Eu(3+) as well as Yb(3+) and Yb(2+) using controlled potential electrolysis. Electronic absorption spectroscopy suggested that the Ln(3+) species are weakly solvated by Tf2N(-) anions as [Ln(Tf2N)x]((x-3)-) in the neat ILs. The quasireversible Ln(3+/2+) couples of all three elements were readily accessible in these ILs, but Sm(2+) was only stable on the voltammetric time scale. Addition of TODGA to [Ln(Tf2N)x]((x-3)-) solutions produces 3:1 complexes with Eu(3+) and Sm(3+) but only a 2:1 complex with the smaller Yb(3+) ion. Depending on the temperature, addition of Cl(-) to solutions of [Ln(Tf2N)x]((x-3)-) induces precipitation of LnCl3(s) when the mole ratio mCl(-)/mLn(3+) ≈ 3. However, when mCl(-)/mLn(3+) > 3, these precipitates redissolve to form the octahedral chloride complexes, [LnCl6](3-).

  7. Hydrothermal synthesis and luminescence properties of hierarchical SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures

    SciTech Connect

    Peng, Jing; Hou, Suying; Liu, Xianchun; Feng, Jing; Yu, Xiaodan; Xing, Yan; Su, Zhongmin

    2012-02-15

    Graphical abstract: Uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microsphere assembled by numerous nanoplates have been successfully synthesized via a facile hydrothermal process in the presence of chelating reagent. Highlights: Black-Right-Pointing-Pointer Uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microsphere were obtained by a simple hydrothermal method. Black-Right-Pointing-Pointer The reaction time, chelating reagent and F source play important roles for the formation of hierarchical microspheres. Black-Right-Pointing-Pointer The luminescence properties of lanthanide ion-doped SrF{sub 2} hierarchical microstructures were discussed. -- Abstract: Highly uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microspheres assembled by 2D nanoplates have been successfully synthesized by a facile and friendly hydrothermal route. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The experimental results indicate that reaction time and chelating reagent play a key role in forming the hierarchical microspheres. The formation mechanism was proposed based on the evolution of this morphology as a function of hydrothermal time. The near-infrared luminescence of lanthanide ions (Er, Nd, and Yb) doped SrF{sub 2} microspheres were discussed in detail. In addition, the as-obtained SrF{sub 2}:Eu{sup 3+} sample exhibits orange-red emission centered at 590 nm under excitation at 393 nm, while the SrF{sub 2}:Tb{sup 3+} exhibits a strong green emission at 540 nm. The as-synthesized SrF{sub 2}:Ln{sup 3+} luminescent microspheres might find some potential applications in areas of photoluminescence, telecommunication and laser emission.

  8. The Pressure-Induced Structural Response of A2Hf2O7 (A=Y, Sm, Eu, Gd, Dy, Yb) Compounds from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2016-12-01

    A2B2O7 (A, B= cations) compounds have structures that make their properties conducive to many applications; for example they are a proposed waste-form for actinides generated in the nuclear fuel cycle. This interest in part is due to their structural responses to extreme environments of high P, T, or under intense irradiation. Depending on their cationic radius ratio, ra/rb, A2B2O7 compounds either crystallize as pyrochlore (ra/rb=1.46-1.7) or "defect fluorite" (ra/rb>1.46). The structure types are similar: they are derivatives of ideal fluorite with two cations and 1/8 missing anions. In pyrochlore, the cations and anion vacancy are ordered. In "defect fluorite"-structured oxides, the cations and anion vacancies are random. A2B2O7 compounds rarely amorphize in extreme environments. Rather, they disorder and undergo phase transitions; this resistance to amorphization contributes to the durability of this potential actinide waste-form. Under high-pressure, A2B2O7 compounds are known to disorder or form a cottunite-like phase. Their radius ratio affects their response to extreme environments; "defect fluorite" type compounds tend to disorder, and pyrochlore type compounds tend to form the cottunite-like phase. We have examined six A2Hf2O7 compounds (A=Y, Sm, Eu, Gd, Dy, Yb) in situ to 50 GPa. By keeping the B-site constant (Hf), we examined the effect of a changing radius ratio on the pressure-induced structural response of hafnates. We used symmetric DACs, ruby fluorescence, stainless steel gaskets, and methanol: ethanol (4:1 by volume) pressure medium. We characterized these materials with in situ Raman spectroscopy at Stanford University, and synchrotron X-Ray Diffraction (XRD) at APS 16 BM-D and ALS 12.2.2. The compounds were pyrochlore structured (Sm, Eu, Gd) and "defect-fluorite" structured (Y, Dy, Yb) hafnates . These compounds undergo a slow phase transition to a high-pressure cotunnite-like phase between 18-30 GPa. They undergo disordering of their cation

  9. EPR study of the ground state of Mn2+ impurity ions in alumoborates MAl3(BO3)4 (M = Y, Eu, Tm)

    NASA Astrophysics Data System (ADS)

    Prokhorov, А А; Prokhorov, A. D.; Chernush, L. F.; Dyakonov, V. P.; Szymczak, H.; Dejneka, A.

    2015-06-01

    New data about the ground state of the Mn2+ impurity ions in a series of single crystals of alumbrados MAl3(BO3)4, where M = Y,Eu,Tm were obtained. The electron paramagnetic resonance (EPR) spectra of the Mn2+ spectra were studied, the parameters of the spin Hamiltonian describing the angular dependence of the spectrum were defined. It was shown that Mn2+ ions substitute trivalent ions of rare earth metals without changing the symmetry of the substitution site. The charge compensation process was found to be a nonlocal one. The cooling of the crystals leads to the increase of the splitting of the ground state, which is associated with the anisotropy of the thermal expansion coefficient. It was shown that an application of the superposition model to explain the distortions induced by an impurity Mn2+ ion has some limitations. The EPR linewidth of the Mn2+ ion in the TmAl3(BO3)4 crystal increases with increasing temperature as a result of the dipole-dipole and exchange interactions with the excited states of the host lattice Tm3+ ion.

  10. NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}, Er{sup 3+}/Yb{sup 3+}) microspheres: the synthesis and optical properties

    SciTech Connect

    Gao, Zhiyi; Wang, Zhiying; Fu, Linlin; Yang, Xingxing; Fu, Zuoling; Wu, Zhijian; Jeong, Jung Hyun

    2015-10-15

    The strong green upconversion (UC) emission were observed in various Er{sup 3+}, Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} samples synthesized via a hydrothermal route. The UC intensity depends on the dopant concentration, and the optimal UC emission was obtained in NaLa(MoO{sub 4}){sub 2}: 0.02Er{sup 3+}/0.10 Yb{sup 3+}. - Highlights: • The NaLa(MoO{sub 4}){sub 2} microspheres doped with Eu{sup 3+}, Sm{sup 3+} and Er{sup 3+}/Yb{sup 3+} were synthesized by a hydrothermal method. • The effects of the EDTA in the initial solution crystal phase and morphology were studied. • The down-conversion luminescence properties of NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}) were investigated. • The UC luminescence properties and mechanism of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} was discussed. - Abstract: NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}) microspheres have been synthesized at 180 °C via a facile EDTA-mediated hydrothermal route. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectra were employed to characterize the samples. It was found that the amount of EDTA in the initial solution was responsible for crystal phase and shape determination. The effect of Eu{sup 3+} and Sm{sup 3+} doping concentrations on the luminescent intensity was also investigated in details. Furthermore, the up-conversion (UC) emissions have been observed in a series of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} samples. Concentration dependent studies revealed that the optimal composition was realized for a 2% Er{sup 3+} and 10% Yb{sup 3+}-doping concentration.

  11. Self-assembled Ln(III)4 (Ln = Eu, Gd, Dy, Ho, Yb) [2 × 2] square grids: a new class of lanthanide cluster.

    PubMed

    Randell, Nicholas M; Anwar, Muhammad U; Drover, Marcus W; Dawe, Louise N; Thompson, Laurence K

    2013-06-03

    Self-assembly of the Ln(III) ions (Ln = Eu, Gd, Dy, Ho, Yb) into square [2 × 2] grid-like arrays has been readily effected using simple, symmetric ditopic ligands based on a carbohydrazone core. The metal ions are connected via single atom bridges (e.g., μ2-O(hydrazone), μ2-OH, μ2-OMe, μ2-1,1-N3(-), μ4-O), depending on reaction conditions. The Gd(III)4 examples exhibit intramolecular antiferromagnetic exchange (-J < 0.11 cm(-1)), and in one Dy(III)4 example, with a combination of μ2-1,1-N3(-), and μ4-O bridges linking adjacent metal ions, SMM behavior is observed. One thermally driven relaxation process is observed in the temperature range 10-25 K (τ0 = 6.5(1) × 10(-7) s, U(eff) = 110(1) K) in the presence of an 1800 Oe external field, employed to suppress a second quantum based relaxation process. The extended group of Ln(III) ions which submit to this controlled self-assembly, typical of the transition metal ions, indicates the general applicability of this approach to the lanthanides. This occurs despite the anticipated limitations based on larger ionic radii and coordination numbers, and is an encouraging sign for extension to larger grids with appropriately chosen polytopic ligands.

  12. Observation of superconductivity at 30∼46K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu)

    PubMed Central

    Ying, T. P.; Chen, X. L.; Wang, G.; Jin, S. F.; Zhou, T. T.; Lai, X. F.; Zhang, H.; Wang, W. Y.

    2012-01-01

    New iron selenide superconductors by intercalating smaller-sized alkali metals (Li, Na) and alkaline earths using high-temperature routes have been pursued ever since the discovery of superconductivity at about 30 K in KFe2Se2, but all have failed so far. Here we demonstrate that a series of superconductors with enhanced Tc = 30∼46 K can be obtained by intercalating metals, Li, Na, Ba, Sr, Ca, Yb, and Eu in between FeSe layers by the ammonothermal method at room temperature. Analysis on their powder X-ray diffraction patterns reveals that all the main phases can be indexed based on body-centered tetragonal lattices with a∼3.755–3.831 Å while c∼15.99–20.54 Å. Resistivities show the corresponding sharp transitions at 45 K and 39 K for NaFe2Se2 and Ba0.8Fe2Se2, respectively, confirming their bulk superconductivity. These findings provide a new starting point for studying the properties of these superconductors and an effective synthetic route for the exploration of new superconductors as well. PMID:22645642

  13. Observation of superconductivity at 30~46 K in A(x)Fe₂Se₂(A = Li, Na, Ba, Sr, Ca, Yb, and Eu).

    PubMed

    Ying, T P; Chen, X L; Wang, G; Jin, S F; Zhou, T T; Lai, X F; Zhang, H; Wang, W Y

    2012-01-01

    New iron selenide superconductors by intercalating smaller-sized alkali metals (Li, Na) and alkaline earths using high-temperature routes have been pursued ever since the discovery of superconductivity at about 30 K in KFe₂Se₂, but all have failed so far. Here we demonstrate that a series of superconductors with enhanced T(c) = 30∼46 K can be obtained by intercalating metals, Li, Na, Ba, Sr, Ca, Yb, and Eu in between FeSe layers by the ammonothermal method at room temperature. Analysis on their powder X-ray diffraction patterns reveals that all the main phases can be indexed based on body-centered tetragonal lattices with a∼3.755-3.831 Å while c∼15.99-20.54 Å. Resistivities show the corresponding sharp transitions at 45 K and 39 K for NaFe₂Se₂ and Ba₀.₈Fe₂Se₂, respectively, confirming their bulk superconductivity. These findings provide a new starting point for studying the properties of these superconductors and an effective synthetic route for the exploration of new superconductors as well.

  14. No pyroanions: The representatives of the lanthanoid(III) fluoride oxidodimolybdates(VI) LnFMo2O7 with the Smaller Cations (Ln = Eu - Yb)

    NASA Astrophysics Data System (ADS)

    Müller, Sabine L.; Blaschkowski, Björn; Hartenbach, Ingo

    2017-07-01

    The representatives of lanthanoid(III) fluoride oxidodimolybdates(VI) with the formula LnFMo2O7 (Ln = Eu - Yb) occur during reactions of Ln2O3 and LnF3 with MoO3 in 1: 1: 6 molar ratio after 6 days in evacuated silica ampoules at 850 °C. The title compounds crystallize monoclinically in space group P2/c (a = 421 - 436, b = 651 - 667, c = 1133 - 1140 pm and β = 90.4 - 90.6°, Z =2). The crystal structures contain crystallographically unique Ln3+ cations, which are surrounded by two F- and five O2- anions each, forming distorted pentagonal bypramids with the F- anions as apical vertices by which these bipyramids are fused together to strands according to ∞ 1LnF2/2vO5/1t]8- running parallel to the a axis. The Mo6+ cations show a distorted square-pyramidal coordination environment of five O2- anions. These pyramids are interconnected by common edges and vertices to form chains with the formula <∞1[ MoO2/2eO1/2vO2/1t ]- which are arranged parallel to [001]. Besides the crystal structure determination single crystal Raman spectroscopy was performed and the magnetic behavior of HoFMo2O7 was determined.

  15. Syntheses, structures, and sensitized lanthanide luminescence by Pt --> Ln (Ln = Eu, Nd, Yb) energy transfer for heteronuclear PtLn2 and Pt2Ln4 complexes with a terpyridyl-functionalized alkynyl ligand.

    PubMed

    Li, Xiu-Ling; Shi, Lin-Xi; Zhang, Li-Yi; Wen, Hui-Min; Chen, Zhong-Ning

    2007-12-10

    Reaction of Pt(dppm-P,P')Cl2 (dppm = 1,2-bis(diphenylphosphino)methane) with HCCPhtpy (HCCPhtpy = 4'-(4-ethynylphenyl)-2,2':6',2"-terpyridine) in the presence of copper(I) iodide and diisopropylamine induced isolation of mononuclear complex cis-Pt(dppm-P,P')(C[triple bond]CPhtpy)2 (1), which can be converted into face-to-face diplatinum(II) species Pt2(mu-dppm)2(C[triple bond]CPhtpy)4 (5) when equivalent dppm is added. Incorporating 1 or 5 to Ln(hfac)3(H2O)2 (Hhfac = hexafluoroacetylacetone) gave PtLn2 (Ln = Nd (2), Eu (3), Yb (4)) or Pt2Ln4 (Ln = Nd (6), Eu (7), Gd (8), Yb (9)) adducts with the lanthanide centers chelated by terdentate terpyridyl in the bridging C[triple bond]CPhtpy. The structures of 1, 6, 7, and 9 were determined by X-ray crystallography. Upon excitation at lambdaex = 360-450 nm (2-4) or 360-500 nm (6-9), where the PtII alkynyl antenna chromophores absorb strongly but the model complexes Ln(hfac)3(HC[triple bond]CPhtpy) lack obvious absorption in this region, these PtLn2 and Pt2Ln4 (Ln = Nd, Eu, Yb) species exhibit band-like lanthanide luminescence that is typical of the corresponding Ln3+ ions, demonstrating unambiguously that efficient Pt --> Ln energy transfer occurs indeed from the PtII alkynyl antenna chromophores to the lanthanide centers across the bridging CCPhtpy with intramolecular Pt...Ln distances being ca. 14.2 A. The Pt --> Ln energy transfer rate (kET) is 6.07 x 10(7) s(-1) for Pt2Nd4 (6) and 2.12 x 10(5) s(-1) for Pt2Yb4 (9) species.

  16. Crystal structures of RPt{sub 3-x}Si{sub 1-y}(R=Y, Tb, Dy, Ho, Er, Tm, Yb) studied by single crystal X-ray diffraction

    SciTech Connect

    Gribanov, Alexander; Grytsiv, Andriy; Rogl, Peter; Seropegin, Yurii; Giester, Gerald

    2009-07-15

    The crystal structures of ternary compounds RPt{sub 3-x}Si{sub 1-y}(R=Y, Tb, Dy, Ho, Er, Tm, Yb) have been elucidated from X-ray single crystal CCD data. All compounds are isotypic and crystallize in the tetragonal space group P4/mbm. The general formula RPt{sub 3-x}Si{sub 1-y} arises from defects: x{approx}0.20, y{approx}0.14. The crystal structure of RPt{sub 3-x}Si{sub 1-y} can be considered as a packing of four types of building blocks which derive from the CePt{sub 3}B-type unit cell by various degrees of distortion and Pt, Si-defects. - Graphical Abstract: Electron density in RPt{sub 3-x}Si{sub 1-y} at 0, 1/2 , 0.

  17. New high pressure rare earth tantalates RE{sub x}Ta{sub 2}O{sub 5+1.5x} (RE=La, Eu, Yb)

    SciTech Connect

    Zibrov, Igor P.; Filonenko, Vladimir P.; Zakharov, Nikolai D.; Nikishina, Elena E.; Lebedeva, Elena N.

    2013-07-15

    Rare earth tantalates La{sub 0.075}Ta{sub 2}O{sub 5.113}, Eu{sub 0.089}Ta{sub 2}O{sub 5.134} and Yb{sub 0.051}Ta{sub 2}O{sub 5.077} have been prepared by solid state reaction at P=7.0 GPa and T=1050–1100 °C and studied by X-ray diffraction, thermal analysis and electron microscopy. Low hydrated amorphous tantalum, lanthanum, europium and ytterbium hydroxides were used as starting materials. Aqueous as well as anhydrous compounds were obtained. Title tantalates are crystallized in the structure type of F–Ta{sub 2}O{sub 5} [Zibrov et al. Russ. J. Inorg. Chem. 48 (2003) 464–471] [5]. The structure was refined by the Rietveld method from X-ray powder diffractometer data: La{sub 0.075}Ta{sub 2}O{sub 5.113}, a=10.5099(2), b=7.2679(1), c=6.9765(1) Å, V=532.90(1) Å{sup 3}, Z=6, space group Ibam; Eu{sub 0.089}Ta{sub 2}O{sub 5.134}, a=10.4182(3), b=7.2685(1), c=6.9832(1) Å, V=528.80(2) Å{sup 3}, Z=6, space group Ibam; Yb{sub 0.051}Ta{sub 2}O{sub 5.077}, a=10.4557(2), b=7.3853(1), c=6.8923(1) Å, V=532.21(1) Å{sup 3}, Z=6, space group Ibam. RE atoms do not replace the tantalum in its positions but the only water in the channels of the structure. Highly charged cations RE{sup +3} compress the unit cell so that its volume becomes less than that of F–Ta{sub 2}O{sub 5}. Significant decrease of the unit cell volume after water removal from the structure is possible due to the puckering of pentagonal bipyramid layers and change of the corrugation angle in the layer. - Graphical abstract: The structure of RE{sub x}Ta{sub 2}O{sub 5+1.5x} and its HRTEM image (“A” arrows show empty channel, “B” arrows show filled channel). - Highlights: • We synthesized new tantalates of RE under high pressure high temperature conditions. • RE atoms replace water molecules in the channels of the structure. • Aqueous as well as anhydrous tantalates were obtained. • Highly charged cations RE{sup +3} compress the unit cell decreasing RE–O distances.

  18. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers.

    PubMed

    Zeng, Leyong; Pan, Yuanwei; Tian, Ying; Wang, Xin; Ren, Wenzhi; Wang, Shouju; Lu, Guangming; Wu, Aiguo

    2015-07-01

    The combination therapy has exhibited important potential for the treatment of cancers, especially for drug-resistant cancers. In this report, bi-functional nanoprobes based on doxorubicin (DOX)-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers (FA-NPs-DOX) were synthesized for in vivo near infrared (NIR)-triggered inorganic photodynamic therapy (PDT) and enhanced chemotherapy to overcome the multidrug resistance (MDR) in breast cancers. Using the up-conversion luminescence (UCL) performance of NaYF4:Yb/Tm converting near-infrared (NIR) into ultraviolent (UV) lights, reactive oxygen species (ROS) were triggered from TiO2 inorganic photosensitizers for PDT under the irradiation of a 980 nm laser, by which the deep-penetration and low photo-damage could be reached. Moreover, nanocarrier delivery and folic acid (FA) targeting promoted the cellular uptake, and accelerated the release of DOX in drug-sensitive MCF-7 and resistant MCF-7/ADR cells. The toxicity assessment in vitro and in vivo revealed the good biocompatibility of the as-prepared FA-NPs-DOX nanocomposites. By the combination of enhanced chemotherapy and NIR-triggered inorganic PDT, the viability of MCF-7/ADR cells could decrease by 53.5%, and the inhibition rate of MCF-7/ADR tumors could increase up to 90.33%, compared with free DOX. Therefore, the MDR of breast cancers could be obviously overcome by enhanced chemotherapy and NIR-triggered inorganic PDT of FA-NPs-DOX nanocomposites under the excitation of a 980 nm laser.

  19. High-throughput and microwave investigation of rare earth phosphonatoethanesulfonates-Ln(O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}) (Ln=Ho, Er, Tm, Yb, Lu, Y)

    SciTech Connect

    Sonnauer, Andreas

    2008-11-15

    Following the strategy of using bifunctional phosphonic acids for the synthesis of new metal phosphonates, the flexible ligand 2-phosphonoethanesulfonic acid, H{sub 2}O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}H (H{sub 3}L), was used in a high-throughput (HT) and microwave investigation of rare earth phosphonatoethanesulfonates. The HT-investigation led to six isotypic compounds Ln(O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}) with Ln=Ho (1), Er (2), Tm (3), Yb (4), Lu (5) and Y (6). The syntheses were scaled-up in glass reactor tubes in order to obtain larger amounts for a detailed characterization. Based on these results all compounds could be also synthesized by microwave-assisted heating and the influence of reaction time and stirring rate during the synthesis was established. For compound 2 the crystal structure was determined by single-crystal X-ray diffraction. The compounds contain isolated slightly distorted LnO{sub 6} octahedra that are connected by the phosphonate and sulfonate groups into a three-dimensional framework. Thermogravimetric investigations demonstrate the high thermal stability of the compounds up to 460 deg. C. - Graphical abstract: A high-throughput and microwave investigation of the System LnX{sub 3}/H{sub 2}O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}/NaOH/H{sub 2}O led to six new compounds Ln(O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}) with Ln=Ho, Er, Tm, Yb, Lu, Y.

  20. Low-temperature superstructures of a series of Cd6M (M = Ca, Y, Sr, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) crystalline approximants.

    PubMed

    Nishimoto, Kazue; Sato, Takeru; Tamura, Ryuji

    2013-06-12

    The low-temperature (LT) superstructure and the phase transition temperature have been investigated for a series of Cd6M crystalline approximants by transmission electron microscopy as well as electrical resistivity measurements. Except for M = Lu, Cd6M is found to undergo a phase transition to a monoclinic phase at a low temperature and the transition temperature (Tc) scales well with the size of the M atom. For M = Ca, Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm the LT superstructure is explained by a √2a × a × √2a lattice with the space group C2/c, and for M = Sr and Yb a √2a × 2a × √2a monoclinic lattice with P2/m. On the other hand, no phase transition is observed for M = Lu, indicating that a Cd4 tetrahedron at the cluster center remains disordered down to the lowest temperature, i.e. 16 K. It is shown that the volume inside the Cd20 dodecahedron plays a crucial role in the occurrence of the phase transition, and long-term aging in particular promotes the phase transition for late rare-earth elements such as Ho, Er and Tm, suggesting that the transition is sensitive to and is even hindered by disorder such as atomic vacancies. The absence of the transition for M = Lu is attributed to the highest activation energy for the transition due to the smallest volume inside the Cd20 dodecahedron.

  1. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    PubMed

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  2. Temperature probing and emission color tuning by morphology and size control of upconverting β-NaYb0.67Gd0.30F4:Tm0.015:Ho0.015 nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodrigues, Emille M.; Gálico, Diogo A.; Mazali, Italo O.; Sigoli, Fernando A.

    2017-06-01

    The chemical composition, shape and size of upconverting nanoparticles are known to have a great influence on their spectroscopic properties, such as the emission color and the emission intensity variation as a function of temperature. This work shows the color tuning and the thermal sensitivity of NaYb0.67Gd0.30F4:Tm0.015:Ho0.015 nanoparticles synthesized by two different approaches of the same synthetic method showing the influence of size and morphology, 250 nm hexagonal-plated and 30 nm spheroidal nanoparticles, on the visible upconversion color under NIR irradiation. According to the 1931-CIE diagram, the hexagonal-shaped nanoparticles show white light emission and the spheroidal ones generate red light emission under 980 nm excitation. Besides, the variation of the luminescence intensity ratio of Tm3+ emissions as a function of temperature was monitored in the 77-293 K temperature range, and the maximum relative sensitivity (Sm) of the samples reached 1.33% K-1 for the hexagonal-plated nanoparticles and 1.76% K-1 for the spheroidal nanoparticles. These maximum sensitivity values are higher compared to the ones found in the literature for temperature sensing using upconverting nanoparticles. These data suggest the versatility of these nanoparticles for applications on white light emission and nanothermometry.

  3. NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin

    NASA Astrophysics Data System (ADS)

    Xu, Sai; Xu, Wen; Wang, Yunfeng; Zhang, Shuang; Zhu, Yongsheng; Tao, Li; Xia, Lei; Zhou, Pingwei; Song, Hongwei

    2014-05-01

    Upconversion luminescence (UCL) detection based on rare-earth doped upconversion nanocrystals (UCNCs) as probes has been proved to exhibit a large anti-Stokes shift, no autofluorescence from biological samples, and no photobleaching. However, it is still a challenge to achieve a stable, reproducible solid-based UCL biosensor because of ineffective UCL of the UCNCs. In this work, we fabricated TiO2 inverse opal photonic crystals (IOPCs)/NaYF4:Yb3+,Tm3+ (Er3+) UCNC composite films, which can tremendously improve the overall UCL of Tm3+ as high as 43-fold. Based on the fluorescence resonance energy transfer (FRET) and the specific interaction between biotin and avidin, a novel solid-based UC biosensor is presented for sensing avidin. This solid-based detection system is convenient for detection, and also can offer two parameters for detecting trace amounts of avidin, namely, the emission intensity and the fluorescence decay time. The sensor has a high sensitivity of 34 pmol-1, a good linear relationship of 0.996 and a low detection limit of 48 pmol. It also exhibits excellent long-time photostability, and the absence of autofluorescence, and thus may have great potential for versatile applications in biodetection.

  4. Ag{sub 2}O dependent up-conversion luminescence properties in Tm{sup 3+}/Er{sup 3+}/Yb{sup 3+} co-doped oxyfluorogermanate glasses

    SciTech Connect

    Hu, Yuebo; Qiu, Jianbei Song, Zhiguo; Zhou, Dacheng

    2014-02-28

    Up-conversion (UC) luminescence properties of Ag/Tm{sup 3+}/Er{sup 3+}/Yb{sup 3+} co-doped oxyfluorogermanate glasses have been studied to assess the effective role of silver nanoparticles as a sensitizer for Tm{sup 3+} and Er{sup 3+} ions. The X-ray diffraction patterns obtained in this work do not reveal any crystalline phase in the glass. However, the absorption spectra reveal that surface plasmons resonance band of Ag undergoes a distinct split with two maxima and a very broad absorption peak with a background that extends toward the near infrared (NIR) with the increasing of Ag{sub 2}O added concentration. Transmission electron microscope images confirm that silver nanoparticles have been precipitated from matrix glasses and show their distribution, size, and shapes. In addition, changes in UC luminescence intensity of four emission bands 476, 524, 546, and 658 nm corresponding to {sup 1}G{sub 4} → {sup 3}H{sub 6} (Tm{sup 3+}), ({sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}) → {sup 4}I{sub 15/2} (Er{sup 3+}), and {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} (Er{sup 3+}) transitions, respectively, as a function of silver addition to the base composition have been measured under 980 nm excitation. It is confirmed that Ag{sub 2}O added concentration plays an important role in increasing the UC luminescence intensity; however, further increase in Ag{sub 2}O added concentration reduces the intensity.

  5. Up/down conversion luminescence and charge compensation investigation of Ca0.5Y1-x(WO4)2:xLn3+ (Ln = Pr, Sm, Eu, Tb, Dy, Yb/Er) phosphors

    NASA Astrophysics Data System (ADS)

    Mahalingam, Venkatakrishnan; Thirumalai, Jagannathan; Krishnan, Rajagopalan; Mantha, Srinivas

    2016-01-01

    Microstructures of Ca0.5Y(1-x)(WO4)2:xLn3+ (Ln = Pr, Sm, Eu, Tb, Dy, Yb/Er) phosphors were prepared via the solid-state reaction method. X-ray diffraction, scanning electron microscopy and photoluminescence were used to characterize the prepared phosphor samples. The results reveal that the phosphor samples have single phase scheelite structures with tetragonal symmetry of I41/a. The down/up conversion photoluminescence of the Ca0.5Y(1-x)(WO4)2:xLn3+ (Ln = Pr, Sm, Eu, Tb, Dy, Yb/Er) phosphors properties reveal characteristic visible emissions. The energy transfer process, fluorescence lifetime and color coordinates are discussed in detail. Furthermore, the phosphor Ca0.5Y(1-x)(WO4)2:xPr3+ co-doped with alkali chlorides shows the enhancement of luminescence, which was found in the sodium chloride co-doped powder phosphor. The photometric characteristics indicate the suitability of the inorganic powder phosphors for solid-state lighting and display applications.

  6. Structural Study of a Doubly Ordered Perovskite Family NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb): Hybrid Improper Ferroelectricity in Nine New Members.

    PubMed

    Zuo, Peng; Colin, Claire V; Klein, Holger; Bordet, Pierre; Suard, Emmanuelle; Elkaim, Erik; Darie, Céline

    2017-07-17

    The compounds of the doubly ordered perovskite family NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) were synthesized by solid-state reaction, nine of which (Ln = Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) are new phases prepared under high-temperature and high-pressure conditions. Their structural properties were investigated at room temperature by synchrotron X-ray powder diffraction and neutron powder diffraction. All of them crystallize in monoclinic structures, especially the nine new compounds have the polar space group P21 symmetry, as confirmed by second harmonic generation measurements. The P21 polar structures were decomposed and refined in terms of symmetry modes, demonstrating that the polar mode is induced by two nonpolar modes in a manner of Hybrid Improper Ferroelectricity. The amplitudes of these three major modes all increase with decreasing the Ln cation size. The spontaneous ferroelectric polarization is estimated from the neutron diffraction data of three samples (Ln = Y, Tb, and Ho) and can be as large as ∼20 μC/cm(2).

  7. Synthetic and spectroscopic studies of vanadate glaserites II: Photoluminescence studies of Ln:K{sub 3}Y(VO{sub 4}){sub 2} (Ln=Eu, Er, Sm, Ho, or Tm)

    SciTech Connect

    Kimani, Martin M. McMillen, Colin D. Kolis, Joseph W.

    2015-03-15

    Glaserite-type potassium yttrium double vanadates (K{sub 3}Y(VO{sub 4}){sub 2}) doped with Eu{sup 3+}, Er{sup 3+}, Sm{sup 3+}, Ho{sup 3+}, or Tm{sup 3+} have been synthesized by solid state reactions at 1000 °C for 48 h and their photoluminescence properties investigated. Efficient energy transfer from the vanadate group to the rare earth ion has been established by photoluminescence investigation. Ultraviolet excitation into the metal to ligand charge transfer band of the vanadate groups results in orange-red, blue and green emissions from Eu{sup 3+} (592 nm), Sm{sup 3+} (602 nm), Tm{sup 3+} (475 nm), Er{sup 3+} (553 nm), and Ho{sup 3+} (541–551 nm) dopant ions. The emission intensities of the lanthanide-doped K{sub 3}Y(VO{sub 4}){sub 2} powders were studied as a function of dopant ion concentrations. Over the concentration ranges studied, no emission quenching was observed for Eu{sup 3+} or Ho{sup 3+} dopants, while Er{sup 3+}, Sm{sup 3+} and Tm{sup 3+} dopants did exhibit such effects for dopant ion concentrations greater than 5%, probably due to cross relaxation processes. - Graphical abstract: Synthesis and photoluminescence in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} doped with Eu, Er, Tm, Sm, or Ho were synthesized via solid-state reactions. • Photoluminescence properties are investigated. • The lanthanide doped K{sub 3}Y(VO{sub 4}){sub 2} compounds revealed efficient energy transfer from the vanadate group to the rare earth ions. • The presented compounds are promising materials for light display systems, lasers, and optoelectronic devices.

  8. Synthetic and spectroscopic studies of vanadate glaserites II: Photoluminescence studies of Ln:K3Y(VO4)2 (Ln=Eu, Er, Sm, Ho, or Tm)

    NASA Astrophysics Data System (ADS)

    Kimani, Martin M.; McMillen, Colin D.; Kolis, Joseph W.

    2015-03-01

    Glaserite-type potassium yttrium double vanadates (K3Y(VO4)2) doped with Eu3+, Er3+, Sm3+, Ho3+, or Tm3+ have been synthesized by solid state reactions at 1000 °C for 48 h and their photoluminescence properties investigated. Efficient energy transfer from the vanadate group to the rare earth ion has been established by photoluminescence investigation. Ultraviolet excitation into the metal to ligand charge transfer band of the vanadate groups results in orange-red, blue and green emissions from Eu3+ (592 nm), Sm3+ (602 nm), Tm3+ (475 nm), Er3+ (553 nm), and Ho3+ (541-551 nm) dopant ions. The emission intensities of the lanthanide-doped K3Y(VO4)2 powders were studied as a function of dopant ion concentrations. Over the concentration ranges studied, no emission quenching was observed for Eu3+ or Ho3+ dopants, while Er3+, Sm3+ and Tm3+ dopants did exhibit such effects for dopant ion concentrations greater than 5%, probably due to cross relaxation processes.

  9. Low-temperature superstructures of a series of Cd6M (M = Ca, Y, Sr, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) crystalline approximants

    NASA Astrophysics Data System (ADS)

    Nishimoto, Kazue; Sato, Takeru; Tamura, Ryuji

    2013-06-01

    The low-temperature (LT) superstructure and the phase transition temperature have been investigated for a series of Cd6M crystalline approximants by transmission electron microscopy as well as electrical resistivity measurements. Except for M = Lu, Cd6M is found to undergo a phase transition to a monoclinic phase at a low temperature and the transition temperature (Tc) scales well with the size of the M atom. For M = Ca, Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm the LT superstructure is explained by a \\sqrt{2}a\\times a\\times \\sqrt{2}a lattice with the space group C2/c, and for M = Sr and Yb a \\sqrt{2}a\\times 2 a\\times \\sqrt{2}a monoclinic lattice with P2/m. On the other hand, no phase transition is observed for M = Lu, indicating that a Cd4 tetrahedron at the cluster center remains disordered down to the lowest temperature, i.e. 16 K. It is shown that the volume inside the Cd20 dodecahedron plays a crucial role in the occurrence of the phase transition, and long-term aging in particular promotes the phase transition for late rare-earth elements such as Ho, Er and Tm, suggesting that the transition is sensitive to and is even hindered by disorder such as atomic vacancies. The absence of the transition for M = Lu is attributed to the highest activation energy for the transition due to the smallest volume inside the Cd20 dodecahedron.

  10. Enhanced dual contrast agent, Co(2+)-doped NaYF4:Yb(3+),Tm(3+) nanorods, for near infrared-to-near infrared upconversion luminescence and magnetic resonance imaging.

    PubMed

    Xia, Ao; Zhang, Xiaofeng; Zhang, Jun; Deng, Yunyun; Chen, Qiang; Wu, Shishan; Huang, Xiaohua; Shen, Jian

    2014-11-01

    Dual-modality imaging with magnetic resonance (MR) and upconversion luminescence (UCL) is a promising technique for molecular imaging in biomedical research. Multifunctional lanthanide-based nanoparticles have been widely investigated as agents for contrast enhanced MR and fluorescence imaging. However, the use of rare earth fluoride nanoparticles for dual-modality imaging of T2-weighted MR and UCL is rarely reported. We find that NaYF4:Yb(3+),Tm(3+),Co(2+) (MUC) nanorods can be applied as a high-performance dual contrast agent for both T2-weighted MR and UCL dual-modality imaging. After modification with 6-O-carboxymethyl chitosan (OCC), MUC nanorods can be endocytosed by cells without showing signs of cytotoxicity. High-quality UCL images of living cells incubated with MUC-OCC nanorods were acquired on a near-infrared (NIR) confocal microscopy under the excitation at 980 nm. Moreover, MUC-OCC nanorods display high transverse (r2) relaxivities in vitro. The application of low-dose MUC-OCC nanorods for NIR-to-NIR UCL and MR dual-modality in vivo imaging was also carried out successfully. In addition, the toxicity of MUC-OCC nanorods was evaluated by MTT assay, serological tests and histological analysis of visceral organs.

  11. Enhanced ultraviolet upconversion luminescence of Tm and Yb codoped ZrF4-BaF2-LaF3-AlF3-NaF glass.

    PubMed

    He, Chunfeng; Zhao, Dan; Qin, Guanshi; Zheng, Kezhi; Qin, Weiping

    2011-11-01

    Ultraviolet (UV) upconversion (UC) luminescence properties of Tm3+ ions sensitized by Yb3+ ions in ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass were studied in detail. Under the excitation from a 980 nm continuous wave (CW) diode laser, red, blue, and even UV emissions were observed in the fluorozirconate glass. Several fluorescence bands appeared in the UC emission spectrum from 292.8 nm to 805.8 nm. The UC emission peaks at 291 nm, 347 nm, 363 nm, 454 nm, 475 nm, 647 nm, 687 nm, and 804 nm correspond to the transitions of 1I6 --> 3H6, 1I6 --> 3F4, 1D2 --> 3H6, 1D2 --> 3F4, 1G4 --> 3H6, 1G4 --> 3F4, 3F3 --> 3H6, and 3H4 --> 3H6, respectively. Experimental results of intensity dependence of the up-converted fluorescence on the pump power indicate a five-photon excitation scheme of 1I6 energy level.

  12. Folic acid-conjugated LaF3:Yb,Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography.

    PubMed

    Ma, Jiebing; Huang, Peng; He, Meng; Pan, Liyuan; Zhou, Zhijun; Feng, Lili; Gao, Guo; Cui, Daxiang

    2012-12-06

    Development of multimodal contrast agents for in vivo simultaneous multimodality imaging is an emerging interdiscipline that is paving the avenue toward the goal of personalized medicine. Herein, folic acid-conjugated silica-modified LaF(3):Yb,Tm upconversion nanoparticles (UCNPs@SiO(2)-FA) with high La content in a single particle were strategically designed and prepared for simultaneously targeting dual-modality imaging of upconversion luminescence (UCL) and X-ray computed tomography (CT). LaF(3) UCNPs were synthesized by a novel oleic acid (OA)/ionic liquid (IL) two-phase system. Afterward, a folic acid molecule was covalently anchored on the surface of UCNPs with a silane coupling agent. The UCNPs@SiO(2)-FA exhibits good stability, water dispersibility and solubility, low cytotoxicity, good biocompatibility, highly selective targeting, excellent X-ray attenuation, and UCL emission under excitation at 980 nm. In vivo UCL and CT images of mice show the UCNPs@SiO(2)-FA can be used in targeting dual-modality imaging. These results suggest that the as-prepared nanoprobe is a good candidate with excellent imaging and targeting ability for targeting dual-modality imaging of UCL and CT.

  13. Large electric polarization in high pressure synthesized orthorhombic manganites RMnO3 (R=Ho,Tm,Yb and Lu) by using the double-wave PE loop measurements

    NASA Astrophysics Data System (ADS)

    Chai, Y. S.; Oh, Y. S.; Manivannan, N.; Yang, Y. S.; Kim, Kee Hoon; Feng, S. M.; Wang, L. J.; Jin, C. Q.

    2009-03-01

    The magnitude of electric polarization via the conventional pyroelectric current and/or PE loop measurements often is ambiguous due to resistive components of the sample. To avoid this, a new technique called the double-wave method has been recently developed [1], in which only hysteretic PE components can be measured. Using this technique, we have measured the ferroelectric polarization of the orthorhombic RMnO3 (R=Ho, Tm, Yb, and Lu) synthesized under high pressure. Large remnant polarization Pr up to 920 μC/m^2 is observed at 10 K for LuMnO3. Furthermore, the Pr vs. temperature data from the PE loop has shown consistency with that measured through the pyroelectric current measurements, supporting a theoretical prediction of large polarization in the E-type spin structure in this system [2]. We also discuss the influence of thermal histories on the ferroelectric domain dynamics and possible internal bias field effects originating from oxygen vacancies in RMnO3. [1] M. Fukunaga, et al. J. Phys. Soc. Jpn. 77, 064706 (2008). [2] I. A. Sergienko, et al. Phys. Rev. Lett., 97, 227204 (2006)

  14. Synthesis, Characterization, and Application in HeLa Cells of an NIR Light Responsive Doxorubicin Delivery System Based on NaYF4:Yb,Tm@SiO2-PEG Nanoparticles.

    PubMed

    Alonso-Cristobal, Paulino; Oton-Fernandez, Olalla; Mendez-Gonzalez, Diego; Díaz, J Fernando; Lopez-Cabarcos, Enrique; Barasoain, Isabel; Rubio-Retama, Jorge

    2015-07-15

    Herein, we present a phototriggered drug delivery system based on light responsive nanoparticles, which is able to release doxorubicin upon NIR light illumination. The proposed system is based on upconversion fluorescence nanoparticles of β-NaYF4:Yb,Tm@SiO2-PEG with a mean diameter of 52±2.5 nm that absorb the NIR light and emit UV light. The UV radiation causes the degradation of photodegradable ortho-nitrobenzyl alcohol derivates, which are attached on one side to the surface of the nanoparticles and on the other to doxorubicin. This degradation triggers the doxorubicin release. This drug delivery system has been tested "in vitro" with HeLa cells. The results of this study demonstrated that this system caused negligible cytotoxicity when they were not illuminated with NIR light. In contrast, under NIR light illumination, the HeLa cell viability was conspicuously reduced. These results demonstrated the suitability of the proposed system to control the release of doxorubicin via an external NIR light stimulus.

  15. Ag-LnBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (Ln = Y, Nd, Sm, Eu, and Yb) superconductor coatings on stainless steel

    SciTech Connect

    Yokogawa, Y.; Ansart, F.; Bressolles, J.C.; Roux, P.; Traverse, J.P.

    1997-07-01

    Ag-doped LnBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (Ln = Y, Nd, Sm, Eu, and Yb) films on two kinds of stainless steel substrate were prepared by the method of direct deposition and heat treatment. The critical temperatures of the samples were evaluated at 91--92 K, independent of silver content and thickness of the coating layer. The resistance of the samples decreased with silver addition. The SEM observation showed a border between the coating layer and the substrate. The elemental analysis by EPMA revealed that aluminum aggregated in the border. The diffusion of iron ions in the coating layer was hindered by the existence of the border and affected by the quantity of aluminum. The width of the border increased with increasing heat-treatment time, governed by the diffusion of metals from the metallic substrate to the coating layer. This fairly agreed with the results of impedance measurements.

  16. Novel light-conversion hybrids of SBA-16 functionalized with rare earth (Eu3+, Nd3+, Yb3+) complexes of modified 2-methyl-9-hydroxyphenalenone and 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Gu, Yan-Jing; Yan, Bing; Qiao, Xiao-Fei

    2013-03-01

    Novel rare earth complex-functionalized mesoporous SBA-16-type hybrid materials are synthesized by the co-condensation of modified 2-methyl-9-hydroxyphenalenone (MHPOSi), from modified 3-(triethoxysilyl)-propyl isocyanate (TEPIC), and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as a template. These inorganic-organic mesoporous hybrids are characterized by FT-IR spectra, small-angle X-ray diffraction (SAXRD), N2 adsorption-desorption measurements, thermal analysis and spectroscopy. Their photophysical properties, which show novel light conversion properties, are discussed in detail. The Eu3+ hybrid system shows ultraviolet excitation and visible emission, and the Nd+ and Yb3+ hybrids exhibit visible excitation and NIR emission.

  17. Hydrothermal synthesis, growth mechanism and down-shifting/upconversion photoluminescence of single crystal NaGd(MoO4)2 nanocubes doped with Eu3+, Tb3+ and Yb3+/Er3+

    NASA Astrophysics Data System (ADS)

    Li, Anming; Lin, Hao; Xu, Dekang; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2017-06-01

    Uniform and well-crystallized tetragonal NaGd(MoO4)2 nanocrystals with the morphology of nanocubes were synthesized via a modified hydrothermal synthesis method with oleic acid as complexing agent. The as-synthesized NaGd(MoO4)2 nanocubes were characterized by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction respectively. The side-length of the NaGd(MoO4)2 nanocubes is about 100-150 nm. The SAED pattern indicates highly crystalline nature of the NaGd(MoO4)2 nanocubes. The effect of Na2MoO4 contents on the formation of NaGd(MoO4)2 nanocrystals is investigated. A possible growth mechanism of NaGd(MoO4)2 nanocubes is deduced based on time-dependent morphology evolution and XRD analysis. Down-shifting/upconversion photoluminescence properties of NaGd(MoO4)2: Eu3+, Tb3+ and Yb3+/Er3+ nanocubes are investigated in detail. Furthermore, the energy transfer mechanism for upconversion luminescence in NaGd(MoO4)2: Yb3+/Er3+ nanocubes is investigated on the basis of energy level scheme and the excitation power dependence of upconversion luminescence intensities.

  18. An investigation of structural parameters and magnetic and optical properties of EuLn{sub 2}Q{sub 4} (Ln=Tb-Lu, Q=S, Se)

    SciTech Connect

    Jin Gengbang; Choi, Eun Sang; Guertin, Robert P.; Albrecht-Schmitt, Thomas E.

    2008-01-15

    EuLn{sub 2}Q{sub 4} (Ln=Tb-Lu; Q=S, Se) has been synthesized using Sb{sub 2}Q{sub 3} (Q=S, Se) fluxes at 1000 deg. C. These compounds crystallize in a CaFe{sub 2}O{sub 4}-type three-dimensional channel structure that is built from edge-shared double rutile chains of [LnQ{sub 6}] octahedra running down the b-axis. Each double chain is connected at the vertices to four other double chains to form open channels where bicapped trigonal prismatic Eu{sup 2+} ions reside. All of these compounds show antiferromagnetic ordering with Neel temperatures, T{sub N}{approx}3-4 K. The optical band gaps for EuTb{sub 2}Se{sub 4}, EuDy{sub 2}Se{sub 4}, EuHo{sub 2}Se{sub 4}, EuEr{sub 2}Se{sub 4}, EuTm{sub 2}Se{sub 4}, EuYb{sub 2}Se{sub 4} EuLu{sub 2}Se{sub 4}, and EuYb{sub 2}S{sub 4} are found to be 2.0, 1.8, 1.8, 1.7, 1.8, 1.3, 1.7, and 1.6 eV, respectively. - Graphical abstract: A view of the three-dimensional channel structure of EuYb{sub 2}S{sub 4} down the b-axis.

  19. All-fiber multi-wavelength passive Q-switched Er/Yb fiber laser based on a Tm-doped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Alaniz-Baylón, J.; Ibarra-Escamilla, B.; López-Estopier, R.; Kuzin, E. A.

    2017-03-01

    We report on a ring cavity, multi-wavelength, passive Q-switched erbium–ytterbium double cladding fiber laser based on the use of an unpumped segment of Tm-doped fiber acting as a saturable absorber for passive Q-switched pulse generation and a wavelength filter for multi-wavelength laser generation. By performing pump power variations from 1.6 to 9.8 W, stable Q-switched laser pulses are observed in a repetition rate from 135.8 to 27.5 kHz at room temperature. With a maximal repetition rate of 135.8 kHz, the minimum pulse duration of 430 ns is obtained. The maximal average output power of 2.2 W is reached with a pump power of 9.8 W. The maximum pulse energy was 16.4 µJ and the average output power slope efficiency is ~24.8%. The obtained results demonstrate a laser performance with extended range of high repetition rate and improved stability.

  20. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region

    SciTech Connect

    Zhang, Zhi-Jun; Lin, Xiao; Zhao, Jing-Tai; Zhang, Guo-Bin

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We report the VUV spectroscopic properties of rare-earth ions in K{sub 2}LnZr(PO{sub 4}){sub 3}. ► The O{sup 2−}-Eu{sup 3+} charge transfer bands at about 220 nm have been observed. ► The 4f–5d spin-allowed and spin-forbidden transitions of Tb{sup 3+} have been observed. ► There is energy transfer between the host and rare-earth activators. -- Abstract: Rare earth (RE = Sm, Eu, Tb, Dy and Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) have been synthesized by solid-state reaction method, and their vacuum ultraviolet (VUV) excitation luminescent characteristics have been investigated. The band in the wavelength range of 130–157 nm and the other one range from 155 to 216 nm with the maximum at about 187 nm in the VUV excitation spectra of these compounds are attributed to the host lattice absorption and O–Zr charge transfer transition, respectively. The charge transfer bands (CTB) of O{sup 2−}-Sm{sup 3+}, O{sup 2−}-Dy{sup 3+} and O{sup 2−}-Tm{sup 3+}, in Sm{sup 3+}, Dy{sup 3+} and Tm{sup 3+}-activated samples, have not been obviously observed probably because the 2p electrons of oxygen are tightly bound to the zirconium ion in the host lattice. For Eu{sup 3+}-activated samples, the relatively weak O{sup 2−}-Eu{sup 3+} CTB at about 220 nm is observed. And for Tb{sup 3+}-activated samples, the bands at 223 and 258 nm are related to the 4f-5d spin-allowed and spin-forbidden transitions of Tb{sup 3+}, respectively. It is observed that there is energy transfer between the host lattice and the luminescent activators (e.g. Eu{sup 3+}, Tb{sup 3+}). From the standpoint of luminescent efficiency, color purity and chemical stability, K{sub 2}GdZr(PO{sub 4}){sub 3}:Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+} are attractive candidates for novel yellow, red, green-emitting PDP phosphors.

  1. Spectral properties and anti-Stokes luminescence of TeO2-BaF2:Ho3+, Ho3+/Yb3+ ceramics and glass excited by 1.9-μm radiation of a Tm:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Savikin, A. P.; Egorov, A. S.; Budruev, A. V.; Perunin, I. Yu.; Krasheninnikova, O. V.; Grishin, I. A.

    2017-07-01

    We demonstrate the up-conversion of Tm:LiYF4 infrared (IR) laser radiation with 1908-nm wavelength into visible light with a spectral maximum at 650 nm by ceramics with a composition of (100 - x)TeO2- xBaF2 - 1 wt % HoF3- yYbF3, where x = 20, 30, or 40 mol % and y = 0 or 0.5 wt %. The samples of 60TeO2-40BaF2 - 1 wt % HoF3 - 0.5 wt % YbF3 exhibited anti-Stokes luminescence at a threshold radiation power density of 1.0-1.5 W cm-2.

  2. Chemical bond parameters and photoluminescence of a natural-white-light Ca9La(VO4)7:Tm3+,Eu3+ with one O2-→V5+ charge transfer and dual f-f transition emission centers

    NASA Astrophysics Data System (ADS)

    Li, Ling; Liu, Xiao Guang; Noh, Hyeon Mi; Jeong, Jung Hyun

    2015-01-01

    The relationship between the photoluminescence properties and the crystal structure of undoped, Eu3+ or/ and Tm3+ singly or codoped Ca9La(VO4)7 (CLaVO) samples was discussed. Under the excitation of UV light, CLaVO:Tm3+, CLaVO, and CLaVO:Eu3+ exhibit the characteristic emissions of Tm3+ (1G4→3H6, blue), O2-→V5+ charge transfer (CT), and Eu3+ (5D0→7F2, red), respectively. By adjusting the doping concentration of Tm3+ and Eu3+ ions in CLaVO, a natural white emission in a single composition with the color temperature at 6181 K was obtained. Based on the dielectric theory of complex crystal, the chemical bond parameters of La-O and V-O bonds were quantitatively calculated. The standard deviation of environmental factor of every bond (EFSD), which can be expressed as σ (hei) =√{ (1 / N) ∑ i = 1 N (hei - μ) 2 } (hei =(fciαbi) 1 / 2QBi and μ = (1 / N) ∑ i = 1 N hei), was proposed to quantitatively express the distortion degree of VO43- from that of an ideal tetrahedron. The maximum change of EFSD comes from the [VO4]- tetrahedra in CLaVO sample by comparison with that of EFSD of isostructural Ca9Gd(VO4)7. This is possible the key reason that the undoped CLaVO sample has self-activated emission while the self-activated emission of its isostructural Ca9Gd(VO4)7 sample cannot be found. The quantitative calculation also demonstrated that the broad excitation bands at 319 nm in CLaVO:Tm and at 335 nm in CLaVO:Eu were due to the O-V2 and O-V3 (overlap with O-V2) CT, not the CT energy of O2--Eu13+ (O2--Tm13+), O2--Eu23+ (O2--Tm23+), and O2--Eu33+ (O2--Tm33+). The environmental factors surrounding the atoms V1, V2 and V3 were calculated to be 1.577, 1.6379 and 1.7554, respectively. It can be demonstrated that the excitation spectra at 319 nm for CLaVO:Tm and 335 nm for CLaVO:Eu came from the O-V2 and O-V3 CT, respectively.

  3. Structural and Magnetothermal Properties of Compounds: Yb5SixGe4-x,Sm5SixGe4-x, EuO, and Eu3O4

    SciTech Connect

    Ahn, Kyunghan

    2007-01-01

    The family of R5SixGe4-x alloys demonstrates a variety of unique physical phenomena related to magneto-structural transitions associated with reversible breaking and reforming of specific bonds that can be controlled by numerous external parameters such as chemical composition, magnetic field, temperature, and pressure. Therefore, R5SixGe4-x systems have been extensively studied to uncover the mechanism of the extraordinary magneto-responsive properties including the giant magnetoresistance (GMR) and colossal magnetostriction, as well as giant magnetocaloric effect (GMCE). Until now, more than a half of possible R5SixGe4-x pseudobinary systems have been completely or partially investigated with respect to their crystallography and phase relationships (R = La, Pr, Nd, Gd, Tb, Dy, Er, Lu, Y). Still, there are other R5SixGe4-x systems (R = Ce, Sm, Ho, Tm, and Yb) that are not studied yet. Here, we report on phase relationships and structural, magnetic, and thermodynamic properties in the Yb5SixGe4-xand Sm5SixGe4-x pseudobinary systems, which may exhibit mixed valence states. The crystallography, phase relationships, and physical properties of Yb5SixGe4-x alloys with 0 ≤ x ≤ 4 have been examined by using single crystal and powder x-ray diffraction at room temperature, and dc magnetization and heat capacity measurements between 1.8 K and 400 K in magnetic fields ranging from 0 to 7 T. Unlike the majority of R5SixGe4-x systems studied to date, where R is the rare earth metal, all Yb-based germanide-silicides with the 5:4 stoichiometry crystallize in the same Gd5Si4-type structure. The magnetic properties of Yb5SixGe4-x materials are nearly composition

  4. Synthesis, crystal structure, and magnetism of A{sub 2}Co{sub 12}As{sub 7} (A=Ca, Y, Ce–Yb)

    SciTech Connect

    Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; Geondzhian, Andrey Y.; Yaroslavtsev, Alexander A.; Xin, Yan; Menushenkov, Alexey P.; Chernikov, Roman V.; Shatruk, Michael

    2016-04-15

    Ternary intermetallics, A{sub 2}Co{sub 12}As{sub 7} (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P6{sub 3}/m variant of the Zr{sub 2}Fe{sub 12}P{sub 7} structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior of A{sub 2}Co{sub 12}As{sub 7} is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce{sub 2}Co{sub 12}As{sub 7} and Nd{sub 2}Co{sub 12}As{sub 7}, respectively. - Graphical abstract: Title arsenides were synthesized by Bi‐flux method. They exhibit mixed valence for A = Ce, Eu, Yb, ferrimagnetism for A = Ca, Y, Pr–Sm, and ferromagnetism for A = Eu–Tm. - Highlights: • A2Co12As7 (A=Ca, Y, Ce–Yb) were synthesized in Bi flux. • Ce, Eu, Yb exhibit mixed valence in the corresponding structures. • The character of 3d‐4f magnetic coupling changes at the half‐filled f shell. • Materials behave as ferrimagnets for A=Ca, Y, Pr–Sm and as ferromagnets for A=Eu–Yb.

  5. Synthesis, structural and optical properties of Eu3+-doped ALnP2O7 (A = Cs, Rb, Tl; Ln = Y, Lu, Tm) pyrophosphates phosphors for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Mbarek, Aïcha

    2017-06-01

    A series of 2%Eu3+-activated ALnP2O7 (A = Rb, Cs, Tl; Ln = Y, Lu, Tm) pyrophosphates were synthesized via solid-state reaction method and characterized by X-ray diffraction (XRD), NMR and IR/Raman spectroscopy. Their photoluminescence properties were investigated at room temperature. The phosphors present red emitting luminescence under blue light excitation, based on f-f transitions of Eu3+ ions. Emission spectra showed that the samples had intense and prevailing red emissions at 610 nm belonging to the 5D0→7F2 electric dipole transition. One Eu3+ center was assigned according to the crystal structure and the luminescence characteristics. The decay times were measured monitoring the maximum of emission at λem = 610 nm and exciting in the 5D2 band (λexc = 464 nm). All decay curves were single exponential and lifetimes remain constant with value in integral range 3-4 ms, according to the alkali metal ion. The optical properties show that these host materials are suitable for phosphor materials for solid-state lighting applications.

  6. (BMI)3LnCl6 crystals as models for the coordination environment of LnCl3 (Ln = Sm, Eu, Dy, Er, Yb) in 1-butyl-3-methylimidazolium chloride ionic-liquid solution.

    PubMed

    Han, Yulun; Lin, Cuikun; Meng, Qingguo; Dai, Fengrong; Sykes, Andrew G; Berry, Mary T; May, P Stanley

    2014-06-02

    A series of (BMI)3LnCl6 (Ln = Sm, Eu, Dy, Er, Yb) crystals was prepared from solutions of LnCl3 dissolved in the ionic liquid, 1-butyl-3-methylimidazolium chloride (BMICl). Crystals with Ln = 5% Sm + 95% Gd and with Ln = 5% Dy + 95% Gd were also grown to assess the importance of cross-relaxation in the Sm and Dy samples. The crystals are isostructural, with monoclinic space group P21/c and four formula units per unit cell. The first coordination sphere of Ln(3+) consists of six Cl(-) anions forming a slightly distorted octahedral LnCl6(3-) center. The second coordination sphere is composed of nine BMI(+) cations. The emission spectra and luminescence lifetimes of both (BMI)3LnCl6 crystals and LnCl3 in BMICl solution were measured. The spectroscopic similarities suggest that crystalline (BMI)3LnCl6 provides a good model of the Ln(3+) coordination environment in BMICl solution.

  7. Near infrared emission of TbAG:Ce3+,Yb3+ phosphor for solar cell applications

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr3+, Gd3+,Gd3+-Eu3+, and Er3+-Tb3+ had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb3+-Yb3+, Pr3+-Yb3+, and Tm3+-Yb3+ has been reported. The Yb3+ ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb3+ is close to 100% and the energy of the only excited level of Yb3+ (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce3+-doped Tb3Al5O12 (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300-500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce3+ ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this

  8. Synthesis and structural characterization of A3In 2Ge 4 and A5In 3Ge 6 ( A=Ca, Sr, Eu, Yb)—New intermetallic compounds with complex structures, exhibiting Ge-Ge and In-In bonding

    NASA Astrophysics Data System (ADS)

    You, Tae-Soo; Bobev, Svilen

    2010-06-01

    Reported are the synthesis and the structural characterization of four new polar intermetallic phases, which exist only with mixed alkaline-earth and rare-earth metal cations in narrow homogeneity ranges. (Sr 1-xCa x) 5In 3Ge 6 and (Eu 1-xYb x) 5In 3Ge 6 ( x≈0.7) crystallize in the orthorhombic space group Pnma with two formula units per unit cell (own structure type, Pearson symbol oP56). The lattice parameters are as follows: a=13.109(3)-13.266(3) Å, b=4.4089(9)-4.4703(12) Å, and c=23.316(5)-23.557(6) Å. (Sr 1-xCa x) 3In 2Ge 4 and (Sr 1-xYb x) 3In 2Ge 4 ( x≈0.4-0.5) adopt another novel monoclinic structure-type (space group C2 /m, Z=4, Pearson symbol mS36) with lattice parameters in the range a=19.978(2)-20.202(2) Å, b=4.5287(5)-4.5664(5) Å, c=10.3295(12)-10.3447(10) Å, and β=98.214(2)-98.470(2)°, depending on the metal cations and their ratio. The polyanionic sub-structures in both cases are based on chains of InGe 4 corner-shared tetrahedra. The A5In 3Ge 6 structure ( A=Sr/Ca or Sr/Yb) also features Ge 4 tetramers, and isolated In atoms in nearly square-planar environment, while the A3In 2Ge 4 structure ( A=Sr/Ca or Eu/Yb) contains zig-zag chains of In and Ge strings with intricate topology of cis- and trans-bonds. The experimental results have been complemented by tight-binding linear muffin-tin orbital (LMTO) band structure calculations.

  9. Development of the EpiOcular(TM) eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Hayden, Patrick; Kubilus, Joseph; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2011-09-01

    The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular(TM) eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r²) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular's long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants. 2011 FRAME.

  10. Homoleptic rare earth dipyridylamides [Ln2(N(NC5H4)2)6], Ln = Ce, Nd, Sm, Ho, Er, Tm, Yb, and Sc: metal oxidation by the amine melt and in 1,2,3,4-tetrahydroquinoline with the focus of different metal activation by amalgams, liquid ammonia, and microwaves.

    PubMed

    Müller-Buschbaum, Klaus; Quitmann, Catharina C

    2006-03-20

    Homoleptic dimeric dipyridylamide complexes of the rare earth elements are obtained by solvent-free oxidation reactions of the metals with melts of 2,2'-dipyridylamine. As the thermal stabilities of the ligand as well as the amide complexes are limiting factors in these high-temperature syntheses, several different metal activation procedures have been investigated: the formation of Ln amalgams and dissolution of the metals in liquid ammonia as well as coupling to microwaves. For comparison with a solvent that shows low solubility of the metals and products, reactions in 1,2,3,4-tetrahydroquinoline were also carried out. For all lanthanides and group 3 metals used homoleptic dimers of the formula [Ln(2)(Dpa)(6)], Ln = Ce (1), Nd (2), Sm (3), Ho (4), Er (5), Tm (6), Yb (7), and Sc (8) and Dpa- = (C5H4N)2N-, were obtained, all containing trivalent rare earth ions with a distorted square antiprismatic nitrogen coordination. Due to the large differences in the ionic radii of the metal ions, two different structure types are found that crystallize in the space groups P2(1)/c and P2(1)/n with the border of the two types being between Tm and Yb. The orientations of two 1,3/1,3-double chelating and linking dipyridylamide ligands (Dpa(-) = (C(5)H(4)N)(2)N(-)) result in different overall orientations of the dimers and thus two structure types. All compounds were identified by single-crystal X-ray analysis. Mid-IR, far IR, and Raman spectroscopy, microanalyses, and simultaneous DTA/TG as well as mass spectrometry regarding their thermal behavior were also carried out to characterize the products. Crystal data for the two types follow. Ce (1): P2(1)/n; T = 170(2) K; a = 1063.0(1), b = 1536.0(1), c = 1652.0(2) pm; beta = 101.60(1) degrees ; V = 2642.2(3) x 10(6) pm(3); R(1) for F(o) > 4sigma(F(o)) = 0.046, wR(2) = 0.120. Sc (8): P2(1)/c; T = 170(2) K; a = 1073.0(1), b = 1506.2(2), c = 1619.8(2) pm; beta = 103.16(9) degrees ; V = 2548.9(5) x 10(6) pm(3); R(1) for F(o) > 4sigma

  11. Chemical bond parameters and photoluminescence of a natural-white-light Ca{sub 9}La(VO{sub 4}){sub 7}:Tm{sup 3+},Eu{sup 3+} with one O{sup 2−}→V{sup 5+} charge transfer and dual f-f transition emission centers

    SciTech Connect

    Li, Ling; Liu, Xiao Guang; Noh, Hyeon Mi; Jeong, Jung Hyun

    2015-01-15

    The relationship between the photoluminescence properties and the crystal structure of undoped, Eu{sup 3+} or/ and Tm{sup 3+} singly or codoped Ca{sub 9}La(VO{sub 4}){sub 7} (CLaVO) samples was discussed. Under the excitation of UV light, CLaVO:Tm{sup 3+}, CLaVO, and CLaVO:Eu{sup 3+} exhibit the characteristic emissions of Tm{sup 3+} ({sup 1}G{sub 4}→{sup 3}H{sub 6}, blue), O{sup 2−}→V{sup 5+} charge transfer (CT), and Eu{sup 3+} ({sup 5}D{sub 0}→{sup 7}F{sub 2}, red), respectively. By adjusting the doping concentration of Tm{sup 3+} and Eu{sup 3+} ions in CLaVO, a natural white emission in a single composition with the color temperature at 6181 K was obtained. Based on the dielectric theory of complex crystal, the chemical bond parameters of La-O and V-O bonds were quantitatively calculated. The standard deviation of environmental factor of every bond (EFSD), which can be expressed as σ(h{sub e{sub i}})=√((1/N)∑{sub i=1}{sup N}(h{sub e{sub i}}−μ){sup 2}) (h{sub e{sub i}}=(f{sub c{sub i}}α{sub b{sub i}}){sup 1/2}Q{sub B{sub i}} and μ=(1/N)∑{sub i=1}{sup N}h{sub e{sub i}}), was proposed to quantitatively express the distortion degree of VO{sub 4}{sup 3−} from that of an ideal tetrahedron. The maximum change of EFSD comes from the [VO{sub 4}]{sup −} tetrahedra in CLaVO sample by comparison with that of EFSD of isostructural Ca{sub 9}Gd(VO{sub 4}){sub 7}. This is possible the key reason that the undoped CLaVO sample has self-activated emission while the self-activated emission of its isostructural Ca{sub 9}Gd(VO{sub 4}){sub 7} sample cannot be found. The quantitative calculation also demonstrated that the broad excitation bands at 319 nm in CLaVO:Tm and at 335 nm in CLaVO:Eu were due to the O-V2 and O-V3 (overlap with O-V2) CT, not the CT energy of O{sup 2−}-Eu1{sup 3+} (O{sup 2−}-Tm1{sup 3+}), O{sup 2−}-Eu2{sup 3+} (O{sup 2−}-Tm2{sup 3+}), and O{sup 2−}-Eu3{sup 3+} (O{sup 2−}-Tm3{sup 3+}). The environmental factors surrounding the

  12. AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-xTMxAs2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity

    NASA Astrophysics Data System (ADS)

    Kasinathan, Deepa; Ormeci, Alim; Koch, Katrin; Burkhardt, Ulrich; Schnelle, Walter; Leithe-Jasper, Andreas; Rosner, Helge

    2009-02-01

    The electronic structure and physical properties of the pnictide compound families REOFeAs (RE=La, Ce, Pr, Nd, Sm), AFe2As2 (A=Ca, Sr, Ba, Eu), LiFeAs and FeSe are quite similar. Here, we focus on the members of the AFe2As2 family whose sample composition, quality and single-crystal growth are more controllable compared with the other systems. Using first-principles band structure calculations, we focus on understanding the relationship between the crystal structure, charge doping and magnetism in AFe2As2 systems. We will elaborate on the tetragonal to orthorhombic structural distortion along with the associated magnetic order and anisotropy, the influence of doping on the A site and the Fe site and the changes in the electronic structure as a function of pressure. Experimentally, we investigate the substitution of Fe in SrFe2-xTMxAs2 by other 3d transition metals, TM=Mn, Co or Ni. In contrast to a partial substitution of Fe by Co or Ni (electron doping), a corresponding Mn partial substitution does not lead to the suppression of the antiferromagnetic order or the appearance of superconductivity. Most of the calculated properties agree well with the measured properties, but several of them are sensitive to the As z position. For a microscopic understanding of the electronic structure of this new family of superconductors, this structural feature related to the Fe-As interaction is crucial, but its correct ab initio treatment still remains an open question.

  13. Direct synthesis of hexagonal NaGdF₄ nanocrystals from a single-source precursor: upconverting NaGdF₄ :Yb³⁺ ,Tm³⁺ and its composites with TiO₂ for near-IR-driven photocatalysis.

    PubMed

    Chen, Ying; Mishra, Shashank; Ledoux, Gilles; Jeanneau, Erwann; Daniel, Marlene; Zhang, Jinlong; Daniele, Stéphane

    2014-09-01

    A novel single-source precursor NaGd(TFA)4 (diglyme) (TFA=trifluoroacetate) was synthesized, characterized thoroughly, and used to obtain the hexagonal phase of NaGdF4 nanoparticles as an efficient matrix for lanthanide-doped upconverting nanocrystals (NCs) that convert near-infrared radiation into shorter-wavelength UV/visible light. These NCs were then used to prepare well-characterized TiO2@NaGdF4:Yb(3+),Tm(3+) nanocomposites to extend the absorption range of the TiO2 photocatalyst from the UV to the IR region. While the visible/near IR part of the photoluminescent spectra remains almost unaffected by the presence of TiO2, the UV part is strongly quenched due to the absorption of TiO2 above its gap at approximately 380 nm by energy transfer or FRET. Preliminary results on the photocatalytic activity of the above obtained nanocomposites are presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Robustly Single-mode Polarization Maintaining Er/Yb co-doped LMA Fiber for High Power Applications

    DTIC Science & Technology

    2007-05-08

    the fabrication of highly efficient, polarization maintaining ( PM ) LMA fibers. A PM - LMA Er/Yb co-doped fiber suitable for nanosecond pulsed...associated with fabricating LMA Er/Yb and Tm-doped fibers have previously been discussed in detail by Tankala et. al. [6]. In the case of a PM - LMA ...demonstrate a large core diameter PM Er/Yb fiber incorporating a unique raised inner-cladding which facilitates the use of conventional LMA mode selection

  15. Tuning hexagonal NaYbF4 nanocrystals down to sub-10 nm for enhanced photon upconversion.

    PubMed

    Shi, Ruikai; Ling, Xincan; Li, Xiaona; Zhang, Lu; Lu, Min; Xie, Xiaoji; Huang, Ling; Huang, Wei

    2017-09-08

    Enhancing upconversion emission is critical for small-sized lanthanide doped upconversion nanocrystals. A promising way is increasing the doping concentration of excitation energy absorbers, the Yb(3+) sensitizer. However, it is still a challenge to obtain small-sized hexagonal NaLnF4 (Ln: lanthanide) upconversion nanocrystals with a high Yb(3+) concentration due to the fast growth of NaYbF4 crystals, which hinders their applications particularly in biology. We here demonstrate a highly repeatable and controllable method for tuning the size of hexagonal NaYbF4 nanocrystals, down to ∼7 nm, without the assistance of additional impurity doping. By monitoring the reaction process, we found that ultrasmall hexagonal NaYbF4 nanocrystals were formed through an in situ transformation of their cubic counterparts. We observed an enhanced upconversion emission of NaYbF4:Tm nanocrystals when compared to that of NaYbF4:Y/Tm nanocrystals with less Yb(3+) doping. After coating a thin layer of a NaYF4 shell on NaYbF4:Tm nanocrystals, a ∼100 times upconversion emission enhancement with over 800 times stronger emission in the ultraviolet and blue ranges was observed. This versatile method, together with the strong upconversion emission of the as-prepared ultrasmall nanocrystals, should facilitate the future applications of upconversion nanocrystals.

  16. Triaxial strongly deformed bands in {sup 160,161}Tm

    SciTech Connect

    Teal, C.; Lagergren, K.; Aguilar, A.; Riley, M. A.; Hartley, D. J.; Simpson, J.; Joss, D. T.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Garg, U.; Kondev, F. G.; Wang, X.; Ragnarsson, I.

    2008-07-15

    High-spin states in {sup 160,161}Tm were populated using the {sup 128}Te({sup 37}Cl, 5n and 4n) reactions at a beam energy of 170 MeV. Emitted {gamma} rays were detected in the Gammasphere spectrometer. Two rotational bands with high moments of inertia were discovered, one assigned to {sup 160}Tm, while the other tentatively assigned to {sup 161}Tm. These sequences display features similar to bands observed in neighboring Er, Tm, Yb, and Lu nuclei which have been discussed in terms of triaxial strongly deformed structures. Cranked Nilsson Strutinsky calculations have been performed that predict well-deformed triaxial shapes at high spin in {sup 160,161}Tm.

  17. Near infrared emission of TbAG:Ce{sup 3+},Yb{sup 3+} phosphor for solar cell applications

    SciTech Connect

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-06

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr{sup 3+}, Gd{sup 3+},Gd{sup 3+}–Eu{sup 3+}, and Er{sup 3+}–Tb{sup 3+} had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb{sup 3+}–Yb{sup 3+}, Pr{sup 3+}–Yb{sup 3+}, and Tm{sup 3+}–Yb{sup 3+} has been reported. The Yb{sup 3+} ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb{sup 3+} is close to 100% and the energy of the only excited level of Yb{sup 3+} (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce{sup 3+}-doped Tb{sub 3}Al{sub 5}O{sub 12} (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300–500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the

  18. R3Au(6+x)Al26T (R = Ca, Sr, Eu, Yb; T = early transition metal): a large family of compounds with a stuffed BaHg11 structure type grown from aluminum flux.

    PubMed

    Latturner, Susan E; Bilc, Daniel; Mahanti, S D; Kanatzidis, Mercouri G

    2009-02-16

    A collection of new quaternary intermetallic compounds with a cubic, stuffed BaHg(11) structure type has been synthesized by the combination of a divalent rare earth or alkaline earth metal R, an early transition metal T, and gold in an excess of molten aluminum. Structural characterization of these R(3)Au(6+x)Al(26)T compounds by powder and single crystal X-ray diffraction indicates that the unit cell varies with the radii of the early transition metal T and the rare earth/alkaline earth R as expected. The element T (where T = group 4, 5, 6, and 7 element) appears to be responsible for the stabilization of up to 43 different members of the R(3)Au(6+x)Al(26)T family of compounds. Varying amounts of disorder and trends in partial occupancies of the Au stuffed site--the site that is vacant in the parent compound BaHg(11)--are also indicated by the diffraction studies of this family of compounds. Magnetic susceptibility data reveals that the transition metal atoms in these materials do not possess local magnetic moments. For the magnetic rare earth containing materials, the europium compounds undergo a ferromagnetic transition at 10 K, and the ytterbium analogues show mixed valent behavior. Band structure calculations also support a mixed valent state for Yb in these compounds.

  19. Electronic Configuration of Yb Compounds

    SciTech Connect

    Temmerman, W.M.; Szotek, Z.; Svane, A.; Strange, P.; Winter, H.; Delin, A.; Johansson, B.; Eriksson, O.; Fast, L.; Wills, J.M.

    1999-11-01

    The total energy differences between divalent and trivalent configurations of Yb ions in a number of Yb compounds are studied. Two different band theoretical methods, which differ in the treatment of the localized f electrons, are used. The results show that in all Yb compounds the valence energy differences are equal to the energy needed to localize an f electron. These valence energy differences correlate with the number of f electrons hybridizing with the conduction bands in the trivalent configuration. For divalent YbS, the pressure induced f -electron delocalization implies an intermediate valency, as also indicated by experiment. {copyright} {ital 1999} {ital The American Physical Society }

  20. Ultraviolet upconversion luminescence of Gd{sup 3+} and Eu{sup 3+} in nano-structured glass ceramics

    SciTech Connect

    Lin, Hang; Chen, Daqin; Yu, Yunlong; Yang, Anping; Zhang, Rui; Wang, Yuansheng

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Ultraviolet upconversion emissions of Eu{sup 3+} and Gd{sup 3+} are rarely studied. Black-Right-Pointing-Pointer Nanostructured glass ceramic is developed as a host for ultraviolet upconversion. Black-Right-Pointing-Pointer Ultraviolet upconversion signal are found greatly enhanced after crystallization. Black-Right-Pointing-Pointer It is promising for fabricating novel ultraviolet upconversion lasers. -- Abstract: Ultraviolet multiphoton upconversion emissions of Eu{sup 3+} ({sup 5}H{sub 3-7}, {sup 5}G{sub 2-6}, {sup 5}L{sub 6} {yields} {sup 7}F{sub 0}) and Gd{sup 3+} ({sup 6}I{sub J}, {sup 6}P{sub J} {yields} {sup 8}S{sub 7/2}) are studied in the Eu{sup 3+} (or Gd{sup 3+}) doped SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} precursor glasses and glass ceramics containing {beta}-YF{sub 3} nanocrystals, under continuous-wavelength 976 nm laser pumping. It is experimentally demonstrated that energy transfer from Yb{sup 3+} to Tm{sup 3+}, then further to Eu{sup 3+} or Gd{sup 3+} is responsible for the upconversion process. Compared to those in the precursor glasses, the upconversion emission intensities in the glass ceramics are greatly enhanced, owing to the participation of rare earth ions into the low-phonon-energy environment of {beta}-YF{sub 3} nanocrystals. Hopefully, the studied glass ceramics may find potential applications in the field of ultraviolet solid-state lasers.

  1. Sulfate Exchange of the Nitrate-Type Layered Hydroxide Nanosheets of Ln2(OH)5NO3· nH2O for Better Dispersed and Multi-color Luminescent Ln2O3 Nanophosphors (Ln = Y0.98RE0.02, RE = Pr, Sm, Eu, Tb, Dy, Ho, Er, and Tm)

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoli; Liu, Weigang; Li, Ji-Guang; Zhu, Qi; Li, Xiaodong; Sun, Xudong

    2016-07-01

    Through restricting thickness growth by performing coprecipitation at the freezing temperature of ~4 °C, solid-solution nanosheets (up to 5-nm thick) of the Ln2(OH)5NO3· nH2O layered hydroxide (Ln = Y0.98RE0.02; RE = Pr, Sm, Eu, Tb, Dy, Ho, Er, and Tm, respectively) were directly synthesized without performing conventional exfoliation. In situ exchange of the interlayer NO3 - with SO4 2- produced a sulfate derivative [Ln2(OH)5(SO4)0.5· nH2O] of the same layered structure and two-dimensional crystallite morphology but substantially contracted d 002 basal spacing (from ~0.886 to 0.841 nm). The sulfate derivative was systematically compared against its nitrate parent in terms of crystal structure and phase/morphology evolution upon heating. It is shown that the interlayer SO4 2-, owing to its bonding with the hydroxide main layer, significantly raises the decomposition temperature from ~600 to 1000 °C to yield remarkably better dispersed oxide nanopowders via a monoclinic Ln2O2SO4 intermediate. The resultant (Y0.98RE0.02)2O3 nanophosphors were studied for their photoluminescence to show that the emission color, depending on RE3+, spans a wide range in the Commission Internationale de l'Eclairage (CIE) chromaticity diagram, from blue to deep red via green, yellow, orange, and orange red.

  2. Pressure-induced magnetic transition exceeding 30 K in the Yb-based heavy-fermion β -YbAlB4

    NASA Astrophysics Data System (ADS)

    Tomita, Takahiro; Kuga, Kentaro; Uwatoko, Yoshiya; Nakatsuji, Satoru

    2016-12-01

    Measurements of the electric resistivity ρ (T ) under pressure up to 8 GPa were performed on high-quality single crystals of the Yb-based heavy-fermion system β -YbAlB4 in the temperature range 2 TM is enhanced, reaching 32 K at 8 GPa, which is the highest transition temperature so far recorded for the Yb-based heavy-fermion compounds. The power-law exponent α in ρ =ρ0+A Tα below TM gradually changes from 3/2 to 5/2 with increasing pressure from 2 to 8 GPa. In contrast, the resistivity exhibits a T -linear behavior in the temperature range 2 ≤T ≤20 K and is insensitive to pressure below Pc. In this pressure regime, the magnetization is also nearly independent of pressure and shows no anomaly above 2 K. Our results indicate that a quantum critical point for β -YbAlB4 is also located near Pc in addition to the strange metal region near the ambient pressure.

  3. The series of rare earth complexes [Ln2Cl6 (μ-4,4'-bipy)(py)6], Ln=Y, Pr, Nd, Sm-Yb: a molecular model system for luminescence properties in MOFs based on LnCl3 and 4,4'-bipyridine.

    PubMed

    Matthes, Philipp R; Nitsch, Jörn; Kuzmanoski, Ana; Feldmann, Claus; Steffen, Andreas; Marder, Todd B; Müller-Buschbaum, Klaus

    2013-12-16

    A series of 12 dinuclear complexes [Ln2Cl6(μ-4,4'-bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, (1-12, respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4'-bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4-bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln-N-MOFs (∞)(2)[Ln2Cl6(4,4'-bipy)3]·2(4,4'-bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, (1, 4-8) were determined, showing an antenna effect through a ligand-metal energy transfer. The highest efficiency of luminescence is observed for the terbium-based compound 7 displaying a high quantum yield (QY of 86%). Excitation with UV light reveals typical emission colors of lanthanide-dependent intra 4f-4f-transition emissions in the visible range (Tb(III) : green, Eu(III) : red, Sm(III) : salmon red, Dy(III) : yellow). For the Gd(III)- and Y(III)-containing compounds 6 and 1, blue emission based on triplet phosphorescence is observed. Furthermore, ligand-to-metal charge-transfer (LMCT) states, based on the interaction of Cl(-) with Eu(III), were observed for the Eu(III) compound 5 including energy-transfer processes to the Eu(III) ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln-independent quantum yields in the related MOFs.

  4. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    NASA Astrophysics Data System (ADS)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  5. CLOMP_TM

    SciTech Connect

    Gyllenhaal, J.

    2012-06-01

    The CLOMP_TM benchmark was developed to measure the overheads of various mechanisms used to guarantee the generation of correct results in threaded code even when multiple threads might be accessing and/or updating the same memory location at the same time. This includes widely supported mechanisms like OpenMP Atomic and Open MP Critical as well as new mechanisms like Transactional Memory (TM) and Speculative Execution (SE) of threads. The CLOMP_TM benchmark is highly configurable to allow a variety of problem sizes, atomic update region sizes, and potential race condition opportunities to be studied. A wide variety of checks are done on the results to verify the expected answer was actuallyl generated. Thus CLOMP_TM can be used both to measure the overhead for various mechanisms and to check the correctness of their implementation.

  6. Valences of dopants in Eu2+ persistent luminescence materials

    NASA Astrophysics Data System (ADS)

    Lastusaari, M.; Brito, H. F.; Carlson, S.; Hölsä, J.; Laamanen, T.; Rodrigues, L. C. V.; Welter, E.

    2014-04-01

    The existence and effect of different rare earth (R2+/3+/IV) ions in SrAl2O4:Eu2+,R3+ and M2MgSi2O7:Eu2+,R3+ (M: Sr, Ba) persistent luminescence materials was studied with XANES (x-ray absorption near edge structure) measurements at HASYLAB/DESY (Hamburg, Germany) and MAX-lab (Lund, Sweden). The experiments were carried out at 298 K for selected rare earth (co-)dopants (Eu2+; Ce3+, Nd3+, Sm3+, Dy3+ and Yb3+). The co-existence of Eu2+ and Eu3+ was observed in all materials. The co-dopants were always in the trivalent form.

  7. Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/ Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer

    PubMed Central

    Pan, Liyuan; He, Meng; Ma, Jiebing; Tang, Wei; Gao, Guo; He, Rong; Su, Haichuan; Cui, Daxiang

    2013-01-01

    Upconversion nanocrystals with small size and strong fluorescent signals own great potential in applications such as biomolecule-labeling, in vivo tracking and molecular imaging. Herein we reported that NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with small size and strong fluorescent signals were controllably synthesized by oleic acid (OA)/ ionic liquid (IL) two-phase system for targeted fluorescent imaging of gastric cancer in vivo. The optimal synthesis condition of NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals by OA/IL two-phase system was established, adding more metal ion such as Na+ ion could facilitate the size control and crystal-phase transition, more importantly, markedly enhancing fluorescent intensity of beta-phase nanocrystals compared with traditional methods. Alpha-phase NaYbF4, 2%Tm upconversion nanocrystals with less than 10nm in diameter and beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with 30 nm or so in diameter and strong fluorescent signals were obtained, these synthesized nanocrystals exhibited very low cytotoxicity. Folic acid-conjugated silica-modified beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals were prepared, could actively target gastric cancer tissues implanted into nude mice in vivo, and realized targeted fluorescent imaging. Folic acid-conjugated silica-modified NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals show great potential in applications such as targeted near infared radiation fluorescent imaging, magnetic resonance imaging and targeted therapy of gastric cancer in the near future. PMID:23471455

  8. Extension of excitation functions up to 50 MeV for activation products in deuteron irradiations of Pr and Tm targets

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2016-09-01

    Extension up to 50 MeV incident deuteron energy is presented for excitation functions of activation products formed in monoisotopic Tm (169Tm) and Pr (141Pr). By stacked foil irradiations direct and/or cumulative production of 140,139m,138Nd, 138mPr, 141,139,137m,135Ce on Pr and 166,169Yb, 166,167,168Tm on Tm targets were measured. Confirmation of earlier experimental results for all investigated radionuclides is found and the influence of the higher energy on thick target yields and batch production of medically relevant radionuclides (140Nd, 139Pr (as decay product of 139mNd), 166,169Yb, 167Tm) is discussed. A comparison of experimental values with TALYS1.6 code results (predicted values from TENDL-2015 on-line library) shows a better description of the (d,pxn) reactions than older ones.

  9. From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals

    NASA Astrophysics Data System (ADS)

    Boulon, G.; Guyot, Y.; Ito, M.; Bensalah, A.; Goutaudier, C.; Panczer, G.; Gâcon, J. C.

    2004-01-01

    A spectroscopic characterization was carried out to identify crystal-field levels for magnetic-dipole transitions of Yb3+ ions located in the Y3+ dodecahedral S4 crystallographic site in YLiF4 (YLF) crystals which were grown either by the Czochralski technique or by the laser heated pedestal growth (LHPG) technique. The concentration dependence of the measured decay time of the 2F5/2 excited level of Yb3+ was analysed in order to understand relevant concentration quenching mechanisms. Under Yb3+ ion infrared pumping, self-trapping and up-conversion non-radiative energy transfer to trace rare-earth impurities (Er3+, Tm3+) has been observed over the visible region and interpreted by a limited-diffusion process within the Yb3+ doping ion subsystem to the impurities. The principal parameters useful for a theoretical approach for potential laser applications of Yb3+-doped YLiF4 crystals have also been given.

  10. Yb:S-FAP Lasers

    SciTech Connect

    Schaffers, K I

    2004-01-20

    It has recently been reported that several high power, diode-pumped laser systems have been developed based on crystals of Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F]. The Mercury Laser, at Lawrence Livermore National Laboratory, is the most prominent system using Yb:S-FAP and is currently producing 23J at 5 Hz in a 15 nsec pulse, based on partial activation of the system. In addition, a regenerative amplifier is being developed at Waseda University in Japan and has produced greater than 12 mJ with high beam quality at 50Hz repetition rate. Q-peak has demonstrated 16 mJ of maximum energy/output pulse in a multi-pass, diode side-pumped amplifier and ELSA in France is implementing Yb:S-FAP in a 985 nm pump for an EDFA, producing 250 mW. Growth of high optical quality crystals of Yb:S-FAP is a challenge due to multiple crystalline defects. However, at this time, a growth process has been developed to produce high quality 3.5 cm diameter Yb:S-FAP crystals and a process is under development for producing 6.5 cm diameter crystals.

  11. Luminescence of Yb3+ ions in silica-based glasses synthesized by SPCVD

    NASA Astrophysics Data System (ADS)

    Savel'ev, E. A.; Krivovichev, A. V.; Yapaskurt, V. O.; Golant, K. M.

    2017-02-01

    The spectra and decay kinetics of Yb3+ single-ion and cooperative luminescence in silica-based optical slab waveguides are investigated. The slab waveguides with a high content of Yb and various amounts of P and Al additives to the light-guiding core glass were fabricated on the basis of fused and unfused glassy layers synthesized via surface-plasma chemical vapor deposition (SPCVD). Luminescence was pumped by laser diodes at ∼904 nm and ∼967 nm wavelengths and recorded in the 450-1175 nm spectral band. For the pure silica host doped with Yb, only the influence of cluster sizes on the luminescence decay kinetics is determined. It is found that the profusion of deposited glass with increased Al content favors separation by geometry of the Yb3+ and Tm3+ ions; the latter are present in the glass as an uncontrollable contamination. Evidence was found that at least two different types of Yb clusters were formed in P doped silica as a result of profusion.

  12. Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    High power fiber lasers/amplifiers in the 1550nm spectral region have not scaled as rapidly as Yb-, Tm-, or Ho-doped fibers. This is primarily due to the low gain of the erbium ion. To overcome the low pump absorption, Yb is typically added as a sensitizer. Although this helps the pump absorption, it also creates a problem with parasitic lasing of the Yb ions under strong pumping conditions, which generally limits output power. Other pump schemes have shown high efficiency through resonant pumping of erbium only without the need for Yb as a sensitizer [1-2]. Although this can enable higher power scaling due to a decrease in the thermal loading, resonant pumping methods require long fiber lengths due to pump bleaching, which may limit the power scaling which can be achieved for single frequency output. By using an Er:Yb fiber and pumping in the minima of the Yb pump absorption at 940nm, we have been able to simultaneously generate high power, single frequency output at 1560nm while suppressing the 1-micron ASE and enabling higher efficiency compared to pumping at the absorption peak at 976nm. We have demonstrated single frequency amplification (540Hz linewidth) to 207W average output power with 49.3% optical efficiency (50.5% slope efficiency) in an LMA Er:Yb fiber. We believe this is the highest reported efficiency from a high power 9XXnm pumped Er:Yb-doped fiber amplifier. This is significantly more efficient that the best-reported efficiency for high power Er:Yb doped fibers, which, to-date, has been limited to ~41% slope efficiency [3].

  13. GEOMAG[TM] Paradoxes

    ERIC Educational Resources Information Center

    Defrancesco, Silvia; Logiurato, Fabrizio; Karwasz, Grzegorz

    2007-01-01

    As often happens, a lot of physics can come out of a toy. What we found interesting is the observation of the magnetic field produced by different configurations built with GEOMAG[TM]. This toy provides small magnetic bars and steel spheres to play with. Amusing 3-D structures can be built; nevertheless, this possibility is not so obvious. Indeed,…

  14. GEOMAG[TM] Paradoxes

    ERIC Educational Resources Information Center

    Defrancesco, Silvia; Logiurato, Fabrizio; Karwasz, Grzegorz

    2007-01-01

    As often happens, a lot of physics can come out of a toy. What we found interesting is the observation of the magnetic field produced by different configurations built with GEOMAG[TM]. This toy provides small magnetic bars and steel spheres to play with. Amusing 3-D structures can be built; nevertheless, this possibility is not so obvious. Indeed,…

  15. Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system.

    PubMed

    Kumkar, Sören; Krauss, Günther; Wunram, Marcel; Fehrenbacher, David; Demirbas, Umit; Brida, Daniele; Leitenstorfer, Alfred

    2012-02-15

    We generate broadband pulses covering the Yb: and Tm:silica amplification ranges with a passively phase-locked front end based on Er:fiber technology. Full spectral coherence of the octave-spanning output from highly nonlinear germanosilicate bulk fibers is demonstrated. Seeding of a high-power Tm:fiber generates pulses with a clean spectral shape and a bandwidth of 50 nm at a center wavelength of 1.95 μm, pulse energy of 250 nJ, and repetition rate of 10 MHz.

  16. Broadband near ultra violet sensitization of 1 μm luminescence in Yb3+-doped CeO2 crystal

    NASA Astrophysics Data System (ADS)

    Ueda, Jumpei; Tanabe, Setsuhisa

    2011-10-01

    Broadband spectral modification of near ultra violet (UV) light to infra-red (IR) light is investigated in Yb3+-doped CeO2 polycrystalline ceramics sintered in different atmospheres (air, oxygen, and 95%N2-5%H2). The intense Yb3+ photoluminescence (PL) peaked at 970 nm was observed by the UV excitation at around 390 nm in the samples except those sintered under N2-H2. A broad photoluminescence excitation (PLE) band of Yb3+ luminescence peaked at 390 nm corresponds to the absorption band and the photocurrent excitation band in the non-doped CeO2 crystal, which are also in accordance with the PLE band of Eu3+ luminescence in the Eu3+-doped CeO2. Judging from these results, the PLE band is attributed to the charge transfer (CT) band from O2- to Ce4+, but not to the CT from O2- to Yb3+. From the sintering atmosphere dependence of the PL and PLE, we found that the oxygen vacancies and Ce3+ impurities are not responsible for the 390 nm-absorption band but they work as a quenching center for the Yb3+ luminescence.

  17. LETTER TO THE EDITOR: Study of Yb3+-Yb3+ and Yb3+-Ce3+ energy transfer in Yb,Ce:CaGd4Si3O13 (Yb,Ce:CGS) crystals

    NASA Astrophysics Data System (ADS)

    Voroshilov, I. V.; Lebedev, V. A.; Gavrilenko, A. N.; Ignatiev, B. V.; Isaev, V. A.; Shestakov, A. V.

    2000-03-01

    The Yb radiative lifetime of 923 µs has been determined by the extrapolation to the zero concentration of Yb. Quenching of the Yb luminescence is observed in the Yb3+ ,Ce3+ :CaGd4 Si3 O13 (Yb,Ce:CGS) crystals due to their intrinsic defects and Ce3+ ions. The main quenching mechanism is the energy migration through Yb ions to the defects with a micro-parameter CDD (Yb-Yb) = 1.0 × 10-38 cm6 s-1 , and the Yb3+ icons/Journals/Common/to" ALT="to" ALIGN="TOP"/> Ce3+ energy transfer with a micro-parameter CDA = 5.5 × 10-44 cm6 s-1 .

  18. Synthesis, crystal structure, and magnetism of A2Co12As7 (A=Ca, Y, Ce-Yb)

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; Geondzhian, Andrey Y.; Yaroslavtsev, Alexander A.; Xin, Yan; Menushenkov, Alexey P.; Chernikov, Roman V.; Shatruk, Michael

    2016-04-01

    Ternary intermetallics, A2Co12As7 (A=Ca, Y, Ce-Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P63/m variant of the Zr2Fe12P7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior of A2Co12As7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100-140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr-Sm to ferromagnetic for A=Ce and Eu-Yb. Polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce2Co12As7 and Nd2Co12As7, respectively.

  19. Structure and properties of RELiGe2 (RE = La-Nd, Sm-Gd, Yb) compounds

    NASA Astrophysics Data System (ADS)

    Iyer, Abishek K.; Subbarao, Udumula; Peter, Sebastian C.

    2013-02-01

    Single phase samples of RELiGe2 (RE = La-Nd, Sm-Gd, Yb) were synthesized in niobium tubes by high-frequency (HF) heating method. RELiGe2 compounds crystallize in the CaLiSi2 type structure, space group Pnma. LaLiGe2 is diamagnetic, while PrLiGe2, NdLiGe2, EuLiGe2, GdLiGe2 and YbLiGe2 follow Curie-Weiss behavior above 50 K. All compounds are metallic conductors with a specific resistivity at room temperature within the range of 250-900 μωcm.

  20. R(5)Pn(3)-type phases of the heavier trivalent rare-earth-metal pnictides (Pn = Sb, Bi): new phase transitions for Er(5)Sb(3) and Tm(5)Sb(3).

    PubMed

    Gupta, Shalabh; León-Escamilla, E Alejandro; Wang, Fei; Miller, Gordon J; Corbett, John D

    2009-05-18

    The syntheses and distributions of binary R(5)Pn(3) phases among the hexagonal Mn(5)Si(3) (M), and the very similar orthorhombic beta-Yb(5)Sb(3) (Y) and Y(5)Bi(3) (YB) structure types have been studied for R = Y, Gd-Lu and Pn = Sb, Bi. Literature reports of M and YB-type structure distributions among R(5)Pn(3) phases, R = Y, Gd-Ho, are generally confirmed. The reported M-type Er(5)Sb(3) could not be reproduced. Alternate stabilization of Y-type structures by interstitials H or F has been disproved for these nominally trivalent metal pnictides. Single crystal structures are reported for (a) the low temperature YB form of Er(5)Sb(3) (Pnma, a = 7.9646(9) A, b = 9.176(1) A, c = 11.662(1) A), (b) the YB- and high temperature Y-types of Tm(5)Sb(3) (both Pnma, a = 7.9262(5), 11.6034(5) A, b = 9.1375(6), 9.1077(4) A, c = 11.6013(7), 7.9841(4) A, respectively), and (c) the YB structure of Lu(5)Sb(3), a = 7.8847(4) A, b = 9.0770(5) A, c = 11.5055(6) A. Reversible, temperature-driven phase transitions (beta-Yb(5)Sb(3) left arrow over right arrow Y(5)Bi(3) types) for the former Er(5)Sb(3) and Tm(5)Sb(3) around 1100 degrees C and the means of quenching the high temperature Y form, have been esstablished. According to their magnetic susceptibilities, YB-types of Er(5)Sb(3) and Tm(5)Sb(3) contain trivalent cations. Tight-binding linear muffin-tin-orbital method within the atomic sphere approximation (TB-LMTO-ASA) calculations for the two structures of Tm(5)Sb(3) reveal generally similar electronic structures but with subtle Tm-Tm differences supporting their relative stabilities. The ambient temperature YB-Tm(5)Sb(3) shows a deep pseudogap at E(F), approaching that of a closed shell electronic state. Short R-R bonds (3.25-3.29 A) contribute markedly to the structural stabilities of both types. The Y-type structure of Tm(5)Sb(3) shows both close structural parallels to, and bonding contrasts with, the nominally isotypic, stuffed Ca(5)Bi(3)D and its analogues. Some contradictions

  1. Thermoluminescence responses of the Yb- and Yb-Tb-doped SiO2 optical fibers to 6-MV photons.

    PubMed

    Sahini, M H; Hossain, I; Wagiran, H; Saeed, M A; Ali, H

    2014-09-01

    Characteristics of the thermoluminescence (TL) responses of Yb- and Yb-Tb-doped optical fibers irradiated with 6MV photons are reported. The concentration of Yb in the Yb-doped optical fiber was 0.26mol%; the concentrations of Yb and Tb in the Yb-Tb-doped optical fiber were 0.62 and 0.2mol%, respectively. The TL dose responses are linear in the dose range 0.5-4Gy. The radiation sensitivity of the Yb-Tb material is almost two orders of magnitude higher than the sensitivity of the material doped with Yb alone.

  2. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.

    PubMed

    Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2013-10-01

    Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity.

  3. XPS Studies of Yb14MnSb11 and Yb14ZnSb11

    SciTech Connect

    Holm, A P; Ozawa, T C; Kauzlarich, S M; Morton, S A; Waddill, G D; Pickett, W E; Tobin, J G

    2003-10-02

    Measurements of core and valence electronic states of single crystals of the rare earth transition metal Zintl phases Yb{sub 14}MnSb{sub 11} and Yb{sub 14}ZnSb{sub 11} were performed using the X-ray photoelectron spectroscopy station of Beamline 7 at the Advanced Light Source. Sample surfaces of Yb{sub 14}MnSb{sub 11} and Yb{sub 14}ZnSb{sub 11} were measured as received, after Ar{sup +} ion bombardment, and after cleaving in situ. Detailed analysis of the clean Mn and Zn analog sample surfaces reveal a significant contribution of both Yb{sup 3+} and Yb{sup 2+} 4f states in the valence band region for the Zn analog and no contribution of Yb{sup 3+} states to the valence band for the Mn analog. This result is predicted for the Zn analog by Zintl counting rules, and single crystal X-ray diffraction studies presented here also support the mixed valency of Yb for Yb{sub 14}ZnSb{sub 11}. Further detailed analysis of the core and valence band structure of both Yb{sub 14}MnSb{sub 11} and Yb{sub 14}ZnSb{sub 11} will be presented.

  4. Probing dual mode emission of Eu3+ in garnet phosphor

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Gi Lee, Dong; Soo Yi, Soung; Jang, Kiwan; Shin, Dong-Soo; Hyun Jeong, Jung

    2013-05-01

    Eu3+ doped and Eu3+, Yb3+ co-doped Gd3Ga5O12 phosphors have been developed by facile solid state reaction method which can be easily scaled-up in large quantity. The synthesis has been optimized to get a single phase material at 1300 °C. The phase and crystal parameters have been analyzed by using X-ray diffraction measurement. Photoluminescence excitation (monitored for the 5D0 → 7F1 transition of Eu3+) depicts that the active ion (Eu3+) can be excited through direct excitation into 4f band of Eu3+, through charge transfer band (Eu3+-O2-) excitation and also through the excitation into 8S7/2 → 6IJ intra f-f transition of Gd3+ ion, which significantly all together cover a broad excitation region in 200-420 nm. In addition, in the presence of Yb3+ ions, the emission is also achieved by near infrared excitation (976 nm), through a typical upconversion (UC) process. Thus, the material efficiently behaves as a dual mode emitting phosphor (emission is achieved both through normal fluorescence and through UC process). The conversion efficiency of silicon solar cells is only 15% of terrestrial solar energy for 200-400 nm region and also the sub-band gap energy (in infrared region) is lost as heat; therefore, this kind of dual mode phosphors may be used to overcome the above mentioned incomplete utilization of the solar spectrum and can open realm of new possibilities for energy harvesting.

  5. Structure and bonding in Yb4MgGe4: Yb2+/Yb3+ mixed-valency and charge separation.

    PubMed

    Tobash, Paul H; Bobev, Svilen

    2006-03-22

    Reported are the synthesis and the structural characterization of a new derivative of the RE5Tt4 family (RE = Rare-earth; Tt = Tetrel, = Si, Ge, i.e., group 14 element), Yb5-xMgxGe4 (x approximately 1). Crystal data for Yb4.04(1)Mg0.96(1)Ge4 at 23 degrees C: orthorhombic, space group Pnma (No. 62), Z = 4; a = 7.155(2) A, b = 14.769(5) A, c = 7.688(2) A; V = 812.5(4) A3. This phase is an example of a substitution of lanthanide metal (Yb) with a nonmagnetic element (Mg) within this structure type. Its structure can alternatively be described as an intergrowth of the hypothetical Yb2MgGe2, which features flat infinite [MgGe2]4- layers and the hypothetical YbGe with [Ge2]6- dimers. The flat [MgGe2]4- layers propagate in two dimensions (a and c), and they are offset by a distance of 1/4.a with respect to one another and are interspaced with layers of [Ge2]6- dimers and Yb cations filling the space between them. According to the structural and physical property data, Yb4MgGe4 is a heterogeneous mixed-valent compound, i.e. a system where one of the two symmetry-inequivalent Yb sites has atoms in closed-shell Yb2+ configuration, whereas the Yb3+ cations occupy a different crystallographic site.

  6. The tmRNA website

    DOE PAGES

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  7. The tmRNA website

    SciTech Connect

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism.

  8. The tmRNA website.

    PubMed

    Hudson, Corey M; Williams, Kelly P

    2015-01-01

    The transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http://bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism.

  9. The tmRNA website

    PubMed Central

    Hudson, Corey M.; Williams, Kelly P.

    2015-01-01

    The transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http://bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism. PMID:25378311

  10. Definition of an intramolecular Eu-to-Eu energy transfer within a discrete [Eu2L] complex in solution.

    PubMed

    Nonat, Aline; Regueiro-Figueroa, Martín; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Platas-Iglesias, Carlos; Charbonnière, Loïc J

    2012-06-25

    Ligand L, based on two do3a moieties linked by the methylene groups of 6,6'-dimethyl-2,2'-bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01 M Tris-HCl, pH 7.4) led to the successive formation of [LnL] and [Ln(2)L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln(2)L] complexes (Ln = Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The (1)H and (13)C NMR spectra of the Lu and Yb complexes in D(2)O solution (pD = 7.0) showed C(1) symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb(2)L] complex upon ligand excitation revealed conventional behavior with τ(H2O) = 2.05(1) ms and ϕ(H2O) = 51%, except for the calculation of the hydration number obtained from the luminescent lifetimes in H(2)O and D(2)O, which pointed to a non-integer value of 0.6 water molecules per Tb(III) ion. In contrast, the Eu complex revealed surprising features such as: 1) the presence of two and up to five components in the (5)D(0)→(7)F(0) and (5)D(0)→(7)F(1) emission bands, respectively; 2) marked differences between the normalized spectra obtained in H(2)O and D(2)O solutions; and 3) unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd(2-x)Eu(x)L] complexes (x = 0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu-to-Eu

  11. Phase equilibrium and intermediate phases in the Eu-Sb system

    SciTech Connect

    Abdusalyamova, M.N.

    2011-10-15

    Rapid heating rate thermal analysis, X-ray diffraction, fluorescence spectrometry, and differential dissolution method were used to study the high-temperature phase equilibrium in the Eu-Sb system within the composition range between 37 and 96 at% Sb. The techniques were effective in determination of the vapor-solid-liquid equilibrium since intermediate phases except Eu{sub 4}Sb{sub 3} evaporated incongruently after melting. A thermal procedure was developed to determine the liquidus and solidus lines of the T-x diagram. Six stable phases were identified: two phases, EuSb{sub 2} and Eu{sub 4}Sb{sub 3}, melt congruently at 1045{+-}10 deg. C and 1600{+-}15 deg. C, the Eu{sub 2}Sb{sub 3}, Eu{sub 11}Sb{sub 10}, Eu{sub 5}Sb{sub 4}, and Eu{sub 5}Sb{sub 3} phases melt incongruently at 850{+-}8 deg. C, 950{+-}10 deg. C, 1350{+-}15 deg. C, and 1445{+-}15 deg. C, respectively. The exact composition shifting of Sb-rich decomposable phases towards Eu{sub 4}Sb{sub 3}, the most refractory compound, was determined. The topology of the Eu-Sb phase diagram was considered together with that of the Yb-Sb system. - Graphical abstract: The high-temperature range of the T-x phase diagram for the Eu-Sb system. Highlights: > The phase relations in the Eu-Sb system were studied over a large composition and temperature scale. > The liquidus and solidus lines of the T-x diagram were well established using effective techniques. > In the system, six binary phases are stable and they melt incongruently except EuSb{sub 2} and Eu{sub 4}Sb{sub 3}. > Incongruent evaporation was found to be typical of all the phases besides Eu{sub 4}Sb{sub 3}.

  12. Synthesis, crystal structure, and magnetism of A2Co12As7 (A=Ca, Y, Ce–Yb)

    DOE PAGES

    Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; ...

    2015-08-28

    In this study, ternary intermetallics, A2Co12As7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P63/m variant of the Zr2Fe12P7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior ofmore » A2Co12As7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Finally, polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce2Co12As7 and Nd2Co12As7, respectively.« less

  13. CaF2:Yb laser ceramics

    NASA Astrophysics Data System (ADS)

    Akchurin, M. Sh.; Basiev, T. T.; Demidenko, A. A.; Doroshenko, M. E.; Fedorov, P. P.; Garibin, E. A.; Gusev, P. E.; Kuznetsov, S. V.; Krutov, M. A.; Mironov, I. A.; Osiko, V. V.; Popov, P. A.

    2013-01-01

    CaF2:Yb fluoride laser ceramics, prepared by hot-forming, exhibit the same optical properties as starting single crystals. Slope efficiency of the Сa0.95Yb0.05F2.05 is equal to 35% in the pulsed mode of laser operation. Decrease of ytterbium concentration in CaF2:Yb samples down to 3 mol.% resulted in the essential improvement of Сa0.97Yb0.03F2.03 thermal conductivity from 3.5 to 4.5 W/m K, but slightly decreased (down to 30%) slope efficiency of the samples under both pulsed and CW mode of operation. Alternative hot-pressing synthesis of CaF2:Yb fluoride laser ceramics provided materials with superior mechanical properties (microhardness Н = 3.2 GPa and fracture toughness К1С = 0.65 МPа m1/2) in comparison with hot-formed and/or single crystal CaF2:Yb specimens. For the first time, lasing has been observed for the novel aforementioned hot-pressed CaF2:Yb ceramics.

  14. Collapse dynamics of a {sup 176}Yb-{sup 174}Yb Bose-Einstein condensate

    SciTech Connect

    Chaudhary, G. K.; Ramakumar, R.

    2010-06-15

    In this paper, we present a theoretical study of a two-component Bose-Einstein condensate composed of ytterbium (Yb) isotopes in a three-dimensional anisotropic harmonic potential. The condensate consists of a mixture of {sup 176}Yb atoms which have a negative s-wave scattering length and {sup 174}Yb atoms having a positive s-wave scattering length. We study the ground-state as well as dynamic properties of this two-component condensate. Due to the attractive interactions between {sup 176}Yb atoms, the condensate of {sup 176}Yb undergoes a collapse when the particle number exceeds a critical value. The critical number and the collapse dynamics are modified due to the presence of {sup 174}Yb atoms. We use coupled two-component Gross-Pitaevskii equations to study the collapse dynamics. The theoretical results obtained are in reasonable agreement with the experimental results of Fukuhara et al. [Phys. Rev. A 79, 021601(R) (2009)].

  15. Unconventional T-H Phase Diagram in the Noncentrosymmetric Compound Yb2Fe12P7

    NASA Astrophysics Data System (ADS)

    Baumbach, R. E.; Hamlin, J. J.; Shu, L.; Zocco, D. A.; O'Brien, J. R.; Ho, P.-C.; Maple, M. B.

    2010-09-01

    The temperature-(T-)magnetic-field (H) phase diagram for the noncentrosymmetric compound YbFeP, determined from electrical resistivity (ρ), specific heat (C), and magnetization (M) measurements on single crystal specimens, is reported. This system exhibits a crossover from a magnetically ordered non-Fermi-liquid (NFL) phase at low H to another NFL phase at higher H. The crossover occurs near the value of H where the magnetic ordering temperature (TM) is no longer observable in C(T,H)/T and ρ(T,H), but not where TM extrapolates smoothly to T=0K at a possible quantum critical point (QCP). This indicates the occurrence of a quantum phase transition between the two NFL phases. The lack of a clear relationship between the extrapolated QCP and NFL behavior suggests an unconventional route to the NFL ground states.

  16. Monodisperse lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm): morphology controlled synthesis, up-conversion luminescence and in vitro cell imaging.

    PubMed

    Zhang, Yang; Li, Xuejiao; Hou, Zhiyao; Lin, Jun

    2014-06-21

    Lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm) nano/micro-materials with a variety of well-defined morphologies including nanorods, nanospindles, nanorod-bundles and nanospheres, have been successfully synthesized via a facile precipitation technique followed by a heating treatment. It is found that the pH values, fluoride sources and dosage of urea in the initial reaction systems play critical roles in the morphology determination of the LnOF products and the possible formation mechanism for these diverse architectures has been presented. XRD, FT-IR, TG-DTA, SEM, TEM, as well as up-conversion (UC) luminescence spectra are used to characterize the synthesized samples. Under 980 nm NIR laser excitation, red, green and blue UC luminescence are observed from Yb(3+)/Er(3+), Yb(3+)/Ho(3+) and Yb(3+)/Tm(3+) co-doped YOF nanospheres. The MTT assay indicates that YOF nanospheres exhibit good biocompatibility. Especially, the emission spectrum of YOF: 0.20Yb(3+), 0.04Er(3+) nanospheres is dominated by a single red emission at 660 nm, which falls into the "optical window" of biological tissues. The application of YOF: 0.20Yb(3+), 0.04Er(3+) nanospheres in the cell imaging is also investigated, which shows a bright-red emission without background noise.

  17. Vacuum Referred Binding Energy (VRBE)-Guided Design of Orange Persistent Ca3Si2O7:Eu(2+) Phosphors.

    PubMed

    Ueda, Jumpei; Maki, Ryomei; Tanabe, Setsuhisa

    2017-09-05

    Orange persistent phosphors of Ca3Si2O7 (CSO) doped with Eu(2+) were strategically developed by codoping Sm(3+) or Tm(3+). First, a vacuum referred binding energy, VRBE, diagram of Ca3Si2O7 (CSO) was constructed from the measured spectroscopic data. By the zigzag curve of the divalent lanthanide ions in the VRBE diagram, Sm(3+) and Tm(3+) ions were predicted to be a suitable electron trap for the persistent luminescence. The initial persistent luminance of CSO:Eu(2+)-Sm(3+) and CSO:Eu(2+)-Tm(3+) was found to be 290 times and 9300 times stronger, respectively, compared with CSO:Eu(2+). By optimizing Eu(2+) and Tm(3+) concentrations, the persistent luminescence duration on 0.32 mcd/m(2) reached approximately 50 min in CSO:Eu(2+)-Tm(3+). From the VRBE diagram and the persistent luminescence properties, we discuss the persistent mechanism including the charging process, detrapping process, and electron trapping centers.

  18. Cryogenic Yb: YAG Thin-Disk Laser

    DTIC Science & Technology

    2016-09-09

    at room and cryogenic (80°K) temperatures will be presented. The Yb:YAG gain media is cooled using either a pressurized R134A refrigerant system or...thin disk laser performance at room and cryogenic (80°K) temperatures will be presented. The Yb:YAG gain media is cooled using either a pressurized...is thicker than that which would be necessary for room temperature operation. This is to alleviate stresses from the large difference in expansion

  19. Anomalies in the Young modulus at structural phase transitions in rare-earth cobaltites RBaCo{sub 4}O{sub 7} (R = Y, Tm-Lu)

    SciTech Connect

    Kazei, Z. A. Snegirev, V. V.; Andreenko, A. S.; Kozeeva, L. P.

    2011-08-15

    The elastic properties of rare-earth cobaltites RBaCo{sub 4}O{sub 7} (R = Y, Tm-Lu) have been experimentally studied in the temperature range of 80-300 K. The strong softening of the Young modulus {Delta}E(T)/E{sub 0} Almost-Equal-To -(0.1-0.2) of cobaltites with Lu and Yb ions has been revealed, which is due to the instability of the crystal structure upon cooling and is accompanied by an inverse jump at the second-order structural phase transition. The softening of the Young modulus and the jump at the phase transition decrease by an order of magnitude and the transition temperature T{sub s} and hysteresis {Delta}T{sub s} increase from a compound with Lu to that with Tm. A large softening of the Young modulus at the structural transition in Lu- and Yb cobaltites indicates that the corresponding elastic constant goes to zero, whereas this constant in Tm cobaltite is not a 'soft' mode of the phase transition. It has been found that the structural phase transition in Lu- and Yb cobaltites is accompanied by a large absorption maximum at the phase transition point and an additional maximum in the low-temperature phase and absorption anomalies in Tm cobaltite is an order of magnitude smaller.

  20. Monodisperse lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm): morphology controlled synthesis, up-conversion luminescence and in vitro cell imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Li, Xuejiao; Hou, Zhiyao; Lin, Jun

    2014-05-01

    Lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm) nano/micro-materials with a variety of well-defined morphologies including nanorods, nanospindles, nanorod-bundles and nanospheres, have been successfully synthesized via a facile precipitation technique followed by a heating treatment. It is found that the pH values, fluoride sources and dosage of urea in the initial reaction systems play critical roles in the morphology determination of the LnOF products and the possible formation mechanism for these diverse architectures has been presented. XRD, FT-IR, TG-DTA, SEM, TEM, as well as up-conversion (UC) luminescence spectra are used to characterize the synthesized samples. Under 980 nm NIR laser excitation, red, green and blue UC luminescence are observed from Yb3+/Er3+, Yb3+/Ho3+ and Yb3+/Tm3+ co-doped YOF nanospheres. The MTT assay indicates that YOF nanospheres exhibit good biocompatibility. Especially, the emission spectrum of YOF: 0.20Yb3+, 0.04Er3+ nanospheres is dominated by a single red emission at 660 nm, which falls into the ``optical window'' of biological tissues. The application of YOF: 0.20Yb3+, 0.04Er3+ nanospheres in the cell imaging is also investigated, which shows a bright-red emission without background noise.Lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm) nano/micro-materials with a variety of well-defined morphologies including nanorods, nanospindles, nanorod-bundles and nanospheres, have been successfully synthesized via a facile precipitation technique followed by a heating treatment. It is found that the pH values, fluoride sources and dosage of urea in the initial reaction systems play critical roles in the morphology determination of the LnOF products and the possible formation mechanism for these diverse architectures has been presented. XRD, FT-IR, TG-DTA, SEM, TEM, as well as up-conversion (UC) luminescence spectra are used to characterize the synthesized samples. Under 980 nm NIR laser excitation, red, green and blue UC luminescence are

  1. Listening and Legos[TM

    ERIC Educational Resources Information Center

    Morris, Pamela

    2012-01-01

    This simple exercise, performed in teams, gives students practice in listening to instructions, particularly when there are restrictions for the communication. The teams compete in a limited amount of time to build a Lego[TM] structure based on the instructions of one team member. Which team listens the best and is most successful?

  2. 75 FR 5071 - Lock + TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Lock + \\TM\\ Hydro Friends Fund XXXI, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications January 22, 2010. On January 8, 2010, Lock...

  3. 75 FR 5068 - Lock + TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Lock + \\TM\\ Hydro Friends Fund XXXIII, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications January 22, 2010. On January 8, 2010,...

  4. Listening and Legos[TM

    ERIC Educational Resources Information Center

    Morris, Pamela

    2012-01-01

    This simple exercise, performed in teams, gives students practice in listening to instructions, particularly when there are restrictions for the communication. The teams compete in a limited amount of time to build a Lego[TM] structure based on the instructions of one team member. Which team listens the best and is most successful?

  5. Deuterium depth distribution study in Yb

    NASA Astrophysics Data System (ADS)

    Guan, Xing-Cai; Lu, Yong-Kai; He, Hou-Jun; Zhao, Jiang-Tao; Wang, Qiang; Fang, Kai-Hong; Meng, Xuan; Wang, Tie-Shan; Kasagi, Jirohta

    2017-05-01

    The deuterium depth distribution for a , while beam implanted into ytterbium (Yb) at a temperature between 300 and 340 K was studied using the D(d,p)T reaction. By analyzing the proton yields, the deuterium depth distribution from the front surface to 500 nm depth was found. The results indicate that an equilibrium deuterium distribution region from the front surface to a depth approximately equal to the mean range of implanted deuterons was formed in Yb during the implantation. The deduced deuterium concentration in the equilibrium deuterium distribution region was D/Yb = 22%. Supported by National Natural Science Foundation of China (11275085, 11305080, 11405079 and 11505086), Fundamental Research Funds for Central University of China (lzujbky-2015-69 and lzujbky-2016-36).

  6. Comparative performance of passively Q-switched diode-pumped Yb:GGG, Yb:YAG, and Yb-doped tungstates lasers using Cr 4+ -doped garnets

    NASA Astrophysics Data System (ADS)

    Kalisky, Y.; Kalisky, O.; Rachum, U.; Boulon, G.; Brenier, A.

    2006-02-01

    We investigated the CW free-running and repetitive modulation in the kHz frequency domain of a passively Q-switched, diode-pumped Yb:YAG, Yb:GGG and Yb:KYW lasers, by using Cr 4+:YAG as a saturable absorber. The results presented here are focused towards the design of a passively Q-switched Yb doped garnets or Yb doped tungstates microlaser. The free-running performance of Yb:YAG, Yb:GGG, Yb:KGW and Yb:KYW were characterized, and experimental parameters such as gain and loss were evaluated. We carried out a fit between our experimental results and an existing numerical model, which relates the experimental and the physical parameters of the ytterbium diode-pumped system to the minimal threshold pumping power. The best performance among the laser crystals was obtained for Yb:YAG laser. A maximum peak power of ~4.5-kW, at an average output power of 1.32-W, were extracted with of ~25 % extraction efficiency.

  7. Study of encapsulated 170Tm sources for their potential use in brachytherapy.

    PubMed

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Venselaar, Jack L M; Rivard, Mark J

    2010-04-01

    High dose-rate (HDR) brachytherapy is currently performed with 192Ir sources, and 60Co has returned recently into clinical use as a source for this kind of cancer treatment. Both radionuclides have mean photon energies high enough to require specific shielded treatment rooms. In recent years, 169Yb has been explored as an alternative for HDR-brachytherapy implants. Although it has mean photon energy lower than 192Ir, it still requires extensive shielding to deliver treatment. An alternative radionuclide for brachytherapy is 170Tm (Z=69) because it has three physical properties adequate for clinical practice: (a) 128.6 day half-life, (b) high specific activity, and (c) mean photon energy of 66.39 keV. The main drawback of this radionuclide is the low photon yield (six photons per 100 electrons emitted). The purpose of this work is to study the dosimetric characteristics of this radionuclide for potential use in HDR-brachytherapy. The authors have assumed a theoretical 170Tm cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR 192Ir brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron 170Tm spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of 170Tm encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a 170Tm source were compared to those for 192Ir and 169Yb for the same contained activity. Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the emitted gammas and characteristic x rays. Moreover, the electron spectrum contribution to the dose

  8. 75 FR 2129 - Lock+TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Energy Regulatory Commission Lock+ TM Hydro Friends Fund XXX, LLC; Notice of Preliminary Permit... January 6, 2010. On November 13, 2009, Lock+ TM Hydro Friends Fund XXX, LLC filed an application, pursuant...,018 megawatt-hours. Applicant Contact: Wayne F. Krouse, Lock+ TM Hydro Friends Fund XXX, LLC, 5090...

  9. Modified LaRC(TM)-IA Polyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.; Hou, Tan H.; Working, Dennis C.

    1994-01-01

    Modified versions of thermoplastic polyimide LaRC(TM)-IA incorporate various amounts of additional, rigid moieties into backbones of LaRC(TM)-IA molecules. Modified versions more resistant to solvents and exhibit higher glass-transition temperatures, yet retain melt-flow processability of unmodified LaRC(TM)-IA.

  10. Synthesis, Characterization, and Low Temperature Transport Properties of Eu11-xYbxCd6Sb12 Solid-Solution Zintl Phases.

    PubMed

    Kazem, Nasrin; Cooley, Joya; Burks, Edward C; Liu, Kai; Kauzlarich, Susan M

    2016-12-05

    Eu11-xYbxCd6Sb12 Zintl solid solutions have been prepared by tin flux reaction by employing the elements Eu/Yb/Cd/Sb/Sn in the ratio 11 - xp:xp:6:12:30, where xp is an integer less than 11 representing the preparative amount of Eu (11 - xp) and Yb (xp). Efforts to make the Yb compositions for x exceeding ∼3 resulted in structures other than the Sr11Cd6Sb12 structure type. The crystal structures and compositions were determined by single-crystal and powder X-ray diffraction and wavelength-dispersive X-ray analysis measurements. The title solid-solution Zintl compounds crystallize in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58), and the lattice parameters decrease with increasing ytterbium content. Single crystal X-ray diffraction shows that Yb atoms are not randomly distributed in the Eu sites but have a site preference which can be attributed to size effects. The influence of the rare earth (RE) metal sites on thermal and electronic properties of RE11Cd6Sb12 solid solutions has been studied by measuring their thermoelectric properties from 5 to 300 K after consolidation by either spark plasma sintering (SPS) or hot pressing (HP). Electron microprobe analysis reveals that some of the rare earth metal is lost during SPS; as a result pellets formed through SPS have lower electrical resistivity by an order of magnitude due to increased hole-charge carrier concentrations. While the carrier concentration increases, the mobility decreases due to deficiencies in Eu content. Refinement of powder X-ray diffraction shows that Eu loss is mainly from the Eu1 crystallographic site, which has a unique coordination suggesting that this site plays a key role in the transport properties of RE11Cd6Sb12.

  11. First-Order Structural Change Accompanied by Yb Valence Transition in YbInCu4

    NASA Astrophysics Data System (ADS)

    Tsutsui, Satoshi; Sugimoto, Kunihisa; Tsunoda, Ryoma; Hirose, Yusuke; Mito, Takeshi; Settai, Rikio; Mizumaki, Masaichiro

    2016-06-01

    A diffraction experiment using high-energy X-rays was carried out on YbInCu4. Below the Yb valence transition temperature, the splitting of Bragg peaks was detected in high-order reflections. No superlattice reflections accompanying the valence ordering were found below the transition temperature. These experimental findings indicate that a structural change from a cubic structure to a tetragonal structure without valence ordering occurs at the transition temperature. Such a structural change free from any valence ordering is difficult to understand only in terms of Yb valence degrees of freedom. This means that the structural change may be related to electronic symmetries such as quadrupolar degrees of freedom as well as to the change in Yb valence.

  12. Yb3+ borate laser glasses containing high-valency cations

    NASA Astrophysics Data System (ADS)

    Izumitani, Tetsuro; Hu, Lili; Dai, Shixun; Jiang, Zhonghong

    1999-07-01

    A new kind of Yb3+ borate laser glass containing high valency cations was reported in this work. B2O3-ZnO and B2O3-BaO glasses were chosen as the base glasses of Yb$3+)-BaO glasses were chosen as the base glasses of Yb3+ ions. Yb3+ ion has a large integrated absorption area in the former and longer fluorescent lifetime in the latter. The effect of Al3+, La3+, Ti3+, Zr4+, Nb4+ Ta5+, W6+ high valency cations on the absorption and fluorescent behaviors of Ba2O3-ZnO- RmOn-Yb2O3 and B2O3-BaO-RmOn-Yb2O3 glasses was examined. Some Yb3+ borate laser glasses with high cross section for stimulated emissions, good stability, good stability against devitrification and lower non-linear refractive index were presented.

  13. Evolution of Yb-particle fractals towards equilibrium morphology on CoYb alloy thin films

    NASA Astrophysics Data System (ADS)

    Liu, B. X.; Ding, J. R.

    1991-11-01

    Room temperature ageing and high temperature annealing were conducted to study the restructuring of the ion induced fractal aggregates on CoYb alloy thin films. The evolution of the nonequilibrium fractals towards equilibrium compact clusters was observed by tracing the microstructure change under transmission electron microscopy examination. The fractal aggregates restructured and eventually turned into an equilibrium morphology of Yb particles distributing uniformly on the film surfaces.

  14. LiYbCl4(THF)4

    PubMed Central

    Richtera, Lukas; Jancik, Vojtech; Hermanova, Sona; Krpoun, Karel; Thompson-Montero, Kimberly

    2011-01-01

    The title compound, di-μ-chlorido-dichlorido-1κ2 Cl-tetra­kis­(tetra­hydro­furan)-1κ2 O,2κ2 O-lithiumytterbium(III), [LiYbCl4(C4H8O)4], was prepared by the reaction of YbCl3(THF)3 with LiCl in THF (THF is tetra­hydro­furan). The central motif of the structure is a Yb(μ-Cl)2Li ring. The Yb atom is hexa­coordinated to four Cl atoms and two THF mol­ecules oriented in a trans fashion. The Li atom has a tetra­hedral environment and is coordinated to two Cl atoms and two THF mol­ecules. No inter­molecular inter­actions other than van der Waals forces were observed. Two of the THF mol­ecules are disordered over two positions. PMID:21754604

  15. Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystals.

    PubMed

    Zeng, Xionghui; Zhao, Guangjun; Xu, Jun

    2006-09-01

    0.5 at.% Yb:YAlO(3)(YAP), 5 at.% Yb:YAP and 15 at.% Yb:YAP were grown using the Czochralski method. Their absorption and fluorescence spectra were measured at room temperature and their emission line shape was calculated using the method of reciprocity. It was observed that the fluorescence spectra changed appreciably with the increasing of Yb concentration. For 0.5 at.% Yb:YAP, the line shape of fluorescence is very similar with the calculated emission line shape; with the increasing of Yb doping concentration, the line shape of fluorescence is very different from the calculated emission line shape. These phenomena are caused by the strong self-absorption at 979 and 999 nm for Yb:YAP.

  16. Applications of TM polarized illumination

    NASA Astrophysics Data System (ADS)

    Smith, Bruce; Zhou, Jianming; Xie, Peng

    2008-03-01

    The use of transverse electric (TE) polarization has dominated illumination schemes as selective polarization is used for high-NA patterning. The benefits of TE polarization are clear - the interference of diffracted beams remains absolute at oblique angles. Transverse magnetic (TM) polarization is usually considered less desirable as imaging modulation from interference at large angle falls off rapidly as the 1/cosθ. Significant potential remains, however, for the use of TM polarization at large angles when its reflection component is utilized. By controlling the resist/substrate interface reflectivity, high modulation for TM polarization can be maintained for angles up to 90° in the resist. This can potentially impact the design of illumination away from most recent TE-only schemes for oblique imaging angles (high NA). We demonstrate several cases of TM illumination combined with tuned substrate reflectivity for 0.93NA, 1.20NA, and 1.35NA and compare results to TE and unpolarized cases. The goal is to achieve a flat response through polarization at large imaging angles. An additional application of TM illumination is its potential use for double patterning. As double patterning and double exposure approaches are sought in order to meet the needs of 32nm device generations and beyond, materials and process engineering challenges become prohibitive. We have devised a method for frequency doubling in a single exposure using an unconventional means of polarization selection and by making use of the reflective component produced at the photoresist/substrate interface. In doing so, patterns can be deposited into a photoresist film with double density. As an example, using a projection system numerical aperture of 1.20, with water as an immersion fluid, and a conventional polyacrylate 193nm photoresist, pattern resolution at 20nm half-pitch are obtainable (which is 0.125lambda/NA). The process to transfer this geometry into a hardmask layer uses conventional materials

  17. Rare earth-copper-magnesium compounds RECu{sub 9}Mg{sub 2} (RE=Y, La-Nd, Sm-Ho, Yb) with ordered CeNi{sub 3}-type structure

    SciTech Connect

    Solokha, P. . E-mail: solokha_pavlo@yahoo.com; Pavlyuk, V.; De Negri, S.; Prochwicz, W.

    2006-10-15

    A series of ternary compounds RECu{sub 9}Mg{sub 2} (RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb) have been synthesized via induction melting of elemental metal ingots followed by annealing at 400 deg. C for 4 weeks. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS) was used for examining microstructure and phase composition. These phases crystallize with an ordered version of the binary hexagonal structure type first reported for CeNi{sub 3}. The crystal structure was solved for TbCu{sub 9}Mg{sub 2} from single crystal X-ray counter data (TbCu{sub 9}Mg{sub 2}-structure type, P6{sub 3} /mmc-space group, hP24-Pearson symbol, a=0.49886 (7) nm, c=1.61646 (3) nm, R {sub F}=0.0474 for 190 unique reflections). The Rietveld refinement of the X-ray powder diffraction patterns of RECu{sub 9}Mg{sub 2} confirmed the same crystal structure for the reported rare earth metals. The unit cell volumes for RECu{sub 9}Mg{sub 2} smoothly follow the lanthanide contraction. The existence of a RECu{sub 9}Mg{sub 2} phase was excluded for RE=Er Tm under the investigated experimental conditions. - Graphical abstract: The perspective view of the arrangement of the icosahedrons and anti-cubooctahedrons in the structure of TbCu{sub 9}Mg{sub 2}.

  18. Influence of rare earth cation size on the crystal structure in rare earth silicates, Na2RESiO4(OH) (RE = Sc, Yb) and NaRESiO4 (RE = La, Yb)

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Wilkins, Branford O.; Chance, W. Michael; Smith, Mark D.; zur Loye, Hans-Conrad

    2016-01-01

    Crystals of Na2ScSiO4(OH) and Na2YbSiO4(OH) were synthesized at low temperatures using a sodium hydroxide based hydroflux, while crystals of NaLaSiO4 and NaYbSiO4 were grown at high temperatures using a sodium fluoride/sodium chloride eutectic flux. Both structure types were crystallized under reaction conditions that, when used for medium sized rare earths (RE = Pr, Nd, Sm - Tm) yield the Na5RE4X[SiO4]4 structure type, where X is OH in the hydroflux conditions and F in the eutectic flux conditions. Herein, we report the synthesis, structure, size effect, and magnetic properties of these compositions and introduce the new structure type of Na2RESiO4(OH), which crystallizes in the orthorhombic space group Pca21, of NaLaSiO4, which crystallizes in the orthorhombic space group Pna21, and of NaYbSiO4, which crystallizes in the orthorhombic space group Pnma, where both NaRESiO4 compounds have one silicon structural analog.

  19. Magnetic properties of EuLn{sub 2}O{sub 4} (Ln=rare earths)

    SciTech Connect

    Hirose, Keiichi; Doi, Yoshihiro; Hinatsu, Yukio

    2009-07-15

    Ternary rare earth oxides EuLn{sub 2}O{sub 4} (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe{sub 2}O{sub 4}-type structure with space group Pnma. {sup 151}Eu Moessbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu{sub 2}O{sub 4}, it is considered that ferromagnetic chains of Eu{sup 2+} are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu{sup 2+} chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu{sup 2+} ions interact with the Ln{sup 3+} ions, which would overcome the magnetic frustration of triangularly aligned Ln{sup 3+} ions and the EuLn{sub 2}O{sub 4} compounds show a simple antiferromagnetic behavior. - Graphical abstract: Ternary rare earth oxides EuLn{sub 2}O{sub 4} (Ln=Gd, Dy-Lu) crystallized in an orthorhombic CaFe{sub 2}O{sub 4}-type structure with space group Pnma. Moessbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. It is considered that ferromagnetic chains of Eu{sup 2+} are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu{sup 2+} chains antiparallel.

  20. R5Pn3-type Phases of the Heavier Trivalent Rare-Earth-Metal Pnictides (Pn=Sb, Bi): New Phase Transitions for Er5Sb3 and Tm5Sb3

    SciTech Connect

    Gupta, S.; Leon-Escamilla, E.; Wang, F.; Miller, G.; Corbett, J.

    2009-04-02

    The syntheses and distributions of binary R{sub 5}Pn{sub 3} phases among the hexagonal Mn{sub 5}Si{sub 3} (M), and the very similar orthorhombic {beta}-Yb{sub 5}Sb{sub 3} (Y) and Y{sub 5}Bi{sub 3} (YB) structure types have been studied for R = Y, Gd-Lu and Pn = Sb, Bi. Literature reports of M and YB-type structure distributions among R{sub 5}Pn{sub 3} phases, R = Y, Gd-Ho, are generally confirmed. The reported M-type Er{sub 5}Sb{sub 3} could not be reproduced. Alternate stabilization of Y-type structures by interstitials H or F has been disproved for these nominally trivalent metal pnictides. Single crystal structures are reported for (a) the low temperature YB form of Er{sub 5}Sb{sub 3} (Pnma, a = 7.9646(9) {angstrom}, b = 9.176(1) {angstrom}, c = 11.662(1) {angstrom}), (b) the YB- and high temperature Y-types of Tm{sub 5}Sb{sub 3} (both Pnma, a = 7.9262(5), 11.6034(5) {angstrom}, b = 9.1375(6), 9.1077(4) {angstrom}, c = 11.6013(7), 7.9841(4) {angstrom}, respectively), and (c) the YB structure of Lu{sub 5}Sb{sub 3}, a = 7.8847(4) {angstrom}, b = 9.0770(5) {angstrom}, c = 11.5055(6) {angstrom}. Reversible, temperature-driven phase transitions ({beta}-Yb{sub 5}Sb{sub 3} Y{sub 5}Bi{sub 3} types) for the former Er{sub 5}Sb{sub 3} and Tm{sub 5}Sb{sub 3} around 1100 C and the means of quenching the high temperature Y form, have been established. According to their magnetic susceptibilities, YB-types of Er{sub 5}Sb{sub 3} and Tm{sub 5}Sb{sub 3} contain trivalent cations. Tight-binding linear muffin-tin-orbital method within the atomic sphere approximation (TB-LMTO-ASA) calculations for the two structures of Tm{sub 5}Sb{sub 3} reveal generally similar electronic structures but with subtle Tm-Tm differences supporting their relative stabilities. The ambient temperature YB-Tm{sub 5}Sb{sub 3} shows a deep pseudogap at EF, approaching that of a closed shell electronic state. Short R-R bonds (3.25-3.29 {angstrom}) contribute markedly to the structural stabilities of both types

  1. Stereocorrelation of Landsat TM images

    NASA Technical Reports Server (NTRS)

    Ehlers, Manfred; Welch, R.

    1987-01-01

    A digital elevation model (DEM) developed from Landsat TM images of a rugged terrain area in north Georgia by automated stereocorrelation techniques yielded an rms error (z), RMSE(z), value of + or - 42 m. Based on the B/H ratio of 0.18 for the Landsat data, this Z-error corresponds to a planimetric correlation accuracy of about + or - 0.3 pixels, confirming that precise correlation can be achieved with operational satellite data. Contours at a 100-m interval interpolated from the DEM show a deviation of + or - 33 m from reference contours obtained from existing 1:24,000-scale maps. The 28.5-m pixel resolution and the weak B/H ratio impose limitations on the accuracy that can be achieved with Landsat TM data. However, it is anticipated that RMSE(z) values of + or - 10 m or less can be achieved with SPOT-1 panchromatic stereo images of 10-m resolution recorded at B/H ratios of 0.5 to 1.0. DEMs generated by stereocorrelation techniques can be used to create orthoimages, perspective views, and topographic map products.

  2. Diode-pumped regenerative Yb:SrF2 amplifier

    NASA Astrophysics Data System (ADS)

    Ricaud, S.; Georges, P.; Camy, P.; Doualan, J.-L.; Moncorgé, R.; Courjaud, A.; Mottay, E.; Druon, F.

    2012-03-01

    We report what we believe to be the first Yb:SrF2 regenerative femtosecond amplifier. The regenerative amplifier produces 325-fs pulses at 100-Hz repetition rate with an energy before compression of 1.4 mJ. The interest of Yb:SrF2 in such regenerative amplifiers and its complementarity to its well-known isotype Yb:CaF2 is also discussed.

  3. Phonon Drag and Magnetic Anomalies, of Thermopower, in RB12 (R = Ho, Er, Tm, Lu)

    NASA Astrophysics Data System (ADS)

    Glushkov, V.; Demishev, S.; Ignatov, M.; Khayrullin, E.; Sluchanko, N.; Shitsevalov, N.; Levchenko, A.; Filipov, V.; Flachbart, K.; Siemensmeyer, K.

    2008-01-01

    High precision measurements of the Seebeck coefficient S(T) were carried out on the single crystals of RB12 (R = Ho, Er, Tm, Lu) at temperatures 2-300 K. It was shown that the effects of phonon drag result from vibrations of rare earth ions (ℏ ωE≈10-33 meV) in the rigid framework structure of the B12 clusters and determine the main contribution to thermopower at intermediate temperatures (30-300 K). The correlated behavior of transport parameters favors the appreciable enhancement of spin fluctuations in the sequence of magnetic compounds (HoB12-TmB12) when approaching to the valence instability state in YbB12. The giant increase in S(T) detected in the vicinity of the Néel temperature TN for HoB12, ErB12, and TmB12 seems to result from the density of states renormalization caused by antiferromagnetic ordering.

  4. Silicidation of Ni(Yb) Film on Si(001)

    NASA Astrophysics Data System (ADS)

    Luo, Jia; Jiang, Yu-Long; Ru, Guo-Ping; Li, Bing-Zong; Chu, Paul K.

    2008-03-01

    The influence of the addition of Yb to Ni on the silicidation of Ni was investigated. The Ni(Yb) film was deposited on a Si(001) substrate by co-sputtering, and silicidation was performed by rapid thermal annealing (RTA). After silicidation, the sheet resistance of the silicide film was measured by the four-point probe method. X-ray diffraction and micro-Raman spectroscopy were employed to identify the silicide phases, and the redistribution of Yb after RTA was characterized by Rutherford backscattering spectrometry and Auger electron spectroscopy. The influence of the Yb addition on the Schottky barrier height (SBH) of the silicide/Si diode was examined by current voltage measurements. The experimental results reveal that the addition of Yb can suppress the formation of the high-resistivity Ni2Si phase, but the formation of low-resistivity NiSi phase is not affected. Furthermore, after silicidation, most of the Yb atoms accumulate in the surface layer and only a small number of Yb atoms pile up at the silicide/Si(001) interface. It is believed that the accumulation of a small amount of Yb at the silicide/Si(001) interface results in the SBH reduction observed in the Ni(Yb)Si/Si diode.

  5. Power scaling of cryogenic Yb:LiYF(4) lasers.

    PubMed

    Zapata, Luis E; Ripin, Daniel J; Fan, Tso Yee

    2010-06-01

    We demonstrate a cryogenically cooled Yb:LiYF(4) (Yb:YLF) laser with 224W linearly polarized output power (pump-power limited) and a slope efficiency of 68%. The beam quality is characterized by an M(2) approximately 1.1 at 60W output and M(2) approximately 2.6 at 180W output. This level of average laser power is approximately 2 orders of magnitude higher than demonstrated previously in cryogenic Yb:YLF. Yb:YLF is attractive for femtosecond pulse generation because of its wide gain bandwidth, and this demonstration shows the potential for high-average-power subpicosecond pulse lasers.

  6. Temperature Dependence of the Yb 4f Spectra in Yb4Bi3 Probed by Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harada, Hideyuki; Sekiyama, Akira; Suga, Shigemasa; Imada, Shin; Muro, Takayuki; Jung, Ran-Ju; Matsuda, Kyoko; Takagi, Hiroshi; Ochiai, Akira; Suzuki, Takashi; Harima, Hisatomo

    1999-08-01

    We have performed a photoemission study of Yb4Bi3. Thevalence band spectra have shown no multiplet structures associatedwith the trivalent Yb and revealed that the mean valence of the Yb ionis very close to 2.0. The divalent Yb 4f spectra have shown strongsurface components besides weak but sharp bulk components. The surface4f level shift is about 0.45 eV (300 K), 0.48 eV (150 K) and0.54 eV (20 K). A clear energy shift of the bulk Yb 4f peaks towardEF with decreasing temperature has been observed, althoughYb4Bi3 shows neither phase transition nor crossover. Such anunusual peak shift of the bulk component may originate from a changeof the lattice constant with decreasing temperature. The observednarrowing of the bulk 4f peaks is thought to be due to a phononbroadening (˜7 k BT).

  7. Thermodynamics of the hydration equilibrium derived from the luminescence spectra of the solid state for the case of the Eu-EDTA system.

    PubMed

    Janicki, R; Mondry, A

    2015-11-28

    The luminescence properties of two compounds, [C(NH2)3][Eu(EDTA)(H2O)3] (I) and [C(NH2)3]2[Yb0.97Eu0.03(EDTA)(H2O)2]ClO4·6H2O (II), were determined. The weighted sum of luminescence spectra of I and II was used to reproduce the spectra of the Eu-EDTA system in aqueous solution in the temperature range 276-363 K. By implementing this method it was possible to determine the thermodynamic functions (ΔH = 18113 ± 506 J mole(-1) and ΔS = 62.5 ± 4.9 J mole(-1) K(-1)) of the reaction [Eu(EDTA)(H2O)3](-)⇆ [Eu(EDTA)(H2O)2](-) + H2O, which is difficult using other methods.

  8. Synthesis and Characterization of YB4 Ceramics

    DTIC Science & Technology

    2011-06-24

    capa bility at temperatures above 2000°C1 with adequate mechani cal properties and oxidation resistance. Refractory metal borides based on HfB2 and ZrB2...increase in the oxidation resistance was accomplished by the addition of the Group IV VI transition metal borides , which was the result of phase...metal borides for use as materials for ultra high temper ature (UHT) applications. However, for instance, yttrium tet raboride, YB4, appears promising as

  9. Scaling of Yb-Fiber Frequency Combs

    NASA Astrophysics Data System (ADS)

    Ruehl, Axel; Marcinkevicius, Andrius; Fermann, Martin E.; Hartl, Ingmar

    2010-06-01

    Immediately after their introduction in 1999, femtosecond laser frequency combs revolutionized the field of precision optical frequency metrology and are key elements in many experiments. Frequency combs based on femtosecond Er-fiber lasers based were demonstrated in 2005, allowing additionally rugged, compact set-ups and reliable unattended long-term operation. The introduction of Yb-fiber technology led to an dramatic improvement in fiber-comb performance in various aspects. Low-noise Yb-fiber femtosecond oscillators enabled a reduction of relative comb tooth linewidth to the sub-Hz level as well as scaling of the fundamental comb spacings up to 1 GHz. This is beneficial for any frequency-domain comb application due to the higher power per comb-mode. Many spectroscopic applications require, however, frequency combs way beyond the wavelength range accessible with broad band laser materials, so nonlinear conversion and hence higher peak intensity is required. We demonstrated power scaling of Yb-fiber frequency combs up to 80 W average power in a strictly linear chirped-pulse amplification schemes compatible with low-noise phase control. These high-power Yb-fiber-frequency combs facilitated not only the extension to the mid-IR spectral region. When coupled to a passive enhancement cavity, the average power can be further scaled to the kW-level opening new capabilities for XUV frequency combs via high-harmonic generation. All these advances of fiber-based frequency combs will trigger many novel applications both in fundamental and applied sciences. Schibli et al., Nature Photonics 2 355 (2008). Hartl et al., MF9 in Advanced Solid-State Photonics. 2009, Optical Society of America. Ruehl et al., AWC7 in Advanced Solid-State Photonics. 2010, Optical Society of America. Adler et al., Optics Letters 34 1330 (2009). Yost et al., Nature Physics 5 815 (2009).

  10. Harmonic mode-locking in a Tm-doped fiber laser: Characterization of its timing jitter and ultralong starting dynamics

    NASA Astrophysics Data System (ADS)

    Bao, Chengying; Yang, Changxi

    2015-12-01

    We report an experimental characterization on harmonic mode-locking in a Tm-doped fiber laser, which exhibits pump related timing jitter and ultralong mode-locking starting dynamics. The laser is pumped by a laser diode seeded EDFA. Harmonic mode-locking is initiated by nonlinear polarization rotation and showed a good long term stability. Timing jitter is found to be significantly influenced by the properties of laser diode seed for the EDFA. When switching the seed from a Fabry-Perot cavity laser diode to a distributed feedback (DFB) laser diode, timing jitter decreases from 16 ps to 6 ps. It also takes the laser an ultralong self-starting time (> 100 s), 3 order of magnitude longer than typical Er-doped or Yb-doped fiber lasers, to reach a steady harmonic mode-locking in some cases. These experimental evidences can contribute to a better understanding of Tm-doped fiber lasers.

  11. Strategy for thermometry via Tm³⁺-doped NaYF₄ core-shell nanoparticles.

    PubMed

    Zhou, Shaoshuai; Jiang, Guicheng; Li, Xinyue; Jiang, Sha; Wei, Xiantao; Chen, Yonghu; Yin, Min; Duan, Changkui

    2014-12-01

    Optical thermometers usually make use of the fluorescence intensity ratio of two thermally coupled energy levels, with the relative sensitivity constrained by the limited energy gap. Here we develop a strategy by using the upconversion (UC) emissions originating from two multiplets with opposite temperature dependences to achieve higher relative temperature sensitivity. We show that the intensity ratio of the two UC emissions, ³F(2,3) and ¹G₄, of Tm³⁺ in β-NaYF₄:20%Yb³⁺, 0.5%Tm³⁺/NaYF₄:1%Pr³⁺ core-shell nanoparticles under 980 nm laser excitation exhibits high relative temperature sensitivity between 350 and 510 K, with a maximum of 1.53%  K⁻¹ at 417 K. This demonstrates the validity of the strategy, and that the studied material has the potential for high-performance optical thermometry.

  12. Monodisperse and core-shell structured SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho, and Tm) spherical particles: A facile synthesis and luminescent properties

    SciTech Connect

    Xu, Zhenhe; Feng, Bin; Bian, Shasha; Liu, Tao; Wang, Mingli; Gao, Yu; Sun, Di; Gao, Xin; Sun, Yaguang

    2012-12-15

    The core-shell structured SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+} particles were realized by coating the Lu{sub 2}O{sub 3}:Ln{sup 3+} phosphors onto the surface of non-aggregated, monodisperse and spherical SiO{sub 2} particles by the Pechini sol-gel method. The as-synthesized products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray (EDX) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photolumiminescence (PL), and low-voltage cathodoluminescence (CL). The results indicate that the 800 Degree-Sign C annealed sample consists of crystalline Lu{sub 2}O{sub 3} shells and amorphous SiO{sub 2} cores, in spherical shape with a narrow size distribution. The as-obtained particles show strong light emission with different colors corresponding to different Ln{sup 3+} ions under ultraviolet-visible light excitation and low-voltage electron beams excitation, which have potential applications in fluorescent lamps and field emission displays. - Graphical Abstract: Representative SEM and TEM images of the core-shell structured SiO{sub 2}-Lu{sub 2}O{sub 3}:Eu{sup 3+} particles; CIE chromaticity diagram showing the emission colors for SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+}; Multicolor emissions of SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+} particles. Highlights: Black-Right-Pointing-Pointer The core-shell particles were realized by coating the phosphors onto the surface of SiO{sub 2} particles. Black-Right-Pointing-Pointer The sample consists of crystalline Lu{sub 2}O{sub 3} shells and amorphous SiO{sub 2} cores. Black-Right-Pointing-Pointer The particles show different light emission colors corresponding to Ln{sup 3+} ions. Black-Right-Pointing-Pointer They have potential applications in fluorescent lamps and field emission displays.

  13. Yb doping concentration and temperature influence on Yb:LuAG thermal lensing

    NASA Astrophysics Data System (ADS)

    Veselský, Karel; Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2016-03-01

    The aim of this study was to investigate whether refractive power of thermal lens for Yb:LuAG crystal at cryogenic temperatures depends on Yb doping concentration which has not been examined yet. The three measured Yb:LuAG laser rods samples (length of 3 mm, diameter 3 mm, AR @ 0.94 μm and 1.03 μm, doping concentration 5.4, 8.4 and 16.6 at. % Yb/Lu) were mounted in the temperature controlled copper holder of the liquid nitrogen cryostat. Samples were longitudinally pumped with fiber coupled CW laser diode at 0.930 μm with the focal point 0.4 mm in diameter. The 38 mm long semi-hemispherical laser resonator consisted of a flat pump mirror (HR @ 1.03 μm and HT 0.94 μm) and curved output coupler (r=500 mm) of reflectivity 94 % @ 1.06 μm. The refractive power of thermal lens was estimated indirectly by measuring of change in the position of focused laser beam focal point. The measurement was performed for constant absorbed power of 10 W in temperature range from 80 up to 240 K. It was observed that cryogenic cooling caused reduction of thermal lens power, which increased linearly with increasing temperature. For temperatures from 80 to 160 K refractive power was identical for all concentration. For higher temperature the refractive power of thermal lens increased with increasing Yb3+ concentration. Presented study shows that application of cryogenic temperature leads to reduction of thermal effect even for high dopant concentration in Yb:LuAG crystal. This is essential for reaching of high output power while maintaining high beam quality.

  14. Cooperative energy transfer in Tb 3+/Yb 3+- and Nd 3+/Yb 3+/Tb 3+-codoped oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Chen, Q. J.; Qian, Q.; Zhang, Q. Y.; Jiang, Z. H.

    2010-02-01

    This paper reports on cooperative energy transfer and upconversion luminescence properties of Tb 3+/Yb 3+- and Nd 3+/Yb 3+/Tb 3+-codoped oxyfluoride glasses. Upon excitation with a 980 nm laser diode, an intense green upconversion luminescence along with weak ultraviolet (UV)-visible emissions has been observed in Yb 3+/Tb 3+-codoped oxyfluoride glasses. Power dependence of UV-visible upconversion luminescence intensity has been examined, revealing that a cooperative energy transfer mechanism from Yb 3+ ions is responsible for the excitation of Tb 3+ ions. Meanwhile, it is noticed that Tb 3+ upconversion emission bands have also been clearly detected at 487, 542, 587 and 620 nm in Nd 3+/Yb 3+/Tb 3+-codoped oxyfluoride glasses upon excitation with a 808 nm laser diode. The quadratic dependence of the upconversion luminescence on the pump-laser power indicates two-photon process for the population of Tb 3+: 5D 4 state via Nd 3+→Yb 3+→Tb 3+ energy transfer. However, no emission has been observed in the oxyfluoride glasses codoped with Yb 3+/Tb 3+ or Nd 3+/Tb 3+, respectively, upon excited at a 808 nm laser diode. A proposed upconversion mechanism involving energy transfer from Nd 3+ to Yb 3+, and then a cooperative energy transfer process from two excited Yb 3+ to Tb 3+ has been presented.

  15. From stable divalent to valence-fluctuating behaviour in Eu(Rh(1-x)Ir(x))2Si2 single crystals.

    PubMed

    Seiro, Silvia; Geibel, Christoph

    2011-09-21

    We have succeeded in growing high-quality single crystals of the valence-fluctuating system EuIr(2)Si(2), the divalent Eu system EuRh(2)Si(2) and the substitutional alloy Eu(Rh(1-x)Ir(x))(2)Si(2) across the range 0 < x < 1, which we characterized by means of x-ray diffraction, energy-dispersive x-ray spectroscopy, specific heat, magnetization and resistivity measurements. On increasing x, the divalent Eu ground state subsists up to x = 0.25 with a slight increase in Néel temperature, while for 0.3≤x < 0.7 a sharp hysteretic change in susceptibility and resistivity marks the first-order valence transition. For x≳0.7 the broad feature observed in the physical properties is characteristic of the continuous valence evolution beyond the critical end point of the valence transition line, and the resistivity is reminiscent of Kondo-like behaviour while the Sommerfeld coefficient indicates a mass renormalization of at least a factor of 8. The resulting phase diagram is similar to those reported for polycrystalline Eu(Pd(1-x)Au(x))(2)Si(2) and EuNi(2)(Si(1-x)Ge(x))(2), confirming its generic character for Eu systems, and markedly different to those of homologue Ce and Yb systems, which present a continuous suppression of the antiferromagnetism accompanied by a very smooth evolution of the valence. We discuss these differences and suggest them to be related to the large polarization energy of the Eu half-filled 4f shell. We further argue that the changes in the rare earth valence between RRh(2)Si(2) and RIr(2)Si(2) (R = Ce, Eu, Yb) are governed by a purely electronic effect and not by a volume effect.

  16. Electrodynamic response of the type-II Weyl semimetal YbMnBi2

    NASA Astrophysics Data System (ADS)

    Chinotti, M.; Pal, A.; Ren, W. J.; Petrovic, C.; Degiorgi, L.

    2016-12-01

    Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. Materials based on quasi-two-dimensional bismuth layers were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. Here, we perform an optical investigation of YbMnBi2, a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi2. Our comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challenges the present theoretical understanding of their electrodynamic response.

  17. Electrodynamic response of the type-II Weyl semimetal YbMnBi2

    DOE PAGES

    Chinotti, M.; Pal, A.; Ren, W. J.; ...

    2016-12-01

    Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less

  18. Structural, morphological and spectroscopic properties of Eu{sup 3+}-doped rare earth fluorides synthesized by the hydrothermalmethod

    SciTech Connect

    Grzyb, Tomasz; Runowski, Marcin; Szczeszak, Agata; Lis, Stefan

    2013-04-15

    Rare earth fluorides (REF{sub 3}, RE=Y, La, Gd or Yb) doped with 5% of Eu{sup 3+} ions were synthesized via the hydrothermal method and their physicochemical properties were compared. The synthesis was carried out in an aqueous medium at elevated pressure and temperature. The reaction was performed in situ, with use of NaBF{sub 4} as a source of fluoride ions. Structural and morphological properties of obtained nanophosphors were characterized with the use of powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. Synthesized products were nanocrystalline with hexagonal or orthorhombic crystal structures. They showed different morphology, from nanoplates to nanorings, depending on the used REF{sub 3} fluoride as the host for the Eu{sup 3+} ions. The elemental composition was confirmed by the energy-dispersive X-ray spectroscopy (EDX) results. Spectroscopic properties were investigated by measuring the excitation and emission spectra. Also luminescence lifetimes were determined. The synthesized materials showed bright red luminescence, due to the presence of Eu{sup 3+} ions in their structure. - Graphical abstract: Luminescence spectra of the REF{sub 3}:Eu{sup 3+} (RE=Y, La, Gd and Yb) fluorides and their TEM images as background. Highlights: ► Nanocrystalline fluorides were synthesized using modified hydrothermal method. ► Structural and morphological properties of in situ prepared nanomaterials were studied. ► Luminescence properties of REF{sub 3}:Eu{sup 3+} (RE=Y, La, Gd, Yb) were compared and investigated.

  19. Anisotropic magnetization and transport properties of RAgSb2 (R=Y, La-Nd, Sm, Gd-Tm)

    SciTech Connect

    Myers, Kenneth D.

    1999-11-08

    This study of the RAgSb2 series of compounds arose as part of an investigation of rare earth intermetallic compounds containing antimony with the rare earth in a position with tetragonal point symmetry. Materials with the rare earth in a position with tetragonal point symmetry frequently manifest strong anisotropies and rich complexity in the magnetic properties, and yet are simple enough to analyze. Antimony containing intermetallic compounds commonly possess low carrier densities and have only recently been the subject of study. Large single grain crystals were grown of the RAgSb2 (R=Y, La-Nd, Sm, Gd-Tm) series of compounds out of a high temperature solution. This method of crystal growth, commonly known as flux growth is a versatile method which takes advantage of the decreasing solubility of the target compound with decreasing temperature. Overall, the results of the crystal growth were impressive with the synthesis of single crystals of LaAgSb2 approaching one gram. However, the sample yield diminishes as the rare earth elements become smaller and heavier. Consequently, no crystals could be grown with R=Yb or Lu. Furthermore, EuAgSb2 could not be synthesized, likely due to the divalency of the Eu ion. For most of the RAgSb2 compounds, strong magnetic anisotropies are created by the crystal electric field splitting of the Hund's rule ground state. This splitting confines the local moments to lie in the basal plane (easy plane) for the majority of the members of the series. Exceptions to this include ErAgSb2 and TmAgSb2, which have moments along the c-axis (easy axis) and CeAgSb2, which at intermediate temperatures has an easy plane, but exchange coupling at low temperatures is anisotropic with an easy axis. Additional anisotropy is also observed within the basal plane of DyAgSb2, where the moments are restricted to align along one of the <110> axes. Most of the

  20. Luminescent and scintillation properties of YAG:Tm and YAG:Ce,Tm single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Suchocki, A.; Wrzesinski, H.; Walczyk, K.; Fabisiak, K.; Bilski, P.; Twardak, A.

    2014-08-01

    The paper is dedicated to studying the luminescent and scintillation properties of the single crystalline films (SCF) of Tm and Tm-Ce doped Y3Al5O12 garnets grown by the liquid phase epitaxy method. We have found that the effective Tm → Ce energy transfer is observed in YAG:Ce,Tm SCF. As a result of such transfer, the scintillation light yield of YAG:Ce,Tm SCF under α-particles excitation can be large in comparison with YAG:Ce SCF counterpart.

  1. Transmission electron microscopy study of the MgS–Tm{sub 2}S{sub 3} system

    SciTech Connect

    Varadé-López, R.; Ávila-Brande, D.; Urones-Garrote, E.; Otero-Díaz, L.C.

    2015-09-15

    This work presents the structural–microstructural characterization of the NaCl-derivative MgS–Tm{sub 2}S{sub 3} system, which can be formulated by the expression Mg{sub (1−x)}Tm{sub (2/3)x}□{sub (1/3)x}S (□→cation vacancy). Transmission electron microscopy observations show the transition between NaCl-type and spinel-type structures when 0 ≤x≤ 0.75. The increase of Tm content in the solid solution provokes the increase of the spinel-type phase proportion, which intergrows with the NaCl-type crystals. When x≥0.75, some phases derived from NaCl-type structure through the chemical twinning at the unit cell level crystallographic operation are observed, such as CT-MgTm{sub 2}S{sub 4} and CT-MgTm{sub 4}S{sub 7}. The existence and nature of the extended defects observed along the c direction of these structures are characterized by means of Scanning-Transmission electron microscopy high-angle dark field imaging, which allows observing the presence of quasi ordered crystals with new possible complex stoichiometries at atomic resolution. - Graphical abstract: HAADF-STEM image of a disordered CT-MgYb{sub 2}S{sub 4} crystal. The disordered twin-slab sequences are marked by arrows. - Highlights: • Structural evolution of the Mg{sub (1−x)}Tm{sub (2/3)x}□{sub (1/3)x}S system was characterized by means of TEM. • The increase in Tm content provokes the transition from NaCl to spinel-type structure up to x=0.75. • Chemical twinned phases CT-MgTm{sub 2}S{sub 4} and CT-MgTm{sub 4}S{sub 7} are observed at high Tm contents. • Extended defects in CT-crystals are characterized with atomic resolution STEM-HAADF images.

  2. Structure induced Yb valence changes in the solid solution Yb(x)Ca(1-x)C2.

    PubMed

    Link, Pascal; Glatzel, Pieter; Kvashnina, Kristina; Trots, Dmytro M; Smith, Ronald I; Ruschewitz, Uwe

    2013-06-17

    The solid solution Yb(x)Ca(1-x)C2 (0 ≤ x ≤ 1) was synthesized by reaction of the elements at 1323 K. The crystal structures within this solid solution, as elucidated from synchrotron powder diffraction data, depend on x and exhibit some interesting features that point to a structure dependent valence state of Yb. Compounds with x ≥ 0.75 crystallize in the tetragonal CaC2 type structure (I4/mmm, Z = 2) and obey Vegard's law; for x ≤ 0.75 the monoclinic ThC2 type structure (C2/c, Z = 4) is found, which coexists with the monoclinic CaC2-III type structure (C2/m, Z = 4) for x ≤ 0.25. The monoclinic modifications show a strong deviation from Vegard's law. Their unit cell volumes are remarkably larger than expected for a typical Vegard system. HERFD-XANES spectroscopic investigations reveal that different Yb valence states are responsible for the observed volume anomalies. While all tetragonal compounds contain mixed-valent Yb with ∼75% Yb(3+) (similar to pure YbC2), all monoclinic modifications contain exclusively Yb(2+). Therefore, Yb(x)Ca(1-x)C2 is a very rare example of a Yb containing compound showing a strong structure dependence of the Yb valence state. Moreover, temperature dependent synchrotron powder diffraction, neutron TOF powder diffraction, and HERFD-XANES spectroscopy experiments reveal significant Yb valence changes in some compounds of the Yb(x)Ca(1-x)C2 series that are induced by temperature dependent phase transitions. Transitions from the tetragonal CaC2 type structure to the monoclinic ThC2 or the cubic CaC2-IV type structure (Fm3m, Z = 4) are accompanied by drastic changes of the mean Yb valence from ∼2.70 to 2.0 in compounds with x = 0.75 and x = 0.91. Finally, the determination of lattice strain arising inside the modifications with ordered dumbbells (ThC2 and CaC2 type structures) by DSC measurements corroborated our results concerning the close relationship between crystal structure and Yb valence in the solid solution Yb(x)Ca(1-x

  3. Abnormal size-dependent upconversion emissions and multi-color tuning in Er3+-doped CaF2-YbF3 disordered solid-solution nanocrystals.

    PubMed

    Chen, Daqin; Lei, Lei; Xu, Ju; Yang, Anping; Wang, Yuansheng

    2013-03-01

    A series of Er(3+)-doped (1 - x)CaF(2)-xYbF(3) (0 ≤ x ≤ 0.6) disordered solid-solution nanocrystals with various mean sizes were successfully prepared by a facile solvothermal route. Interestingly, abnormal size-dependent upconversion emissions were demonstrated in these nanocrystals for the first time. With increasing grain size, an obvious enhancement of red to green emission ratio was observed in the Er(3+) (2 mol%): 0.4CaF(2)-0.6YbF(3) nanocrystals, which is the opposite of the routine size-dependent upconversion emission behavior reported previously. Taking Eu(3+) ions as a structural probe, we investigated the influence of a disordered solid-solution structure on Ln(3+) luminescence, and proposed that Ln(3+) clusters formed in the host should play a key role to induce this unusual size-dependent upconversion emission phenomenon. As a consequence, multi-colors such as green, yellow, and red upconversion emissions can be easily realized by appropriately modifying the Yb(3+) content in the Er(3+)-doped (1 - x)CaF(2)-xYbF(3) nanocrystals. The reported results will deepen the understanding of size effects on the lanthanide upconversion in nanocrystals.

  4. Nd3+/Yb3+ energy transfer in oxyfluoride silicate glass

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin

    2009-06-01

    In this work the energy transfer between Nd3+ and Yb3+ ions in oxyfluoride silicate glass at room temperature was analyzed. In order to match energy transfer (Nd3+ -> Yb3+), absorption cross-section of glass doped with various Yb3+ ions concentration and emission cross-section of glass doped with Nd3+ were calculated. The percentage efficiency of energy transfer calculated according to the Dextera-Forster model for the glass doped with 0.15Nd3+ : 0.75Yb3+ amounts to 60%. The emission spectrum with 100 nm bandwidth of the Nd3+/Yb3+ co-doped glass samples under excitation at 808 nm was measured.

  5. Eu{sub 3}F{sub 4}S{sub 2}: Synthesis, crystal structure, and magnetic properties of the mixed-valent europium(II,III) fluoride sulfide EuF{sub 2}.(EuFS){sub 2}

    SciTech Connect

    Grossholz, Hagen; Hartenbach, Ingo; Kotzyba, Gunter; Poettgen, Rainer; Trill, Henning; Mosel, Bernd D.; Schleid, Thomas

    2009-11-15

    Using the method to synthesize rare-earth metal(III) fluoride sulfides MFS (M=Y, La, Ce-Lu), in some cases we were able to obtain mixed-valent compounds such as Yb{sub 3}F{sub 4}S{sub 2} instead. With Eu{sub 3}F{sub 4}S{sub 2} another isotypic representative has now been synthesized. Eu{sub 3}F{sub 4}S{sub 2} (tetragonal, I4/mmm, a=400.34(2), c=1928.17(9) pm, Z=2) is obtained from the reaction of metallic europium, elemental sulfur, and europium trifluoride in a molar ratio of 5:6:4 within seven days at 850 deg. C in silica-jacketed gas-tightly sealed platinum ampoules. The single-phase product consists of black plate-shaped single crystals with a square cross section, which can be obtained from a flux using equimolar amounts of NaCl as fluxing agent. The crystal structure is best described as an intergrowth structure, in which one layer of CaF{sub 2}-type EuF{sub 2} is followed by two layers of PbFCl-type EuFS when sheeted parallel to the (001) plane. Accordingly there are two chemically and crystallographically different europium cations present. One of them (Eu{sup 2+}) is coordinated by eight fluoride anions in a cubic fashion, the other one (Eu{sup 3+}) exhibits a monocapped square antiprismatic coordination sphere with four F{sup -} and five S{sup 2-} anions. Although the structural ordering of the different charged europium cations is plausible, a certain amount of charge delocalization with some polaron activity has to take place, which is suggested by the black color of the title compound. Temperature dependent magnetic susceptibility measurements of Eu{sub 3}F{sub 4}S{sub 2} show Curie-Weiss behavior with an experimental magnetic moment of 8.19(5) mu{sub B} per formula unit and a paramagnetic Curie temperature of 0.3(2) K. No magnetic ordering is observed down to 4.2 K. In accordance with an ionic formula splitting like (Eu{sup II})(Eu{sup III}){sub 2}F{sub 4}S{sub 2} only one third of the europium centers in Eu{sub 3}F{sub 4}S{sub 2} carry permanent

  6. Preliminary Evaluation of TM for Soils Information

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.; Houston, A. G.; Pitts, D. E.

    1985-01-01

    The capability of the LANDSAT TM for providing information for soil association maps and for detecting soil properties (variability within vegetated fields) was assessed using TM imagery of fields in Mississippi County, Arkansas that were planted with rice, cotton, and soybeans. Results indicate that the TM bands are providing information that is related to the soil properties within the field. Over large areas, these bands also appear to provide information that is related to the soil properties that are important to plant condition. While these results are only an indication of the information that TM can provide, they do indicate the TM data--especially, the mid-TR and thermal bands--show the capability for separating vegetated soil landscapes on a broad basis. The analysis at the field level with a growing crop also indicates that TM, with its additional and narrower bands and improved spatial and radiometric resolution is influenced by within field variability due to soils that has to be accounted for in the analysis of TM data.

  7. [Separation with ion exchange fiber column and determination of La, Nd, Eu and Gd in high purity ytterbium oxide by ICP-AES].

    PubMed

    Gong, Qi; Chen, Jie; Ji, Ri-Wen; Pan, Xue-Zhen; Wu, Juan

    2010-02-01

    In the present paper, trace La, Nd, Eu and Gd were separated and enriched with strong acid ion exchange fiber column from high purity Yb2 O3, and then determined by Optima 5 300 DV ICP-AES. The ion exchange fiber's breakthrough capacity for Yb was 134 mg x g(-1). The separation condition using 4.0 g fiber column was that after the test solution (pH = 3.0) was fed into the ion exchange fiber column at 1.0 mL x min(-1), the column was pre--leached by dilute nitric acid (pH = 3.00) of 80 mL at 1.5 mL x min(-1) at first, and then was eluted by 0.01 mol x L(-1) ammonium EDTA (pH = 5.00) at the same flow rate. The results showed that 10 mg Yb could reach the baseline separation with 0.100 microg of the four rare earth impurities, and after 100 mg Yb in feed solution had been separated, only 0.017 1 microg x mL(-1) Yb remained in the impurities enriched effluent. When the concentration of Yb2 O3 is less than 100 microg x mL(-1) (87.8 microg x mL(-1) Yb), the matrix interference from Yb on with determination of La, Nd, Eu and Gd can be neglected. The enrichment factors were 3.68 x 10(5) for La2 O3, 4.20 x 10(5) for Nds O3, 3.82 x 10(5) for Eu2 O3, and 4.01 x 10(5) for Gd2 O3, and the detection limits of the method were 0.005 0, 0.014, 0.001 8 and 0.008 2 pg x mL(-1) for La2 O3, Nd2 O3, Eu2 O3 and Gd2 O3 respectively. The proposed method was applied to the analysis of 99.99% Yb2 O3 with RSD (%, n = 5) of 6.2, 5.9, 7.3 and 2.5 for La2 O3, Nd2 O3, Eu2 O3 and Gd2 O3 respectively, and the average recoveries of standard addition were 94.2%, 107%, 97.8% and 102% for La2 O3, Nd2 O3, Eu2 O3 and Gd2 O3 respectively. The calibration curve did not need matrix matching with Yb, and the analysis period was within 4 hour.

  8. Ternary rare earth-lanthanide sulfides. [Re = Eu, Sm or Yb

    DOEpatents

    Takeshita, Takuo; Gschneidner, K.A. Jr.; Beaudry, B.J.

    1986-03-06

    Disclosed is a new ternary rare earth sulfur compound having the formula La/sub 3-x/M/sub x/S/sub 4/, where M is europium, samarium, or ytterbium, with x = 0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000/sup 0/C.

  9. Materials Data on EuYb2S4 (SG:122) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on EuYbSi4N7 (SG:186) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Nanosecond cryogenic Yb:YAG disk laser

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V

    2014-05-30

    A cryogenic Yb:YAG disk laser is modernised to increase its average and peak power. The master oscillator unit of the laser is considerably modified so that the pulse duration decreases to several nanoseconds with the same pulse energy. A cryogenic disk laser head with a flow-through cooling system is developed. Based on two such laser heads, a new main amplifier is assembled according to an active multipass cell scheme. The total small-signal gain of cryogenic cascades is ∼10{sup 8}. (lasers)

  12. NIR and CT luminescence spectra of [Yb(TFN)(S-BINAPO)] and [Yb(HFA)(S-BINAPO)] complexes.

    PubMed

    Subhan, Md Abdus; Nakata, Hiroyasu

    2014-09-15

    The complexes [Yb(TFN)3(S-BINAPO)](TFN=4,4,4-trifluoro-1(2-napthyl)-1,3-butanedione) (complex 1) and [Yb(HFA)3(S-BINAPO)](HFA=hexafluoroacetylacetonate) (complex 2) were synthesized, characterized. The absorption as well as PL spectra have been studied. The complex [Yb(TFN)3(S-BINAPO)] showed narrowed emission peak (half width ∼6 nm) at around 981 nm in addition to several emission peaks in NIR (near infrared) region. The complex [Yb(HFA)3(S-BINAPO)] showed strong emission peak at around 985 nm. The charge transfer luminescence of [Yb(TFN)3(S-BINAPO)] was also observed at 412-463 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila

    PubMed Central

    Saito, Kuniaki; Ishizu, Hirotsugu; Komai, Miharu; Kotani, Hazuki; Kawamura, Yoshinori; Nishida, Kazumichi M.; Siomi, Haruhiko; Siomi, Mikiko C.

    2010-01-01

    PIWI-interacting RNAs (piRNAs) protect genome integrity from transposons. In Drosophila ovarian somas, primary piRNAs are produced and loaded onto Piwi. Here, we describe roles for the cytoplasmic Yb body components Armitage and Yb in somatic primary piRNA biogenesis. Armitage binds to Piwi and is required for localizing Piwi into Yb bodies. Without Armitage or Yb, Piwi is freed from the piRNAs and does not enter the nucleus. Thus, piRNA loading is required for Piwi nuclear entry. We propose that a functional Piwi–piRNA complex is formed and inspected in Yb bodies before its nuclear entry to exert transposon silencing. PMID:20966047

  14. Spectral and Up-Conversion Dynamics and Their Relationship to the Laser Properties of BaYb2F8:Ho3+

    DTIC Science & Technology

    1988-11-15

    manifolds of Ho3 " are identified, and the branching ratios and radiative decay rates were calculated for the Hol levels from the Judd -Ofelt theory. The...of measurements of the absorption and emission spectra 3 F 7/2 8 at various temperatures as well as the results of a Judd - Yb Ho Ofelt analysis1 5’ 20...shows the 2.8- tm emission of Ho 3 at ions sit in a site of eightfold coordination with F anions room temperature since it was too weak to detect at 12

  15. Calorimetry Study of the Phase Diagrams of EuNi2Ge2 and Eu2Ni3Ge5 under Pressure

    NASA Astrophysics Data System (ADS)

    Esakki Muthu, Sankaran; Braithwaite, Daniel; Salce, Bernard; Nakamura, Ai; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2016-09-01

    We report here the phase diagrams of EuNi2Ge2 and Eu2Ni3Ge5 studied by ac calorimetry under pressure using a diamond anvil cell. We follow the antiferromagnetic transition for EuNi2Ge2 up to 1.5 GPa. The sudden disappearance of magnetic order at around 2 GPa is confirmed, consistent with the probable occurrence of a first-order valence transition near that pressure. The ac calorimetry results on Eu2Ni3Ge5 clearly show two antiferromagnetic transitions, and suggest that magnetic order persists up to higher pressure than previously expected. At high pressure, where heavy-fermion behavior has been reported, the Néel temperature is decreasing, and magnetic order is expected to disappear at an extrapolated pressure of 12-14 GPa. A semi quantitative analysis of the pressure dependence of the specific heat does not show any large changes, but is compatible with a moderate enhancement of γ. The phase diagrams of Yb and Ce heavy fermion systems are compared and discussed with our system.

  16. Radiotherapy and Antiangiogenic TM in Lung Cancer

    PubMed Central

    Khan, Mohamed K; Miller, Meredith W; Taylor, Jeremy; Gill, Navkiranjit K; Dick, Robert D; Van Golen, Kenneth; Brewer, George J; Merajver, Sofia D

    2002-01-01

    Abstract Tetrathiomolybdate (TM) is a potent nontoxic orally delivered copper complexing agent under development for the last several years for the treatment of Wilson's disease. It has been shown to block angiogenesis in primary and metastatic tumors. Therefore, the combination of cytotoxic radiotherapy (RT) and antiangiogenic TM could target both the existing tumor and the tumor microvasculature in a comprehensive strategy. Using a Lewis lung high metastatic (LLHM) carcinoma mouse tumor model, we demonstrate that the combination of TM and RT is more effective than either used as monotherapy. We also show that their therapeutic effects are additive, with no additional toxicity. We show that TM has no significant cytotoxicity in vitro against LLHM tumor cells, further supporting the antiangiogenic mechanism for its action. PMID:11896571

  17. The GEMnet (TM) global data communication

    NASA Technical Reports Server (NTRS)

    Yi, Byung K.; Chitty, Richard; Walters, Dave; Howard, Regan

    1995-01-01

    The GEMnet(TM) (Global Electronics Message network) will provide global digital data communications anywhere in the world at any time for minimum cost. GEMnet(TM) is an end-to-end Non-Voice Non-Geostationary Mobile Satellite (NVNG) (sometimes dubbed 'Little LEO') System which consists of a constellation of 38 low Earth orbiting small satellites and a ground segment. The GEMnet(TM) ground segment will consist of subscriber user terminals, gateway stations, a Network Operational Center(NOC), and a backbone network interconnecting the NOC and gateways. This paper will describe the GEMnet(TM) system concept including ground and space segments, system heritage, data communication services, and protocols.

  18. The GEMnet (TM) global data communication

    NASA Technical Reports Server (NTRS)

    Yi, Byung K.; Chitty, Richard; Walters, Dave; Howard, Regan

    1995-01-01

    The GEMnet(TM) (Global Electronics Message network) will provide global digital data communications anywhere in the world at any time for minimum cost. GEMnet(TM) is an end-to-end Non-Voice Non-Geostationary Mobile Satellite (NVNG) (sometimes dubbed 'Little LEO') System which consists of a constellation of 38 low Earth orbiting small satellites and a ground segment. The GEMnet(TM) ground segment will consist of subscriber user terminals, gateway stations, a Network Operational Center(NOC), and a backbone network interconnecting the NOC and gateways. This paper will describe the GEMnet(TM) system concept including ground and space segments, system heritage, data communication services, and protocols.

  19. Synthesis, crystal structure, and magnetism of A2Co12As7 (A=Ca, Y, Ce–Yb)

    SciTech Connect

    Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; Geondzhian, Andrey Y.; Yaroslavtsev, Alexander A.; Xin, Yan; Menushenkov, Alexey P.; Chernikov, Roman V.; Shatruk, Michael

    2015-08-28

    In this study, ternary intermetallics, A2Co12As7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P63/m variant of the Zr2Fe12P7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior of A2Co12As7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Finally, polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce2Co12As7 and Nd2Co12As7, respectively.

  20. Neutron-scattering studies of Yb-bearing silicate glasses

    SciTech Connect

    Ellison, A.J.G.; Loong, C.K.; Wagner, J.

    1993-09-01

    The static and dynamic magnetic response of the Yb{sup 3+} ions in 2Na{sub 2}O{center_dot}Yb{sub 2}O{sub 3}{center_dot}6SiO{sub 2} glass and the isochemical crystalline silicate Na{sub 3}YbSi{sub 3}O{sub 9} has been studied by neutron diffraction, inelastic magnetic-scattering, and magnetic susceptibility measurements. The rare earth sites in the glass have an average coordination number of 5.6 {plus_minus} 0.5 and give a mean rare earth-oxygen bond length of 2.23 {Angstrom}; average Si-O and O-O coordination numbers and bond distances are comparable to those in vitreous SiO{sub 2}. The magnetic excitation spectrum of the Na{sub 3}YbSi{sub 3}O{sub 9} material was analyzed by a crystal-field model using a method of descending symmetry. The magnetic susceptibility and the excitation spectrum of the Yb glasses can be described by a distribution of ligand-field effects on the Yb{sup 3+} ions that are similar to the nominal crystal field in crystalline Na{sub 3}YbSi{sub 3}O{sub 9}.

  1. LaRC(TM)-IA Copolyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.

    1995-01-01

    Copolyimides modified versions of LaRC(TM)-IA thermoplastic polyimide formulated by incorporating moieties of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and, alternatively, isophthaloyldiphthalic anhydride (IDPA) into LaRC(TM)-IA polymer backbones. Exhibit higher glass-transition temperatures and retain greater fractions of lower-temperature shear moduli at higher temperatures. Copolyimides spun into fibers or used as adhesives, molding powders, or matrix resins in many applications, especially in fabrication of strong, lightweight structural components of aircraft.

  2. EU pharmaceutical expenditure forecast

    PubMed Central

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and Objectives With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Method In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012–2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. Results According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (−€9,367 million), France

  3. Magnetic Properties of Liquid Gd-TM (TM = Mn, Fe, Co, Ni) Alloys

    NASA Astrophysics Data System (ADS)

    Ohno, Satoru; Shimakura, Hironori; Tahara, Shuta; Okada, Tatsuya

    2016-12-01

    Liquid Gd-TM (TM = Mn, Fe, Ni) alloys on the TM-rich side have relatively small and negative temperature coefficients of the magnetic susceptibility χ, which become large and negative with increasing Gd content. The large and negative temperature coefficient of χ for liquid Co gradually weakens at up to 70 at. % Co with the addition of Gd. Liquid Gd and GdcCo1-c alloys with c ≥ 0.5 also have a relatively large and negative temperature coefficient of χ. Liquid Gd-TM alloys on the Gd-rich side obey the Curie law. The magnetic susceptibilities of liquid Gd-Fe and Gd-Co alloys exhibit Curie-Weiss behavior on the TM-rich side. The dependence of χ on the composition for liquid Gd-TM (TM = Mn, Fe, Ni) alloys gradually increases with the Gd content, and that for liquid Gd-Co alloys has a minimum at the composition of 20 at. % Gd. The dependences of χ3d and χ4f on the composition due to the 3d- and 4f-electrons were analyzed by subtracting the corresponding data for liquid La-TM alloys from χ for the liquid Gd-TM alloys.

  4. Synthesis and structure of nanocrystalline mixed Ce–Yb silicates

    SciTech Connect

    Małecka, Małgorzata A. Kępiński, Leszek

    2013-07-15

    Graphical abstract: - Highlights: • New method of synthesis of nanocrystalline mixed lanthanide silicates is proposed. • Formation of A-type (Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} in well dispersed Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. • Formation of Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} in agglomerated Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. - Abstract: This work presents results of studies on synthesis and structure of mixed, nanocrystalline Ce–Yb silicates. Using TEM, XRD and FTIR we showed that heat treatment of nanocrystalline Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)} (x = 0.3, 0.5) mixed oxide supported on amorphous silica in reducing atmosphere, results in formation of Ce–Yb mixed silicates. Dispersion of the oxide on the silica surface and thus a local lanthanide/Si atomic ratio determines the stoichiometry of the silicate. Oxide crystallites uniformly dispersed on the silica surface transformed into A-(Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} disilicate, while the agglomerated nanoparticles converted into Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} oxyapatite silicate as an intermediate phase.

  5. EU Cadzie project

    NASA Astrophysics Data System (ADS)

    Naaim, M.

    2009-04-01

    The CADZIE project received nearly € 700,000 funding under the energy, environment and sustainable development section of the Fifth Framework Programme (FP5). Several scientists from France, Italy, Norway, Austria, Iceland and Switzerland were involved in this initiative, under the co-ordination of the Cemagref institute in Grenoble, France. The initiative was created in response to the extreme avalanche winter of 1999, during which 83 people were killed across Europe. Avalanche protection relies on two key processes: structural measures such as building defence structures to stop and / or contain the avalanche flow and non structural measures such as zoning the exposed areas. The consortium investigated these two areas in order to improve overall protection methods. This EU-funded collaboration has led to the development of more accurate methods for mapping and protection design.

  6. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    DOE PAGES

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squaredmore » Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  7. Spectroscopic properties of Eu3+, Dy3+ and Tb3+ ions in lead silicate glasses obtained by the conventional high-temperature melt-quenching technique

    NASA Astrophysics Data System (ADS)

    Żur, L.; Janek, J.; Sołtys, M.; Pisarska, J.; Pisarski, W. A.

    2013-11-01

    The luminescence properties of selected rare-earth ions in lead silicate glasses have been studied. Europium, dysprosium and terbium ions were chosen as active dopants. Based on excitation and emission measurements as well as luminescence decay analysis, some spectroscopic parameters for these lanthanide ions were determined. In particular, the intensity ratios R/O (Eu3+), Y/B (Dy3+) and G/B (Tb3+) were calculated. Luminescence lifetimes for the 5D0 state of Eu3+ ions, the 4F9/2 state of Dy3+ ions and the 5D4 state of Tb3+ ions were also determined.

  8. Er and Yb isotope fractionation in planetary materials

    NASA Astrophysics Data System (ADS)

    Albalat, Emmanuelle; Telouk, Philippe; Albarède, Francis

    2012-11-01

    Terrestrial planets are depleted in volatile elements relative to solar abundances. Little is known, however, about volatility at the high temperatures relevant to asteroidal collisions and to the giant lunar impact. Although refractory rare-earth elements have overall similar crystallochemical properties, some differ in their temperatures of condensation from the nebular gas. This is the case for Yb, which condenses at ˜1490K and in the vapor is mostly in elemental form. By contrast, Er, largely present as ErO, condenses at ˜1660K. We analyzed the Er and Yb isotopic compositions in 33 terrestrial basalts, garnets, different classes of chondrites and achondrites, and lunar samples by MC-ICP-MS. The range of mass-dependent isotope fractionation is larger for Yb (0.43‰ per amu) than Er (0.23‰) isotopes. For terrestrial rocks, a positive correlation between δYb and La/Yb suggests that the isotopic differences between Er and Yb can be accounted for by the presence of small fractions of Yb2+. Yb is isotopically heavy in kimberlite and light in garnets. Ytterbium behaves similarly to Fe, with Yb3+ being more incompatible than the much less abundant Yb2+. In addition, the coexistence of divalent and trivalent sites in the garnet structure and the preference of heavy isotopes for stable bonds makes Yb in garnet isotopically light. The deficit of heavy Yb isotopes in lunar basaltic samples relative to the Earth, chondrites, and eucrites provides new evidence that the Moon formed by the condensation of silicate vapor in the aftermath of the giant lunar impact. Separation of vapor from melt and of heavy from light isotopes is first expected during the adiabatic expansion of the initial vapor plume. Subsequently, friction between melt and gas tends to further enrich the Moon feeding zone in silicate vapor to compensate the inward migration of melt out of the pre-lunar disk. A major consequence of interpreting the present lunar data by vapor/melt segregation is that the

  9. Intense near-infrared emission from ZnO-LiYbO(2) hybrid phosphors through efficient energy transfer from ZnO to Yb(3+).

    PubMed

    Ye, Song; Jiang, Nan; He, Feng; Liu, Xiaofeng; Zhu, Bin; Teng, Yu; Qiu, Jian Rong

    2010-01-18

    The ZnO-LiYbO(2) hybrid phosphors were sintered by the solid-state reaction method, in which the intense near-infrared emission around 1000 nm due to Yb(3+ 2)F(5/2)-->(2)F(7/2) transition was obtained due to the efficient energy transfer from ZnO to Yb(3+) ions. The growth of the LiYbO(2) crystal and the formation of the diffusion layer between LiYbO(2) and ZnO were confirmed by XRD, SEM and EDX studies. The high efficient energy transfer is benefited from the inter-diffusion of Li(+), Yb(3+) and Zn(2+) in the diffusion region. The spectroscopy results clearly indicated that the ZnO-LiYbO(2) hybrid phosphors can harvest the energy from near-UV photons in a broad wavelength region and effectively convert them into Yb(3+) near-infrared emission.

  10. A Cold Atom Measurement of Charge Exchange Collisions between Trapped Yb^+ and Yb

    NASA Astrophysics Data System (ADS)

    Grier, Andrew; Cetina, Marko; Orucevic, Fedja; Vuletic, Vladan

    2008-05-01

    We measure the collisional cross-section and rate constant of the ^174Yb and ^172Yb^+ charge-transfer process. The neutral atoms are trapped in a magneto-optical trap (MOT) resonant with their 399 nm, ^1S0->^1P1 transition and are near the Doppler-limited temperature of 680 μK. The ions are confined in a planar Paul trap with a secular frequency of 39 kHz, Doppler cooled, and spatially overlapped with the neutral atoms. The collisional energy is varied from 4 meV to 100s of neV by varying the micromotion energy of the ions by displacement from the center of the Paul trap. We report the rate constant in comparison to that derived from the Langevin cross-section.

  11. XeF Pumped Tm:YLF Laser Scaling

    DTIC Science & Technology

    1984-02-01

    FOREWARD This report describes work on the Tm3 +: YLF laser carried out by Sanders Associates between 1 April 1980 and 31 May 1981. Tm:YLF is a...fluence to deuermine whether or not the Tm3 +: YLF exhibited unanticipated loss mechanisms, , (b) Experimental demonstration of a Tm:YLU oscillator or...results to a model of a loss-less Tm:YLF amplifier.•" Tm3 + The major scaling concern for the Tm : YLF laser is the possibility of ESA (excited state

  12. Sympathetic cooling of 171 Yb+ qubit ions on a scalable ion trap chip using Yb isotopes

    NASA Astrophysics Data System (ADS)

    Kwon, Yeong-Dae; Ahn, Jun Sik; Hong, Seokjun; Lee, Minjae; Cheon, Hongjin; Cho, Dongil ``Dan''; Kim, Taehyun

    2016-05-01

    To achieve ion trap based large-scale quantum computing devices, motional states of qubit ions must be regulated against heating from ion transportation or noise on the chip surface while leaving internal states of the ions intact. Sympathetic cooling is a natural solution for this problem, but trapping two different species of ions generally requires two sets of optical devices including separate lasers for each ion type, increasing the complexity and the cost of the setup. We tested Doppler-cooled 174 Yb+ ions to sympathetically cool 171 Yb+ qubit ions. Since these two isotopes have energy levels close to each other, the optical setup can be vastly simplified. We also verified that the tail of non-ideally focused cooling beam and the scattered light from the surface create excited state population in the 171 Yb+ qubit ions, as expected. This leads to occasional spontaneous emission events, which currently limits the coherence time of our qubit to a few seconds. We will also discuss our plans for optimizing the experiment, which may increase the coherence time by one or two orders of magnitude. This work was partially supported by ICT R&D program of MSIP/IITP. [10043464, Development of quantum repeater technology for the application to communication systems].

  13. Towards superconductivity in hydrides: computational studies of two hypothetical ternary compounds, Yb(II)BeH4 and Cs3Yb(III)H6.

    PubMed

    Jaroń, Tomasz; Grochala, Wojciech; Hoffmann, Roald

    2007-07-01

    Two examples of novel, as yet unsynthesized ternary lanthanide hydrides--Yb(II)BeH4 and Cs3Yb(III)H6--are investigated computationally. Their unprecedented electronic structure is discussed and the potential superconductivity of Cs3Yb(III)H6 explored. Methods of synthesis are postulated for both compounds.

  14. Electrochemical formation of Al-Tm intermetallics in eutectic LiCl-KCl melt containing Tm and Al ions

    NASA Astrophysics Data System (ADS)

    Li, Xing; Yan, Yong-De; Zhang, Mi-Lin; Tang, Hao; Ji, De-Bin; Han, Wei; Xue, Yun; Zhang, Zhi-Jian

    2014-09-01

    This work focuses on investigating the electrochemical formation of Al-Tm and Al-Li-Tm alloys in LiCl-KCl-AlCl3-Tm2O3 melt on both W and Al electrodes. Thermodynamic calculation and electrochemical behavior of LiCl-KCl melt containing both AlCl3 and Tm2O3 showed that AlCl3 can chlorinate Tm2O3 to release Tm(III) ions. Three kinds of Al-Tm intermetallics at about -1.26, -1.32 and -1.43 V were detected by means of various electrochemical measurement techniques, i.e. cyclic voltammetry, square wave voltammetry and open circuit chronopotentiometry. Potentiostatic and galvanostatic electrolysis were carried out on Al and W electrodes to prepare Al-Tm and Al-Li-Tm alloys, respectively. The composition of Al-Li-Tm alloys was analyzed by inductive coupled plasma atomic emission spectrometer (ICP-AES).

  15. Concurrent Validity of LibQUAL+[TM] Scores: What Do LibQUAL+[TM] Scores Measure?

    ERIC Educational Resources Information Center

    Thompson, Bruce; Cook, Colleen; Kyrillidou, Martha

    2005-01-01

    The present study investigated the validity of LibQUAL+[TM] scores, and specifically how total and subscale LibQUAL+[TM] scores are associated with self-reported, library-related satisfaction and outcomes scores. Participants included 88,664 students and faculty who completed the American English (n[AE] = 69,494) or the British English (n[BE] =…

  16. QCD For Intel(R) Xeon Phi(tm) and Xeon(tm) processors

    SciTech Connect

    Joo, Balint

    2014-09-11

    This library provides a library containing highly optimized Wilson-Dslash, Wilson Clover operator and Krylov subspace solvers for Lattice QCD simulations. The library is targeted at Intel(R) Xeon Phi(tm), and Intel(R) Xeon(tm) processors.

  17. Concurrent Validity of LibQUAL+[TM] Scores: What Do LibQUAL+[TM] Scores Measure?

    ERIC Educational Resources Information Center

    Thompson, Bruce; Cook, Colleen; Kyrillidou, Martha

    2005-01-01

    The present study investigated the validity of LibQUAL+[TM] scores, and specifically how total and subscale LibQUAL+[TM] scores are associated with self-reported, library-related satisfaction and outcomes scores. Participants included 88,664 students and faculty who completed the American English (n[AE] = 69,494) or the British English (n[BE] =…

  18. QCD For Intel(R) Xeon Phi(tm) and Xeon(tm) processors

    SciTech Connect

    Joo, Balint

    2014-09-11

    This library provides a library containing highly optimized Wilson-Dslash, Wilson Clover operator and Krylov subspace solvers for Lattice QCD simulations. The library is targeted at Intel(R) Xeon Phi(tm), and Intel(R) Xeon(tm) processors.

  19. Exchange-induced Tm magnetism in multiferroic h-TmMnO(3).

    PubMed

    Salama, Hazar A; Stewart, G A

    2009-09-23

    Analysis of (169)Tm Mössbauer spectra recorded for (hexagonal phase) h- TmMnO(3) confirms that the Mn sublattice orders magnetically below  T(N)(Mn) = 82-83 K and reveals the growth of a local Tm moment at the 4b site that is induced by the Mn-Tm exchange interaction. The maximum hyperfine field recorded at the (169)Tm nucleus is 312 T, which is just under half of the free ion value and corresponds to a saturation moment of 3.29 µ(B). The temperature dependence of the fitted magnetic hyperfine interaction is closely represented by a simple two-singlet ground state model for the Tm(3+) crystal field scheme. The saturation molecular field is deduced to lie in the range B(Mn-Tm)(T = 0 K) = 1.2-2.3 T, dependent on the expectation value of the coupling α = ⟨0|J(z)|1⟩ between the two-singlet states. As observed elsewhere for other hexagonal manganites, there is no Mn-based exchange field at the second Tm site (the 2a site) which contributes a paramagnetic subspectrum down to the lowest experimental temperature of 4.2 K.

  20. Physical properties of superbulky lanthanide metallocenes: synthesis and extraordinary luminescence of [Eu(II)(Cp(BIG))2] (Cp(BIG) = (4-nBu-C6H4)5-cyclopentadienyl).

    PubMed

    Harder, Sjoerd; Naglav, Dominik; Ruspic, Christian; Wickleder, Claudia; Adlung, Matthias; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer; Rego, Daniel B; Poineau, Frederic; Czerwinski, Kenneth R; Herber, Rolfe H; Nowik, Israel

    2013-09-09

    The superbulky deca-aryleuropocene [Eu(Cp(BIG))2], Cp(BIG) = (4-nBu-C6H4)5-cyclopentadienyl, was prepared by reaction of [Eu(dmat)2(thf)2], DMAT = 2-Me2N-α-Me3Si-benzyl, with two equivalents of Cp(BIG)H. Recrystallizyation from cold hexane gave the product with a surprisingly bright and efficient orange emission (45% quantum yield). The crystal structure is isomorphic to those of [M(Cp(BIG))2] (M = Sm, Yb, Ca, Ba) and shows the typical distortions that arise from Cp(BIG)⋅⋅⋅Cp(BIG) attraction as well as excessively large displacement parameter for the heavy Eu atom (U(eq) = 0.075). In order to gain information on the true oxidation state of the central metal in superbulky metallocenes [M(Cp(BIG))2] (M = Sm, Eu, Yb), several physical analyses have been applied. Temperature-dependent magnetic susceptibility data of [Yb(Cp(BIG))2] show diamagnetism, indicating stable divalent ytterbium. Temperature-dependent (151)Eu Mössbauer effect spectroscopic examination of [Eu(Cp(BIG))2] was examined over the temperature range 93-215 K and the hyperfine and dynamical properties of the Eu(II) species are discussed in detail. The mean square amplitude of vibration of the Eu atom as a function of temperature was determined and compared to the value extracted from the single-crystal X-ray data at 203 K. The large difference in these two values was ascribed to the presence of static disorder and/or the presence of low-frequency torsional and librational modes in [Eu(Cp(BIG))2]. X-ray absorbance near edge spectroscopy (XANES) showed that all three [Ln(Cp(BIG))2] (Ln = Sm, Eu, Yb) compounds are divalent. The XANES white-line spectra are at 8.3, 7.3, and 7.8 eV, for Sm, Eu, and Yb, respectively, lower than the Ln2O3 standards. No XANES temperature dependence was found from room temperature to 100 K. XANES also showed that the [Ln(Cp(BIG))2] complexes had less trivalent impurity than a [EuI2(thf)x] standard. The complex [Eu(Cp(BIG))2] shows already at room temperature

  1. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time.

    PubMed

    Hwang, Yoon-Hyung; Kim, Soon-Kap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-04-01

    Rice Os NF - YB and Os NF - YC complement the late flowering phenotype of Arabidopsis nf - yb double and nf - yc triple mutants, respectively. In addition, OsNF-YB and OsNF-YC interact with AtNF-YC and AtNF-YB, respectively. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein-protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  2. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  3. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  4. Modeling Cr-to-Tm and Cr-to-Tm-to-Ho energy transfer in YAG crystals

    NASA Technical Reports Server (NTRS)

    Swetits, John J.

    1991-01-01

    A systematic analysis of energy transfer processes in crystals of YAG doped with varying concentrations of Cr and Tm is described. Both spectral measurements and measurements of the temporal response to pulsed excitation are used to give independent determinations of the microscopic interaction parameter for Cr to Tm transfer. The different factors in influencing the temperature dependence of the Cr to Tm transfer are discussed. The dependence of the Tm cross-relaxation rate on Tm concentration is determined.

  5. The tmRDB and SRPDB resources

    PubMed Central

    Andersen, Ebbe Sloth; Rosenblad, Magnus Alm; Larsen, Niels; Westergaard, Jesper Cairo; Burks, Jody; Wower, Iwona K.; Wower, Jacek; Gorodkin, Jan; Samuelsson, Tore; Zwieb, Christian

    2006-01-01

    Maintained at the University of Texas Health Science Center at Tyler, Texas, the tmRNA database (tmRDB) is accessible at the URL with mirror sites located at Auburn University, Auburn, Alabama () and the Royal Veterinary and Agricultural University, Denmark (). The signal recognition particle database (SRPDB) at is mirrored at and the University of Goteborg (). The databases assist in investigations of the tmRNP (a ribonucleoprotein complex which liberates stalled bacterial ribosomes) and the SRP (a particle which recognizes signal sequences and directs secretory proteins to cell membranes). The curated tmRNA and SRP RNA alignments consider base pairs supported by comparative sequence analysis. Also shown are alignments of the tmRNA-associated proteins SmpB, ribosomal protein S1, alanyl-tRNA synthetase and Elongation Factor Tu, as well as the SRP proteins SRP9, SRP14, SRP19, SRP21, SRP54 (Ffh), SRP68, SRP72, cpSRP43, Flhf, SRP receptor (alpha) and SRP receptor (beta). All alignments can be easily examined using a new exploratory browser. The databases provide links to high-resolution structures and serve as depositories for structures obtained by molecular modeling. PMID:16381838

  6. Lifetimes of high-spin states in {sup 162}Yb

    SciTech Connect

    Carpenter, M.P.; Janssens, R.V.F.; Henry, R.G.

    1995-08-01

    A measurement on lifetimes of high-spin states in the yrast and near-yrast rotational bands in {sup 162}Yb was carried out at ATLAS in order to determine the evolution of collectivity as a function of angular momentum using the {sup 126}Te({sup 40}Ar,4n){sup 162}Yb reaction at 170 MeV. Previous lifetime measurements in the {sup 164,166,168}Yb isotopes showed a dramatic decrease in the transition quadrupole moment Q{sub t} with increasing spin. It was suggested that this decrease in Q{sub t} is brought about by the rotationally-induced deoccupation of high-j configurations, mainly i{sub 13/2} neutrons. If this interpretation is correct, the heavier isotopes should have a larger decrease in Q{sub t} than the lighter mass nuclides due to the position of the Fermi surface in the i{sub 13/2} subshell. Indeed, {sup 160}Yb does not show a clear decrease in Q{sub t} at high spin. No high spin lifetime information exists for {sup 162}Yb, thus this experiment fills the gap of measured Q{sub t}`s in the light Yb series. The data is currently being analyzed.

  7. Different metamagnetism between paramagnetic Ce and Yb isomorphs

    NASA Astrophysics Data System (ADS)

    Miyake, Atsushi; Sato, Yoshiaki; Tokunaga, Masashi; Jatmika, Jumaeda; Ebihara, Takao

    2017-08-01

    To solve the puzzle of metamagnetic phenomena in heavy-fermion systems, we have compared paramagnetic isostructural Ce and Yb systems, CeNi2Ge2 and YbNi2Ge2 , both of which are located near a magnetic instability. The most intriguing result is the discovery of a metamagneticlike anomaly for isomorphic Ce and Yb paramagnetic systems from magnetization measurements in a pulsed magnetic field. Similar to other metamagnets, the metamagnetic transition fields for both compounds are well scaled by the temperature Tχmax, at which the magnetic susceptibility shows a maximum. In addition, for CeNi2Ge2 , a peak of nonlinear susceptibility χ3 appears at approximately Tχmax/2 , as for other heavy-fermion metamagnets. In contrast, YbNi2Ge2 shows only a sign change for χ3 at Tχmax, as observed in itinerant metamagnets located near the ferromagnetic critical point. The metamagnetism of CeNi2Ge2 corresponds to a typical Kondo lattice system, whereas that of YbNi2Ge2 is similar to the nearly ferromagnetic itinerant systems. Other possibilities for the metamagnetic behavior of YbNi2Ge2 are also discussed.

  8. Multimodal bioimaging using rare earth doped Gd2O2S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties

    PubMed Central

    Ajithkumar, G.; Yoo, Benjamin; Goral, Dara E.; Hornsby, Peter J.; Lin, Ai-Ling; Ladiwala, Uma; Dravid, Vinayak P.; Sardar, Dhiraj K

    2013-01-01

    While infrared upconversion imaging using halide nanoparticles are so common the search for a very efficient halide free upconverting phosphors is still lacking. In this article we report Gd2O2S:Yb/Er,YbHo,YbTm systems as a very efficient alternative phosphors that show upconversion efficiency comparable or even higher than existing halide phosphors. While the majority of rare earth dopants provide the necessary features for optical imaging, the paramagnetic Gd ion also contributes to the magnetic imaging,thereby resulting in a system with bimodal imaging features. Results from imaging of the nanoparticles together with aggregates of cultured cells have suggested that imaging of the particles in living animals may be possible. In vitro tests revealed no signficant toxicity because no cell death was observed when the nanoparticles were in the presence of growing cells in culture. Measurement of the magnetization of the phosphor shows that the particles are strongly magnetic, thus making them suitable as an MRI agent. PMID:25191618

  9. Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Yb-like W

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Safronova, U. I.; Safronova, A. S.

    2012-06-01

    Energy levels, radiative transition probabilities, and autoionization rates for [Cd]4f^145p^65l'nl, [Cd]4f^145p^66l''nl, [Cd]4f^145p^55d^2nl, [Cd]4f^145p^55d6l''nl, [Cd]4f^135p^65d^2nl, and [Cd]4f^135p^65d6l''nl (l'=d, f, g , l''=s,p,d,f, g, n=5-7) states of Yb-like tungsten (W^4+) are calculated using the RMBPT, HULLAC, and COWAN codes. Branching ratios relative to the [Cd]4f^145p^65d, [Cd]4f^145p^66s, and [Cd]4f^145p^66p thresholds in Tm-like tungsten and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the singly excited, as well as non-autoionizing core-excited states in Yb-like tungsten. Contributions from the autoionizing doubly excited states and core-excited states (with n up to 100), which are particulary important for calculating total DR rates, are estimated. Synthetic dielectronic satellite spectra from Yb-like W are simulated in a broad spectral range from 200 to 1400 å. These calculations provide recommended values critically evaluated for their accuracy for a number of W^4+ properties useful for a variety of applications including for fusion applications.

  10. Multimodal bioimaging using rare earth doped Gd2O2S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties.

    PubMed

    Ajithkumar, G; Yoo, Benjamin; Goral, Dara E; Hornsby, Peter J; Lin, Ai-Ling; Ladiwala, Uma; Dravid, Vinayak P; Sardar, Dhiraj K

    2013-03-21

    While infrared upconversion imaging using halide nanoparticles are so common the search for a very efficient halide free upconverting phosphors is still lacking. In this article we report Gd2O2S:Yb/Er,YbHo,YbTm systems as a very efficient alternative phosphors that show upconversion efficiency comparable or even higher than existing halide phosphors. While the majority of rare earth dopants provide the necessary features for optical imaging, the paramagnetic Gd ion also contributes to the magnetic imaging,thereby resulting in a system with bimodal imaging features. Results from imaging of the nanoparticles together with aggregates of cultured cells have suggested that imaging of the particles in living animals may be possible. In vitro tests revealed no signficant toxicity because no cell death was observed when the nanoparticles were in the presence of growing cells in culture. Measurement of the magnetization of the phosphor shows that the particles are strongly magnetic, thus making them suitable as an MRI agent.

  11. Biosimilar regulation in the EU.

    PubMed

    Kurki, Pekka; Ekman, Niklas

    2015-01-01

    In the EU, the EMA has been working with biosimilars since 1998. This experience is crystallized in the extensive set of guidelines, which range from basic principles to details of clinical trials. While the guidance may appear complicated, it has enabled the development of biosimilars, of which 21 have managed to get marketing authorization. Currently marketed biosimilars in the EU have a good track record in safety and traceability. No biosimilars have been withdrawn from the market because of safety concerns. The most controversial issues with biosimilars are immunogenicity and extrapolation of therapeutic indications. The available data for these topics do not raise concerns among EU regulators. Interchangeability and substitution are regulated by individual EU member states.

  12. Highly efficient Er-Yb codoped double-clad fiber amplifier with an Yb-band resonant cavity

    NASA Astrophysics Data System (ADS)

    Han, Qun; Yao, Yunzhi; Tang, Xiaoyun; Chen, Yaofei; Yan, Wenchuan; Liu, Tiegen; Song, Huiling

    2017-02-01

    A high-power Er-Yb codoped fiber amplifier (EYDFA) with an Yb-band resonant cavity is investigated. By introducing a linear resonant cavity formed by a pair of high-reflection double-clad fiber Bragg gratings, the Yb-ASE problem of high-power pumped EYDFAs can be resolved and the efficiency of the amplifier can be notably improved. At a pump power of ~17 W, an output power of 7.25 W was experimentally achieved. The pump conversion efficiency and slope efficiency relative to the applied pump power are ~42.6% and ~45.6%, respectively. Moreover, due to the gain-clamping effect of the Yb cavity, the gain flatness of the amplifier is also evidently improved.

  13. Phase Transition and Thermal Expansion of Ba3RB3O9 (R = Sm-Yb, and Y)

    NASA Astrophysics Data System (ADS)

    Simura, Rayko; Kawai, Shohei; Sugiyama, Kazumasa

    2017-09-01

    High temperature powder X-ray diffraction measurements of Ba3RB3O9 (R=Sm-Yb, and Y) were carried out at temperatures ranging from room temperature to just below the corresponding melting temperatures (1,200-1,300 °C). No phase transition was found for the H-type phase (R \\overline 3) with R=Sm-Tb and the L-type phase (P63 cm) with R=Tm-Yb. On the other hand, phase transition from the L phase to the H phase was observed for R=Dy-Er, and Y at around 1,100-1,200 °C. The obtained axial thermal expansion coefficient (ATEC) of the a-axis was larger than that of the c-axis for the H phase, and the ATEC of the c-axis was larger than that of the a-axis for the L phase. The observed anisotropic nature of ATEC is attributed to the distribution of the BO3 anionic group with rigid boron-oxygen bonding in the structures of the H and L phases.

  14. New EU regulations in endoscopy.

    PubMed

    Wächter, M; Diekjobst, T

    1995-09-01

    As a result of European unification, new regulations valid within the territory of the European Union (EU) have been negotiated and published. As in other medical fields, the Medical Device Directive (MDD) is the most important new regulation and also effects endoscopy. In a transition period until June 1998, the MDD will be transposed into national law by the member states of the EU. Compliance with the MDD and other European regulations is indicated by the CE mark affixed to the product.

  15. Beta-Decay Study of ^{150}Er, ^{152}Yb, and ^{156}Yb: Candidates for a Monoenergetic Neutrino Beam Facility

    SciTech Connect

    Estevez Aguado, M. E.; Algora, A.; Rubio, B.; Bernabeu, J.; Nacher, E.; Tain, J. L.; Gadea, A.; Agramunt, J.; Burkard, K.; Hueller, W.; Doring, J.; Kirchner, R.; Mukha, I.; Plettner, C.; Roeckl, E.; Grawe, H.; Collatz, R.; Hellstrom, M.; Cano-Ott, D.; Karny, M.; Janas, Z.; Gierlik, M.; Plochocki, A.; Rykaczewski, Krzysztof Piotr; Batist, L.; Moroz, F.; Wittman, V.; Blazhev, A.; Valiente, J. J.; Espinoza, C.

    2011-01-01

    The beta decays of ^{150}Er, ^{152}Yb, and ^{156}Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied, the EC decay proceeds mainly to a single state in the daughter nucleus.

  16. Magnetocaloric behavior in ternary europium indides EuT5In: Probing the design capability of first-principles-based methods on the multifaceted magnetic materials

    DOE PAGES

    Bigun, Inna; Steinberg, Simon; Smetana, Volodymyr; ...

    2017-01-27

    The most favorable structures and the types of magnetic ordering predicted from first-principles-based methods in a family of closely related transition-metal-rich indides EuT5In (T = Cu, Ag, Au) are gauged against relevant experiments. The EuT5In compounds adopt a different structure for each different coinage metal—EuCu5In (hR42; Rmore » $$\\overline{3}$$m, a = 5.0933(7), c = 30.557(6) Å), EuAg5In (oP28; Pnma, a = 9.121(2), b = 5.645(1), c = 11.437(3) Å), and EuAu5In (tI14; I4/mmm, a = 7.1740(3), c = 5.4425(3) Å)—and crystallize with the Sr5Al9, CeCu6, and YbMo2Al4 structure types, respectively. EuCu5In and EuAg5In order antiferromagnetically at TN = 12 and 6 K, respectively, whereas EuAu5In is ferromagnetic below TC = 13 K. EuCu5In exhibits complex magnetism: after the initial drop at TN, the magnetization rises again below 8 K, and a weak metamagnetic-like transition occurs at 2 K in μ0H = 1.8 T. The electronic heat capacity of EuCu5In, γ = ~400 mJ/(mol K2), points to strong electronic correlations. Spin-polarized densities of states suggest that the magnetic interactions in the three materials studied are supported via mixing 4f and 5d states of Eu. As a result, a chemical bonding analysis based on the Crystal Orbital Hamilton populations reveals the tendency to maximize overall bonding as a driving force to adopt a particular type of crystal structure.« less

  17. Landsat TM and ETM+ Thermal Band Calibration

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Hook, Simon J.; Palluconi, Frank D.; Schott, John R.; Raqueno, Nina G.

    2006-01-01

    Landsat-5 Thematic Mapper (TM) has been imaging the Earth since March 1984 and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) was added to the series of Landsat instruments in April 1999. The stability and calibration of the ETM+ has been monitored extensively since launch. Though not monitored for many years, TM now has a similar system in place to monitor stability and calibration. University teams have been evaluating the on-board calibration of the instruments through ground-based measurements since 1999. This paper considers the calibration efforts for the thermal band, Band 6, of both the Landsat-5 and Landsat-7 instruments.

  18. Hard x-ray photoemission study of Yb1-x Zr x B12: the effects of electron doping on the Kondo insulator YbB12.

    PubMed

    Rousuli, A; Sato, H; Iga, F; Hayashi, K; Ishii, K; Wada, T; Nagasaki, T; Mimura, K; Anzai, H; Ichiki, K; Ueda, S; Kondo, A; Kindo, K; Takabatake, T; Shimada, K; Namatame, H; Taniguchi, M

    2017-07-05

    We have carried out hard x-ray photoemission spectroscopy (HAXPES) of Yb1-x Zr x B12 ([Formula: see text]) to study the effects of electron doping on the Kondo insulator YbB12. The Yb valences of Yb1-x Zr x B12 at 300 K estimated from the Yb 3d HAXPES spectra decreased after substituting Yb with Zr from 2.93 for YbB12 to 2.83 for Yb0.125Zr0.875B12. A temperature dependent valence decrease was found upon cooling for all doping concentrations. We found peak shifts of the B 1s and Zr 3d5/2, and Yb(3+) 4f spectra toward the deeper binding-energy with increasing Zr concentration, which indicates a shift of the Fermi level to the higher energy and that of the Yb 4f hole level close to the Fermi level, respectively, due to electron doping. These results qualitatively show the enhanced hybridization between the Yb 4f and conduction-band states with Zr substitution, consistent with magnetic susceptibility measurements.

  19. Hard x-ray photoemission study of Yb1-x Zr x B12: the effects of electron doping on the Kondo insulator YbB12

    NASA Astrophysics Data System (ADS)

    Rousuli, A.; Sato, H.; Iga, F.; Hayashi, K.; Ishii, K.; Wada, T.; Nagasaki, T.; Mimura, K.; Anzai, H.; Ichiki, K.; Ueda, S.; Kondo, A.; Kindo, K.; Takabatake, T.; Shimada, K.; Namatame, H.; Taniguchi, M.

    2017-07-01

    We have carried out hard x-ray photoemission spectroscopy (HAXPES) of Yb1-x Zr x B12 (0≤slant x≤slant 0.875 ) to study the effects of electron doping on the Kondo insulator YbB12. The Yb valences of Yb1-x Zr x B12 at 300 K estimated from the Yb 3d HAXPES spectra decreased after substituting Yb with Zr from 2.93 for YbB12 to 2.83 for Yb0.125Zr0.875B12. A temperature dependent valence decrease was found upon cooling for all doping concentrations. We found peak shifts of the B 1s and Zr 3d5/2, and Yb3+ 4f spectra toward the deeper binding-energy with increasing Zr concentration, which indicates a shift of the Fermi level to the higher energy and that of the Yb 4f hole level close to the Fermi level, respectively, due to electron doping. These results qualitatively show the enhanced hybridization between the Yb 4f and conduction-band states with Zr substitution, consistent with magnetic susceptibility measurements.

  20. TM-align: a protein structure alignment algorithm based on the TM-score

    PubMed Central

    Zhang, Yang; Skolnick, Jeffrey

    2005-01-01

    We have developed TM-align, a new algorithm to identify the best structural alignment between protein pairs that combines the TM-score rotation matrix and Dynamic Programming (DP). The algorithm is ∼4 times faster than CE and 20 times faster than DALI and SAL. On average, the resulting structure alignments have higher accuracy and coverage than those provided by these most often-used methods. TM-align is applied to an all-against-all structure comparison of 10 515 representative protein chains from the Protein Data Bank (PDB) with a sequence identity cutoff <95%: 1996 distinct folds are found when a TM-score threshold of 0.5 is used. We also use TM-align to match the models predicted by TASSER for solved non-homologous proteins in PDB. For both folded and misfolded models, TM-align can almost always find close structural analogs, with an average root mean square deviation, RMSD, of 3 Å and 87% alignment coverage. Nevertheless, there exists a significant correlation between the correctness of the predicted structure and the structural similarity of the model to the other proteins in the PDB. This correlation could be used to assist in model selection in blind protein structure predictions. The TM-align program is freely downloadable at . PMID:15849316

  1. HSP60 interacts with YB-1 and affects its polysome association and subcellular localization

    SciTech Connect

    Ohashi, Sachiyo; Atsumi, Megumi; Kobayashi, Shunsuke

    2009-08-07

    YB-1 is a DNA/RNA-binding protein which, in the cytoplasm, associates with polysomes and regulates translation. However, YB-1 has a novel nuclear localization signal, and its nuclear accumulation is correlated with cancer induction. Here we designated the amino-acid sequence as YB-NLS and demonstrated that YB-NLS is necessary for the nuclear translocation of overexpressed YB-1 in NG108-15 cells. In addition, we found that a heat shock protein, HSP60, binds to YB-NLS in the cytoplasm. Interestingly, when HSP60 expression was repressed, an increase of polysome-associated YB-1 was observed in heavy-sedimenting fractions on a sucrose gradient. Overexpression of HSP60 resulted in a decrease of YB-1 in the heavy-sedimenting fractions and suppression of YB-NLS activity. Furthermore, the NLS-deleted YB-1 was apparently associated with the heavy-sedimenting polysomes. These results suggest that HSP60 interacts with YB-1 at the YB-NLS region and acts as a regulator of polysome association and the subcellular distribution of YB-1.

  2. 78 FR 72922 - TSA Pre✓TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... (TSA) announces the establishment of a fee for applicants of the TSA Pre TM Application Program... (which includes U.S. citizens) or legal permanent resident. TSA will review government and international...: Establishment and operation of a web-based platform for applicants to complete the submission of biographic...

  3. Associations with Minspeak[TM] Icons

    ERIC Educational Resources Information Center

    van der Merwe, Elmarie; Alant, Erna

    2004-01-01

    Although the Minspeak[TM] approach is used on communication devices worldwide, little research has been conducted on its applicability within specific cultural contexts. The impact that users' familiarity of symbols and associations can have on learnability necessitates more systematic research. This study was an investigation into the…

  4. Defying Gravity Using Jenga[TM] Blocks

    ERIC Educational Resources Information Center

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-01-01

    This paper describes how Jenga[TM] blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum. (Contains 8 figures and 1 table.)

  5. Doors to Discovery [TM]. WWC Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    Doors to Discovery[TM], an early childhood curriculum, focuses on the development of children's vocabulary and expressive and receptive language through a learning process called "shared literacy," where adults and children work together to develop literacy-related skills. Literacy activities, organized into thematic units, encourage children's…

  6. TE and TM pass integrated optic polarizers

    NASA Astrophysics Data System (ADS)

    Madaan, Divya; Kaur, Davinder; Sharma, V. K.; Kapoor, A.

    2016-05-01

    A four layer integrated optical waveguide is studied, in which a high index buffer is used along with the metal cladding. The structure can act both as TE and TM pass polarizer. We have designed it for λ=1.55 µm which corresponds to telecommunication wavelength. TiO2 is used as a buffer layer with Au as metal cladding. When metal clad optical waveguides with a high index buffer layer are used there is periodic coupling between lossless modes of waveguide and the lossy modes supported by high index buffer layer with metal clad. We present theoretical results of the effect of buffer thickness on the mode index and the losses. The TM Pass polarizer with TE and TM losses, 1029.19dB/cm and 59.67dB/cm respectively are obtained. Also, TE Pass polarizer with TM and TE losses 1444.74dB/cm and 238.51dB/cm respectively are obtained.

  7. The Neuroscience of PowerPoint[TM

    ERIC Educational Resources Information Center

    Horvath, Jared Cooney

    2014-01-01

    Many concepts have been published relevant to improving the design of PowerPoint[TM] (PP) presentations for didactic purposes, including the redundancy, modality, and signaling principles of multimedia learning. In this article, we review the recent neuroimaging findings that have emerged elucidating the neural structures involved in many of these…

  8. The Neuroscience of PowerPoint[TM

    ERIC Educational Resources Information Center

    Horvath, Jared Cooney

    2014-01-01

    Many concepts have been published relevant to improving the design of PowerPoint[TM] (PP) presentations for didactic purposes, including the redundancy, modality, and signaling principles of multimedia learning. In this article, we review the recent neuroimaging findings that have emerged elucidating the neural structures involved in many of these…

  9. First Report on the Electronic, Magnetic, and Thermal Properties of Filled Skutterudite YbOs4Sb12

    NASA Astrophysics Data System (ADS)

    Kunitoshi, Hiromu; Matsuda, Tatsuma D.; Midorikawa, Ryo; Higashinaka, Ryuji; Kuwahara, Keitaro; Aoki, Yuji; Sato, Hideyuki

    2016-11-01

    Single crystals of the filled skutterudite compound YbOs4Sb12, for which no information except the lattice constant exists, have been investigated by measurements of the electronic transport properties, magnetic susceptibility, and specific heat. It is confirmed that the ground state is a Fermi liquid state with the Sommerfeld coefficient γ ˜ 40 mJ/K2 mol. Near 50 K, a sharp change in the slope appears in the temperature dependences of both the electrical resistivity and the Hall coefficient, and the magnetic susceptibility shows a shallow maximum. The Einstein temperature (˜40 K) determined by the specific heat measurement is less than the lowest value ever reported for SmOs4Sb12. The large deviation from the reported linear correlation between the Einstein temperature and the size of the effective free space for the guest ion vibration within the Os4Sb12 cage was examined by extending the comparison to the reported Ce-, Pr-, Eu-, and Yb-based filled skutterudites.

  10. Interspecies thermalization in an ultracold mixture of Cs and Yb in an optical trap

    NASA Astrophysics Data System (ADS)

    Guttridge, A.; Hopkins, S. A.; Kemp, S. L.; Frye, Matthew D.; Hutson, Jeremy M.; Cornish, Simon L.

    2017-07-01

    We present measurements of interspecies thermalization between ultracold samples of 133Cs and either 174Yb or 170Yb. The two species are trapped in a far-off-resonance optical dipole trap and 133Cs is sympathetically cooled by Yb. We extract effective interspecies thermalization cross sections by fitting the thermalization measurements to a kinetic model, giving σCs 174Yb= 18 ±8 - 5 ±2 ×10-13cm2 and σCs 170Yb= 10-13cm2 . We perform quantum scattering calculations of the thermalization cross sections and optimize the CsYb interaction potential to reproduce the measurements. We predict scattering lengths for all isotopic combinations of Cs and Yb. We also demonstrate the independent production of 174Yb and 133Cs Bose-Einstein condensates using the same optical dipole trap, an important step toward the realization of a quantum-degenerate mixture of the two species.

  11. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules

    PubMed Central

    Chernov, Konstantin G; Mechulam, Alain; Popova, Nadezhda V; Pastre, David; Nadezhdina, Elena S; Skabkina, Olga V; Shanina, Nina A; Vasiliev, Victor D; Tarrade, Anne; Melki, Judith; Joshi, Vandana; Baconnais, Sonia; Toma, Flavio; Ovchinnikov, Lev P; Curmi, Patrick A

    2008-01-01

    Background YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs. Results We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes. Conclusion These results suggest that YB-1 may regulate microtubule assembly in vivo and that its interaction with tubulin may contribute to the control of mRNA translation. PMID:18793384

  12. Pressure-induced anomalous valence crossover in cubic YbCu5-based compounds.

    PubMed

    Yamaoka, Hitoshi; Tsujii, Naohito; Suzuki, Michi-To; Yamamoto, Yoshiya; Jarrige, Ignace; Sato, Hitoshi; Lin, Jung-Fu; Mito, Takeshi; Mizuki, Jun'ichiro; Sakurai, Hiroya; Sakai, Osamu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Giovannini, Mauro; Bauer, Ernst

    2017-07-19

    A pressure-induced anomalous valence crossover without structural phase transition is observed in archetypal cubic YbCu5 based heavy Fermion systems. The Yb valence is found to decrease with increasing pressure, indicating a pressure-induced crossover from a localized 4f (13) state to the valence fluctuation regime, which is not expected for Yb systems with conventional c-f hybridization. This result further highlights the remarkable singularity of the valence behavior in compressed YbCu5-based compounds. The intermetallics Yb2Pd2Sn, which shows two quantum critical points (QCP) under pressure and has been proposed as a potential candidate for a reentrant Yb(2+) state at high pressure, was also studied for comparison. In this compound, the Yb valence monotonically increases with pressure, disproving a scenario of a reentrant non-magnetic Yb(2+) state at the second QCP.

  13. CCRS proposal for evaluating LANDSAT-4 MSS and TM data

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Cihlar, J.; Goodenough, D. G.; Guertin, F. E. (Principal Investigator); Guindon, B.; Murphy, J.; Butlin, J. M.; Duff, P.; Fitzgerald, A.; Grieve, G.

    1984-01-01

    The measurement of registration errors in LANDSAT MSS data is discussed as well as the development of a revised algorithm for the radiometric calibration of TM data and the production of a geocoded TM image.

  14. Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod.

    PubMed

    Zhou, Jiajia; Chen, Gengxu; Wu, E; Bi, Gang; Wu, Botao; Teng, Yu; Zhou, Shifeng; Qiu, Jianrong

    2013-05-08

    Up-conversion luminescence in rare earth ions (REs) doped nanoparticles has attracted considerable research attention for the promising applications in solid-state lasers, three-dimensional displays, solar cells, biological imaging, and so forth. However, there have been no reports on REs doped nanoparticles to investigate their polarized energy transfer up-conversion, especially for single particle. Herein, the polarized energy transfer up-conversion from REs doped fluoride nanorods is demonstrated in a single particle spectroscopy mode for the first time. Unique luminescent phenomena, for example, sharp energy level split and singlet-to-triplet transitions at room temperature, multiple discrete luminescence intensity periodic variation with polarization direction, are observed upon excitation with 980 nm linearly polarized laser. Furthermore, nanorods with the controllable aspect ratio and symmetry are fabricated for analysis of the mechanism of polarization anisotropy. The comparative experiments suggest that intraions transition properties and crystal local symmetry dominate the polarization anisotropy, which is also confirmed by density functional theory calculations. Taking advantage of the REs based up-conversion, potential application in polarized microscopic multi-information transportation is suggested for the polarization anisotropy from REs doped fluoride single nanorod or nanorod array.

  15. Interactions of CT DNA with hexagonal NaYF4 co-doped with Yb(3+)/Tm(3+) upconversion particles.

    PubMed

    Yuan, Xiuxue; Gu, Wenchao; Xiao, Mengsi; Xie, Wenli; Wei, Shaohua; Zhou, Lin; Zhou, Jiahong; Shen, Jian

    2015-02-25

    The interaction of UCPs with CT DNA are studied in detail by zeta potential, Energy dispersive spectrometer (EDS) spectroscopy, Thermogravimetric (TGA) analysis, DNA melting determination and various spectroscopic techniques including Ultraviolet-Visible (UV-Vis) absorption, fluorescence, circular dichroism (CD), Fourier transform infrared (FTIR) and Raman spectroscopy. The results indicate that CT DNA can assemble on the surface of UCPs mainly by relative stronger hydrophobic force and electrostatic binding, and the predominant interaction site is the deoxyribosyl phosphate backbone of CT DNA. Moreover, after interacting with UCPs, the double helix structure of DNA is undamaged.

  16. Use of Yb(III) Centered Near Infra-Red (NIR) Luminescence to Determine the Hydration State of a 3,2-HOPO based MRI-Contrast Agent

    SciTech Connect

    Moore, Evan G.; Seitz, Michael; Raymond, Kenneth N.

    2008-06-09

    It has been more than a decade since the first reports of [Gd(Tren-Me-3,2-HOPO)(H{sub 2}O){sub 2}] as a potential new class of magnetic resonance imaging contrast agent (MRI-CA). The defining feature of these 1-methyl-3-hydroxypyridin-2-one (Me-3,2-HOPO) based compounds has been the use of a hexadentate ligand design, and hence an increase in the number of metal bound water molecules, without sacrificing complex stability compared to the typically octadentate contrast agents used commercially. Since that time, significant advances in the properties of these chelates have been steadily reported, including improvements in relaxivity, incorporation into macromolecular architectures and, recently, the first direct verification of solution structure using the discovery of Eu(III) centered luminescence with the isomeric 1-hydroxypyridin-2-one (1,2-HOPO) chelate as a sensitizing chromophore. Nonetheless, it has remained frustrating that direct measurements of the inner sphere hydration state, q, using luminescence techniques with the parent Me-3,2-HOPO compounds have remained elusive, even when direct laser excitation of weakly absorbing f-f transitions were employed (eg. for Eu(III) complexes). This failing can likely be traced to the presence of a low lying LMCT state which efficiently quenches metal based emission. Instead, estimates of the q and hence solution structure have relied on the fitting of relaxivity data to the Solomon-Bloembergen-Morgan equations or, where sufficiently soluble in aqueous solution, studies on the temperature dependence of the paramagnetic contribution to the water {sup 17}O NMR transverse relaxation rate. Recently, Beeby et al reported on a qualitative equation to determine inner sphere hydration based on the change in lifetimes for Yb(III) in going from H{sub 2}O to D{sub 2}O solution, and we reasoned that the lower energy accepting state of Yb(III) may lie below the LMCT state which quenches Eu(III) emission, and hence may facilitate

  17. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    2012-05-01

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  18. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  19. Spectroscopic properties of Er3+, Yb3 + and Er3 + /Yb3+ doped metaphosphate glasses.

    PubMed

    Speghini, A; Francini, R; Martinez, A; Tavernese, M; Bettinell, M

    2001-09-01

    The absorption and emission spectroscopies of Er3+ doped and Er3+/Yb3+ codoped Ca(PO3)2, Sr(PO3)2 and Ba(PO3)2 glasses have been studied. From the Judd-Ofelt intensity parameters, the spontaneous emission probabilities of some relevant transitions and the radiative lifetimes of several excited states of Er3+ have been calculated. The decay curves of the Er3+ emission at 1.5 microm have been measured at different temperatures. The data have been fitted using a stretched exponential function and the obtained experimental lifetimes have been compared with the calculated radiative lifetimes. The difference between the experimental and calculated lifetimes is attributed to the presence of traces of OH groups in the host glasses. The absolute OH content in some glasses has been determined from the infrared spectra. The emission spectra at 1.5 microm of the Er3+ ion in the codoped glasses have been measured at different temperatures. The integrated emission intensities decrease significantly on passing from room temperature to 13 K, suggesting a temperature dependence of the rate of the energy transfer process between Yb3+ and Er3+.

  20. Rare-Earth Doped Gallium Nitride (GaN)- An Innovative Path Toward Area-scalable Solid-state High Energy Lasers Without Thermal Distortion

    DTIC Science & Technology

    2009-04-01

    emission from GaN doped with europium (Eu), Er, praseodymium (Pr), thulium (Tm), ytterbium (Yb), Nd, and dysprosium (Dy) has been demonstrated by... thulium 12 TO transverse optical VSL variable stripe length XRC x-ray rocking curve XRD x-ray diffraction YAG yttrium aluminum garnet Yb

  1. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    Raw thematic mapper (TM) calibration data from pre-launch tests and in-orbit acquisitions from LANDSAT 4 and 5 satellites are analyzed to assess the radiometric characteristics of the TM sensor. A software program called TM radiometric and algorithmic performance program (TRAPP) was used for the majority of analyses. Radiometric uncertainty in the final TM image originates from: (1) scene variability (solar irradiance and atmospheric scattering); (2) optical and electrical variability of the sensor; and (3) variability introduced during image processing.

  2. Investigation of loss processes of Tm and Tm,Ho in YAG

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Bair, C. H.; Inge, A. T.; Hess, R. V.

    1991-01-01

    The loss of excitation from various manifolds of Tm and Tm,Ho in YAG as a function of temperature and concentration is studied. Two probable loss mechanisms - a Tm up-conversion and a Ho up-conversion - are identified. A 785-nm CW diode laser with 400-nW peak power was focused to a small spot on the sample. The emission from the sample observed at 90 deg was monitored through a monochromator with slits open to 3 mm. Intensity of emission was measured by varying the power of the excitation source using a set of neutral density filters. Power is reported as the percentage of the peak power, and the intensity curves were normalized below 20 percent of transmission. The fact that there is emission above the pump energy indicates an up-conversion from excited manifolds. Nonlinear changes in the intensity of the emission from the Tm 3F4 manifold with the pump power reveals a loss of excitation from this manifold. The linear dependence of the 5I7 manifold emission with pump power at low Tm and high Ho concentrations and the gain of energy in the 5I6 manifold of Ho indicate that the 5I7 manifold loss is due to the coupling of Tm and Ho ions.

  3. Investigation of loss processes of Tm and Tm,Ho in YAG

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Bair, C. H.; Inge, A. T.; Hess, R. V.

    1991-01-01

    The loss of excitation from various manifolds of Tm and Tm,Ho in YAG as a function of temperature and concentration is studied. Two probable loss mechanisms - a Tm up-conversion and a Ho up-conversion - are identified. A 785-nm CW diode laser with 400-nW peak power was focused to a small spot on the sample. The emission from the sample observed at 90 deg was monitored through a monochromator with slits open to 3 mm. Intensity of emission was measured by varying the power of the excitation source using a set of neutral density filters. Power is reported as the percentage of the peak power, and the intensity curves were normalized below 20 percent of transmission. The fact that there is emission above the pump energy indicates an up-conversion from excited manifolds. Nonlinear changes in the intensity of the emission from the Tm 3F4 manifold with the pump power reveals a loss of excitation from this manifold. The linear dependence of the 5I7 manifold emission with pump power at low Tm and high Ho concentrations and the gain of energy in the 5I6 manifold of Ho indicate that the 5I7 manifold loss is due to the coupling of Tm and Ho ions.

  4. Upconverted Photosensitization of Tb Visible Emission by NIR Yb Excitation in Discrete Supramolecular Heteropolynuclear Complexes.

    PubMed

    Souri, Nabila; Tian, Pingping; Platas-Iglesias, Carlos; Wong, Ka-Leung; Nonat, Aline; Charbonnière, Loïc J

    2017-02-01

    Addition of Tb(3+) salts to a solution of a (YbLD) complex in D2O resulted in the formation of [(YbLD)2Tbx] (x = 1 to 3) complexes that, upon NIR excitation at 980 nm, showed an unprecedented Yb to Tb upconversion sensitization phenomenon resulting in the observation of the typical green emission of Tb.

  5. Valence state and magnetism of Yb7Co4InGe12.

    NASA Astrophysics Data System (ADS)

    Rak, Zsolt; Chondroudi, Maria; Mahanti, S. D.; Kanatzidis, M. G.

    2007-03-01

    Ytterbium (Yb) compounds exhibit unusual physical properties due to the Yb f-electrons, which play an active role in bonding, giving rise to intermediate valence, heavy-fermion or Kondo behavior. Many physical characteristics of the Yb systems are related to the fact that Yb can have two valence states: nonmagnetic divalent Yb^2+ (f^14) and magnetic trivalent Yb^3+ (f^13). We have synthesized a new Yb containing quaternary Yb7Co4InGe12. XPS and magnetic susceptibility measurements indicate that all Yb are all trivalent. To understand the Yb valency in this compound, we have carried out ab initio electronic structure calculations within density functional theory using FP-LAPW method. The electronic structure is obtained using LSDA with on-site Coulomb correlation potential (LSDA+U) included for both 4f electrons of Yb and 3d electrons of Co. As a one ``f-hole'' analogue of many Ce compounds^1, 2, we find that all the Yb atoms are trivalent, in agreement with XPS and magnetic susceptibility measurements. ^1A. I. Liechtenstein, V. P. Antropov, and B. N Harmon, Phys. Rev. B 49, 10770 (1994). ^2E. Bauer, Adv. Phys. 40, 417 (1991).

  6. Pioneers--The "Engineering byDesign[TM]" Network

    ERIC Educational Resources Information Center

    Burke, Barry N.

    2006-01-01

    This article discusses the standards-based instruction model, Engineering byDesign[TM] (EbD), and a network of teachers called the Engineering byDesign[TM] Network. Engineering byDesign[TM] is the only standards-based national model for Grades K-12 that delivers technological literacy which was developed by the International Technology Education…

  7. EU Space Awareness: Initial implemenation

    NASA Astrophysics Data System (ADS)

    Russo, Pedro

    2015-08-01

    EU Space Awareness uses the excitement of space to attract young people into science and technology and stimulate European and global citizenship. The project will show children and teenagers the opportunities offered by space science and engineering and inspire primary-school children when their curiosity is high and their value systems are being formed. EU Space Awareness, a 3-year project, has started in March 2015 with 10 partner organisations and 15 network nodes in 17 European countries and the IAU Office of Astronomy for Development. During this talk we will give a update about the intial implementation of the project and its relevant for astronomy for development.

  8. Sequential growth of sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell-shell nanoparticles for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Peng, Huang-Yong; Ding, Bin-Bin; Ma, Yin-Chu; Sun, Shi-Qi; Tao, Wei; Guo, Yan-Chuan; Guo, Hui-Chen; Yang, Xian-Zhu; Qian, Hai-Sheng

    2015-12-01

    Upconversion (UC) nanostructures have attracted much interest for their extensive biological applications. In this work, we describe a sequential synthetic route to prepare sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell upconversion nanoparticles. The as-prepared products were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM, JEM 2100F), respectively. The as-prepared core-shell nanoparticles of NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb are composed of elliptical nanoparticles with a length of 80 nm and width of 42 nm, which show efficient upconversion fluorescence excited at 808 nm indicating the formation of core-shell-shell sandwiched nanostructures. In addition, the as-prepared sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell upconversion nanoparticles also show strong upconversion fluorescence excited at 980 nm. Amphiphilic mPEG2k-b-PEBEP6K copolymers (denoted as PPE) were chosen to transfer these hydrophobic UCNPs into the aqueous phase for biological application. In vitro photodynamic therapy of cancer cells show that the viability of cells incubated with the nanoparticles loaded with MC 540 was significantly lower as compared to the nanoparticles without photosensitizers exposed to NIR laser.

  9. Polyamorphism in Yb-based metallic glass induced by pressure

    DOE PAGES

    Li, Liangliang; Luo, Qiang; Li, Renfeng; ...

    2017-04-25

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. Furthermore, this discovery in Yb-based metallic glass, combined with the previous reportsmore » on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.« less

  10. Yb:YAG Lasers for Space Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  11. Polyamorphism in Yb-based metallic glass induced by pressure.

    PubMed

    Li, Liangliang; Luo, Qiang; Li, Renfeng; Zhao, Haiyan; Chapman, Karena W; Chupas, Peter J; Wang, Luhong; Liu, Haozhe

    2017-04-25

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.

  12. Polyamorphism in Yb-based metallic glass induced by pressure

    PubMed Central

    Li, Liangliang; Luo, Qiang; Li, Renfeng; Zhao, Haiyan; Chapman, Karena W.; Chupas, Peter J.; Wang, Luhong; Liu, Haozhe

    2017-01-01

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses. PMID:28440339

  13. 980 nm narrow linewidth Yb-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Hu, Haowei; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    A narrow-linewidth ytterbium (Yb)-doped phosphate fiber laser based on fiber Bragg grating (FBG) operating around 980 nm is reported. Two different kinds of cavity are applied to obtain the 980 nm narrow-linewidth output. One kind of the cavity consists of a 0.35 nm broadband lindwidth high-reflection FBG and the Yb-doped phosphate fiber end with 0° angle, which generates a maximum output power of 25 mW. The other kind of resonator is composed of a single mode Yb-doped phosphate fiber and a pair of FBGs. Over 10.7 mW stable continuous wave are obtained with two longitudinal modes at 980 nm. We have given a detailed analysis and discussion for the results.

  14. Yb:YAG Lasers for Space Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  15. Structural and luminescence properties of Eu3+, Dy3+ and Tb3+ ions in lead germanate glasses obtained by conventional high-temperature melt-quenching technique

    NASA Astrophysics Data System (ADS)

    Żur, Lidia

    2013-06-01

    The subject of this paper is the structural and luminescence properties of selected rare earth ions in lead germanate glasses. Glasses were obtained by conventional high-temperature melt-quenching technique. Europium, dysprosium and terbium ions were chosen as active dopants. The spectroscopic parameters for Eu3+, Dy3+ and Tb3+ ions were determined based on excitation and emission measurements as well as luminescence decay analysis. Especially, the luminescence intensity ratios R/O (Eu3+), Y/B (Dy3+) and G/B (Tb3+) were calculated. Luminescence lifetimes for 5D0 state of Eu3+ ions, 4F9/2 state of Dy3+ ions and 5D4 state of Tb3+ ions were also determined. The amorphous nature and local structure of the studied lead germanate glass systems was confirmed by X-ray diffraction (XRD) and infrared (FT-IR) spectroscopy.

  16. Temperature influence on diode pumped Yb:GGAG laser

    NASA Astrophysics Data System (ADS)

    Veselský, Karel; Boháček, Pavel; Šulc, Jan; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2017-05-01

    We present temperature influence (in range from 78 up to 400,K) on spectroscopic properties and laser performance of new Yb-doped mixed garnet Gd3GaxAl5-xO12 (Yb:GGAG). The sample was 2.68 mm thick plane-parallel face-polished Yb:GGAG single-crystal plate which was AR coated for pump (930 nm) and generated (1030 nm) laser radiation wavelength. The composition of sample was Gd3.098Yb0:0897Ga2:41Al2.41O12 (3 at % Yb/Gd). The Yb:GGAG crystal was mounted in temperature controlled copper holder of the liquid nitrogen cryostat. The 138 mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (T > 90 % @ 930 nm, HR @ 1030 nm) placed inside cryostat, and a curved output coupler (r = 150 mm, R = 94.5 % @ 1030 nm) placed outside cryostat. For longitudinal pumping a fiber coupled laser diode was used. The diode was operating in the pulse regime (5 ms pulse length, 20 Hz repetition rate) at wavelength 928.5 nm. The absorption spectrum was measured for the temperatures from 78 to 400 K, and absorption lines narrowing was observed with temperature decrease. Zero-phonon line at 970 nm has width 1 nm (FWHM) at 100 K. The fluorescence intensity decay time was measured and it increased linearly with temperature from 864 μs @ 78 K to 881 μs @ 300 K. The temperature of active medium has strong influence mainly on laser threshold which was 5 times lower at 100 K than at 300 K, and on slope efficiency which was 3 times higher at 100 K than at 300 K.

  17. Reliability and Validity of the Zephyr[TM] BioHarness[TM] to Measure Respiratory Responses to Exercise

    ERIC Educational Resources Information Center

    Hailstone, Jono; Kilding, Andrew E.

    2011-01-01

    The Zephyr[TM] BioHarness[TM] (Zephyr Technology, Auckland, New Zealand) is a wireless physiological monitoring system that has the ability to measure respiratory rate unobtrusively. However, the ability of the BioHarness[TM] to accurately and reproducibly determine respiratory rate across a range of intensities is currently unknown. The aim of…

  18. Reliability and Validity of the Zephyr[TM] BioHarness[TM] to Measure Respiratory Responses to Exercise

    ERIC Educational Resources Information Center

    Hailstone, Jono; Kilding, Andrew E.

    2011-01-01

    The Zephyr[TM] BioHarness[TM] (Zephyr Technology, Auckland, New Zealand) is a wireless physiological monitoring system that has the ability to measure respiratory rate unobtrusively. However, the ability of the BioHarness[TM] to accurately and reproducibly determine respiratory rate across a range of intensities is currently unknown. The aim of…

  19. Is YbAs a heavy Fermion system

    SciTech Connect

    Monnier, R.; Degiorgi, L.; Delley, B.; Koelling, D.D. . Lab. fuer Festkoerperphysik; Paul Scherrer Inst. , Villigen; Argonne National Lab., IL )

    1989-08-01

    Using parameters extracted from a tight binding fit to an ab initio band structure, the specific heat anomaly observed in YbAs around 5 K is computed within the infinite U limit of the degenerate Anderson impurity model. Applying the renormalization procedure derived in variational treatments of the periodic Anderson model, a quasiparticle Fermi surface with strong nesting features and small mass enhancements is obtained. The results suggest that YbAs is not a classical'' heavy Fermion system. 28 refs., 3 figs., 1 tab.

  20. Time reversal symmetry violation in the YbF molecule

    NASA Astrophysics Data System (ADS)

    Sauer, B. E.; Devlin, J. A.; Hudson, J. J.; Kara, D. M.; Smallman, I. J.; Tarbutt, M. R.; Hinds, E. A.

    2013-03-01

    We present a summary of the techniques used to test time reversal symmetry by measuring the permanent electric dipole moment of the YbF molecule. The results of a recent measurement (Hudson et al., Nature 473:493, 2011) are reported. We review some systematic effects which might mimic time reversal violation and describe how they are overcome. We then discuss improvements to the sensitivity of the apparatus, including both short term technical enhancements as well as a longer term goal to use laser cooled YbF in the experiment.