Gathuru, Eliud Mugu; Githaiga, Benson Muriuki; Kimani, Salome Nduta
2017-01-01
Growth of fruits which form an important part of human diet has been jeopardized by the many fungal diseases that are present today. This study was conceived to isolate the most common fungal pathogens in passion fruits. Fungi were isolated using potato dextrose agar in addition to characterization using morphological, cultural, and biochemical means. Extraction of essential oils from rosemary (Rosmarinus officinalis) and eucalyptus (Eucalyptus agglomerata) was done. Before carrying the sensitivity test of essential oils to the fungal isolates, constituents of the essential oils were determined. The most common fungal pathogens isolated from passion fruits were Alternaria spp. (45%), Fusarium spp. (22%), Colletotrichum spp. (17%), and Penicillium spp. (16%). There was a relationship between heating time and yield of essential oils in rosemary (r = 0.99) and eucalyptus (r = 0.99). Conversely, there was no significant difference in the amount of essential oils produced by rosemary and eucalyptus (P = 0.08). Furthermore, there was a significant difference in growth inhibition of the fungal pathogens between essential oils from rosemary and eucalyptus (P = 0.000438). Fungal pathogens isolated from passion fruits can be controlled using essential oils from rosemary and eucalyptus. The oils need to be produced in large scale. PMID:28458692
Waithaka, Paul Njenga; Gathuru, Eliud Mugu; Githaiga, Benson Muriuki; Kimani, Salome Nduta
2017-01-01
Growth of fruits which form an important part of human diet has been jeopardized by the many fungal diseases that are present today. This study was conceived to isolate the most common fungal pathogens in passion fruits. Fungi were isolated using potato dextrose agar in addition to characterization using morphological, cultural, and biochemical means. Extraction of essential oils from rosemary ( Rosmarinus officinalis ) and eucalyptus ( Eucalyptus agglomerata ) was done. Before carrying the sensitivity test of essential oils to the fungal isolates, constituents of the essential oils were determined. The most common fungal pathogens isolated from passion fruits were Alternaria spp. (45%), Fusarium spp. (22%), Colletotrichum spp. (17%), and Penicillium spp. (16%). There was a relationship between heating time and yield of essential oils in rosemary ( r = 0.99) and eucalyptus ( r = 0.99). Conversely, there was no significant difference in the amount of essential oils produced by rosemary and eucalyptus ( P = 0.08). Furthermore, there was a significant difference in growth inhibition of the fungal pathogens between essential oils from rosemary and eucalyptus ( P = 0.000438). Fungal pathogens isolated from passion fruits can be controlled using essential oils from rosemary and eucalyptus. The oils need to be produced in large scale.
Lucia, Alejandro; Juan, Laura W; Zerba, Eduardo N; Harrand, Leonel; Marcó, Martín; Masuh, Hector M
2012-05-01
The aim of this work is to validate the pre-existing models that relate the larvicidal and adulticidal activities of the Eucalyptus essential oils on Aedes aegypti. Previous works at our laboratory described that the larvicidal activity of Eucalyptus essential oils can be estimated from the relative concentration of two main components (p-cymene and 1,8-cineole) and that the adulticidal effectiveness can be explained, to a great extent, by the presence of large amounts of the component 1,8-cineole in it. In general, the results show that the higher adulticidal effect of essential oils the lower their larvicidal activity. Fresh leaves was harvested and distilled. Once the essential oil was obtained, the chemical composition was analysed, evaluating the biological activity of 15 species of the genus Eucalyptus (Eucalyptus badjensis Beuzev and Welch, Eucalyptus badjensis × nitens, Eucalyptus benthamii var Benthamii Maiden and Cambage, Eucalyptus benthamii var dorrigoensis Maiden and Cambage, Eucalyptus botryoides Smith, Eucalyptus dalrympleana Maiden, Eucalyptus fastigata Deane and Maiden, Eucalyptus nobilis L.A.S. Johnson and K.D.Hill, Eucalyptus polybractea R. Baker, Eucalyptus radiata ssp radiata Sieber ex Spreng, Eucalyptus resinifera Smith, Eucalyptus robertsonii Blakely, Eucalyptus robusta Smith, Eucalyptus rubida Deane and Maiden, Eucalyptus smithii R. Baker). Essential oils of these plant species were used for the validation of equations from preexistent models, in which observed and estimated values of the biological activity were compared. The regression analysis showed a strong validation of the models, re-stating the trends previously observed. The models were expressed as follows: A, fumigant activity [KT(50(min)) = 10.65-0.076 × 1,8-cineole (%)](p < 0.01; F, 397; R (2), 0.79); B, larval mortality (%)((40 ppm)) = 103.85 + 0.482 × p-cymene (%) - 0.363 × α-pinene (%) - 1.07 × 1,8-cineole (%) (p < 0.01; F, 300; R (2), 0.90). These results confirmed the importance of the mayor components in the biological activity of Eucalyptus essential oils on A. aegypti. However, it is worth mentioning that two or three species differ in the data estimated by the models, and these biological activity results coincide with the presence of minor differential components in the essential oils. According to what was previously mentioned, it can be inferred that the model is able to estimate very closely the biological activity of essential oils of Eucalyptus on A. aegypti.
George, David R; Masic, Dino; Sparagano, Olivier A E; Guy, Jonathan H
2009-06-01
The results of this study suggest that certain eucalyptus essential oils may be of use as an alternative to synthetic acaricides in the management of the poultry red mite, Dermanyssus gallinae. At a level of 0.21 mg/cm(2), the essential oil from Eucalyptus citriodora achieved 85% mortality in D. gallinae over a 24 h exposure period in contact toxicity tests. A further two essential oils from different eucalyptus species, namely E. globulus and E. radiata, provided significantly (P < 0.05) lower mite mortality (11 and 19%, respectively). Notable differences were found between the eucalyptus essential oils regarding their chemical compositions. There appeared to be a trend whereby the essential oils that were composed of the fewer chemical components were the least lethal to D. gallinae. It may therefore be the case that the complexity of an essential oil's chemical make up plays an important role in dictating the toxicity of that oil to pests such as D. gallinae.
Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri
2017-07-01
The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC 50 = 3.83 mg/ml) and M. communis oil from Zaghouan (IC 50 = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves.
Sebei, Khaled; Sakouhi, Fawzi; Herchi, Wahid; Khouja, Mohamed Larbi; Boukhchina, Sadok
2015-01-19
In this paper, we have studied the essential oils chemical composition of the leaves of seven Eucalyptus species developed in Tunisia. Eucalyptus leaves were picked from trees growing in different arboretums in Tunisia. Choucha and Mrifeg arboretums located in Sedjnene, region of Bizerte (Choucha: E. maideni, E. astrengens et E. cinerea; Mrifeg : E. leucoxylon), Korbous arboretums located in the region of Nabeul, North East Tunisia with sub-humid bioclimate, (E. lehmani), Souiniet-Ain Drahem arboretum located in region of Jendouba (E. sideroxylon, E. bicostata). Essential oils were individually tested against a large panel of microorganisms including Staphylococcus aureus (ATCC 6539), Escherichia coli (ATCC 25922), Enterococcus faecalis (ATCC29212), Listeria ivanovii (RBL 30), Bacillus cereus (ATCC11778). The yield of essential oils ranged from 1.2% to 3% (w/w) for the different Eucalyptus species. All essential oils contain α-pinene, 1,8-cineol and pinocarveol-trans for all Eucalyptus species studied. The 1,8-cineol was the major compound in all species (49.07 to 83.59%). Diameter of inhibition zone of essential oils of Eucalyptus species varied from 10 to 29 mm. The largest zone of inhibition was obtained for Bacillus cereus (E. astrengens) and the lowest for Staphylococcus aureus (E. cinerea). The essential oils from E. maideni, E. astrengens, E. cinerea (arboretum of Bizerte), E. bicostata (arboretum of Aindraham) showed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus. The major constituents of Eucalyptus leaves essential oils are 1,8-cineol (49.07 to 83.59%) and α-pinene (1.27 to 26.35%). The essential oils from E. maideni, E. astrengens, E. cinerea, E. bicostata showed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus, they may have potential applications in food and pharmaceutical products.
Repellent activity of five essential oils against Culex pipiens.
Erler, F; Ulug, I; Yalcinkaya, B
2006-12-01
Essential oils extracted from the seeds of anise (Pimpinella anisum), dried fruits of eucalyptus (Eucalyptus camaldulensis), dried foliage of mint (Mentha piperita) and basil (Ocimum basilicum) and fresh foliage of laurel (Laurus nobilis) were tested for their repellency against the adult females of Culex pipiens. All essential oils showed repellency in varying degrees, eucalyptus, basil and anise being the most active.
Eucalyptus essential oil as a natural food preservative: in vivo and in vitro antiyeast potential.
Tyagi, Amit Kumar; Bukvicki, Danka; Gottardi, Davide; Tabanelli, Giulia; Montanari, Chiara; Malik, Anushree; Guerzoni, Maria Elisabetta
2014-01-01
In this study, the application of eucalyptus essential oil/vapour as beverages preservative is reported. The chemical composition of eucalyptus oil was determined by gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction GC-MS (SPME/GC-MS) analyses. GC-MS revealed that the major constituents were 1,8-cineole (80.5%), limonene (6.5%), α-pinene (5%), and γ-terpinene (2.9%) while SPME/GC-MS showed a relative reduction of 1,8-cineole (63.9%) and an increase of limonene (13.8%), α-pinene (8.87%), and γ-terpinene (3.98%). Antimicrobial potential of essential oil was initially determined in vitro against 8 different food spoilage yeasts by disc diffusion, disc volatilization, and microdilution method. The activity of eucalyptus vapours was significantly higher than the eucalyptus oil. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) varied from 0.56 to 4.50 mg/mL and from 1.13 to 9 mg/mL, respectively. Subsequently, the combined efficacy of essential oil and thermal treatment were used to evaluate the preservation of a mixed fruit juice in a time-dependent manner. These results suggest eucalyptus oil as a potent inhibitor of food spoilage yeasts not only in vitro but also in a real food system. Currently, this is the first report that uses eucalyptus essential oil for fruit juice preservation against food spoiling yeast.
Eucalyptus Essential Oil as a Natural Food Preservative: In Vivo and In Vitro Antiyeast Potential
Bukvicki, Danka; Gottardi, Davide; Malik, Anushree; Guerzoni, Maria Elisabetta
2014-01-01
In this study, the application of eucalyptus essential oil/vapour as beverages preservative is reported. The chemical composition of eucalyptus oil was determined by gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction GC-MS (SPME/GC-MS) analyses. GC-MS revealed that the major constituents were 1,8-cineole (80.5%), limonene (6.5%), α-pinene (5%), and γ-terpinene (2.9%) while SPME/GC-MS showed a relative reduction of 1,8-cineole (63.9%) and an increase of limonene (13.8%), α-pinene (8.87%), and γ-terpinene (3.98%). Antimicrobial potential of essential oil was initially determined in vitro against 8 different food spoilage yeasts by disc diffusion, disc volatilization, and microdilution method. The activity of eucalyptus vapours was significantly higher than the eucalyptus oil. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) varied from 0.56 to 4.50 mg/mL and from 1.13 to 9 mg/mL, respectively. Subsequently, the combined efficacy of essential oil and thermal treatment were used to evaluate the preservation of a mixed fruit juice in a time-dependent manner. These results suggest eucalyptus oil as a potent inhibitor of food spoilage yeasts not only in vitro but also in a real food system. Currently, this is the first report that uses eucalyptus essential oil for fruit juice preservation against food spoiling yeast. PMID:25177704
Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review.
Dhakad, Ashok K; Pandey, Vijay V; Beg, Sobia; Rawat, Janhvi M; Singh, Avtar
2018-02-01
The genus Eucalyptus L'Heritier comprises about 900 species, of which more than 300 species contain volatile essential oil in their leaves. About 20 species, within these, have a high content of 1,8-cineole (more than 70%), commercially used for the production of essential oils in the pharmaceutical and cosmetic industries. However, Eucalyptus is extensively planted for pulp, plywood and solid wood production, but its leaf aromatic oil has astounding widespread biological activities, including antimicrobial, antiseptic, antioxidant, chemotherapeutic, respiratory and gastrointestinal disorder treatment, wound healing, and insecticidal/insect repellent, herbicidal, acaricidal, nematicidal, and perfumes, soap making and grease remover. In the present review, we have made an attempt to congregate the biological ingredients of leaf essential oil, leaf oil as a natural medicine, and pharmacological and toxicological values of the leaf oil of different Eucalyptus species worldwide. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Larvicidal potential of essential oils against Musca domestica and Anopheles stephensi.
Chauhan, Nitin; Malik, Anushree; Sharma, Satyawati; Dhiman, R C
2016-06-01
The larvicidal activity of Mentha piperita, Cymbopogan citratus (lemongrass), Eucalyptus globulus and Citrus sinensis (orange) essential oils and their combinations was evaluated against Musca domestica (housefly) and Anopheles stephensi (mosquitoes) through contact toxicity assay. Among all the tested essential oils/combinations, Me. piperita was found to be the most effective larvicidal agent against Mu. domestica and An. stephensi with LC50 values of 0.66 μl/cm(2) and 44.66 ppm, respectively, after 48 h. The results clearly highlighted that the addition of mentha oil to other oils (1:1 ratio) improved their larvicidal activity. The order of effectiveness of essential oils/combinations indicated that the pattern for An. stephensi follows the trend as mentha > mentha + lemongrass > lemongrass > mentha + eucalyptus > eucalyptus > mentha + orange > orange and for Mu. domestica as mentha > mentha + lemongrass > lemongrass > mentha + orange > orange > mentha + eucalyptus > eucalyptus. The images obtained from scanning electron microscopy (SEM) analysis indicated the toxic effect of Me. piperita as the treated larvae were observed to be dehydrated and deformed. This study demonstrates the effectiveness of tested essential oils/combinations against the larval stages of Mu. domestica and An. stephensi and has the potential for development of botanical formulations.
Choi, Han-Young; Yang, Young-Cheol; Lee, Si Hyeock; Clark, J Marshall; Ahn, Young-Joon
2010-05-01
The control efficacy of clove, Eugenia caryophyllata, and eucalyptus, Eucalyptus globulus, essential oils and 15 formulations containing these essential oils alone (8, 12, and 15% sprays) and their binary mixtures (7:3, 5:5, and 3:7 by weight) against adult females of insecticide-susceptible KR-HL and dual malathion- and permethrin-resistant BR-HL strains of head louse, Pediculus humanus capitis (De Geer), was examined by using contact plus fumigant and human hair wig (placed over the head of mannequin) mortality bioassays. In contact plus fumigant mortality bioassay, essential oils from eucalyptus (0.225 mg/cm2) and clove (1.149 mg/cm2) were less effective than either d-phenothrin (0.0029 mg/cm2) or pyrethrum (0.0025 mg/cm2) based on 6-h median lethal concentration values. However, the efficacies of eucalyptus and clove oils were almost identical against females fromn both strains, despite high levels of resistance of the BR-HL females to d-phenothrin (resistance ratio, 667) and pyrethrum (resistance ratio, 754). In human hair wig mortality bioassay, eucalyptus oil spray treatment gave better control efficacy than either spray treatment with clove oil alone or their binary mixtures. Thus, eucalyptus applied as 8% sprays (15 or 20 ml) appears to provide effective protection against pediculosis even to insecticide-resistant head louse populations. Once the safety issues resolved, covering the treated hair and scalp with bath shower cap or hat would ensure the fumigant action of the essential oil.
Köteles, Ferenc; Babulka, Péter; Szemerszky, Renáta; Dömötör, Zsuzsanna; Boros, Szilvia
2018-06-18
Essential oils of herbal origin are widely used in the treatment of diseases of the upper and lower respiratory tract primarily due to their antibacterial and antiviral effects. Menthol, the major component of the essential oil of mint (Mentha) species, exhibits antispasmodic activity, which might result in improved lung function. In a randomized experiment, 106 healthy participants received nebulized peppermint, eucalyptus, or rosemary essential oil for 15 min or no treatment (control). None of the essential oils had an impact on the measured spirometric variables (forced vital capacity, peak expiratory flow, the ratio of the volume of air forcibly blown out in the first second to forced vital capacity). Participants' expectations regarding the effects of essential oils did not affect their objective performance, however, they predicted perceived (subjective) changes. Perceived and measured changes were not connected with each other. In conclusion, inhaled rosemary, peppermint, and eucalyptus essential oils' subjective (perceived) effect on spirometry is mediated at least partly by expectations. Copyright © 2018 Elsevier Inc. All rights reserved.
Park, Il-Kwon; Shin, Sang-Chul
2005-06-01
Plant essential oils from 29 plant species were tested for their insecticidal activities against the Japanese termite, Reticulitermes speratus Kolbe, using a fumigation bioassay. Responses varied with plant material, exposure time, and concentration. Good insecticidal activity against the Japanese termite was achived with essential oils of Melaleuca dissitiflora, Melaleuca uncinata, Eucalyptus citriodora, Eucalyptus polybractea, Eucalyptus radiata, Eucalyptus dives, Eucalyptus globulus, Orixa japonica, Cinnamomum cassia, Allium cepa, Illicium verum, Evodia officinalis, Schizonepeta tenuifolia, Cacalia roborowskii, Juniperus chinensis var. horizontalis, Juniperus chinensis var. kaizuka, clove bud, and garlic applied at 7.6 microL/L of air. Over 90% mortality after 3 days was achieved with O. japonica essential oil at 3.5 microL/L of air. E. citriodora, C. cassia, A. cepa, I. verum, S. tenuifolia, C. roborowskii, clove bud, and garlic oils at 3.5 microL/L of air were highly toxic 1 day after treatment. At 2.0 microL/L of air concentration, essential oils of I. verum, C. roborowskik, S. tenuifolia, A. cepa, clove bud, and garlic gave 100% mortality within 2 days of treatment. Clove bud and garlic oils showed the most potent antitermitic activity among the plant essential oils. Garlic and clove bud oils produced 100% mortality at 0.5 microL/L of air, but this decreased to 42 and 67% after 3 days of treatment at 0.25 microL/L of air, respectively. Analysis by gas chromatography-mass spectrometry led to the identification of three major compounds from garlic oil and two from clove bud oils. These five compounds from two essential oils were tested individually for their insecticidal activities against Japanese termites. Responses varied with compound and dose. Diallyl trisulfide was the most toxic, followed by diallyl disulfide, eugenol, diallyl sulfide, and beta-caryophyllene. The essential oils described herein merit further study as potential fumigants for termite control.
Delaquis, Pascal J; Stanich, Kareen; Girard, Benoit; Mazza, G
2002-03-25
Essential oils from dill (Anethum graveolens L.), coriander (seeds of Coriandrum sativum L.), cilantro (leaves of immature C. sativum L.) and eucalyptus (Eucalyptus dives) were separated into heterogeneous mixtures of components by fractional distillation and were analyzed by gas chromatography-mass spectroscopy. Minimum inhibitory concentrations against gram-positive bacteria, gram-negative bacteria and Saccharomyces cerevisiae were determined for the crude oils and their fractions. Essential oil of cilantro was particularly effective against Listeria monocytogenes, likely due to the presence of long chain (C6-C10) alcohols and aldehydes. The strength and spectrum of inhibition for the fractions often exceeded those determined in the crude oils. Mixing of fractions resulted in additive, synergistic or antagonistic effects against individual test microorganisms.
2012-01-01
Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia) and Souinet arboreta (North of Tunisia) were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively), four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae, S. agalactiae, S. pyogenes, S. pneumoniae and against all the tested fungal strains. In addition, E. odorata oil showed the most cytotoxic effect. However, the best antiviral activity appeared with E. bicostata. Virus pretreatment with E. bicostata essential oil showed better antiviral activity (IC50 = 0.7 mg/ml, SI = 22.8) than cell-pretreatment (IC50 = 4.8 mg/ml, SI = 3.33). The essential oil of E. astringens showed antiviral activity only when incubated with virus prior to cell infection. This activity was dose-dependent and the antiviral activity diminished with the decreasing essential oil concentration. PMID:22742534
Salem, Mohamed Z M; Ashmawy, Nader A; Elansary, Hosam O; El-Settawy, Ahmed A
2015-01-01
The chemical composition of the essential oil from the leaves of Eucalyptus camaldulensis, Eucalyptus camaldulensis var. obtusa and Eucalyptus gomphocephala grown in northern Egypt was analysed by using GC-FID and GC-MS techniques. The antibacterial (agar disc diffusion and minimum inhibitory concentration methods) and antioxidant activities (2,2'-diphenypicrylhydrazyl) were examined. The main oils constituents were 1,8-cineole (21.75%), β-pinene (20.51%) and methyleugenol (6.10%) in E. camaldulensis; spathulenol (37.46%), p-cymene (17.20%) and crypton (8.88%) in E. gomphocephala; spathulenol (18.37%), p-cymene (19.38%) and crypton (16.91%) in E. camaldulensis var. obtusa. The essential oils from the leaves of Eucalyptus spp. exhibited considerable antibacterial activity against Gram-positive and Gram-negative bacteria. The values of total antioxidant activity were 70 ± 3.13%, 50 ± 3.34% and 84 ± 4.64% for E. camaldulensis, E. camaldulensis var. obtusa and E. gomphocephala, respectively. The highest antioxidant activity value of 84 ± 4.64% could be attributed to the high amount of spathulenol (37.46%).
Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis.
Maghsoodlou, Malek Taher; Kazemipoor, Nasrin; Valizadeh, Jafar; Falak Nezhad Seifi, Mohsen; Rahneshan, Nahid
2015-01-01
Eucalyptus (Fam. Myrtaceae) is a medicinal plant and various Eucalyptus species possess potent pharmacological actions against diabetes, hepatotoxicity, and inflammation. This study aims to investigate essential oil composition from leaves and flowers of E. microtheca and E. viminalis leaves growing in the Southeast of Iran. The aerial parts of these plants were collected from Zahedan, Sistan and Baluchestan province, Iran in 2013. After drying the plant materials in the shade, the chemical composition of the essential oils was obtained by hydro-distillation method using a Clevenger-type apparatus and analyzed by GC/MS. In the essential oil of E. microtheca leaves, 101 compounds representing 100%, were identified. Among them, α-phellandrene (16.487%), aromadendrene (12.773%), α-pinene (6.752%), globulol (5.997%), ledene (5.665%), P-cymen (5.251%), and β-pinene (5.006%) were the major constituents. In the oil of E. microtheca flowers, 88 compounds representing 100%, were identified in which α-pinene (16.246%), O-cymen (13.522%), β-pinene (11.082%), aromadendrene (7.444%), α-phellandrene (7.006%), globulol (5.419%), and 9-octadecenamide (5.414%) were the major components. Sixty six compounds representing 100% were identified in the oil of E. viminalis leaves. The major compounds were 1, 8-cineole (57.757%), α-pinene (13.379%), limonene (5.443%), and globulol (3.054%). The results showed the essential oils from the aerial parts of Eucalyptus species are a cheap source for the commercial isolation of α-phellandrene, α-pinene, and 1, 8-cineole compounds to be used in medicinal and food products. Furthermore, these plants could be an alternative source of insecticide agents.
Abd El-Moneim, M R Afify; Fatma, S Ali; Turky, A F
2012-01-01
To evaluate the acaricidal activity of extracts of three essential oils of chamomile, marjoram and Eucalyptus against Tetranychus urticae (T. urticae) Koch. Extracts of three essential oils of chamomile, marjoram and Eucalyptus with different concentrations (0.5%, 1.0%, 2.0%, 3.0% and 4.0%) were used to control T. urticae Koch. The results showed that chamomile (Chamomilla recutita) represented the most potent efficient acaricidal agent against Tetranychus followed by marjoram (Marjorana hortensis) and Eucalyptus. The LC50 values of chamomile, marjoram and Eucalyptus for adults were 0.65, 1.84 and 2.18, respectively and for eggs 1.17, 6.26 and 7.33, respectively. Activities of enzymes including glutathione-S-transferase, esterase (α-esterase and β-esterase) and alkaline phosphatase in susceptible mites were determined and activities of enzymes involved in the resistance of acaricides were proved. Protease enzyme was significantly decreased at LC50 of both chamomile and marjoram compared with positive control. Gas chromatography-mass spectrometer (GC-MS) proved that the major compositions of Chamomilla recutita are α-bisabolol oxide A (35.251%), and trans-β-farersene (7.758%), while the main components of Marjorana hortensis are terpinene-4-ol (23.860%), p-cymene (23.404%) and sabinene (10.904%). It can be concluded that extracts of three essential oils of chamomile, marjoram and Eucalyptus possess acaricidal activity against T. urticae.
Abd El-Moneim, MR Afify; Fatma, S Ali; Turky, AF
2012-01-01
Objective To evaluate the acaricidal activity of extracts of three essential oils of chamomile, marjoram and Eucalyptus against Tetranychus urticae (T. urticae) Koch. Methods Extracts of three essential oils of chamomile, marjoram and Eucalyptus with different concentrations (0.5%, 1.0%, 2.0%, 3.0% and 4.0%) were used to control T. urticae Koch. Results The results showed that chamomile (Chamomilla recutita) represented the most potent efficient acaricidal agent against Tetranychus followed by marjoram (Marjorana hortensis) and Eucalyptus. The LC50 values of chamomile, marjoram and Eucalyptus for adults were 0.65, 1.84 and 2.18, respectively and for eggs 1.17, 6.26 and 7.33, respectively. Activities of enzymes including glutathione-S-transferase, esterase (α-esterase and β-esterase) and alkaline phosphatase in susceptible mites were determined and activities of enzymes involved in the resistance of acaricides were proved. Protease enzyme was significantly decreased at LC50 of both chamomile and marjoram compared with positive control. Gas chromatography-mass spectrometer (GC-MS) proved that the major compositions of Chamomilla recutita are α-bisabolol oxide A (35.251%), and trans-β-farersene (7.758%), while the main components of Marjorana hortensis are terpinene-4-ol (23.860%), p-cymene (23.404%) and sabinene (10.904%). Conclusions It can be concluded that extracts of three essential oils of chamomile, marjoram and Eucalyptus possess acaricidal activity against T. urticae. PMID:23569829
Muchembled, Jérôme; Deweer, Caroline; Sahmer, Karin; Halama, Patrice
2017-11-02
The antifungal activity of seven essential oils (eucalyptus, clove, mint, oregano, savory, tea tree, and thyme) was studied on Venturia inaequalis, the fungus responsible for apple scab. The composition of the essential oils was checked by gas chromatography-mass spectrometry. Each essential oil had its main compound. Liquid tests were performed to calculate the IC 50 of essential oils as well as their majority compounds. The tests were made on two strains with different sensitivities to tebuconazole: S755, the sensitive strain, and rs552, the strain with reduced sensitivity. Copper sulfate was selected as the reference mineral fungicidal substance. IC 50 with confidence intervals were calculated after three independent experiments. The results showed that all essential oils and all major compounds had in vitro antifungal activities. Moreover, it was highlighted that the effectiveness of four essential oils (clove, eucalyptus, mint, and savory) was higher than copper sulfate on both strains. For each strain, the best activity was obtained using clove and eucalyptus essential oils. For clove, the IC 50 obtained on the sensitive strain (5.2 mg/L [4.0-6.7 mg/L]) was statistically lower than the IC 50 of reduced sensitivity strain (14 mg/L [11.1-17.5 mg/L]). In contrast, for eucalyptus essential oil, the IC 50 were not different with respectively 9.4-13.0 and 12.2-17.9 mg/L for S755 and rs552 strains. For mint, origano, savory, tea tree, and thyme, IC 50 were always the best on rs552 strain. The majority compounds were not necessarily more efficient than their corresponding oils; only eugenol (for clove) and carvacrol (for oregano and savory) seemed to be more effective on S755 strain. On the other hand, rs552 strain seemed to be more sensitive to essential oils than S755 strain. In overall, it was shown that essential oils have different antifungal activities but do not have the same antifungal activities depending on the fungus strain used.
Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz
2016-01-01
This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL−1; MBC mean = 2618 μg mL−1), thyme (MIC mean = 2618 μg mL−1; MBC mean = 2909 μg mL−1), and oregano (MIC mean = 3418 μg mL−1; MBC mean = 4800 μg mL−1) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL−1. Our results confirm the antimicrobial potential of some essential oils, which deserve further research. PMID:27313638
Lucia, Alejandro; Gonzalez Audino, Paola; Seccacini, Emilia; Licastro, Susana; Zerba, Eduardo; Masuh, Hector
2007-09-01
In the search for new alternatives for the control of Aedes aegypti the larvicidal activity of Eucalyptus grandis essential oil and pine resin essential oil (turpentine) and their major components (alpha- and beta-pinene and 1,8-cineole) was determined. Gas chromatography-mass spectroscopy analysis of E. grandis essential oil revealed that its major components are alpha-pinene and 1,8-cineole. Similar analysis of turpentine obtained by distillation of the resin pitch of conifers showed that alpha- and beta-pinene are the only major components. Third and early 4th instars of the CIPEIN-susceptible strain of Ae. aegypti were exposed to acetonic solutions of E. grandis essential oil, turpentine, and their major components for 24 h. Turpentine, with an LC50 of 14.7 ppm, was more active than the essential oil of E. grandis (LC50: 32.4 ppm). Larvicidal activity of the essential oil components showed that alpha- and beta-pinene present low LC50 values (15.4 and 12.1 ppm, respectively), whereas pure 1,8-cineole showed an LC50 of 57.2 ppm. These results suggest that alpha-pinene in E. grandis and alpha- and beta-pinene in turpentine serve as the principal larvicidal components of both oils. Results obtained on larvicidal effects of essential oil of Eucalyptus grandis and turpentine could be considered a contribution to the search for new biodegradable larvicides of natural origin.
USDA-ARS?s Scientific Manuscript database
Palmarosa (Cymbopogon martini), lemongrass (C. citratus) and eucalyptus (Eucalyptus globulus) oils were investigated for their effects on Ralstonia solanacearum race 4, and their potential use as bio-fumigants for treating pathogen- infested edible ginger (Zingiber officinale R.) fields. Three conce...
Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min
2015-05-07
The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil's antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product.
Kringel, Dianini Hüttner; Antunes, Mariana Dias; Klein, Bruna; Crizel, Rosane Lopes; Wagner, Roger; de Oliveira, Roberto Pedroso; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-11-01
The aim of this study was to produce and characterize inclusion complexes (IC) between β-cyclodextrin (β-CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace-gas chromatography (SH-GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β-CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β-CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β-CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods. © 2017 Institute of Food Technologists®.
Dogan, Gulden; Kara, Nazan; Bagci, Eyup; Gur, Seher
2017-10-26
The chemical composition of the essential oils from the leaves and fruit of Eucalyptus camaldulensis grown in Mersin, Turkey was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The biological activities (antibacterial and antifungal) were examined using the agar well diffusion method. The main leaf oil constituents were p-cymene (42.1%), eucalyptol (1,8-cineole) (14.1%), α-pinene (12.7%) and α-terpinol (10.7%). The main constituents of the fruit oil were eucalyptol (1,8-cineole) (34.5%), p-cymene (30.0%), α-terpinol (15.1%) and α-pinene (9.0%). Our results showed that both types of oils are rich in terms of monoterpene hydrocarbons and oxygenated monoterpenes. The leaf and fruit essential oils of E. camaldulensis significantly inhibited the growth of Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Streptococcus sp.) bacteria (p<0.05). The oils also showed fungicidal activity against Candida tropicalis and C. globrata. Leaf essential oils showed more activity than fruit essential oils, probably due to the higher p-cymene concentration in leaves.
Antimicrobial activity of commercially available essential oils against Streptococcus mutans.
Chaudhari, Lalit Kumar D; Jawale, Bhushan Arun; Sharma, Sheeba; Sharma, Hemant; Kumar, C D Mounesh; Kulkarni, Pooja Adwait
2012-01-01
Many essential oils have been advocated for use in complementary medicine for bacterial and fungal infections. However, few of the many claims of therapeutic efficacy have been validated adequately by either in vitro testing or in vivo clinical trials. To study the antibacterial activity of nine commercially available essential oils against Streptococcus mutans in vitro and to compare the antibacterial activity between each material. Nine pure essential oils; wintergreen oil, lime oil, cinnamon oil, spearmint oil, peppermint oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil were selected for the study. Streptococcus mutans was inoculated at 37ºC and seeded on blood agar medium. Agar well diffusion assay was used to measure antibacterial activity. Zone of inhibition was measured around the filter paper in millimeters with vernier caliper. Cinnamon oil showed highest activity against Streptococcus mutans followed by lemongrass oil and cedarwood oil. Wintergreen oil, lime oil, peppermint oil and spearmint oil showed no antibacterial activity. Cinnamon oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil exhibit antibacterial property against S. mutans. The use of these essential oils against S. mutans can be a viable alternative to other antibacterial agents as these are an effective module used in the control of both bacteria and yeasts responsible for oral infections.
Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min
2015-01-01
The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil’s antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography–mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product. PMID:25961954
Phasomkusolsil, Siriporn; Soonwera, Mayura
2011-09-01
The essential oils of Cananga odorata (ylang ylang), Citrus sinensis (orange), Cymbopogon citratus (lemongrass), Cymbopogon nardus (citronella grass), Eucalyptus citriodora (eucalyptus), Ocimum basilicum (sweet basil) and Syzygium aromaticum (clove), were tested for their insecticide activity against Aedes aegypti, Culex quinquefasciatus and Anopheles dirus using the WHO standard susceptibility test. These were applied in soybean oil at dose of 1%, 5% and 10% (w/v). C. citratus had the KT, values against the three mosquito species tested but the knockdown rates (at 10, 30 and 60 minutes) were lower than some essential oils. C. citratus oil had high insecticidal activity against Ae. aegypti, Cx. quinquefasciatus and An. dirus, with LC50 values of < 0.1, 2.22 and < 0.1%, respectively. Ten percent C. citratus gave the highest mortality rates (100%) 24 hours after application. This study demonstrates the potential for the essential oil of C. citratus to be used as an insecticide against 3 species of mosquitoes.
Yadav, Monu; Jindal, Deepak Kumar; Parle, Milind; Kumar, Anil; Dhingra, Sameer
2018-02-20
Essential oil of eucalyptus species is among the most common traded essential oils in the world. There is an increasing interest in the application of eucalyptus oil as a natural additive in food and pharmaceutical industry. The present study was undertaken to identify the phytoconstituents present in the essential oil of Eucalyptus globulus leaves (EO) and ascertain their protective effect against ketamine-induced psychosis in rats. GC-MS technique was used for analysis of phytoconstituents present in EO. Ketamine (50 mg/kg, i.p.) was used to induce psychosis in rats. Photoactometer, forced swim test and pole climb avoidance test were used to evaluate the protective effects of the EO (500, 1000 and 2000 mg/kg, p.o.) on acute and chronic administration. Bar test was used to test the side effect of EO. Biochemical and neurochemical estimations were carried out to explore the possible mechanism of action. GC-MS analysis of EO showed the presence of a number of biologically active compounds. EO at the dose of 500, 1000 and 2000 mg/kg, p.o. on acute and chronic administration, decreased locomotor activity, immobility duration and latency to climb the pole. EO was effective to facilitate the release of GABA, increase GSH levels, inhibit dopamine neurotransmission and decrease TNF-α levels as well as diminish AChE activity in different regions of the brain. EO at the dose of 500, 1000 mg/kg did not produce cataleptic behavior in rats. EO at the dose of 500, 1000 mg/kg produced protective effects against ketamine-induced psychosis and can be further explored clinically against neuropsychiatric disorders.
Yadav, Hemant Kumar; Yadav, Rakesh Kumar; Chandra, Anil; Thakkar, Rahul Rameshbhai
2016-01-01
The objective of this study was to evaluate the dissolution effectiveness of eucalyptus oil, orange oil, xylene, and distilled water on three different endodontic sealers. About 240 samples of root canal sealers (eighty for each sealer) were prepared and divided into four groups of 20 each for immersion in different organic solvents. Each group was further subdivided into two subgroups (n = 10) for 2 and 10 min of immersion time. The mean percentage of weight loss was determined for each sealer in each solvent at both time periods. Data were statistically analyzed by two factor analysis of variance and significance of mean difference was obtained by Tukey's post hoc test (P < 0.05). The lowest level of solubility was observed for Adseal followed by Apexit Plus and Endomethasone N at both time periods in all solvents. Apexit Plus showed no significant (P > 0.05) difference in its dissolution in all the organic solvents except distilled water at both the time periods. The solubility profile of Endomethasone N and Adseal did not differ significantly among eucalyptus oil, orange oil, and xylene at 2 min and between eucalyptus oil and orange oil at 10 min. However, at 10 min, Endomethasone N and Adseal showed a more pronounced solubility in xylene as compared to both eucalyptus oil and orange oil. In general, xylene was the most effective in dissolving root canal sealers than other organic solvents. Essential oils (eucalyptus oil and orange oil) were found similar in their ability to dissolve Apexit Plus and Endomethasone N.
Cruz, G S; Wanderley-Teixeira, V; Oliveira, J V; Lopes, F S C; Barbosa, D R S; Breda, M O; Dutra, K A; Guedes, C A; Navarro, D M A F; Teixeira, A A C
2016-04-01
Spodoptera frugiperda (Smith 1797) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L. Its control is often achieved through repeated applications per season of insecticides, which may lead to adverse effects on the ecosystem. Thus, the study of alternative methods with less environmental impact has expanded to include the use of essential oils. These oils are products of the secondary metabolism in plants, and their insecticidal activity has been widely demonstrated in populations of many pest insects. This study evaluated the insecticidal activities of essential oils from Eucalyptus staigeriana, Ocimum gratissimum, and Foeniculum vulgare on Spodoptera frugiperda. Gas chromatography–mass spectrometry profiles and contact toxicity of these oils as well as their sublethal effects on larvae and reproductive parameters in adults were evaluated. All three oils had sublethal effects on S. frugiperda; however, the oil of O. gratissimum showed the best results at all doses tested. These essential oils may have promise for control of S. frugiperda.
Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit
2017-03-01
The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC 50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ghaffar, Abdul; Yameen, Muhammad; Kiran, Shumaila; Kamal, Shagufta; Jalal, Fatima; Munir, Bushra; Saleem, Sadaf; Rafiq, Naila; Ahmad, Aftab; Saba, Iram; Jabbar, Abdul
2015-11-18
Eucalyptus is well reputed for its use as medicinal plant around the globe. The present study was planned to evaluate chemical composition, antimicrobial and antioxidant activity of the essential oils (EOs) extracted from seven Eucalyptus species frequently found in South East Asia (Pakistan). EOs from Eucalyptus citriodora, Eucalyptus melanophloia, Eucalyptus crebra, Eucalyptus tereticornis, Eucalyptus globulus, Eucalyptus camaldulensis and Eucalyptus microtheca were extracted from leaves through hydrodistillation. The chemical composition of the EOs was determined through GC-MS-FID analysis. The study revealed presence of 31 compounds in E. citriodora and E. melanophloia, 27 compounds in E. crebra, 24 compounds in E. tereticornis, 10 compounds in E. globulus, 13 compounds in E. camaldulensis and 12 compounds in E. microtheca. 1,8-Cineole (56.5%), α-pinene (31.4%), citrinyl acetate (13.3%), eugenol (11.8%) and terpenene-4-ol (10.2%) were the highest principal components in these EOs. E. citriodora exhibited the highest antimicrobial activity against the five microbial species tested (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus niger and Rhizopus solani). Gram positive bacteria were found more sensitive than Gram negative bacteria to all EOs. The diphenyl-1-picrylhydazyl (DPPH) radical scavenging activity and percentage inhibition of linoleic acid oxidation were highest in E. citriodora (82.1% and 83.8%, respectively) followed by E. camaldulensis (81.9% and 83.3%, respectively). The great variation in chemical composition of EOs from Eucalyptus, highlight its potential for medicinal and nutraceutical applications.
Veloza, Luz A; Orozco, Lina M; Sepúlveda-Arias, Juan C
2011-07-01
Dimethyldioxirane (DMDO), a widely used oxidant in organic synthesis is considered an environmentally friendly oxygen transfer reagent because acetone is the only byproduct formed in its oxidation reactions. This work describes the isolation of the main constituents (terpenes) in the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora, their epoxidation with DMDO in acetone solution and the characterization of the resulting epoxides by GC-MS (EI) and NMR. This is one of the first reports involving the application of dioxirane chemistry to essential oils in order to generate modified compounds with potential uses in several areas of medicine and industry.
Olivero-Verbel, Jesús; Nerio, Luz S; Stashenko, Elena E
2010-06-01
Essential oils isolated from Cymbopogon citratus (DC) Stapf. and Eucalyptus citriodora Hook grown in Colombia were analysed by gas chromatography-mass spectrometry (GC-MS) and tested for repellent activity and contact toxicity against Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae). The main components of C. citratus oil were geranial (34.4%), neral (28.4%) and geraniol (11.5%), whereas those of E. citriodora were citronellal (40%), isopulegol (14.6%) and citronellol (13%). The mean repellent doses after 4 h exposure were 0.021 and 0.084 mL L(-1) for C. citratus and E. citriodora oils respectively-values lower than that observed for the commercial product IR3535 (0.686 mL L(-1)). These studies showed the composition and repellent activity of essential oils of C. citratus and E. citriodora, suggesting that these are potential candidates as insect repellents.
Alvarez Costa, Agustín; Naspi, Cecilia V; Lucia, Alejandro; Masuh, Héctor M
2017-05-01
Dengue, chikungunya, and yellow fever are important vector-borne diseases transmitted by female mosquitoes when they feed on humans. The use of repellents based on natural products is an alternative for personal protection against these diseases. Application of chemicals with larvicidal activity is another strategy for controlling the mosquito population. The repellent and larvicidal activities of the essential oil from Eucalyptus nitens were tested against Aedes aegypti and Aedes albopictus, the main vectors of these arboviruses. The essential oil was extracted by hydrodistillation and then analyzed by gas chromatography-mass spectrometry. The main components of Eucalyptus nitens essential oil were found to be terpenes such as 1,8-cineole and p-cymene, followed by β-triketones and alkyl esters. The repellent activity of the essential oil against both species was significantly higher when compared with the main component, 1,8-cineole, alone. These results indicate that the repellent effect of E. nitens is not due only to the main component, 1,8-cineole, but also that other compounds may be responsible. Aedes aegypti was found to be more tolerant to the essential oil larvicidal effects than Ae. albopictus (Ae. aegypti LC50 = 52.83 ppm, Ae. albopictus LC 50 = 28.19 ppm). The repellent and larvicidal activity could be associated to the presence of cyclic β-triketones such as flavesone, leptospermone, and isoleptospermone. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Foley, W J; Lassak, E V; Brophy, J
1987-11-01
Measurements were made of the quantity and composition of the steam-volatile essential oils in gastrointestinal tract contents of greater gliders fedEucalyptus radiata foliage and brushtail possums fedE. melliodora foliage. In both species, there was less oil in the stomach contents than in an equivalent mass of foliage. Only minor losses of leaf oils occurred during mastication by greater gliders, and absorption from the stomach appeared to be the major reason for the difference in the oil content of ingested leaves and of stomach contents. The apparent digestibility of oils over the whole gut was 96-97 %, although oils from the cecum and feces of both species contained compounds not present in the original leaf oils. Absorption of oils before they reach the hindgut should reduce the severity of antimicrobial effects but may involve a metabolic cost to the animal in detoxification and excretion.
Chemical Components of Four Essential Oils in Aromatherapy Recipe.
Tadtong, Sarin; Kamkaen, Narisa; Watthanachaiyingcharoen, Rith; Ruangrungsi, Nijsiri
2015-06-01
This study focused on characterization of the chemical components of an aromatherapy recipe. The formulation consisted of four blended essential oils; rosemary oil, eucalyptus oil, pine oil and lime oil (volume ratio 6 : 2 : 1 : 1). The single and combination essential oils were identified by gas chromatography-mass spectrometry (GC-MS). The analysis of GC-MS data revealed that several components exist in the mixture. The five most important components of the blended essential oils were 1,8-cineole (35.6 %), α-pinene (11.1%), limonene (9.6%), camphor (8.4%), and camphene (6.6%). The main components of rosemary oil were 1,8-cineole (37.3%), α-pinene (19.3%), camphor (14.7%), camphene (8.8%), and β-pinene (5.5%); of eucalyptus oil 1,8-cineole (82.6%) followed by limonene (7.4%), o-cymene (4.3%), γ-terpinene (2.7%), and α-pinene (1.5%); of pine oil terpinolene (26.7%), α-terpineol (20.50%), 1-terpineol (10.8%), α-pinene (6.0%), and γ-terpineol (5.3%); and of lime oil limonene (62.9%), γ-terpinene (11.5%), α-terpineol (7.6%), terpinolene (6.0%), and α-terpinene (2.8%). The present study provided a theoretical basis for the potential application of blended essential oils to be used as an aromatherapy essential oil recipe. GC-MS serves as a suitable and reliable method for the quality control of the chemical markers.
Role of direct bioautographic method for detection of antistaphylococcal activity of essential oils.
Horváth, Györgyi; Jámbor, Noémi; Kocsis, Erika; Böszörményi, Andrea; Lemberkovics, Eva; Héthelyi, Eva; Kovács, Krisztina; Kocsis, Béla
2011-09-01
The aim of the present study was the chemical characterization of some traditionally used and therapeutically relevant essential oils (thyme, eucalyptus, cinnamon bark, clove, and tea tree) and the optimized microbiological investigation of the effect of these oils on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). The chemical composition of the oils was analyzed by TLC, and controlled by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The antibacterial effect was investigated using a TLC-bioautographic method. Antibacterial activity of thyme, clove and cinnamon oils, as well as their main components (thymol, carvacrol, eugenol, and cinnamic aldehyde) was observed against all the bacterial strains used in this study. The essential oils of eucalyptus and tea tree showed weak activity in the bioautographic system. On the whole, the antibacterial activity of the essential oils could be related to their most abundant components, but the effect of the minor components should also be taken into consideration. Direct bioautography is more cost-effective and better in comparison with traditional microbiological laboratory methods (e.g. disc-diffusion, agar-plate technique).
Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity.
Tolba, H; Moghrani, H; Benelmouffok, A; Kellou, D; Maachi, R
2015-12-01
Essential oil of Eucalyptus citriodora is a natural product which has been attributed for various medicinal uses. In the present investigation, E. citriodora essential oil was used to evaluate its antifungal effect against medically important dermatophytes. Essential oil from the Algerian E. citriodora leaves was analyzed by GC and GC/MS. The antifungal effect of E. citriodora essential oil was evaluated against four dermatophytes: Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum using disc diffusion method, disc volatilization method, and agar dilution method. The chemical composition of the oil revealed the presence of 22 compounds accounting for 95.27% of the oil. The dominant compounds were citronellal (69.77%), citronellol (10.63%) and isopulegol (4.66%). The disc diffusion method, MIC and MFC determination, indicated that E. citriodora essential oil had a higher antifungal potential against the tested strains with inhibition zone diameter which varied from (12 to 90mm) and MIC and MFC values ranged from (0.6 to 5μL/mL and 1.25 to 5μL/mL) respectively. The M. gypseum was the most resistant to the oil. The results of the present study indicated that E. citriodora essential oil may be used as a new antifungal agent recommended by the pharmaceutical industries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils.
Barbosa, Luiz Claudio Almeida; Filomeno, Claudinei Andrade; Teixeira, Robson Ricardo
2016-12-07
Many plant species produce mixtures of odorous and volatile compounds known as essential oils (EOs). These mixtures play important roles in Nature and have been utilized by mankind for different purposes, such as pharmaceuticals, agrochemicals, aromatherapy, and food flavorants. There are more than 3000 EOs reported in the literature, with approximately 300 in commercial use, including the EOs from Eucalyptus species. Most EOs from Eucalyptus species are rich in monoterpenes and many have found applications in pharmaceuticals, agrochemicals, food flavorants, and perfumes. Such applications are related to their diverse biological and organoleptic properties. In this study, we review the latest information concerning the chemical composition and biological activities of EOs from different species of Eucalyptus . Among the 900 species and subspecies of the Eucalyptus genus, we examined 68 species. The studies associated with these species were conducted in 27 countries. We have focused on the antimicrobial, acaricidal, insecticidal and herbicidal activities, hoping that such information will contribute to the development of research in this field. It is also intended that the information described in this study can be useful in the rationalization of the use of Eucalyptus EOs as components for pharmaceutical and agrochemical applications as well as food preservatives and flavorants.
Haddad, Mohamed; Herent, Marie-France; Tilquin, Bernard; Quetin-Leclercq, Joëlle
2007-07-25
The microbiological contamination of raw plant materials is common and may be adequately reduced by radiation processing. This study evaluated the effects of gamma- and e-beam ionizing radiations (25 kGy) on three plants used as food or as medicinal products (Thymus vulgaris L., Eucalyptus radiata D.C., and Lavandula angustifolia Mill.) as well as their effects on extracted or commercial essential oils and pure standard samples. Comparison between irradiated and nonirradiated samples was performed by GC/FID and GC/MS. At the studied doses, gamma and e-beam ionizing radiation did not induce any detectable qualitative or quantitative significant changes in the contents and yields of essential oils immediately after ionizing radiation of plants or commercial essential oils and standards. As the maximum dose tested (25 kGy) is a sterilizing dose (much higher than doses used for decontamination of vegetable drugs), it is likely that even decontamination with lower doses will not modify yields or composition of essential oils of these three plants.
Degradation of Zearalenone by Essential Oils under In vitro Conditions
Perczak, Adam; Juś, Krzysztof; Marchwińska, Katarzyna; Gwiazdowska, Daniela; Waśkiewicz, Agnieszka; Goliński, Piotr
2016-01-01
Essential oils are volatile compounds, extracted from plants, which have a strong odor. These compounds are known for their antibacterial and antifungal properties. However, data concerning degradation of mycotoxins by these metabolites are very limited. The aim of the present study was to investigate the effect of essential oils (cedarwood, cinnamon leaf, cinnamon bark, white grapefruit, pink grapefruit, lemon, eucalyptus, palmarosa, mint, thymic, and rosemary) on zearalenone (ZEA) reduction under various in vitro conditions, including the influence of temperature, pH, incubation time and mycotoxin and essential oil concentrations. The degree of ZEA reduction was determined by HPLC method. It was found that the kind of essential oil influences the effectiveness of toxin level reduction, the highest being observed for lemon, grapefruit, eucalyptus and palmarosa oils, while lavender, thymic and rosemary oils did not degrade the toxin. In addition, the decrease in ZEA content was temperature, pH as well as toxin and essential oil concentration dependent. Generally, higher reduction was observed at higher temperature in a wide range of pH, with clear evidence that the degradation rate increased gradually with time. In some combinations (e.g., palmarosa oil at pH 6 and 4 or 20°C) a toxin degradation rate higher than 99% was observed. It was concluded that some of the tested essential oils may be effective in detoxification of ZEA. We suggested that essential oils should be recognized as an interesting and effective means of ZEA decontamination and/or detoxification. PMID:27563298
Izakmehri, Khadijeh; Saber, Moosa; Mehrvar, Ali; Hassanpouraghdam, Mohammad Bagher; Vojoudi, Samad
2013-01-01
The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), is an important pest of stored cowpea, Vigna ungiculata (L.) Walpers (Fabales: Fabaceae), with ample distribution in tropical and subtropical regions. Many plant essential oils have a broad-spectrum activity against pest insects, and these oils traditionally have been used in the protection of stored products. In this study, the lethal and sublethal effects of essential oils from Eucalyptus camaldulensis Dehnh. (Myrtales: Myrtaceae) and Heracleum persicum Desf. (Apiales: Apiaceae) were evaluated on the adults of C. maculatus at 26 ± 1° C, 70 ± 5% RH, and a photoperiod of 16:8 L:D. The LC50 values of E. camaldulensis and H. persicum were 56.7 and 219.4 µL/L air after 12 hr and 26.1 and 136.4 µL/L air after 24 hr of exposure, respectively. The LT50 values of E. camaldulensis and H.persicum were 6.3 and 10.9 hr, respectively. The results showed that low lethal concentration (LC20) of essential oils negatively affected the longevity, fecundity, and fertility of female adults. The sex ratio of C. maculatus offspring was not significantly affected by essential oils. Therefore, these essential oils can be suggested for controlling C. maculatus in storage systems. The introduction of essential oils into storage systems could potentially decrease seed losses.
Izakmehri, Khadijeh; Saber, Moosa; Mehrvar, Ali; Hassanpouraghdam, Mohammad Bagher; Vojoudi, Samad
2013-01-01
The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), is an important pest of stored cowpea, Vigna ungiculata (L.) Walpers (Fabales: Fabaceae), with ample distribution in tropical and subtropical regions. Many plant essential oils have a broad-spectrum activity against pest insects, and these oils traditionally have been used in the protection of stored products. In this study, the lethal and sublethal effects of essential oils from Eucalyptus camaldulensis Dehnh. (Myrtales: Myrtaceae) and Heracleum persicum Desf. (Apiales: Apiaceae) were evaluated on the adults of C. maculatus at 26 ± 1° C, 70 ± 5% RH, and a photoperiod of 16:8 L:D. The LC50 values of E. camaldulensis and H. persicum were 56.7 and 219.4 µL/L air after 12 hr and 26.1 and 136.4 µL/L air after 24 hr of exposure, respectively. The LT50 values of E. camaldulensis and H.persicum were 6.3 and 10.9 hr, respectively. The results showed that low lethal concentration (LC20) of essential oils negatively affected the longevity, fecundity, and fertility of female adults. The sex ratio of C. maculatus offspring was not significantly affected by essential oils. Therefore, these essential oils can be suggested for controlling C. maculatus in storage systems. The introduction of essential oils into storage systems could potentially decrease seed losses. PMID:24773362
Javed, S; Shoaib, A; Mahmood, Z; Mushtaq, S; Iftikhar, S
2012-01-01
In vitro antifungal activity and phytochemical constituents of essential oil, aqueous, methanol and chloroform extract of Eucalyptus citriodora Hook leaves were investigated. A qualitative phytochemical analysis was performed for the detection of alkaloids, cardiac glycosides, flavonoids, saponins, sterols, tannins and phenols. Methanolic extract holds all identified biochemical constituents except for the tannin. While these biochemical constituents were found to be absent in essential oil, aqueous and chloroform extracts with the exception of sterols, cardiac glycosides and phenols in essential oil and sterols and phenols in aqueous and chloroform extracts. Antimycotic activity of four fractions of E. citriodora was investigated through agar-well diffusion method against four post-harvest fungi, namely, Aspergillus flavus Link ex Gray, Aspergillus fumigatus Fres., Aspergillus nidulans Eidam ex Win and Aspergillus terreus Thom. The results revealed maximum fungal growth inhibition by methanolic extract (14.5%) followed by essential oil (12.9%), chloroform extract (10.15%) and aqueous extract (10%).
Camporese, Alessandro
2013-06-01
Staphylococcus aureus and Pseudomonas aeruginosa have a high propensity to develop biofilms that are resistant to antimicrobial agents. Eucalyptus smithii and Juniperus communis essential oils are credited with a series of traditional therapeutical properties, including mucolytic effect. As S. aureus and P. aeruginosa biofilms are known to be important factors underlying their virulence and pathogenicity, the aim of this study was to investigate whether E. smithii and J. communis essential oils can interfere with biofilm formation as well as acting on mature biofilms. Tests of two S. aureus and P. aeruginosa clinical strains and two ATCC strains (S. aureus ATCC 25923 and P. aeruginosa ATCC 27853) showed that both E. smithii and J. communis essential oils interfere with the starting phases of biofilm production, as well as with mature biofilms. The results of this study reveal new relevant perspectives for a complementary inhalatory treatment of chronic and/or recurrent upper respiratory tract infections.
USDA-ARS?s Scientific Manuscript database
The antifungal activities of eight essential oils (EOs) namely basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree and thyme were evaluated for their ability to inhibit growth of Aspergillus niger, Aspergillus flavus, Aspergillus paraciticus and Penicillium chrysogenum. The antifung...
Ait-Ouazzou, Abdenour; Lorán, Susana; Bakkali, Mohammed; Laglaoui, Amin; Rota, Carmen; Herrera, Antonio; Pagán, Rafael; Conchello, Pilar
2011-11-01
The present study reports on the antimicrobial activity and chemical composition of the essential oils (EOs) of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. The composition of these species was analysed by GC-MS, and 65 components were identified. Eucalyptus globulus EO showed a great similarity with EOs from other regions, with 1,8-cineole (79.85%) the major component. Also rich in this constituent was Rosmarinus officinalis (43.99%). However, the chemical profile of Thymus algeriensis was rather different, and for the first time such a high content of borneol (23.48%) has been described in this EO. The antimicrobial activity of these species has also been studied against seven pathogenic and spoiling bacteria of significant importance. According to the results, Thymus algeriensis showed the best bacteriostatic and bactericidal effect, followed by Eucalyptus globulus and Rosmarinus officinalis. As far as we know this is the first time that minimum inhibitory and bactericidal concentration values have been reported for Eucalyptus globulus EO. Our data support the possible use of this EO as well as Thymus algeriensis EO, as potential natural agents in preservatives for food and pharmaceutical products. Copyright © 2011 Society of Chemical Industry.
Choi, Won-Il; Lee, Sang-Geui; Park, Hyung-Man; Ahn, Young-Joon
2004-04-01
Fifty-three plant essential oils were tested for their toxicity against eggs and adults of Tetranychus urticae Koch as well as adults of Phytoseiulus persimilis Athias-Henriot, by using a filter paper diffusion bioassay without allowing direct contact. Responses varied according to oil type and dose, and mite species. In a plastic container (4.5 by 9.5 cm) bioassay at 14 x 10(-3) microl/ml air, caraway seed, citronella java, lemon eucalyptus, pennyroyal, and peppermint oils gave > 90% mortality against adult T. urticae, whereas 82 and 81% mortality was observed with sage and spearmint oils, respectively. With the exception of sage oil, the other six essential oils were highly effective against T. urticae eggs at 9.3 x 10(-3) microl/ml air. Against adult P. persimilis, these six test oils caused > 90% mortality at 7.1 x 10(-3) microl/ml air. Particularly peppermint oil at 4.7 x 10(-3) microl/ml air was highly toxic. In an acrylic cage (30 by 30 by 40 cm ) test, lemon eucalyptus, pennyroyal, peppermint, and spearmint oils were highly effective against adult T. urticae at 1.4 x 10(-3) microl/ml air. These results indicate that the mode of delivery of these essential oils was largely a result of action in the vapor phase via the respiratory system. The essential oils described herein merit further study as potential fumigants for T. urticae control.
Park, Ii-Kwon; Choi, Kwang-Sik; Kim, Do-Hyung; Choi, In-Ho; Kim, Lee-Sun; Bak, Won-Chull; Choi, Joon-Weon; Shin, Sang-Chul
2006-08-01
Plant essential oils from 40 plant species were tested for their insecticidal activities against larvae of Lycoriella ingénue (Dufour) using a fumigation bioassay. Good insecticidal activity against larvae of L. ingenua was achieved with essential oils of Chenopodium ambrosioides L., Eucalyptus globulus Labill, Eucalyptus smithii RT Baker, horseradish, anise and garlic at 10 and 5 microL L(-1) air. Horseradish, anise and garlic oils showed the most potent insecticidal activities among the plant essential oils. At 1.25 microL L(-1), horseradish, anise and garlic oils caused 100, 93.3 and 13.3% mortality, but at 0.625 microL L(-1) air this decreased to 3.3, 0 and 0% respectively. Analysis by gas chromatography-mass spectrometry led to the identification of one major compound from horseradish, and three each from anise and garlic oils. These seven compounds and m-anisaldehyde and o-anisaldehyde, two positional isomers of p-anisaldehyde, were tested individually for their insecticidal activities against larvae of L. ingenua. Allyl isothiocyanate was the most toxic, followed by trans-anethole, diallyl disulfide and p-anisaldehyde with LC(50) values of 0.15, 0.20, 0.87 and 1.47 microL L(-1) respectively.
2010-01-01
Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological changes in cellular structures and cell surface alterations. PMID:21067604
Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA.
Ohara, Kazuaki; Matsunaga, Etsuko; Nanto, Kazuya; Yamamoto, Kyoko; Sasaki, Kanako; Ebinuma, Hiroyasu; Yazaki, Kazufumi
2010-01-01
Metabolic engineering aimed at monoterpene production has become an intensive research topic in recent years, although most studies have been limited to herbal plants including model plants such as Arabidopsis. The genus Eucalyptus includes commercially important woody plants in terms of essential oil production and the pulp industry. This study attempted to modify the production of monoterpenes, which are major components of Eucalyptus essential oil, by introducing two expression constructs containing Perilla frutescens limonene synthase (PFLS) cDNA, whose gene products were designed to be localized in either the plastid or cytosol, into Eucalyptus camaldulensis. The expression of the plastid-type and cytosol-type PFLS cDNA in transgenic E. camaldulensis was confirmed by real-time polymerase chain reaction (PCR). Gas chromatography with a flame ionization detector analyses of leaf extracts revealed that the plastidic and cytosolic expression of PFLS yielded 2.6- and 4.5-times more limonene than that accumulated in wild-type E. camaldulensis, respectively, while the ectopic expression of PFLS had only a small effect on the emission of limonene from the leaves of E. camaldulensis. Surprisingly, the high level of PFLS in Eucalyptus was accompanied by a synergistic increase in the production of 1,8-cineole and alpha-pinene, two major components of Eucalyptus monoterpenes. This genetic engineering of monoterpenes demonstrated a new potential for molecular breeding in woody plants.
Silva, Sayonara Mendes; Abe, Simone Yae; Murakami, Fábio Seigi; Frensch, Gustavo; Marques, Francisco A.; Nakashima, Tomoe
2011-01-01
Eucalyptus cinerea, known as silver dollar tree, has few descriptions in traditional medicine. Chemical composition and antimicrobial properties of the essential oils of leaves, flowers and fruits, collected seasonally, were determined by GC/MS and disk diffusion/MIC, respectively. 1,8-Cineole was the main compound, particularly in fresh leaves—Spring (74.98%), dried leaves—Spring (85.32%), flowers—Winter (78.76%) and fruits—Winter (80.97%). Other compounds were found in the aerial parts in all seasons: α-pinene (2.41% to 10.13%), limonene (1.46% to 4.43%), α-terpineol (1.73% to 11.72%), and α-terpinyl acetate (3.04% to 20.44%). The essential oils showed antimicrobial activities against bacteria and yeasts, with the best results being found for the dried autumn and winter leaves oils (MIC < 0.39 mg/mL) against Streptococcus pyogenes. For the other tested microorganisms the following MIC results were found: Staphylococcus aureus— Dried leaves oil from summer (0.78 mg/mL), Pseudomonas aeruginosa—Flowers oil from autumn and fruits oil from winter (1.56 mg/mL) and Candida albicans—Flowers oil from autumn and fruits oils from winter and spring (0.78 mg/mL). PMID:26791641
Kanat, Mehmet; Alma, M Hakki
2004-02-01
Along with sulfate turpentine, the essential oils obtained by steam distillation from nine plant species naturally grown in Turkish forests were tested at three different concentrations to evaluate their effectiveness against the larvae of pine processionary moth (Thaumetopoea pityocampa Schiff). The results indicated that the essential oils from the nine species and sulfate turpentine were effective against the larvae of T pityocampa. The most effective essential oil in the control of the larvae was steam-distilled wood turpentine, followed by thyme herb oil, juniper berry oil, laurel leaf oil, lavender flower oil, eucalyptus leaf oil, lavender leaf oil, cypress berry oil, essential oil of styrax and sulfate turpentine, respectively, in terms of mean mortality time. It is therefore feasible to use these essential oils as environment-friendly insecticides in the control of T pityocampa.
Allelopathic Effect of Eucalyptus citriodora Essential Oil and its Potential Use as Bioherbicide.
Benchaa, Sara; Hazzit, Mohamed; Abdelkrim, Hacène
2018-06-12
The current study aimed to evaluate the negative allelopathic effect of Eucalyptus citriodora essential oil on some of the most noxious weeds in Algeria (Sinapis arvensis, Sonchus oleraceus, Xanthium strumarium and Avena fatua). Gas chromatography-flame ionization detector (GC-FID) and GC-mass spectrometry (MS) were used to define the chemical composition of the oil. Citronellal (64.7%) and citronellol (10.9%) were the major essential oil compounds. Three concentrations of the oil were used for laboratory (0.01, 0.02 and 0.03%) and greenhouse (1, 2 and 3%) experiments. Seed germination and seedling's growth were drastically reduced in response to the oil concentrations where at 0.01 and 0.02% the oil drastically affects the seed germination of the tested weeds and at 0.03% the oil suppresses completely the germination of S. arvensis. The oil also exhibited strong allelopathic effect on the 3-4 leaf stage plants 1 and 6 days after treatment. A completely death of S. arvensis, S. oleraceus and A. fatua and severe injuries on X. strumarium appeared at 3% of the oil. Chlorophyll content and membrane integrity were significantly affected after treatment of the plant weeds representing a severe reduction in total chlorophyll and cell membrane disruption. The study concludes that E. citriodora essential oil might have the potential use as bioherbicide and can constitute an alternative process of weed control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Warnke, Patrick H; Becker, Stephan T; Podschun, Rainer; Sivananthan, Sureshan; Springer, Ingo N; Russo, Paul A J; Wiltfang, Joerg; Fickenscher, Helmut; Sherry, Eugene
2009-10-01
Hospital-acquired infections and antibiotic-resistant bacteria continue to be major health concerns worldwide. Particularly problematic is methicillin-resistant Staphylococcus aureus (MRSA) and its ability to cause severe soft tissue, bone or implant infections. First used by the Australian Aborigines, Tea tree oil and Eucalyptus oil (and several other essential oils) have each demonstrated promising efficacy against several bacteria and have been used clinically against multi-resistant strains. Several common and hospital-acquired bacterial and yeast isolates (6 Staphylococcus strains including MRSA, 4 Streptococcus strains and 3 Candida strains including Candida krusei) were tested for their susceptibility for Eucalyptus, Tea tree, Thyme white, Lavender, Lemon, Lemongrass, Cinnamon, Grapefruit, Clove Bud, Sandalwood, Peppermint, Kunzea and Sage oil with the agar diffusion test. Olive oil, Paraffin oil, Ethanol (70%), Povidone iodine, Chlorhexidine and hydrogen peroxide (H(2)O(2)) served as controls. Large prevailing effective zones of inhibition were observed for Thyme white, Lemon, Lemongrass and Cinnamon oil. The other oils also showed considerable efficacy. Remarkably, almost all tested oils demonstrated efficacy against hospital-acquired isolates and reference strains, whereas Olive and Paraffin oil from the control group produced no inhibition. As proven in vitro, essential oils represent a cheap and effective antiseptic topical treatment option even for antibiotic-resistant strains as MRSA and antimycotic-resistant Candida species.
Batish, Daizy R; Singh, Harminder P; Setia, Nidhi; Kaur, Shalinder; Kohli, Ravinder K
2006-01-01
A total of 23 volatile constituents was identified and characterized by GC and GC-MS in the volatile essential oil extracted from intact (juvenile and adult) and fallen (senescent and leaf litter) leaves of lemon-scented eucalyptus (Eucalyptus citriodora Hook.). The leaves differed in their pigment, water and protein content, and C/N ratio. The oils were, in general, monoterpenoid in nature with 18 monoterpenes and 5 sesquiterpenes. However, a great variability in the amount of essential oils and their individual constituents was observed in different leaf tissues. The amount was maximum in the senescent leaves collected from the floor of the tree closely followed by that from juvenile leaves. In all, 19 constituents were identified in oil from juvenile and senescent leaves compared to 23 in adult leaves and 20 in leaf litter, respectively. Citronellal, a characteristic monoterpene of the oil reported hitherto was found to be more (77-78%) in the juvenile and senescent leaves compared to 48 and 54%, respectively, in the adult leaves and leaf litter. In the adult leaves, however, the content of citronellol--another important monoterpene-- was very high (21.9%) compared to other leaf types (7.8-12.2%). Essential oil and its two major monoterpenes viz. citronellal and citronellol were tested for their phytotoxicity against two weeds (Amaranthus viridis and Echinochloa crus-galli) and two crops (Triticum aestivum and Oryza sativa) under laboratory conditions. A difference in the phytotoxicity, measured in terms of seedling length and dry weight, of oil from different leaves and major monoterpenes was observed. Oil from adult leaves was found to be most phytotoxic although it occurs in smaller amount (on unit weight basis). The different toxicity of different oil types was due to the relative amount of individual monoterpenes present in the oil, their solubility and interactive action. The study concludes that oil from senescent and juvenile leaves being rich in citronellal could be used as commercial source of citronellal whereas that from adult leaves for weed management programmes as it was the most phytotoxic.
Evaluation of Stability and In Vitro Security of Nanoemulsions Containing Eucalyptus globulus Oil
Quatrin, Priscilla Maciel; Sagrillo, Michele Rorato; Nascimento, Kátia
2017-01-01
Essential oil of Eucalyptus globulus presents several pharmacological properties. However, their therapeutic efficacy may be affected by limitations due to several conditions, rendering it difficult to obtain stable and effective pharmaceutical formulations. The use of nanotechnology is an alternative to improve their characteristics aiming to ensure their stability and effectiveness. Furthermore, studies about the possible toxic effects of nanostructures are necessary to evaluate safety when the formulation comes into contact with human cells. Hence, in this paper, we evaluate for the first time the stability and in vitro cytogenotoxicity of nanoemulsions containing Eucalyptus globulus in peripheral blood mononuclear cells. As a result, the stability study found that the best condition for storage up to 90 days was refrigeration (4°C); it was the condition that best preserved the nanometric features. The content of the major compounds of oil was maintained after nanoencapsulation and preserved over time. In tests to evaluate the safety of this formulation, we can conclude that, at a low concentration (approximately 0.1%), Eucalyptus globulus nanoemulsion did not cause toxicity in peripheral blood mononuclear cells and also showed a protective effect in cells against possible damage when compared to oil in free form. PMID:28691021
Knezevic, Petar; Aleksic, Verica; Simin, Natasa; Svircev, Emilija; Petrovic, Aleksandra; Mimica-Dukic, Neda
2016-02-03
Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. The detected anti-A. baumannii activity of E. camaldulensis essential oils justifies traditional use of this plant. The proven E. camaldulensis essential oil synergistic interactions with conventional antibiotics could lead to the development of new treatment strategies of infections caused by MDR A. baumannii strains in the term of antibiotic dose reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sharififard, Mona; Safdari, Farhad; Siahpoush, Amir; Kassiri, Hamid
2016-01-01
Background: Essential oils, as secondary plant compounds, present a safer alternative to conventional insecticides in insect control programs. So five essential oils including eucalyptus, mint, yarrow, oregano and rosemary oils were evaluated against the brown-banded cockroach Supella longipalpa. Methods: Evaluation was done against the 3rd and 4th instar nymphs using three bioassay methods; continuous contact toxicity, fumigant toxicity and repellent activity. The study was done in the laboratory of medical entomology, during April 2012 to September 2013. Results: Mortality rates by the lowest concentration (2.5%) of rosemary, oregano, yarrow, eucalyptus and mint oils were 100%, 62.2%, 45 %, 36.2% and 5.2% at 24 h after exposure respectively. Rosemary oil was determined as the most toxic oil because of 100 % mortality rate at the concentration range of 2.5% to 30%. The lowest fumigation effect using 50 μl/L air was recorded from mint oil with 97.2 % mortality after 24 h, while the other oils caused 100% mortality. The most repel activity was related to oregano oil which showed 96.5–99.1% repellency at the concentration range of 2.5–30% with a residual effect lasting at least a week after treatment. Conclusion: Oregano oil could be used as a potential repellent against S. longipalpa. Also, all five essential oils could be used as the safe compounds for surface treating or fumigation in cockroach control programs while rosmary and oregano oils exhibited the most toxicity. PMID:28032105
Ali, Akbar; Khan, M Masroor A; Uddin, Moin; Naeem, M; Idrees, Mohd; Hashmi, Nadeem; Dar, Tariq Ahmad; Varshney, Lalit
2014-11-04
Eucalyptus citriodora Hook. is highly valued for its citronellal-rich essential oil (EO) extracted from its leaves. Hence, escalated EO production of eucalyptus is the need of hour. Marine polysaccharides (sodium alginate) are processed through gamma radiation of particular intensity, to obtain the irradiated sodium alginate (ISA). A pot experiment was conducted to study the effect of foliar application of ISA on growth, biochemical, physiological, EO yield and composition of E. citriodora. The treatments were applied as: foliar spray of deionized water only (control), seed soaked with ISA (90 mg L(-1)) and foliar spray of ISA with 30, 60, 120 and 240 mg L(-1). The treatment 6 (spray of ISA at 120 mg L(-1)) showed the highest value for most of the parameters studied. It also enhanced the EO content (33.3%), EO yield (86.7%), citronellal content (63.4%) and citronellal yield (205.5%) as compared to the control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Essential oil-loaded lipid nanoparticles for wound healing.
Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca
2018-01-01
Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.
Essential oil-loaded lipid nanoparticles for wound healing
Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca
2018-01-01
Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical–chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus, the other of Streptococcus pyogenes. Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical–chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion. PMID:29343956
Eucalyptus is a tree. The dried leaves and oil are used to make medicine. People use eucalyptus for many conditions including asthma, bronchitis, ... shows that applying eucalyptus oil and lemon tea tree oil does not get rid of head lice ...
Tsai, Mei-Lin; Lin, Chih-Chien; Lin, Wei-Chao; Yang, Chao-Hsun
2011-01-01
Eucalyptus bridgesiana, Cymbopogon martinii, Thymus vulgaris, Lindernia anagallis, and Pelargonium fragrans are five species of herbs used in Asia. Their essential oils were analyzed by GC-MS, and a total of 36 components were detected. The results of our study indicated that, except for the essential oil of P. fragrans, all of the essential oils demonstrated obvious antimicrobial activity against a broad range of microorganisms. The C. martinii essential oil, which is rich in geraniol, was the most effective antimicrobial additive. All of the essential oils demonstrated antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, β-carotene/linoleic acid assay, and nitric oxide radical scavenging assay. Furthermore, the T. vulgaris essential oil, which possesses plentiful thymol, exhibited the highest antioxidant activity. For P. acnes-induced secretion of pro-inflammatory cytokines, the essential oils of P. aeruginosa, C. martinii, and T. vulgaris reduced the TNF-α, IL-1β, and IL-8 secretion levels of THP-1 cells.
Inhibitory effect of essential oils against Trichosporon ovoides causing Piedra Hair Infection.
Saxena, Seema; Uniyal, Veena; Bhatt, R P
2012-10-01
Piedra, is an asymptomatic fungal infection of the hair shaft, resulting in the formation of nodules of different hardness on the infected hair. The infection also known as Trichomycosis nodularis is a superficial fungal infection arising from the pathogen being restricted to the stratum corneum with little or no tissue reaction. The nodules are a concretion of hyphae and fruiting bodies of the fungus. Two varieties of Piedra may be seen, Black Piedra and White Piedra. The fungus Trichosporon ovoides is involved in the occurrence of both types of Piedras. The purpose of this study was to examine the effectiveness of selected essential oils for the control of growth of the fungus and to determine whether the antifungal effect was due to the major compounds of the oils. Two screening methods viz. Agar well diffusion assay and Minimum Inhibitory Concentration were adopted for the study. MIC and MFC were determined by tube dilution method. Essential oils from Eucalyptus, Ocimum basilicum, Mentha piperita, Cymbopogon flexuosus, Cymbopogon winterians, Trachyspermum ammi, Zingiber officinalis, Citrus limon, Cinnamomon zeylanicum, Salvia sclarea, Citrus aurantifolia, Melaleuca alternifolia, Citrus aurantium, Citrus bergamia, Pogostemon pathchouli, Cedrus atlantica, Jasminum officinale, Juniperus communis, Abelmoschus moschatus, Cyperus scariosus, Palargonium graveolens, Boswellia carterii, Rosa damascene, Veteveria zizanoides and Commiphora myrrha were evaluated. The essential oils of Cymbopogon winterians, Mentha piperita, Cinnamomum zeylanicum, Melaleuca alternifolia and Eucalyptus globulus were proved to be most effective against the fungus Trichosporon ovoides.
40 CFR 180.1271 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1271 Eucalyptus oil; exemption from the requirement of a tolerance. An exemption from the requirement of tolerance is established for residues of eucalyptus oil in or on honey...
40 CFR 180.1241 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1241 Eucalyptus oil; exemption from the requirement of a tolerance. Time-limited exemptions from the requirement of a tolerance are established for residues of eucalyptus oil on...
40 CFR 180.1241 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1241 Eucalyptus oil; exemption from the requirement of a tolerance. Time-limited exemptions from the requirement of a tolerance are established for residues of eucalyptus oil on...
40 CFR 180.1271 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1271 Eucalyptus oil; exemption from the requirement of a tolerance. An exemption from the requirement of tolerance is established for residues of eucalyptus oil in or on honey...
40 CFR 180.1241 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1241 Eucalyptus oil; exemption from the requirement of a tolerance. Time-limited exemptions from the requirement of a tolerance are established for residues of eucalyptus oil on...
40 CFR 180.1271 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1271 Eucalyptus oil; exemption from the requirement of a tolerance. An exemption from the requirement of tolerance is established for residues of eucalyptus oil in or on honey...
40 CFR 180.1271 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1271 Eucalyptus oil; exemption from the requirement of a tolerance. An exemption from the requirement of tolerance is established for residues of eucalyptus oil in or on honey...
40 CFR 180.1241 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1241 Eucalyptus oil; exemption from the requirement of a tolerance. Time-limited exemptions from the requirement of a tolerance are established for residues of eucalyptus oil on...
40 CFR 180.1271 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1271 Eucalyptus oil; exemption from the requirement of a tolerance. An exemption from the requirement of tolerance is established for residues of eucalyptus oil in or on honey...
40 CFR 180.1241 - Eucalyptus oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Eucalyptus oil; exemption from the... Exemptions From Tolerances § 180.1241 Eucalyptus oil; exemption from the requirement of a tolerance. Time-limited exemptions from the requirement of a tolerance are established for residues of eucalyptus oil on...
Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species
Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex
2014-01-01
The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph–mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490
Antimicrobial effects of essential oils in combination with chlorhexidine digluconate.
Filoche, S K; Soma, K; Sissons, C H
2005-08-01
The aim of the present study was to compare antimicrobial effects of essential oils alone and in combination with chlorhexidine digluconate against planktonic and biofilm cultures of Streptococcus mutans and Lactobacillus plantarum. The essential oils included cinnamon, tea-tree (Melaleuca alternifola), manuka (Leptospermum scoparium), Leptospermum morrisonii, arnica, eucalyptus, grapefruit, the essential oil mouthrinse Cool Mint Listerine and two of its components, menthol and thymol. Cinnamon exhibited the greatest antimicrobial potency (1.25-2.5 mg/ml). Manuka, L. morrisonii, tea-tree oils, and thymol also showed antimicrobial potency but to a lesser extent. The combination effect of the essential oil-chlorhexidine was greater against biofilm cultures of both S. mutans and L. plantarum than against planktonic cultures. The amount of chlorhexidine required to achieve an equivalent growth inhibition against the biofilm cultures was reduced 4-10-fold in combination with cinnamon, manuka, L. morrisonii, thymol, and Listerine. We conclude that there may be a role for essential oils in the development of novel anticaries treatments.
Barbour, E K; Bragg, R R; Karrouf, G; Iyer, A; Azhar, E; Harakeh, S; Kumosani, T
2015-03-01
To control eight most predominant Eimeria spp. involved in the economic disease of coccidiosis in broiler chicken, by a chemically characterized essential oil of eucalyptus and peppermint. The experimental design consisted of 160 day-old-broiler chicks, divided into four equal groups (G1 , G2 , G3 and G4 ), with 40 birds per group. Each group was divided into four equal subgroups. Birds in G1 were deprived of essential oil treatment and of Eimeria challenge. Birds in G2 were unchallenged, and administered the essential oil in drinking water at 0.69 ml kg(-1) body weight. Birds in G3 were untreated with essential oil, and each of its four subgroups was challenged at a different age (14, 21, 28 and 35 days). Birds in G4 were treated with essential oil, and challenged in the same manner as for G3 . Equal number of birds from all subgroups (n = 10) were sacrificed at the sixth day after the time allocated for each challenge. The 6 day incubation period post challenge resulted in respective mean per cent weight increase in G2 and G1 birds equivalent to 57.8 and 53.1% (P < 0.05). In addition, the essential oil improved the per cent weight increase in challenged birds (54.6%) compared to the challenged-untreated birds (18.6%) (P < 0.05). The mean feed conversion, mortality, intestinal lesion scores and oocyst counts were significantly reduced in the challenged-treated birds compared to the challenged-untreated birds (P < 0.05). The results support the hypothesis of using the essential oils of eucalyptus and peppermint to control the most prevalent Eimeria spp. involved in coccidiosis of broiler chicken, helping in improvement of their production, alleviation of lesions and reduction in intestinal oocyst counts. This study provides information about the possibility of using this blend of essential oil as a coccidiostat for the protection of broiler chickens against the prevalent eight Eimeria spp. of coccidiosis. © 2014 The Society for Applied Microbiology.
Maina, Angeline W.; Wagacha, John M.
2017-01-01
The objective of this study was to evaluate the antifungal activity of essential oil (EO) of Eucalyptus camaldulensis Dehnh. against five Fusarium spp. commonly associated with maize. The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves of E. camaldulensis and their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%), α-pinene (15.6%), α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties of E. camaldulensis essential oils and their potential use in the management of economically important Fusarium spp. and as possible alternatives to synthetic fungicides. PMID:28127308
Inhibitory effect of essential oils against Trichosporon ovoides causing Piedra Hair Infection
Saxena, Seema; Uniyal, Veena; Bhatt, R.P.
2012-01-01
Piedra, is an asymptomatic fungal infection of the hair shaft, resulting in the formation of nodules of different hardness on the infected hair. The infection also known as Trichomycosis nodularis is a superficial fungal infection arising from the pathogen being restricted to the stratum corneum with little or no tissue reaction. The nodules are a concretion of hyphae and fruiting bodies of the fungus. Two varieties of Piedra may be seen, Black Piedra and White Piedra. The fungus Trichosporon ovoides is involved in the occurrence of both types of Piedras. The purpose of this study was to examine the effectiveness of selected essential oils for the control of growth of the fungus and to determine whether the antifungal effect was due to the major compounds of the oils. Two screening methods viz. Agar well diffusion assay and Minimum Inhibitory Concentration were adopted for the study. MIC and MFC were determined by tube dilution method. Essential oils from Eucalyptus, Ocimum basilicum, Mentha piperita, Cymbopogon flexuosus, Cymbopogon winterians, Trachyspermum ammi, Zingiber officinalis, Citrus limon, Cinnamomon zeylanicum, Salvia sclarea, Citrus aurantifolia, Melaleuca alternifolia, Citrus aurantium, Citrus bergamia, Pogostemon pathchouli, Cedrus atlantica, Jasminum officinale, Juniperus communis, Abelmoschus moschatus, Cyperus scariosus, Palargonium graveolens, Boswellia carterii, Rosa damascene, Veteveria zizanoides and Commiphora myrrha were evaluated. The essential oils of Cymbopogon winterians, Mentha piperita, Cinnamomum zeylanicum, Melaleuca alternifolia and Eucalyptus globulus were proved to be most effective against the fungus Trichosporon ovoides. PMID:24031963
Adult repellency and larvicidal activity of five plant essential oils against mosquitoes.
Zhu, Junwei; Zeng, Xiaopeng; Yanma; Liu, Ting; Qian, Kuen; Han, Yuhua; Xue, Suqin; Tucker, Brad; Schultz, Gretchen; Coats, Joel; Rowley, Wayne; Zhang, Aijun
2006-09-01
The larvicidal activity and repellency of 5 plant essential oils--thyme oil, catnip oil, amyris oil, eucalyptus oil, and cinnamon oil--were tested against 3 mosquito species: Aedes albopictus, Ae. aegypti, and Culex pipiens pallens. Larvicidal activity of these essentials oils was evaluated in the laboratory against 4th instars of each of the 3 mosquito species, and amyris oil demonstrated the greatest inhibitory effect with LC50 values in 24 h of 58 microg/ml (LC90 = 72 microg/ml) for Ae. aegypti, 78 microg/ml (LC90 = 130 microg/ml) for Ae. albopictus, and 77 microg/ml (LC90 = 123 microg/ml) for Cx. p. pallens. The topical repellency of these selected essential oils and deet against laboratory-reared female blood-starved Ae. albopictus was examined. Catnip oil seemed to be the most effective and provided 6-h protection at both concentrations tested (23 and 468 microg/ cm2). Thyme oil had the highest effectiveness in repelling this species, but the repellency duration was only 2 h. The applications using these natural product essential oils in mosquito control are discussed.
Shin, E-Hyun; Song, Bong Gu; Lee, Il Hee; Park, Mi Yeoun; Ahn, Young-Joon; Chang, Kyu-Sik
2013-05-01
Leptotrombidium pallidum (Nagoya, Miyagawa, Mitamura & Tamiya) is a primary vector of Orientia tsutsugamushi (Hyashi), the causative agent of scrub typhus. An assessment is made of the repellency to L. pallidum larvae (chiggers) of cassia bark, eucalyptus, and star anise oils and major constituents (E)-cinnamaldehyde, 1,8-cineole, and (E)-anethole of the corresponding oils. Results were compared with those of conventional repellents DEET (N,N-diethyl-3-methylbenzamide), IR3535 [(ethyl 3-[acetyl(butyl)amino]propanoate)], and permethrin. Based on the median repellent concentration (RC50) values, (E)-cinnamaldehyde, (E)-anethole, cassia bark oil, and star anise oil (RC50, 0.95-1.52 mg/cm2) exhibited significantly more potent repellency than DEET (3.85 mg/cm2). (E)-cinnamaldehyde, (E)-anethole, cassiabark oil, 1,8-cineole, and star anise oil were approximately 43, 16, 11, 8, and 4 times more effective than IR3535 (CC5, 6.51%) as judged by the median climbing distance-disturbing concentration (CC50) values. The median residual duration time of repellency (RT50) was significantly more pronounced in DEET (RT50, 323 min) than in all essential oils and constituents (108-167 min). In the light of global efforts to reduce the level of highly toxic synthetic repellents, the three essential oils and their major constituents described merit further study as potential biorepellents for the control of L. pallidum populations.
Yones, Doaa A; Bakir, Hanaa Y; Bayoumi, Soad A L
2016-08-01
Natural compounds have been suggested as alternative sources for pediculosis capitis control. We aimed to investigate the chemical composition and evaluate the pediculicidal activity of spearmint, clove, cassia, thyme, eucalyptus, and anise essential oils in addition to sesame oil against human head lice in vitro. A filter paper contact bioassay method was used by applying 0.25 and 0.5 mg/cm(2) of each tested oil to filter paper in Petri dishes with 15 females head lice and another with ten nits. The lice mortalities were reported every 5 min for 180 min. The percentage of inhibition of hatch (PIH) was used to calculate ovicidal activity by daily microscopic inspections 5 days after the hatching of controls. Comparison with the widely used pediculicide (malathion) was performed. The most effective essential oil was spearmint followed by cassia and clove with KT50 values of 4.06, 7.62, and 12.12 at 0.5 mg/cm(2) and 8.84, 11.38, and 19.73 at 0.25 mg/cm(2), respectively. Thyme, eucalyptus, and anise were also effective adulticides with KT50 values of 18.61, 32.65, and 37.34 at 0.5 mg/cm(2) and 29.92, 43.16, and 45.37 at 0.25 mg/cm(2), respectively. Essential oils were also successful in inhibiting nymph emergence. Spearmint oil was the most effective, with a complete inhibition of emergence at 0.5 mg/cm(2). Sesame fixed oil did not show any adulticidal or ovicidal activity against head lice in vitro. The observed insecticidal activity was comparable to malathion. The results herein described the effectiveness of these essential oils as potential pediculicides for head lice control. Incorporation of essential oils in pediculicide formulations needs proper formulation and clinical trials.
Saad, El-Zemity; Hussien, Rezk; Saher, Farok; Ahmed, Zaitoon
2006-01-01
The acaricidal activities of fourteen essential oils and fourteen of their major monoterpenoids were tested against house dust mites Dermatophagoides pteronyssinus. Five concentrations were used over two different time intervals 24 and 48 h under laboratory conditions. In general, it was noticed that the acaricidal effect based on LC 50 of either essential oils or monoterpenoids against the mite was time dependant. The LC 50 values were decreased by increasing of exposure time. Clove, matrecary, chenopodium, rosemary, eucalyptus and caraway oils were shown to have high activity. As for the monoterpenoids, cinnamaldehyde and chlorothymol were found to be the most effective followed by citronellol. This study suggests the use of the essential oils and their major constituents as ecofriendly biodegradable agents for the control of house dust mite, D. pteronyssinus. PMID:17111463
Saad, El-Zemity; Hussien, Rezk; Saher, Farok; Ahmed, Zaitoon
2006-12-01
The acaricidal activities of fourteen essential oils and fourteen of their major monoterpenoids were tested against house dust mites Dermatophagoides pteronyssinus. Five concentrations were used over two different time intervals 24 and 48 h under laboratory conditions. In general, it was noticed that the acaricidal effect based on LC(50) of either essential oils or monoterpenoids against the mite was time dependant. The LC(50) values were decreased by increasing of exposure time. Clove, matrecary, chenopodium, rosemary, eucalyptus and caraway oils were shown to have high activity. As for the monoterpenoids, cinnamaldehyde and chlorothymol were found to be the most effective followed by citronellol. This study suggests the use of the essential oils and their major constituents as ecofriendly biodegradable agents for the control of house dust mite, D. pteronyssinus.
Omarini, Alejandra; Dambolena, José Sebastián; Lucini, Enrique; Jaramillo Mejía, Santiago; Albertó, Edgardo; Zygadlo, Julio A
2016-03-01
Biotechnological conversion of low-cost agro-industrial by-products, such as industrial waste or terpenes from the distillation of essential oils from plants into more valuable oxygenated derivatives, can be achieved by using microbial cells or enzymes. In Argentina, the essential oil industry produces several tons of waste each year that could be used as raw materials in the production of industrially relevant and value-added compounds. In this study, 1,8-cineole, one of the components remaining in the spent leaves of the Eucalyptus cinerea waste, was transformed by solid-state fermentation (SSF) using the two edible mushrooms Pleurotus ostreatus and Favolus tenuiculus. As a result, two new oxygenated derivatives of 1,8-cineole were identified: 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-ol and 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-one. Additionally, changes in the relative percentages of other aroma compounds present in the substrate were observed during SSF. Both fungal strains have the ability to produce aroma compounds with potential applications in the food and pharmaceutical industries.
Isolation of intact sub-dermal secretory cavities from Eucalyptus
2010-01-01
Background The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. Results Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h), with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. Conclusions The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain. PMID:20807444
Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.
Ozogul, Yesim; Kuley, Esmeray; Ucar, Yilmaz; Ozogul, Fatih
2015-01-01
The antimicrobial activity of twelve essential oil (pine oil, eucalyptus, thyme, sage tea, lavender, orange, laurel, lemon, myrtle, lemon, rosemary and juniper) was tested by a disc diffusion method against food borne pathogens (Escherichia coli, Salmonella paratyphi A, Klebsiella pneumoniae, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Campylobacter jejuni, Enterococcus faecalis, Staphylococcus aureus). The major components in essential oils were monoterpenes hydrocarbons, α-pinene, limonene; monoterpene phenol, carvacrol and oxygenated monoterpenes, camphor, 1,8-cineole, eucalyptol, linalool and linalyl acetate. Although the antimicrobial effect of essential oils varied depending on the chemical composition of the essential oils and specific microorganism tested, majority of the oils exhibited antibacterial activity against one or more strains. The essential oil with the lowest inhibition zones was juniper with the values varied from 1.5 to 6 mm. However, the components of essential oil of thyme and pine oil are highly active against food borne pathogen, generating the largest inhibition zones for both gram negative and positive bacteria (5.25-28.25 mm vs. 12.5-30 mm inhibition zones). These results indicate the possible use of the essential oils on food system as antimicrobial agents against food-borne pathogen. The article also offers some promising patents on applications of essential oils on food industry as antimicrobial agent.
Wang, J J; Tsai, J H; Ding, W; Zhao, Z M; Li, L S
2001-10-01
Six plant essential oils alone as repellent and fumigant, and in combination with the controlled atmosphere against Liposcelis bostrychophila Badonnel were assessed in the laboratory. These essential oils were extracted from the leaves of six source plants: Citrus tangerina Tanaka, Citrus aurantium L., Citrus bergamia Risso et Poiteau, Pinus sylvestris L., Cupressus funebris End]., and Eucalyptus citriodora Hook. The repellency test indicated that L. bostrychophila adults were repelled by filter paper strips treated with six essential oils. Of these essential oils, the C. funebris oil was most effective followed by that of F. sylvestris, C. tangerina, C. bergamia, and E. citriodora. The average repellency of the C. aurantium oil against L. bostrychophila adults was significantly lower than other five test oils by day 14. These essential oils had a high level of toxicity in the fumigation assay against L. bostrychophila adults at both 10 and 20 ppm. When combined with two controlled atmosphere treatments (12% CO2 + 9% O2, and 10% CO2 + 5% O2, balanced N2), the toxicity of plant oils was enhanced significantly.
Mosquito larvicidal activity of botanical-based mosquito repellents.
Zhu, Junwei; Zeng, Xiaopeng; O'Neal, Megan; Schultz, Gretchen; Tucker, Brad; Coats, Joel; Bartholomay, Lyric; Xue, Rui-De
2008-03-01
The larvicidal activity of 4 plant essential oils--innamon oil, lemon eucalyptus oil, sandalwood oil, and turmeric oil--previously reported as insect repellents was evaluated in the laboratory against 4th instars of Aedes albopictus, Ae. aegypti, and Culex pipiens. Sandalwood oil appeared to be the most effective of the larvicides, killing larvae of all 3 mosquito species in relatively short times. The values of LT50 and LT90 at the application dosage (0.2 mg/ml) were 1.06 +/- 0.11 and 3.24 +/- 0.14 h for Ae. aegypti, 1.82 +/- 0.06 and 3.33 +/- 0.48 h for Ae. albopictus, and 1.55 +/- 0.07 and 3.91 +/- 0.44 h for Cx. pipiens, respectively. Chemical compositions of these essential oils were also studied, and the lavicidal activity of their major ingredient compounds was compared with that of each of the essential oils. The acute toxicity of the 4 essential oils to fathead minnows was also evaluated. The safe use of these natural plant essential oils in future applications of mosquito control was discussed.
Antimicrobial and antiplasmid activities of essential oils.
Schelz, Zsuzsanna; Molnar, Joseph; Hohmann, Judit
2006-06-01
The antimicrobial and antiplasmid activities of essential oils (orange oil, eucalyptus oil, fennel oil, geranium oil, juniper oil, peppermint oil, rosemary oil, purified turpentine oil, thyme oil, Australian tea tree oil) and of menthol, the main component of peppermint oil, were investigated. The antimicrobial activities were determined on the Gram (+) Staphylococcus epidermidis and the Gram (-) Escherichia coli F'lac K12 LE140, and on two yeast Saccharomyces cerevisiae 0425 delta/1 and 0425 52C strains. The antiplasmid activities were investigated on E. coli F'lac bacterial strain. Each of the oils exhibited antimicrobial activity and three of them antiplasmid action. The interaction of peppermint oil and menthol with the antibiotics was studied on the same bacterial strain with the checkerboard method. Peppermint oil and menthol displayed additive synergy with oxytetracycline. A new mechanism of plasmid curing was established for one of the oil components.
Antibacterial activity of essential oils from Australian native plants.
Wilkinson, Jenny M; Cavanagh, Heather M A
2005-07-01
To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products.
Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda
2015-10-20
Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
A comparison of the effectiveness of chloroform and eucalyptus oil in dissolving root canal sealers.
Schäfer, Edgar; Zandbiglari, Tannaz
2002-05-01
The solubility of 8 different root canal sealers in chloroform and in eucalyptus oil was compared. For standardized samples (n=12), ring molds were filled with mixed sealers based on epoxy resin, silicone, calcium hydroxide, zinc oxide-eugenol, glass ionomer, and polyketone. These samples were immersed in chloroform or eucalyptus oil for 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, and 20 minutes. Then, the mean weight loss was determined and statistically analyzed. With the exception of the silicone, all the sealers showed significantly higher solubilities (P <.05) in chloroform than in eucalyptus oil. Epoxy resin was the most soluble sealer in chloroform. In eucalyptus oil, calcium hydroxide, and zinc oxide-eugenol showed the highest solubility. Under the conditions of this study, chloroform was a far more effective solvent of root canal sealers than eucalyptus oil. Because of the potential hazards of chloroform, further studies on the dissolution of root canal sealers in different solvents seem to be necessary.
Antifungal Effect of Essential Oils against Fusarium Keratitis Isolates.
Homa, Mónika; Fekete, Ildikó Pálma; Böszörményi, Andrea; Singh, Yendrembam Randhir Babu; Selvam, Kanesan Panneer; Shobana, Coimbatore Subramanian; Manikandan, Palanisamy; Kredics, László; Vágvölgyi, Csaba; Galgóczy, László
2015-09-01
The present study was carried out to investigate the antifungal effects of Cinnamomum zeylanicum, Citrus limon, Juniperus communis, Eucalyptus citriodora, Gaultheria procumbens, Melaleuca alternifolia, Origanum majorana, Salvia sclarea, and Thymus vulgaris essential oils against Fusarium species, the most common etiologic agents of filamentous fungal keratitis in South India. C. zeylanicum essential oil showed strong anti-Fusarium activity, whereas all the other tested essential oils proved to be less effective. The main component of C. zeylanicum essential oil, trans-cinnamaldehyde, was also tested and showed a similar effect as the oil. The in vitro interaction between trans-cinnamaldehyde and natamycin, the first-line therapeutic agent of Fusarium keratitis, was also investigated; an enhanced fungal growth inhibition was observed when these agents were applied in combination. Light and fluorescent microscopic observations revealed that C. zeylanicum essential oil/trans-cinnamaldehyde reduces the cellular metabolism and inhibits the conidia germination. Furthermore, necrotic events were significantly more frequent in the presence of these two compounds. According to our results, C. zeylanicum essential oil/trans-cinnamaldehyde provides a promising basis to develop a novel strategy for the treatment of Fusarium keratitis. Georg Thieme Verlag KG Stuttgart · New York.
1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1
2012-01-01
Background Essential oils are often used in alternative medicine as analgesic and anti-inflammatory remedies. However, the specific compounds that confer the effects of essential oils and the molecular mechanisms are largely unknown. TRPM8 is a thermosensitive receptor that detects cool temperatures and menthol whereas TRPA1 is a sensor of noxious cold. Ideally, an effective analgesic compound would activate TRPM8 and inhibit TRPA1. Results We screened essential oils and fragrance chemicals showing a high ratio of human TRPM8-activating ability versus human TRPA1-activating ability using a Ca2+-imaging method, and identified 1,8-cineole in eucalyptus oil as particularly effective. Patch-clamp experiments confirmed that 1,8-cineole evoked inward currents in HEK293T cells expressing human TRPM8, but not human TRPA1. In addition, 1,8-cineole inhibited human TRPA1 currents activated by allyl isothiocyanate, menthol, fulfenamic acid or octanol in a dose-dependent manner. Furthermore, in vivo sensory irritation tests showed that 1,8-cineole conferred an analgesic effect on sensory irritation produced by TRPA1 agonists octanol and menthol. Surprisingly, 1,4-cineole, which is structurally similar and also present in eucalyptus oil, activated both human TRPM8 and human TRPA1. Conclusions 1,8-cineole is a rare natural antagonist of human TRPA1 that has analgesic and anti-inflammatory effects possibly due to its inhibition of TRPA1. PMID:23192000
Habila, Nathan; Agbaji, Abel S; Ladan, Zakari; Bello, Isaac A; Haruna, Emmanuel; Dakare, Monday A; Atolagbe, Taofiq O
2010-01-01
Essential oils (EOs) from Cymbopogon citratus (CC), Eucalyptus citriodora (EC), Eucalyptus camaldulensis (ED), and Citrus sinensis (CS) were obtained by hydrodistillation process. The EOs were evaluated in vitro for activity against Trypanosoma brucei brucei (Tbb) and Trypanosoma evansi (T. evansi). The EOs were found to possess antitrypanosomal activity in vitro in a dose-dependent pattern in a short period of time. The drop in number of parasite over time was achieved doses of 0.4 g/ml, 0.2 g/mL, and 0.1 g/mL for all the EOs. The concentration of 0.4 g/mL CC was more potent at 3 minutes and 2 minutes for Tbb and T. evansi, respectively. The GC-MS analysis of the EOs revealed presence of Cyclobutane (96.09%) in CS, 6-octenal (77.11%) in EC, Eucalyptol (75%) in ED, and Citral (38.32%) in CC among several other organic compounds. The results are discussed in relation to trypanosome chemotherapy.
Ebadollahi, Asgar; Sendi, Jalal Jalali; Maroufpoor, Mostafa; Rahimi-Nasrabadi, Mehdi
2017-03-01
There is a rapid growth in the screening of plant materials for finding new bio-pesticides. In the present study, the essential oils of E. oleosa and E. torquata leaves were extracted using a Clevenger apparatus and their chemical profiles were investigated by Gas Chromatography-Mass Spectrometry (GC-MS). Among identified compounds, the terpenes had highest amount for both essential oils; 93.59% for E. oleosa and 97.69% for E. torquata. 1,8-Cineole (31.96%), α-pinene (15.25%) and trans-anethole (7.32%) in the essential oil of E. oleosa and 1,8-cineole (28.57%), α-pinene (15.74%) and globulol (13.11%) in the E. torquata essential oil were identified as the main components. The acaricidal activity of the essential oils of E. oleosa and E. torquata were examined using fumigation methods against the adult females of Tetranychus urticae Koch. The essential oils have potential acaricidal effects on T. urticae. The essential oil of E. oleosa with LC 50 value of 2.42 µL/L air was stronger than E. torquata. A correlation between log concentration and mite mortality has been observed. Based on the results of present study, it can be stated that the essential oils of E. oleosa and E. torquata have a worthy potential in the management of T. urticae.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...
Code of Federal Regulations, 2013 CFR
2013-04-01
..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...
Code of Federal Regulations, 2010 CFR
2010-04-01
..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...
Code of Federal Regulations, 2014 CFR
2014-04-01
..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...
Code of Federal Regulations, 2012 CFR
2012-04-01
..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...
2013-01-01
Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was highly susceptible to all the other essential oils at the diagnostic dose. Conclusions C. citratus, E. tereticornis, E. citriodora, C. ambrosioides and C. schoenanthus are potential promising plant sources for alternative compounds to pyrethroids, for the control of the Anopheles malaria vector in Benin. The efficacy of their essential oils is possibly based on their chemical compositions in which major and/or minor compounds have reported insecticidal activities on various pests and disease vectors such as Anopheles. PMID:24298981
Influence of essential and fatty oils on ciliary beat frequency of human nasal epithelial cells.
Neher, Andreas; Gstöttner, Michaela; Thaurer, Michael; Augustijns, Patrick; Reinelt, Monika; Schobersberger, Wolfgang
2008-01-01
In alternative and complementary medicine, the use of essential and fatty oils has become more and more popular. In addition to conventional medical therapies, self-medication is showing increasing popularity, using agents with unclear compounds and poorly controlled dosages. Among other disorders, these alternative treatments are used in bronchitis and rhinitis, including some topical applications. Thus, the influence on ciliated epithelia should be evaluated, because a disturbance of the ciliary function can lead to recurrent sinusitis and chronic rhinosinusitis. The aim of this study was to test the influence of fatty and essential oils on the ciliary beat frequency (CBF) of nasal mucosa in vivo. The influence of sesame oil, soy oil, peanut oil, Miglyol 840, thyme oil, lavender oil, eucalyptus oil, and menthol on the ciliary activity of nasal brushings was evaluated by digital high-speed imaging. The presence of most fatty oils resulted in an increase in CBF, the effect being highest for peanut oil. Miglyol 840 had no significant influence on CBF. The essential oils were tested at a concentration of 0.2 and 2%. Thyme oil did not affect CBF, whereas the presence of all other essentials oils resulted in an increase in CBF; the effect was higher at 0.2% than at 2%. Except thyme oil and Miglyol 840, all tested oils caused an increase in CBF. Interestingly, the 0.2% concentrations of essential oils resulted in stronger effects when compared with the 2% concentrations.
NASA Astrophysics Data System (ADS)
Ghosh, Pradip; Soga, T.; Tanemura, M.; Zamri, M.; Jimbo, T.; Katoh, R.; Sumiyama, K.
2009-01-01
Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ˜3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.
Císarová, Miroslava; Tančinová, Dana; Medo, Juraj; Kačániová, Miroslava
2016-10-02
The aim of the present study was to assess the antifungal and anti-toxinogenic activity of 15 essential oils (EOs) against three fungi of the genus Aspergillus (A. parasiticus KMi-227-LR, A. parasiticus KMi-220-LR and A. flavus KMi-202-LR). The minimum inhibitory doses (MIDs) of the tested essential oils and their antifungal activity were determined using the micro-atmosphere method. The original commercial essential oil samples of Jasminum officinale L., Thymus vulgaris L., Syzygium aromaticum (L.) Merrill & Perry, Rosmarinus officinalis L., Ocimum basilicum L., Eucalyptus globulus Labill., Salvia officinalis L., Citrus limon (L.) Burm, Origanum vulgare L., Lavandula angustifolia Mill., Carum carvi L., Citrus sinensis (L.) Osbeck., Zingiber officinalis Rosc., Mentha piperita L. and Cinnamomum zeylanicum Nees. (C. verum J.S.Presl.) were produced in Slovakia (Calendula a.s., Nová Ľubovňa, Slovakia). All essential oils exhibited activity against all tested strains of fungi. After 14 days of incubation, A. flavus (KMi-202-LR) showed the highest susceptibility with a growth inhibition percentage (GIP) of 18.70% to C. limon and 5.92% to C. sinensis, while A. parasiticus (KMi-220-LR) exhibited a GIP of 20.56% to J. officinale. The minimum inhibitory doses (MIDs) of EOs with the most significant activity were recorded. The best antifungal activity, using the micro-atmosphere method was found in S. aromaticum with an MID of 62.5 μL L -1 air, T. vulgaris (MID of 62.5 μL L -1 air) and O. vulgare (MID of 31.5 μL L -1 air) against all tested strains. Mycotoxin production of the tested strains was evaluated by the thin layer chromatography (TLC) method. Mycotoxin production of AFB 1 and AFG 1 was inhibited following all treatments with C. carvi, R. officinale and S. officinale, Eucalyptus globulus L. and O. basilicum L. Essential oils exhibited a potential inhibition activity against toxic fungi, although, these affected only the production of AFB 1 .
Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A.; Simpore, Jacques
2014-01-01
This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography–mass spectrometry and gas chromatography–flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the highest activity on SF-763 cells. Altogether these results justify the use of these plants in traditional medicine in Burkina Faso and open a new field of investigation in the characterization of the molecules involved in anti-proliferative processes. PMID:24662935
Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A; Simpore, Jacques
2014-01-01
This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the highest activity on SF-763 cells. Altogether these results justify the use of these plants in traditional medicine in Burkina Faso and open a new field of investigation in the characterization of the molecules involved in anti-proliferative processes.
Zhou, Li-Jun; Li, Fu-Rong; Huang, Li-Jie; Yang, Zhi-Rong; Yuan, Shu; Bai, Lin-Han
2016-05-12
Eucalyptus oil possesses a wide spectrum of biological activity, including anti-microbial, fungicidal, herbicidal, acaricidal and nematicidal properties. We studied anti-fungal activities of the leaf oil extracted from Eucalyptus. grandis × E. urophylla. Eleven plant pathogenic fungi were tested based on the mycelium growth rates with negative control. The results showed that Eucalyptus oil has broad-spectrum inhibitory effects toward these fungi. Remarkable morphological and structural alterations of hypha have been observed for Magnaporthe grisea after the treatment. The mRNA genome array of M. grisea was used to detect genes that were differentially expressed in the test strains treated by the Eucalyptus oil than the normal strains. The results showed 1919 genes were significantly affected, among which 1109 were down-regulated and 810 were up-regulated (p < 0.05, absolute fold change >2). According to gene ontology annotation analysis, these differentially expressed genes may cause abnormal structures and physiological function disorders, which may reduce the fungus growth. These results show the oil has potential for use in the biological control of plant disease as a green biopesticide.
Allergic airborne contact dermatitis from essential oils used in aromatherapy.
Schaller, M; Korting, H C
1995-03-01
Contact allergy to various essential oils used in aromatherapy was demonstrated on patch testing in a 53-year-old patient suffering from relapsing eczema resistant to therapy on various uncovered parts of the skin, in particular the scalp, neck and hands. Sensitization was due to previous exposure to lavender, jasmine and rosewood. Laurel, eucalyptus and pomerance also produced positive tests, although there was no hint of previous exposure. A diagnosis of allergic airborne contact dermatitis was thus established. On topical and systemic glucocorticoid treatment (peroral methylprednisolone at an initial dose of 60 mg/day) the skin lesions eventually resolved. Due to persistence of the volatile essential oils in the patient's home after a year-long use of aroma lamps, complete renewal of the interior of the patient's flat was considered essential. Due to changing self-medication habits, with increasing orientation to 'natural' modes of treatment, increasing numbers of such sensitizations might be on the horizon.
Selim, Samy
2011-01-01
Eleven essential oils (EOs) were evaluated for their antibacterial properties, against Vancomycin-Resistant Enterococci (VRE) and E. coli O157:H7. EOs were introduced into Brain Heart Infusion agar (BHI) (15ml) at a concentration of 0.25 to 2% (vol/vol) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each pathogen evaluated. Results showed that the most active essential oils against bacteria tested were thyme oil, with MIC90 and MBC90 for the VRA strains of 0.25% and 0.5%, respectively. Eucalyptus, juniper and clove oils were the least potent agent, with MIC90 and MBC90 of 2%. Furthermore, the inhibitory effect of these EO were evaluated against VRE and E. coli O157:H7, experimentally inoculated (103 cfu/g) in Feta soft cheese and minced beef meat, which was mixed with different concentrations (0.1%, 0.5% and 1%) of the EO and stored at 7 °C for 14 days. Out of eucalyptus, juniper, mint, rosemary, sage, clove and thyme oils tested against target bacteria sage and thyme showed the best results. Clove and mint did not show any effect on VRE and E. coli O157:H7 in both kinds of studied foods. The addition of thyme oil at concentrations of 0.5 and 1% caused best significant reduction in the growth rate of VRE and E. coli O157:H7 in cheese and meat at 7 oC. It is concluded that selected plant EOs can act as potent inhibitors of both microorganisms in a food product. The results revealed the potential of thyme oil as a natural preservative in feta soft cheese and minced beef meat against VRE and E. coli O157:H7 contamination. PMID:24031620
Siriporn, P; Mayura, S
2012-03-01
The effect of oviposition-deterrent and ovicidal of seven essential oils were evaluated towards three mosquito vectors, Aedes aegypti, Anopheles dirus and Culex quinquefasciatus. The oviposition activity index (OAI) values of six essential oils namely Cananga odorata, Cymbopogon citratus, Cymbopogon nardus, Eucalyptus citriodora, Ocimum basilicum and Syzygium aromaticum indicated that there were more deterrent than the control whereas Citrus sinensis oil acted as oviposition attractant. At higher concentration (10%) of Ca. odorata (ylang ylang flowers) showed high percent effective repellency (ER) against oviposition at 99.4% to Ae. aegypti, 97.1% to An. dirus and 100% to Cx. quinquefasciatus, respectively. The results showed that mean numbers of eggs were lower in treated than in untreated water. In addition, there was an inverse relationship between essential oil concentrations and ovicidal activity. As the concentration of essential oil increased from 1%, 5% and up to 10% conc., the hatching rate decreased. The essential oil of Ca. odorata at 10% conc. gave minimum egg hatch of 10.4% (for Ae. aegypti), 0.8% (for An. dirus) and 1.1% (for Cx. quinquefasciatus) respectively. These results clearly revealed that the essential oil of Ca. odorata served as a potential oviposition-deterrent and ovicidal activity against Ae. aegypti, An. dirus and Cx. quinquefasciatus.
Mosquito repellent activity of volatile oils from selected aromatic plants.
Lalthazuali; Mathew, Nisha
2017-02-01
Essential oils from fresh leaves of four aromatic plants viz., Ocimum sanctum, Mentha piperita, Eucalyptus globulus and Plectranthus amboinicus were extracted by hydrodistillation. The test solutions were prepared as 20% essential oil in ethanol and positive control as 20% DEET in ethanol. Essential oil blend was prepared as 5% concentration. Nulliparous, 3-5-day-old female adult Aedes aegypti mosquitoes were used for repellency screening as per ICMR protocol. The study showed that the repellency of 20% essential oil of O. sanctum, M. piperita and P. amboinicus were comparable with that of the standard DEET (20%) as no mosquito landing on the test was observed up to 6 h. The E. globulus oil exhibited mosquito repellency only upto 1½ h. Considerable mosquito landing and feeding was displayed in negative control. In the case of the oil blend, no landing of mosquitoes was seen up to 6 h as that of positive control. The results showed that the essential oil blend from O. sanctum, M. piperita, E. globulus and P. amboinicus could repel Ae. aegypti mosquitoes or prevent from feeding as in the case of DEET even at a lower concentration of 5%. This study demonstrates the potential of essential oils from O. sanctum, M. piperita, E. globulus and P. amboinicus and their blend as mosquito repellents against Ae. aegypti, the vector of dengue, chikungunya and yellow fever.
Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang
2016-01-01
Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses.
Macedo, Iara T F; Bevilaqua, Claudia M L; de Oliveira, Lorena M B; Camurça-Vasconcelos, Ana L F; Vieira, Luiz da S; Oliveira, Fabrício R; Queiroz-Junior, Eudson M; Portela, Bruno G; Barros, Renata S; Chagas, Ana C S
2009-01-01
The objective of this work was to evaluate ovicidal and larvicidal effects of Eucalyptus globulus essential oil (EGEO) on Haemonchus contortus. The chemical composition determination of EGEO was through gas chromatography and mass spectrometry. Egg hatch test (EHT) was performed in concentrations 21.75; 17.4; 8.7; 5.43 e 2.71 mg x mL(-1). In larval development test (LDT) were used the concentrations 43.5; 21.75; 10.87; 5.43 e 2.71 mg x mL(-1). Each trial was conducted by negative control with Tween 80 (3%) and positive control, 0.02 mg x mL(-1) of thiabendazole in EHT and 0.008 mg x mL(-1) of ivermectin in LDT. The maximum effectiveness of EGEO on eggs was 99.3% in concentration of 21.75 mg x mL(-1) and on larvae was 98.7% in concentration 43.5 mg x mL(-1). The concentration of EGEO that inhibits 50% of the eggs and larvae was 8.3 and 6.92 mg x mL(-1), respectively. The oil chemical analysis identified as main component the monoterpen 1,8-cineol. EGEO presented ovicidal and larvicidal activities in vitro, revealing a good potential for use in the control of sheep and goat gastrointestinal nematodes.
Karpanen, T J; Worthington, T; Hendry, E R; Conway, B R; Lambert, P A
2008-11-01
Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2-8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5-4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2-16 g/L) and EO (4-64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25-1 mg/L and MIC of 32-64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.
Chang, Chin-Fu; Wu, Francis Fu-Sheng; Chen, Chi-Ying; Crane, Julian; Siebers, Rob
2011-09-01
Soft toys are a major source of house dust mites (HDM) and HDM allergens, and sleeping with soft toys is a significant risk factor for HDM sensitization. We studied three techniques to eliminate HDM from soft toys, namely freezing, hot tumble drying and washing with eucalyptus oil. Thirty-six toys (12 in each treatment group) were enumerated for live HDM by the heat escape method before and after freezing overnight, hot tumble drying for 1 h and washing in 0.2% to 0.4% eucalyptus oil. Freezing, hot tumble drying and washing with eucalyptus oil resulted in significant reductions in live HDM, an average reduction of 95.1%, 89.1% and 95.1%, respectively. Additionally, washing with eucalyptus oil resulted in a significant reduction in HDM allergens as well from a geometric mean of 9.12 μg/g to 0.37 μg/g (p = 0.033). These three HDM elimination techniques give parents of infants effective and acceptable methods of limiting HDM exposure. © 2011 John Wiley & Sons A/S.
Repellent activity of essential oils: a review.
Nerio, Luz Stella; Olivero-Verbel, Jesus; Stashenko, Elena
2010-01-01
Currently, the use of synthetic chemicals to control insects and arthropods raises several concerns related to environment and human health. An alternative is to use natural products that possess good efficacy and are environmentally friendly. Among those chemicals, essential oils from plants belonging to several species have been extensively tested to assess their repellent properties as a valuable natural resource. The essential oils whose repellent activities have been demonstrated, as well as the importance of the synergistic effects among their components are the main focus of this review. Essential oils are volatile mixtures of hydrocarbons with a diversity of functional groups, and their repellent activity has been linked to the presence of monoterpenes and sesquiterpenes. However, in some cases, these chemicals can work synergistically, improving their effectiveness. In addition, the use of other natural products in the mixture, such as vanillin, could increase the protection time, potentiating the repellent effect of some essential oils. Among the plant families with promising essential oils used as repellents, Cymbopogon spp., Ocimum spp. and Eucalyptus spp. are the most cited. Individual compounds present in these mixtures with high repellent activity include alpha-pinene, limonene, citronellol, citronellal, camphor and thymol. Finally, although from an economical point of view synthetic chemicals are still more frequently used as repellents than essential oils, these natural products have the potential to provide efficient, and safer repellents for humans and the environment.
Nicolle, Dean; Woodrow, Ian E.
2016-01-01
The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands of this taxonomically distinct group of plants are a rich source of a range of flavonoids and other biologically active compounds with great commercial potential. PMID:26977933
Goodger, Jason Q D; Seneratne, Samiddhi L; Nicolle, Dean; Woodrow, Ian E
2016-01-01
The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands of this taxonomically distinct group of plants are a rich source of a range of flavonoids and other biologically active compounds with great commercial potential.
Essential oils, their therapeutic properties, and implication in dentistry: A review.
Dagli, Namrata; Dagli, Rushabh; Mahmoud, Rasha Said; Baroudi, Kusai
2015-01-01
Antibacterial treatments currently used for treatment cause several side effects, and bacterial resistance to the antibiotics is also increasing. Therefore, there is need to find better alternatives. Essential oils (EOs) have been used for treatment of various ailments since ancient times and have gained popularity over the years. Safety and efficacy of EOs have been proved by several clinical trials. This review gives an overview on the EOs, their uses, and adverse effects. A literature search was performed in the PubMed for clinical trial studies and review articles on EOs published up to February 2015. The search was performed during March 2015. The following keywords were used: "Lavender essential oil," "cinnamon oil," "clove oil," "eucalyptus oil," "peppermint oil," "lemon EOs," and "tea tree oil." Total 70 relevant articles were found in PubMed database. After screening of abstracts, 52 articles were selected to be included in the present review. On the basis of the available information, it can be concluded that EOs have the potential to be developed as preventive or therapeutic agents for various oral diseases, but further clinical trials are required to establish their safety and efficacy.
Rahman, A.; Talukder, F. A.
2006-01-01
Experiments were conducted to study the bioefficacies of different plant/weed derivatives that affect the development of the pulse beetle, Callosobruchus maculates F. (Coleoptera: Bruchidae) fed on black gram, Vigna mungo, seeds. Plant extracts, powder, ash and oil from nishinda (Vitex negundo L.), eucalyptus (Eucalyptus globules Labill.), bankalmi (Ipomoea sepiaria K.), neem (Azadirachta indica L.), safflower (Carthamus tinctorius L.), sesame (Sesamum indicum L.) and bablah (Acacia arabica L.) were evaluated for their oviposition inhibition, surface protectant, residual toxicity and direct toxicity effects on C. maculates. The results showed that plant oils were effective in checking insect infestation. The least number of F1 adults emerged from black gram seeds treated with neem oil. The nishinda oil extract was the most toxic of three extracts tested (nishinda, eucalyptus and bankalmi). Bablah ash was the most effective compared to the powdered leaves of nishinda, eucalyptus and bankalmi. The powdered leaves and extracts of nishinda, eucalyptus and bankalmi, at a 3% mixture, provided good protection for black gram seeds by reducing insect oviposition, F1 adult emergence, and grain infestation rates. The oil treatment did not show adverse effects on germination capability of seeds, even after three months of treatment. PMID:19537990
Rahman, A; Talukder, F A
2006-01-01
Experiments were conducted to study the bioefficacies of different plant/weed derivatives that affect the development of the pulse beetle, Callosobruchus maculates F. (Coleoptera: Bruchidae) fed on black gram, Vigna mungo, seeds. Plant extracts, powder, ash and oil from nishinda (Vitex negundo L.), eucalyptus (Eucalyptus globules Labill.), bankalmi (Ipomoea sepiaria K.), neem (Azadirachta indica L.), safflower (Carthamus tinctorius L.), sesame (Sesamum indicum L.) and bablah (Acacia arabica L.) were evaluated for their oviposition inhibition, surface protectant, residual toxicity and direct toxicity effects on C. maculates. The results showed that plant oils were effective in checking insect infestation. The least number of F(1) adults emerged from black gram seeds treated with neem oil. The nishinda oil extract was the most toxic of three extracts tested (nishinda, eucalyptus and bankalmi). Bablah ash was the most effective compared to the powdered leaves of nishinda, eucalyptus and bankalmi. The powdered leaves and extracts of nishinda, eucalyptus and bankalmi, at a 3% mixture, provided good protection for black gram seeds by reducing insect oviposition, F(1) adult emergence, and grain infestation rates. The oil treatment did not show adverse effects on germination capability of seeds, even after three months of treatment.
In vitro activity of ten essential oils against Sarcoptes scabiei.
Fang, Fang; Candy, Kerdalidec; Melloul, Elise; Bernigaud, Charlotte; Chai, Ling; Darmon, Céline; Durand, Rémy; Botterel, Françoise; Chosidow, Olivier; Izri, Arezki; Huang, Weiyi; Guillot, Jacques
2016-11-22
The development of alternative approaches in ectoparasite management is currently required. Essential oils have been demonstrated to exhibit fumigant and topical toxicity to a number of arthropods. The aim of the present study was to assess the potential efficacy of ten essential oils against Sarcoptes scabiei. The major chemical components of the oils were identified by GC-MS analysis. Contact and fumigation bioassays were performed on Sarcoptes mites collected from experimentally infected pigs. For contact bioassays, essential oils were diluted with paraffin to get concentrations at 10, 5, and even 1% for the most efficient ones. The mites were inspected under a stereomicroscope 10, 20, 30, 40, 50, 60, 90, 120, 150, and 180min after contact. For fumigation bioassay, a filter paper was treated with 100 μL of the pure essential oil. The mites were inspected under a stereomicroscope for the first 5min, and then every 5min until 1h. Using contact bioassays, 1% clove and palmarosa oil killed all the mites within 20 and 50min, respectively. The oils efficacy order was: clove > palmarosa > geranium > tea tree > lavender > manuka > bitter orange > eucalyptus > Japanese cedar. In fumigation bioassays, the efficacy order was: tea tree > clove > eucalyptus > lavender > palmarosa > geranium > Japanese cedar > bitter orange > manuka. In both bioassays, cade oil showed no activity. Essential oils, especially tea tree, clove, palmarosa, and eucalyptus oils, are potential complementary or alternative products to treat S. scabiei infections in humans or animals, as well as to control the mites in the environment.
Eamsobhana, Praphathip; Yoolek, Adisak; Kongkaew, Wittaya; Lerdthusnee, Kriangkrai; Khlaimanee, Nittaya; Parsartvit, Anchana; Malainual, Nat; Yong, Hoi-Sen
2009-03-01
Scrub typhus, a rickettsial disease transmitted by several species of Leptotrombidium chiggers (larvae), is endemic in many areas of Asia. The disease is best prevented by the use of personal protective measures, including repellents. In this study commercially produced aromatic, essential oils of 13 plant species and ethanol (control) were tested in the laboratory for repellency against host-seeking chiggers of Leptotrombidium imphalum Vercammen-Grandjean and Langston (Acari: Trombiculidae). A rapid, simple and economic in vitro test method was used by exposing the chigger for up to 5 min. Repellency was based on relative percentages of chiggers attracted to test and control substances. Four of the 13 essential oils showed promise as effective repellent against L. imphalum chiggers. Syzygium aromaticum (clove) oil exhibited 100% repellency at 5% concentration (dilution with absolute ethanol), whereas Melaleuca alternifolia (tea tree) oil exhibited 100% repellency at 40% concentration. Undiluted oils of Zingiber cassamunar (plai) and Eucalyptus globules (blue gum) exhibited 100% repellency. Of the remaining nine essential oils, only 100% Pelargonium graveolens (geranium) exhibited >50% repellency (viz. 57%). Styrax torkinensis (benzoin) oil did not exhibit any repellency. These findings show that several aromatic, essential oils of plants may be useful as chigger repellent for the prevention of scrub typhus. Syzygium aromaticum oil may be safer and more economical to prevent chigger attacks than commercially available synthetic chemicals, such as DEET that may have harmful side effects.
Umezu, Toyoshi
2012-06-01
Although plant-derived essential oils (EOs) have been used to treat various mental disorders, their central nervous system (CNS) acting effects have not been clarified. The present study compared the effects of 20 kinds of EOs with the effects of already-known CNS acting drugs to examine whether the EOs exhibited CNS stimulant-like effects, CNS depressant-like effects, or neither. All agents were tested using a discrete shuttle-type conditioned avoidance task in mice. Essential oils of peppermint and chamomile exhibited CNS stimulant-like effects; that is, they increased the response rate (number of shuttlings/min) of the avoidance response. Linden also increased the response rate, however, the effect was not dose-dependent. In contrast, EOs of orange, grapefruit, and cypress exhibited CNS depressant-like effects; that is, they decreased the response rate of the avoidance response. Essential oils of eucalyptus and rose decreased the avoidance rate (number of avoidance responses/number of avoidance trials) without affecting the response rate, indicating that they may exhibit some CNS acting effects. Essential oils of 12 other plants, including juniper, patchouli, geranium, jasmine, clary sage, neroli, lavender, lemon, ylang-ylang, niaouli, vetivert and frankincense had no effect on the avoidance response in mice. Copyright © 2011 John Wiley & Sons, Ltd.
Singh, R K
Twenty five plant species were screened for their volatile components against hyphal growth and sclerotia formation of Sclerotium rolfsii causing foot rot disease of barley (Hordeum vulgare). Leaves of Chenopodium ambrosioides (CA), Lippia alba (LA), Azadirachta indica (AI) and Eucalyptus globulus (EG) were found to be strongly toxic. Their volatile active factors were isolated in the form of essential oils which were tested for toxicity individually and in six combinations (1:1 v/v) viz. CA-LA, LA-AI, CA-AI, CA-EG, and EG-AI. The oil combinations were found to be more fungitoxic than the individual oils. The CA-LA, LA-AI, EG-AI, and CA-EG combinations exhibited a broad fnngitoxic spectrum while CA-AI, LA-EG combinations possessed a narrow range of toxicity. None of the six oil combinations showed phytotoxic behaviour on seed germination, seedling growth and general morphology of Hordeum vulgare.
Essential oils, their therapeutic properties, and implication in dentistry: A review
Dagli, Namrata; Dagli, Rushabh; Mahmoud, Rasha Said; Baroudi, Kusai
2015-01-01
Background: Antibacterial treatments currently used for treatment cause several side effects, and bacterial resistance to the antibiotics is also increasing. Therefore, there is need to find better alternatives. Essential oils (EOs) have been used for treatment of various ailments since ancient times and have gained popularity over the years. Safety and efficacy of EOs have been proved by several clinical trials. This review gives an overview on the EOs, their uses, and adverse effects. Materials and Methods: A literature search was performed in the PubMed for clinical trial studies and review articles on EOs published up to February 2015. The search was performed during March 2015. The following keywords were used: “Lavender essential oil,” “cinnamon oil,” “clove oil,” “eucalyptus oil,” “peppermint oil,” “lemon EOs,” and “tea tree oil.” Results: Total 70 relevant articles were found in PubMed database. After screening of abstracts, 52 articles were selected to be included in the present review. Conclusion: On the basis of the available information, it can be concluded that EOs have the potential to be developed as preventive or therapeutic agents for various oral diseases, but further clinical trials are required to establish their safety and efficacy. PMID:26539382
Timbermont, L; Lanckriet, A; Dewulf, J; Nollet, N; Schwarzer, K; Haesebrouck, F; Ducatelle, R; Van Immerseel, F
2010-04-01
The efficacy of target-released butyric acid, medium-chain fatty acids (C(6) to C(12) but mainly lauric acid) and essential oils (thymol, cinnamaldehyde, essential oil of eucalyptus) micro-encapsulated in a poly-sugar matrix to control necrotic enteritis was investigated. The minimal inhibitory concentrations of the different additives were determined in vitro, showing that lauric acid, thymol, and cinnamaldehyde are very effective in inhibiting the growth of Clostridium perfringens. The in vivo effects were studied in two trials in an experimental necrotic enteritis model in broiler chickens. In the first trial, four groups of chickens were fed a diet supplemented with butyric acid, with essential oils, with butyric acid in combination with medium-chain fatty acids, or with butyric acid in combination with medium-chain fatty acids and essential oils. In all groups except for the group receiving only butyric acid, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. In the second trial the same products were tested but at a higher concentration. An additional group was fed a diet supplemented with only medium-chain fatty acids. In all groups except for that receiving butyric acid in combination with medium-chain fatty acids and essential oils, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. These results suggest that butyric acid, medium-chain fatty acids and/or essential oils may contribute to the prevention of necrotic enteritis in broilers.
Potential of Eucalyptus Oil as Repellent against House Rat, Rattus rattus
Thind, Ramandeep Kaur; Mahal, Amrit Kaur
2014-01-01
Rodent repellents are chemicals which by taste or odour or possibly by both will prevent animal from feeding or gnawing. Such substances may be used in protecting an area from rodent infestation or in protecting packaged food, packing materials, electric cables, and other important vulnerable materials. Mature and healthy house rat, Rattus rattus of both sexes, was exposed to 5, 10, and 20% eucalyptus oil applied as spray in laboratory pens in bichoice tests. Each concentration was applied through three different modes of application, that is, daily, once, and alternatively in a week. Repellent effect of the oil was assessed based on food consumption from treated and untreated sides for four days. In overall, food consumption was significantly (P < 0.0001) low from treatment side compared to the untreated side indicating significant repellent effect of the oil at all the three concentrations tested. Repellent effect of the oil was, however, not found to differ significantly between the two sexes. Percent repellency in both male and female rats was apparently more with daily application of 5 and 10% eucalyptus oil. Present studies reveal the potential of eucalyptus oil in repelling away R. rattus; however, further studies may be conducted to enhance the persistence of repellent effect for longer period of time. PMID:24523633
NASA Astrophysics Data System (ADS)
Senthil, R.; Silambarasan, R.; Pranesh, G.
2017-03-01
The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.
Use of Camphor and Essential Oil Balms for Infants in Cambodia
Var, Chivorn; Grossman, Francoise; Oberhelman, Richard A.
2017-01-01
Balms and oils containing terpenic compounds, such as camphor, menthol and eucalyptus, are potentially toxic, and numerous reports of adverse events stemming from their use in infants and young children have been published. During qualitative research on newborn practices in rural Cambodia, these products were found to be commonly applied to the skin of newborns and infants and available in most households. Parents and caregivers of infants in Cambodia and other settings where use of camphor- and menthol-containing products are common should be educated on the risks of these to prevent child morbidity and potential mortality. PMID:27370817
Patel, Seema
2015-01-01
Essential oils are concentrated aromatic volatile compounds derived from botanicals by distillation or mechanical pressing. They play multiple, crucial roles as antioxidants, food pathogen inhibitors, shelf-life enhancers, texture promoters, organoleptic agents and toxicity-reducing agents. For their versatility, they appear promising as food preservatives. Several research findings in recent times have validated their potential as functional ingredients in meat and fish processing. Among the assortment of bioactive compounds in the essential oils, p-cymene, thymol, eugenol, carvacrol, isothiocyanate, cinnamaldehyde, cuminaldehyde, linalool, 1,8-cineol, α-pinene, α-terpineol, γ-terpinene, citral and methyl chavicol are most familiar. These terpenes (monoterpenes and sesquiterpenes) and phenolics (alcohols, esters, aldehydes and ketones) have been extracted from culinary herbs such as oregano, rosemary, basil, coriander, cumin, cinnamon, mint, sage and lavender as well as from trees such as myrtle, fir and eucalyptus. This review presents essential oils as alternatives to conventional chemical additives. Their synergistic actions with modified air packaging, irradiation, edible films, bacteriocins and plant byproducts are discussed. The decisive roles of metabolic engineering, microwave technology and metabolomics in quality and quantity augmentation of essential oil are briefly mooted. The limitations encountered and strategies to overcome them have been illuminated to pave way for their enhanced popularisation. The literature has been mined from scientific databases such as Pubmed, Pubchem, Scopus and SciFinder.
Abdalla, Adibe Luiz; Louvandini, Helder; Sallam, Sobhy Mohamed Abdallah Hassan; Bueno, Ives Cláudio da Silva; Tsai, Siu Mui; Figueira, Antonio Vargas de Oliveira
2012-06-01
The main objective of the present work was to study nutritive strategies for lessening the CH(4) formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH(4) formation in three individual studies and a small chamber system to measure CH(4) released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH(4) formation. In vivo assays were performed according to the results of the in vitro assays. Mimosa caesalpineaefolia, when supplemented to a basal diet (Tifton-85 hay Cynodon sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH(4) emission but the supplementation of the basal diet with EuO did not affect (P > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich M. caesepineapholia, essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH(4) emission in ruminants. The microbial community study suggested that the reduction in CH(4) production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.
The effects of evaporating essential oils on indoor air quality
NASA Astrophysics Data System (ADS)
Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih
Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.
NASA Astrophysics Data System (ADS)
Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.
2017-06-01
In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.
Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine
Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand
2012-01-01
Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246
Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.
Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand
2012-01-01
Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.
González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra
2014-06-05
In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.
Inhibitory Effect of Essential Oils on Aspergillus ochraceus Growth and Ochratoxin A Production
Selvaraj, Jonathan Nimal; Wang, Yan; Zhao, Yueju; Zhou, Lu; Liu, Xiao; Liu, Yang
2014-01-01
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150–250 µL/L with fumigation and 250–500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥75 µg/mL and ≥150 µg/mL respectively, while natural cinnamaldehyde couldn’t fully inhibit OTA production at ≤200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains. PMID:25255251
Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response
Serafino, Annalucia; Vallebona, Paola Sinibaldi; Andreola, Federica; Zonfrillo, Manuela; Mercuri, Luana; Federici, Memmo; Rasi, Guido; Garaci, Enrico; Pierimarchi, Pasquale
2008-01-01
Background Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little scientific studies on its biological actions. Here we investigated whether EO extract is able to affect the phagocytic ability of human monocyte derived macrophages (MDMs) in vitro and of rat peripheral blood monocytes/granulocytes in vivo in absence or in presence of immuno-suppression induced by the chemotherapeutic agent 5-fluorouracil (5-FU). Methods Morphological activation of human MDMs was analysed by scanning electron microscopy. Phagocytic activity was tested: i) in vitro in EO treated and untreated MDMs, by confocal microscopy after fluorescent beads administration; ii) in vivo in monocytes/granulocytes from peripheral blood of immuno-competent or 5-FU immuno-suppressed rats, after EO oral administration, by flow cytometry using fluorescein-labelled E. coli. Cytokine release by MDMs was determined using the BD Cytometric Bead Array human Th1/Th2 cytokine kit. Results EO is able to induce activation of MDMs, dramatically stimulating their phagocytic response. EO-stimulated internalization is coupled to low release of pro-inflammatory cytokines and requires integrity of the microtubule network, suggesting that EO may act by means of complement receptor-mediated phagocytosis. Implementation of innate cell-mediated immune response was also observed in vivo after EO administration, mainly involving the peripheral blood monocytes/granulocytes. The 5-FU/EO combined treatment inhibited the 5-FU induced myelotoxicity and raised the phagocytic activity of the granulocytic/monocytic system, significantly decreased by the chemotherapic. Conclusion Our data, demonstrating that Eucalyptus oil extract is able to implement the innate cell-mediated immune response, provide scientific support for an additional use of this plant extract, besides those concerning its antiseptic and anti-inflammatory properties and stimulate further investigations also using single components of this essential oil. This might drive development of a possible new family of immuno-regulatory agents, useful as adjuvant in immuno-suppressive pathologies, in infectious disease and after tumour chemotherapy. PMID:18423004
Accuracy of Genomic Prediction for Foliar Terpene Traits in Eucalyptus polybractea.
Kainer, David; Stone, Eric A; Padovan, Amanda; Foley, William J; Külheim, Carsten
2018-06-11
Unlike agricultural crops, most forest species have not had millennia of improvement through phenotypic selection, but can contribute energy and material resources and possibly help alleviate climate change. Yield gains similar to those achieved in agricultural crops over millennia could be made in forestry species with the use of genomic methods in a much shorter time frame. Here we compare various methods of genomic prediction for eight traits related to foliar terpene yield in Eucalyptus polybractea , a tree grown predominantly for the production of Eucalyptus oil. The genomic markers used in this study are derived from shallow whole genome sequencing of a population of 480 trees. We compare the traditional pedigree-based additive best linear unbiased predictors (ABLUP), genomic BLUP (GBLUP), BayesB genomic prediction model, and a form of GBLUP based on weighting markers according to their influence on traits (BLUP|GA). Predictive ability is assessed under varying marker densities of 10,000, 100,000 and 500,000 SNPs. Our results show that BayesB and BLUP|GA perform best across the eight traits. Predictive ability was higher for individual terpene traits, such as foliar α-pinene and 1,8-cineole concentration (0.59 and 0.73, respectively), than aggregate traits such as total foliar oil concentration (0.38). This is likely a function of the trait architecture and markers used. BLUP|GA was the best model for the two biomass related traits, height and 1 year change in height (0.25 and 0.19, respectively). Predictive ability increased with marker density for most traits, but with diminishing returns. The results of this study are a solid foundation for yield improvement of essential oil producing eucalypts. New markets such as biopolymers and terpene-derived biofuels could benefit from rapid yield increases in undomesticated oil-producing species. Copyright © 2018, G3: Genes, Genomes, Genetics.
Poaty, Bouddah; Lahlah, Jasmina; Porqueres, Félicia; Bouafif, Hassine
2015-06-01
Essential oils (EOs) were steam-extracted from the needles and twigs of balsam fir, black spruce, white spruce, tamarack, jack pine and eastern white cedar that remained after logging in eastern Canada. These EOs, similarly to that from Labrador tea and other commercial EOs from Chinese cinnamon, clove and lemon eucalyptus, exhibited many common constituent compounds (mainly α-pinene, β-pinene, limonene and bornyl acetate) making up 91% of each oil based on gas chromatography-mass spectrometry analysis. All of these oils exhibited antibacterial properties, especially when examined in closed tube assay compared to the traditional 96-well microliter format. These antimicrobial activities (minimum inhibitory concentration ≥ 0.2% w/v), comparable to those of exotic EOs, were shown against common pathogenic bacteria and fungi. The antioxidant potential of the boreal samples was determined by the 1,1-diphenyl-2-picrylhydrazyl radical scavenging (concentration providing 50% inhibition ≥ 7 mg/ml) and reducing power methods. Finally, this investigation revealed some boreal EOs to be potential antimicrobial and antioxidant agents that would notably benefit products in the personal hygiene and care industry.
Nechita, I S; Poirel, M T; Cozma, V; Zenner, L
2015-12-15
The economic impact of the poultry red mite, Dermanyssus gallinae, the lack of new acaricides, the occurrence of resistance and tighter legislation have all led to the need to find new ways to control this pest. One promising alternative method of control focuses on employing repellent and/or toxic effects of selected plant essential oils against D. gallinae. Ten essential oils (basil, thyme, coriander, eucalyptus, lavender, lemon, fir tree, oregano, mint, and juniper) were tested for the persistence of toxic and repellent effects. In filter-paper toxicity bioassays against D. gallinae, the best results were observed for lavender (more than 97% mortality after 48 and 72 h) and thyme (84% at 72 h) at a dose of 0.12 mg/cm(2). In addition, two oils showed significant persistent toxic effects 15 and 30 days post application to filter papers. Thyme was the most effective (100% mortality at 72 h), followed by lavender (nearly 80% mortality after 72 h). Out of the ten oils tested for their repellent effect, thyme was the strongest, with nearly 80% of the tested area avoided by mites; oregano caused a 60% avoidance and lavender exhibited an effect close to 40%. All other oils exhibited a repellent effect of less than 30%. None of the experiments showed a repellent effect for HM (commercial alimentary oil) or negative controls. We found that the thyme and lavender essential oils exhibited promising results when tested in vitro for toxic and repellent effects against D. gallinae; thus, we suggest that future experiments focus on in vivo tests using these oils in farm units. Copyright © 2015 Elsevier B.V. All rights reserved.
Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.
Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J
2015-06-01
The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Ultrafine particle emissions from essential-oil-based mosquito repellent products.
Liu, J; Fung, D; Jiang, J; Zhu, Y
2014-06-01
Ultrafine particle (UFP) emissions from three essential-oil-based mosquito repellent products (lemon eucalyptus (LE), natural insects (NI), and bite shield (BS)) were tested in a 386 l chamber at a high air exchange rate of 24/h with filtered laboratory air. Total particle number concentration and size distribution were monitored by a condensation particle counter and a scanning mobility particle sizer, respectively. UFPs were emitted from all three products under indoor relevant ozone concentrations (~ 17 ppb). LE showed a nucleation burst followed by a relatively stable and continuous emission while the other two products (NI and BS) showed episodic emissions. The estimated maximum particle emission rate varied from 5.4 × 10(9) to 1.2 × 10(12) particles/min and was directly related to the dose of mosquito repellent used. These rates are comparable to those due to other indoor activities such as cooking and printing. The emission duration for LE lasted for 8-78 min depending on the dose applied while the emission duration for NI and BS lasted for 2-3 h. Certain essential-oil-based mosquito repellents can produce high concentrations of UFPs when applied, even at low ozone levels. Household and personal care products that contain essential oil may need to be tested at indoor relevant ozone levels to determine their potential to increase personal UFP exposures. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Traboulsi, Abdallah F; El-Haj, Samih; Tueni, Marie; Taoubi, Khalil; Nader, Natalie Abi; Mrad, Abir
2005-06-01
The insecticidal activities of essential oil extracts from leaves, flowers and roots of aromatic plants against fourth-instar larvae of the mosquito Culex pipiens molestus Forskal were determined. Extracts of Foeniculum vulgare Mill were the most toxic, followed by those of Ferula hermonis Boiss, Citrus sinensis Osbeck, Pinus pinea L, Laurus nobilis L and Eucalyptus spp with LC50 values of 24.5, 44.0, 60.0, 75.0, 117.0 and 120.0 mg litre(-1), respectively. Combination tests between the LC50 and the maximum sub-lethal concentration (MSLC) were determined. Over 20 major components were identified in extracts from each plant species tested. Five essential oils and nine pure components were studied for their repellency against mosquito bites. Terpineol and 1,8-cineole were the most effective against Culex pipiens molestus bites offering complete protection for 1.6 and 2 h, respectively.
Skin-Applied Repellent Ingredients
Active ingredients in EPA-registered insect repellents include catnip oil, oil of citronella, DEET, IR 3535, picaridin, oil of lemon eucalyptus, and 2-undecanone. Find fact sheets and pesticide regulatory information.
Vieira, Maria; Bessa, Lucinda J; Martins, M Rosário; Arantes, Sílvia; Teixeira, António P S; Mendes, Ângelo; Martins da Costa, Paulo; Belo, Anabela D F
2017-06-01
Essential oils (EOs) from Eucalyptus globulus Labill. ssp. globulus and from Mediterranean autochthonous aromatic plants - Thymus mastichina L., Mentha pulegium L., Rosmarinus officinalis L., Calamintha nepeta (L.) Savi ssp. nepeta, Cistus ladanifer L., Foeniculum vulgare L., Dittrichia viscosa (L.) Greuter ssp. viscosa - were extracted by hydrodistillation and characterized by GC-FID and NMR spectroscopy. EOs were evaluated for antimicrobial properties against several bacterial strains, using diverse methods, namely, the agar disc-diffusion method, the microdilution method, the crystal violet assay and the Live/Dead staining for assessment of biofilm formation. Potential synergy was assessed by a checkerboard method. EOs of R. officinalis and C. ladanifer showed a predominance in monoterpene hydrocarbons (> 60%); EOs of C. nepeta, M. pulegium, T. mastichina, E. globulus and F. vulgare were rich in oxygenated monoterpenes (62 - 96%) whereas EO of D. viscosa was mainly composed of oxygenated sesquiterpenes (54%). All EOs showed antimicrobial activity; M. pulegium and E. globulus generally had the strongest antimicrobial activity. EO of C. nepeta was the most promising in hampering the biofilm formation. The combinations D. viscosa/C. nepeta and E. globulus/T. mastichina were synergistic against Staphylococcus aureus. These results support the notion that EOs from the aromatic plants herein reported should be further explored as potential pharmaceuticals and/or food preservatives. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Kim, Joo Ran
2017-05-01
The purpose of this study was to develop acaricidal cotton fabrics grafted with eucalyptus oil-loaded microcapsules (EOMCs) produced from green resources. EOMCs showed a broad size distribution between 0.5 and 6.5 μm, and had the average diameter 1.8 μm. EOMCs exhibited nonporous spherical shapes and individually remained on cotton fibres. Through AATCC mortality tests against house dust mites (HDMs) (Dermatophagoides farinae), the treated cotton fabric containing EOMCs resulted in 98.7% mortality. Acaricidal efficiency was due to the large amount of oxygenated monoterpene, 1,8-eucalyptol (75.8%) and hydroxylated monoterpenes such as α-terpineol (3.6%), terpinen-4-ol (0.4%) and linalool (0.3%) found in eucalyptus oil. These compounds are effective in enhancing penetration into HDMs. EOMCs produced from safe and natural sources can serve as a replacement for synthetic acaricides in controlling the population of HDM, leading to positive impacts on the human health and environment.
Mosquito repellent activity of essential oils of aromatic plants growing in Argentina.
Gillij, Y G; Gleiser, R M; Zygadlo, J A
2008-05-01
Mosquitoes are important vectors of diseases and nuisance pests. Repellents minimize contact with mosquitoes. Repellents based on essential oils (EO) are being developed as an alternative to DEET (N,N-diethyl-m-methylbenzamide), an effective compound that has disadvantages including toxic reactions, and damage to plastic and synthetic fabric. This work evaluated the repellency against Aedes aegypti of EO from aromatic plants that grow in Argentina: Acantholippia seriphioides, Achyrocline satureioides, Aloysia citriodora, Anemia tomentosa, Baccharis spartioides, Chenopodium ambrosioides, Eucalyptus saligna, Hyptis mutabilis, Minthostachys mollis, Rosmarinus officinalis, Tagetes minuta and Tagetes pusilla. Most EO were effective. Variations depending on geographic origin of the plant were detected. At a 90% EO concentration, A. satureoides and T. pusilla were the least repellent. At concentrations of 12.5% B. spartioides, R. officinalis and A. citriodora showed the longest repellency times. Comparisons of the principal components of each EO suggest that limonene and camphor were the main components responsible for the repellent effects.
Cuadros, Juliana; Carreño, Aurora L; Kouznetsov, Vladimir V; Duque, Jonny E
2017-03-29
The alkaloid girgensohnine has been used as a natural model in the synthesis of new alkaloid-like alpha-aminonitriles with insecticidal effect against disease vectors. To evaluate the biocide activity of girgensohnine analogues and essential oils of Cymbopogon flexuosus, Citrus sinensis and Eucalyptus citriodora in stage I and stage V Rhodnius prolixus nymphs. We used a topical application model in tergites and sternites, as well as exposure to treated surfaces with different exploratory doses of each of the molecules and essential oils to determine the lethal doses (LD50 and LD95). Analogue 3 showed the highest insecticidal activity with 83.3±16.7% of mortality when applied on tergites, 38.9±4.8% on sternites and 16.7±0% on treated surfaces in stage I nymphs at 72 hours (h) and 500 mg.L-1. In stage V nymphs, the compounds induced mortality only in sternums (11.1±9.6% for analogue 6 and 5.5±4.7% for analogues 3 and 7 at 72 h and 1500 mg.L-1). The lethal doses for molecule 3 on tergites in stage I nymphs were LD50 225.60 mg.L-1 and LD95 955.90 mg.L-1. The insecticidal effect of essential oils was observed only in stage I nymphs, with 11.1±4.8% for C. flexuosus when applied in sternites, while using exposure to surfaces treated it was 5.6±4.8% for C. sinensis applied on tergites and 8.3±0% on sternites at 72 h and 1000 mg.L-1. Synthetic girgensohnine analogues, and C. flexuosus and C. sinensis essential oils showed insecticidal activity in R. prolixus. Analogue 3 showed the greatest insecticidal activity among all molecules and oils evaluated under our laboratory conditions.
Qualls, Whitney A; Xue, Rui-De; Holt, J Adam; Smith, Mike L; Moeller, Jeanne J
2011-11-01
Three plant-based repellents-REPEL LEMON Eucalyptus Insect Repellent Lotion (active ingredient [AI] 30% oil of eucalyptus), Bite Blocker Xtreme Sportsman Organic Insect Repellent ([AI] 3% soybean oil, 6% geranium oil, and 8% castor oil), and Bite Blocker BioUD Insect Repellent ([AI] 7.75% 2-undecanone)--were evaluated against OFF! ([AI] 15% N,N-diethyl-m-toluamide or N,N-diethyl-3-methyl-benzamide, also called DEET) at a field site in Elkton, FL, to determine the mean protection time provided against Psorophora columbiae (Dyar & Knab). These products provided different protection times against biting Ps. columbiae. REPEL provided the longest protection time (330 min) followed by Bite Blocker Xtreme Sportsman (163 min), Bite Blocker BioUD (140 min), and OFF! (130 min). This study provides the first information about plant-based insect repellent protection times against Ps. columbiae.
Luís, Ângelo; Duarte, Ana Paula; Pereira, Luísa; Domingues, Fernanda
2017-01-01
Background: The last decades have seen an increased awareness by the scientific community of the extent of resistance to conventional antibiotics, particularly with respect to the emerging multidrug-resistant pathogenic microbes. Additionally, natural antioxidants have received significant attention among food professionals and consumers because of their assumed safety and potential therapeutic value. The aim of this work was to assess the antioxidant activities of eight selected commercial essential oils (EOs), together with the evaluation of their antibacterial and anti-quorum sensing properties. Methods: The chemical profiling of the EOs was performed using gas chromatography-mass spectrometry (GC-MS) analysis. The antioxidant properties of the EOs were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and by β-carotene bleaching test. Disc diffusion assays were employed to evaluate the anti-bacterial and anti-quorum sensing activities of the EOs. Results: It was observed that EOs from three Eucalyptus species are rich in eucalyptol. Generally, linalool is abundant in EOs from four Lavandula species. The oil of Cymbopogon citratus is the one with the best capacity to scavenge the DPPH free radicals and presented great antibacterial activity. Conclusions: The geographical origins of the plant species are determinant factors in the EO composition and in the corresponding biological activities. PMID:28930251
Luís, Ângelo; Duarte, Ana Paula; Pereira, Luísa; Domingues, Fernanda
2017-06-05
Background : The last decades have seen an increased awareness by the scientific community of the extent of resistance to conventional antibiotics, particularly with respect to the emerging multidrug-resistant pathogenic microbes. Additionally, natural antioxidants have received significant attention among food professionals and consumers because of their assumed safety and potential therapeutic value. The aim of this work was to assess the antioxidant activities of eight selected commercial essential oils (EOs), together with the evaluation of their antibacterial and anti-quorum sensing properties. Methods : The chemical profiling of the EOs was performed using gas chromatography-mass spectrometry (GC-MS) analysis. The antioxidant properties of the EOs were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and by β-carotene bleaching test. Disc diffusion assays were employed to evaluate the anti-bacterial and anti-quorum sensing activities of the EOs. Results : It was observed that EOs from three Eucalyptus species are rich in eucalyptol. Generally, linalool is abundant in EOs from four Lavandula species. The oil of Cymbopogon citratus is the one with the best capacity to scavenge the DPPH free radicals and presented great antibacterial activity. Conclusions : The geographical origins of the plant species are determinant factors in the EO composition and in the corresponding biological activities.
Ribeiro, J C; Ribeiro, W L C; Camurça-Vasconcelos, A L F; Macedo, I T F; Santos, J M L; Paula, H C B; Araújo Filho, J V; Magalhães, R D; Bevilaqua, C M L
2014-08-29
Herbal medicines with anthelmintic effects are alternatives for the sustainable control and prevention of disease caused by gastrointestinal parasites. The nanoencapsulation of essential oils has been proposed to enhance the absorption of their constituents and improve their efficacy. The present study aimed to evaluate the efficacy of free and nanoencapsulated Eucalyptus citriodora essential oil (EcEO) on the control of gastrointestinal nematodes of small ruminants in vitro and in vivo. Chitosan was used as a matrix for the formulation of a nanoemulsion. Chromatographic and physico-chemical analyses of EcEO were performed. Egg hatch (EHT) and larval development (LDT) tests were conducted to evaluate the effectiveness of nanoencapsulated and free EcEO on the eggs and larvae of Haemonchus contortus. Acute toxicity of free and nanoencapsulated EcEO was evaluated using mice. Finally, nanoencapsulated EcEO efficacy on the control of gastrointestinal nematodes was calculated by fecal egg count reduction test (FECRT) treating 30 sheep naturally infected with 250 mg/kg of free and nanoencapsulated EcEO. In vitro tests were analyzed by an analysis of variance (ANOVA) followed by comparison with the Tukey test. The efficacy of FECRT was calculated by the BootStreet program through arithmetic average, using the formula 100 (1-XT/XC). To compare the differences between epg, the data were transformed to log(x+1) and subjected to an ANOVA to compare the significant differences between groups by Tukey's. The level of significance was P<0.05. The free (4 mg/ml concentration) and nanoencapsulated (2mg/ml concentration) EcEO inhibited larvae hatching by 97.2% and 92.8%, respectively. Free and nanoencapsulated EcEO at 8 mg/ml inhibited larval development by 99.8% and 98.1%, respectively. In the acute toxicity test, the LD10 and LD50 of free EcEO was 1999 and 2653 mg/kg, respectively, while the LD10 and LD50 of nanoencapsulated EcEO was 1121 and 1681 mg/kg, respectively. Nanoencapsulated and free EcEO reduced FEC similarly by 40.5% and 55.9%, respectively at 10 days post-treatment. Nanoencapsulated EcEO did not obtain the expected efficacy in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
Immediato, Davide; Figueredo, Luciana Aguiar; Iatta, Roberta; Camarda, Antonio; de Luna, Rafaela Lira Nogueira; Giangaspero, Annunziata; Brandão-Filho, Sinval Pinto; Otranto, Domenico; Cafarchia, Claudia
2016-10-15
Essential oils (EOs) and entomopathogenic fungi such as Beauveria bassiana (Bb) strains have the potential to be used as alternative insecticides and acaricides for controlling ectoparasites as Dermanyssus gallinae. These compounds have some limitations in their use: the acaricidal effect of EOs is rapid, but short-lived, whilst that of Bb is delayed, but long-lived. To evaluate the effect of both compounds combined against D. gallinae, the non-toxic dose of Eucalyptus globulus, Eucalyptus citriodora, Thymus vulgaris and Eugenia caryophyllata essential oils were firstly calculated for "native" strains of Bb. Subsequently, the effects of the combination of selected EOs with Bb against nymph and adult poultry red mites (PRMs) was assessed. EO concentrations ranging from 0.0015 to 8% v/v (i.e., nine double dilutions) were used to evaluate their effect on germination, sporulation and vegetative growth rates of native strains of Bb. A total of 1440 mites (720 nymphs and 720 adults) were divided into three-treated group (TGs) and one control group (CG). In TGs, mites were exposed to Bb in combination with the selected EO (TG1), EO alone (TG2) or Bb (TG3) alone. In the CG, mites were exposed to 0.1% tween 80 plus EO solvent (CG). E. globulus and E. citriodora were toxic for Bb in concentrations higher than 0.2% and 0.003% respectively, whilst E. caryophyllata and T. vulgaris were toxic at all concentrations tested against Bb. Based on the results of the toxicity assays against Bb, E. globulus was chosen to be tested as acaricide resulting non-toxic for Bb at concentration lower than 0.4%. Increased mortality of D. gallinae adults was recorded in TG1 than those in other TGs from 4days post-infection (T+4DPI). A 100% mortality of D. gallinae was recorded in adults at T+9DPI and at T+10DPI in nymphs in TG1 and later than T+11DPI in the other TGs. Used in combination with E. globulus, Bb displayed an earlier acaricidal effect towards both haematophagous D. gallinae stages. The combination of B. bassiana and E. globulus at 0.2% might be used for controlling arthropods of medical and veterinary importance as D. gallinae. Copyright © 2016 Elsevier B.V. All rights reserved.
Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae).
Vera, Sharon Smith; Zambrano, Diego Fernando; Méndez-Sanchez, Stelia Carolina; Rodríguez-Sanabria, Fernando; Stashenko, Elena E; Duque Luna, Jonny E
2014-07-01
Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50 = 17.1 ppm); C. sinensis (LC50 = 20.6 ppm); the mixture of L. alba and L. origanoides (LC50 = 40.1 ppm); L. alba (LC50 = 42.2 ppm); C. odorata (LC50 = 52.9 ppm); L. origanoides (LC50 = 53.3 ppm); S. glutinosa (LC50 = 65.7 ppm); T. lucida (LC50 = 66.2 ppm); E. citriodora (LC50 = 71.2 ppm); and C. citratus (LC50 = 123.3 ppm). The EO from C. flexuosus, with citral (geranial + neral) as main component, showed the highest larvicidal activity.
Patent literature on mosquito repellent inventions which contain plant essential oils--a review.
Pohlit, Adrian Martin; Lopes, Norberto Peporine; Gama, Renata Antonaci; Tadei, Wanderli Pedro; Neto, Valter Ferreira de Andrade
2011-04-01
Bites Bites of mosquitoes belonging to the genera Anopheles Meigen, Aedes Meigen, Culex L. and Haemagogus L. are a general nuisance and are responsible for the transmission of important tropical diseases such as malaria, hemorrhagic dengue and yellow fevers and filariasis (elephantiasis). Plants are traditional sources of mosquito repelling essential oils (EOs), glyceridic oils and repellent and synergistic chemicals. A Chemical Abstracts search on mosquito repellent inventions containing plant-derived EOs revealed 144 active patents mostly from Asia. Chinese, Japanese and Korean language patents and those of India (in English) accounted for roughly 3/4 of all patents. Since 1998 patents on EO-containing mosquito repellent inventions have almost doubled about every 4 years. In general, these patents describe repellent compositions for use in topical agents, cosmetic products, incense, fumigants, indoor and outdoor sprays, fibers, textiles among other applications. 67 EOs and 9 glyceridic oils were individually cited in at least 2 patents. Over 1/2 of all patents named just one EO. Citronella [Cymbopogon nardus (L.) Rendle, C.winterianus Jowitt ex Bor] and eucalyptus (Eucalyptus LʼHér. spp.) EOs were each cited in approximately 1/3 of all patents. Camphor [Cinnamomum camphora (L.) J. Presl], cinnamon (Cinnamomum zeylanicum Blume), clove [Syzygium aromaticum (L.) Merr. & L.M. Perry], geranium (Pelargonium graveolens LʼHér.), lavender (Lavandula angustifolia Mill.), lemon [Citrus × limon (L.) Osbeck], lemongrass [Cymbopogon citratus (DC.) Stapf] and peppermint (Mentha × piperita L.) EOs were each cited in > 10% of patents. Repellent chemicals present in EO compositions or added as pure “natural” ingredients such as geraniol, limonene, p-menthane-3,8-diol, nepetalactone and vanillin were described in approximately 40% of all patents. About 25% of EO-containing inventions included or were made to be used with synthetic insect control agents having mosquito repellent properties such as pyrethroids, N,N-diethyl-m-toluamide (DEET), (±)-p-menthane-3,8-diol (PMD) and dialkyl phthalates. Synergistic effects involving one or more EOs and synthetic and/or natural components were claimed in about 10% of all patents. Scientific literature sources provide evidence for the mosquito repellency of many of the EOs and individual chemical components found in EOs used in patented repellent inventions. © Georg Thieme Verlag KG Stuttgart · New York.
Yang, Sheng-Ping; Zhang, Xiao-Wei; Ai, Jing; Gan, Li-She; Xu, Jin-Biao; Wang, Ying; Su, Zu-Shang; Wang, Lu; Ding, Jian; Geng, Mei-Yu; Yue, Jian-Min
2012-09-27
Eucalyptin A (1), together with two known compounds 2 and 3 exhibiting potent inhibition on HGF/c-Met axis, was discovered from the fruits of Eucalyptus globulus. 1 possessed an unprecedented carbon framework of phloroglucinol-coupled sesquiterpenoid, and its structure was elucidated by spectroscopic method and ECD calculation. A brief structure-activity relationship discussion indicated that the coupling of a phloroglucinol and a sesquiterpenoid is essential for the activity.
Oldest Known Eucalyptus Macrofossils Are from South America
Zamaloa, María C.; Nixon, Kevin C.; González, Cynthia C.; Wilf, Peter; Cúneo, N. Rubén; Johnson, Kirk R.
2011-01-01
The evolutionary history of Eucalyptus and the eucalypts, the larger clade of seven genera including Eucalyptus that today have a natural distribution almost exclusively in Australasia, is poorly documented from the fossil record. Little physical evidence exists bearing on the ancient geographical distributions or morphologies of plants within the clade. Herein, we introduce fossil material of Eucalyptus from the early Eocene (ca. 51.9 Ma) Laguna del Hunco paleoflora of Chubut Province, Argentina; specimens include multiple leaves, infructescences, and dispersed capsules, several flower buds, and a single flower. Morphological similarities that relate the fossils to extant eucalypts include leaf shape, venation, and epidermal oil glands; infructescence structure; valvate capsulate fruits; and operculate flower buds. The presence of a staminophore scar on the fruits links them to Eucalyptus, and the presence of a transverse scar on the flower buds indicates a relationship to Eucalyptus subgenus Symphyomyrtus. Phylogenetic analyses of morphological data alone and combined with aligned sequence data from a prior study including 16 extant eucalypts, one outgroup, and a terminal representing the fossils indicate that the fossils are nested within Eucalyptus. These are the only illustrated Eucalyptus fossils that are definitively Eocene in age, and the only conclusively identified extant or fossil eucalypts naturally occurring outside of Australasia and adjacent Mindanao. Thus, these fossils indicate that the evolution of the eucalypt group is not constrained to a single region. Moreover, they strengthen the taxonomic connections between the Laguna del Hunco paleoflora and extant subtropical and tropical Australasia, one of the three major ecologic-geographic elements of the Laguna del Hunco paleoflora. The age and affinities of the fossils also indicate that Eucalyptus subgenus Symphyomyrtus is older than previously supposed. Paleoecological data indicate that the Patagonian Eucalyptus dominated volcanically disturbed areas adjacent to standing rainforest surrounding an Eocene caldera lake. PMID:21738605
Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants
Ayaz, Muhammad; Sadiq, Abdul; Junaid, Muhammad; Ullah, Farhat; Subhan, Fazal; Ahmed, Jawad
2017-01-01
The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness. PMID:28611658
Nardoni, Simona; Giovanelli, Silvia; Pistelli, Luisa; Mugnaini, Linda; Profili, Greta; Pisseri, Francesca; Mancianti, Francesca
2015-08-01
The in vitro activity of twenty chemically defined essential oils (EOs) obtained from Boswellia sacra, Citrus bergamia, C. limon, C. medica, Cinnamomum zeylanicum, Eucalyptus globulus, Foeniculum vulgare, Helichrysum italicum, Illicium verum, Litsea cubeba, Mentha spicata, Myrtus communis, Ocimum basilicum, Origanum majorana, O. vulgare, Pelargonium graveolens, Rosmarinus officinalis, Santalum album, Satureja montana, and Thymus serpyllum was assayed against clinical animal isolates of Microsporum canis, Trichophyton mentagrophytes, T. erinacei, T. terrestre and Microsporum gypseum, main causative agents of zoonotic and/or environmental dermatophytoses in humans. Single main components present in high amounts in such EOs were also tested. Different dermatophyte species showed remarkable differences in sensitivity. In general, more effective EOs were T. serpyllum (MIC range 0.025%-0.25%), O. vulgare (MIC range 0.025%-0.5%) and L. cubeba (MIC range 0.025%-1.5%). F. vulgare showed a moderate efficacy against geophilic species such as M gypseum and T terrestre. Among single main components tested, neral was the most active (MIC and MFC values 5 0.25%). The results of the present study seem to be promising for an in vivo use of some assayed EOs.
Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti.
Castillo, Ruth M; Stashenko, Elena; Duque, Jonny E
2017-03-01
We examined the pupicidal, adulticidal, repellent, and oviposition-deterrent activities of essential oils (EOs) from Lippia alba, L. origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis , Cananga odorata , Swinglea glutinosa, and Tagetes lucida plants against Aedes aegypti under laboratory conditions. Pupicidal and adulticidal activities were assessed at exploratory concentrations of 250, 310, and 390 parts per million (ppm); and 30, 300, and 1,000 ppm, respectively. The greatest pupicidal activity was exhibited at 390 ppm with a 24-h exposure by L. origanoides, and 390 ppm with a 48-h exposure by Citrus sinensis . Lippia origanoides killed all adult mosquitoes at 300 ppm after 120 min of exposure. Only L. origanoides and E. citriodora EOs, applied at 1,000 ppm to human skin, produced the greatest repellency (100%) to host-seeking Ae. aegypti after 2 min of exposure; the repellency decreased between 12% and 10% after 15 min. Complete oviposition deterrence by gravid Ae. aegypti was observed for E. citriodora EOs at 200 ppm with an oviposition activity index of -1.00. These results confirm that the EOs assessed in this study have insecticidal, repellent, and oviposition-deterrent activities against the dengue vector, Ae. aegypti.
Kweka, Eliningaya J; Mosha, Franklin W; Lowassa, Asanterabi; Mahande, Aneth M; Mahande, Michael J; Massenga, Charles P; Tenu, Filemoni; Lyatuu, Ester E; Mboya, Michael A; Temu, Emmanuel A
2008-01-01
Background The use of repellent materials from plants against nuisance insects is common with great potential to compliment existing malaria control programmes and this requires evaluation in the field. Ocimum plant species, Ocimum suave (Willd) and O. kilimandscharicum (Guerke) materials and their essential oils extracted by steam distillation were evaluated in the field and experimental huts for repellence, exophily and feeding inhibition effects against three mosquito species, Anopheles arabiensis (Patton), An. gambiae ss (Giles) and Culex quinquefasciatus (Say). The protective effect of essential oils from Ocimum plants were compared with N, N-diethly-3- methylbenzamide (DEET), a standard synthetic repellent. Also, the protective effect of fumigation by burning of repellent plants; Ocimum suave, Ocimum kilimandscharicum, Azadirachta indica, Eucalyptus globules and Lantana camara were tested in experimental huts and selected local houses. Results In the field, protection by Ocimum plants from mosquito bites was high and there was small variation among different mosquito species. Protection efficiency was 93.4%, 91.98% and 89.75% for An. arabiensis while for Cx. quinquefaciatus it was 91.30%, 88.65% and 90.50% for DEET, Ocimum suave and O. kilimandscharicum respectively. In the experimental hut, deterrence induced by burning of Ocimum and other plants ranged from 73.1.0% to 81.9% for An. arabiensis and 56.5% to 67.8% for Cx. quinquefaciatus, while feeding inhibition was 61.1% to 100% for An. arabiensis and 50% to 100% for Cx. quinquefaciatus. Evaluations under field conditions confirmed high protective efficacy, enhanced feeding inhibition and house entry inhibition (Deterrence). Conclusion This study shows the potential of Ocimum suave and Ocimum kilimandscharicum crude extracts and whole plants of Ocimum suave, Ocimum kilimandscharicum, Azadirachta indica, Eucalyptus globules and Lantana camara for use in protecting against human biting while the burning of plants reduces significantly the indoor resting mosquitoes. PMID:18945343
Singh, Bhoj R; Singh, Vidya; Ebibeni, N; Singh, Raj K
2013-01-01
From 194 faecal dropping samples of common house geckos collected from offices (60), houses (88), integrated farm units (IFS,18) and hostels, guest houses, and dining rooms of different canteen/mess (HGM, 28), 326 bacterial isolates of enteric bacteria belonging to 17 genera and 34 species were detected. Escherichia coli were the most frequently (39) isolated followed by Citrobacter freundii (33), Klebsiella pneumonia (27), Salmonella indica (12), Enterobacter gergoviae (12), and Ent. agglomerans (11). Other important bacteria isolated from gecko droppings were Listonella damsela (2), Raoultella terrigena (3), S. salamae (2), S. houtenae (3), Edwardsiella tarda (4), Edwardsiella hoshinae (1), and Klebsiella oxytoca (2). Of the 223 isolates tested for antimicrobial drug sensitivity, 27 (12.1%) had multiple drug resistance (MDR). None of the salmonellae or edwardsiellae had MDR however, MDR strains were significantly more common among Escherichia spp. (P = 1.9 × 10(-5)) and isolates from IFS units (P = 3.58 × 10(-23)). The most effective herbal drug, Ageratum conyzoides extract, inhibited growth of only 27.8% of strains tested followed by ethanolic extract of Zanthoxylum rhetsa (13.9%), eucalyptus oil (5.4%), patchouli oil (5.4%), lemongrass oil (3.6%), and sandalwood oil (3.1%), and Artemisia vulgaris essential oil (3.1%).
Yvon, Yan; Raoelison, Emmanuel Guy; Razafindrazaka, René; Randriantsoa, Adolphe; Romdhane, Mehrez; Chabir, Naziha; Mkaddem, Mounira Guedri; Bouajila, Jalloul
2012-08-01
Six essential oils (EOs), Juniperus phoenicea (leaves and berries), Thymus capitatus, Lauris nobilis, Melaleuca armillaris, and Eucalyptus gracilis, were screened for their antioxidant and antihypertensive activity as well as their chemical compositions. We identified and quantified 24 compounds (representing 99.8% of total oil) for J. phoenicea leaves, 14 compounds (representing 98.8% of total oil) for J. phoenicea berries, 11 compounds (representing 99.6% of total oil) for T. capitatus, 32 compounds (representing 98.9% of total oil) for L. nobilis, 32 compounds (representing 98.7% of total oil) for M. armillaris, and 26 compounds (representing 99.3% of total oil) for E. gracilis. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, the antioxidant activity was in the range of 0.59 to 2183.6 mg/L, whereas T. capitatus (1.24 ± 0.05 mg/L) gave the best activity in the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate assay. Antihypertensive activity was evaluated by testing the vasorelaxing capacity of EOs on rat aorta precontracted by phenylephrine (10(-6) M). T. capitatus and L. nobilis were most active for an antihypertensive activity (29 ± 3 and 59 ± 2 mg/L, respectively). Correlations between chemical composition or antioxidant activity and/or antihypertensive activity were studied. Significant correlation has been found for antihypertensive activity and p-cymene (R(2) = 0.86), β-elemene (R(2) = 0.90), and β-myrcene (R(2) = 0.76). A good correlation has been found between antihypertensive activity and antioxidant activity by DPPH assay (R(2) = 0.98). Antioxidant activity can contribute to the prevention of the increase of the blood pressure. According to the literature, no study has been reported until now of correlation between antihypertensive activity and antioxidant activity. Natural EOs can find its interest and application in a medicinal area. © 2012 Institute of Food Technologists®
... liniments Diaper rash creams Inhalers to relieve nasal congestion Medicine for sore gums, mouth, and throat Mouthwashes ... IV) Medicines to treat symptoms Activated charcoal Laxative Tube through the nose into the stomach to wash ...
Jang, Miyeon; Kim, Junheon; Yoon, Kyungjae Andrew; Lee, Si Hyeock; Park, Chung Gyoo
2017-02-01
The spotted-wing drosophila (SWD), Drosophila suzukii (Matsumura), is a globally invasive and serious pest of numerous soft-skinned fruit crops. Assessments were made of fumigant and contact toxicities of 12 Myrtaceae plant essential oils (EOs) and their components. For determining the mode of action of major components of active EOs, their activities against acetylcholinesterase (AChE) and Glutathione S-transferase (GST) were also assessed. Strong fumigant and contact toxicities were observed from EOs of Eucalyptus citriodora and Melaleuca teretifolia. The main components of E. citriodora were citronellal and isopulegol, whereas those of M. teretifolia were neral and geranial. Geranial showed the strongest fumigant activity, followed by citronellal or neral, M. teretifolia EO, isopulegol and E. citriodora EO. In contact toxicity assays, geranial also exhibited the strongest insecticidal activity, followed by neral or M. teretifolia EO, citronellol, citronellal, isopulegol and E. citriodora EO. Among the major components, all compounds showed low AChE inhibitory activity, while neral and geranial showed GST inhibitory activity against SWD. Myrtaceae plant EOs and their components have an excellent potential for being used in the control of SWD adults and could be useful in the development of more effective natural compounds as alternatives to synthetic pesticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christodoulakis, N.S.; Koutsogeorgopoulou, L.
1991-09-01
The release of toxic gases as well as of particulate pollutants into the atmosphere is a major side effect of the human industrial, agricultural and domestic activities. The impact of these compounds on the various life forms of our planet seems to be very serious. Investigations of plant species resistant to pollution-induced injuries do have a meaning. The introduction of these species will improve air quality and establish a moderate rate of primary productivity in the handicapped regions. That is why data concerning an evergreen sclerophyllous species which does not present structural modifications and organelle destruction although forced to bemore » a dweller of a partition isle in a heavily polluted, traffic-loaded main street of the smog-suffering city of Athens, Greece, seemed very interesting. In this paper, further investigation is presented. Two common, species were studied. The first, Eucalyptus camaldulensis, a huge tree once imported to Europe from Australia as a marsh-drier in an effort to control malaria, is a drought enduring species mostly known for the essential oils accumulated in its leaves. The second, Olea europaea L. var oleaster Brot, is a sclerophyllous tree growing wild in chaparall formations in Greece.« less
Contact dermatitis to Vicks VapoRub.
Noiles, Kristin; Pratt, Melanie
2010-01-01
Vicks VapoRub (VVR) is a commonly used inhalant ointment that helps relieve symptoms of upper respiratory tract infections. It contains several plant substances, including turpentine oil, eucalyptus oil, and cedar leaf oil, which can potentially irritate or sensitize the skin, as well as camphor, menthol, nutmeg oil, and thymol. Although many reports describe allergic contact dermatitis (ACD) to the various constituents in VVR ointment, there are no cases of VVR directly causing ACD. We present a case of a patient who developed an ACD secondary to application of her VVR.
... spreading to the United States. One factor is climate change, which makes the conditions in some parts of ... United States. How can I prevent mosquito bites? Use an insect ... DEET, picaridin, IR3535, oil of lemon eucalyptus, or para-menthane-diol. It ...
Djenane, D; Yangüela, J; Amrouche, T; Boubrit, S; Boussad, N; Roncalés, P
2011-12-01
Essential oils (EOs) extracted by hydrodistillation from leaf parts of Algerian Eucalyptus globulus, Myrtus communis and Satureja hortensis were analyzed by gas chromatography/mass spectrometry (GC/MS). The main components of EOs obtained were γ-terpinene (94.48%), 1,8-cineole (46.98%) and carvacrol (46.10%), respectively, for E. globulus, M. communis and S. hortensis. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus CECT 4459 and Escherichia coli O157:H7 CECT 4267 using the agar diffusion technique. Results revealed that E. globulus and S. hortensis EOs had more antibacterial effects than that from M. communis. Minimal inhibitory concentrations (MIC) showed a range of 0.05-0.22% (volume by volume [v/v]). Sensitivity of gram-positive S. aureus was much higher than that of gram-negative E. coli. Plant EOs were added to minced beef (two-fold MIC value) at 0.10-0.44%, experimentally inoculated with the same pathogens at a level of 5 × 10(5) colony forming units (cfu)/g and stored at 5 ± 2 °C. Results showed that the EOs of E. globulus and S. hortensis had remarkable antibacterial properties, higher than that of M. communis, against S. aureus and E. coli. Indeed, a reduction of 5.8 log cfu/g (70.74% of reduction) was recorded after 7 days of storage for S. hortensis against E. coli. However, regarding S. aureus, both S. hortensis and E. globulus caused a highly significant (p < 0.05) decrease of microbial counts, most evident after 5 days of storage; S. aureus numbers were 3.50 and 2.50 cfu/g, respectively, corresponding to a reduction of 2.20 and 3.20 log cfu/g (38.60 and 56.14% of reduction) after 1 week of storage. Sensory evaluation revealed that the aroma of minced beef meat treated with EOs was acceptable by panelists at the levels used.
Sahu, Prashant; Kashaw, Sushil K; Jain, Sanyog; Sau, Samaresh; Iyer, Arun K
2017-05-10
Penetration enhancers coated biodegradable polymeric nanogels loaded with cytotoxic drugs applied via the topical route, can be a promising strategy for improving the chemotherapeutic efficiency of skin cancers. The major objective of proposed research was to investigate the in vitro and ex vivo chemotherapeutic potential of double walled PLGA-chitosan biodegradable nanogel entrapped with 5-fluororuacil (5-FU) coated with eucalyptus oil, topically applied onto the skin. 5-FU was first entrapped in PLGA core by solvent evaporation technique followed by coating with cationic chitosan for ionic interaction with anionic skin cancer cell membrane. A surface coating of eucalyptus oil (1%) was employed to improve the penetration efficacy of the nanogel into stratum corneum. The surface modified biodegradable double walled nanogel was characterized for particle size, charge and thermal properties followed by pH dependent in vitro analysis. Human keratinocyte (HaCaT) cell line was employed for the bio- and cyto-compatibility testing prior to the hemolysis assay and coagulation assessment. A porcine skin ex vivo screening was performed for assessing the penetration potential of the nanogels. DLS and TEM revealed a particle size about 170nm for the double walled nanogels. The nanogels also exhibited high thermal stability as analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). The drug entrapment efficacy was about ~40%. The drug release showed sustained release pattern noted up to 24h. The low hemolysis of 2.39% with short prothrombin time (PT) and activated partial thromboplastin time (APTT) of 14.2 and 35.5s respectively, revealed high biocompatibility of the nanogels. The cellular uptake and localization was assessed by confocal microscopy. The cytotoxicity (MTT assay) on HaCaT cell line demonstrated high cytocompatibilty of the nanogels. An ex vivo evaluation using porcine skin displayed efficient and steady state flux of 5-FU from the biodegradable nanogles into the skin, while the histology of the porcine skin revealed enhanced penetration potential of eucalyptus oil coated PLGA-chitosan double walled nanogels. Taken together the in vivo and ex vivo results portend promising potential for the utility of the biodegradable nanogels for treating skin cancers. Copyright © 2017. Published by Elsevier B.V.
The genome of Eucalyptus grandis.
Myburg, Alexander A; Grattapaglia, Dario; Tuskan, Gerald A; Hellsten, Uffe; Hayes, Richard D; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R K; Hussey, Steven G; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B; Togawa, Roberto C; Pappas, Marilia R; Faria, Danielle A; Sansaloni, Carolina P; Petroli, Cesar D; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A; Bornberg-Bauer, Erich; Kersting, Anna R; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E; Liston, Aaron; Spatafora, Joseph W; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C; Steane, Dorothy A; Vaillancourt, René E; Potts, Brad M; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J; Strauss, Steven H; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S; Schmutz, Jeremy
2014-06-19
Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
Alternatives to antibiotics as growth promoters for use in swine production: a review
2013-01-01
In the past two decades, an intensive amount of research has been focused on the development of alternatives to antibiotics to maintain swine health and performance. The most widely researched alternatives include probiotics, prebiotics, acidifiers, plant extracts and neutraceuticals such as copper and zinc. Since these additives have been more than adequately covered in previous reviews, the focus of this review will be on less traditional alternatives. The potential of antimicrobial peptides, clay minerals, egg yolk antibodies, essential oils, eucalyptus oil-medium chain fatty acids, rare earth elements and recombinant enzymes are discussed. Based on a thorough review of the literature, it is evident that a long and growing list of compounds exist which have been tested for their ability to replace antibiotics as feed additives in diets fed to swine. Unfortunately, the vast majority of these compounds produce inconsistent results and rarely equal antibiotics in their effectiveness. Therefore, it would appear that research is still needed in this area and that the perfect alternative to antibiotics does not yet exist. PMID:24034214
Wang, Sheng-ye; Tang, Yan-kui; Li, Kun; Mo, Ya-yuan; Li, Hao-feng; Gu, Zhan-qi
2014-12-01
Magnetic biochar was prepared with eucalyptus leaf residue remained after essential oil being extracted. Batch experiments were conducted to examine the capacity of the magnetic biochar to remove Cr (VI) from electroplating wastewater and to be separated by an external magnetic field. The results show that the initial solution pH plays an important role on both sorption and separation. The removal rates of Cr (VI), total Cr, Cu (II), and Ni (II) were 97.11%, 97.63%, 100% and 100%, respectively. The turbidity of the sorption-treated solution was reduced to 21.8NTU from 4075NTU after 10min magnetic separation. The study also confirms that the magnetic biochar still retains the original magnetic separation performance after the sorption process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Repellent and Anti-quorum Sensing Activity of Six Aromatic Plants Occurring in Colombia.
Cervantes-Ceballos, Leonor; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus
2015-10-01
Essential oils (EOs) are widely used as biopesticides and to control bacterial infections. This study describes the ability of six EOs isolated from plants cultivated in Colombia to perform as repellents against Ulomoides dermestoides and as quorum sensing (QS) inhibitors. EOs from Aloysia triphylla, Cymbopogon nardus, Lippia origanoides, Hyptis suaveolens, Swinglea glutinosa and Eucalyptus globulus were repellents classified as Class IV, IV, IV, III, II, and II, respectively, whereas the commercial repellent IR3535 only reached Class II after 2 h exposure. All EOs presented small, but significant inhibitory properties against the QS system in Escherichia coli (pJBA132) at 25 μg/mL after 4 h exposure. These data suggest evaluated EOs from Colombia are sustainable, promising new sources of natural repellents and could be important as anti-quorum sensing molecules.
Kouazounde, Jacques B; Jin, Long; Assogba, Fidele M; Ayedoun, Marc A; Wang, Yuxi; Beauchemin, Karen A; McAllister, Tim A; Gbenou, Joachim D
2015-03-30
Plants from West Africa commonly used in both human and veterinary medicine contain various secondary metabolites. However, their potential in mitigating ruminal methane production has not been explored. This study examined the effects of seven essential oils (EOs) from plants acclimated to Benin at four dosages (100, 200, 300 and 400 mg L(-1)), on in vitro rumen microbial fermentation and methane production using Andropogon gayanus grass as a substrate. Compared to control, Laurus nobilis (300-400 mg L(-1) ), Citrus aurantifolia (300-400 mg L(-1)) and Ocimum gratissimum (200-400 mg L(-1)) decreased (P < 0.05) methane production (mL g(-1) DM) by 8.1-11.8%, 11.9-17.8% and 7.9-30.6%, respectively. Relative to the control, reductions in methane (mL g(-1) DM) of 11.4%, 13.5% and 14.2% were only observed at 400 mg L(-1) for Eucalyptus citriodora, Ocimum basilicum and Cymbopogon citratus, respectively. These EOs lowered methane without reducing concentrations of total volatile fatty acids or causing a shift from acetate to propionate production. All EOs (except M. piperita) reduced (P < 0.05) apparent dry matter (DM) disappearance of A. gayanus. The current study demonstrated that EOs from plants grown in Benin inhibited in vitro methane production mainly through a reduction in apparent DM digestibility. © 2014 Society of Chemical Industry.
Ntalli, Nikoletta G; Ferrari, Federico; Giannakou, Ioannis; Menkissoglu-Spiroudi, Urania
2011-03-01
Biorational means for phytonematode control were studied within the context of an increasingly ecofriendly pest management global approach. The nematicidal activity and the chemical composition of essential oils (EOs) isolated from seven plants grown in Greece and ten selected compounds extracted from them against second-stage juveniles (J2) of Meloidogyne incognita (Kof. & White) Chitwood were evaluated using juvenile paralysis experiments. Additionally, synergistic and antagonistic interactions between nematicidal terpenes were studied using an effect addition model, with the comparison made at one concentration level. The 96 h EC(50) values of Foeniculum vulgare Mill., Pimpinella anisum L., Eucalyptus meliodora A Cunn ex Schauer and Pistacia terebinthus L. were 231, 269, 807 and 1116 µg mL(-1) , respectively, in an immersion bioassay. Benzaldehyde (9 µg mL(-1) ) was the most toxic compound, followed by γ-eudesmol (50 µg mL(-1) ) and estragole (180 µg mL(-1) ), based on 96 h EC(50) values. The most potent terpene pairs between which synergistic actions were found, in decreasing order, were: trans-anethole/geraniol, trans-anethole/eugenol, carvacrol/eugenol and geraniol/carvacrol. This is the first report on the activity of F. vulgare, P. anisum, E. meliodora and P. terebinthus, and additionally on synergistic/antagonistic nematicidal terpene interactions, against M. incognita, providing alternative methods for nematode control. Copyright © 2010 Society of Chemical Industry.
Antibacterial, antifungal, and antiviral effects of three essential oil blends.
Brochot, Amandine; Guilbot, Angèle; Haddioui, Laïla; Roques, Christine
2017-08-01
New agents that are effective against common pathogens are needed particularly for those resistant to conventional antimicrobial agents. Essential oils (EOs) are known for their antimicrobial activity. Using the broth microdilution method, we showed that (1) two unique blends of Cinnamomum zeylanicum, Daucus carota, Eucalyptus globulus and Rosmarinus officinalis EOs (AB1 and AB2; cinnamon EOs from two different suppliers) were active against the fourteen Gram-positive and -negative bacteria strains tested, including some antibiotic-resistant strains. Minimal inhibitory concentrations (MICs) ranged from 0.01% to 3% v/v with minimal bactericidal concentrations from <0.01% to 6.00% v/v; (2) a blend of Cinnamomum zeylanicum, Daucus carota, Syzygium aromaticum, Origanum vulgare EOs was antifungal to the six Candida strains tested, with MICs ranging from 0.01% to 0.05% v/v with minimal fungicidal concentrations from 0.02% to 0.05% v/v. Blend AB1 was also effective against H1N1 and HSV1 viruses. With this dual activity, against H1N1 and against S. aureus and S. pneumoniae notably, AB1 may be interesting to treat influenza and postinfluenza bacterial pneumonia infections. These blends could be very useful in clinical practice to combat common infections including those caused by microorganisms resistant to antimicrobial drugs. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Enku, Temesgen; Melesse, Assefa; Ayana, Essaya; Tilahun, Seifu; Abate, Mengiste; Steenhuis, Tammo
2017-04-01
Given the increasing demand for water resources and the need for better management of regional water resources, it is essential to quantify the groundwater use by phreatophytes in tropical monsoon climates. Phreatophytes, like eucalyptus plantations are reported to be a groundwater sink and it could significantly affect the regional groundwater resources. In our study, the consumptive groundwater use of a closed eucalyptus plantation was calculated based on the diurnal water table fluctuations observed in monitoring wells for two dry monsoon phases in the Fogera plain, northwest of Ethiopia. Automated recorders were installed to monitor the hourly groundwater table fluctuations. The groundwater table fluctuates from maximum at early in the morning to minimum in the evening daily and generally declined linearly during the dry phase averaging 3.1 cm/day during the two year period under the eucalyptus plantations. The hourly eucalypts transpiration rate over the daylight hours follows the daily solar irradiance curve for clear sky days. It is minimal during the night and reaches maximum of 1.65mm/hour at mid-day. The evapotranspiration from the groundwater by eucalyptus plantations during the dry phases was estimated at about 2300mm from October 1 to 31 May, in 2015 compared to about 900mm without eucalyptus trees. The average daily evapotranspiration was 9.6mm. This is almost twice of the reference evapotranspiration in the area and 2.5 times the actual rate under fallow agricultural fields. Thus, water resources planning and management in the region needs to consider the effect of eucalyptus plantations on the availability of groundwater resources in the highlands of Ethiopia. Key words: Eucalyptus, Evapotranspiration, Groundwater, Ethiopia, Lake Tana
Palacios, Sara M; Bertoni, Alberto; Rossi, Yanina; Santander, Rocío; Urzúa, Alejandro
2009-05-25
The compositions of 12 essential oils (EOs) obtained by hydrodistillation of edible fruits and herbs were analyzed by gas chromatography/mass spectroscopy (GC/MS). The insecticidal activity of each oil against the house fly Musca domestica was evaluated by placing flies in a glass jar with a screw cap that held a piece of EO-treated cotton yarn. The dose necessary to kill 50% of flies (LC(50)) in 30 min was determined at 26 +/- 1 degrees C. Twelve EOs and 17 individual terpenes were assayed against M. domestica, showing LC(50) values ranging from 3.9 to 85.2 and from 3.3 to >100 mg/dm(3), respectively. EO from Citrus sinensis was the most potent insecticide (LC(50 )= 3.9 mg/dm(3)), followed by EOs from C. aurantium (LC(50 )= 4.8 mg/dm(3)) and Eucalyptus cinerea (LC(50 )= 5.5 mg/dm(3)). According to GC/MS analysis, limonene (92.47%), linalool (1.43%), and b-myrcene (0.88%) were the principal components of C. sinensis EO. Limonene was also the principal constituent (94.07%) of C. aurantium, while 1,8-cineole (56.86%) was the major constituent of E. cinerea EO. 1,8-Cineole was most active against M. domestica (LC(50 )= 3.3 mg/dm(3)), while (4R)(+)-limonene, was moderately active (LC(50 )= 6.2 mg/dm(3)). Dimethyl 2,2-dichlorovinyl phosphate (DDVP) selected as a positive control, showed an LC(50) of 0.5 mg/dm(3). EOs from C. sinensis, C. aurantium, and E. cinerea show promise as natural insecticides against houseflies.
Could essential oils enhance biopolymers performance for wound healing? A systematic review.
Pérez-Recalde, Mercedes; Ruiz Arias, Ignacio E; Hermida, Élida B
2018-01-01
Millions of people in the world suffer from chronic wounds of different etiologies such as diabetic foot and leg ulcers, without solutions nowadays. Molecules obtained from plants offer an alternative to aid wound healing. Strong evidence about essential oils (EO) anti-inflammatory and antimicrobial properties is thoroughly described in literature and their chemical compositions are well characterized. More recently, EO effects in experimental wounds have begun to be analyzed. We aim to summarize the evidence of EO in experimental wounds, and the possibility of combining them with biopolymers commonly used in skin regeneration. Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2017, using relevant keywords. In a first step, literature focusing on EO and/or mono- or sesqui-terpenoids effects in rodent wounds was identified and summarized. In all cases, chemical structures and EO composition were detailed, as well as references to in vitro activities previously determined, e.g. antibacterial, antioxidant or anti-inflammatory. In a second step, scientific literature devoted to combine EO and biopolymers with the focus set on wound healing innovations, was collected and analyzed. Treatments with EO from species of genders Lavandula, Croton, Blumea, Eucalyptus, Pinus, Cymbopogon, Eucalyptus, Cedrus, Abies, Rosmarinus, Origanum, Salvia and Plectranthus, have shown positive results in rodent wounds. All of these EO were mainly composed by monoterpenoids-thymol, 1,8-cineole, linalool-or monoterpenes, as limonene or pinenes. Experimental wounds in rodents have shown faster closure rate, better collagen deposition and/or enhanced fibroblasts proliferation. In blends with biopolymers, several EO combined with chitosan, alginate, gelatin or collagen, were processed to give active films or nanofibers, with antioxidant, anti-inflammatory or antimicrobial activities. Curiously, all of these works were carried out since 2010. There is significant evidence about the effectivity of EO as wound healers. The incorporation of EO into a polymer matrix that contributes to wound healing is still incipient. However, scientific based evidence of the EO incorporation in resorbable polymeric scaffolds was found and analyzed herein. In summary, EO-biopolymer dressings or scaffolds have become promising artifacts regarding wound treatments, especially in chronic wounds, where treating infection and inflammation are still important issues. Copyright © 2017 Elsevier GmbH. All rights reserved.
Ramnath, L; Sithole, B; Govinden, R
2017-09-01
This study highlights the importance of determining substrate specificity at variable experimental conditions. Lipases and esterases were isolated from microorganisms cultivated from Eucalyptus wood species and then concentrated (cellulases removed) and characterized. Phenol red agar plates supplemented with 1% olive oil or tributyrin was ascertained to be the most favourable method of screening for lipolytic activity. Lipolytic activity of the various enzymes were highest at 45-61 U/ml at the optimum temperature and pH of between at 30-35 °C and pH 4-5, respectively. Change in pH influenced the substrate specificity of the enzymes tested. The majority of enzymes tested displayed a propensity for longer aliphatic acyl chains such as dodecanoate (C 12 ), myristate (C 14 ), palmitate (C 16 ) and stearate (C 18 ) indicating that they could be characterised as potential lipases. Prospective esterases were also detected with specificity towards acetate (C 2 ), butyrate (C 4 ) and valerate (C 5 ). Enzymes maintained up to 95% activity at the optimal pH and temperature for 2-3 h. It is essential to test substrates at various pH and temperature when determining optimum activity of lipolytic enzymes, a method rarely employed. The stability of the enzymes at acidic pH and moderate temperatures makes them excellent candidates for application in the treatment of pitch during acid bi-sulphite pulping, which would greatly benefit the pulp and paper industry.
Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; ...
2016-03-15
Here, the fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amountmore » of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO 2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO 2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Trevor James; Turn, Scott Q.; Sun, Ning
Here, the fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amountmore » of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO 2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO 2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.« less
Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe
2016-01-01
The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265
Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe
2016-01-01
The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.
2009-06-01
involves overseas laboratories. Repellents and pesticides used by the U.S. military at present must be U.S. Environmental Protection Agency (EPA...eucalyptus, citronella, catnip, sage, lavender, basil , thyme, and the tea tree) contain oils that repel arthropods when applied to skin, hair, or wood (that
Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka
2015-07-01
Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Venter, Gert J; Labuschagne, Karien; Boikanyo, Solomon N B; Morey, Liesl
2014-08-08
The use of insect repellents to reduce the attack rate of Culicoides species (Diptera:Ceratopogonidae) should form part of an integrated control programme to combat African horse sickness and other diseases transmitted by these blood-feeding midges. In the present study the repellent effects of a commercially available mosquito repellent, a combination of citronella and lemon eucalyptus oils, on Culicoides midges was determined. The number of midges collected with two 220 V Onderstepoort traps fitted with 8 W 23 cm white light tubes and baited with peel-stick patches, each containing 40 mg of active ingredient, was compared with that of two unbaited traps. Two trials were conducted and in each trial the four traps were rotated in two replicates of a 4 x 4 randomised Latin square design. Although more midges were collected in the baited traps, the mean number in the baited and unbaited traps was not significantly different. This mosquito repellent did not influence either the species composition or the physiological groups of Culicoides imicola Kieffer. The higher mean numbers in the baited traps, although not statistically significant, may indicate that this mosquito repellent might even attract Culicoides midges under certain conditions.
A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress
Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O.; Wang, Qiuquan
2015-01-01
Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification. PMID:26327118
Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O; Wang, Qiuquan
2015-01-01
Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.
Alvarez Costa, Agustín; Gonzalez, Paula V; Harburguer, Laura V; Masuh, Héctor M
2018-06-04
An essential strategy to deal with mosquito-borne diseases is the control of larvae in their development sites. The mosquitoes Anopheles pseudopunctipennis (Theobald) (Diptera: Culicidae), a malaria vector, and Aedes aegypti (L.) (Diptera: Culicidae), vector of dengue, Zika, yellow fever, and chikungunya viruses, breed in very different habitats. Insecticide treatments of mosquito larvae focus mainly on their lethal effects. However, insecticide degradation or the poor dosage of larvicides will invariably lead to the sublethal exposure of a target (and nontarget) species, the nonlethal effects of these compounds may have important effects on vital insect activities, and therefore their evaluation is necessary. In this study, we assessed the survival and swimming behavior of larvae of Ae. aegypti and An. pseudopunctipennis exposed to increasing concentrations of three larvicides. We found that Ae. aegypti, was more sensitive to the larvicides than An. pseudopunctipennis, we also observed an overall decrease in the movement of those larvae of both species, which survive the treatments. This decrease might have ecological relevance in their natural habitats, increasing the chance to be predated and decreasing their ability to obtain food. Finally, this information will be valuable to assist authorities to make decisions in the implementation of further control programs.
Gonzalez, Paula V; González Audino, Paola A; Masuh, Héctor M
2015-11-01
Aedes aegypti (L.) (Diptera: Culicidae) is the key vector of three important arboviral diseases: dengue, yellow fever, and chikungunya. Immature stages of this species inhabit human-made containers placed in residential landscapes. In this study, we evaluated a few compounds in a sensitive behavioral assay with Ae. aegypti larvae. The orientation of larvae to different compounds was surveyed using a performance index (PI). The PI represents the response to each odorant, where a value of +1 is indicative of full attraction and -1 represents complete repulsion. The widely used insect repellent N, N-diethyl-m-toluamide elicited a significantly negative PI, as did acetophenone and indole. A yeast extract, a known food source, elicited a significantly positive PI, as did 2-methylphenol, 1-octen-3-ol, 3-methylphenol, and fish food. On the other hand, no response was observed for the essential oil of Eucalyptus grandis x Eucalyptus camaldulensis at the concentration evaluated. Pretreatment of larvae with N-ethylmaleimide and ablation of the antennae resulted in a suppression of behavioral responses. The overall mobility of ablated larvae was indistinguishable from unablated controls, and absence of any visible locomotor dysfunction was observed. This work is a contribution to the study of the chemical ecology of disease vectors with the aim of developing more efficient tools for surveillance and control.Natural and synthetic compounds attractive to Ae. aegypti larvae should be incorporated into integrated pest management programs through the use of baited traps or by improving the efficacy of larvicides commonly used in control campaigns. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
El Maghraby, Gamal M; Arafa, Mona F; Osman, Mohamed A
2014-12-01
This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10 min and the action lasting for 50 min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5 min and lasted for 70.5 min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10 min and lasted for 95 min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.
Enhanced chlorhexidine skin penetration with eucalyptus oil
2010-01-01
Background Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v) CHG in various concentrations of eucalyptus oil (EO) and 70% (v/v) isopropyl alcohol (IPA). The concentration of CHG (μg/mg of skin) was determined to a skin depth of 1500 μm by high performance liquid chromatography (HPLC). Results The 2% (w/v) CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v) EO in combination with 2% (w/v) CHG in 70% (v/v) IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide contact with additional microorganisms present in the skin, thereby enhancing antisepsis. PMID:20860796
Hendry, Emma; Conway, Barbara; Worthington, Tony
2012-10-30
Effective surface disinfection is a fundamental infection control strategy within healthcare. This study assessed the antimicrobial efficacy of novel biocide formulations comprising 5% and 2% eucalyptus oil (EO) combined with 2% chlorhexidine digluconate (CHG) and 70% isopropyl alcohol (IPA) contained within a wipe. The efficacy of this novel antimicrobial formulation to remove and eliminate methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans from steel surfaces was investigated. Adpression studies of pre-contaminated wipes were also utilised to assess their potential to induce cross-contamination between hard surfaces. Furthermore, the bactericidal nature of the EO-formulation was established in addition to time-kill. The EO-containing formulations demonstrated bactericidal antimicrobial efficacy against all microorganisms and did not induce surface cross-contamination. There was no significant difference (p < 0.05) between the 5% and 2% EO formulations in their ability to remove microorganisms from steel surfaces, however both significantly (p < 0.05) removed more than the control formulations. Microbial biofilms were eliminated within 10 min (p < 0.05) when exposed to the EO formulations. Our novel EO-formulation demonstrated rapid antimicrobial efficacy for potential disinfection and elimination of microbial biofilms from hard surfaces and may therefore be a useful adjunct to current infection control strategies currently employed within healthcare facilities.
Hendry, Emma; Conway, Barbara; Worthington, Tony
2012-01-01
Effective surface disinfection is a fundamental infection control strategy within healthcare. This study assessed the antimicrobial efficacy of novel biocide formulations comprising 5% and 2% eucalyptus oil (EO) combined with 2% chlorhexidine digluconate (CHG) and 70% isopropyl alcohol (IPA) contained within a wipe. The efficacy of this novel antimicrobial formulation to remove and eliminate methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans from steel surfaces was investigated. Adpression studies of pre-contaminated wipes were also utilised to assess their potential to induce cross-contamination between hard surfaces. Furthermore, the bactericidal nature of the EO-formulation was established in addition to time-kill. The EO-containing formulations demonstrated bactericidal antimicrobial efficacy against all microorganisms and did not induce surface cross-contamination. There was no significant difference (p < 0.05) between the 5% and 2% EO formulations in their ability to remove microorganisms from steel surfaces, however both significantly (p < 0.05) removed more than the control formulations. Microbial biofilms were eliminated within 10 min (p < 0.05) when exposed to the EO formulations. Our novel EO-formulation demonstrated rapid antimicrobial efficacy for potential disinfection and elimination of microbial biofilms from hard surfaces and may therefore be a useful adjunct to current infection control strategies currently employed within healthcare facilities. PMID:23203047
Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz
2016-01-01
Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. Copyright © 2015 Elsevier Ltd. All rights reserved.
α-Terpineol reduces cancer pain via modulation of oxidative stress and inhibition of iNOS.
Gouveia, Daniele Nascimento; Costa, Janara Santos; Oliveira, Marlange Almeida; Rabelo, Thallita Kelly; Silva, Ana Mara de Oliveira E; Carvalho, Adriana Andrade; Miguel-Dos-Santos, Rodrigo; Lauton-Santos, Sandra; Scotti, Luciana; Scotti, Marcus Tullius; Santos, Márcio Roberto Viana Dos; Quintans-Júnior, Lucindo José; Albuquerque Junior, Ricardo Luiz Cavalcanti De; Guimarães, Adriana Gibara
2018-06-11
α-Terpineol (TP) is present in a wide range of essential oils of the genus Eucalyptus, with recognized potential for a range of biological effects, such as analgesic. Hence, our study aimed to investigate the effect of TP on cancer pain induced by sarcoma 180 in Swiss mice. Our results showed that TP reduced significantly mechanical hyperalgesia and spontaneous and palpation-induced nociception, improved paw use without reducing tumor growth and grip strength. Importantly, no evident biochemical and hematological toxicity was oberved. Furthermore, TP increased the tissue antioxidant capacity due to ferric-reducing antioxidant power (FRAP) and glutathione (GSH). TP also reduced inducible nitric oxide synthase (iNOS) immunocontent in the tumors. Molecular docking estimated that TP binds within the same range of iNOS regions (other iNOS inhibitors), such as N-Nitroarginine methyl ester (L-NAME). These data provide strong evidence that TP may be an interesting candidate for the development of new safe analgesic drugs that are effective for cancer pain control. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.
Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M
2016-12-01
The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.
2011-01-01
Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus. PMID:21492434
40 CFR 454.50 - Applicability; description of the essential oils subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... essential oils subcategory. 454.50 Section 454.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Essential Oils Subcategory § 454.50 Applicability; description of the essential oils subcategory... essential oils. ...
40 CFR 454.50 - Applicability; description of the essential oils subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... essential oils subcategory. 454.50 Section 454.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Essential Oils Subcategory § 454.50 Applicability; description of the essential oils subcategory... essential oils. ...
40 CFR 454.50 - Applicability; description of the essential oils subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... essential oils subcategory. 454.50 Section 454.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Essential Oils Subcategory § 454.50 Applicability; description of the essential oils subcategory... essential oils. ...
Potential Development Essential Oil Production of Central Java, Indonesia
NASA Astrophysics Data System (ADS)
Alighiri, D.; Eden, W. T.; Supardi, K. I.; Masturi; Purwinarko, A.
2017-04-01
Indonesia is the source of raw essential oil in the world. Essential oils are used in various types of industries such as food and beverage, flavour, fragrance, perfumery, pharmaceuticals, and cosmetics. However, the development of Indonesian essential oil industry has not been encouraging for the production of essential oils, further it is unable to meet global demand. Besides that, the quality of volatile oil resulted cannot meet the international market standards. Based on the facts, the potential of Indonesian essential oils needs to be developed to provide added value, through increased production, improved quality and product diversification. One part of Indonesia having abundant of raw essential oil source is Central Java. Central Java has the quite large potential production of essential oils. Some essential oils produced from refining industry owned by the government, private and community sectors include cananga oils (Boyolali district), clove oils (Semarang district), patchouli oils (Brebes district, Pemalang district, and Klaten district). The main problem in the development of plants industries that producing essential oil in Central Java is low crops production, farming properties, quality of essential oils are diverse, providing poor-quality products and volatile oil price fluctuations. Marketing constraints of Central Java essential oils are quite complex supply chain. In general, marketing constraints of essential oils due to three factors, namely the low quality due to type of essential oil business that generally shaped small businesses with different capital and technology, domestic marketing is still a buyer-market (price determined by the buyer) because of weak bargaining position processors businessman, and prices fluctuate (domestic and foreign) due to uncontrolled domestic production and inter-country competition among manufacturers.
Combined Toxicity of Three Essential Oils Against Aedes aegypti (Diptera: Culicidae) Larvae.
Muturi, Ephantus J; Ramirez, Jose L; Doll, Kenneth M; Bowman, Michael J
2017-11-07
Essential oils are potential alternatives to synthetic insecticides because they have low mammalian toxicity, degrade rapidly in the environment, and possess complex mixtures of bioactive constituents with multi-modal activity against the target insect populations. Twenty-one essential oils were initially screened for their toxicity against Aedes aegypti (L.) larvae and three out of the seven most toxic essential oils (Manuka, oregano, and clove bud essential oils) were examined for their chemical composition and combined toxicity against Ae. aegypti larvae. Manuka essential oil interacted synergistically with oregano essential oil and antagonistically with clove bud essential oil. GC-MS analysis revealed the presence of 21 components in Manuka essential oil and three components each in oregano and clove bud essential oils. Eugenol (84.9%) and eugenol acetate (9.6%) were the principal constituents in clove bud essential oil while carvacrol (75.8%) and m-isopropyltoluene (15.5%) were the major constituents in oregano essential oil. The major constituents in Manuka essential oil were calamenene (20%) and 3-dodecyl-furandione (11.4%). Manuka essential oil interacted synergistically with eugenol acetate and antagonistically with eugenol, suggesting that eugenol was a major contributor to the antagonistic interaction between Manuka and clove bud essential oils. In addition, Manuka interacted synergistically with carvacrol suggesting its contribution to the synergistic interaction between Manuka and oregano essential oils. These findings provide novel insights that can be used to develop new and safer alternatives to synthetic insecticides. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Lazutka, J R; Mierauskiene, J; Slapsyte, G; Dedonyte, V
2001-05-01
Genotoxic properties of the essential oils extracted from dill (Anethum graveolens L.) herb and seeds, peppermint (Menthaxpiperita L.) herb and pine (Pinus sylvestris L.) needles were studied using chromosome aberration (CA) and sister chromatid exchange (SCE) tests in human lymphocytes in vitro, and Drosophila melanogaster somatic mutation and recombination test (SMART) in vivo. In the CA test, the most active essential oil was from dill seeds, then followed essential oils from dill herb, peppermint herb and pine needles, respectively. In the SCE test, the most active essential oils were from dill herb and seeds followed by essential oils from pine needles and peppermint herb. Essential oils from dill herb and seeds and pine needles induced CA and SCE in a clear dose-dependent manner, while peppermint essential oil induced SCE in a dose-independent manner. All essential oils were cytotoxic for human lymphocytes. In the SMART test, a dose-dependent increase in mutation frequency was observed for essential oils from pine and dill herb. Peppermint essential oil induced mutations in a dose-independent manner. Essential oil from dill seeds was almost inactive in the SMART test.
Yin, Ailing; Han, Zhifeng; Shen, Jie; Guo, Liwei; Cao, Guiping
2011-10-01
To study on the separation from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by ultrafiltration and acetoacetate extraction methods respectively, and the comparison of the oil yields and chemical compositions. Essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride was separated by ultrafiltration and acetoacetate extraction methods respectively, and the chemical compositions were analyzed and compared by GC-MS. Ultrafiltration method could enrich essential oil more and its chemical compositions were more similar to the essential oil prepared by steam distillation method. Ultrafiltration method is a good medium to separate essential oil from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride.
Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives
Chouhan, Sonam; Sharma, Kanika
2017-01-01
Extensive documentation on the antimicrobial properties of essential oils and their constituents has been carried out by several workers. Although the mechanism of action of a few essential oil components has been elucidated in many pioneering works in the past, detailed knowledge of most of the compounds and their mechanism of action is still lacking. This knowledge is particularly important for the determination of the effect of essential oils on different microorganisms, how they work in combination with other antimicrobial compounds, and their interaction with food matrix components. Also, recent studies have demonstrated that nanoparticles (NPs) functionalized with essential oils have significant antimicrobial potential against multidrug- resistant pathogens due to an increase in chemical stability and solubility, decreased rapid evaporation and minimized degradation of active essential oil components. The application of encapsulated essential oils also supports their controlled and sustained release, which enhances their bioavailability and efficacy against multidrug-resistant pathogens. In the recent years, due to increasingly negative consumer perceptions of synthetic preservatives, interest in essential oils and their application in food preservation has been amplified. Moreover, the development of resistance to different antimicrobial agents by bacteria, fungi, viruses, parasites, etc. is a great challenge to the medical field for treating the infections caused by them, and hence, there is a pressing need to look for new and novel antimicrobials. To overcome these problems, nano-encapsulation of essential oils and exploiting the synergies between essential oils, constituents of essential oils, and antibiotics along with essential oils have been recommended as an answer to this problem. However, less is known about the interactions that lead to additive, synergistic, or antagonistic effects. A contributing role of this knowledge could be the design of new and more potent antimicrobial blends, and understanding of the interplay between the components of crude essential oils. This review is written with the purpose of giving an overview of current knowledge about the antimicrobial properties of essential oils and their mechanisms of action, components of essential oils, nano-encapsulated essential oils, and synergistic combinations of essential oils so as to find research areas that can facilitate applications of essential oils to overcome the problem of multidrug-resistant micro-organisms. PMID:28930272
40 CFR 454.50 - Applicability; description of the essential oils subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... essential oils subcategory. 454.50 Section 454.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Essential Oils Subcategory § 454.50 Applicability; description of the essential oils subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of essential oils. ...
40 CFR 454.50 - Applicability; description of the essential oils subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... essential oils subcategory. 454.50 Section 454.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Essential Oils Subcategory § 454.50 Applicability; description of the essential oils subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of essential oils. ...
Muturi, Ephantus J; Ramirez, Jose L; Zilkowski, Bruce; Flor-Weiler, Lina B; Rooney, Alejandro P
2018-01-01
Abstract We examined the chemical composition of garlic and asafoetida essential oils and their individual and combined toxicity against larvae of Culex pipiens Linnaeus and Culex restuans Theobald (Diptera: Culicidae). The effect of the two essential oils on egg hatch was also examined. Ten and 12 compounds, respectively, were identified in garlic and asafoetida essential oils. Allyl disulfide (49.13%) and diallyl trisulfide (31.08%) were the most abundant compounds in garlic essential oil accounting for 80.2% of the total oil. In contrast, (E)-sec-butyl propenyl disulfide (30.03%), (Z)-sec-butyl propenyl disulfide (24.32%), and disulfide, methyl 1-(methylthio)propyl (21.87%) were the most abundant compounds in asafoetida essential oil. Allyl disulfide accounted for 7.38% of the total oil in asafoetida essential oil and was one of only three compounds found in both oils. For both mosquito species, garlic essential oil was more toxic than asafoetida essential oil with Cx. restuans (LC50: garlic = 2.7 ppm; asafoetida = 10.1 ppm) being more sensitive than Cx. pipiens (LC50: garlic = 7.5 ppm; asafoetida = 13.5 ppm). When combined, the two essential oils had antagonistic effects. The majority of Culex egg rafts exposed to garlic (73.1%) or asafoetida (55.8%) essential oils failed to hatch and larvae of the few that did hatch mostly died as first instars. Allyl disulfide exhibited strong ovicidal and larvicidal activity suggesting its important contribution to the overall toxicity of the two essential oils. Thus, garlic and asafoetida essential oils are potent mosquito ovicides and larvicides but if used jointly, they could undermine vector control programs. PMID:29718505
Meng, Jiang; Dong, Xiao-ping; Zhou, Yi-sheng; Jiang, Zhi-hong; Leung, Kelvin Sze-Yin; Zhao, Zhong-zhen
2007-02-01
To optimize the extraction procedure of essential oil from H. cordata using the SFE-CO2 and analyze the chemical composition of the essential oil. The extraction procedure of essential oil from fresh H. cordata was optimized with the orthogonal experiment. Essential oil of fresh H. cordata was analysed by GC-MS. The optimize preparative procedure was as follow: essential oil of H. cordata was extracted at a temperature of 35 degrees C, pressure of 15,000 kPa for 20 min. 38 chemical components were identified and the relative contents were quantified. The optimum preparative procedure is reliable and can guarantee the quality of essential oil.
[Growth effect of eucalyptus-acacia mixed plantation in South China].
Yang, Zeng-Jiang; Xu, Da-Ping; Chen, Wen-Ping; Huang, Lie-Jian; Li, Shang-Jun; Chen, Yuan
2009-10-01
Eucalyptus U6 and Acacia crassicarpa were mixed planted with different ratios and modes to investigate the growth parameters of the two tree species. In the 2-3 years old mixed plantation, the wind-throw of A. crassicarpa decreased markedly with increasing ratio of Eucalyptus U6, the decrement being 26.14% when the Eucalyptus U6/A. crassicarpa ratio was 3 : 1, but the survival rates of Eucalyptus U6 and A. crassicarpa had no significant difference under different planting modes. Mixed planting retarded the A. crassicarpa growth to some extent, with the DBH being 90% of that in pure A. crassicarpa stand. The mixed planting had little effects on the height growth of Eucalyptus U6, but promoted its DBH growth markedly, and the beneficial effect increased with increasing ratio of A. crassicarpa. In the 6 years old 1 : 1 Eucalyptus U6/A. crassicarpa plantation, the Eucalyptus U6 individuals with DBH > 15 cm occupied 32.1%; while in pure Eucalyptus U6 stand, they only accounted for 5.83%. Mixed planting with 2 : 1 Eucalyptus U6/A. crassicarpa could obtain a maximum total biomass of 198.8 m3 x hm(-2), which was 118.8% of the total biomass in pure Eucalyptus U6 stand, or 169.9% of that in pure A. crassicarpa stand. Mixture of Eucalyptus with Acacia would be a good choice to produce Eucalyptus trees with larger DBH.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... during customs entry procedures that apply to essential oils of peppermint (mentha piperita), other essential mint oils, odoriferous mixtures for use by the food and drink industries and non- alcohol perfume... oxygen, essential oils of peppermint (mentha piperita), essential oils of mint and essential oils of...
Marčetić, Mirjana; Kovačević, Nada; Lakušić, Dmitar; Lakušić, Branislava
2017-03-01
Plant specialised metabolites like essential oils are highly variable depending on genetic and various ecological factors. The aim of the present work was to characterise essential oils of the species Seseli rigidum Waldst. & Kit. (Apiaceae) in various organs on the individual and populational levels. Geographical variability and the impact of climate and soil type on essential oil composition were also investigated. Individually sampled essential oils of roots, aerial parts and fruits of plants from seven populations were analysed by GC-FID and GC-MS. The investigated populations showed high interpopulational and especially intrapopulational variability of essential oil composition. In regard to the variability of essential oils, different chemotypes were defined. The essential oils of S. rigidum roots represented a falcarinol chemotype, oils of aerial parts constituted an α-pinene or α-pinene/sabinene chemotype and fruit essential oils can be characterised as belonging to a complex sabinene/α-pinene/β-phellandrene/falcarinol/germacrene B chemotype. At the species level, analysis of variance (ANOVA), principal component analysis (PCA) and canonical discriminant analysis (CDA) showed that the plant part exerted the strongest influence on the composition of essential oils. Climate had a high impact on composition of the essential oils of roots, aerial parts and fruits, while influence of the substrate was less pronounced. The variations in main compounds of essential oils based on climate or substrate were complex and specific to the plant part. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jurevičiūtė, Rūta; Ložienė, Kristina; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio
2018-02-02
Distillation time can both to optimise the production and to engineer the composition of essential oil in essential oil bearing plants. Purpose of this study was to evaluate the effect of duration of hydrodistillation on composition of essential oil of Thymus × citriodorus, the natural source of commercially important geraniol and citral, a component with valuable biological properties. Essential oils were isolated by hydrodistillation at different distillation times and analysed by GC/MS analytical methods. Increase in percentage of essential oil during all hydrodistillation time gradient was uneven. Elongation of hydrodistillation time decreased percentages of monoterpenes but increased percentages of sesquiterpenes in essential oil. Results showed that the hydrodistillation of essential oil from lemon thyme longer than 60 min is useless.
Kirkpinar, F; Ünlü, H B; Serdaroğlu, M; Turp, G Y
2014-01-01
1. An experiment was conducted to determine the individual and combined effects of two essential oils, oregano and garlic, on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. 2. The diets were supplemented with no essential oil (control), oregano essential oil or garlic essential oil at 300 mg/kg and oregano essential oil at 150 mg/kg + garlic essential oil at 150 mg/kg. 3. Dietary oregano and garlic oil supplementation did not affect carcass yields, the relative weight of carcass parts, breast and thigh meat composition, pH or b* value of breast meat. Oregano + garlic oil supplementation significantly decreased the L* value. The a* value of breast meat in birds given a diet supplemented with oregano oil was lower than that in birds given a diet supplemented with garlic oil and oregano oil + garlic oil. The essential oil addition had no positive effect on the oxidative stability. There was no difference between the treatments in breast appearance. 4. The juiciness, flavour, oxidised flavour and acceptability of breast meat samples were affected by treatments.
Chaubey, Mukesh Kumar
2013-06-01
Zingiber officinale (Zingiberaceae) and Piper cubeba (Piperaceae) was essential oils were investigated for repellent, insecticidal, antiovipositional, egg hatching, persistence of its insecticidal activities against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Essential oil vapours repelled bruchid adults significantly as oviposition was found reduced in choice oviposition assay. Z. officinale and P. cubeba essential oils caused both fumigant and contact toxicity in C. chinensis adults. In fumigation toxicity assay, median lethal concentrations (LC50) were 0.34 and 0.27 microL cm(-3) for Z. officinale and P. cubeba essential oils, respectively, while in contact toxicity assay, LC50 were 0.90 and 0.66 microL cm(-2) for Z. officinale and P. cubeba essential oils, respectively. These two essential oils reduced oviposition in C. chinensis adults when treated with sublethal concentrations by fumigation and contact method. Oviposition inhibition was more pronounced when adults come in contact than in vapours. Both essential oils significantly reduced egg hatching rate when fumigated. Persistence in insecticidal efficiency of both essential oils decreased with time. P. cubeba showed less persistence than Z. officinale essential oil because no mortality was observed in C. chinensis adults after 36 h of treatment with P. cubeba and after 48 h of treatment of Z. officinale essential oil. Fumigation with these essential oils has no effect on the germination of the cowpea seeds. Findings of the study suggest that Z. officinale and P. cubeba essential oils can be useful as promising agent in insect pest management programme.
Eucalyptus Forest Information System for the Portuguese pulp and paper industry
Luis Fonseca; Rita Crespo; Henk Feith; Jose Luis Carvalho; Antonio Macedo; Joao Pedro Pina
2000-01-01
To support the management of the Portuguese eucalyptus forest, the Association of Portuguese Pulp and Paper Industries (CELPA) decided to develop a Eucalyptus Forest Information System (EFIS). The specific goals of the EFIS are: characterization and development of the eucalyptus forest over time; planning of successive national eucalyptus forest inventories; estimation...
Antibacterial and antifungal effects of essential oils from coniferous trees.
Hong, Eui-Ju; Na, Ki-Jeung; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae
2004-06-01
Essential oils have potential biological effects, i.e., antibiotic, anticarcinogenic, and sedative effects during stress. In the present study, we investigated the antibacterial and antifungal effects of essential oils extracted from the coniferous species Pinus densiflora, Pinus koraiensis, and Chamaecyparis obtusa, because their biological activities have not been yet elucidated. The essential oils were quantified using gas chromatography and identified in gas chromatography-mass spectrometric analysis. Simultaneously, antibacterial and antifungal assays were performed using the essential oils distilled from the needles of coniferous trees. The major components and the percentage of each essential oil were: 19.33% beta-thujene in P. densiflora; 10.49% alpha-pinene in P. koraiensis; 10.88% bornyl acetate in C. obtusa. The essential oils from P. densiflora and C. obtusa have antibacterial effects, whereas essential oils from P. koraiensis and C. obtusa have antifungal effects. These results indicate that the essential oils from the three coniferous trees, which have mild antimicrobial properties, can inhibit the growth of gram-positive and gram-negative bacteria and fungi.
Reyes-Jurado, Fatima; López-Malo, Aurelio; Palou, Enrique
2016-02-01
The antimicrobial activities of essential oils from Mexican oregano (Lippia berlandieri Schauer), mustard (Brassica nigra), and thyme (Thymus vulgaris) were evaluated alone and in binary combinations against Listeria monocytogenes, Staphylococcus aureus, or Salmonella Enteritidis. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry. The MICs of the evaluated essential oils ranged from 0.05 to 0.50% (vol/vol). Mustard essential oil was the most effective, likely due to the presence of allyl isothiocyanate, identified as its major component. Furthermore, mustard essential oil exhibited synergistic effects when combined with either Mexican oregano or thyme essential oils (fractional inhibitory concentration indices of 0.75); an additive effect was obtained by combining thyme and Mexican oregano essential oils (fractional inhibitory concentration index = 1.00). These results suggest the potential of studied essential oil mixtures to inhibit microbial growth and preserve foods; however, their effect on sensory quality in selected foods compatible with their flavor needs to be assessed.
Mahboubi, Mohaddese; Mahdizadeh, Elaheh; Heidary Tabar, Rezvan
2016-11-01
The purpose of our study was to compare the chemical compositions and antimicrobial and antioxidant activities of Pycnocycla spinosa and Pycnocycla flabellifolia essential oils. cis-Asarone (62.5%) and widdra-2,4(14)-diene (9%) were the main components of P. spinosa aerial part essential oil, while elemicin (60.1%) and caryophyllene oxide (9.8%) were the main components of P. spinosa seed essential oil. α-Phellandrene (25.5%), p-cymene (15.3%), and limonene (13.3%) were found in P. flabellifolia essential oil. The inhibition zone diameters for P. flabellifolia essential oil were significantly higher than for the two other essential oils from P. spinosa (p<0.05). In broth dilution assay (µL/mL), the sensitive microorganism to Pycnocycla sp. (P. spinosa, P. flabellifolia) was Aspergillus niger, followed by Candida albicans. In 2,2-diphenyl-1-picrylhydrazyl (DPPH) system, P. spinosa aerial parts essential oil (IC50=548 µg/mL) had higher antioxidant activity than that of two other essential oils.
Reis Simas, Daniel Luiz; Mérida-Reyes, Max Samuel; Muñoz-Wug, Manuel Alejandro; Cordeiro, Millena Santos; Giorno, Thais Biondino Sardella; Taracena, Edwin Adolfo; Oliva-Hernández, Bessie Evelyn; Martínez-Arévalo, José Vicente; Fernandes, Patricia Dias; Pérez-Sabino, Juan Francisco; Jorge Ribeiro da Silva, Antonio
2017-11-13
The composition and the antinociceptive activity of the essential oil of Stevia serrata Cav. from a population located in the west highlands of Guatemala were evaluated. A yield of 0.2% (w/w) of essential oil was obtained by hydrodistillation of the dried aerial parts of the plant. The essential oil analysed by GC-FID and GC-MS showed a high content of sesquiterpenoids, with chamazulene (60.1%) as the major component and 91.5% of the essential oil composition was identified. To evaluate antinociceptive activity in mice, the essential oil of S. serrata Cav. was administered as gavage, using three different doses. In the formalin test, the animals were pre-treated with oral doses of the essential oil before the administration of formalin. Oral administration of S. serrata Cav. essential oil produced a marked antinociceptive activity. Therefore, the plant could be domesticated as a source of essential oil rich in chamazulene for developing medicinal products.
Tural, Serpil; Turhan, Sadettin
2017-03-01
In this study, some properties and antioxidant capacity of anchovy ( Engraulis encrasicholus ) by-product protein films with added 0.5, 1.0 and 1.5% of thyme essential oil were investigated. The films with thyme essential oil had higher elongation at break, water vapour permeability and oxygen permeability, lower solubility and tensile strength than control film (p<0.05). The incorporation of thyme essential oil affected transparency values of the films, but only the addition of 1.5% of thyme essential oil significantly reduced the transparency (p<0.05). In the film matrix, molecular organisation and intermolecular interaction were changed by thyme essential oil addition. The films with thyme essential oil had a heterogeneous surface and a relatively smooth cross-section structure. Slightly higher phase transition and lower glass transition temperatures were observed in films with thyme essential oil. The antioxidant capacity of the films was improved by incorporating thyme essential oil depending on its volume fraction.
Tural, Serpil
2017-01-01
Summary In this study, some properties and antioxidant capacity of anchovy (Engraulis encrasicholus) by-product protein films with added 0.5, 1.0 and 1.5% of thyme essential oil were investigated. The films with thyme essential oil had higher elongation at break, water vapour permeability and oxygen permeability, lower solubility and tensile strength than control film (p<0.05). The incorporation of thyme essential oil affected transparency values of the films, but only the addition of 1.5% of thyme essential oil significantly reduced the transparency (p<0.05). In the film matrix, molecular organisation and intermolecular interaction were changed by thyme essential oil addition. The films with thyme essential oil had a heterogeneous surface and a relatively smooth cross-section structure. Slightly higher phase transition and lower glass transition temperatures were observed in films with thyme essential oil. The antioxidant capacity of the films was improved by incorporating thyme essential oil depending on its volume fraction. PMID:28559736
Tuttolomondo, Teresa; Dugo, Giacomo; Ruberto, Giuseppe; Leto, Claudio; Napoli, Edoardo M; Cicero, Nicola; Gervasi, Teresa; Virga, Giuseppe; Leone, Raffaele; Licata, Mario; La Bella, Salvatore
2015-01-01
In this study the chemical characterisation of 10 Sicilian Rosmarinus officinalis L. biotypes essential oils is reported. The main goal of this work was to analyse the relationship between the essential oils yield and the geographical distribution of the species plants. The essential oils were analysed by GC-FID and GC-MS. Hierarchical cluster analysis and principal component analysis statistical methods were used to cluster biotypes according to the essential oils chemical composition. The essential oil yield ranged from 0.8 to 2.3 (v/w). In total 82 compounds have been identified, these represent 96.7-99.9% of the essential oil. The most represented compounds in the essential oils were 1.8-cineole, linalool, α-terpineol, verbenone, α-pinene, limonene, bornyl acetate and terpinolene. The results show that the essential oil yield of the 10 biotypes is affected by the environmental characteristics of the sampling sites while the chemical composition is linked to the genetic characteristics of different biotypes.
Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na
2015-01-01
In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.
Antimicrobial activity of essential oils against Staphylococcus aureus biofilms.
Vázquez-Sánchez, Daniel; Cabo, Marta L; Rodríguez-Herrera, Juan J
2015-12-01
The present study was aimed to evaluate the potential of essential oils to remove the foodborne pathogen Staphylococcus aureus from food-processing facilities. The effectiveness of 19 essential oils against planktonic cells of S. aureus was firstly assessed by minimal inhibitory concentration. Planktonic cells showed a wide variability in resistance to essential oils, with thyme oil as the most effective, followed by lemongrass oil and then vetiver oil. The eight essential oils most effective against planktonic cells were subsequently tested against 48-h-old biofilms formed on stainless steel. All essential oils reduced significantly (p < 0.01) the number of viable biofilm cells, but none of them could remove biofilms completely. Thyme and patchouli oils were the most effective, but high concentrations were needed to achieve logarithmic reductions over 4 log CFU/cm(2) after 30 min exposure. Alternatively, the use of sub-lethal doses of thyme oil allowed to slow down biofilm formation and to enhance the efficiency of thyme oil and benzalkonium chloride against biofilms. However, some cellular adaptation to thyme oil was detected. Therefore, essential oil-based treatments should be based on the rotation and combination of different essential oils or with other biocides to prevent the emergence of antimicrobial-resistant strains. © The Author(s) 2014.
Lachance, S; Grange, G
2014-06-01
Plant essential oils (basil, geranium, balsam fir, lavender, lemongrass, peppermint, pine and tea tree), mixed with either sunflower oil or ethyl alcohol, were applied at 5% concentrations to the sides of Holstein cattle. Pastured cattle treated with essential oils diluted in sunflower oil had less flies than the untreated control for a 24-h period. However, the essential oil treatments were not significantly different than the carrier oil alone. Barn-held heifers treated with essential oils and sunflower oil alone had significantly less flies than the untreated control for up to 8 h after treatment. Basil, geranium, lavender, lemongrass and peppermint repelled more flies than sunflower oil alone for a period ranging from 1.5 to 4 h after treatments applied to heifers. All essential oils repelled > 75% of the flies on the treated area for 6 and 8 h on pastured cows and indoor heifers, respectively. Geranium, lemongrass and peppermint stayed effective for a longer duration. Essential oils mixed with ethyl alcohol demonstrated less repellence than when mixed with the carrier oil. Safer's soap, natural pyrethrins without piperonyl butoxide and ethyl alcohol alone were not efficient at repelling flies. Essential oils could be formulated for use as fly repellents in livestock production. © 2013 The Royal Entomological Society.
Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora
Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio
2017-01-01
Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization. PMID:29111566
Ebani, Valentina Virginia; Najar, Basma; Bertelloni, Fabrizio; Pistelli, Luisa; Mancianti, Francesca; Nardoni, Simona
2018-06-25
Escherichia coli and Aspergillus fumigatus are two pathogens largely present among poultry. They can cause mild or severe forms of disease, and are associated with significant economic losses. The aim of the present study was to investigate the chemical composition and the in vitro antimicrobial activity of sixteen essential oils (EOs) and five mixtures against E. coli and A. fumigatus strains previously isolated from poultry. The study was performed with the following EOs: Aloysia tryphilla , Boswellia sacra , Cinnamomum zeylanicum , Citrus aurantium , Citrus bergamia , Citrus limon , Citrus reticulata , Cymbopogon citratus , Eucalyptus globulus , Lavandula hybrida , Litsea cubeba , Ocimum basilicum , Melaleuca alternifolia , Mentha piperita , Pelargonium graveolens , and Syzygium aromaticum . Moreover, the following mixtures were also tested: L. cubeba and C. citratus (M1), L. cubeba and A. triphylla (M2), A. triphylla and C. citratus (M3), A. triphylla , C. citratus and L. cubeba (M4), S. aromaticum and C. zeylanicum (M5). One hundred and ninety-one compounds were identified in the tested EOs and mixtures. MIC determination found good anti- E. coli activity with C. zeylanicum (2.52 mg/mL), C. citratus (1.118 mg/mL), L. cubeba (1.106 mg/mL), M. piperita (1.14 mg/mL) and S. aromaticum (1.318 mg/mL) EOs. Among the mixtures, M5 showed the best result with a MIC value of 2.578 mg/mL. The best antimycotic activity was showed by A. triphylla (0.855 mg/mL), followed by C. citratus (0.895 mg/mL), while C. aurantium , M. piperita , B. sacra and P. graveolens did not yield any antifungal effect at the highest dilution. The mixtures exhibited no antifungal activity at all. This study shows promising results in order to use EOs in the environment for disinfection purposes in poultry farms and/or in hatcheries.
Asensio, Claudia M; Nepote, Valeria; Grosso, Nelson R
2012-09-01
Four commercial varieties of oregano are farmed in Argentina: "Compacto,"Cordobes,"Criollo," y "Mendocino." Oregano essential oil is known for antioxidant properties. The objective of this study was to evaluate changes in the intensities of positive and negative attributes in extra virgin olive oil with addition of essential oil obtained from the 4 Argentinean oregano types. Oregano essential oil was added into olive oil at 0.05% w/w. The samples were stored in darkness and light exposure during 126 d at room temperature. The intensity ratings of fruity, pungency, bitterness, oregano flavor, and rancid flavor were evaluated every 21 d by a trained sensory panel. In general, samples with addition of oregano essential oil in olive oil exhibited higher and lower intensity ratings of positive and negative attributes, respectively, during storage compared with the control samples. The first 2 principal components explained 72.3% of the variability in the olive oil samples. In general, positive attributes of olive oil were highly associated with the addition of oregano essential oil in darkness, whereas rancid flavor was negatively associated with them. Olive oil with oregano "Cordobes" essential oil was oppositely associated with light exposure treatments and negative attribute (rancid flavor) suggesting better performance as natural antioxidant of this essential oil in olive oil. The result of this study showed that the presence of oregano essential oil, specially "Cordobes" type, preserve sensory quality of extra virgin olive oil prolonging the shelf life of this product. Extra virgin olive oil is highly appreciated for its health benefits, taste, and aroma. These properties are an important aspect in this product quality and need to be preserved. The addition of natural additives instead of synthetic ones covers the present trend in food technology. This research showed that the addition of oregano essential oil preserved the intensity ratings of positive attributes in extra virgin olive oil during storage. The essential oil of the oregano variety called "Cordobes" exhibited better protecting effect on sensory properties of olive oil than the other oregano varieties. The addition of oregano essential oil should be considered for the food industry as a natural source of antioxidant additives for preserving sensory properties in extra virgin olive oil and other similar food products. © 2012 Institute of Food Technologists®
Basmacioğlu Malayoğlu, H; Baysal, S; Misirlioğlu, Z; Polat, M; Yilmaz, H; Turan, N
2010-02-01
1. The study was conducted to determine the effects of dietary supplementation of enzyme and oregano essential oil at two levels, alone or together, on performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal based diets. 2. The following dietary treatments were used from d 0 to 21. Diet 1 (control, CONT): a commercial diet containing no enzyme or oregano essential oil, diet 2 (ENZY): supplemented with enzyme, diet 3 (EO250): supplemented with essential oil at 250 mg/kg feed, diet 4 (EO500): supplemented with essential oil at 500 mg/kg feed, diet 5 (ENZY + EO250): supplemented with enzyme and essential oil at 250 mg/kg, and diet 6 (ENZY + EO500): supplemented with enzyme and essential oil at 500 mg/kg. 3. Birds fed on diets containing ENZY, EO250 and ENZY + EO250 had significantly higher weight gain than those given CONT diet from d 0 to 7. No significant effects on feed intake, feed conversion ratio, mortality, organ weights except for jejunum weight and intestinal lengths was found with either enzyme or essential oil, alone or in combination, over the 21-d growth period. The supplementation of essential oil together with enzyme decreased jejunum weight compared with essential oil alone. 4. Supplementation with enzyme significantly decreased viscosity and increased dry matter of digesta, but did not alter pH of digesta. There was no effect of essential oil alone at either concentration on viscosity, dry matter or pH of digesta. A significant decrease in viscosity of digesta appeared when essential oil was used with together enzyme. 5. The supplementation of essential oil at both levels with or without enzyme significantly increased chymotrypsin activity in the digestive system, and improved crude protein digestibility. 6. The higher concentration of essential oil with and without enzyme significantly increased serum total cholesterol concentrations. No significant effect on immune response was found with either enzyme or essential oil, alone or together. 7. Enzymes and essential oil had different modes of actions. The supplementation of enzyme with essential oil in diets is likely more effective in view of performance, nutrient digestibility, enzyme activities and immune system.
Goodarzi, Saeid; Hadjiakhoondi, Abbas; Yassa, Narguess; Khanavi, Mahnaz; Tofighi, Zahra
2016-02-01
Astrodaucus persicus, Apiaceae, is used as vegetable or food additive in some parts of Iran. The essential oils of different parts of Astrodaucus persicus from Kordestan province were analyzed for the first time and compared with other regions. In this study, antioxidant activities and total phenols determination of aerial parts essential oils and root fractions of A. persicus were investigated. The essential oils were obtained by hydro-distillation from flowers/fruits, leaves/stems, ripe fruits and roots of plant and analyzed by GC-MS. Crude root extract was fractionated with hexane, chloroform, ethyl acetate and methanol. Antioxidant activities by DPPH and FRAP methods and total phenols by Folin-ciocalteu assay were measured. The abundant compounds of flowers/fruits blue essential oil were α-thujene, β-pinene and α-pinene. The predominant components of blue leaves/stems essential oil were α-thujene, α-pinene and α-fenchene. The major volatiles of ripe fruits blue essential oil were β-pinene, α-thujene and α-pinene. The chief compounds of root yellow essential oil were trans-caryophyllene, bicycogermacrene and germacrene-D. Total root extract and ethyl acetate fraction showed potent antioxidant activities and high amount of total phenols in comparison to other samples. Among volatile oils, the flowers/fruits essential oil showed potent reducing capacity. The major compounds of aerial parts essential oils were hydrocarbon monoterpenes while the chief percentage of roots essential oil constituents were hydrocarbon sesquiterpenes. α-Eudesmol and β-eudesmol were identified as responsible for creation of blue color in aerial parts essential oils. A. persicus was known as a potent antioxidant among Apiaceae.
Singlet Oxygen Scavenging Activity and Cytotoxicity of Essential Oils from Rutaceae
Ao, Yoko; Satoh, Kazue; Shibano, Katsushige; Kawahito, Yukari; Shioda, Seiji
2008-01-01
Since we have been exposed to excessive amounts of stressors, aromatherapy for the relaxation has recently become very popular recently. However, there is a problem which responds to light with the essential oil used by aromatherapy. It is generally believed that singlet oxygen is implicated in the pathogenesis of various diseases such as light-induced skin disorders and inflammatory responses. Here we studied whether essential oils can effectively scavenge singlet oxygen upon irradiation, using the electron spin resonance (ESR) method. Green light was used to irradiate twelve essential oils from rutaceae. Among these twelve essential oils, eight were prepared by the expression (or the compression) method (referred to as E oil), and four samples were prepared by the steam distillation method (referred to as SD oil). Five E oils enhanced singlet oxygen production. As these essential oils may be phototoxic, it should be used for their use whit light. Two E oils and three SD oils showed singlet oxygen scavenging activity. These results may suggest that the antioxidant activity of essential oils are judged from their radical scavenging activity. Essential oils, which enhance the singlet oxygen production and show higher cytotoxicity, may contain much of limonene. These results suggest that limonene is involved not only in the enhancement of singlet oxygen production but also in the expression of cytotoxic activity, and that attention has to be necessary for use of blended essential oils. PMID:18648659
Properties of cassava starch-based edible coating containing essential oils.
Oriani, Vivian Boesso; Molina, Gustavo; Chiumarelli, Marcela; Pastore, Gláucia Maria; Hubinger, Miriam Dupas
2014-02-01
Edible coatings were produced using cassava starch (2% and 3% w/v) containing cinnamon bark (0.05% to 0.30% v/v) or fennel (0.05% to 0.30% v/v) essential oils. Edible cassava starch coating at 2% and 3% (w/v) containing or not containing 0.30% (v/v) of each essential oils conferred increased in water vapor resistance and decreased in the respiration rates of coated apple slices when compared with uncoated fruit. Cassava starch coatings (2% w/v) added 0.10% or 0.30% (v/v) fennel or cinnamon bark essential oils showed antioxidant capacity, and the addition of 0.30% (v/v) of each essential oil demonstrated antimicrobial properties. The coating containing cinnamon bark essential oil showed a significant antioxidant capacity, comparing to fennel essential oil. Antimicrobial tests showed that the addition of 0.30% (v/v) cinnamon bark essential oil to the edible coating inhibited the growth of Staphylococcus aureus and Salmonella choleraesuis, and 0.30% fennel essential oil inhibited just S. aureus. Treatment with 2% (w/v) of cassava starch containing 0.30% (v/v) of the cinnamon bark essential oil showed barrier properties, an antioxidant capacity and microbial inhibition. © 2014 Institute of Food Technologists®
Wang, Yuan-Qing; Yan, Jian-Ye; Gong, Li-Min; Luo, Kun; Li, Shun-Xiang; Yang, Yan-Tao; Xie, Yu
2014-08-01
To explore the component difference of the serum containing essential oil from Yin Teng Gu Bi Kang prescription in pathologic and physiologic rat models, and to reveal the material basis of its efficacy of activating blood circulation. The essential oils were obtained by CO2 supercritical fluid extraction and the ingredients of the essential oils in vitro and in vivo (under physiological and pathological status) were analyzed by GC-MS to compare differences of the essential oil under physiological and pathological status in rats. 32 components were identified with the main components of Z-ligustilide (39.23%) and d-limonene (21.7%) in the essential oil. In vivo analysis on the essential oil indicated that 16 components were identified, 7 existed originally in essential oil and 9 were metabolites under physiological status; while 22 components were identified, 10 existed originally in essential oil and 12 were metabolites under pathological status (acute blood stasis). There were 7 common prototypes and 8 common metabolites under different physiological status. The absorption and metabolism of essential oils were affected by blood stasis and the compounds migrating to blood may be the effective substance in activating blood circulation.
Popović, Višnja B; Petrović, Silvana D; Milenković, Marina T; Drobac, Milica M; Couladis, Maria A; Niketić, Marjan S
2015-01-01
The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC-FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α-pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth-microdilution method against four Gram-positive and three Gram-negative bacteria and two Candida albicans strains. Except the L. latifolium underground-parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0-73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Krause, Andre; Wu, Yu; Tian, Runtao; van Beek, Teris A
2018-04-24
High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential oils, taking patchouli essential oil as a test case. Patchouli essential oil is frequently adulterated, even today. In total, 75 genuine patchouli essential oils, 10 commercial patchouli essential oils, 10 other essential oils, 17 adulterants, and 1 patchouli essential oil, spiked at 20% with those adulterants, were measured. Visual inspection of the NMR spectra allowed for easy detection of 14 adulterants, while gurjun and copaiba balsams proved difficult and one adulterant could not be detected. NMR spectra of 10 random essential oils differed not only strongly from patchouli essential oil but also from one another, suggesting that fingerprinting by low-field NMR is not limited to patchouli essential oil. Automated chemometric evaluation of NMR spectra was possible by similarity analysis (Mahalanobis distance) based on the integration from 0.1 - 8.1 ppm in 0.01 ppm increments. Good quality patchouli essential oils were recognised as well as 15 of 17 deliberate adulterations. Visual qualitative inspection by GC-MS allowed for the detection of all volatile adulterants. Nonvolatile adulterants, and all but one volatile adulterant, could be detected by semiquantitation. Different chemometric approaches showed satisfactory results. Similarity analyses were difficult with nonvolatile adulterants. Refractive index measurements could detect only 8 of 17 adulterants. Due to advantages such as simplicity, rapidity, reproducibility, and ability to detect nonvolatile adulterants, 60 MHz 1 H-NMR is complimentary to GC-MS for quality control of essential oils. Georg Thieme Verlag KG Stuttgart · New York.
Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid
2015-01-01
Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Essential oils were studied by gas chromatography coupled to mass spectrometry (GC-MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used.
Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki
2014-01-01
Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.
Skała, Ewa; Rijo, Patrícia; Garcia, Catarina; Sitarek, Przemysław; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Wysokińska, Halina; Śliwiński, Tomasz
2016-01-01
The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55-62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µ g/mL). HR and SGR essential oils also decreased the expression of IL-1 β , IL-6, and TNF- α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.
Rijo, Patrícia; Garcia, Catarina; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Śliwiński, Tomasz
2016-01-01
The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants. PMID:28074117
Essential oils: extraction, bioactivities, and their uses for food preservation.
Tongnuanchan, Phakawat; Benjakul, Soottawat
2014-07-01
Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®
Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura
2009-07-01
The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.
[Aromatherapy in nursing practice].
Tseng, Yueh-Hsia
2005-08-01
Aromatherapy is the use of essential oils which are distilled from aromatic plants to obtain holistic effects on the mind, body, and spirit. Among nurses, aromatherapy is the second most commonly used complementary therapy. The chemical components of essential oils, such as ketones, aldehydes, and esters, determine the specific effects of the essential oils. Essential oils may be administered by inhalation, bathing, or massage to decrease anxiety, pain, and fatigue, and improve wound healing. As neuronal, liver, and kidney toxicity, as well as skin allergies may occur, it is recommended not to use essential oils on a regular basis. Research has provided evidence on the effects of essential oils, but further research is needed to identify the effects of their interaction with medications, and whether there are any side effects or contraindications. Consequently, it will provide a scientific base on the use of essential oils and enhance the possibilities for the use of essential oils in health care.
Dozmorov, Mikhail G; Yang, Qing; Wu, Weijuan; Wren, Jonathan; Suhail, Mahmoud M; Woolley, Cole L; Young, D Gary; Fung, Kar-Ming; Lin, Hsueh-Kung
2014-01-01
Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. The effects of frankincense (1,400-600 dilutions) (v/v) and sandalwood (16,000-7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography-mass spectrometry. Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest.
Zhu, Xiao-Fang; Luo, Jing; Guan, Yong-Mei; Yu, Ya-Ting; Jin, Chen; Zhu, Wei-Feng; Liu, Hong-Ning
2017-02-01
The aim of this paper was to explore the effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong, and to investigate the possible penetration mechanism of their essential oil from the perspective of skin blood perfusion changes. Transdermal tests were performed in vitro with excised mice skin by improved Franz diffusion cells. The cumulative penetration amounts of ferulic acid in Chuanxiong were determined by HPLC to investigate the effects of Frankincense and Myrrh essential oil on transdermal permeation properties of Chuanxiong. Simultaneously, the skin blood flows were determined by laser flow doppler. The results showed that the cumulative penetration amount of ferulic acid in Chuanxiong was (8.13±0.76) μg•cm⁻² in 24 h, and was (48.91±4.87), (57.80±2.86), (63.34±4.56), (54.17±4.40), (62.52±7.79) μg•cm⁻² respectively in Azone group, Frankincense essential oil group, Myrrh essential oil, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group. The enhancement ratios of each essential oil groups were 7.68, 8.26, 7.26, 8.28, which were slightly greater than 6.55 in Azone group. In addition, as compared with the conditions before treatment, there were significant differences and obvious increasing trend in blood flow of rats in Frankincense essential oil group, Myrrh essential oil group, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group when were dosed at 10, 20, 30, 10 min respectively, indicating that the skin blood flows were increased under the effects of Frankincense and Myrrh essential oil to a certain extent. Thus, Frankincense and Myrrh essential oil had certain effect on promoting permeability of Chuanxiong both before and after drug combination, and may promote the elimination of drugs from epidermis to dermal capillaries through increase of skin blood flow, thus enhancing the transdermal permeation amounts of drugs. Copyright© by the Chinese Pharmaceutical Association.
2014-01-01
Background Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. Methods The effects of frankincense (1,400–600 dilutions) (v/v) and sandalwood (16,000–7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. Results Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. Conclusion The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest. PMID:25006348
Orchard, Ané; Sandasi, Maxleene; Kamatou, Guy; Viljoen, Alvaro; van Vuuren, Sandy
2017-01-01
This study reports on the inhibitory concentration of 59 commercial essential oils recommended for dermatological conditions, and identifies putative compounds responsible for antimicrobial activity. Essential oils were investigated for antimicrobial activity using minimum inhibitory concentration assays. Ten essential oils were identified as having superior antimicrobial activity. The essential oil compositions were determined using gas chromatography coupled to mass spectrometry and the data analysed with the antimicrobial activity using multivariate tools. Orthogonal projections to latent structures models were created for seven of the pathogens. Eugenol was identified as the main biomarker responsible for antimicrobial activity in the majority of the essential oils. The essential oils mostly displayed noteworthy antimicrobial activity, with five oils displaying broad-spectrum activity against the 13 tested micro-organisms. The antimicrobial efficacies of the essential oils highlight their potential in treating dermatological infections and through chemometric modelling, bioactive volatiles have been identified. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
[Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].
Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I
2016-01-01
The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.
Essential Oils: Sources of Antimicrobials and Food Preservatives
Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.
2017-01-01
Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324
Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Lefèvre, Fanny; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme
2017-06-01
Lipid oxidation leads to the formation of volatile compounds and very often to off-flavors. In the case of the heating of rapeseed oil, unpleasant odors, characterized as a fishy odor, are emitted. In this study, 2 different essential oils (coriander and nutmeg essential oils) were added to refined rapeseed oil as odor masking agents. The aim of this work was to determine a potential antioxidant effect of these essential oils on the thermal stability of rapeseed oil subject to heating cycles between room temperature and 180 °C. For this purpose, normed determinations of different parameters (peroxide value, anisidine value, and the content of total polar compounds, free fatty acids and tocopherols) were carried out to examine the differences between pure and degraded oil. No significant difference was observed between pure rapeseed oil and rapeseed oil with essential oils for each parameter separately. However, a stabilizing effect of the essential oils, with a higher effect for the nutmeg essential oil was highlighted by principal component analysis applied on physicochemical dataset. Moreover, the analysis of the volatile compounds performed by GC × GC showed a substantial loss of the volatile compounds of the essential oils from the first heating cycle. © 2017 Institute of Food Technologists®.
Misharina, T A; Samusenko, A L
2008-01-01
Antioxidant properties of individual essential oils from lemon (Citrus limon L.), pink grapefruit (Citrus paradise L.), coriander (Coriandrum sativum L.), and clove (Caryophyllus aromaticus L.) buds and their mixtures were studied by capillary gas-liquid chromatography. Antioxidant activity was assessed by oxidation of the aliphatic aldehyde hexanal to the carboxylic acid. The lowest and highest antioxidant activities were exhibited by grapefruit and clove bud essential oils, respectively. Mixtures containing clove bud essential oil also strongly inhibited oxidation of hexanal. Changes in the composition of essential oils and their mixtures in the course of long-term storage in the light were studied. The stability of components of lemon and coriander essential oils in mixtures increased compared to individual essential oils.
Microbicide activity of clove essential oil (Eugenia caryophyllata)
Nuñez, L.; Aquino, M. D’
2012-01-01
Clove essential oil, used as an antiseptic in oral infections, inhibits Gram-negative and Gram-positive bacteria as well as yeast. The influence of clove essential oil concentration, temperature and organic matter, in the antimicrobial activity of clove essential oil, was studied in this paper, through the determination of bacterial death kinetics. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were the microorganisms selected for a biological test. To determine the temperature effect, they were assayed at 21° and 37° C. The concentration coefficient was determined with 0.4%, and 0.2% of essential oil. The influence of the presence of organic matter was determined with 0.4% of essential oil. The results obtained demonstrated that Escherichia coli were more sensitive even though the essential oil exerted a satisfactory action in three cases. In the three microbial species, 0.4% of essential oil at 21° C have reduced the bacterial population in 5 logarithmic orders. Organic matter reduces the antibacterial activity even though the bactericide efficacy was not lost. Clove essential oil can be considered as a potential antimicrobial agent for external use PMID:24031950
In Vitro antifungal activity of essential oils against Colletotrichum gloeosporioides
NASA Astrophysics Data System (ADS)
Yusoff, Nor Hanis Aifaa; Abdullah, Siti Aisyah; Othman, Zaulia; Zainal, Zamri
2018-04-01
The efficacy of Citrus hystrix, Azadirachta indica and Cymbopogon citratus essential oils were evaluated for controlling the growth of mycelia and spore germination of Colletotrichum gloeosporioides. In order to determine the best essential oil (EO) and suitable concentration of essential oil, in vitro experiment was conducted by preparing a pure culture of antrachnose on Potato Dextrose Agar containing EOs of C. hystrix, A. indica and C. citratus with different concentrations (0.2%, 0.6%, 1% and 1.4% (v/v)). The result shows that C. hystrix essential oil at a concentration of 1.4% (v/v) reduced of mycelia growth of C. gloeosporioides by 29.49%. A second experiment was conducted, but at higher concentration of each essential oils (1.8%, 2.2%, 2.6% and 2.8% (v/v)). Significant difference (p ≤ 0.05) inhibition of mycelia growth was obtained in all treatments except the control. The antifungal index values of essential oils were proportionally increased with concentration of essential oil applied in each treatment. It is concluded that essential oil from C. hystrix are efficient in inhibiting C. gloeosporioides.
Preservation of chicken breast meat treated with thyme and balm essential oils.
Fratianni, Florinda; De Martino, Laura; Melone, Antonio; De Feo, Vincenzo; Coppola, Raffaele; Nazzaro, Filomena
2010-10-01
The present study evaluated the effects of thyme and balm essential oils on the 3-wk storage of fresh chicken breast meat at 4 °C. Thyme and, to a lesser extent, balm essential oils reduced DPPH (2,2-diphenyl-1-picrylhydrazyl) radical formation in the meat (25% to 30% and 20%, respectively). Treatment with the 2 essential oils also limited lipid peroxidation and the deterioration of sarcoplasmic proteins, helping to preserve the meat even after 2 wk of storage. Thyme and balm essential oils decreased the natural microflora present in the meat; total microbial content decreased down to 50% in comparison to the control samples. In addition, a clear effect on lactic acid bacterial growth was recorded. Balm essential oil significantly limited the growth of Salmonella sp., whereas thyme essential oil effectively inhibited the growth of Escherichia coli. Our data demonstrate that these 2 essential oils effectively reduced deteriorative processes in chicken meat and extended the shelf life of this fresh product. Practical Application: The essential oils of thyme and balm can protect the chicken meat from decomposition during the storage time.
Petrović, Goran M; Stamenković, Jelena G; Kostevski, Ivana R; Stojanović, Gordana S; Mitić, Violeta D; Zlatković, Bojan K
2017-05-01
The present study reports the chemical composition of the headspace volatiles (HS) and essential oils obtained from fresh Chaerophyllum aromaticum root and aerial parts in full vegetative phase, as well as biological activities of their essential oils and MeOH extracts. In HS samples, the most dominant components were monoterpene hydrocarbons. On the other hand, the essential oils consisted mainly of sesquiterpenoids, representing 73.4% of the root and 63.4% of the aerial parts essential oil. The results of antibacterial assay showed that the aerial parts essential oil and MeOH extract have no antibacterial activity, while the root essential oil and extract showed some activity. Both of the tested essential oils exhibited anticholinesterase activity (47.65% and 50.88%, respectively); MeOH extract of the root showed only 8.40% inhibition, while aerial part extract acted as an activator of cholinesterase. Regarding the antioxidant activity, extracts were found to be more effective than the essential oils. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Haiyan, Gong; Lijuan, He; Shaoyu, Li; Chen, Zhang; Ashraf, Muhammad Aqeel
2016-07-01
In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.
Hong, Jeum Kyu; Yang, Hye Ji; Jung, Heesoo; Yoon, Dong June; Sang, Mee Kyung; Jeun, Yong-Chull
2015-09-01
Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production.
Microwave-assisted hydrodistillation of essential oil from rosemary.
Karakaya, Sibel; El, Sedef Nehir; Karagozlu, Nural; Sahin, Serpil; Sumnu, Gulum; Bayramoglu, Beste
2014-06-01
Effects of microwave assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) methods on yield, composition, specific gravity, refractive index, and antioxidant and antimicrobial activities of essential oil of Rosmarinus officinalis L were studied. The main aroma compounds of rosemary essential oil were found as 1,8-cineole and camphor. Trolox equivalent antioxidant capacity (TEAC) values for essential oils extracted by MAHD and HD were 1.52 mM/ml oil and 1.95 mM/ml oil, respectively. DPPH radical scavenging activity of the oils obtained by MAHD and HD were found as 60.55% and 51.04% respectively. Inhibitory effects of essential oils obtained by two methods on linoleic acid peroxidation were almost the same. Essential oils obtained by two methods inhibited growth of Esherichia coli O157:H7, Salmonella typhimurium NRRLE 4463 and Listeria monocytogenes Scott A with the same degree. However, inhibitory activity of essential oil obtained by MAHD on Staphylococcus aureus 6538P was stronger than that of obtained by HD (p < 0.05).
Faleiro, Leonor; Miguel, Graça; Gomes, Sónia; Costa, Ludmila; Venâncio, Florencia; Teixeira, Adriano; Figueiredo, A Cristina; Barroso, José G; Pedro, Luis G
2005-10-19
Antilisterial activities of Thymbra capitata and Origanum vulgare essential oils were tested against 41 strains of Listeria monocytogenes. The oil of T. capitata was mainly constituted by one component, carvacrol (79%), whereas for O. vulgare three components constituted 70% of the oil, namely, thymol (33%), gamma-terpinene (26%), and p-cymene (11%). T. capitata essential oil had a significantly higher antilisterial activity in comparison to O. vulgare oil and chloramphenicol. No significant differences in L. monocytogenes susceptibilities to the essential oils tested were registered. The minimum inhibitory concentration values of T. capitata essential oil and of carvacrol were quite similar, ranging between 0.05 and 0.2 microL/mL. Antioxidant activity was also tested, the essential oil of T. capitata showing significantly higher antioxidant activity than that of O. vulgare. Use of T. capitata and O. vulgare essential oils can constitute a powerful tool in the control of L. monocytogenes in food and other industries.
Bonikowski, Radosław; Celiński, Konrad; Wojnicka-Półtorak, Aleksandra; Maliński, Tomasz
2015-02-01
The compositions of mountain pine (Pinus uncinata) and peat-bog pine (P. uliginosa) needle essential oils were investigated. Enantiomeric compositions of selected monoterpene hydrocarbons were also examined. Respectively, fifty-three and seventy-six components of the essential oils were identified using GC-MS and retention indexes. The main group of essential oil components of mountain pine needles were monoterpenes, and bornyl acetate constituted approximately 30% (46.3 g/100 g) of the oil. In peat-bog pine essential oil, monoterpenes and sesquiterpenes exhibited a similar content (ca. 40%). Bornyl acetate and α-pinene were the main constituents of both essential oils. In the essential oil of P. uncinata needles, limonene, camphene, myrcene and (E)-β-caryophyllene were also noticeable, while in the essential oil of P. uliginosa needles, Δ-car-3-ene, (E)-β-caryophyllene, germacrene D, δ-cadinene, germacrene D 4-ol and α-cadinol were present in notable quantities. In both essential oils, borneol propionate, isobutyrate, 2-methylbutyrate and isovalerate were detected. Their presence was confirmed by synthesis and analysis of the standards; retention indexes on a non-polar column are published herein.
Park, Jin Young; Kim, Su Hyeon; Kim, Na Hee; Lee, Sang Woo; Jeun, Yong-Chull; Hong, Jeum Kyu
2017-12-01
The objective of this study was to determine inhibitory activities of four volatile plant essential oils (cinnamon oil, fennel oil, origanum oil and thyme oil) on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt of strawberry plants. Results showed that these essential oils inhibited in vitro conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in a dose-dependent manner. Cinnamon oil was found to be most effective one in suppressing conidial germination while fennel oil, origanum oil and thyme oil showed moderate inhibition of conidial germination at similar levels. Cinnamon oil, origanum oil and thyme oil showed moderate antifungal activities against mycelial growth at similar levels while fennel oil had relatively lower antifungal activity against mycelial growth. Antifungal effects of these four plant essential oils in different combinations on in vitro fungal growth were also evaluated. These essential oils demonstrated synergistic antifungal activities against conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in vitro. Simultaneous application of origanum oil and thyme oil enhanced their antimicrobial activities against conidial germination and fungal mycelial growth. These results underpin that volatile plant essential oils could be used in eco-friendly integrated disease management of Fusarium wilt in strawberry fields.
Mathlouthi, N; Bouzaienne, T; Oueslati, I; Recoquillay, F; Hamdi, M; Urdaci, M; Bergaoui, R
2012-03-01
The present study was conducted to characterize the in vitro antimicrobial activities of 3 essential oils [oregano, rosemary, and a commercial blend of essential oils (BEO)] against pathogenic and nonpathogenic bacteria and to evaluate their effects on broiler chicken performances. The chemical composition of the essential oils was determined using the gas chromatography interfaced with a mass spectroscopy. The disc diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC) were applied for the determination of antimicrobial activities of essential oils. In vivo study, a total of seven hundred fifty 1-d-old male broiler chickens were assigned to 6 dietary treatment groups: basal diet (control; CON), CON + 44 mg of avilamycin/kg (A), CON + 100 mg of rosemary essential oil/kg (ROS), CON + 100 mg of oregano essential oil/kg (OR), CON + 50 mg of rosemary and 50 mg of oregano essential oils/kg (RO), and CON + 1,000 mg of BEO/kg (essential oil mixture, EOM). The essential oils isolated from rosemary and oregano were characterized by their greater content of 1,8-cineole (49.99%) and carvacrol (69.55%), respectively. The BEO was mainly represented by the aldehyde (cinnamaldehyde) and the monoterpene (1,8-cineole) chemical groups. The results of the disc diffusion method indicated that the rosemary essential oil had antibacterial activity (P ≤ 0.05) against only 3 pathogenic bacteria, Escherichia coli (8 mm), Salmonella indiana (11 mm), and Listeria innocua (9 mm). The essential oil of oregano had antimicrobial activities (P ≤ 0.05) on the same bacteria as rosemary but also on Staphylococcus aureus (22 mm) and Bacillus subtilis (12 mm). Oregano essential oil had greater (P ≤ 0.05) antimicrobial activities against pathogenic bacteria than rosemary essential oil but they had no synergism between them. The BEO showed an increased antimicrobial activity (P ≤ 0.05) against all studied bacteria (pathogenic and nonpathogenic bacteria) except for Lactobacillus rhamnosus. The supplementation of the basal diet with avilamycin or essential oils improved (P ≤ 0.05) broiler chicken BW, BW gain, and G:F compared with the CON diet. There were no differences in growth performances among birds fed A, ROS, OR, RO, or EOM diets. In general, essential oils contained in rosemary, oregano, and BEO can substitute for growth promoter antibiotics. Although the 3 essential oils had different antimicrobial activities, they exhibited the same efficiency in broiler chickens.
Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens.
Gursoy, Ulvi Kahraman; Gursoy, Mervi; Gursoy, Orhan Vedat; Cakmakci, Lutfu; Könönen, Eija; Uitto, Veli-Jukka
2009-08-01
Essential oils of several plants are widely used in ethnomedicine for their antimicrobial and anti-inflammatory properties. However, very limited data exist on their use in connection to periodontal diseases. The aim of the present study was to investigate the bacterial growth inhibiting and anti-biofilm effects of Satureja hortensis L. (summer savory), Salvia fruticosa M. (sage), Lavandula stoechas L. (lavender), Myrtus communis L., and Juniperus communis L. (juniper) essential oils. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry, minimum inhibitor concentrations (MICs) with the agar dilution method, and anti-biofilm effects by the microplate biofilm assay. The toxicity of each essential oil was tested on cultured keratinocytes. Of the 5 essential oils, S. hortensis L. essential oil had the strongest growth inhibition effect. Subinhibitory dose of S. hortensis L. essential oil had anti-biofilm effects only against Prevotella nigrescens. Essential oils did not inhibit keratinocyte viability at the concentrations of 1 and 5 microl/ml, however at the concentration of 5 microl/ml epithelial cells detached from the culture well bottom. The present findings suggest that S. hortensis L. essential oil inhibits the growth of periodontal bacteria in the concentration that is safe on keratinocytes, however, in the subinhibitory concentration its anti-biofilm effect is limited.
YANG, CHANG; HU, DONG-HUI; FENG, YAN
2015-01-01
The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8-cineole, against certain respiratory infection-causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography-mass spectrometry. A micro-well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 μg/ml, while the values of the two constituents were between 130 and 200 μg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 μg/mouse) and grandisol (135 μg/mouse) significantly reduced the number of viable bacterial cells in the lungs (P<0.01). However, intake of 100 μg/mouse of essential oil or grandisol 135 μg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different bacterial strains. PMID:26259564
Yang, Chang; Hu, Dong-Hui; Feng, Yan
2015-10-01
The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8‑cineole, against certain respiratory infection‑causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography‑mass spectrometry. A micro‑well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 µg/ml, while the values of the two constituents were between 130 and 200 µg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 µg/mouse) and grandisol (135 µg/mouse) significantly reduced the number of viable bacterial cells in the lungs (P<0.01). However, intake of 100 µg/mouse of essential oil or grandisol 135 µg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different bacterial strains.
Bozin, Biljana; Mimica-Dukic, Neda; Simin, Natasa; Anackov, Goran
2006-03-08
The essential oils of Ocimum basilicum L., Origanum vulgare L., and Thymus vulgaris L. were analyzed by means of gas chromatography-mass spectrometry and assayed for their antioxidant and antimicrobial activities. The antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with effects on lipid peroxidation (LP). RSC was assessed measuring the scavenging activity of the essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH(*)) and OH(*) radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. Essential oils exhibited very strong RSCs, reducing the DPPH radical formation (IC(50)) in the range from 0.17 (oregano) to 0.39 microg/mL (basil). The essential oil of T. vulgaris exhibited the highest OH radical scavenging activity, although none of the examined essential oils reached 50% of neutralization (IC(50)). All of the tested essential oils strongly inhibited LP, induced either by Fe(2+)/ascorbate or by Fe(2+)/H(2)O(2). The antimicrobial activity was tested against 13 bacterial strains and six fungi. The most effective antibacterial activity was expressed by the essential oil of oregano, even on multiresistant strains of Pseudomonas aeruginosa and Escherichia coli. A significant rate of antifungal activity of all of the examined essential oils was also exhibited.
Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.
Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz
2016-02-01
This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.
Study on new biomass energy systems
NASA Astrophysics Data System (ADS)
1992-03-01
A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.
Essential oils: from extraction to encapsulation.
El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A
2015-04-10
Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Avetisyan, Arpi; Markosian, Anahit; Petrosyan, Margarit; Sahakyan, Naira; Babayan, Anush; Aloyan, Samvel; Trchounian, Armen
2017-01-19
The plants belonging to the Ocimum genus of the Lamiaceae family are considered to be a rich source of essential oils which have expressed biological activity and use in different area of human activity. There is a great variety of chemotypes within the same basil species. Essential oils from three different cultivars of basil, O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. citriodorum Vis. were the subjects of our investigations. The oils were obtained by steam distillation in a Clevenger-type apparatus. The gas chromatography mass selective analysis was used to determine their chemical composition. The antioxidant activities of these essential oils were measured using 1,1-diphenyl-2-picrylhydrazyl assays; the tyrosinase inhibition abilities of the given group of oils were also assessed spectophotometrically, and the antimicrobial activity of the essential oils was determined by the agar diffusion method, minimal inhibitory concentrations were expressed. According to the results, the qualitative and quantitative composition of essential oils was quite different: O. basilicum var. purpureum essential oil contained 57.3% methyl-chavicol (estragol); O. basilicum var. thyrsiflora oil had 68.0% linalool. The main constituents of O. citriodorum oil were nerol (23.0%) and citral (20.7%). The highest antioxidant activity was demonstrated by O. basilicum var. thyrsiflora essential oil. This oil has also exhibited the highest tyrosinase inhibition level, whereas the oil from O. citriodorum cultivar demonstrated the highest antimicrobial activity. The results obtained indicate that these essential oils have antioxidant, antibacterial and antifungal activity and can be used as natural antioxidant and antimicrobial agents in medicine, food industry and cosmetics.
Cosge, Belgin; Turker, Arzu; Ipek, Arif; Gurbuz, Bilal
2009-04-30
Essential oils extracted by hydrodistillation from the aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic Turkish flora species, were analyzed by GC-MS. The amounts of essential oil obtained from the aerial parts and the corollas were 0.73% and 0.93%, respectively. Twenty-five components in both the aerial parts oil and the corolla oil, representing 95.11% and 93.88%, respectively, were identified. The aerial parts and corolla oils were characterized by the predominance of two components: p-cymene (9.43% and 17.51%) and carvacrol (67.51% and 52.33%), respectively. The essential oils were also evaluated for their antimicrobial activity against ten bacteria by the disc diffusion assay. Our findings showed the following order in the sensitivity to the essential oils, as indicated by the corresponding inhibition zones: Proteus vulgaris > Salmonella typhimurium > Enterobacter cloacae > Klebsiella pneumonia > Escherichia coli > Serratia marcescens > Pseudomonas aeruginosa for the aerial parts essential oil, and Salmonella typhimurium > Proteus vulgaris > Enterobacter cloacae > Escherichia coli > Klebsiella pneumoniae > Serratia marcescens > Pseudomonas aeruginosa for the corolla essential oil. The studied essential oils thus exhibited a broad-spectrum of activity against both Gram-positive and Gram-negative bacteria, whereas the tested Gram-positive bacteria were more susceptible to the essential oil samples.
Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid
2015-01-01
Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123
Huang, Huey-Chun; Chang, Tzu-Yun; Chang, Long-Zen; Wang, Hsiao-Fen; Yih, Kuang-Hway; Hsieh, Wan-Yu; Chang, Tsong-Min
2012-03-30
This study was aimed at investigating the antimelanogenic and antioxidative properties of the essential oil extracted from leaves of V. negundo Linn and the analysis of the chemical composition of this essential oil. The efficacy of the essential oil was evaluated spectrophotometrically, whereas the volatile chemical compounds in the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed that the essential oil effectively suppresses murine B16F10 tyrosinase activity and decreases the amount of melanin in a dose-dependent manner. Additionally, the essential oil significantly scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals, and showed potent reducing power versus metal-ion chelating properties in a dose-dependent pattern. The chemical constituents in the essential oil are sesquiterpenes (44.41%), monoterpenes (19.25%), esters (14.77%), alcohols (8.53%), aromatic compound (5.90%), ketone (4.96%), ethers (0.4%) that together account for 98.22% of its chemical composition. It is predicted that the aromatic compound in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from V. negundo Linn leaves decreased melanin production in B16F10 melanoma cells and showed potent antioxidant activities. The essential oil can thereby serve as an inhibitor of melanin synthesis and could also act as a natural antioxidant.
Mossini, Simone Aparecida Galerani; Ferreira, Francine Maery Dias; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski Junior, Miguel
2013-01-01
The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α-turmerone (23.5%) and β-turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants. PMID:24367241
Ghannadi, A; Bagherinejad, Mr; Abedi, D; Jalali, M; Absalan, B; Sadeghi, N
2012-12-01
Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents. In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities. The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity. Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products.
Dias Ferreira, Flávio; Mossini, Simone Aparecida Galerani; Dias Ferreira, Francine Maery; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski, Miguel
2013-01-01
The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α -turmerone (23.5%) and β -turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01-0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants.
Omoruyi, Beauty E; Afolayan, Anthony J; Bradley, Graeme
2014-05-23
Mesembryanthemum edule is a medicinal plant which has been indicated by Xhosa traditional healers in the treatment HIV associated diseases such as tuberculosis, dysentery, diabetic mellitus, laryngitis, mouth infections, ringworm eczema and vaginal infections. The investigation of the essential oil of this plant could help to verify the rationale behind the use of the plant as a cure for these illnesses. The essential oil from M. edule was analysed by GC/MS. Concentration ranging from 0.005-5 mg/ml of the hydro-distilled essential oil was tested against some fungal strains, using micro-dilution method. The plant minimum inhibitory activity on the fungal strains was determined. GC/MS analysis of the essential oil resulted in the identification of 28 compounds representing 99.99% of the total essential oil. A total amount of 10.6 and 36.61% constituents were obtained as monoterpenes and oxygenated monoterpenes. The amount of sesquiterpene hydrocarbons (3.58%) was low compared to the oxygenated sesquiterpenes with pick area of 9.28%. Total oil content of diterpenes and oxygenated diterpenes detected from the essential oil were 1.43% and 19.24%. The fatty acids and their methyl esters content present in the essential oil extract were found to be 19.25%. Antifungal activity of the essential oil extract tested against the pathogenic fungal, inhibited C. albican, C. krusei, C. rugosa, C. glabrata and C. neoformans with MICs range of 0.02-0.31 mg/ml. the activity of the essential oil was found competing with nystatin and amphotericin B used as control. Having accounted the profile chemical constituent found in M. edule oil and its important antifungal properties, we consider that its essential oil might be useful in pharmaceutical and food industry as natural antibiotic and food preservative.
Essential Oils, Part I: Introduction.
de Groot, Anton C; Schmidt, Erich
2016-01-01
Essential oils are widely used in the flavor, food, fragrance, and cosmetic industries in many applications. Contact allergy to them is well known and has been described for 80 essential oils. The relevance of positive patch test reactions often remains unknown. Knowledge of the chemical composition of essential oils among dermatologists is suspected to be limited, as such data are published in journals not read by the dermatological community. Therefore, the authors have fully reviewed and published the literature on contact allergy to and chemical composition of essential oils. Selected topics from this publication will be presented in abbreviated form in Dermatitis starting with this issue, including I. Introduction; II. General aspects; III. Chemistry; IV. General aspects of contact allergy; V. Peppermint oil, lavender oil and lemongrass oil; VI: Sandalwood oil, ylang-ylang oil, and jasmine absolute.
Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min
2012-01-01
The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC50 = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline- 6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:23203088
Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min
2012-11-12
The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC(50) = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.
Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Vasiee, Alireza; Mortazavi, Seyed Ali
2018-01-01
Oliveria decumbens as a valuable medicinal plant is extensively used in traditional medicine. clinical and standard strains causing infection resistance to antimicrobial agents, is one of the important problems in medicine. The aim of this study was to investigate the antibacterial activities and phytochemical analysis of Oliveria decumbens essential oil on the growth of some clinical and standard strains causing infection (Pseudomonas aerogenes, Escherichia coli, Streptococcus pyogenes and Staphylococcus epidermidis). Oliveria decumbens essential oil composition was identified by gas chromatography/mass spectrometry. Phytochemical analysis (alkaloids, saponins, flavone and phenolic) essential oil of the Oliveria decumbens were appraised based on qualitative methods. Several methods (disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)) were used to appraise the antibacterial activity of the Oliveria decumbens essential oil. Thymol (28.45%) was the major compound of Oliveria decumbens essential oil. The total phenolics content (TPC) of the essential oil positively correlated with antioxidant activity (AA). The TPC and AA of Oliveria decumbens essential oil was equal to 92.45 ± 0.70 μg GAE/mg and 164.45 ± 1.20 μg/ml, respectively. The MIC of Oliveria decumbens essential oil ranged from 1 to 8 mg/ml depending on the type of bacteria (clinical and standard strains). The MBC of Oliveria decumbens essential oil varied from 1 mg/ml to 16 mg/ml. The smallest inhibition zone diameter (IZD) on different Oliveria decumbens essential oil concentrations on P. aeruginosa. Results indicate that Oliveria decumbens essential oil can prove to be an important source of AA and antibacterial and may be used for the treatment of infection diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.
Chee, Hee Youn; Lee, Min Hee
2007-12-01
Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.
Wang, Hsiao-Fen; Yih, Kuang-Hway; Yang, Chao-Hsun; Huang, Keh-Feng
2017-10-01
This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC), reducing power (RP), β-carotene bleaching (BCB) activity, trolox equivalent antioxidant capacity (TEAC), and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS) ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%), thymol (14.36%) and carvacrol (12.33%), and eugenol (0.87%), respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability. Copyright © 2017. Published by Elsevier B.V.
Yingngam, B; Brantner, A H
2015-06-01
To optimize the extraction yields of essential oil from Fagraea fragrans Roxb. flowers in hydro-distillation using a central composite design (CCD) and to evaluate its biological activities for perfumery and cosmetic applications. Central composite design was applied to study the influences of operational parameters [water to flower weight (X(1)) and distillation time (X(2))] on the yields of essential oil (Y). Chemical compositions of the essential oil extracted from the optimized condition were identified by gas chromatography-mass spectrometry. Antioxidant activities of the essential oil were determined against ABTS(•+) and DPPH(•) radicals, and the cytotoxic effects were assessed on human embryonic kidney (HEK293) cells by the use of the MTT assay. Also, the aromatic properties of the essential oil were evaluated by five healthy trained volunteers. The best conditions to obtain the maximum essential oil yield were 7.5 mL g(-1) (X(1)) and 215 min (X(2)). The experimental yield of the essential oil (0.35 ± 0.02% v/w) was close to the value predicted by a mathematical model (0.35 ± 0.01% v/w). 3-Octadecyne, Z,Z,Z-7,10,13-hexadecatrienal, E-nerolidol, pentadecanal and linalool were the major constituents of the essential oil. The essential oil showed moderate antioxidant capacities with no toxic effects on HEK293 cells at 1-250 μg mL(-1). Also, the essential oil exhibited a very strong aroma and was classified to be top- to middle-notes. The results offer the effectively operational conditions in the extraction of essential oil from F. fragrans using hydro-distillation. The essential oil could be used as a natural fragrance, having antioxidant activity with slight cytotoxicity, for perfumery and cosmetic applications. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
2016-01-01
A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes. PMID:28090211
Eucalyptus globulus (Eucalyptus) Treatment of Candidiasis in Normal and Diabetic Rats
Bokaeian, Mohammad; Nakhaee, Alireza; Moodi, Bita; Ali Khazaei, Hossein
2010-01-01
Background: The leaves of Eucalyptus globulus (eucalyptus) are used for treatment of diabetes mellitus in traditional medicine. The aim of this study was to evaluate the effects of eucalyptus in treatment of established systemic infection with Candida albicans in normal and streptozotocin-induced diabetic rats. Methods: Sixty normoglycemic male Wistar rats, weighing 200-250 g, were selected and randomly divided into six groups (n= 10): normal control, control + C. albicans, control + eucalyptus + C. albicans, diabetic control, diabetic + C. albicans, diabetic + eucalyptus + C. albicans. Diabetes was induced after a single intraperitoneal injection of streptozotocin (60 mg/kg body weight) and eucalyptus was added to the diet (62.5 g/kg) and drinking water (2.5 g/L) of treated animals for 4 weeks. The concerned groups were inoculated with C. albicans 15 days after diabetes induction. At the end of one month experiment, fasted rats were killed by cervical decapitation. Blood was collected from neck vein for estimation of glucose. C. albicans concentrations were estimated in liver and kidneys using serial dilution culture of tissue homogenates. Results: Eucalyptus administration significantly improved the hyperglycemia, polydipsia, polyphagia, and it also compensated weight loss of diabetic rats (P<0.05). Moreover, eucalyptus caused a significant reduction in C. albicans concentration in liver and kidney homogenates (P<0.01). Conclusion: The results revealed that eucalyptus improves Candidia infection in normal and diabetic rats that in some ways validates the traditional use of this plant in treatment of diabetic patients. PMID:21079663
NASA Astrophysics Data System (ADS)
Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.
2011-05-01
Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.
Ghaderi, Airin; Sonboli, Ali
2018-02-06
The composition and antimicrobial activity of the essential oil of Tanacetum walteri were studied. Aerial flowering parts of plant were collected from North Khorasan Province of Iran and the essential oil was isolated by hydrodistillation and analysed by GC-FID and GC-MS. Antimicrobial activity of the essential oil was determined by disc diffusion and MIC and MBC determination. Thirty-five compounds were identified in the oil of T. walteri accounting for 94.4% of the total oil. Thymol (22.5%), 1,8-cineole (8.2%), umbellulone (6.9%), α-bisabolol (6.3%) and camphor (5.3%) were as the principal constituents. The highest antimicrobial activity of the essential oil was observed against Staphylococcus aureus, Enterococcus faecalis and Klebsiella pneumoniae with MIC value of 0.63 mg/mL. The inhibitory effect of the essential oil of T. walteri could be attributed mainly to the high levels of phenolic compound thymol and oxygenated terpenes in essential oil.
Singh, Gurdip; Kapoor, I P S; Singh, Pratibha; de Heluani, Carola S; de Lampasona, Marina P; Catalan, Cesar A N
2008-10-01
The essential oil and oleoresins (ethanol, methanol, CCl(4) and isooctane) of Zingiber officinale were extracted respectively by hydrodistillation and Soxhlet methods and subjected to GC-MS analysis. Geranial (25.9%) was the major component in essential oil; eugenol (49.8%) in ethanol oleoresin, while in the other three oleoresins, zingerone was the major component (33.6%, 33.3% and 30.5% for, methanol, CCl(4) and isooctane oleoresins, respectively). The antioxidant activity of essential oil and oleoresins were evaluated against mustard oil by peroxide, anisidine, thiobarbituric acid (TBA), ferric thiocyanate (FTC) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging methods. They were found to be better antioxidants than butylated hydroxyanisole (BHA). The antimicrobial properties were also studied using various food-borne pathogenic fungal and bacterial species. The essential oil and CCl(4) oleoresin showed 100% zone inhibition against Fusarium moniliforme. For other tested fungi and bacteriae, the essential oil and all oleoresins showed good to moderate inhibitory effects. Though, both essential oil and oleoresins were found to be effective, essential oil was found to be better than the oleoresins.
Tongnuanchan, Phakawat; Benjakul, Soottawat; Prodpran, Thummanoon
2012-10-01
Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (p<0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (p<0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (p<0.05). Films with essential oils had varying ΔE(*) (total colour difference), where the highest value was observed in that added with bergamot essential oil (p<0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874-2926 cm(-1) and 1731-1742 cm(-1) than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p<0.05), while the other films had lower activity. Thus, the incorporation of different essential oils and glycerol levels directly affected the properties of gelatin-based film from fish skin. Copyright © 2012 Elsevier Ltd. All rights reserved.
ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL.
M, Canales-Martinez; C R, Rivera-Yañez; J, Salas-Oropeza; H R, Lopez; M, Jimenez-Estrada; R, Rosas-Lopez; D A, Duran; C, Flores; L B, Hernandez; M A, Rodriguez-Monroy
2017-01-01
Bursera morelensis , known as "Aceitillo", is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis . The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae , V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC 50 = 2.27 mg/mL) was the most sensitive fungal strain. This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.
Ben Jemaa, Mariem; Falleh, Hanen; Neves, Marcos A; Isoda, Hiroko; Nakajima, Mitsutoshi; Ksouri, Riadh
2017-02-15
The objective of this study is to evaluate the effect of either a solution of Thymus capitatus essential oil or its nanoemulsion on the quality of milk contaminated by bacteria. After 24h of S. aureus inoculation, bacterial growth reached 202×10(3)CFU/ml in the presence of the essential oil while it was limited to 132×10(3)CFU/ml when treated with nanoemulsion. The reduction of antioxidant capacity of milk treated with essential oil was higher when treated with nanoemulsion. Moreover, free essential oil was more efficient in protecting proteins from degradation than the nanoemulsion. For instance, after 24h of E. hirae contamination, 26% of the total proteins were consumed in the presence of nano-encapsulated essential oil, while only 14% of the initial content was consumed when free essential oil was added. Concerning milk acidity increase and the inhibition of peroxide production, no statistical differences have been recorded between the use of free essential oil or its nano-emulsion. In conclusion, bulk or nano-encapsulated T. capitatus essential oil preserve milk quality and can extend its shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil.
Bomfim, Larissa M; Menezes, Leociley R A; Rodrigues, Ana Carolina B C; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Neto, Albertino F S; Nascimento, Magaly P; Campos, Adriana F; Silva, Lidércia C R C E; Costa, Emmanoel V; Bezerra, Daniel P
2016-03-01
Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with β-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-β-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%). © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL
M., Canales-Martinez; C.R., Rivera-Yañez; J., Salas-Oropeza; H.R., Lopez; M., Jimenez-Estrada; R., Rosas-Lopez; D.A., Duran; C., Flores; L.B., Hernandez; M.A., Rodriguez-Monroy
2017-01-01
Background: Bursera morelensis, known as “Aceitillo”, is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis. Materials and Methods: The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. Results: GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae, V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC50 = 2.27 mg/mL) was the most sensitive fungal strain. Conclusions: This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species. PMID:28480418
Hong, Jeum Kyu; Yang, Hye Ji; Jung, Heesoo; Yoon, Dong June; Sang, Mee Kyung; Jeun, Yong-Chull
2015-01-01
Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production. PMID:26361475
Antifungal properties of essential oils for improvement of indoor air quality: a review.
Whiley, Harriet; Gaskin, Sharyn; Schroder, Tiffany; Ross, Kirstin
2018-03-28
Concerns regarding indoor air quality, particularly the presence of fungi and moulds, are increasing. The potential for essential oils to reduce, control or remove fungi, is gaining interest as they are seen as a "natural" alternative to synthetic chemical fungicides. This review examines published research on essential oils as a method of fungal control in indoor environments. It was difficult to compare the relative performances of essential oils due to differences in research methods and reporting languages. In addition, there are limited studies that scale up laboratory results and assess the efficacy of essential oils within building environments. However, generally, there appears to be some evidence to support the essential oils clove oil, tea tree oil, oregano, thyme and lemon as potential antifungal agents. Essential oils from heartwood, marjoram, cinnamon, lemon basil, caraway, bay tree, fir, peppermint, pine, cedar leaf and manuka were identified in at least one study as having antifungal potential. Future studies should focus on comparing the effectiveness of these essential oils against a large number of fungal isolates from indoor environments. Studies will then need to focus on translating these results into realistic application methods, in actual buildings, and assess the potential for long-term antifungal persistence.
Keramati, Sara; Pirdashti, Hemmatollah; Babaeizad, Valliollah; Dehestani, Ali
2016-12-01
Essential oil content and oil composition of paclobutrazol treated sweet basil (Ocimum basilicum L.) plant inoculated with Piriformospora indica under salt stress were investigated by GC-MS. The results show a slight increase in essential oil content when basil plants subjected to moderate salinity stress (3 dS m -1 of NaCl). It decreased signifiicantly with increasing salinity level to 9 dS m -1 . The findings revealed that leaf area, above ground and leaf dry weights, essential oil content and yield were significantly affected by P. indica inoculation, however paclobutrazol application significantly influenced essential oil yield but not content. Fungal symbiosis as well as paclobutrazol application ameliorated the negative effects of salinity on dry matter and essential oil yield. The main constituents found in the volatile oil of O. basilicum in control treatment were Geranial (26.03%), Neral (24.88%) and Estragole (24.78%). The compounds concentrations showed some differences in P. indica and paclobutrazol treatments. The results demonstrate that micorrhiza-like fungi concomitantly increase essential oil production and biomass in sweet basil, a medicinal herb rich in commercially valuable essential oils.
Rafiq, Ragina; Hayek, Saeed A.; Anyanwu, Ugochukwu; Hardy, Bonita I.; Giddings, Valerie L.; Ibrahim, Salam A.; Tahergorabi, Reza; Kang, Hye Won
2016-01-01
Essential oils are natural antimicrobials that have the potential to provide a safer alternative to synthetic antimicrobials currently used in the food industry. Therefore, the aim of this study was to evaluate the antimicrobial and antioxidant activities of essential oils from white wormwood, rose-scented geranium and bay laurel against Salmonella typhimurium and Escherichia coli O157:H7 on fresh produce and to examine consumer acceptability of fresh produce treated with these essential oils. Our results showed that essential oil derived from rose-scented geranium exhibited the most effective antimicrobial activity at the same and similar minimum inhibition concentration levels (0.4%, v/v and 0.4% and 0.5%, v/v) respectively against Salmonella typhimurium and Escherichia coli O157:H7. All three essential oils showed antioxidant properties, with the highest activity occurring in bay laurel essential oil. In a sensory test, tomatoes, cantaloupe and spinach sprayed with 0.4% rose-scented geranium essential oil received higher scores by panelists. In conclusion, rose-scented geranium essential oil could be developed into a natural antimicrobial to prevent contamination of Salmonella typhimurium and Escherichia coli O157:H7 in fresh produce, plus this oil would provide additional health benefits due to the antioxidant properties of its residue. PMID:28231123
Antimicrobial activity of clove and rosemary essential oils alone and in combination.
Fu, Yujie; Zu, Yuangang; Chen, Liyan; Shi, Xiaoguang; Wang, Zhe; Sun, Su; Efferth, Thomas
2007-10-01
In the present study, the antimicrobial activity of the essential oils from clove (Syzygium aromaticum (L.) Merr. et Perry) and rosemary (Rosmarinus officinalis L.) was tested alone and in combination. The compositions of the oils were analysed by GC/MS. Minimum inhibitory concentrations (MIC) against three Gram-positive bacteria, three Gram-negative bacteria and two fungi were determined for the essential oils and their mixtures. Furthermore, time-kill dynamic processes of clove and rosemary essential oils against Staphylococcus epidermidis, Escherichia coli and Candida albicans were tested. Both essential oils possessed significant antimicrobial effects against all microorganisms tested. The MICs of clove oil ranged from 0.062% to 0.500% (v/v), while the MICs of rosemary oil ranged from 0.125% to 1.000% (v/v). The antimicrobial activity of combinations of the two essential oils indicated their additive, synergistic or antagonistic effects against individual microorganism tests. The time-kill curves of clove and rosemary essential oils towards three strains showed clearly bactericidal and fungicidal processes of (1)/(2) x MIC, MIC, MBC and 2 x MIC.
Inhibitory effect of essential oils against herpes simplex virus type 2.
Koch, C; Reichling, J; Schneele, J; Schnitzler, P
2008-01-01
Essential oils from anise, hyssop, thyme, ginger, camomile and sandalwood were screened for their inhibitory effect against herpes simplex virus type 2 (HSV-2) in vitro on RC-37 cells using a plaque reduction assay. Genital herpes is a chronic, persistent infection spreading efficiently and silently as sexually transmitted disease through the population. Antiviral agents currently applied for the treatment of herpesvirus infections include acyclovir and its derivatives. The inhibitory concentrations (IC50) were determined at 0.016%, 0.0075%, 0.007%, 0.004%, 0.003% and 0.0015% for anise oil, hyssop oil, thyme oil, ginger oil, camomile oil and sandalwood oil, respectively. A clearly dose-dependent virucidal activity against HSV-2 could be demonstrated for all essential oils tested. In order to determine the mode of the inhibitory effect, essential oils were added at different stages during the viral infection cycle. At maximum noncytotoxic concentrations of the essential oils, plaque formation was significantly reduced by more than 90% when HSV-2 was preincubated with hyssop oil, thyme oil or ginger oil. However, no inhibitory effect could be observed when the essential oils were added to the cells prior to infection with HSV-2 or after the adsorption period. These results indicate that essential oils affected HSV-2 mainly before adsorption probably by interacting with the viral envelope. Camomile oil exhibited a high selectivity index and seems to be a promising candidate for topical therapeutic application as virucidal agents for treatment of herpes genitalis.
de Rapper, Stephanie; Kamatou, Guy; Viljoen, Alvaro
2013-01-01
The antimicrobial activity of Lavandula angustifolia essential oil was assessed in combination with 45 other oils to establish possible interactive properties. The composition of the selected essential oils was confirmed using GC-MS with a flame ionization detector. The microdilution minimum inhibitory concentration (MIC) assay was undertaken, whereby the fractional inhibitory concentration (ΣFIC) was calculated for the oil combinations. When lavender oil was assayed in 1 : 1 ratios with other oils, synergistic (26.7%), additive (48.9%), non-interactive (23.7%), and antagonistic (0.7%) interactions were observed. When investigating different ratios of the two oils in combination, the most favourable interactions were when L. angustifolia was combined with Cinnamomum zeylanicum or with Citrus sinensis, against C. albicans and S. aureus, respectively. In 1 : 1 ratios, 75.6% of the essential oils investigated showed either synergistic or additive results, lending in vitro credibility to the use of essential oil blends in aroma-therapeutic practices. Within the field of aromatherapy, essential oils are commonly employed in mixtures for the treatment of infectious diseases; however, very little evidence exists to support the use in combination. This study lends some credence to the concomitant use of essential oils blended with lavender. PMID:23737850
In vitro scolicidal effect of Satureja khuzistanica (Jamzad) essential oil
Moazeni, Mohammad; Saharkhiz, Mohammad Jamal; Hoseini, Ali Akbar; Alavi, Amir Mootabi
2012-01-01
Objective To investigate the scolicidal effect of the Satureja khuzistanica (S. khuzistanica)essential oil from aerial parts of this herbal plant. Methods The essential oil was obtained by hydrodistillation method. Gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS) were employed to determine the chemical composition of the essential oil. Protoscolices were collected aseptically from sheep livers containing hydatid cyst. Protoscolices were exposed to various concentrations of the oil (3, 5 and 10 mg/mL) for 10, 20, 30, and 60 min. Viability of protoscolices was confirmed by 0.1% eosin staining. Results : A total of 19 compounds representing 97.6% of the total oil, were identified. Carvacrol (94.9%) was found to be the major essential oil constituent. Scolicidal activity of S. khuzistanica essential oil at concentration of 3 mg/mL was 28.58, 32.71, 37.20 and 42.02%, respectively. This essential oil at concentration of 5 mg/mL killed 51.33, 66.68, 81.12, and 100% of protoscolices after 10, 20, 30 and 60 min, respectively. One hundred scolicidal effect was observed with S. khuzistanica essential oil at the concentration of 10 mg/mL after 10 min (comparing with 7.19% for control group). Conclusions The essential oil of S. khuzistanica is rich in carvacrol and may be used as a natural scolicidal agent. PMID:23569981
Aromatherapy: Using Essential Oils as a Supportive Therapy.
Reis, Debra; Jones, Tisha
2017-02-01
Essential oils can be a great adjunct to cancer care, aiding in the management of side effects, such as insomnia and nausea. Healthcare professionals should be knowledgeable about the quality and safety of essential oils when using them for clinical purposes. Using lesser quality essential oils and not understanding safety guidelines can negatively affect clinical outcomes. This article provides an overview of how nurses can help patients with cancer safely use essential oils as a supportive therapy.
Huang, Zhan; Liu, Xiaochang; Jia, Shiliang; Zhang, Longteng; Luo, Yongkang
2018-02-02
Antimicrobial and antioxidant effects of essential oils (oregano, thyme, and star anise) on microbial composition and quality of grass carp fillets were investigated. Essential oils treatment was found to be effective in inhibiting microbial growth, delaying lipid oxidation, and retarding the increase of TVB-N, putrescine, hypoxanthine, and K-value. Based on sensory analysis, shelf-life of grass carp fillets was 6days for control and 8days for treatment groups. Among the essential oils, oregano essential oil exhibited the highest antimicrobial and antioxidant activities. GC-MS analysis of essential oils components revealed that carvacrol (88.64%) was the major component of oregano essential oil. According to the results of high-throughput sequencing, Aeromonas, Glutamicibacter, and Aequorivita were the predominant microbiota in fresh control samples. However, oregano essential oil decreased the relative abundance of Aeromonas, while thyme and star anise essential oils decreased the relative abundance of Glutamicibacter and Aequorivita in fresh treated samples. The microbial composition of both control and treatment groups became less diverse as storage time increased. Aeromonas and Pseudomonas were dominant in spoiled samples and contributed to fish spoilage. Compared to the control, essential oils effectively inhibited the growth of Aeromonas and Shewanella in grass carp fillets during chilled storage. Copyright © 2017 Elsevier B.V. All rights reserved.
Hajdari, Avni; Mustafa, Behxhet; Nebija, Dashnor; Miftari, Elheme; Quave, Cassandra L; Novak, Johannes
2015-11-01
Ripe cones of Juniperus communis L. (Cupressaceae) were collected from five wild populations in Kosovo, with the aim of investigating the chemical composition and natural variation of essential oils between and within wild populations. Ripe cones were collected, air dried, crushed, and the essential oils obtained by hydrodistillation. The essential-oil constituents were identified by GC-FID and GC/MS analyses. The yield of essential oil differed depending on the population origins and ranged from 0.4 to 3.8% (v/w, based on the dry weight). In total, 42 compounds were identified in the essential oils of all populations. The principal components of the cone-essential oils were α-pinene, followed by β-myrcene, sabinene, and D-limonene. Taking into consideration the yield and chemical composition, the essential oil originating from various collection sites in Kosovo fulfilled the minimum requirements for J. communis essential oils of the European Pharmacopoeia. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to determine the influence of the geographical variations on the essential-oil composition. These statistical analyses suggested that the clustering of populations was not related to their geographic location, but rather appeared to be linked to local selective forces acting on the chemotype diversity. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China
Fan, Houbao; Duan, Honglang; Li, Qiang; Yuan, Yinghong; Zhang, Hao
2017-01-01
Eucalyptus species are widely planted for reforestation in subtropical China. However, the effects of Eucalyptus plantations on the regional water use remain poorly understood. In an age sequence of 2-, 4- and 6-year-old Eucalyptus plantations, the tree water use and soil evaporation were examined by linking model estimations and field observations. Results showed that annual evapotranspiration of each age sequence Eucalyptus plantations was 876.7, 944.1 and 1000.7 mm, respectively, accounting for 49.81%, 53.64% and 56.86% of the annual rainfall. In addition, annual soil evaporations of 2-, 4- and 6-year-old were 318.6, 336.1, and 248.7 mm of the respective Eucalyptus plantations. Our results demonstrated that Eucalyptus plantations would potentially reduce water availability due to high evapotranspiration in subtropical regions. Sustainable management strategies should be implemented to reduce water consumption in Eucalyptus plantations in the context of future climate change scenarios such as drought and warming. PMID:28399174
Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China.
Liu, Wenfei; Wu, Jianping; Fan, Houbao; Duan, Honglang; Li, Qiang; Yuan, Yinghong; Zhang, Hao
2017-01-01
Eucalyptus species are widely planted for reforestation in subtropical China. However, the effects of Eucalyptus plantations on the regional water use remain poorly understood. In an age sequence of 2-, 4- and 6-year-old Eucalyptus plantations, the tree water use and soil evaporation were examined by linking model estimations and field observations. Results showed that annual evapotranspiration of each age sequence Eucalyptus plantations was 876.7, 944.1 and 1000.7 mm, respectively, accounting for 49.81%, 53.64% and 56.86% of the annual rainfall. In addition, annual soil evaporations of 2-, 4- and 6-year-old were 318.6, 336.1, and 248.7 mm of the respective Eucalyptus plantations. Our results demonstrated that Eucalyptus plantations would potentially reduce water availability due to high evapotranspiration in subtropical regions. Sustainable management strategies should be implemented to reduce water consumption in Eucalyptus plantations in the context of future climate change scenarios such as drought and warming.
da Silva Morais, Alaine Patrícia; Sansígolo, Cláudio Angeli; de Oliveira Neto, Mario
2016-08-01
Samples of Eucalyptus urograndis and Eucalyptus grandis sawdust were autohydrolyzed in aqueous conditions to reach temperatures in the range 110-190°C and reaction times of 0-150min in a minireactor. In each minireactor were used a liquor:wood ratio (10:1 L:kg dry wood), in order to assess the effects of the autohydrolysis severity and the crystalline properties of cellulose. The content of extractives, lignin, holocellulose, cellulose, hemicelluloses and crystallinity index obtained from the solid fraction after autohydrolysis of sawdust were determined. This study demonstrated that the hemicelluloses were extensively removed at 170 and 190°C, whereas cellulose was partly degraded to Eucalyptus urograndis and Eucalyptus grandis sawdust. The lignin content decreased, while the extractives content increased. It was defined that during autohydrolysis, had a slight decreased on crystalline structure of cellulose of Eucalyptus urogandis and Eucalyptus grandis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sitarek, Przemysław; Rijo, Patricia; Garcia, Catarina; Skała, Ewa; Kalemba, Danuta; Białas, Adam J; Szemraj, Janusz; Pytel, Dariusz; Toma, Monika; Wysokińska, Halina; Śliwiński, Tomasz
2017-01-01
Essential oils obtained from the NR (normal roots) and HR (hairy roots) of the medicinal plant Leonurus sibiricus root were used in this study. The essential oil compositions were detected by GC-MS. Eighty-five components were identified in total. Seventy components were identified for NR essential oil. The major constituents in NR essential oil were β -selinene (9.9%), selina-4,7-diene (9.7%), (E) - β -caryophyllene (7.3%),myli-4(15)-ene (6.4%), and guaia-1(10),11-diene (5.9%). Sixty-seven components were identified in HR essential oil, the main constituents being (E) - β -caryophyllene (22.6%), and germacrene D (19.8%). The essential oils were tested for cytotoxic effect, antimicrobial, anti-inflammatory, and antioxidant activities. Both essential oils showed activity against grade IV glioma cell lines (IC 50 = 400 μ g/mL), antimicrobial (MIC and MFC values of 2500 to 125 μ g/mL), and anti-inflammatory (decreased level of IL-1 β , IL-6, TNF- α , and IFN- γ in LPS-stimulated cells).The essential oils exhibited moderate antioxidant activity in ABTS (EC 50 = 98 and 88 μ g/mL) assay. This is the first study to examine composition of the essential oils and their antimicrobial, antioxidant, antiproliferative, and anti-inflammatory activities. The results indicate that essential oils form L. sibiricus root may be used in future as an alternative to synthetic antimicrobial agents with potential application in the food and pharmaceutical industries.
Rijo, Patricia; Garcia, Catarina; Kalemba, Danuta; Szemraj, Janusz; Pytel, Dariusz; Toma, Monika; Śliwiński, Tomasz
2017-01-01
Essential oils obtained from the NR (normal roots) and HR (hairy roots) of the medicinal plant Leonurus sibiricus root were used in this study. The essential oil compositions were detected by GC-MS. Eighty-five components were identified in total. Seventy components were identified for NR essential oil. The major constituents in NR essential oil were β-selinene (9.9%), selina-4,7-diene (9.7%), (E)-β-caryophyllene (7.3%),myli-4(15)-ene (6.4%), and guaia-1(10),11-diene (5.9%). Sixty-seven components were identified in HR essential oil, the main constituents being (E)-β-caryophyllene (22.6%), and germacrene D (19.8%). The essential oils were tested for cytotoxic effect, antimicrobial, anti-inflammatory, and antioxidant activities. Both essential oils showed activity against grade IV glioma cell lines (IC50 = 400 μg/mL), antimicrobial (MIC and MFC values of 2500 to 125 μg/mL), and anti-inflammatory (decreased level of IL-1β, IL-6, TNF-α, and IFN-γ in LPS-stimulated cells).The essential oils exhibited moderate antioxidant activity in ABTS (EC50 = 98 and 88 μg/mL) assay. This is the first study to examine composition of the essential oils and their antimicrobial, antioxidant, antiproliferative, and anti-inflammatory activities. The results indicate that essential oils form L. sibiricus root may be used in future as an alternative to synthetic antimicrobial agents with potential application in the food and pharmaceutical industries. PMID:28191277
Yang, Junsi; Ciftci, Ozan Nazim
2016-09-01
The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.
Artemisia sieberi Besser essential oil and treatment of fungal infections.
Mahboubi, Mohaddese
2017-05-01
A. sieberi essential oil has been used for treatment of hardly curable infectious ulcers in Middle East Medicine and has been famous due to its wormicide effects. In this review, we evaluated the potency of A. sieberi essential oil in treatment of fungal infections. We searched in PubMed Central, Science direct, Wiley, Springer, SID, and accessible books, reports, thesis. There is a lot of mixed information on chemical compositions of A. sieberi essential oil, but most articles reported α, β-thujones as the main components of essential oils. In vitro studies confirmed the antifungal activity of A. sieberi essential oil against saprophytes fungi, dermatophytes, Malassezia sp. and Candida sp. and these results were confirmed in six clinical studies. The clinical studies confirmed the superiority of A. sieberi essential oil (5%) lotion in improvement of clinical signs of fungal superficial diseases, and mycological laboratory examinations of dermatophytosis and pityriasis versicolor diseases than clotrimazole (1%) topical treatment. The recurrence rate of superficial fungal infections with dermatophytosis and pityriasis versicolor was statistically lower in A. sieberi essential oil (5%) lotion than clotrimazole. There are no adverse effects due to the application of A. sieberi essential oil in clinical studies. Despite, the efficacy of A. sieberi essential oil against Candida sp., there is no clinical study about their related infections. Investigation about the effects of A. sieberi essential oil on fungal virulence factors in order to identifying the exact mechanism of antifungal activity and clinical trials on Candida related diseases are recommended. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier
2015-06-01
The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out.
Vardar-Unlü, Gülhan; Candan, Ferda; Sökmen, Atalay; Daferera, Dimitra; Polissiou, Moschos; Sökmen, Münevver; Dönmez, Erol; Tepe, Bektaş
2003-01-01
The essential oil, obtained by using a Clevenger distillation apparatus, and water-soluble (polar) and water-insoluble (nonpolar) subfractions of the methanol extract of Thymus pectinatus Fisch. et Mey. var. pectinatus were assayed for their antimicrobial and antioxidant properties. No (or slight) antimicrobial activity was observed when the subfractions were tested, whereas the essential oil showed strong antimicrobial activity against all microorganisms tested. Antioxidant activities of the polar subfraction and the essential oil were evaluated using 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, superoxide radical scavenging, and lipid peroxidation assays. The essential oil, in particular, and the polar subfraction of the methanol extract showed antioxidant activity. The essential oil was analyzed by GC/MS, and 24 compounds, representing 99.6% of the essential oil, were identified: thymol, gamma-terpinene, p-cymene, carvacrol, and borneol were the main components. An antimicrobial activity test carried out with fractions of the essential oil showed that the activity was mainly observed in those fractions containing thymol, in particular, and carvacrol. The activity was, therefore, attributed to the presence of these compounds. Other constituents of the essential oil, such as borneol, gamma-terpinene, and p-cymene, could be also taken into account for their possible synergistic or antagonistic effects. On the other hand, thymol and carvacrol were individually found to possess weaker antioxidant activity than the crude oil itself, indicating that other constituents of the essential oil may contribute to the antioxidant activity observed. In conclusion, the results presented here show that T. pectinatus essential oil could be considered as a natural antimicrobial and antioxidant source.
Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold
2015-06-01
The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.
21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural extracts that are generally... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Certain other spices, seasonings, essential oils...
Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.
Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G
2010-02-01
The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.
Ghannadi, A; Bagherinejad, MR; Abedi, D; Jalali, M; Absalan, B; Sadeghi, N
2012-01-01
Background and Objectives Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents. In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities. Materials and Methods The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity. Results and Conclusion Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products. PMID:23205247
Marcon, Helena Sanches; Domingues, Douglas Silva; Silva, Juliana Costa; Borges, Rafael Junqueira; Matioli, Fábio Filippi; Fontes, Marcos Roberto de Mattos; Marino, Celso Luis
2015-08-14
In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring <3 million years, except one Copia family, RLC_egBianca_1. Protein theoretical models suggest different properties between Copia and Gypsy domains. IRAP and REMAP markers suggested genomic polymorphisms among Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.
Houicher, Abderrahmane; Hechachna, Hind; Teldji, Hanifa; Ozogul, Fatih
2016-01-01
The aim of this study was to determine the antifungal activity of the essential oils isolated from three aromatic plants against 13 filamentous fungal strains. The major constituents of Mentha spicata, Thymus vulgaris, and Laurus nobilis essential oils were carvone (52.2%), linalool (78.1%), and 1,8-cineole (45.6%), respectively. There are also some patents suggesting the use of essential oils as natural and safe alternatives to fungicides for plant protection. In the present work, M. spicata essential oil exhibited the strongest activity against all tested fungi in which Fusarium graminearum, F.moniliforme, and Penicillium expansum were the most sensitive to mint oil with lower minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 2.5 μL mL-1 (v/v). Thymus vulgaris essential oil was less active compared to the oil of M. spicata. Aspergillus ochraceus was the most sensitive strain to thyme oil with MIC and MFC values of 2.5 and 5 μL mL-1, respectively. Thymus vulgaris essential oil also exhibited a moderate fungicidal effect against the tested fungi, except for A. niger (MFC >20 μL-1). L. nobilis essential oil showed a similar antifungal activity with thyme oil in which A. parasiticus was the most resistant strain to this oil (MFC >20 μL mL-1). Our findings suggested the use of these essential oils as alternatives to synthetic fungicides in order to prevent pre-and post-harvest infections and ensure product safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ali, Abbas; Tabanca, Nurhayat; Ozek, Gulmira; Ozek, Temel; Aytac, Zeki; Bernier, Ulrich R; Agramonte, Natasha M; Baser, K Husnu Can; Khan, Ikhlas A
2015-01-01
The essential oils from the flower, leaf, and stem of Echinophora lamondiana B.Yildiz et Z.Bahcecioglu were analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. In total, 41, 37, and 44 compounds were identified, which accounted for 98.0, 99.1, and 97.0% of flower, leaf, and stem essential oils, respectively. The monoterpenic hydrocarbons were found to be high in all samples of the essential oils. The major components of essential oils from flower, leaf, and stem of E. lamondiana were δ-3-carene (61.9, 75.0, and 65.9%, respectively), α-phellandrene (20.3, 14.1, and 12.8%, respectively), and terpinolene (2.7, 3.3, and 2.9%, respectively). Flower and leaf essential oils and terpinolene produced biting deterrence similar to 25 nmol/cm(2) N, N-diethyl-meta-toluamide (DEET; 97%) against Aedes aegypti (L.) and Anopheles quadrimaculatus Say. Compounds (+)-δ-3-carene, (R)-(-)-α-phellandrene, and water-distilled essential oils were significantly less repellent than DEET. Among essential oils, leaf oil was the least toxic of the oils, with an LC50 value of 138.3 ppm, whereas flower essential oil killed only 32% larvae, and no mortality of stem oil at highest tested dosages against Ae aegypti was observed. Terpinolene and α-phellandrene showed higher toxicity than δ-3-carene in both the species. In contrast to Ae. aegypti, all the essential oils showed toxicity in An. quadrimaculatus, and toxicity was higher in leaf oil than the other two oils. These results could be useful in finding new, safe, and more effective natural biopesticides and biting deterrent or repellents against Ae. aegypti. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.For Permissions, please e-mail: journals.permissions@oup.com.
Propagation and planting of containerized Eucalyptus seedlings in Hawaii
Gerald A. Walters
1983-01-01
A container reforestation system has been researched and developed in Hawaii which results in consistently high survival and growth rates for eucalyptus seedlings. Mean survival of containerized saligna eucalyptus (Eucalyptus saligna Smith) seedlings is 90 percent with a standard deviation of 4. Because transplant shock is minimal, seedlings begin to...
Essential oil composition of Dracocephalum kotschyi Boiss. from Iran.
Sonboli, Ali; Mirzania, Foroogh; Gholipour, Abbas
2018-06-06
Dracocephalum kotschyi is one of the medicinal and fragrant herbs that can be found in natural locations of mountainous areas. In this investigation the hydrodistilled essential oils obtained from aerial parts of two populations of D. kotschyi collected from Siahbisheh and Baladeh were analysed by capillary GC-FID and GC-MS. Essential oil analysis led to the identification of 48 compounds that represented 85.9 and 90.0% of the total oil compositions, respectively. As the major group of compounds, oxygenated monoterpens comprised 45.5 and 57.4% in the essential oils of compounds as the main group in the essential oils of Siahbisheh and Baladeh samples, respectively. Disagreement in the major contents of the essential oils of these two samples may be ascribed to differences in the ecological, climatic and genetically factors.
The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.
Goodger, Jason Q D; Woodrow, Ian E
2010-02-01
A micropropagation protocol was recently developed for Eucalyptus polybractea R.T. Baker, a commercially important eucalypt grown in short-rotation coppice cultivation and harvested for its foliar 1,8-cineole oil. Micropropagation of elite E. polybractea trees has resulted in selection gains for foliar oil traits, but decreased above-ground biomass accumulation has been observed in clones compared to related half-sibling families. This study aims to use a greenhouse study to investigate if micropropagation induces somaclonal variation that can account for the reduction in above-ground biomass in E. polybractea clones. Secondly, the study aims to compare the coppicing ability of micropropagated clones with related half-sibling seedlings using de-topped plantation-grown saplings. The results of the greenhouse study suggest that micropropagation of E. polybractea induces somaclonal variation that manifests in more mature leaf morphologies such as increased foliar oil concentrations and lower specific leaf area (SLA), attributable to an isobilateral arrangement of increased palisade mesophyll layers. Lower SLA, rather than differences in root allocation, is likely to be a key contributor to the lower relative growth rates observed in early sapling growth of micropropagated clones. In the field study, all micropropagated and seedling-derived E. polybractea saplings coppiced vigorously in the 12 months after de-topping. The coppice growth was so vigorous in the 12 months after de-topping that total above-ground biomass equalled that of the 27-month-old saplings, irrespective of propagation source. The morphological distinction between leaves of micropropagated and seed-derived plants was no longer evident in the coppice regrowth. The results presented here suggest that the micropropagated leaf morphology and the resultant growth reduction is transient and micropropagated plants coppice just as vigorously as seed-derived plants. Therefore, micropropagation is unlikely to detrimentally influence above-ground biomass accumulation beyond the first harvest rotation.
Sritabutra, Duangkamon; Soonwera, Mayura
2013-01-01
Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.
Tenfen, Adrielli; Siebert, Diogo Alexandre; Yamanaka, Celina Noriko; Mendes de Córdova, Caio Maurício; Scharf, Dilamara Riva; Simionatto, Edésio Luiz; Alberton, Michele Debiasi
2016-09-01
This study describes the qualitative and quantitative chemical composition and evaluates the antibacterial activity of essential oil from Eugenia platysema leaves. Analysis by GC-FID and GC-MS allowed the identification of 22 compounds. Different from the other species of the Eugenia genus, the major compound found in the essential oil was the diterpene phytol (66.05%), being this the first report of the presence of this compound in the essential oils from Eugenia genus. The sesquiterpene elixene was the second most concentrated compound in the studied essential oil (9.16%). The essential oil from E. platysema was tested for its antibacterial activity against cell-walled bacteria and mollicute strains of clinical interest using the microdilution broth assay. The results showed that the essential oil of E. platysema was inactive until 1000 μg mL(-1) against tested bacteria.
Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain
2016-03-01
The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
O'Bryan, Corliss A; Pendleton, Sean J; Crandall, Philip G; Ricke, Steven C
2015-01-01
The antimicrobial activity of essential oils and their components has been recognized for several years. Essential oils are produced as secondary metabolites by many plants and can be distilled from all different portions of plants. The recent emergence of bacteria resistant to multiple antibiotics has spurred research into the use of essential oils as alternatives. Recent research has demonstrated that many of these essential oils have beneficial effects for livestock, including reduction of foodborne pathogens in these animals. Numerous studies have been made into the mode of action of essential oils, and the resulting elucidation of bacterial cell targets has contributed to new perspectives on countering antimicrobial resistance and pathogenicity of these bacteria. In this review, an overview of the current knowledge about the antibacterial mode of action of essential oils and their constituents is provided.
O’Bryan, Corliss A.; Pendleton, Sean J.; Crandall, Philip G.; Ricke, Steven C.
2015-01-01
The antimicrobial activity of essential oils and their components has been recognized for several years. Essential oils are produced as secondary metabolites by many plants and can be distilled from all different portions of plants. The recent emergence of bacteria resistant to multiple antibiotics has spurred research into the use of essential oils as alternatives. Recent research has demonstrated that many of these essential oils have beneficial effects for livestock, including reduction of foodborne pathogens in these animals. Numerous studies have been made into the mode of action of essential oils, and the resulting elucidation of bacterial cell targets has contributed to new perspectives on countering antimicrobial resistance and pathogenicity of these bacteria. In this review, an overview of the current knowledge about the antibacterial mode of action of essential oils and their constituents is provided. PMID:26664964
[Antiradical properties of essential oils and extracts from clove bud and pimento].
Misharina, T A; Alinkina, E S; Medvedeva, I B
2015-01-01
The antiradical properties of essential oils and extracts from the clove bud (Eugenia caryophyllata Thumb.) and berries of tree (Pimenta dioica (L.) Meriff) were studied and compared with the properties of synthetic antioxidant ionol (2,6-ditret-butyl-4-hydroxytoluene, BHT) in model reactions with the stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The essential oils of clove bud and pimento had qualitatively close composition of the main components but differed by their quantitative content. In the studied samples, eugenol was the main compound with high antiradical activity. The reaction rates of essential oils and extracts with the DPPH radical were practically the same for essential oils and twice the reaction rate of BHT. The values of antiradical efficiency (AE) were also close for essential oils and were twice that for extracts and ionol. A synergetic action of components in the essential oil and extract of pimento on antiradical efficiency values was found.
Wang, Yong-Wei; Zeng, Wei-Cai; Xu, Pei-Yu; Lan, Ya-Jia; Zhu, Rui-Xue; Zhong, Kai; Huang, Yi-Na; Gao, Hong
2012-01-01
The aim of this study was to determine the main constituents of the essential oil isolated from Fortunella crassifolia Swingle peel by hydro-distillation, and to test the efficacy of the essential oil on antimicrobial activity. Twenty-five components, representing 92.36% of the total oil, were identified by GC-MS analysis. The essential oil showed potent antimicrobial activity against both Gram-negative (E. coli and S. typhimurium) and Gram-positive (S. aureus, B. cereus, B. subtilis, L. bulgaricus, and B. laterosporus) bacteria, together with a remarkable antifungal activity against C. albicans. In a food model of beef extract, the essential oil was observed to possess an effective capacity to control the total counts of viable bacteria. Furthermore, the essential oil showed strongly detrimental effects on the growth and morphological structure of the tested bacteria. It was suggested that the essential oil from Fortunella crassifolia Swingle peel might be used as a natural food preservative against bacteria or fungus in the food industry. PMID:22489157
Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio
2015-10-01
The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.
Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio
2015-01-01
The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908
Irkin, Reyhan; Abay, Secil; Aydin, Fuat
2011-03-01
We investigated the inhibitory activity of commercially marketed essential oils of mint, rosemary, orange, sage, cinnamon, bay, clove, and cumin against Arcobacter butzleri and Arcobacter skirrowii and the effects of the essential oil of rosemary against A. butzleri in a cooked minced beef system. Using the disc diffusion method to determine the inhibitory activities of these plant essential oils against strains of Arcobacter, we found that those of rosemary, bay, cinnamon, and clove had strong inhibitory activity against these organisms, whereas the essential oils of cumin, mint, and sage failed to show inhibitory activity against most of the Arcobacter strains tested. The 0.5% (vol/wt) essential oil of rosemary was completely inhibitory against A. butzleri in the cooked minced beef system at 4°C. These essential oils may be further investigated as a natural solution to the food industry by creating an additional barrier (hurdle technology) to inhibit the growth of Arcobacter strains.
Uprety, Bijaya K; Rakshit, Sudip K
2017-12-01
Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.
21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural...
21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural...
21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2012 CFR
2012-04-01
... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Certain other spices, seasonings, essential oils...
21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2013 CFR
2013-04-01
... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Certain other spices, seasonings, essential oils...
21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2012 CFR
2012-04-01
... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Certain other spices, seasonings, essential oils...
21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2013 CFR
2013-04-01
... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Certain other spices, seasonings, essential oils...
21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.
Code of Federal Regulations, 2014 CFR
2014-04-01
... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Certain other spices, seasonings, essential oils...
Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp.
Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Sharma, Amit Kumar
2016-10-01
The control potential of seven plant essential oils was evaluated against Fusarium proliferatum (Matsushima) Nirenberg and Fusarium verticillioides Sheldon. The fungicidal activity was assessed through microtiter plate assay to determine the minimum inhibitory and fungicidal concentration of essential oils. The essential oil of Mentha arvensis was adjudged as best for inhibiting the fungal growth, while oil of Thymus vulgaris and Anethum graveolens showed high efficacy in terms of fungicidal activity. The oil of M. arvensis and T. vulgaris also showed good inhibition activity in agar disc diffusion assay. M. arvensis essential oil was analysed for its composition using gas chromatography/mass spectrometry revealing menthol (63.18 %), menthone (15.08 %), isomenthyl acetate (5.50 %) and limonene (4.31 %) as major components. Significant activity of M. arvensis essential oil against F. proliferatum and F. verticillioides isolates obtained, pave the way for its use as antifungal control agents.
Li, Chun-Mei; Yang, Xiao-Yong; Zhong, Yi-Rong; Yu, Jian-Ping
2016-01-01
The essential oil from the leaves of Macleaya cordata R.Br. obtained by hydrodistillation was analysed by gas chromatography/mass spectrometry. Sixty-eight compounds consisting of up to 92.53% of the essential oil were identified. Antioxidant activities of the essential oil were evaluated by using DPPH radical scavenging and β-carotene-linoleic acid assays. The essential oil showed moderate antioxidant activity. In addition, the essential oil exhibited potential antimicrobial activity against all tested microorganisms, with diameters of inhibition zones ranging from 8.7 ± 0.5 to 17.2 ± 1.2 mm and minimum inhibitory concentration values from 125 to 500 μg/mL. We selected the most sensitive bacterium Staphylococcus aureus as model to observe of the action of essential oils of M. cordata on the membrane structure by scanning electron microscopy. The treated cell membranes were damaged severely. The results presented here indicate that the essential oil of M. cordata may be potential sources of antioxidant and antimicrobial agents in the future.
Bassolé, Imaël Henri Nestor; Lamien-Meda, Aline; Bayala, Balé; Tirogo, Souleymane; Franz, Chlodwig; Novak, Johannes; Nebié, Roger Charles; Dicko, Mamoudou Hama
2010-11-03
Essential oils from leaves of Lippia multiflora, Mentha x piperita and Ocimum basilicum from Burkina Faso were analysed by GC-FID and GC-MS. Major components were p-cymene, thymol, b-caryophyllene, carvacrol and carvone for L. multiflora, menthol and iso-menthone for M. x piperita and, linalool and eugenol for O. basilicum. The essential oils and their major monoterpene alcohols were tested against nine bacterial strains using the disc diffusion and broth microdilution methods. The essential oils with high phenolic contents were the most effective antimicrobials. The checkerboard method was used to quantify the efficacy of paired combinations of essential oils and their major components. The best synergetic effects among essential oils and major components were obtained with combinations involving O. basilicum essential oil and eugenol, respectively. As phenolic components are characterized by a strong spicy aroma, this study suggests that the selection of certain combinations of EOs could help to reduce the amount of essential oils and consequently reduce any adverse sensory impact in food.
Santamarina, M Pilar; Roselló, Josefa; Sempere, Francisca; Giménez, Silvia; Blázquez, M Amparo
2015-01-01
Chemical composition of commercial Origanum compactum and Cinnamomum zeylanicum essential oils and the antifungal activity against pathogenic fungi isolated from Mediterranean rice grains have been investigated. Sixty-one compounds accounting for more than 99.5% of the total essential oil were identified by using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Carvacrol (43.26%), thymol (21.64%) and their biogenetic precursors p-cymene (13.95%) and γ-terpinene (11.28%) were the main compounds in oregano essential oil, while the phenylpropanoids, eugenol (62.75%), eugenol acetate (16.36%) and (E)-cinnamyl acetate (6.65%) were found in cinnamon essential oil. Both essential oils at 300 μg/mL showed antifungal activity against all tested strains. O. compactum essential oil showed the best antifungal activity towards Fusarium species and Bipolaris oryzae with a total inhibition of the mycelial growth. In inoculated rice grains at lower doses (100 and 200 μg/mL) significantly reduced the fungal infection, so O. compactum essential oil could be used as ecofriendly preservative for field and stored Valencia rice.
Shen, Changmao; Duan, Wengui; Cen, Bo; Tan, Jianhui
2006-11-01
Essential oils were extracted by steam distillation from the needles of Pinus massoniana Lamb and Pinus elliottottii Engelm grown in Guangxi. Various factors such as pine needle dosage and extraction time which may influence the oil yield were investigated. The optimum conditions were found to be as follows: pine needle dosage 700 g, extraction time 5 h. The essential oil yields from the needles of Pinus massoniana Lamb and Pinus elliottottii Engelm were 0.45% and 0.19%, respectively. Moreover, the chemical compositions of the essential oils were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Sixty four components in the essential oil from needle of Pinus massoniana Lamb were separated and twenty of them (98.59%) were identified while seventy three components in the essential oil from needle of Pinus elliottottii Engelm were separated and twenty nine of them (94.23%) were identified. Generally, the compositions of the essential oils from needles of the two varieties were similar but the contents of some compounds differed greatly. Especially, the content of alpha-pinene in the essential oils from Pinus massoniana Lamb needles was 2.6 times as that from Pinus elliottottii Engelm needles, but the content of beta-pinene was less than the latter. Mono- and sesquiterpenes were the main composition of the essential oils from Pinus massoniana Lamb and Pinus elliottottii Engelm needles.
Medbouhi, Ali; Merad, Nadjiya; Khadir, Abdelmounaim; Bendahou, Mourad; Djabou, Nassim; Costa, Jean; Muselli, Alain
2018-01-01
The chemical composition, antibacterial and antioxidant activities of the essential oil obtained from Eryngium triquetrum from Algeria were studied. The chemical composition of sample oils from 25 locations was investigated using GC-FID and GC/MS. Twenty-four components representing always more than 87% were identified in essential oils from total aerial parts of plants, stems, flowers and roots. Falcarinol is highly dominant in the essential oil from the roots (95.5%). The relative abundance of falcarinol in the aerial parts correlates with the phenological stages of the plant. Aerial parts of E. triquetrum produce an essential oil dominated by falcarinol during the early flowering stage, and then there is a decrease in falcarinol and rebalancing of octanal during the flowering stage. To our knowledge, the present study is the first report of the chemical composition of E. triquetrum essential oil. Evaluation of the antibacterial activity by means of the paper disc diffusion method and minimum inhibitory concentration assays, showed a moderate efficiency of E. triquetrum essential oil. Using the DPPH method, the interesting antioxidant activity of E. triquetrum essential oil was established. These activities could be attributed to the dominance of falcarinol. The outcome of our literature search on the occurrence of falcarinol in essential oils suggests that E. triquetrum from Algeria could be considered as a possible source of natural falcarinol. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; Deus, Juliana Telles de; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça
2016-07-04
Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence.
Nutrigenomics of essential oils and their potential domestic use for improving health.
Cayuela Sánchez, José Antonio; Elamrani, Abdelaziz
2014-11-01
The use of essential oils as industrial food additives is notorious, like their medicinal properties. However, their use in household food spicing is for now limited. In this work, we have made a review to reveal the nutrigenomic actions exerted by their bioactive components, to promote awareness of their modulating gene expression ability and the potential that this implies. Also considered is how essential oils can be used as flavoring and seasoning after cooking and before consumption, such as diet components which can improve human health. Genetic mechanisms involved in the medicinal properties of essential oils for food use are identified from literature. These genetic mechanisms reveal nutrigenomic actions. Reviews on the medicinal properties of essential oils have been particularly considered. A wide diversity of nutrigenomic effects from essential oils useful potentially for food spicing is reviewed. General ideas are discussed about essential oils and their properties, such as anti-inflammatory, analgesic, immunomodulatory, anticancer, hepatoprotective, hypolipidemic, anti-diabetic, antioxidant, bone-reparation, anti-depressant and mitigatory for Alzheimer's disease. The essential oils for food use are potentially promoting health agents, and, therefore, worth using as flavoring and condiments. Becoming aware of the modulating gene expression actions from essential oils is important for understanding their potential for use in household dishes as spices to improve health.
Benovit, Simone C; Silva, Lenise L; Salbego, Joseânia; Loro, Vania L; Mallmann, Carlos A; Baldisserotto, Bernardo; Flores, Erico M M; Heinzmann, Berta M
2015-09-01
This work aimed to determine the efficacy of the essential oil of A. gratissima as anesthetic for silver catfish, and to perform the bio-guided fractionation of essential oil aiming to isolate compounds responsible for the noted effects. Fish were submitted to anesthesia bath with essential oil, its fractions and isolated compounds to determine time of anesthetic induction and recovery. Eugenol (50 mg L(-1)) was used as positive control. Essential oil of A. gratissima was effective as an anesthetic at concentrations of 300 to 900 mg L(-1). Fish presented involuntary muscle contractions during induction and recovery. The bio-guided fractionation of essential oil furnished E-(-)-pinocamphone, (-)-caryophyllene oxide, (-)-guaiol and (+)-spathulenol. E-(-)-pinocamphone caused the same side effects observed for essential oil. (-)-Caryophyllene oxide, (-)-guaiol and (+)-spathulenol showed only sedative effects at proportional concentrations to those of the constituents in essential oil. (+)-Spathulenol (51.2 mg L(-1)) promoted deep anesthesia without side effects. A higher concentration of (+)-spathulenol, and lower or absent amounts ofE-(-)-pinocamphone could contribute to increase the activity and safety of the essential oil of A. gratissima. (+)-Spathulenol showed potent sedative and anesthetic activities in silver catfish, and could be considered as a viable compound for the development of a new anesthetic.
Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr.
de Almeida, Macia C S; Souza, Luciana G S; Ferreira, Daniele A; Monte, Francisco J Q; Braz-Filho, Raimundo; de Lemos, Telma L G
2015-10-01
Bauhinia pentandrais popularly known as "mororó" and inhabits the Caatinga and Savannah biomes. This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil.
Coté, Héloïse; Boucher, Marie-Anne; Pichette, André; Legault, Jean
2017-05-25
Background: Tanacetum vulgare L. (Asteraceae) is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean), Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.
2013-01-01
Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. Conclusions These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties. PMID:24373672
Ebadollahi, Asgar; Davari, Mahdi; Razmjou, Jabrael; Naseri, Bahram
2017-06-01
In the present study, the toxicity of essential oils of Mentha piperata L. and Mentha pulegium L. and pathogenicity of Lecanicillium muscarium (Zare & Gams) were studied in the melon aphid, Aphis gossypii Glover. Analyses of the essential oils by GC-MS indicated limonene (27.28%), menthol (24.71%), menthone (14.01%), and carvol (8.46%) in the M. piperata essential oil and pulegone (73.44%), piperitenone (5.49%), decane (4.99%), and limonene (3.07%) in the essential oil of M. pulegium as the main components. Both essential oils and the pathogenic fungus had useful toxicity against A. gossypii. Probit analysis indicated LC50 values (lethal concentrations to kill 50% of population; 95% confidence limits in parentheses) of M. piperata and M. pulegium essential oils as 15.25 (12.25-19.56) and 23.13 (19.27-28.42) µl/liter air, respectively. Susceptibility to the pathogenic fungus increased with exposure time. Aphid mortality also increased when the essential oils were combined with L. muscarium, although the phenomena was additive rather than synergistic. Mycelial growth inhibition of L. muscarium exposed to the essential oils was also very low. Based on our results, M. piperata and M. pulegium essential oils and the pathogenic fungus L. muscarium have some potential for management of A. gossypii. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sebai, Hichem; Selmi, Slimen; Rtibi, Kais; Souli, Abdelaziz; Gharbi, Najoua; Sakly, Mohsen
2013-12-28
The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC-MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO).Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties.
Miller, Andrew B; Cates, Rex G; Lawrence, Michael; Soria, J Alfonso Fuentes; Espinoza, Luis V; Martinez, Jose Vicente; Arbizú, Dany A
2015-04-01
Essential oils are prevalent in many medicinal plants used for oral hygiene and treatment of diseases. Medicinal plant species were extracted to determine the essential oil content. Those producing sufficient oil were screened for activity against Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Plant samples were collected, frozen, and essential oils were extracted by steam distillation. Minimum inhibitory concentrations (MIC) were determined using a tube dilution assay for those species yielding sufficient oil. Fifty-nine of the 141 plant species produced sufficient oil for collection and 12 species not previously reported to produce essential oils were identified. Essential oil extracts from 32 species exhibited activity against one or more microbes. Oils from eight species were highly inhibitory to S. mutans, four species were highly inhibitory to C. albicans, and 19 species yielded MIC values less than the reference drugs. RESULTS suggest that 11 species were highly inhibitory to the microbes tested and merit further investigation. Oils from Cinnamomum zeylanicum Blume (Lauraceae), Citrus aurantiifolia (Christm.) Swingle (Rutaceae), Lippia graveolens Kunth (Verbenaceae), and Origanum vulgare L. (Lamiaceae) yielded highly significant or moderate activity against all microbes and have potential as antimicrobial agents. Teas prepared by decoction or infusion are known methods for extracting essential oils. Oils from 11 species were highly active against the microbes tested and merit investigation as to their potential for addressing health-related issues and in oral hygiene.
Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R
2015-09-01
Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.
2014-01-01
Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289
Lemberkovics, Eva; Kakasy, András Zoltán; Héthelyi, B Eva; Simándi, Béla; Böszörményi, Andrea; Balázs, Andrea; Szoke, Eva
2007-01-01
In this work the essential oil composition of some less known Dracocephalum species was studied and compared the effectiveness, selectivity and influence of different extraction methods (hydrodistillation, Soxhlet extraction with organic solvents and supercritical fluid extraction) on essential oils. For investigations in Hungary and Transylvania cultivated plant material was used. The analysis of essential oils was carried out by GC and GC-MS methods. The components were identified by standard addition, retention factors and mass spectra. The percentile evaluation of each volatile constituents was made on basis of GC-FID chromatograms. The accuracy of measurements was characterized by relative standard deviation. In the essential oil of D. renati Emb. (studied firstly by us) 18.3% of limonene was measured and carvone, citrals and linalyl acetate monoterpenes, methyl chavicol and some sesquiterpene (e.g. bicyclovetivenol) determined in lower quantities. We established that more than 50% of essential oil of D. grandiflorum L. was formed by sesquiterpenes (beta-caryophyllene and- oxide, beta-bourbonene, beta-cubebene, aromadendrene) and the essential oil of D. ruyschiana L. contained pinocamphone isomers in more than 60%. The oxygenated acyclic monoterpenes, the characteristic constituents of Moldavian dragonhead were present in some tenth percent only in D. renati oil. We found significant differences in the composition of the SFE extract and traditional essential oil of D. moldavica L. The supercritical fractions collected at the beginning of the extraction process were richer in valuable ester component (geranyl acetate) than the essential oil obtained by hydrodistillation. The fractions collected at the end of supercritical were poor in oxygenated monoterpenes but rich in minor compounds of traditional oil, e.g. palmitic acid.
da Silva Ramos, Ryan; Rodrigues, Alex Bruno Lobato; Farias, Ana Luzia Ferreira; Simões, Ranggel Carvalho; Pinheiro, Mayara Tânia; Ferreira, Ricardo Marcelo dos Anjos; Costa Barbosa, Ledayane Mayana; Picanço Souto, Raimundo Nonato; Fernandes, João Batista
2017-01-01
The essential oil was obtained by hydrodistillation and the identification and quantification of components were achieved with the use of GC-MS analysis. The antioxidant activity was evaluated by the method of sequestration of DPPH. Essential oils were used for study the cytotoxic front larvae of Artemia salina. In the evaluation of the antimicrobial activity of essential oils, we employed the disk-diffusion method. The potential larvicide in mosquito larvae of the third stage of development of Aedes aegypti to different concentrations of essential oils was evaluated. The major compounds found in the essential oils of M. piperita were linalool (51.8%) and epoxyocimene (19.3%). The percentage of antioxidant activity was 79.9 ± 1.6%. The essential oil showed LC50 = 414.6 μg/mL front of A. saline and is considered highly toxic. It shows sensitivity and halos significant inhibition against E. coli. The essential possessed partial larvicidal efficiency against A. aegypti. PMID:28116346
Growth regulating properties of isoprene and isoprenoid-based essential oils.
Jones, Andrew Maxwell P; Shukla, Mukund R; Sherif, Sherif M; Brown, Paula B; Saxena, Praveen K
2016-01-01
Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication. Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.
Sadraei, H; Asghari, G; Kasiri, F
2015-01-01
Dracocephalum kotschyi is an essential oil containing plant found in Iran. In Iranian traditional medicine, D. kotschyi has been used as antispasmodic and analgesic but so far there is no pharmacological report about its antispasmodic activity. Therefore, the objective of this research was to study antispasmodic activity of the essential oil of D. kotschyi and two of its constituents namely limonene and α-terpineol. The essential oil was obtained from aerial parts of D. kotschyi using hydrodistillation method. The main components found in the essential oil were α-pinene (10%), neral (11%), geraniol (10%), α-citral (12%), limonene (9%) and α-terpineol (1.1%). For antispasmodic studies, a portion of rat ileum was suspended under 1 g tension in Tyrode's solution at 37 °C and gassed with O2. Effect of the D. kotschyi essential oil, limonene and α-terpineol were studied on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The essential oil, in a concentration dependent manner inhibited the response to KCl (IC50=51 ± 8.7 nl/ml), ACh (IC50=19 ± 2.7 nl/ml) and EFS (IC50=15 ± 0.5 nl/ml). Limonene and α-terpineol showed same pattern of inhibitory effect on ileum contraction. Their inhibitory effects were also concentration dependent. However, limonene was more potent than the essential oil while the α-terpineol was less potent than either limonene or the essential oil. From this experiment it was concluded that D. kotschyi essential oil has inhibitory effect on ileum contractions. Limonene contribute a major role in inhibitory effect of the essential oil while α-terpineol has weak antispasmodic activity.
Noshad, Mohammad; Hojjati, Mohammad; Alizadeh Behbahani, Behrooz
2018-03-01
The aim of this study was to perform chemical compositions and phytochemical analysis of Black Zira essential oil and other goal of this research was to investigate the antimicrobial effects of Black Zira essential oil against Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Staphylococcus epidermidis, Streptococcus pyogenes and Candida albicans. Black Zira essential oil was extracted by hydrodistillation method using clevenger apparatus. Black Zira essential oil chemical composition was identified through gas chromatography/mass spectrometry. γ-terpinene with a percentage of 24.8% was the major compound of Black Zira essential oil. The antimicrobial effect Black Zira essential oil was evaluated by several qualitative and quantitative methods (disk diffusion, well diffusion, microdilution broth, agar dilution and minimum bactericidal/fungicidal concentration). Phytochemical analysis Black Zira essential oil were appraised based on qualitative methods. Antioxidant activity (2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid inhibition) and total phenolic content (Folin-Ciocalteu) were examined. The results of phytochemical analysis of Black Zira essential oil showed the existence of phenolic, flavonoids, saponins, alkaloids and tannins. The total phenolic content and antioxidant activity (reported as IC 50 ) of Black Zira essential oil were equal to 120.50 ± 0.50 mg GAE/g and 11.55 ± 0.25 μg/ml, respectively. The MIC of the Black Zira essential oil ranged from 1 mg/ml to 8 mg/ml, while its MBC and MFC ranged from 1 mg/ml to 16 mg/ml. The results presented that the longest and the shortest inhibition zone diameter at the concentration of 8 mg/ml pertained to C. albicans and E. aerogenes, respectively. Copyright © 2018. Published by Elsevier Ltd.
Sadraei, H.; Asghari, G.; Kasiri, F.
2015-01-01
Dracocephalum kotschyi is an essential oil containing plant found in Iran. In Iranian traditional medicine, D. kotschyi has been used as antispasmodic and analgesic but so far there is no pharmacological report about its antispasmodic activity. Therefore, the objective of this research was to study antispasmodic activity of the essential oil of D. kotschyi and two of its constituents namely limonene and α-terpineol. The essential oil was obtained from aerial parts of D. kotschyi using hydrodistillation method. The main components found in the essential oil were α-pinene (10%), neral (11%), geraniol (10%), α-citral (12%), limonene (9%) and α-terpineol (1.1%). For antispasmodic studies, a portion of rat ileum was suspended under 1 g tension in Tyrode's solution at 37 °C and gassed with O2. Effect of the D. kotschyi essential oil, limonene and α-terpineol were studied on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The essential oil, in a concentration dependent manner inhibited the response to KCl (IC50=51 ± 8.7 nl/ml), ACh (IC50=19 ± 2.7 nl/ml) and EFS (IC50=15 ± 0.5 nl/ml). Limonene and α-terpineol showed same pattern of inhibitory effect on ileum contraction. Their inhibitory effects were also concentration dependent. However, limonene was more potent than the essential oil while the α-terpineol was less potent than either limonene or the essential oil. From this experiment it was concluded that D. kotschyi essential oil has inhibitory effect on ileum contractions. Limonene contribute a major role in inhibitory effect of the essential oil while α-terpineol has weak antispasmodic activity. PMID:26487887
2014-01-01
Background Mesembryanthemum edule is a medicinal plant which has been indicated by Xhosa traditional healers in the treatment HIV associated diseases such as tuberculosis, dysentery, diabetic mellitus, laryngitis, mouth infections, ringworm eczema and vaginal infections. The investigation of the essential oil of this plant could help to verify the rationale behind the use of the plant as a cure for these illnesses. Methods The essential oil from M. edule was analysed by GC/MS. Concentration ranging from 0.005 - 5 mg/ml of the hydro-distilled essential oil was tested against some fungal strains, using micro-dilution method. The plant minimum inhibitory activity on the fungal strains was determined. Result GC/MS analysis of the essential oil resulted in the identification of 28 compounds representing 99.99% of the total essential oil. A total amount of 10.6 and 36.61% constituents were obtained as monoterpenes and oxygenated monoterpenes. The amount of sesquiterpene hydrocarbons (3.58%) was low compared to the oxygenated sesquiterpenes with pick area of 9.28%. Total oil content of diterpenes and oxygenated diterpenes detected from the essential oil were 1.43% and 19.24%. The fatty acids and their methyl esters content present in the essential oil extract were found to be 19.25%. Antifungal activity of the essential oil extract tested against the pathogenic fungal, inhibited C. albican, C. krusei, C. rugosa, C. glabrata and C. neoformans with MICs range of 0.02-0.31 mg/ml. the activity of the essential oil was found competing with nystatin and amphotericin B used as control. Conclusion Having accounted the profile chemical constituent found in M. edule oil and its important antifungal properties, we consider that its essential oil might be useful in pharmaceutical and food industry as natural antibiotic and food preservative. PMID:24885234
Yang, Chang; Hu, Dong-Hui; Feng, Yan
2015-04-01
Inhalation therapy using essential oils has been used to treat acute and chronic sinusitis and bronchitis. The aim of the present study was to determine the chemical composition of the essential oil of Artemisia capillaris, and evaluate the antibacterial effects of the essential oil and its main components, against common clinically relevant respiratory bacterial pathogens. Gas chromatography and gas chromatography‑mass spectrometry revealed the presence of 25 chemical constituents, the main constituents being: α‑pinene, β‑pinene, limonene, 1,8‑cineole, piperitone, β‑caryophyllene and capillin. The antibacterial activities of the essential oil, and its major constituents, were evaluated against Streptococcus pyogenes, methicillin‑resistant Staphylococcus aureus (MRSA), MRSA (clinical strain), methicillin‑gentamicin resistant Staphylococcus aureus (MGRSA), Streptococcus pneumoniae, Klebsiella pneumoniae, Haemophilus influenzae and Escherichia coli. The essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against the various strains. The essential oil was observed to be much more potent, as compared with any of its major chemical constituents, exhibiting low minimum inhibitory and bacteriocidal concentration values against all of the bacterial strains. The essential oil was most active against S. pyogenes, MRSA (clinical strain), S. pneumoniae, K. pneumoniae, H. influenzae and E. coli. Piperitone and capillin were the most potent growth inhibitors, among the major chemical constituents. Furthermore, the essential oil of A. capillaris induced significant and dose‑dependent morphological changes in the S. aureus bacterial strain, killing >90% of the bacteria when administered at a higher dose; as determined by scanning electron microscopy. In addition, the essential oil induced a significant leakage of potassium and phosphate ions from the S. aureus bacterial cultures. These results indicate that the antibacterial action of A. capillaris essential oil may be mediated through the leakage of these two important ions. In conclusion, A. capillaris essential oil exhibits potent antibacterial activity by inducing morphological changes and leakage of ions in S. aureus bacterial cultures.
Zhou, Jun; Zou, Kexing; Zhang, Wenjuan; Guo, Shanshan; Liu, Hong; Sun, Jiansheng; Li, Jigang; Huang, Dongye; Wu, Yan; Du, Shushan; Borjigidai, Almaz
2018-02-07
To develop natural product resources to control cigarette beetles ( Lasioderma serricorne ), the essential oil from Artemisia lavandulaefolia (Compositae) was investigated. Oil was extracted by hydrodistillation of the above-ground portion of A. lavandulaefolia and analyzed using gas chromatography-mass spectrometer (GC-MS). Extracted essential oil and three compounds isolated from the oil were then evaluated in laboratory assays to determine the fumigant, contact, and repellent efficacy against the stored-products' pest, L. serricorne . The bioactive constituents from the oil extracts were identified as chamazulene (40.4%), 1,8-cineole (16.0%), and β-caryophyllene (11.5%). In the insecticidal activity assay, the adults of L. serricorne were susceptible to fumigant action of the essential oil and 1,8-cineole, with LC 50 values of 31.81 and 5.18 mg/L air. The essential oil, 1,8-cineole, chamazulene, and β-caryophyllene exhibited contact toxicity with LD 50 values of 13.51, 15.58, 15.18 and 35.52 μg/adult, respectively. During the repellency test, the essential oil and chamazulene had repellency approximating the positive control. The results indicated that chamazulene was abundant in A. lavandulaefolia essential oil and was toxic to cigarette beetles.
Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M
2015-01-01
Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.
2011-01-01
Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra essential oil hydrodistilled at 100 oC was more potent than the essential oil prepared at 78 oC in inducing cancer cell death, preventing the cellular network formation (MDA-MB-231) cells on Matrigel, causing the breakdown of multicellular tumor spheroids (T47D cells), and regulating molecules involved in apoptosis, signal transduction, and cell cycle progression. Conclusions Similar to our previous observations in human bladder cancer cells, Boswellia sacra essential oil induces breast cancer cell-specific cytotoxicity. Suppression of cellular network formation and disruption of spheroid development of breast cancer cells by Boswellia sacra essential oil suggest that the essential oil may be effective for advanced breast cancer. Consistently, the essential oil represses signaling pathways and cell cycle regulators that have been proposed as therapeutic targets for breast cancer. Future pre-clinical and clinical studies are urgently needed to evaluate the safety and efficacy of Boswellia sacra essential oil as a therapeutic agent for treating breast cancer. PMID:22171782
Essential oil composition and antiradical activity of the oil of Iraq plants.
Kiralan, Mustafa; Bayrak, Ali; Abdulaziz, Omar Fawzi; Ozbucak, Tuğba
2012-01-01
This study examined the antiradical activity and chemical composition of essential oils of some plants grown in Mosul, Iraq. The essential oils of myrtle and parsley seed contained α-pinene (36.08% and 22.89%, respectively) as main constituents. Trans-Anethole was the major compound found in fennel and aniseed oils (66.98% and 93.51%, respectively). The dominant constituent of celery seed oil was limonene (76.63%). Diallyl disulphide was identified as the major component in garlic oil (36.51%). Antiradical activity was higher in garlic oil (76.63%) and lower in myrtle oil (39.23%). The results may suggest that some essential oils from Iraq possess compounds with antiradical activity, and these oils can be used as natural antioxidants in food applications.
Insecticidal activity of plant essential oils against the vine mealybug, Planococcus ficus.
Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Alphantonios; Papachristos, Dimitrios; Polissiou, Moschos; Papatsakona, Panagiota; Tsora, Eleanna
2013-01-01
The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3(rd) instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used.
Insecticidal Activity of Plant Essential Oils Against the Vine Mealybug, Planococcus ficus
Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Αntonios; Papachristos, Dimitrios; Polissiou, Moschos
2013-01-01
The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3rd instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used. PMID:24766523
José Tarcísio da Silva Oliveira; Xiping Wang; Graziela Baptista Vidaurre
2017-01-01
The resistance drilling technique has been in focus for assessing the specific gravity (SG) of young Eucalyptus trees from plantations for pulpwood production. Namely, the data of 50 34-month-old and 50 62-monthold trees from Eucalyptus grandis à Eucalyptus urophylla clonal plantations was evaluated, while...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... trees derived from a hybrid of Eucalyptus grandis X Eucalyptus urophylla. The purpose of the field tests... growth; and to test the efficacy of genes designed to alter flowering. In addition, the trees have been... were introduced into Eucalyptus trees using disarmed Agrobacterium tumefaciens. The subject Eucalyptus...
Antibacterial activity of essential oils of edible spices, Ocimum canum and Xylopia aethiopica.
Vyry Wouatsa, N A; Misra, Laxminarain; Venkatesh Kumar, R
2014-05-01
The essential oils of 2 Cameroonian spices, namely, Xylopia aethiopica and Ocimum canum, were chemically investigated and screened for their antibacterial activity. The essential oils were analyzed by means of GC, GC/MS, and NMR. X. aethiopica oil contained myrtenol (12%), a monoterpenoid in highest concentration. The essential oil of O. canum belonged to the known linalool (44%) rich chemotype. The results of the antibacterial screening against the food spoiling bacteria revealed a significant and broad spectrum of activity for these essential oils. The present material of X. aethiopica, which is having myrtenol in relatively higher concentration, has shown moderate antibacterial activity. The bioassay-guided fractionation of Ocimum canum oil through flash chromatography showed that minor compounds, namely, α-terpineol, chavicol, chavibetol, and trans-p-mentha-2,8-dien-ol, significantly contributed for the overall activity observed. Hence, these results evidenced the possible potential of the essential oil of O. canum as a suitable antibacterial for controlling food-borne pathogens whereas the X. aethiopica oil has moderate possibility. There is a strong global demand for the microbe-free, safe, and healthy foods. In this study, we showed that the essential oil of O. canum (wild basil) can be used as antibacterial for food items. Also, we showed that a value addition in the antibacterial potential of O. canum oil can be done by processing the essential oil through flash chromatographic separations. © 2014 Institute of Food Technologists®
Strzemski, Maciej; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Agacka-Mołdoch, Monika; Drączkowski, Piotr; Matosiuk, Dariusz; Kurach, Łukasz; Kocjan, Ryszard; Dresler, Sławomir
2017-11-01
Carlina genus plants e.g. Carlina acanthifolia subsp. utzka have been still used in folk medicine of many European countries and its biological activity is mostly associated with root essential oils. In the present paper, Raman spectroscopy (RS) was applied for the first time for evaluation of essential oil distribution in root of C. acnthifolia subsp. utzka and identification of root structures containing the essential oil. Furthermore, RS technique was applied to assess chemical stability of oil during drying of plant material or distillation process. Gas chromatography-mass spectrometry was used for qualitative and quantitative analysis of the essential oil. The identity of compounds was confirmed using Raman, ATR-IR and NMR spectroscopy. Carlina oxide was found to be the main component of the oil (98.96% ± 0.15). The spectroscopic study showed the high stability of essential oil and Raman distribution analysis indicated that the oil reservoirs were localized mostly in the structures of outer layer of the root while the inner part showed nearly no signal assigned to the oil. Raman spectroscopy technique enabled rapid, non-destructive direct analysis of plant material with minimal sample preparation and allowed straightforward, unambiguous identification of the essential oil in the sample. Copyright © 2017. Published by Elsevier B.V.
Duarte, Antonia Eliene; de Menezes, Irwin Rose Alencar; Bezerra Morais Braga, Maria Flaviana; Leite, Nadghia Figueiredo; Barros, Luiz Marivando; Waczuk, Emily Pansera; Pessoa da Silva, Maria Arlene; Boligon, Aline; Teixeira Rocha, João Batista; Souza, Diogo Onofre; Kamdem, Jean Paul; Melo Coutinho, Henrique Douglas; Escobar Burger, Marilise
2016-06-08
Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. The results showed the presence of β-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.
27 CFR 20.119 - Toilet preparations containing not less than 10% essential oils general-use formula.
Code of Federal Regulations, 2011 CFR
2011-04-01
... containing not less than 10% essential oils general-use formula. 20.119 Section 20.119 Alcohol, Tobacco....119 Toilet preparations containing not less than 10% essential oils general-use formula. This general-use formula shall consist of an article containing not less than 10% essential oils by volume made...
27 CFR 20.119 - Toilet preparations containing not less than 10% essential oils general-use formula.
Code of Federal Regulations, 2012 CFR
2012-04-01
... containing not less than 10% essential oils general-use formula. 20.119 Section 20.119 Alcohol, Tobacco....119 Toilet preparations containing not less than 10% essential oils general-use formula. This general-use formula shall consist of an article containing not less than 10% essential oils by volume made...
27 CFR 20.119 - Toilet preparations containing not less than 10% essential oils general-use formula.
Code of Federal Regulations, 2014 CFR
2014-04-01
... containing not less than 10% essential oils general-use formula. 20.119 Section 20.119 Alcohol, Tobacco....119 Toilet preparations containing not less than 10% essential oils general-use formula. This general-use formula shall consist of an article containing not less than 10% essential oils by volume made...
27 CFR 20.119 - Toilet preparations containing not less than 10% essential oils general-use formula.
Code of Federal Regulations, 2013 CFR
2013-04-01
... containing not less than 10% essential oils general-use formula. 20.119 Section 20.119 Alcohol, Tobacco....119 Toilet preparations containing not less than 10% essential oils general-use formula. This general-use formula shall consist of an article containing not less than 10% essential oils by volume made...
27 CFR 20.119 - Toilet preparations containing not less than 10% essential oils general-use formula.
Code of Federal Regulations, 2010 CFR
2010-04-01
... containing not less than 10% essential oils general-use formula. 20.119 Section 20.119 Alcohol, Tobacco....119 Toilet preparations containing not less than 10% essential oils general-use formula. This general-use formula shall consist of an article containing not less than 10% essential oils by volume made...
Antispasmodic activity of essential oil from Lippia dulcis Trev.
Görnemann, T; Nayal, R; Pertz, H H; Melzig, M F
2008-04-17
To investigate the essential oil of Lippia dulcis Trev. (Verbenaceae) that is traditionally used in the treatment of cough, colds, bronchitis, asthma, and colic in Middle America for antispasmodic activity. We used a porcine bronchial bioassay to study contractile responses to carbachol and histamine in the absence or presence of the essential oil. The essential oil showed anti-histaminergic and anti-cholinergic activities at 100 microg/ml. The anti-histaminergic and anti-cholinergic activities of the essential oil of Lippia dulcis support the rational use of the plant or plant extracts to treat bronchospasm.
Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu
2012-08-01
To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.
Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr
de Almeida, Macia C. S.; Souza, Luciana G. S.; Ferreira, Daniele A.; Monte, Francisco J. Q.; Braz-Filho, Raimundo; de Lemos, Telma L. G.
2015-01-01
Background: Bauhinia pentandrais popularly known as “mororó” and inhabits the Caatinga and Savannah biomes. Objective: This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. Materials and Methods: The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. Results: The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Conclusion: Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil. PMID:26664026
NASA Astrophysics Data System (ADS)
Fitri, Noor; Fatimah, Ifat; Chabib, Lutfi; Fajarwati, Febi Indah
2017-03-01
Propionibacterium acnes are a normal bacterium in human skin but it can become primary pathogens that can cause inflammation on the skin. Research about new antibacterial compounds is important because resistance of bacteria acne to antibiotics. Some of Essential oils have antibacterial properties. Lime peel essential oil and patchouli essential oil have some terpenoids that act as antibacterial compounds such as Linalool and Seychellene. The purpose of this research was to formulate anti acne serum based on lime peel essential oil and patchouli oil and to determine the zone of inhibition against of Propionibacterium acnes. This study made 21 variations of formulation of anti acne serum, consisted of lime peel essential oil, patchouli oil and olive oil. Anti acne serum was evaluated i.e. in vitro antibacterial activity test against Propionibacterium acnes for 5 days, organoleptic, stability test, pH test, viscosity test and GC-MS analysis. Nine serum formulations had been selected, which based on their most favorite order. Those favorite serums had antibacterial inhibitory against Propionibacterium acnes between 20.80 - 26.12 mm, whereas control positive only 12.47 mm and control negative 5.78 mm. The most favorite serum with the best antibacterial activity was serum formula A. The composition of serum A consist of lime peel essential oil: patchouli oil: olive oil (11:1:18).
2013-01-01
Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05. Results Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria. PMID:24119438
Huang, Jiehui; Qian, Chao; Xu, Hongjie; Huang, Yanjie
2018-01-01
The main objective of the current study was to investigate the chemical composition of the essential oil of Artemisia asiatica together with investigating the antibacterial effects it exerts on several common respiratory infection causing bacteria including Haemophilus influenzae. Its mechanism of action was studied using various state-of-the-art assays like scanning electron microscopy, DNA, RNA and protein leakage assays, growth curve assays etc. The essential oil was extracted from the leaves of A. asiatica by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass-spectrometry (GC-MS). The antibacterial activity was evaluated against 6 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane and scanning electronmicroscope (SEM). Gas chromatographic analysis of the A. asiatica essential oil led to the identification of 16 chemical constituents accounting for 97.2% of the total oil composition. The major components were found to be Piperitone, (z)-davanone, p-cymene and 1, 8-cineole. The essential oil showed maximum growth inhibition against Haemophilus influenzae with a zone of inhibition of 24.5 mm and MIC/MBC values of 1.9/4.5 mg/mL respectively. Bacteria treated with the essential oil led to a rapid decrease in the number of viable cells. On adding the essential oil of A. asiatica to the bacterial culture, the constituents of the bacterial cell got released into the medium and this cell constituent release increased with increasing doses of the essential oil. SEM showed that the bacterial cells treated with the essential oil showed damaged cell wall, deformed cell morphology and shrunken cells. Copyright © 2017. Published by Elsevier Ltd.
Ralambondrainy, Miora; Belarbi, Essia; Viranaicken, Wildriss; Baranauskienė, Renata; Venskutonis, Petras Rimantas; Desprès, Philippe; El Kalamouni, Chaker; Sélambarom, Jimmy
2018-01-01
Background The essential oils of Cymbopogon citratus (CC), Pelargonium graveolens (PG) and Vetiveria zizanioides (VZ) are commonly used topically to prevent mosquito bites and thus the risk of infection by their vectored pathogens such as arboviruses. However, since mosquito bites are not fully prevented, the effect of these products on the level of viral infection remains unknown. Objectives To evaluate in vitro the essentials oils from Reunion Island against one archetypal arbovirus, the Ross River virus (RRV), and investigate the viral cycle step that was impaired by these oils. Methods The essential oils were extracted by hydrodistillation and analyzed by a combination of GC-FID and GC×GC-TOF MS techniques. In vitro studies were performed on HEK293T cells to determine their cytotoxicity, their cytoprotective and virucidal capacities on RRV-T48 strain, and the level of their inhibitory effect on the viral replication and residual infectivity prior, during or following viral adsorption using the reporter virus RRV-renLuc. Results Each essential oil was characterized by an accurate quantification of their terpenoid content. PG yielded the least-toxic extract (CC50 > 1000 μg.mL-1). For the RRV-T48 strain, the monoterpene-rich CC and PG essential oils reduced the cytopathic effect but did not display virucidal activity. The time-of-addition assay using the gene reporter RRV-renLuc showed that the CC and PG essential oils significantly reduced viral replication and infectivity when applied prior, during and early after viral adsorption. Overall, no significant effect was observed for the low monoterpene-containing VZ essential oil. Conclusion The inhibitory profiles of the three essential oils suggest the high value of the monoterpene-rich essential oils from CC and PG against RRV infection. Combined with their repellent activity, the antiviral activity of the essential oils of CC and PG may provide a new option to control arboviral infection. PMID:29771946
Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.
Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena
2010-05-01
The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.
Physical and mechanical properties of saligna eucalyptus grown in Hawaii
C.C. Gerhards
1965-01-01
Physical and mechanical properties were determined for saligna eucalyptus (Eucalyptus saligna, Smith) grown in Hawaii. In comparison with wood of the same species grown in Australia, saligna eucalyptus grown in Hawaii was lower in density, shrinkage, and compressive strength parallel to grain; it was about equal in strength in bending and shear; and it was stiffer....
Chen, Fengli; Jia, Jia; Zhang, Qiang; Gu, Huiyan; Yang, Lei
2017-11-17
In this work, a modified technique was developed to separate essential oil from the fruit of Amorpha fruticosa using microwave-assisted hydrodistillation concatenated liquid-liquid extraction (MHD-LLE). The new apparatus consists of two series-wound separation columns for separating essential oil, one is the conventional oil-water separation column, and the other is the extraction column of components from hydrosol using an organic solvent. Therefore, the apparatus can simultaneously collect the essential oil separated on the top of hydrosol and the components extracted from hydrosol using an organic solvent. Based on the yield of essential oil in the first and second separation columns, the effects of parameters were investigated by single factor experiments and Box-Behnken design. Under the optimum conditions (2mL ethyl ether as the extraction solvent in the second separation column, 12mL/g liquid-solid ratio, 4.0min homogenate time, 35min microwave irradiation time and 540W microwave irradiation power), satisfactory yields for the essential oil in the first separation column (10.31±0.33g/kg) and second separation column (0.82±0.03g/kg) were obtained. Compared with traditional methods, the developed method gave a higher yield of essential oil in a shorter time. In addition, GC-MS analysis of the essential oil indicated significant differences of the relative contents of individual volatile components in the essential oils obtained in the two separation columns. Therefore, the MHD-LLE technique developed here is a good alternative for the isolation of essential oil from A. fruticosa fruit as well as other herbs. Copyright © 2017 Elsevier B.V. All rights reserved.
Soylu, E Mine; Soylu, Soner; Kurt, Sener
2006-02-01
The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating oomycete pathogen Phytophthora infestans, causal agent of late blight disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants such as oregano (Origanum syriacum var. bevanii), thyme (Thymbra spicata subsp. spicata), lavender (Lavandula stoechas subsp. stoechas), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and laurel (Laurus nobilis), were investigated against P. infestans. Both contact and volatile phase effects of different concentrations of the essential oils used were determined by using two in vitro methods. Chemical compositions of the essential oils were also determined by GC-MS analysis. Major compounds found in essential oils of thyme, oregano, rosemary, lavender, fennel and laurel were carvacrol (37.9%), carvacrol (79.8), borneol (20.4%), camphor (20.2%), anethole (82.8%) and 1,8-cineole (35.5%), respectively. All essential oils were found to inhibit the growth of P. infestans in a dose-dependent manner. Volatile phase effect of oregano and thyme oils at 0.3 microg/ml air was found to completely inhibit the growth of P. infestans. Complete growth inhibition of pathogen by essential oil of fennel, rosemary, lavender and laurel was, however, observed at 0.4-2.0 microg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, oregano, thyme and fennel oils at 6.4 microg/ml were found to inhibit the growth of P. infestans completely. Essential oils of rosemary, lavender and laurel were inhibitory at relatively higher concentrations (12.8, 25.6, 51.2 microg/ml respectively). Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. Sporangial production was also inhibited by the essential oil tested. Light and scanning electron microscopic (SEM) observation on pathogen hyphae, exposed to both volatile and contact phase of oil, revealed considerable morphological alterations in hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage.
Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?
Bona, E; Cantamessa, S; Pavan, M; Novello, G; Massa, N; Rocchetti, A; Berta, G; Gamalero, E
2016-12-01
Candida albicans is an important opportunistic pathogen, responsible for the majority of yeast infections in humans. Essential oils, extracted from aromatic plants, are well-known antimicrobial agents, characterized by a broad spectrum of activities, including antifungal properties. The aim of this work was to assess the sensitivity of 30 different vaginal isolated strains of C. albicans to 12 essential oils, compared to the three main used drugs (clotrimazole, fluconazole and itraconazole). Thirty strains of C. albicans were isolated from vaginal swab on CHROMagar ™ Candida. The agar disc diffusion method was employed to determine the sensitivity to the essential oils. The antifungal activity of the essential oils and antifungal drugs (clotrimazole, itraconazole and fluconazole) were investigated using a microdilution method. Transmission and scanning electron microscopy analyses were performed to get a deep inside on cellular damages. Mint, basil, lavender, tea tree oil, winter savory and oregano essential oils inhibited both the growth and the activity of C. albicans more efficiently than clotrimazole. Damages induced by essential oils at the cellular level were stronger than those caused by clotrimazole. Candida albicans is more sensitive to different essential oils compared to the main used drugs. Moreover, the essential oil affected mainly the cell wall and the membranes of the yeast. The results of this work support the research for new alternatives or complementary therapies against vaginal candidiasis. © 2016 The Society for Applied Microbiology.
Hernandes, C; Pina, E S; Taleb-Contini, S H; Bertoni, B W; Cestari, I M; Espanha, L G; Varanda, E A; Camilo, K F B; Martinez, E Z; França, S C; Pereira, A M S
2017-04-01
The aim of this work was to evaluate the efficacy and safety of Lippia origanoides essential oil as a preservative in industrial products. The composition, antimicrobial activity, mutagenic and toxic potential of L. origanoides were determined. Then, the effect of essential oil as a preservative in food, cosmetics and pharmaceutical products was evaluated. The essential oil of L. origanoides consisted mainly of oxygenated monoterpenes (38·13%); 26·28% corresponded to the compound carvacrol. At concentrations ranging from 0·312 to 1·25 μl ml -1 and in association with polysorbate 80, the essential oil of L. origanoides inhibited the growth of all the tested micro-organisms. The medium lethal dose in mice was 3·5 g kg -1 , which categorizes it as nontoxic according to the European Union criteria, and negative results in the Ames test indicated that this oil was not mutagenic. In combination with polysorbate 80, the essential oil exerted preservative action on orange juice, cosmetic and pharmaceutical compositions, especially in the case of aqueous-based products. Lippia origanoides essential oil is an effective and safe preservative for orange juice, pharmaceutical and cosmetic products. This study allowed for the complete understanding of the antimicrobial action and toxicological potential of L. origanoides essential oil. These results facilitate the development of a preservative system based on L. origanoides essential oil. © 2017 The Society for Applied Microbiology.
Biological Activities and Composition of Ferulago carduchorum Essential Oil
Golfakhrabadi, Fereshteh; Khanavi, Mahnaz; Ostad, Seyed Nasser; Saeidnia, Soodabeh; Vatandoost, Hassan; Abai, Mohammad Reza; Hafizi, Mitra; Yousefbeyk, Fatemeh; Rad, Yaghoob Razzaghi; Baghenegadian, Ameneh; Ardekani, Mohammad Reza Shams
2015-01-01
Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum. Methods: Acetyl cholinesterase (AChE) inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively. Results: The major components of essential oil were (z)-β-ocimene (43.3%), α-pinene (18.23%) and bornyl acetate (3.98%). Among 43 identified components, monoterpenes were the most compounds (84.63%). The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml−1) and it was effective against Anopheles stephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml−1). The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml−1). Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models. PMID:26114148
Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed
2016-01-01
Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL-1 and 125.00 µg mL-1, respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes. PMID:27226881
Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed
2016-01-01
Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes.
Bakour, Meryem; Soulo, Najoua; Hammas, Nawal; Fatemi, Hinde El; Aboulghazi, Abderrazak; Taroq, Amal; Abdellaoui, Abdelfattah; Al-Waili, Noori; Lyoussi, Badiaa
2018-02-18
Oxidative stress is an important etiology of chronic diseases and many studies have shown that natural products might alleviate oxidative stress-induced pathogenesis. The study aims to evaluate the effect of Argan oil and Syzygium aromaticum essential oil on hydrogen peroxide (H₂O₂)-induced liver, brain and kidney tissue toxicity as well as biochemical changes in wistar rats. The antioxidant content of Argan oil and Syzygium aromaticum essential oil was studied with the use of gas chromatography. The animals received daily by gavage, for 21 days, either distilled water, Syzygium aromaticum essential oil, Argan oil, H₂O₂ alone, H₂O₂ and Syzygium aromaticum essential oil, or H₂O₂ and Argan oil. Blood samples were withdrawn on day 21 for the biochemical blood tests, and the kidney, liver and brain tissue samples were prepared for histopathology examination. The results showed that the content of antioxidant compounds in Syzygium aromaticum essential oil is higher than that found in Argan oil. H₂O₂ increased level of blood urea, liver enzymes, total cholesterol, Low Density Lipoprotein (LDL-C), Triglycerides (TG) and Very Low Density Lipoprotein (VLDL), and decreased the total protein, albumin and High Density Lipoprotein-cholesterol (HDL-C). There was no significant effect on blood electrolyte or serum creatinine. The histopathology examination demonstrated that H₂O₂ induces dilatation in the central vein, inflammation and binucleation in the liver, congestion and hemorrhage in the brain, and congestion in the kidney. The H₂O₂-induced histopathological and biochemical changes have been significantly alleviated by Syzygium aromaticum essential oil or Argan oil. It is concluded that the Argan oil and especially the mixture of Argan oil with Syzygium aromaticum essential oil can reduce the oxidative damage caused by H₂O 2, and this will pave the way to investigate the protective effects of these natural substances in the diseases attributed to the high oxidative stress.
Uzair, Bushra; Niaz, Naheed; Bano, Asma; Khan, Barkat Ali; Zafar, Naheed; Iqbal, Muhammad; Tahira, Riffat; Fasim, Fehmida
2017-09-01
This study was planned in order to investigate effective essential oils to inhibit in-vitro growth of Methicillin resistant Staphylococcus aureus (MRSA). In this study using disc diffusion method anti MRSA activity of ten diverse essential oils extracted from traditional plants namely Thymus vulgaris L, Mentha pulegium, Ocimum sanctum, Mentha piperita, Cymbopogon citratus, Rosmarinus officinalis L., Cortex cinnamom, Citrus nobilis x Citrus deliciosa, Origanum vulgare and Mentha sp. was examined. All the essential oils inhibited growth of S. aureus to different extent, by exhibiting moderate to elevated zones of inhibitions. Essential oils of cinnamon (Cortex cinnamomi) and thyme (Thymus vulgaris L) were observed to be the most powerful against MRSA strains used in this study. At lowest concentration of 25μl/ml essential oils comprehensible zone of inhibition was found 9±0.085mm and 8±0.051mm respectively, and at elevated concentrations there was a total decline in growth of MRSA and a very clear zone of inhibition was observed. A synergistic effect of essential oils in amalgamation with amoxicillin a Penicillin group of antibiotic was also examined. Interestingly a strong synergism was observed with oregano (Origanum vulgare) and pennyroyal mint (Mentha pulegium) essential oils, which were not so effective alone driven out to be important synergistic candidate. Our results demonstrated that essential oils of cinnamon and thyme can be used as potential antimicrobial agent against the Methicillin-resistant Staphylococcus aureus infections and Amoxicillin antibacterial activity can be enhanced using active constituents present in oregano and pennyroyal mint essential oils.
Zeidán-Chuliá, Fares; Rybarczyk-Filho, José L; Gursoy, Mervi; Könönen, Eija; Uitto, Veli-Jukka; Gursoy, Orhan V; Cakmakci, Lutfu; Moreira, José C F; Gursoy, Ulvi K
2012-06-01
Essential oils carry diverse antimicrobial and anti-enzymatic properties. Matrix metalloproteinase (MMP) inhibition characteristics of Salvia fruticosa Miller (Labiatae), Myrtus communis Linnaeus (Myrtaceae), Juniperus communis Linnaeus (Cupressaceae), and Lavandula stoechas Linnaeus (Labiatae) essential oils were evaluated. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS). Bioinformatical database analysis was performed by STRING 9.0 and STITCH 2.0 databases, and ViaComplex software. Antibacterial activity of essential oils against periodontopathogens was tested by the disc diffusion assay and the agar dilution method. Cellular proliferation and cytotoxicity were determined by commercial kits. MMP-2 and MMP-9 activities were measured by zymography. Bioinformatical database analyses, under a score of 0.4 (medium) and a prior correction of 0.0, gave rise to a model of protein (MMPs and tissue inhibitors of metalloproteinases) vs. chemical (essential oil components) interaction network; where MMPs and essential oil components interconnected through interaction with hydroxyl radicals, molecular oxygen, and hydrogen peroxide. Components from L. stoechas potentially displayed a higher grade of interaction with MMP-2 and -9. Although antibacterial and growth inhibitory effects of essential oils on the tested periodontopathogens were limited, all of them inhibited MMP-2 in vitro at concentrations of 1 and 5 µL/mL. Moreover, same concentrations of M. communis and L. stoechas also inhibited MMP-9. MMP-inhibiting concentrations of essential oils were not cytotoxic against keratinocytes. We propose essential oils of being useful therapeutic agents as MMP inhibitors through a mechanism possibly based on their antioxidant potential.
Moritz, Cristiane Mengue Feniman; Rall, Vera Lúcia Mores; Saeki, Margarida Júri; Júnior, Ary Fernandes
2012-01-01
The use of essential oils in foods has attracted great interest, due to their antagonistic action against pathogenic microorganisms. However, this action is undesirable for probiotic foods, as products containing Lactobacillus rhamnosus. The aim of the present study was to measure the sensitivity profile of L. rhamnosus and a yogurt starter culture in fermented milk, upon addition of increasing concentrations of cinnamon, clove and mint essential oils. Essential oils were prepared by steam distillation, and chemically characterised by gas chromatography-mass spectrometry (GC-MS) and determination of density. Survival curves were obtained from counts of L. rhamnosus and the starter culture (alone and in combination), upon addition of 0.04% essential oils. In parallel, titratable acidity was monitored over 28 experimental days. Minimum inhibitory concentration values, obtained using the microdilution method in Brain Heart Infusion medium, were 0.025, 0.2 and 0.4% for cinnamon, clove and mint essential oils, respectively. Cinnamon essential oil had the highest antimicrobial activity, especially against the starter culture, interfering with lactic acid production. Although viable cell counts of L. rhamnosus were lower following treatment with all 3 essential oils, relative to controls, these results were not statistically significant; in addition, cell counts remained greater than the minimum count of 108CFU/mL required for a product to be considered a probiotic. Thus, although use of cinnamon essential oil in yogurt makes starter culture fermentation unfeasible, it does not prevent the application of L. rhamnosus to probiotic fermented milk. Furthermore, clove and mint essential oil caused sublethal stress to L. rhamnosus. PMID:24031939
Chen, Hai-Ping; Yang, Kai; Zheng, Li-Shi; You, Chun-Xue; Cai, Qian; Wang, Cheng-Fang
2015-01-01
It was found that the essential oil of Acorus calamus rhizomes showed insecticidal activity. The aim of this study was to determine the chemical composition of the essential oil from A. calamus rhizomes, evaluate insecticidal and repellant activity against Lasioderma serricorne (LS) and Tribolium castaneum (TC), and to isolate any insecticidal constituents from the essential oil. Essential oil from A. calamus was obtained by hydrodistillation and analyzed by gas chromatography (GC) flame ionization detector and GC-mass spectrometry. The insecticidal and repellant activity of the essential oil and isolated compounds was tested using a variety of methods. The main components of the essential oil were identified to be isoshyobunone (15.56%), β-asarone (10.03%), bicyclo[6.1.0]non-1-ene (9.67%), shyobunone (9.60%) and methylisoeugenol (6.69%). Among them, the two active constituents were isolated and identified as shyobunone and isoshyobunone. The essential oil showed contact toxicity against LS and TC with LD50 values of 14.40 and 32.55 μg/adult, respectively. The isolated compounds, shyobunone and isoshyobunone also exhibited strong contact toxicity against LS adults with LD50 values of 20.24 and 24.19 μg/adult, respectively, while the LD50 value of isoshyobunone was 61.90 μg/adult for TC adults. The essential oil, shyobunone and isoshyobunone were strongly repellent (98%, 90% and 94%, respectively, at 78.63 nL/cm(2), after 2 h treatment) against TC. The essential oil, shyobunone and isoshyobunone possessed insecticidal and repellant activity against LS and TC.
Liu, Xin Chao; Zhou, Li Gang; Liu, Zhi Long; Du, Shu Shan
2013-05-15
The aim of this research was to determine the chemical composition of the essential oil of Acorus calamus rhizomes, its insecticidal activity against the booklouse, (Liposcelis bostrychophila) and to isolate any insecticidal constituents from the essential oil. The essential oil of A. calamus rhizomes was obtained by hydrodistillation and analyzed by GC-FID and GC-MS. A total of 32 components of the essential oil of A. calamus rhizomes was identified and the principal compounds in the essential oil were determined to be α-asarone (50.09%), (E)-methylisoeugenol (14.01%), and methyleugenol (8.59%), followed by β-asarone (3.51%), α-cedrene (3.09%) and camphor (2.42%). Based on bioactivity-guided fractionation, the three active constituents were isolated from the essential oil and identified as methyleugenol, (E)-methylisoeugenol and α-asarone. The essential oil exhibited contact toxicity against L. bostrychophila with an LD50 value of 100.21 µg/cm2 while three constituent compounds, α-asarone, methyleugenol, and (E)-methylisoeugenol had LD50 values of 125.73 µg/cm2, 103.22 µg/cm2 and 55.32 µg/cm2, respectively. Methyleugenol and (E)-methylisoeugenol possessed fumigant toxicity against L. bostrychophila adults with LC50 values of 92.21 μg/L air and 143.43 μg/L air, respectively, while the crude essential oil showed an LC50 value of 392.13 μg/L air. The results indicate that the essential oil of A. calamus rhizomes and its constituent compounds have potential for development into natural fumigants/insecticides for control of the booklice.
Alipour, Ziba; Taheri, Poroshat; Samadi, Nasrin
2015-04-01
Ferula cupularis (Boiss.) Spalik et S. R. Downie (Apiaceae) is a common plant in Iran that grows in the foothills of Dena Mountain. In traditional folk medicine, this plant has different applications, but there are no studies proving their uses. This study is the first attempt to investigate the chemical composition and antibacterial effect of the essential oils of F. cupularis. The essential oils from flower, leaf, and stem of F. cupularis were analyzed by using GC and GC-MS. Antibacterial activity of essential oils was determined by microdilution method against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The essential oil from flower of F. cupularis contained 15 monoterpene, 13 oxygenated monoterpene, and 2 sesquiterpene hydrocarbons. The leaf essential oil contained 12 monoterpene, 13 oxygenated monoterpene, 2 sesquiterpene, 6 oxygenated sesquiterpene hydrocarbons, and 3 non-terpenoid components. Stem essential oil contained one monoterpene, 23 oxygenated monoterpene, 2 sesquiterpene, and 6 oxygenated sesquiterpene hydrocarbons. The MIC value of stem essential oil was 2.85 mg/mL against both Gram-positive bacteria and Gram-negative bacteria except P. aeruginosa which was inhibited at 22.75 mg/mL. The MIC values of leaf and flower essential oils were higher than 5.69 and 22.75 mg/mL, respectively. This study highlighted the strong antibacterial effect of Ferula cupularis's essential oil which might be due to its high content of oxygenated monoterpene hydrocarbons. Our results suggested that this plant may be a good candidate for further biological and pharmacological investigations.
Poma, Paola; Labbozzetta, Manuela; Notarbartolo, Monica; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Sajeva, Maurizio; Zito, Pietro
2018-01-01
The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell lines (HA22T/VGH, HepG2, Hep3B) and triple negative breast cancer cell lines (SUM 149, MDA-MB-231). In the essential oil we detected 35 compounds. The results of the biological assays indicate that essential oil of G. rosmarinifolia induces cell growth inhibition at concentration-dependent way in all cell line models. This oil does not seem to possess antioxidant activity, while the cytotoxicity of G. rosmarinifolia essential oil appeared to involve, at least in part, a pro-oxidant mechanism. Our results show for the first time the antitumoral and pro-oxidant activities of G. rosmarinifolia essential oil and suggest that it may represent a resource of pharmacologically active compounds.
Le, Nghia-Thu Tram; Dam, Sao-Mai
2018-01-01
Several herbal remedies have been used as topical agents to cure burn wound, one of the most common injuries in worldwide. In this study, we investigated the potential use of Cleistocalyx operculatus essential oil to treat the burn wound. We identified a total of 13 bioactive compounds of essential oil, several of which exhibited the anti-inflammatory and antimicrobial activities. Furthermore, the essential oil showed the antibacterial effect against S. aureus but not with P. aeruginosa. The supportive effect of essential oil on burn wound healing process also has been proven. Among three groups of mice, wound contraction rate of essential oil treated group (100%) was significantly higher than tamanu oil treated (79%) and control mice (71%) after 20 days (0.22 ± 0.03 versus 0.31 ± 0.02 cm2, resp., p < 0.05). Histological studies revealed that burn wounds treated with essential oil formed a complete epidermal structure, thick and neatly arranged fibers, and scattered immune cells in burn wound. On the contrary, saline treated burn wound formed uneven epidermal layer with necrotic ulcer, infiltration of immune cells, and existence of granulation tissue. This finding demonstrated Cleistocalyx operculatus essential oil as promising topical dermatological agent to treat burn wound. PMID:29692805
Plata-Rueda, Angelica; Martínez, Luis Carlos; Santos, Marcelo Henrique Dos; Fernandes, Flávio Lemes; Wilcken, Carlos Frederico; Soares, Marcus Alvarenga; Serrão, José Eduardo; Zanuncio, José Cola
2017-04-20
This study evaluated the insecticidal activity of garlic, Allium sativum Linnaeus (Amaryllidaceae) essential oil and their principal constituents on Tenebrio molitor. Garlic essential oil, diallyl disulfide, and diallyl sulfide oil were used to compare the lethal and repellent effects on larvae, pupae and adults of T. molitor. Six concentrations of garlic essential oil and their principal constituents were topically applied onto larvae, pupae and adults of this insect. Repellent effect and respiration rate of each constituent was evaluated. The chemical composition of garlic essential oil was also determined and primary compounds were dimethyl trisulfide (19.86%), diallyl disulfide (18.62%), diallyl sulfide (12.67%), diallyl tetrasulfide (11.34%), and 3-vinyl-[4H]-1,2-dithiin (10.11%). Garlic essential oil was toxic to T. molitor larva, followed by pupa and adult. In toxic compounds, diallyl disulfide was the most toxic than diallyl sulfide for pupa > larva > adult respectively and showing lethal effects at different time points. Garlic essential oil, diallyl disulfide and diallyl sulfide induced symptoms of intoxication and necrosis in larva, pupa, and adult of T. molitor between 20-40 h after exposure. Garlic essential oil and their compounds caused lethal and sublethal effects on T. molitor and, therefore, have the potential for pest control.
Plata-Rueda, Angelica; Martínez, Luis Carlos; Santos, Marcelo Henrique Dos; Fernandes, Flávio Lemes; Wilcken, Carlos Frederico; Soares, Marcus Alvarenga; Serrão, José Eduardo; Zanuncio, José Cola
2017-01-01
This study evaluated the insecticidal activity of garlic, Allium sativum Linnaeus (Amaryllidaceae) essential oil and their principal constituents on Tenebrio molitor. Garlic essential oil, diallyl disulfide, and diallyl sulfide oil were used to compare the lethal and repellent effects on larvae, pupae and adults of T. molitor. Six concentrations of garlic essential oil and their principal constituents were topically applied onto larvae, pupae and adults of this insect. Repellent effect and respiration rate of each constituent was evaluated. The chemical composition of garlic essential oil was also determined and primary compounds were dimethyl trisulfide (19.86%), diallyl disulfide (18.62%), diallyl sulfide (12.67%), diallyl tetrasulfide (11.34%), and 3-vinyl-[4H]-1,2-dithiin (10.11%). Garlic essential oil was toxic to T. molitor larva, followed by pupa and adult. In toxic compounds, diallyl disulfide was the most toxic than diallyl sulfide for pupa > larva > adult respectively and showing lethal effects at different time points. Garlic essential oil, diallyl disulfide and diallyl sulfide induced symptoms of intoxication and necrosis in larva, pupa, and adult of T. molitor between 20–40 h after exposure. Garlic essential oil and their compounds caused lethal and sublethal effects on T. molitor and, therefore, have the potential for pest control. PMID:28425475
Tran, Gia-Buu; Le, Nghia-Thu Tram; Dam, Sao-Mai
2018-01-01
Several herbal remedies have been used as topical agents to cure burn wound, one of the most common injuries in worldwide. In this study, we investigated the potential use of Cleistocalyx operculatus essential oil to treat the burn wound. We identified a total of 13 bioactive compounds of essential oil, several of which exhibited the anti-inflammatory and antimicrobial activities. Furthermore, the essential oil showed the antibacterial effect against S. aureus but not with P. aeruginosa. The supportive effect of essential oil on burn wound healing process also has been proven. Among three groups of mice, wound contraction rate of essential oil treated group (100%) was significantly higher than tamanu oil treated (79%) and control mice (71%) after 20 days (0.22 ± 0.03 versus 0.31 ± 0.02 cm 2 , resp., p < 0.05). Histological studies revealed that burn wounds treated with essential oil formed a complete epidermal structure, thick and neatly arranged fibers, and scattered immune cells in burn wound. On the contrary, saline treated burn wound formed uneven epidermal layer with necrotic ulcer, infiltration of immune cells, and existence of granulation tissue. This finding demonstrated Cleistocalyx operculatus essential oil as promising topical dermatological agent to treat burn wound.
Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; de Deus, Juliana Telles; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça
2016-01-01
Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence. PMID:27384083
Gaire, Sudip; O'Connell, Mary; Holguin, Francisco O; Amatya, Anup; Bundy, Scott; Romero, Alvaro
2017-04-01
The Turkestan cockroach, Blatta lateralis (Walker), has become the most important peridomestic species in urban areas of the Southwestern United States. The aim of this study was to evaluate the use of botanical compounds to control this urban pest. We tested the acute toxicity and repellency of six botanical constituents and three essential oils on Turkestan cockroach nymphs. Chemical composition of the essential oils was also determined. Topical and fumigant assays with nymphs showed that thymol was the most toxic essential oil constituent, with a LD50 of 0.34 mg/nymph and a LC50 of 27.6 mg/liter air, respectively. Contact toxicity was also observed in assays with trans-Cinnamaldehyde, eugenol, geraniol, methyl eugenol, and p-Cymene. Methyl eugenol and geraniol had limited fumigant toxicity. The essential oils from red thyme, clove bud, and Java citronella exhibited toxicity against nymphs. Cockroaches avoided fresh dry residues of thymol and essential oils. Chemical analysis of the essential oils confirmed high contents of effective essential oil constituents. Our results demonstrated that essential oils and some of their constituents have potential as eco-friendly insecticides for the management of Turkestan cockroaches. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Essential oil biosynthesis and regulation in the genus Cymbopogon.
Ganjewala, Deepak; Luthra, Rajesh
2010-01-01
Essential oils distilled from Cymbopogon species are of immense commercial value as flavors and fragrances in the perfumery, cosmetics, soaps, and detergents and in pharmaceutical industries. Two major constituents of the essential oil, geraniol and citral, due to their specific rose and lemon like aromas are widely used as flavors, fragrances and cosmetics. Citral is also used for the synthesis of vitamin A and ionones (for example, beta-ionone, methyl ionone). Moreover, Cymbopogon essential oils and constituents possess many useful biological activities including cytotoxic, anti-inflammatory and antioxidant. Despite the immense commercial and biological significance of the Cymbopogon essential oils, little is known about their biosynthesis and regulatory mechanisms. So far it is known that essential oils are biosynthesized via the classical acetate-MVA route and existence of a newly discovered MEP pathway in Cymbopogon remains as a topic for investigation. The aim of the present review is to discuss the biosynthesis and regulation of essential oils in the genus Cymbopogon with given emphasis to two elite members, lemongrass (C. flexuosus Nees ex Steud) and palmarosa (C. martinii Roxb.). This article highlights the work done so far towards understanding of essential oil biosynthesis and regulation in the genus Cymbopogon. Also, based on our experiences with Cymbopogon species, we would like to propose C. flexuosus as a model system for the study of essential oil metabolism beyond the much studied plant family Lamiaceae.
Rivera-Yañez, C Rebeca; Terrazas, L Ignacio; Jimenez-Estrada, Manuel; Campos, Jorge E; Flores-Ortiz, Cesar M; Hernandez, Luis B; Cruz-Sanchez, Tonatiuh; Garrido-Fariña, German I; Rodriguez-Monroy, Marco A; Canales-Martinez, M Margarita
2017-12-05
The candidiasis caused by C. albicans is a public health problem. The abuse of antifungals has contributed to the development of resistance. B. morelensis has demonstrated antibacterial and antifungal activities. In this work the activity of the essential oil of B. morelensis was evaluated and for its two pure compounds with analysis of the different mechanisms of pathogenesis important for C. albicans . The essential oil was obtained by the hydro-distillation method and analyzed using GC-MS. The anti- Candida activity was compared between to essential oil, α-Pinene and γ-Terpinene. GC-MS of the essential oil demonstrated the presence of 13 compounds. The essential oil showed antifungal activity against four C. albicans strains. The most sensitive strain was C. albicans 14065 (MFC 2.0 mg/mL and MIC 50 0.125 mg/mL) with α-Pinene and γ-Terpinene having MFCs of 4.0 and 16.0 mg/mL respectively. The essential oil inhibited the growth of the germ tube in 87.94% (8.0 mg/mL). Furthermore, it was observed that the essential oil diminishes the transcription of the gene INT1. This work provides evidence that confirms the anti- Candida activity of the B. morelensis essential oil and its effect on the growth of the germ tube and transcription of the gene INT1.
Guo, Xiao; Shang, Xiaofei; Li, Bing; Zhou, Xu Zheng; Wen, Hao; Zhang, Jiyu
2017-03-15
In this paper, the acaricidal activities of Rhododendron nivale Hook. f. and its main compound, δ-cadinene were investigated, and the chemical composition of the essential oil was analyzed. The results showed that among aqueous, 70% ethanols, acetic ether, chloroform, petroleum ether and essential oil extracts from the shoots and leaves, the essential oil showed the best in vitro acaricidal activity against adult P. cuniculi, which occurred in a concentration- and time-dependent manner. The median lethal time (LT 50 ) values of four concentrations (33.33-4.17mg/ml) of the essential oil ranged from 1.476 to 25.900h, respectively. After the treatment of P. cuniculi with the essential oil and ivermectin, infected rabbits were free of scabs or secretions in the ear canal by day 20. Then, the percent yield of essential oil from the leaves and shoots was 2.45% (w/w), which includes 50 compounds. The primary component identified was terpenes, and among of compounds identified from the essential oil of R. nivale the highest relative content was δ-cadinene, which also presented the marked acaricidal activity against Psoroptes cuniculi in vitro. These findings provide evidence for the use of acaricides as a traditional medicine and indicate that the essential oil and δ-cadinene could be used to control mites in livestock. Copyright © 2017 Elsevier B.V. All rights reserved.
The Sensitivity of Endodontic Enterococcus spp. Strains to Geranium Essential Oil.
Łysakowska, Monika E; Sienkiewicz, Monika; Banaszek, Katarzyna; Sokołowski, Jerzy
2015-12-21
Enterococci are able to survive endodontic procedures and contribute to the failure of endodontic therapy. Thus, it is essential to identify novel ways of eradicating them from infected root canals. One such approach may be the use of antimicrobials such as plant essential oils. Enterococcal strains were isolated from endodontically treated teeth by standard microbiological methods. Susceptibility to antibiotics was evaluated by the disc-diffusion method. The minimal inhibitory concentration (MIC) of geranium essential oil was investigated by microdilution in 96-well microplates in Mueller Hinton Broth II. Biofilm eradication concentrations were checked in dentin tests. Geranium essential oil inhibited enterococcal strains at concentrations ranging from 1.8-4.5 mg/mL. No correlation was shown between resistance to antibiotics and the MICs of the test antimicrobials. The MICs of the test oil were lower than those found to show cytotoxic effects on the HMEC-1 cell line. Geranium essential oil eradicated enterococcal biofilm at concentrations of 150 mg/mL. Geranium essential oil inhibits the growth of endodontic enterococcal species at lower concentrations than those required to reach IC50 against the HMEC-1 cell line, and is effective against bacteria protected in biofilm at higher concentrations. In addition, bacteria do not develop resistance to essential oils. Hence, geranium essential oil represents a possible alternative to other antimicrobials during endodontic procedures.
Borges, Andrezza Raposo; Aires, Juliana Ramos de Albuquerque; Higino, Taciana Mirely Maciel; de Medeiros, Maria das Graças Freire; Citó, Antonia Maria das Graças Lopes; Lopes, José Arimatéia Dantas; de Figueiredo, Regina Celia Bressan Queiroz
2012-10-01
Chagas disease, caused by Trypanosoma cruzi, is an important cause of mortality and morbidity in Latin America. There are no vaccines available, the chemotherapy used to treat this illness has serious side effects and its efficacy on the chronic phase of disease is still a matter of debate. In a search for alternative treatment for Chagas disease, essential oils extracted from traditional medicinal plants Lippia sidoides, Lippia origanoides, Chenopodium ambrosioides, Ocimum gratissimum, Justicia pectorales and Vitex agnus-castus were investigated in vitro for trypanocidal and cytotoxic activities. Essential Oils were extracted by hydrodistillation and submitted to chemical analysis by gas chromatography/mass spectrometry. The concentration of essential oils necessary to inhibit 50% of the epimastigotes or amastigotes growth (IC(50)) and to kill 50% of trypomastigote forms (LC(50)) was estimated. The most prevalent chemical constituents of these essential oils were monoterpenes and sesquiterpenes. All essential oils tested demonstrated an inhibitory effect on the parasite growth and survival. L. sidoides and L. origanoides essential oils were the most effective against trypomastigote and amastigote forms respectively. No significant cytotoxic effects were observed in mouse peritoneal macrophages incubated with essential oils which were more selective against the parasites than mammalian cells. Taken together, our results point towards the use of these essential oils as potential chemotherapeutic agent against T. cruzi. Copyright © 2012 Elsevier Inc. All rights reserved.
Lazar-Baker, E E; Hetherington, S D; Ku, V V; Newman, S M
2011-03-01
To assess the effect of several commercial essential oils samples Australian lemon myrtle (Backhousia citriodora), cinnamon bark (Cinnamomum zeylanicum), oregano (Origanum vulgare), thyme oil (Thymus vulgaris), clove bud (Eugenia caryophyllata), valerian (Valeriana officinalis) and Australian tea tree oil (Melaleuca alternifolia) on mycelium growth and spore germination of Monilinia fructicola. The effectiveness of lemon myrtle essential oil as a fumigant for the control of brown rot in nectarines was evaluated. Monilinia fructicola exhibited a different level of sensitivity to each tested essential oil with results suggesting that the essential oils provide excellent control of the pathogen with respect to mycelium growth and spore germination at very low concentrations, whereas for others higher concentrations are needed to reduce significant fungal growth. In vivo application of lemon myrtle essential oil effectively reduced the incidence of M. fructicola on noninoculated fruit. Fumigation of nectarines following inoculation did not reduce the incidence of brown rot in comparison with the inoculated control treatment. No evidence of phytotoxicity on the fruit was recorded. Lemon myrtle essential oil exhibited the strongest antifungal activity against M. fructicola, in vitro and to a lesser extent, under in vivo conditions. The results demonstrate that lemon myrtle essential oil, in particular, has potential as an antifungal agent to control M. fructicola. © 2011 NSW Industry & Investment, Australia. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Han, Xuesheng; Beaumont, Cody; Stevens, Nicole
2017-12-01
Research on the biological effects of essential oils on human skin cells is scarce. In the current study, we primarily explored the biological activities of 10 essential oils (nine single and one blend) in a pre-inflamed human dermal fibroblast system that simulated chronic inflammation. We measured levels of proteins critical for inflammation, immune responses, and tissue-remodeling processes. The nine single oils were distilled from Citrus bergamia (bergamot), Coriandrum sativum (cilantro), Pelargonium graveolens (geranium), Helichrysum italicum (helichrysum), Pogostemon cablin (patchouli), Citrus aurantium (petitgrain), Santalum album (sandalwood), Nardostachys jatamansi (spikenard), and Cananga odorata (ylang ylang). The essential oil blend (commercial name Immortelle) is composed of oils from frankincense, Hawaiian sandalwood, lavender, myrrh, helichrysum, and rose. All the studied oils were significantly anti-proliferative against these cells. Furthermore, bergamot, cilantro, and spikenard essential oils primarily inhibited protein molecules related to inflammation, immune responses, and tissue-remodeling processes, suggesting they have anti-inflammatory and wound healing properties. Helichrysum and ylang ylang essential oils, as well as Immortelle primarily inhibited tissue remodeling-related proteins, suggesting a wound healing property. The data are consistent with the results of existing studies examining these oils in other models and suggest that the studied oils may be promising therapeutic candidates. Further research into their biological mechanisms of action is recommended. The differential effects of these essential oils suggest that they exert activities by different mechanisms or pathways, warranting further investigation. The chemical composition of these oils was analyzed using gas chromatography-mass spectrometry.
Zarai, Zied; Ben Chobba, Ines; Ben Mansour, Riadh; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel
2012-08-13
The aim of the present study was to appraise the antimicrobial activity of Ricinus communis L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of Ricinus communis L. essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of Ricinus communis L. essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The essential oil from the leaves of Ricinus communis L. was analyzed by GC-MS and bioassays were carried out. Five constituents of the oil were identified by GC-MS. The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against twelve bacteria and four fungi species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested with higher sensitivity for Bacillus subtilis, Staphylococcus aureus and Enterobacter cloacae. The cytotoxic and apoptotic effects of the essential oil on HeLa cell lines were examined by MTT assay. The cytotoxicity of the oil was quite strong with IC50 values less than 2.63 mg/ml for both cell lines. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of Ricinus communis L., indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections.
Koc, Samed; Oz, Emre; Cetin, Huseyin
2012-06-01
The repellent activities of the essential oils of two Thymus (Thymus sipyleus Boiss. subsp. sipyleus and Thymus revolutus Celak) and two Mentha (Mentha spicata L. subsp. spicata and Mentha longifolia L.) species against Ochlerotatus caspius (Pallas, 1771) (Diptera: Culicidae) are presented. The essential oils were obtained by hydrodistillation of the aerial parts of the plants in flowering period and repellency tests were done with a Y-tube olfactometer. All essential oils showed repellency in varying degrees and exhibited no significant time-dependent repellent activities. When all test oils compared for repellent activities there was no significant activity detected within 15 min exposure period. Mentha essential oils had better activity than Thymus essential oils, producing high repellency (73.8-84.2%) at 30th min on Oc. caspius. Mentha longifolia has the best mosquito repellent activity among the plants tested at the 25th min. Th. sipyleus subsp. sipyleus essential oil produced >85% repellent activity at the 15th min, but the effect decreased noticeably to 63.1% and 68% at 25th and 30th min, respectively.
Meng, Hao; Li, Andrew Y; Costa Junior, Livio M; Castro-Arellano, Ivan; Liu, Jingze
2016-02-01
DEET and Eight commercially available essential oils (oregano, clove, thyme, vetiver, sandalwood, cinnamon, cedarwood, and peppermint) were evaluated for repellency against host-seeking nymphs of the lone star tick, Amblyomma americanum. Concentration-repellency response was established using the vertical paper bioassay technique for each essential oil and compared with that of N,N-diethyl-3-methyl benzamide (DEET), a standard repellent compound present in many commercial repellent formulations. The effective concentration of DEET that repels 50% of ticks (EC50) was estimated at 0.02 mg/cm(2), while EC50s of the essential oils fall between 0.113 and 0.297 mg/cm(2). Based on EC50 estimates, oregano essential oil was the most effective among all essential oils tested, followed by clove, thyme, vetiver, sandalwood, cinnamon, cedarwood, and peppermint oils. None of the tested essential oils demonstrated a level of tick repellency found with DEET. Results from this study illustrated the challenge in search for more effective natural tick repellents.
Misharina, T A; Fatkullina, L D; Alinkina, E S; Kozachenko, A I; Nagler, L G; Medvedeva, I B; Goloshchapov, A N; Burlakova, E B
2014-01-01
We studied the effects of essential oil from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Bulb mice. We found that the essential oil was an efficient in vivo bioantioxidant when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All essential oil studied inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increased membrane resistance to spontaneous hemolysis, decreased membrane microviscosity, maintenance of their structural integrity, and functional activity. The essential oil substantially decreased the LPO intensity in the liver and the brains of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract.
Ashrafi, Behnam; Ramak, Parvin; Ezatpour, Behrouz; Talei, Gholam Reza
2017-01-01
Dracocephalum kotschyi Boiss is a herb with wide-spread applications. Lorestan traditional healers have applied it for the treatment of rheumatoid diseases and stomach disorders. Hydrodistillation process was used for essential oil extraction, the extracted essential oil was then analyzed through combination of capillary GC-FID, GC-MS and RI. The in vitro antimicrobial, antioxidant and cytotoxic activities of this essential oil were examined. Results indicate that the essential oil has a broad range of anti-microbial activity against all of the tested microorganisms. The 50% of cytotoxic concentrations was 26.4 μg/ml and 4266.7 μg/ml for Hela cells and human lymphocytes, respectively. The oil cytotoxicity against the human tumor cell line was far higher than the amount required for human healthy cells. Conversely, the essential oil's IC 50 value of 49.2 μg/ml in the DPPH assay, could be regarded as its strong antioxidant potential. According to the data obtained, it can be concluded that D. kotschyi essential oil could be applied as a safe antibacterial and antioxidant agent for food and pharmaceutical purposes.
Ma, Tingting; Luo, Jiyang; Tian, Chengrui; Sun, Xiangyu; Quan, Meiping; Zheng, Cuiping; Kang, Lina; Zhan, Jicheng
2015-03-01
The effect of three processing units (blanching, enzyme liquefaction, pasteurisation) on chemical composition and antimicrobial activity of carrot juice essential oil was investigated in this paper. A total of 36 compounds were identified by GC-MS from fresh carrot juice essential oil. The main constituents were carotol (20.20%), sabinene (12.80%), β-caryophyllene (8.04%) and α-pinene (6.05%). Compared with the oil of fresh juice, blanching and pasteurisation could significantly decrease the components of the juice essential oil, whereas enzyme liquefaction had no considerable effect on the composition of juice essential oil. With regard to the antimicrobial activity, carrot juice essential oil could cause physical damage and morphological alteration on microorganisms, while the three different processing units showed noticeable differences on the species of microorganisms, the minimum inhibitory concentration and minimum bactericidal concentration. Results revealed that the carrot juice essential oil has great potential for application as a natural antimicrobial applied in pharmaceutical and food industries. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, C-H; Huang, Y-C; Tsai, M-L; Cheng, C-Y; Liu, L-L; Yen, Y-W; Chen, W-L
2015-10-01
Volatile essential oils of mint species are used for cosmetics and in skin care products. In this study, we evaluated the main chemical components of the lime mint and the anti-melanogenic properties of its main components. The essential oil was analysed by gas chromatography-mass spectrometry (GC/MS). The anti-melanogenic effects of mint essential oil and β-caryophyllene were investigated in B16F10 murine melanoma cells. The main components of lime mint essential oil were found to be D-limonene (41.10%), D-carvone (8.58%), δ-selinene (6.73%) and β-caryophyllene (6.24%). The lime mint essential oil reduced melanin production in a dose-dependent manner in murine B16F10 cells. β-Caryophyllene, one of the main compounds in lime mint essential oil, could reduce melanogenesis by down-regulating the expression of MITF, TRP-1, TRP-2 and tyrosinase, resulting in a decrease in melanin content decrease. These results reveal that lime mint essential oil and β-caryophyllene are considered to be valuable as potential skin-whitening agents. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
The anti-dermatophyte activity of Zataria multiflora essential oils.
Mahboubi, M; HeidaryTabar, R; Mahdizadeh, E
2017-06-01
Dermtophytes are a group of pathogenic fungi and the major cause of dermatophytosis in humans and animals. Fighting dermatophytes by natural essential oils is one important issue in new researches. In this investigation, we evaluated the anti-dermatophyte activities of three samples of Z. multiflora essential oils against dermatophytes along with analysis of chemical compositions of the essential oils and their anti-elastase activities on elastase production in dermatophytes. Carvacrol (1.5-34.4%), thymol (25.8-41.2%), carvacrol methyl ether (1.9-28.3%) and p-cymene (2.3-8.3%) were the main components of Z. multiflora essential oils. Z. multiflora essential oils (100ppm) inhibited the mycelium growth of dermatophytes (6±1.7-47.0±1.4%) and had the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 0.03-0.25μl/ml against dermatophytes. Essential oils inhibited elastase produced in dermatophytes and pure porcine elastase. Z. multiflora essential oils can be used as natural anti-dermatophyte agent for fighting dermatophytes in further preclinical and clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome.
Fontenelle, R O S; Morais, S M; Brito, E H S; Brilhante, R S N; Cordeiro, R A; Nascimento, N R F; Kerntopf, M R; Sidrim, J J C; Rocha, M F G
2008-05-01
To find new antifungal agents among essential oils from Brazilian Croton species. Plant leaves were steam distilled and the obtained essential oils were analyzed by gas chromatography/mass spectroscopy. The main constituents were estragole and anethole for Croton zehntneri, methyl-eugenol and bicyclogermacrene for Croton nepetaefolius and spathulenol and bicyclogermacrene for Croton argyrophylloides. The antifungal activity of essential oils was evaluated against Candida albicans, Candida tropicalis and Microsporum canis by the agar-well diffusion method and the minimum inhibitory concentration (MIC) by the broth microdilution method. Essential oils of Croton species demonstrated better activity against M. canis. Among the three plants C. argyrophylloides showed the best results, with MIC ranging from 9 to 19 microg ml(-1). The acute administration of the essential oil up to 3 g kg(-1) by the oral route to mice was devoid of overt toxicity. The studied essential oils are active in vitro against the dermatophyte M. canis and present relative lack of acute toxicity in vivo. Because of its antifungal activity and low toxicity, the essential oils of studied Croton species are promising sources for new phytotherapeutic agents to treat dermatophytosis.
Pajohi, M R; Tajik, H; Farshid, A A; Hadian, M
2011-04-01
To investigate effects of various concentrations of the essential oil of Cuminum cyminum L. seed alone and in combination with nisin on survival of vegetative forms of Bacillus cereus and Bacillus subtilis in a food model (commercial barley soup) and their ultrastructure. Gas chromatography-mass spectrometry analysis indicated that cumin aldehyde (29·02%) and α-terpinen-7-al (20·70%) constituted the highest amount of the essential oil. The lowest concentration of the essential oil significantly affected the growth of the bacteria at 8°C but not at 25°C. Synergistic effect of the essential oil in combination with the lowest concentration of nisin was observed on the bacteria at 8°C. Evaluation of the sensory properties showed that concentration of 0·15 μl ml−1 of the essential oil was the most acceptable. The essential oil of C. cyminum L. seed showed the most bactericidal effects on B. cereus at 8°C. Ultrastructural studies of vegetative cells confirmed the synergistic destructive effects of the essential oil and nisin on membrane and cell wall of the bacteria.
Efficacy of Essential Oils of Thymus vulgaris and Origanum vulgare on Echinococcus granulosus
Pensel, P. E.; Maggiore, M. A.; Gende, L. B.; Eguaras, M. J.; Denegri, M. G.; Elissondo, M. C.
2014-01-01
The aim of the present work was to determine the in vitro effect of T. vulgaris and O. vulgare essential oils against E. granulosus protoscoleces and cysts. Essential oils were added to the medium resulting in thymol final concentrations of 10 μg/mL. The essential oils had a time-dependent effect provoking the complete loss of protoscolex viability after 72 days of postincubation. The results were confirmed at the ultrastructure level. Loss of infectivity in protoscoleces incubated with O. vulgare after 60 days was observed. On the other hand, the weight of cysts recorded in mice inoculated with T. vulgaris treated protoscoleces was significantly lower than that obtained in control group. Gamma-glutamyl-transpeptidase activity was readily detected in the culture supernatant of protoscoleces treated either with the essential oils or thymol. T. vulgaris and O. vulgare essential oils and thymol can induce cell apoptosis of protoscoleces after short incubation times. The efficacy of T. vulgaris and O. vulgare essential oils was also demonstrated in vitro on E. granulosus murine cysts. Our data suggest that essential oils of T. vulgaris and O. vulgare have anthelmintic effect against protoscoleces and cysts of E. granulosus. PMID:25180033
Control of Aspergillus section Flavi growth and aflatoxin accumulation by plant essential oils.
Bluma, R; Amaiden, M R; Daghero, J; Etcheverry, M
2008-07-01
The antifungal effect of Pimpinella anisum (anise), Pëumus boldus (boldus), Mentha piperita (peppermint), Origanum vulgare (oregano) and Minthosthachys verticillata (peperina) essential oils against Aspergillus section Flavi (two isolates of Aspergillus parasiticus and two isolates of Aspergillus flavus) was evaluated in maize meal extract agar at 0.982 and 0.955 water activities, at 25 degrees C. The percentage of germination, germ-tube elongation rate, growth rate and aflatoxin B(1) (AFB(1)) accumulation at different essential oils concentrations were evaluated. Anise and boldus essential oils were the most inhibitory at 500 mg kg(-1) to all growth parameters of the fungus. These essential oils inhibited the percentage of germination, germ-tube elongation rate and fungal growth. AFB(1) accumulation was completely inhibited by anise, boldus and oregano essential oils. Peperina and peppermint essential oils inhibited AFB(1) production by 85-90% in all concentrations assayed. Anise and boldus essential oils could be considered as effective fungitoxicans for Aspergillus section flavi. Our results suggest that these phytochemical compounds could be used alone or in conjunction with other substances to control the presence of aflatoxigenic fungi in stored maize.
Anti-inflammatory activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao.
Du, Yong-Hua; Feng, Rui-Zhang; Li, Qun; Wei, Qin; Yin, Zhong-Qiong; Zhou, Li-Jun; Tao, Cui; Jia, Ren-Yong
2014-01-01
The anti-inflammatory activity of the essential oil from C. longepaniculatum was evaluated by three experimental models including the dimethyl benzene-induced ear edema in mice, the carrageenan-induced paw edema in rat and the acetic acid-induced vascular permeability in mice. The influence of the essential oil on histological changes and prostaglandin E2 (PGE2), histamine and 5-hydroxytryptamine (5-HT) production associated with carrageenan-induced rat paw edema was also investigated. The essential oil (0.5, 0.25, 0.13 ml/kg b.w.) showed significantly inhibition of inflammation along with a dose-dependent manner in the three experimental models. The anti-inflammatory activity of essential oil was occurred both in early and late phase and peaked at 4 h after carrageenan injection. The essential oil resulted in a dose dependent reduction of the paw thickness, connective tissue injury and the infiltration of inflammatory cell. The essential oil also significantly reduced the production of PGE2, histamine and 5-HT in the exudates of edema paw induced by carrageenan. Both the essential oil and indomethacin resulted relative lower percentage inhibition of histamine and 5-HT than that of PGE2 at 4 h after carrageenan injection.
NASA Astrophysics Data System (ADS)
Rahmawati, Della; Chandra, Mega; Santoso, Stefanus; Puteri, Maria Gunawan
2017-01-01
The essential oil of sweet orange, lemon, and key lime peel were analyzed for their antimicrobial activity. The antimicrobial activity of each citrus essential oil with different concentration was assessed using broth macro-dilution against Bacillus sp, Eschericia coli, Rhizopus stolonifer, and Botrytis sp which represented specific spoilage microorganism in tofu and fresh strawberry. Among all the citrus peel essential oils tested, lemon peel essential oil with 0.6% concentration showed significant activity as an antimicrobial agent against Escherichia coli and Bacillus sp. In other hand 1% of lemon peel essential oil is also considered to be the best concentration of inhibiting the Rhizopus Stolonifer and Botrytis sp. Lemon peel essential oil which has the highest antimicrobial activity was combined with two different kind of edible coating agents (cassava starch and sodium alginate) and was applied in both tofu and strawberry to observe whether it had possibility to decrease the degradation rate of tofu and strawberry. The addition of 0.6% and 1% lemon peel essential oil with each of edible coating agents was significantly able to reduce the degradation of tofu and fresh strawberry.
Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases
Orchard, Ané
2017-01-01
Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822
Felhi, Samir; Chaaibia, Mouna; Bakari, Sana; Mansour, Riadh Ben; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel
2017-01-01
This study aimed to investigate the antimicrobial and cytotoxic activities of essential oil isolated by the hydro-distillation of aerial parts of Thymelaea hirsuta. The antimicrobial activity of the oil was evaluated against eight bacterial and three fungal pathogenic strains. The results revealed that the essential oil exhibited a moderate-to-potent anti-microbial activity against all the microorganisms tested. Gram-positive bacteria were noted to be more sensitive to the oil than gram-negative bacteria and yeasts. In vitro cytotoxicity evaluation against HeLa cell lines showed that the essential oil exhibited moderate cytotoxicity on human tumor cells, with a high IC 50 value of 175μg/mL. To the author's knowledge, this is the first study reporting on the antimicrobial and cytotoxic activities of Thymelaea hirsuta essential oil. Overall, the results indicate that the T. hirsuta essential oil has a number of attractive properties that might open new promising opportunities for the control or prevention of a wide range of microbial infections and cancers and can facilitate the use of essential oils as natural preservatives against spoilage microorganisms in food systems.
In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.
Inouye, S; Uchida, K; Yamaguchi, H
2001-05-01
The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.
Antioxidant effect of poleo and oregano essential oil on roasted sunflower seeds.
Quiroga, Patricia R; Grosso, Nelson R; Nepote, Valeria
2013-12-01
The objective was to evaluate the stability of sensory and chemical parameters in roasted sunflower seeds supplemented with oregano and poleo essential oils; and the consumer acceptability of this product. Four samples were prepared: plain roasted sunflower seeds (Control = RS-C), and sunflower seeds added with oregano (RS-O) or poleo (RS-P) essential oils or BHT (RS-BHT). Consumer acceptance was determined on fresh samples. The overall acceptance averages were 6.13 for RS-C, 5.62 for RS-P, and 5.50 for RS-O (9-point hedonic scale). The addition of BHT showed greater protection against the oxidation process in the roasted sunflower seeds. Oregano essential oil exhibited a greater antioxidant effect during storage than poleo essential oil. Both essential oils (oregano and poleo) provided protection to the product, inhibiting the formation of undesirable flavors (oxidized and cardboard). The antioxidant activity that presents essential oils of oregano and poleo could be used to preserve roasted sunflower seeds. © 2013 Institute of Food Technologists®
Viuda-Martos, Manuel; El Gendy, Abd El-Nasser G S; Sendra, Esther; Fernández-López, Juana; Abd El Razik, K A; Omer, Elsayed A; Pérez-Alvarez, Jose A
2010-08-25
The aim of this work was to (i) determine the chemical composition of the essential oils of six spices widely cultivated in Egypt (Origanum syriacum, Majorana hortensis, Rosmarinus officinalis, Cymbopogon citratus, Thymus vulgaris, and Artemisia annua); (ii) determine the antioxidant activity of the Egyptian essential oils by means of five different antioxidant tests; and (iii) determine the effectiveness of these essential oils on the inhibition of Listeria innocua CECT 910. There is a great variability in the chemical composition of essential oils obtained from the six Egyptian aromatic plants. Overall, thyme (highest percentage of inhibition of DPPH radical: 89.40%) and oregano (highest percentage of inhibition of TBARS: 85.79) essential oils presented the best antioxidant profiles, whereas marjoram, lemongrass, and artemisia were highly effective in metal chelating but had a pro-oxidative behavior by Rancimat induction test. Lemongrass essential oil showed the highest antibacterial activity against L. innocua with an inhibition zone of 49.00 mm, followed in effectiveness by thyme, marjoram, and oregano.
Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain
2016-02-10
The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography-mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and exhibited a notable activity on a large panel of clinically significant microorganisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Purnavab, S; Ketabchi, S; Rowshan, V
2015-01-01
The antibacterial activity of essential oil and methanolic extract of Teucrium polium was determined against Pseudomonas aeruginosa, Pantoea agglomerans, Brenneria nigrifluens, Rhizobium radiobacter, Rhizobium vitis, Streptomyces scabies, Ralstonia solanacearum, Xanthomonas campestris and Pectobacterium cartovorum by disc diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration were determined by using the serial dilution method. Chemical composition of essential oil and methanolic extract was determined by GC-MS and HPLC. α-Pinene (25.769%) and myrcene (12.507) were of the highest percentage in T. polium essential oil, and sinapic acid (15.553 mg/g) and eugenol (6.805 mg/g) were the major compounds in the methanolic extract. Our results indicate that both methanolic extract and essential oil did not show antibacterial activity against P. aeruginosa. Also the essential oil did not show antibacterial activity against P. cartovorum. In general, both methanolic extract and essential oil showed the same antibacterial activity against R. solanacearum, P. agglomerans, B. nigrifluens and S. scabies.
Plant essential oils potency as natural antibiotic in Indonesian medicinal herb of “jamu”
NASA Astrophysics Data System (ADS)
Soetjipto, H.; Martono, Y.
2017-02-01
The main purposes of this study are to compile antibacterial activity data of essential oils from Indonesian’s plants in order which can be used as a natural antibiotic in “jamu” to increase potential Indonesian medicinal herb. By using Agar Diffusing method, Bioautography and Gas Chromatography Mass Spectrum, respectively, antibacterial activity and chemical compounds of 12 plants essential oils were studied in the Natural Product Chemistry Laboratory, Department of Chemistry, Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga since 2007 until 2015. The results of this studies showed that all of the essential oils have a medium to a strong antibacterial activity which are in the range of 30 - 2,500 μg and 80-5,000 μg. Further on, the essential oils analyzed by GCMS showed that each essential oils have different dominant compounds. These data can be used as basic doses in the usage of essential oils as natural antibiotics.
Kim, Junheon; Seo, Sun-Mi; Lee, Sang-Gil; Shin, Sang-Chul; Park, Il-Kwon
2008-08-27
Commercial essential oils from 28 plant species were tested for their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii). Analysis by gas chromatography-mass spectrometry led to the identification of 26, 11, and 4 major compounds from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) oils, respectively. Compounds from each plant essential oil were tested individually for their nematicidal activities against the pine wood nematode. Among the compounds, benzaldehyde, trans-cinnamyl alcohol, cis-asarone, octanal, nonanal, decanal, trans-2-decenal, undecanal, dodecanal, decanol, and trans-2-decen-1-ol showed strong nematicidal activity. The essential oils described herein merit further study as potential nematicides against the pine wood nematode.
Sienkiewicz, Monika; Łysakowska, Monika; Kowalczyk, Edward; Szymańska, Grażyna; Kochan, Ewa; Krukowska, Jolanta; Olszewski, Jurek; Zielińska-Bliźniewska, Hanna
2017-03-01
The aim of this work was to characterize the ability of essential oils to support antibiotics against pathogenic bacteria in wounds. Gram-positive and Gram-negative bacteria obtained from wound infections were identified according to standard microbiological methods. Essential oils were analysed by GC-FID-MS. The susceptibility of bacteria to antibiotics, essential oils and their combination was assessed using the disc-diffusion method. The Minimal Inhibitory Concentration and Minimum Bactericidal Concentration of the essential oils were established by the micro-dilution broth method. Although cinnamon, clove, thyme and lavender essential oils were found to have the greatest antibacterial activity when used alone, the greatest additive and synergistic effects against pathogenic wound bacteria in combination with recommended antibiotics were demonstrated by basil, clary sage and rosemary oils. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Influence sample sizing of citrus hystrix essential oil from hydrodistillation extraction
NASA Astrophysics Data System (ADS)
Yahya, A.; Amadi, I.; Hashib, S. A.; Mustapha, F. A.
2018-03-01
Essential oil extracted from kaffir lime leaves through hydrodistillation. The objective of this study is to quantify the oil production rate by identify the significant influence of particle size on kaffir lime leaves. Kaffir lime leaves were ground and separated by using siever into 90, 150, 300 μm and other kaffir lime leaves. The mean essential oil yield of 0.87, 0.52, 0.41 and 0.3% was obtained. 90 μm of ground gives the highest yield compared to other sizes. Thus, it can be concluded that in quantifying oil production rate, the relevance of different size of particle is clearly affects the amount of oil yield. In analysing the composition of kaffir lime essential oil using GC-MS, there were 38 compounds found in the essential oil. Some of the major compounds of the kaffir lime leave oils were detected while some are not, may due to oil experience thermal degradation which consequently losing some significant compounds in controlled temperature.
Zheljazkov, Valtcho D; Horgan, Thomas; Astatkie, Tess; Schlegel, Vicki
2013-01-01
Fennel (Foeniculum vulgare Mill) is an essential oil crop grown worldwide for production of essential oil, as medicinal or as culinary herb. The essential oil is extracted via steam distillation either from the whole aboveground biomass (herb) or from fennel fruits (seed). The hypothesis of this study was that distillation time (DT) can modify fennel oil yield, composition, and antioxidant capacity of the oil. Therefore, the objective of this study was to evaluate the effect of eight DT (1.25, 2.5, 5, 10, 20, 40, 80, and 160 min) on fennel herb essential oil. Fennel essential oil yield (content) reached a maximum of 0.68% at 160 min DT. The concentration of trans-anethole (32.6-59.4% range in the oil) was low at 1.25 min DT, and increased with an increase of the DT. Alpha-phelandrene (0.9-10.5% range) was the lowest at 1.25 min DT and higher at 10, 80, and 160 min DT. Alpha-pinene (7.1-12.4% range) and beta-pinene (0.95-1.64% range) were higher in the shortest DT and the lowest at 80 min DT. Myrcene (0.93-1.95% range), delta-3-carene (2.1-3.7% range), cis-ocimene (0-0.23% range), and gamma-terpinene (0.22-2.67% range) were the lowest at 1.25 min DT and the highest at 160 min DT. In contrast, the concentrations of paracymene (0.68-5.97% range), fenchone (9.8-22.7% range), camphor (0.21-0.51% range), and cis-anethole (0.14-4.66% range) were highest at shorter DT (1.25-5 min DT) and the lowest at the longer DT (80-160 min DT). Fennel oils from the 20 and 160 min DT had higher antioxidant capacity than the fennel oil obtained at 1.25 min DT. DT can be used to obtain fennel essential oil with differential composition. DT must be reported when reporting essential oil content and composition of fennel essential oil. The results from this study may be used to compare reports in which different DT to extract essential oil from fennel biomass were used.
Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer
Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan
2016-01-01
Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295
Antioxidant activity and chemical characterization of essential oil of Bunium persicum.
Shahsavari, Neda; Barzegar, Mohsen; Sahari, Mohammad Ali; Naghdibadi, Hasanali
2008-12-01
The search for natural antioxidants, especially of plant origin, has notably increased in recent years. Bunium persicum Boiss. is an economically important medicinal plant growing wild in the dry temperature regions in Iran. In this study, chemical constituents of the essential oil of the seed from Bunium persicum Boiss. have been studied by GC/MS technique. The major components were caryophyllene (27.81%), gamma-terpinene (15.19%), cuminyl acetate (14.67%). Individual antioxidant assays such as, DPPH* scavenging activity and beta-carotene bleaching have been carried out. In DPPH* system, the EC(50) value of essential oil was determined as 0.88 mg/mL. In beta-carotene bleaching antioxidant activity of essential oil (0.45%) was almost equal to BHT at 0.01%. In addition, the antioxidant activity of the essential oil was evaluated in crude soybean oil by monitoring peroxide and thiobarbituric acid values of the oil substrate. The results showed that the Bunium persicum essential oil (BPEO) was able to reduce the oxidation rate of the soybean oil in the accelerated condition at 60 degrees C (oven test). The essential oil at 0.06% showed the same effect of BHA at 0.02%. Hence, BPEO could be used as an additive in food after screening.
Marín, Irene; Sayas-Barberá, Estrella; Viuda-Martos, Manuel; Navarro, Casilda; Sendra, Esther
2016-01-01
The aim of this work was to (i) determine the chemical composition of the essential oils of three spices widely cultivated in Spain from organic growth: Foeniculum vulgare, Petroselium crispum, and Lavandula officinalis; (ii) determine the total phenolic content; (iii) determine the antioxidant activity of the essentials oils by means of three different antioxidant tests and (iv) determine the effectiveness of these essentials oils on the inhibition of Listeria innocua CECT 910 and Pseudomonas fluorescens CECT 844. There is a great variability in the chemical composition of the essential oils. Parsley had the highest phenolic content. Overall, parsley presented the best antioxidant profile, given its highest % of inhibition of DPPH radical (64.28%) and FRAP (0.93 mmol/L Trolox), but had a pro-oxidative behavior by TBARS. Lavender essential oil showed the highest antibacterial activity against L. innocua (>13 mm of inhibition at 20–40 μL oil in the discs), followed by parsley with an inhibition zone of 10 mm (when more than 5 μL oil in the discs), and fennel 10 mm (when more than 40 μL oil in the discs). P. fluorescens was not inhibited by the tested essential oils. PMID:28231113
Chemical composition of the essential oil from Jasminum pubescens leaves and flowers.
Temraz, Abeer; Cioni, Pier Luigi; Flamini, Guido; Braca, Alessandra
2009-12-01
The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.
Vetvicka, Vaclav; Vetvickova, Jana
2016-12-01
Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.
Jokić, Goran; Blažić, Tanja; Đurović-Pejčev, Rada; Đorđević, Tijana; Đedović, Suzana; Vukša, Marina
2017-08-01
Strong-smelling plant extracts, such as essential oils, have a variety of feeding effects on mammals. Considering current concerns over long-term health issues and environmental effects of chemicals, plant-based products with repellent or antifungal activities may represent good solutions for improvement of rodent pest control programs. The present study was therefore focused on examining the effects of bergamot, lavender, and thyme essential oils as additional bait components on daily intakes of cereal-based baits by wild house mice. Lavender essential oil, containing linalool and linalyl acetate as main components, and thyme essential oil with a prevailing thymol component had no effects on house mice diet. Bergamot essential oil, whose main components were linalool, limonene, and linalyl acetate, showed a repellent effect on house mouse diet.
Biosynthesis and therapeutic properties of Lavandula essential oil constituents.
Woronuk, Grant; Demissie, Zerihun; Rheault, Mark; Mahmoud, Soheil
2011-01-01
Lavenders and their essential oils have been used in alternative medicine for several centuries. The volatile compounds that comprise lavender essential oils, including linalool and linalyl acetate, have demonstrative therapeutic properties, and the relative abundance of these metabolites is greatly influenced by the genetics and environment of the developing plants. With the rapid progress of molecular biology and the genomic sciences, our understanding of essential oil biosynthesis has greatly improved over the past few decades. At the same time, there is a recent surge of interest in the use of natural remedies, including lavender essential oils, in alternative medicine and aromatherapy. This article provides a review of recent developments related to the biosynthesis and medicinal properties of lavender essential oils. © Georg Thieme Verlag KG Stuttgart · New York.
Machado, Daniela; Gaspar, Carlos; Palmeira-de-Oliveira, Ana; Cavaleiro, Carlos; Salgueiro, Lígia; Martinez-de-Oliveira, José; Cerca, Nuno
2017-04-01
To evaluate the antibacterial activity of Thymbra capitata essential oil and its main compound, carvacrol, against Gardnerella vaginalis grown planktonically and as biofilms, and its effect of vaginal lactobacilli. Minimal inhibitory concentration, minimal lethal concentration determination and flow cytometry analysis were used to assess the antibacterial effect against planktonic cells. Antibiofilm activity was measured through quantification of biomass and visualization of biofilm structure by confocal laser scanning microscopy. T. capitata essential oil and carvacrol exhibited a potent antibacterial activity against G. vaginalis cells. Antibiofilm activity was more evident with the essential oil than carvacrol. Furthermore, vaginal lactobacilli were significantly more tolerant to the essential oil. T. capitata essential oil stands up as a promising therapeutic agent against G. vaginalis biofilm-related infections.
Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang
2011-10-01
To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.
Eucalyptus Energy Farm: feasibility study and demonstration. Phase 1: site and species selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, E.O.; Wood, W.A.; Kouchoukos, P.C.
1978-06-01
The results of investigations to determine the feasibility for establishing ''Eucalyptus Energy Farms'' as a potential source of biomass derived energy are presented. Included in this report are: the results of an extensive literature search and numerous field interviews (both domestically and internationally) to identify those Eucalyptus species most suitable for use within the United States; a description of the site selection criteria, site selection process, and identification of potential sites for use in testing the Eucalyptus Energy Farm concept; a description of the Eucalyptus species selection criteria, species selection process, and an identification of the specific species recommended formore » testing at specific sites; preliminary engineering designs for each of the proposed plantation sites; and environmental impact considerations related to Eucalyptus growing. It is concluded that although the Eucalyptus are extremely temperature sensitive and the geographic areas which appear suitable for their planting (within the United States) are principally confined to western and central California and the warmest regions of the southeastern United States, each of the areas contain large amounts of marginal land which could be converted into Eucalyptus based biomass plantations. Suitable sites, which are representative of the larger marginal land areas, are immediately available for use in establishing Eucalyptus screening test sites. Furthermore, there are not significant environmental conditions which would preclude the establishment of these initial test sites. It is therefore recommended that efforts be initiated to obtain selected provenances of Eucalyptus seeds (of the designated species) for further field testing and data collection within the United States, and that actual site selection be initiated.« less
[Effects of introducing Eucalyptus on indigenous biodiversity].
Ping, Liang; Xie, Zong-Qiang
2009-07-01
Eucalyptus is well-known as an effective reforestation tree species, due to its fast growth and high adaptability to various environments. However, the introduction of Eucalyptus could have negative effects on the local environment, e. g., inducing soil degradation, decline of groundwater level, and decrease of biodiversity, and especially, there still have controversies on the effects of introduced Eucalyptus on the understory biodiversity of indigenous plant communities and related mechanisms. Based on a detailed analysis of the literatures at home and abroad, it was considered that the indigenous plant species in the majority of introduced Eucalyptus plantations were lesser than those in natural forests and indigenous species plantations but more than those in other exotic species plantations, mainly due to the unique eco-physiological characteristics of Eucalyptus and the irrational plantation design and harvesting techniques, among which, anthropogenic factors played leading roles. Be that as it may, the negative effects of introducing Eucalyptus on local plant biodiversity could be minimized via more rigorous scientific plantation design and management based on local plant community characteristics. To mitigate the negative effects of Eucalyptus introduction, the native trees and understory vegetation in plantations should be kept intact during reforestation with Eucalyptus to favor the normal development of plant community and regeneration. At the same time, human disturbance should be minimized to facilitate the natural regeneration of native species.
Essential Oils and Antifungal Activity
Coppola, Raffaele; De Feo, Vincenzo
2017-01-01
Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084
Akhbari, Maryam; Kord, Reza; Jafari Nodooshan, Saeedeh; Hamedi, Sepideh
2018-01-07
In this study, biological properties of the essential oil isolated from seeds of Foeniculum vulgare (F. vulgare) were evaluated. GC-MS analysis revealed Trans-Anethole (80.63%), L-Fenchone (11.57%), Estragole (3.67%) and Limonene (2.68%) were the major compounds of the essential oil. Antibacterial activity of the essential oil against nine Gram-positive and Gram-negative strains was studied using disc diffusion and micro-well dilution assays. Essential oil exhibited the antibacterial activity against three Gram-negative strains of Pseudomonas aeruginosa, Escherichia coli, and Shigella dysenteriae. The preliminary study on toxicity of seed oil was performed using Brine Shrimp lethality test (BSLT). Results indicated the high toxicity effect of essential oil (LC50 = 10 μg/mL). In vitro anticancer activity of seed oil was investigated against human breast cancer (MDA-Mb) and cervical epithelioid carcinoma (Hela) cell lines by MTT assay. Results showed the seed oil behave as a very potent anticancer agent with IC50 of lower than 10 μg/mL in both cases.
Uter, Wolfgang; Schmidt, Erich; Geier, Johannes; Lessmann, Holger; Schnuch, Axel; Frosch, Peter
2010-11-01
Essential oils are used in perfumery and in products for aromatherapy or balneotherapy. Previous studies have shown some to be important contact sensitizers. A practical diagnostic approach, based on the results of a large, central European network and other evidence, is needed. Data of the Information Network of Departments of Dermatology (IVDK; www.ivdk.org) on all patients patch tested between January 2000 and December 2008 with essential oils were retrospectively analysed. 15 682 patients of 84 716 consulting in the period had been tested with at least one essential oil, and 637 reacted positively to at least one of the essential oils, most commonly to ylang-ylang oil (I and II) (3.1% as weighted mean of positive tests in special series and consecutive testing), lemongrass oil (1.8%), jasmine absolute (1.6%), sandalwood oil and clove oil (1.5% each). Cross-reactivity between distillate and main allergen, if available, was marked. Patch testing the important essential oils should be considered in patients with a suggestive history. Additionally, culprit products brought in by the patient should be tested, closing a diagnostic gap by (i) including those other essential oils not included in the commercial test series and (ii) providing a means of testing with the oxidized substances to which the patient had actually been exposed. © 2010 John Wiley & Sons A/S.
Volatile constituents of Pinus roxburghii from Nepal.
Satyal, Prabodh; Paudel, Prajwal; Raut, Josna; Deo, Akash; Dosoky, Noura S; Setzer, William N
2013-01-01
Pinus roxburghii Sarg. Is one of 3 species of pine found in Nepal, the oil of which is traditionally used to treat cuts, wounds, boils, and blisters. To obtain, analyze, and examine the anti-microbial and cytotoxic activities of the essential oils of P. roxburghii. Three plant parts (cone, needle, and bark) of Pinus roxburghii were collected in Biratnagar, Nepal. The essential oils were obtained by hydrodistillation, and the chemical compositions were determined by GC-MS. The needle and cone essential oils were screened for anti-microbial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Aspergillus niger; brine shrimp (Artemia salina) lethality; and in-vitro cytotoxicity against MCF-7 cells. GC-MS analysis for the cone oil revealed 81 compounds with 78 components being identified (95.5% of the oil) while 98.3% of needle oil was identified to contain 68 components and 98.6% of the bark oil (38 components) was identified. The 3 essential oils were dominated by sesquiterpenes, particularly (E)-caryophyllene (26.8%-34.5%) and α-humulene (5.0%-7.3%) as well as monoterpene alcohols terpinen-4-ol (4.1%-30.1%) and α-terpineol(2.8%-5.0%). The monoterpene δ-3-carene was present only in needle and cone essential oils (2.3% and 6.8%, respectively). Bio-activity assays of the cone essential oil of P. roxburghii showed remarkable cytotoxic activity (100% killing of MCF-7 cells at 100 μg/mL) along with notable brine shrimp lethality (LC50 =11.8 μg/mL). The cone essential oil did not show anti-bacterial activity, but it did exhibit anti-fungal activity against Aspergillus niger (MIC=39 μg/mL). The bioactivity of P. roxburghii essential oil is consistent with its traditional medicinal use.
2009-01-01
peer-reviewed, scientific literature [1]. Also recognized by the CDC as effective insect repellents are those containing oil of lemon eucalyptus ...The United States Centers for Disease Control and Prevention (CDC) recommend the use of products containing active ingredients which have been...95% C.I.)a) Slope (SE) c2 1 5.13 (1.83–7.26) 23.91 (15.98–87.90) 2.46 (0.73) 0.32 2 5.87 (4.98–6.88) 12.49 (9.98–18.59) 5.01 (0.83) 0.56 3 19.62
Pulaj, Bledar; Mustafa, Behxhet; Nelson, Kate; Quave, Cassandra L; Hajdari, Avni
2016-05-26
Plant material from different organs of Pistacia terebinthus L., (Anacardiaceae) were collected in Kosovo with aim to analyze the chemical variability of the essential oils among native populations and to test them for potential antibacterial activity against Staphylococcus aureus. Essential oils obtained from leaves, pedicels, fruits and galls were analyzed by GC-FID and GC/MS. Minimum inhibitory concentration (MIC) against three clinically relevant strains of S. aureus (NRS385, LAC and UAMS-1) were used to evaluate the antibacterial activity of essential oils. In total, 33 different compounds were identified. The main constituents were α-pinene (12.58-66.29 %), D-limonene (13.95-46.29 %), β-ocimene (0.03-40.49 %), β-pinene (2.63-20.47 %), sabinene (0.00-5.61 %) and (Z)-β-ocimene (0.00-44.85 %). Antibacterial testing of the essential oils against three clinical isolates of S. aureus revealed that seven of the eight samples had some activity at the concentration range tested (0.04-0.512 % v/v). The gall tissues from both sites produced the highest yield of essential oil (3.24 and 6 %), and both exhibited growth inhibitory activity against S. aureus. The most bioactive essential oils, which exhibited MIC90 values ranging from 0.032-0.128 % v/v, obtained from the fruits of the Ura e Shejtë collection site. Likewise, the leaf and pedicel essential oil from the same site was highly active with MIC90 values of 0.064-0.128 and 0.032-0.256 % v/v, respectively. Principle Component Analyses demonstrated that there is a variation in the chemical composition of essential oil depending on the plant organs from which essential oil are obtained and the geographical origin of the plant populations. The highest variability regarding the chemical composition of essential oil was found between oils obtained from different organs originating from the Prizren site. The MIC90 activity of Pistacia terebinthus was on par or superior compared with Tea Tree Oil control (0.128 % v/v), suggesting that essential oils from this species may have some potential for development as an antibacterial agent for S. aureus infections.
Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu
2014-12-01
Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity
USDA-ARS?s Scientific Manuscript database
Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...
Meng, Xiaxia; Li, Dengwu; Zhou, Dan; Wang, Dongmei; Liu, Qiaoxiao; Fan, Sufang
2016-12-24
Juniperus rigida is used as Tibetan and Mongolian medicine in China for the treatment of rheumatoid arthritis, nephritis, brucellosis and other various inflammatory diseases. To evaluate antibacterial potential of essential oils from J. rigida leaves against Klebsiella pneumoniae and to examine its possible related mechanisms. The study was undertaken in order to scientifically validate the traditional use of J. rigida. The essential oil was extracted from the leaves of J. rigida by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated against 10 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane, the SDS-PAGE of protein patterns and scanning electron microscope (SEM). 61 components were identified from the essential oil. Caryophyllene (13.11%) and α-Caryophyllene (11.72%) were found to be the major components. The antibacterial activities of the essential oil were screened and compared against 10 bacteria. The essential oil showed good antibacterial activity against K. pneumoniae, with the biggest diameters of inhibition zones (DIZ) (16.00±0.25mm) and the lowest MIC and MBC values of 3.125mg/mL. The increase in proteins, 260nm absorbing materials of bacterial cells suspension indicated that the cytoplasmic membranes were broken by the essential oil. The SDS-PAGE of bacterial proteins demonstrated that the essential oil could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy (SEM) showed that the essential oil damaged the morphology of cell wall and membrane. The essential oil of J. rigida has potential antibacterial activities against K. pneumoniae. The antibacterial mechanism is the essential oil causing the irreversible damage to the cell wall and membrane, leading to the leakage of proteins and 260nm absorbing materials (DNA and RNA). Further phytochemical and pharmacological studies are required for proper scientific validation of the folk use of this plant species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mahboubi, M; Kazempour, N
2011-01-01
Background and Objectives The aim of this study was to evaluate the chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oils against different kinds of microorganisms in vitro. Material and Methods The antimicrobial activity was evaluated by micro broth dilution assay and the chemical composition of essential oils was analyzed by GC and GC/MS. Results Thymol, p-cymene, γ-terpinene and carvacrol were the main components of S. hortensis oil while thymol, γ-terpinene, and o-cymene were the major components of T. copticum oil. Two essential oils exhibited strong antimicrobial activity but the antimicrobial activity of T. copticum oil was higher than that of S. hortensis oil. Conclusion Thymol as a main component of oils plays an important role in antimicrobial activity. PMID:22530088
Schipilliti, Luisa; Tranchida, Peter Quinto; Sciarrone, Danilo; Russo, Marina; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi
2010-03-01
Cold-pressed mandarin essential oils are products of great economic importance in many parts of the world and are used in perfumery, as well as in food products. Reconstituted mandarin oils are easy to find on the market; useful information on essential oil authenticity, quality, extraction technique, geographic origin and biogenesis can be attained through high-resolution GC of the volatile fraction, or enantioselective GC, using different chiral stationary phases. Stable isotope ratio analysis has gained considerable interest for the unveiling of citrus oil adulteration, detecting small differences in the isotopic carbon composition and providing plenty of information concerning the discrimination among products of different geographical origin and the adulteration of natural essential oils with synthetic or natural compounds. In the present research, the authenticity of several mandarin essential oils was assessed through the employment of GC hyphenated to isotope ratio MS, conventional GC flame ionization detector, enantioselective GC and HPLC. Commercial mandarin oils and industrial natural (declared as such) mandarin essential oils, characterized by different harvest periods and geographic origins, were subjected to analysis. The results attained were compared with those of genuine cold-pressed Italian mandarin oils, obtained during the 2008-2009 harvest season.
Pandini, J A; Pinto, F G S; Scur, M C; Santana, C B; Costa, W F; Temponi, L G
2018-02-01
The essential oils are extracted from plant compounds and can present activities antimicrobial and antioxidant properties. The goals of the present study were: (a) to determine the chemical composition of the essential oil of Guarea kunthiana A. Juss using the method of gas chromatography coupled to mass spectrometry (GC-MS); (b) to evaluate the antimicrobial potential of this oil using the broth microdilution method against different microorganisms: five Gram-negative bacteria, four Gram-positive bacteria and a yeast and (c) to determine the antioxidant activity of the oil using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. The GC-MS analyses allowed identifying 13 constituents, representing 96.52% of the essencial oil composition. The main compounds identified were α-zingiberene (34.48%), β-sesquiphellandrene (22.90%), and α-curcumene (16.17%). With respect to the antimicrobial activity, the essential oil was effective against all the microorganisms tested, except for the bacteria E. coli and K. pneumoniae, which were resistant to the action of the oil. From a general point of view, Gram-positive bacteria were more susceptible to the action of the essential oil than Gram-negative bacteria. The essential oil exhibited antioxidant potential.
Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A
2011-02-01
Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.
Chizzola, Remigius
2012-11-01
The composition of the essential oil from the different above ground plant parts of Peucedanum cervaria and P. alsaticum (Apiaceae) collected in the urban area of Vienna has been studied. P. cervaria fruits and inflorescences had 1.5 and 1.8% essential oil, respectively. All the oils of P. cervaria were dominated by monoterpenes, with the main components being beta-pinene (7-58%), alpha-pinene (7-22%), sabinene (up to 22%), and beta-phellandrene with limonene (6-21%). P. alsaticum fruits afforded 0.3-0.4% essential oil. These oils were made up mainly by alpha-pinene (11-40%), sabinene (16-34%) and beta-phellandrene (12-31%). Stems and leaves produced only very small amounts of essential oil (< 0.05%). Besides monoterpenes, these oils contained also E-nerolidol (5-22%), spathulenol (up to 18%), dodecanal (up to 7.5%) and caryophyllene oxide (up to 7%).
Russo, Alessandra; Cardile, Venera; Graziano, Adriana C E; Formisano, Carmen; Rigano, Daniela; Canzoneri, Marisa; Bruno, Maurizio; Senatore, Felice
2015-01-01
The objectives of our research were to study the chemical composition and the in vitro anticancer effect of the essential oil of Salvia verbenaca growing in natural sites in comparison with those of cultivated (Sc) plants. The oil from wild (Sw) S. verbenaca presented hexadecanoic acid (23.1%) as the main constituent, while the oil from Sc plants contained high quantities of hexahydrofarnesyl acetone (9.7%), scarce in the natural oil (0.7%). The growth-inhibitory and proapoptotic effects of the essential oils from Sw and Sc S. verbenaca were evaluated in the human melanoma cell line M14, testing cell vitality, cell membrane integrity, genomic DNA fragmentation and caspase-3 activity. Both the essential oils were able to inhibit the growth of the cancer cells examined inducing also apoptotic cell death, but the essential oil from cultivated samples exhibited the major effects.
George, D R; Smith, T J; Shiel, R S; Sparagano, O A E; Guy, J H
2009-05-12
This paper describes a series of experiments to examine the mode of action and toxicity of three plant essential oils (thyme, manuka and pennyroyal) to the poultry red mite, Dermanyssus gallinae (De Geer), a serious ectoparasitic pest of laying hens. All three oils were found to be toxic to D. gallinae in laboratory tests with LC(50), LC(90) and LC(99) values below 0.05, 0.20 and 0.30mg/cm(3), respectively, suggesting that these products may make for effective acaricides against this pest. Further experiments demonstrated that when mites were exposed to only the vapour phase of the essential oil without contact with the oil itself, mortality was consistently higher in closed arenas than in arenas open to the surrounding environment, or in control arenas. This suggests that all three essential oils were toxic to D. gallinae by fumigant action. In addition, in an experiment where mites were allowed contact with the essential oil in either open or closed arenas, mortality was always reduced in the open arenas where this was comparable to control mortality for thyme and pennyroyal essential oil treatments. This supports the findings of the previous experiment and also suggests that, with the possible exception of manuka, the selected essential oils were not toxic to D. gallinae on contact. Statistical comparisons were made between the toxicity of the selected essential oils to D. gallinae in the current work and in a previous study conducted in the same laboratory. The results demonstrated considerable variation in LC(50), LC(90) and LC(99) values. Since both the essential oils and the mites were obtained from identical sources in the two studies, it is hypothesized that this variation resulted from the use of different 'batches' of essential oil, which could have varied in chemistry and hence acaricidal activity.
Antimicrobial properties of essential oils against Salmonella in organic soil
USDA-ARS?s Scientific Manuscript database
Soil is one of the important sources of preharvest contamination of produce with pathogens. Demand for natural pesticides such as essential oils for organic farming practices has increased. Antimicrobial activity of essential oils in vitro has been documented. The antimicrobial activity of essential...
Rabbani, Mohammed; Sajjadi, Seyed Ebrahim; Vaezi, Arefeh
2015-01-01
Ocimum basilicum belongs to Lamiaceae family and has been used for the treatment of wide range of diseases in traditional medicine in Iranian folk medicine. Due to the progressive need to anti-anxiety medications and because of the similarity between O. basilicum and Salvia officinalis, which has anti-anxiety effects, we decided to investigate the anxiolytic and sedative activity of hydroalcoholic extract and essential oil of O. basilicum in mice by utilizing an elevated plus maze and locomotor activity meter. The chemical composition of the plant essential oil was also determined. The essential oil and hydroalcoholic extract of this plant were administered intraperitoneally to male Syrian mice at various doses (100, 150 and 200 mg/kg of hydroalcoholic extract and 200 mg/kg of essential oil) 30 min before starting the experiment. The amount of hydroalcoholic extract was 18.6% w/w and the essential oil was 0.34% v/w. The major components of the essential oil were methyl chavicol (42.8%), geranial (13.0%), neral (12.2%) and β-caryophyllene (7.2%). HE at 150 and 200 mg/kg and EO at 200 mg/kg significantly increased the time passed in open arms in comparison to control group. This finding was not significant for the dose of 100 mg/kg of the extract. None of the dosages had significant effect on the number of entrance to the open arms. Moreover, both the hydroalcoholic extract and the essential oil decreased the locomotion of mice in comparison to the control group. This study shows the anxiolytic and sedative effect of hydroalcoholic extract and essential oil of O. basilicum. The anti-anxiety and sedative effect of essential oil was higher than the hydroalcoholic extract with the same doses. These effects could be due to the phenol components of O. basilicum.
In vitro Protoscolicidal Effects of Cinnamomum zeylanicum Essential Oil and Its Toxicity in Mice.
Mahmoudvand, Hossein; Mahmoudvand, Hormoz; Oliaee, Razieh Tavakoli; Kareshk, Amir Tavakoli; Mirbadie, Seyed Reza; Aflatoonian, Mohammad Reza
2017-10-01
This study investigates the scolicidal effects of Cinnamomum zeylanicum essential oil against the protoscoleces of hydatid cysts and its toxicity in the mice model. Gas chromatography/mass spectroscopy analyses were used to identify the constituents of essential oil. Protoscoleces were treated with different concentrations of the essential oil (6.25-100 µL/mL) in each test tube for 5-30 min. The viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining). Forty-eight male NMRI mice were also used to determine the toxicity of C. zeylanicum essential oil (0.5-4 mL/kg). The main components were found to be cinnamaldehyde (91.8%), ρ metoxicinamate (1.57%), and α pinene (1.25%). Findings indicate that C. zeylanicum essential oil with the concentrations of 100 and 50 µL/mL killed 100% of protoscoleces after 5 min of exposure. Also, the lower concentrations of C. zeylanicum essential oil motivated a late protoscolicidal effect. The LD 50 value of intraperitoneal injection of C. zeylanicum essential oil was 2.07 mL/kg body weight after 48 h, and the maximum nonfatal dose was 1.52 mL/kg body weight. The results also showed that there was no significant toxicity following oral administration of C. zeylanicum essential oil for 2 weeks. The results exhibited the favorable scolicidal activity of C. zeylanicum , which could be applied as a natural scolicidal agent in hydatid cyst surgery. We evaluated the efficacy of Cinnamomum zeylanicum essential oil against hydatid cyst protoscolecesThe viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining)Forty-eight male NMRI mice were also used to determine the toxicity of C. zeylanicum essential oilC. zeylanicum with potent scolicidal activity could be applied as a natural scolicidal agent in surgery. Abbreviations used: GC/MS: Gas chromatography/mass spectrometry analysis; CE: Cystic echinococcosis; LD50: Lethal dose 50%; I.p: Intraperitoneally.
Rabbani, Mohammed; Sajjadi, Seyed Ebrahim; Vaezi, Arefeh
2015-01-01
Ocimum basilicum belongs to Lamiaceae family and has been used for the treatment of wide range of diseases in traditional medicine in Iranian folk medicine. Due to the progressive need to anti-anxiety medications and because of the similarity between O. basilicum and Salvia officinalis, which has anti-anxiety effects, we decided to investigate the anxiolytic and sedative activity of hydroalcoholic extract and essential oil of O. basilicum in mice by utilizing an elevated plus maze and locomotor activity meter. The chemical composition of the plant essential oil was also determined. The essential oil and hydroalcoholic extract of this plant were administered intraperitoneally to male Syrian mice at various doses (100, 150 and 200 mg/kg of hydroalcoholic extract and 200 mg/kg of essential oil) 30 min before starting the experiment. The amount of hydroalcoholic extract was 18.6% w/w and the essential oil was 0.34% v/w. The major components of the essential oil were methyl chavicol (42.8%), geranial (13.0%), neral (12.2%) and β-caryophyllene (7.2%). HE at 150 and 200 mg/kg and EO at 200 mg/kg significantly increased the time passed in open arms in comparison to control group. This finding was not significant for the dose of 100 mg/kg of the extract. None of the dosages had significant effect on the number of entrance to the open arms. Moreover, both the hydroalcoholic extract and the essential oil decreased the locomotion of mice in comparison to the control group. This study shows the anxiolytic and sedative effect of hydroalcoholic extract and essential oil of O. basilicum. The anti-anxiety and sedative effect of essential oil was higher than the hydroalcoholic extract with the same doses. These effects could be due to the phenol components of O. basilicum. PMID:26779273
Jeliazkova, Ekaterina; Zheljazkov, Valtcho D; Kačániova, Miroslava; Astatkie, Tess; Tekwani, Babu L
2018-06-07
The profile and bioactivity of hops (Humulus lupulus L.) essential oil, a complex natural product extracted from cones via steam distillation, depends on genetic and environmental factors, and may also depend on extraction process. We hypothesized that compound mixtures eluted sequentially and captured at different timeframes during the steam distillation process of whole hop cones would have differential chemical and bioactivity profiles. The essential oil was collected sequentially at 8 distillation time (DT) intervals: 0-2, 2-5, 5-10, 10-30, 30-60, 60-120, 120-180, and 180-240 min. The control was a 4-h non-interrupted distillation. Nonlinear regression models described the DT and essential oil compounds relationship. Fractions yielded 0.035 to 0.313% essential oil, while control yielded 1.47%. The oil eluted during the first hour was 83.2%, 9.6% during the second hour, and only 7.2% during the second half of the distillation. Essential oil (EO) fractions had different chemical profile. Monoterpenes were eluted early, while sequiterpenes were eluted late. Myrcene and linalool were the highest in 0-2 min fraction, β-caryophyllene, β-copaene, β-farnesene, and α-humulene were highest in fractions from middle of distillation, whereas α- bergamotene, γ-muurolene, β- and α-selinene, γ- and δ-cadinene, caryophyllene oxide, humulne epoxide II, τ-cadinol, and 6-pentadecen-2-one were highest in 120-180 or 180-240 min fractions. The Gram-negative Escherichia coli was strongly inhibited by essential oil fractions from 2-5 min and 10-30 min, followed by oil fraction from 0-2 min. The strongest inhibition activity against Gram-negative Yersinia enterocolitica, and Gram-positive Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus subs. aureus was observed with the control essential oil. This is the first study to describe significant activity of hops essential oils against Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis (sleeping sickness in humans and nagana in other animals). Hops essential oil fractions or whole oil may be used as antimicrobial agents or for the development of new drugs.
Aroma-therapeutic effects of massage blended essential oils on humans.
Hongratanaworakit, Tapanee
2011-08-01
Although blended essential oils are increasingly being used for the improvement of the quality of life and for the relief of various symptoms in patients, the scientific evaluation of the aroma-therapeutic effects of blended essential oils in humans is rather scarce. In this study, we hypothesized that applying blended essential oil would provide a synergistic effect that would have a chance for success in treating depression or anxiety. Therefore, the main objective of this study was to investigate the effects of the blended essential oil on autonomic parameters and on emotional responses in humans following transdermal absorption. The blended essential oil consisted of lavender and bergamot oils. Human autonomic parameters, i.e. blood pressure, pulse rate, breathing rate, and skin temperature, were recorded as indicators of the arousal level of the autonomic nervous system. In addition, subjects had to rate their emotional condition in terms of relaxation, vigor, calmness, attentiveness, mood, and alertness in order to assess subjective behavioral arousal. Forty healthy volunteers participated in the experiments. Blended essential oil was applied topically to the skin of the abdomen of each subject. Compared with placebo, blended essential oil caused significant decreases of pulse rate, and systolic and diastolic blood pressure, which indicated a decrease of autonomic arousal. At the emotional level, subjects in the blended essential oil group rated themselves as 'more calm' and 'more relaxed' than subjects in the control group. This finding suggests a decrease of subjective behavioral arousal. In conclusion, our investigation demonstrates the relaxing effect of a mixture of lavender and bergamot oils. This synergistic blend provides evidence for its use in medicine for treating depression or anxiety in humans.
Fabian, Dusan; Dusan, Fabian; Sabol, Marián; Marián, Sabol; Domaracká, Katarína; Katarína, Domaracká; Bujnáková, Dobroslava; Dobroslava, Bujnáková
2006-12-01
Essential oils are known to possess antimicrobial activity against a wide spectrum of bacteria. The main objective of this study was to evaluate possible harmful effects of four commonly used essential oils and their major components on intestinal cells. Antimicrobial activity of selected plant extracts against enteroinvasive Escherichia coli was dose dependent. However, doses of essential oils with the ability to completely inhibit bacterial growth (0.05%) showed also relatively high cytotoxicity to intestinal-like cells cultured in vitro. Lower doses of essential oils (0.01%) had only partial antimicrobial activity and their damaging effect on Caco-2 cells was only modest. Cell death assessment based on morphological and viability staining followed by fluorescence microscopy showed that essential oils of cinnamon and clove and their major component eugenol had almost no cytotoxic effect at lower doses. Although essential oil of oregano and its component carvacrol slightly increased the incidence of apoptotic cell death, they showed extensive antimicrobial activity even at lower concentrations. Relatively high cytotoxicity was demonstrated by thyme oil, which increased both apoptotic and necrotic cell death incidence. In contrast, its component thymol showed no cytotoxic effect as well as greatly-reduced ability to inhibit visible growth of the chosen pathogen in the doses used. On the other hand, the addition of all essential oils and their components at lower doses, with the exception of thyme oil, to bacterial suspension significantly reduced the cytotoxic effect of E. coli on Caco-2 cells after 1h culture. In conclusion, it is possible to find appropriate doses of essential oils showing both antimicrobial activity and very low detrimental effect on intestinal cells.
Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E
2009-03-06
An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. The cytotoxicity (CC(50)) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4 degrees C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37 degrees C before the adsorption of untreated-virus. The CC(50) values were less than 100 microg/mL and the MIC values were 3.7 and 11.1 microg/mL. The CC(50)/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 microg/mL produced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at 100 microg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.
Hyldgaard, Morten; Mygind, Tina; Meyer, Rikke Louise
2012-01-01
Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods. PMID:22291693
NASA Astrophysics Data System (ADS)
Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan
2016-04-01
The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.
Kao, Yu-Hsiu; Huang, Yi-Ching; Chung, Ue-Lin; Hsu, Wen-Ni; Tang, Yi-Ting; Liao, Yi-Hung
2017-06-01
This study was aimed to compare the effectiveness of aromatherapy and acupressure massage intervention strategies on the sleep quality and quality of life (QOL) in career women. The randomized controlled trial experimental design was used in the present study. One hundred and thirty-two career women (24-55 years) voluntarily participated in this study and they were randomly assigned to (1) placebo (distilled water), (2) lavender essential oil (Lavandula angustifolia), (3) blended essential oil (1:1:1 ratio of L. angustifolia, Salvia sclarea, and Origanum majorana), and (4) acupressure massage groups for a 4-week treatment. The Pittsburgh Sleep Quality Index and Short Form 36 Health Survey were used to evaluate the intervention effects at pre- and postintervention. After a 4-week treatment, all experimental groups (blended essential oil, lavender essential oil, and acupressure massage) showed significant improvements in sleep quality and QOL (p < 0.05). Significantly greater improvement in QOL was observed in the participants with blended essential oil treatment compared with those with lavender essential oil (p < 0.05), and a significantly greater improvement in sleep quality was observed in the acupressure massage and blended essential oil groups compared with the lavender essential oil group (p < 0.05). The blended essential oil exhibited greater dual benefits on improving both QOL and sleep quality compared with the interventions of lavender essential oil and acupressure massage in career women. These results suggest that aromatherapy and acupressure massage improve the sleep and QOL and may serve as the optimal means for career women to improve their sleep and QOL.
Vasorelaxant and cardiovascular properties of the essential oil of Pogostemon elsholtzioides.
Shiva Kumar, Arumugasamy; Jeyaprakash, Karnan; Chellappan, David Raj; Murugan, Ramar
2017-03-06
Pogostemon elsholtzioides Benth. (Lamiaceae) is an aromatic shrub, endemic to eastern Himalaya region. The leaves are used for treating goiter and high blood pressure (BP) by indigenous people in Arunachal Pradesh, India. Young leaves are used as vegetable and leaf decoction is also used for cough, cold and headache by some indigenous communities in Northeast India. This species is used for treating hypertension and the genus Pogostemon is rich in essential oil. Therefore, the present study was aimed at investigation of the chemical constituents, vasorelaxant and cardiovascular effects of the essential oil of P. elsholtzioides. P. elsholtzioides was collected from Pasighat, Arunachal Pradesh, India and essential oil was extracted from shade dried leaves. Essential oil was analyzed by GC-FID and GC-MS and the volatile constituents were identified. Vasorelaxant and cardiovascular properties of the essential oil were studied against phenylephrine induced contraction in isolated endothelium intact aortic preparations and by measuring systolic and diastolic BP, mean arterial pressure (MAP) and heart rate (HR) after carotid artery cannulation in Wistar rats. The essential oil was rich in sesquiterpenes and curzerene, benzophenone, α-cadinol and germacrone were major constituents. The essential oil exhibited significant vasodilation effect in phenylephrine induced contracted aortic rings. Vasorelaxant effect of the essential oil was also observed both in the presence and absence of Nitro-L-arginine methyl ester against phenylephrine-contracted aortic rings. It also induced reduction of systolic and diastolic BP, MAP and HR. Essential oil of P. elsholtzioides exhibited significant vasorelaxant effect against endothelium intact aortic preparation mediated through nitric oxide dependent pathway and also reduced BP. However, further study is needed to screen the role of calcium ions in both intracellular and extracellular pathway. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Hyldgaard, Morten; Mygind, Tina; Meyer, Rikke Louise
2012-01-01
Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds' mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.
Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir
2018-05-24
Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.
Lejonklev, J; Kidmose, U; Jensen, S; Petersen, M A; Helwing, A L F; Mortensen, G; Weisbjerg, M R; Larsen, M K
2016-10-01
Many essential oils and their terpene constituents display antimicrobial properties, which may affect rumen metabolism and influence milk production parameters. Many of these compounds also have distinct flavors and aromas that may make their way into the milk, altering its sensory properties. Essential oils from caraway (Carum carvi) seeds and oregano (Origanum vulgare) plants were included in dairy cow diets to study the effects on terpene composition and sensory properties of the produced milk, as well as feed consumption, production levels of milk, and methane emissions. Two levels of essential oils, 0.2 and 1.0g of oil/kg of dry matter, were added to the feed of lactating cows for 24d. No effects on feed consumption, milk production, and methane emissions were observed. The amount and composition of volatile terpenes were altered in the produced milk based on the terpene content of the essential oils used, with the total amount of terpenes increasing when essential oils were added to the diet. Sensory properties of the produced milk were altered as well, and milk samples from animals receiving essential oil treatment were perceived as having a fresher aroma and lower stored aroma and flavor. The levels of essential oils used in this study mimic realistic levels of essential oils in herbs from feed, but were too low to affect milk production and methane emissions, and their inclusion in the animal diet did not adversely affect milk flavor. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.