Science.gov

Sample records for eukaryotic community composition

  1. Bioinformatic Amplicon Read Processing Strategies Strongly Affect Eukaryotic Diversity and the Taxonomic Composition of Communities

    PubMed Central

    Majaneva, Markus; Hyytiäinen, Kirsi; Varvio, Sirkka Liisa; Nagai, Satoshi; Blomster, Jaanika

    2015-01-01

    Amplicon read sequencing has revolutionized the field of microbial diversity studies. The technique has been developed for bacterial assemblages and has undergone rigorous testing with mock communities. However, due to the great complexity of eukaryotes and the numbers of different rDNA copies, analyzing eukaryotic diversity is more demanding than analyzing bacterial or mock communities, so studies are needed that test the methods of analyses on taxonomically diverse natural communities. In this study, we used 20 samples collected from the Baltic Sea ice, slush and under-ice water to investigate three program packages (UPARSE, mothur and QIIME) and 18 different bioinformatic strategies implemented in them. Our aim was to assess the impact of the initial steps of bioinformatic strategies on the results when analyzing natural eukaryotic communities. We found significant differences among the strategies in resulting read length, number of OTUs and estimates of diversity as well as clear differences in the taxonomic composition of communities. The differences arose mainly because of the variable number of chimeric reads that passed the pre-processing steps. Singleton removal and denoising substantially lowered the number of errors. Our study showed that the initial steps of the bioinformatic amplicon read processing strategies require careful consideration before applying them to eukaryotic communities. PMID:26047335

  2. Oceanographic structure drives the assembly processes of microbial eukaryotic communities.

    PubMed

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-03-17

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.

  3. Oceanographic structure drives the assembly processes of microbial eukaryotic communities

    PubMed Central

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-01-01

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance–decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community. PMID:25325383

  4. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity.

    PubMed

    Parfrey, Laura Wegener; Walters, William A; Lauber, Christian L; Clemente, Jose C; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A; Knight, Rob

    2014-01-01

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  5. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    PubMed Central

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-01-01

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  6. Compositional patterns in the genomes of unicellular eukaryotes

    PubMed Central

    2013-01-01

    Background The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. Results In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. Conclusions The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes. PMID:24188247

  7. Compositional patterns in the genomes of unicellular eukaryotes.

    PubMed

    Costantini, Maria; Alvarez-Valin, Fernando; Costantini, Susan; Cammarano, Rosalia; Bernardi, Giorgio

    2013-11-05

    The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes.

  8. Compositional differences within and between eukaryotic genomes.

    PubMed

    Karlin, S; Mrázek, J

    1997-09-16

    Eukaryotic genome similarity relationships are inferred using sequence information derived from large aggregates of genomic sequences. Comparisons within and between species sample sequences are based on the profile of dinucleotide relative abundance values (The profile is rho*XY = f*XY/f*Xf*Y for all XY, where f*X denotes the frequency of the nucleotide X and f*XY denotes the frequency of the dinucleotide XY, both computed from the sequence concatenated with its inverted complement). Previous studies with respect to prokaryotes and this study document that profiles of different DNA sequence samples (sample size >/=50 kb) from the same organism are generally much more similar to each other than they are to profiles from other organisms, and that closely related organisms generally have more similar profiles than do distantly related organisms. On this basis we refer to the collection (rho*XY) as the genome signature. This paper identifies rho*XY extremes and compares genome signature differences for a diverse range of eukaryotic species. Interpretations on the mechanisms maintaining these profile differences center on genome-wide replication, repair, DNA structures, and context-dependent mutational biases. It is also observed that mitochondrial genome signature differences between species parallel the corresponding nuclear genome signature differences despite large differences between corresponding mitochondrial and nuclear signatures. The genome signature differences also have implications for contrasts between rodents and other mammals, and between monocot and dicot plants, as well as providing evidence for similarities among fungi and the diversity of protists.

  9. Mock communities highlight the diversity of host-associated eukaryotes.

    PubMed

    Wegener Parfrey, Laura

    2015-09-01

    Host-associated microbes are ubiquitous. Every multicellular eukaryote, and even many unicellular eukaryotes (protists), hosts a diverse community of microbes. High-throughput sequencing (HTS) tools have illuminated the vast diversity of host-associated microbes and shown that they have widespread influence on host biology, ecology and evolution (McFall-Ngai et al. ). Bacteria receive most of the attention, but protists are also important components of microbial communities associated with humans (Parfrey et al. ) and other hosts. As HTS tools are increasingly used to study eukaryotes, the presence of numerous and diverse host-associated eukaryotes is emerging as a common theme across ecosystems. Indeed, HTS studies demonstrate that host-associated lineages account for between 2 and 12% of overall eukaryotic sequences detected in soil, marine and freshwater data sets, with much higher relative abundances observed in some samples (Ramirez et al. ; Simon et al. ; de Vargas et al. ). Previous studies in soil detected large numbers of predominantly parasitic lineages such as Apicomplexa, but did not delve into their origin [e.g. (Ramirez et al. )]. In this issue of Molecular Ecology, Geisen et al. () use mock communities to show that many of the eukaryotic organisms detected by environmental sequencing in soils are potentially associated with animal hosts rather than free-living. By isolating the host-associated fraction of soil microbial communities, Geisen and colleagues help explain the surprisingly high diversity of parasitic eukaryotic lineages often detected in soil/terrestrial studies using high-throughput sequencing (HTS) and reinforce the ubiquity of these host-associated microbes. It is clear that we can no longer assume that organisms detected in bulk environmental sequencing are free-living, but instead need to design studies that specifically enumerate the diversity and function of host-associated eukaryotes. Doing so will allow the field to

  10. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns

    PubMed Central

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-01-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. PMID:27029537

  11. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    PubMed

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  12. Large variability of bathypelagic microbial eukaryotic communities across the world's oceans.

    PubMed

    Pernice, Massimo C; Giner, Caterina R; Logares, Ramiro; Perera-Bel, Júlia; Acinas, Silvia G; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2016-04-01

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8-20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

  13. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi river water.

    PubMed

    Korajkic, Asja; Parfrey, Laura Wegener; McMinn, Brian R; Baeza, Yoshiki Vazquez; VanTeuren, Will; Knight, Rob; Shanks, Orin C

    2015-02-01

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is known about how these communities change due to mixing and subsequent decomposition of the sewage contaminant. We investigated decay of sewage in upper Mississippi River using Illumina sequencing of 16S and 18S rRNA gene hypervariable regions and qPCR for human-associated and general fecal Bacteroidales indicators. Mixtures of primary treated sewage and river water were placed in dialysis bags and incubated in situ under ambient conditions for seven days. We assessed changes in microbial community composition under two treatments in a replicated factorial design: sunlight exposure versus shaded and presence versus absence of native river microbiota. Initial diversity was higher in sewage compared to river water for 16S sequences, but the reverse was observed for 18S sequences. Both treatments significantly shifted community composition for eukaryotes and bacteria (P < 0.05). Data indicated that the presence of native river microbiota, rather than exposure to sunlight, accounted for the majority of variation between treatments for both 16S (R = 0.50; P > 0.001) and 18S (R = 0.91; P = 0.001) communities. A comparison of 16S sequence data and fecal indicator qPCR measurements indicated that the latter was a good predictor of overall bacterial community change over time (rho: 0.804-0.814, P = 0.001). These findings suggest that biotic interactions, such as predation by bacterivorous protozoa, can be critical factors in the decomposition of sewage in freshwater habitats and support the use of Bacteroidales genetic markers as indicators of fecal pollution. Published by Elsevier Ltd.

  14. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution.

  15. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities

    PubMed Central

    Morrison-Whittle, Peter; Goddard, Matthew R

    2015-01-01

    We have a limited understanding of the relative contributions of different processes that regulate microbial communities, which are crucial components of both natural and agricultural ecosystems. The contributions of selective and neutral processes in defining community composition are often confounded in field studies because as one moves through space, environments also change. Managed ecosystems provide an excellent opportunity to control for this and evaluate the relative strength of these processes by minimising differences between comparable niches separated at different geographic scales. We use next-generation sequencing to characterize the variance in fungal communities inhabiting adjacent fruit, soil and bark in comparable vineyards across 1000 kms in New Zealand. By compartmentalizing community variation, we reveal that niche explains at least four times more community variance than geographic location. We go beyond merely demonstrating that different communities are found in both different niches and locations by quantifying the forces that define these patterns. Overall, selection unsurprisingly predominantly shapes these microbial communities, but we show the balance of neutral processes also have a significant role in defining community assemblage in eukaryotic microbes. PMID:25756681

  16. Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs.

    PubMed

    Dupont, A Ö C; Griffiths, R I; Bell, T; Bass, D

    2016-06-01

    A recent large-scale assessment of bacterial communities across a range of UK soil types showed that bacterial community structure was strongly determined by soil pH. We analysed a data set of eukaryotic 454 sequencing 18S rDNA from the surveyed samples and showed significant differences in eukaryotic assemblages according to pH class, mostly between low pH and higher pH soils. Soil eukaryote communities (per sample) differed most at the taxonomic rank approximating to order level. Taxonomies assigned with the Protist Ribosomal Reference and the Silva 119 databases were taxonomically inconsistent, mostly due to differing 18S annotations, although general structure and composition according to pH were coherent. A relatively small number of lineages, mostly putative parasitic protists and fungi, drive most differences between pH classes, with weaker contributions from bacterivores and autotrophs. Overall, soil parasites included a large diversity of alveolates, in particular apicomplexans. Phylogenetic analysis of alveolate lineages demonstrates a large diversity of unknown gregarines, novel perkinsids, coccidians, colpodellids and uncharacterized alveolates. Other novel and/or divergent lineages were revealed across the eukaryote tree of life. Our study provides an in-depth taxonomic evaluation of micro-eukaryotic diversity, and reveals novel lineages and insights into their relationships with environmental variables across soil gradients.

  17. Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice.

    PubMed

    Eddie, Brian; Juhl, Andrew; Krembs, Christopher; Baysinger, Charles; Neuer, Susanne

    2010-03-01

    Sea ice microbial community structure affects carbon and nutrient cycling in polar seas, but its susceptibility to changing environmental conditions is not well understood. We studied the eukaryotic microbial community in sea ice cores recovered near Point Barrow, AK in May 2006 by documenting the composition of the community in relation to vertical depth within the cores, as well as light availability (mainly as variable snow cover) and nutrient concentrations. We applied a combination of epifluorescence microscopy, denaturing gradient gel electrophoresis and clone libraries of a section of the 18S rRNA gene in order to compare the community structure of the major eukaryotic microbial phylotypes in the ice. We find that the community composition of the sea ice is more affected by the depth horizon in the ice than by light availability, although there are significant differences in the abundance of some groups between light regimes. Epifluorescence microscopy shows a shift from predominantly heterotrophic life styles in the upper ice to autotrophy prevailing in the bottom ice. This is supported by the statistical analysis of the similarity between the samples based on the denaturing gradient gel electrophoresis banding patterns, which shows a clear difference between upper and lower ice sections with respect to phylotypes and their proportional abundance. Clone libraries constructed using diatom-specific primers confirm the high diversity of diatoms in the sea ice, and support the microscopic counts. Evidence of protistan grazing upon diatoms was also found in lower sections of the core, with implications for carbon and nutrient recycling in the ice.

  18. Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Rio Tinto (southwestern Spain).

    PubMed

    Aguilera, Angeles; Manrubia, Susanna C; Gómez, Felipe; Rodríguez, Nuria; Amils, Ricardo

    2006-08-01

    The correlation between water physicochemical parameters and eukaryotic benthic composition was examined in Río Tinto. Principal component analysis showed a high inverse relationship between pH and most of the heavy metals analyzed as well as Dunaliella sp., while Chlamydomonas sp. abundance was positively related. Zn, Cu, and Ni clustered together and showed a strong inverse correlation with the diversity coefficient and most of the species analyzed. These eukaryotic communities seem to be more influenced by the presence of heavy metals than by the pH.

  19. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach.

    PubMed

    Lentendu, Guillaume; Wubet, Tesfaye; Chatzinotas, Antonis; Wilhelm, Christian; Buscot, François; Schlegel, Martin

    2014-07-01

    To understand the fine-scale effects of changes in nutrient availability on eukaryotic soil microorganisms communities, a multiple barcoding approach was used to analyse soil samples from four different treatments in a long-term fertilization experiment. We performed PCR amplification on soil DNA with primer pairs specifically targeting the 18S rRNA genes of all eukaryotes and three protist groups (Cercozoa, Chrysophyceae-Synurophyceae and Kinetoplastida) as well as the ITS gene of fungi and the 23S plastid rRNA gene of photoautotrophic microorganisms. Amplicons were pyrosequenced, and a total of 88,706 quality filtered reads were clustered into 1232 operational taxonomic units (OTU) across the six data sets. Comparisons of the taxonomic coverage achieved based on overlapping assignment of OTUs revealed that half of the eukaryotic taxa identified were missed by the universal eukaryotic barcoding marker. There were only little differences in OTU richness observed between organic- (farmyard manure), mineral- and nonfertilized soils. However, the community compositions appeared to be strongly structured by organic fertilization in all data sets other than that generated using the universal eukaryotic 18S rRNA gene primers, whereas mineral fertilization had only a minor effect. In addition, a co-occurrence based network analysis revealed complex potential interaction patterns between OTUs from different trophic levels, for example between fungivorous flagellates and fungi. Our results demonstrate that changes in pH, moisture and organic nutrients availability caused shifts in the composition of eukaryotic microbial communities at multiple trophic levels. © 2014 John Wiley & Sons Ltd.

  20. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes.

    PubMed

    Schiaffino, M Romina; Lara, Enrique; Fernández, Leonardo D; Balagué, Vanessa; Singer, David; Seppey, Christophe C W; Massana, Ramon; Izaguirre, Irina

    2016-12-01

    Microbial eukaryotes play important roles in aquatic ecosystem functioning. Unravelling their distribution patterns and biogeography provides important baseline information to infer the underlying mechanisms that regulate the biodiversity and complexity of ecosystems. We studied the distribution patterns and factors driving diversity gradients in microeukaryote communities (total, abundant, uncommon and rare community composition) along a latitudinal gradient of lakes distributed from Argentinean Patagonia to Maritime Antarctica using both denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (Illumina HiSeq). DGGE and abundant Illumina operational taxonomic units (OTUs) showed both decreasing richness with latitude and significant differences between Patagonian and Antarctic lakes communities. In contrast, total richness did not change significantly across the latitudinal gradient, although evenness and diversity indices were significantly higher in Patagonian lakes. Beta-diversity was characterized by a high species turnover, influenced by both environmental and geographical descriptors, although this pattern faded in the rare community. Our results suggest the co-existence of a 'core biosphere' containing reduced number of abundant/dominant OTUs on which classical ecological rules apply, together with a much larger seedbank of rare OTUs driven by stochastic and reduced dispersal processes. These findings shed new light on the biogeographical patterns and forces structuring inland microeukaryote composition across broad spatial scales. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  2. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  3. Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA.

    PubMed

    Meadow, James F; Zabinski, Catherine A

    2012-10-01

    Knowledge of microbial communities and their inherent heterogeneity has dramatically increased with the widespread use of high-throughput sequencing technologies, and we are learning more about the ecological processes that structure microbial communities across a wide range of environments, as well as the relative scales of importance for describing bacterial communities in natural systems. Little work has been carried out to assess fine-scale eukaryotic microbial heterogeneity in soils. Here, we present findings from a bar-coded 18S rRNA survey of the eukaryotic microbial communities in a previously unstudied geothermal diatomaceous biological soil crust in Yellowstone National Park, WY, USA, in which we explicitly compare microbial community heterogeneity at the particle scale within soil cores. Multivariate analysis of community composition showed that while subsamples from within the same soil core clustered together, community dissimilarity between particles in the same core was high. This study describes a novel soil microbial environment and also adds to our growing understanding of microbial heterogeneity and the scales relevant to the study of soil microbial communities.

  4. Surprising Prokaryotic and Eukaryotic Diversity, Community Structure and Biogeography of Ethiopian Soda Lakes

    PubMed Central

    Lanzén, Anders; Simachew, Addis; Gessesse, Amare; Chmolowska, Dominika; Jonassen, Inge; Øvreås, Lise

    2013-01-01

    Soda lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. This makes them valuable model systems for studying the connection between community structure and abiotic parameters such as pH and salinity. For the first time, we apply high-throughput sequencing to accurately estimate phylogenetic richness and composition in five soda lakes, located in the Ethiopian Rift Valley. The lakes were selected for their contrasting pH, salinities and stratification and several depths or spatial positions were covered in each lake. DNA was extracted and analyzed from all lakes at various depths and RNA extracted from two of the lakes, analyzed using both amplicon- and shotgun sequencing. We reveal a surprisingly high biodiversity in all of the studied lakes, similar to that of freshwater lakes. Interestingly, diversity appeared uncorrelated or positively correlated to pH and salinity, with the most “extreme” lakes showing the highest richness. Together, pH, dissolved oxygen, sodium- and potassium concentration explained approximately 30% of the compositional variation between samples. A diversity of prokaryotic and eukaryotic taxa could be identified, including several putatively involved in carbon-, sulfur- or nitrogen cycling. Key processes like methane oxidation, ammonia oxidation and ‘nitrifier denitrification’ were also confirmed by mRNA transcript analyses. PMID:24023625

  5. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes.

    PubMed

    Lanzén, Anders; Simachew, Addis; Gessesse, Amare; Chmolowska, Dominika; Jonassen, Inge; Øvreås, Lise

    2013-01-01

    Soda lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. This makes them valuable model systems for studying the connection between community structure and abiotic parameters such as pH and salinity. For the first time, we apply high-throughput sequencing to accurately estimate phylogenetic richness and composition in five soda lakes, located in the Ethiopian Rift Valley. The lakes were selected for their contrasting pH, salinities and stratification and several depths or spatial positions were covered in each lake. DNA was extracted and analyzed from all lakes at various depths and RNA extracted from two of the lakes, analyzed using both amplicon- and shotgun sequencing. We reveal a surprisingly high biodiversity in all of the studied lakes, similar to that of freshwater lakes. Interestingly, diversity appeared uncorrelated or positively correlated to pH and salinity, with the most "extreme" lakes showing the highest richness. Together, pH, dissolved oxygen, sodium- and potassium concentration explained approximately 30% of the compositional variation between samples. A diversity of prokaryotic and eukaryotic taxa could be identified, including several putatively involved in carbon-, sulfur- or nitrogen cycling. Key processes like methane oxidation, ammonia oxidation and 'nitrifier denitrification' were also confirmed by mRNA transcript analyses.

  6. Combined eukaryotic and bacterial community fingerprinting of natural freshwater biofilms using automated ribosomal intergenic spacer analysis.

    PubMed

    Fechner, Lise C; Vincent-Hubert, Françoise; Gaubert, Philippe; Bouchez, Théodore; Gourlay-Francé, Catherine; Tusseau-Vuillemin, Marie-Hélène

    2010-12-01

    Biofilms are complex communities playing an important role in aquatic ecosystems. Automated ribosomal intergenic spacer analysis (ARISA) has been used successfully to explore biofilm bacterial diversity. However, a gap remains to be filled as regards its application to biofilm eukaryotic populations. The aim of this study is to use ARISA to detect eukaryotic population shifts in biofilm. We designed a new set of primers to focus specifically on the ITS1-5.8S-ITS2 region of diatoms and tested it on natural biofilms. Additionally, we tested universal primers, used previously to perform ARISA on fungal communities. Cloning and sequencing showed that the universal primer set amplified various eukaryotes, whereas the new set was diatom specific. The new set amplified a wider variety of diatoms. Therefore, the universal set is appropriate to study the general eukaryotic population shifts in biofilms, whereas the new set is more appropriate to study diatoms specifically. We used both primer sets, along with a bacterial set, to study the population shifts in natural river biofilms. Principal component analysis of the ARISA fingerprints revealed seasonal shifts that did not coincide for bacterial and eukaryotic communities. Therefore, the use of both eukaryotic and bacterial primers provides a useful insight to assess microbial succession in biofilms.

  7. Self-establishing communities enable cooperative metabolite exchange in a eukaryote.

    PubMed

    Campbell, Kate; Vowinckel, Jakob; Mülleder, Michael; Malmsheimer, Silke; Lawrence, Nicola; Calvani, Enrica; Miller-Fleming, Leonor; Alam, Mohammad T; Christen, Stefan; Keller, Markus A; Ralser, Markus

    2015-10-26

    Metabolite exchange among co-growing cells is frequent by nature, however, is not necessarily occurring at growth-relevant quantities indicative of non-cell-autonomous metabolic function. Complementary auxotrophs of Saccharomyces cerevisiae amino acid and nucleotide metabolism regularly fail to compensate for each other's deficiencies upon co-culturing, a situation which implied the absence of growth-relevant metabolite exchange interactions. Contrastingly, we find that yeast colonies maintain a rich exometabolome and that cells prefer the uptake of extracellular metabolites over self-synthesis, indicators of ongoing metabolite exchange. We conceived a system that circumvents co-culturing and begins with a self-supporting cell that grows autonomously into a heterogeneous community, only able to survive by exchanging histidine, leucine, uracil, and methionine. Compensating for the progressive loss of prototrophy, self-establishing communities successfully obtained an auxotrophic composition in a nutrition-dependent manner, maintaining a wild-type like exometabolome, growth parameters, and cell viability. Yeast, as a eukaryotic model, thus possesses extensive capacity for growth-relevant metabolite exchange and readily cooperates in metabolism within progressively establishing communities.

  8. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir.

    PubMed

    Sun, Zhen; Li, Guoping; Wang, Chengwei; Jing, Yuhang; Zhu, Yiping; Zhang, Shumin; Liu, Yan

    2014-11-10

    This study demonstrates both prokaryotic and eukaryotic community structures and dominant taxonomies in different positions of the greatest estuary reservoir for drinking water source in the world in four seasons of one year using 454 pyrosequencing method with total of 312,949 16S rRNA and 374,752 18S rRNA gene fragments, including 1,652 bacteria OTUs and 1,182 fungus OTUs. During winter and spring, the community composition at the phylum level showed that microorganisms had similar structures but their quantities were different. Similarly, obvious changes at the genus level were observed among the samples taken in winter and spring between summer and fall. Microorganisms located the reservoir inlet were founded to be different from those in rear at both phylum and genus level. Air temperature had a stronger effect than sampling location on the microbial community structure. Total nitrogen and dissolved oxygen were algae-monitoring indicators during the whole year. Moreover, Bacillus was an efficient indicator during summer and autumn for bacteria OTUs.

  9. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir

    PubMed Central

    Sun, Zhen; Li, Guoping; Wang, Chengwei; Jing, Yuhang; Zhu, Yiping; Zhang, Shumin; Liu, Yan

    2014-01-01

    This study demonstrates both prokaryotic and eukaryotic community structures and dominant taxonomies in different positions of the greatest estuary reservoir for drinking water source in the world in four seasons of one year using 454 pyrosequencing method with total of 312,949 16S rRNA and 374,752 18S rRNA gene fragments, including 1,652 bacteria OTUs and 1,182 fungus OTUs. During winter and spring, the community composition at the phylum level showed that microorganisms had similar structures but their quantities were different. Similarly, obvious changes at the genus level were observed among the samples taken in winter and spring between summer and fall. Microorganisms located the reservoir inlet were founded to be different from those in rear at both phylum and genus level. Air temperature had a stronger effect than sampling location on the microbial community structure. Total nitrogen and dissolved oxygen were algae-monitoring indicators during the whole year. Moreover, Bacillus was an efficient indicator during summer and autumn for bacteria OTUs. PMID:25382138

  10. Self-establishing communities enable cooperative metabolite exchange in a eukaryote

    PubMed Central

    Campbell, Kate; Vowinckel, Jakob; Mülleder, Michael; Malmsheimer, Silke; Lawrence, Nicola; Calvani, Enrica; Miller-Fleming, Leonor; Alam, Mohammad T; Christen, Stefan; Keller, Markus A; Ralser, Markus

    2015-01-01

    Metabolite exchange among co-growing cells is frequent by nature, however, is not necessarily occurring at growth-relevant quantities indicative of non-cell-autonomous metabolic function. Complementary auxotrophs of Saccharomyces cerevisiae amino acid and nucleotide metabolism regularly fail to compensate for each other's deficiencies upon co-culturing, a situation which implied the absence of growth-relevant metabolite exchange interactions. Contrastingly, we find that yeast colonies maintain a rich exometabolome and that cells prefer the uptake of extracellular metabolites over self-synthesis, indicators of ongoing metabolite exchange. We conceived a system that circumvents co-culturing and begins with a self-supporting cell that grows autonomously into a heterogeneous community, only able to survive by exchanging histidine, leucine, uracil, and methionine. Compensating for the progressive loss of prototrophy, self-establishing communities successfully obtained an auxotrophic composition in a nutrition-dependent manner, maintaining a wild-type like exometabolome, growth parameters, and cell viability. Yeast, as a eukaryotic model, thus possesses extensive capacity for growth-relevant metabolite exchange and readily cooperates in metabolism within progressively establishing communities. DOI: http://dx.doi.org/10.7554/eLife.09943.001 PMID:26499891

  11. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Zhen; Li, Guoping; Wang, Chengwei; Jing, Yuhang; Zhu, Yiping; Zhang, Shumin; Liu, Yan

    2014-11-01

    This study demonstrates both prokaryotic and eukaryotic community structures and dominant taxonomies in different positions of the greatest estuary reservoir for drinking water source in the world in four seasons of one year using 454 pyrosequencing method with total of 312,949 16S rRNA and 374,752 18S rRNA gene fragments, including 1,652 bacteria OTUs and 1,182 fungus OTUs. During winter and spring, the community composition at the phylum level showed that microorganisms had similar structures but their quantities were different. Similarly, obvious changes at the genus level were observed among the samples taken in winter and spring between summer and fall. Microorganisms located the reservoir inlet were founded to be different from those in rear at both phylum and genus level. Air temperature had a stronger effect than sampling location on the microbial community structure. Total nitrogen and dissolved oxygen were algae-monitoring indicators during the whole year. Moreover, Bacillus was an efficient indicator during summer and autumn for bacteria OTUs.

  12. Canopy Flow Analysis Reveals the Advantage of Size in the Oldest Communities of Multicellular Eukaryotes

    PubMed Central

    Ghisalberti, Marco; Gold, David A.; Laflamme, Marc; Clapham, Matthew E.; Narbonne, Guy M.; Summons, Roger E.; Johnston, David T.; Jacobs, David K.

    2015-01-01

    Summary At Mistaken Point, Newfoundland, Canada, rangeomorph “fronds” dominate the earliest (579–565 million years ago) fossil communities of large (0.1 to 2 m height) multicellular benthic eukaryotes. They lived in low-flow environments, fueled by uptake [1–3] of dissolved reactants (osmotrophy). However, prokaryotes are effective osmotrophs, and the advantage of taller eukaryotic osmotrophs in this deepwater community context has not been addressed. We reconstructed flow-velocity profiles and vertical mixing using canopy flow models appropriate to the densities of the observed communities. Further modeling of processes at organismal surfaces documents increasing uptake with height in the community as a function of thinning of the diffusive boundary layer with increased velocity. The velocity profile, produced by canopy flow in the community, generates this advantage of upward growth. Alternative models of upward growth advantage based on redox/resource gradients fail, given the efficiency of vertical mixing. In benthic communities of osmotrophs of sufficient density, access to flow in low-flow settings provides an advantage to taller architecture, providing a selectional driver for communities of tall eukaryotes in contexts where phototropism cannot contribute to upward growth. These Ediacaran deep-sea fossils were preserved during the increasing oxygenation prior to the Cambrian radiation of animals and likely represent an important phase in the ecological and evolutionary transition to more complex eukaryotic forms. PMID:24462003

  13. Eukaryotic Community Distribution and Its Relationship to Water Physicochemical Parameters in an Extreme Acidic Environment, Río Tinto (Southwestern Spain)†

    PubMed Central

    Aguilera, Angeles; Manrubia, Susanna C.; Gómez, Felipe; Rodríguez, Nuria; Amils, Ricardo

    2006-01-01

    The correlation between water physicochemical parameters and eukaryotic benthic composition was examined in Río Tinto. Principal component analysis showed a high inverse relationship between pH and most of the heavy metals analyzed as well as Dunaliella sp., while Chlamydomonas sp. abundance was positively related. Zn, Cu, and Ni clustered together and showed a strong inverse correlation with the diversity coefficient and most of the species analyzed. These eukaryotic communities seem to be more influenced by the presence of heavy metals than by the pH. PMID:16885283

  14. Changes in Bacterial and Eukaryotic Community Structure after Mass Lysis of Filamentous Cyanobacteria Associated with Viruses†

    PubMed Central

    van Hannen, Erik J.; Zwart, Gabriel; van Agterveld, Miranda P.; Gons, Herman J.; Ebert, Jeannine; Laanbroek, Hendrikus J.

    1999-01-01

    During an experiment in two laboratory-scale enclosures filled with lake water (130 liters each) we noticed the almost-complete lysis of the cyanobacterial population. Based on electron microscopic observations of viral particles inside cyanobacterial filaments and counts of virus-like particles, we concluded that a viral lysis of the filamentous cyanobacteria had taken place. Denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA fragments qualitatively monitored the removal of the cyanobacterial species from the community and the appearance of newly emerging bacterial species. The majority of these bacteria were related to the Cytophagales and actinomycetes, bacterial divisions known to contain species capable of degrading complex organic molecules. A few days after the cyanobacteria started to lyse, a rotifer species became dominant in the DGGE profile of the eukaryotic community. Since rotifers play an important role in the carbon transfer between the microbial loop and higher trophic levels, these observations confirm the role of viruses in channeling carbon through food webs. Multidimensional scaling analysis of the DGGE profiles showed large changes in the structures of both the bacterial and eukaryotic communities at the time of lysis. These changes were remarkably similar in the two enclosures, indicating that such community structure changes are not random but occur according to a fixed pattern. Our findings strongly support the idea that viruses can structure microbial communities. PMID:9925618

  15. Discordant Temporal Turnovers of Sediment Bacterial and Eukaryotic Communities in Response to Dredging: Nonresilience and Functional Changes.

    PubMed

    Zhang, Na; Xiao, Xian; Pei, Meng; Liu, Xiang; Liang, Yuting

    2017-01-01

    To study the stability and succession of sediment microbial and macrobenthic communities in response to anthropogenic disturbance, a time-series sampling was conducted before, during, and 1 year after dredging in the Guan River in Changzhou, China, which was performed with cutter suction dredgers from 10 April to 20 May 2014. The microbial communities were analyzed by sequencing bacterial 16S rRNA and eukaryotic 18S rRNA gene amplicons with Illumina MiSeq, and the macrobenthic community was identified using a morphological approach simultaneously. The results indicated that dredging disturbance significantly altered the composition and structures of sediment communities. The succession rates of communities were estimated by comparing the slopes of time-decay relationships. The temporal turnover of microeukaryotes (w = 0.3251, P < 0.001 [where w is a measure of the rate of log(species turnover) across log(time)]) was the highest, followed by that of bacteria (w = 0.2450, P < 0.001), and then macrobenthos (w = 0.1273, P < 0.001). During dredging, the alpha diversities of both bacterial and microeukaryotic communities were more resistant, but their beta diversities were less resistant than that of macrobenthos. After recovery for 1 year, all three sediment communities were not resilient and had reached an alternative state. The alterations in sediment community structure and stability resulted in functional changes in nitrogen and carbon cycling in sediments. Sediment pH, dissolved oxygen, redox potential, and temperature were the most important factors influencing the stability of sediment communities and ecosystem multifunctionality. This study suggests that discordant temporal turnovers and nonresilience of sediment communities under dredging resulted in functional changes, which are important for predicting sediment ecosystem functions under anthropogenic disturbances.

  16. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.

    PubMed

    Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song

    2015-04-01

    For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Buccal Swabbing as a Noninvasive Method To Determine Bacterial, Archaeal, and Eukaryotic Microbial Community Structures in the Rumen

    PubMed Central

    Kirk, Michelle R.; Jonker, Arjan; McCulloch, Alan

    2015-01-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  18. Metabarcoding improves detection of eukaryotes from early biofouling communities: implications for pest monitoring and pathway management.

    PubMed

    Zaiko, Anastasija; Schimanski, Kate; Pochon, Xavier; Hopkins, Grant A; Goldstien, Sharyn; Floerl, Oliver; Wood, Susanna A

    2016-07-01

    In this experimental study the patterns in early marine biofouling communities and possible implications for surveillance and environmental management were explored using metabarcoding, viz. 18S ribosomal RNA gene barcoding in combination with high-throughput sequencing. The community structure of eukaryotic assemblages and the patterns of initial succession were assessed from settlement plates deployed in a busy port for one, five and 15 days. The metabarcoding results were verified with traditional morphological identification of taxa from selected experimental plates. Metabarcoding analysis identified > 400 taxa at a comparatively low taxonomic level and morphological analysis resulted in the detection of 25 taxa at varying levels of resolution. Despite the differences in resolution, data from both methods were consistent at high taxonomic levels and similar patterns in community shifts were observed. A high percentage of sequences belonging to genera known to contain non-indigenous species (NIS) were detected after exposure for only one day.

  19. Resilience of Freshwater Communities of Small Microbial Eukaryotes Undergoing Severe Drought Events

    PubMed Central

    Simon, Marianne; López-García, Purificación; Deschamps, Philippe; Restoux, Gwendal; Bertolino, Paola; Moreira, David; Jardillier, Ludwig

    2016-01-01

    Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range: 0.2–5 μm) in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for 2 years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems. PMID:27303393

  20. Influence of indigenous eukaryotic microbial communities on the reduction of Escherichia coli O157:H7 in compost slurry.

    PubMed

    Puri, Amrita; Dudley, Edward G

    2010-12-01

    Compost made from livestock manure is commonly used as a crop fertilizer and serves as a possible vehicle for the transmission of Escherichia coli O157:H7 to fresh produce. In this study, we hypothesized that the indigenous microbial communities present in composts adversely affects the survival of E. coli O157:H7. Escherichia coli O157:H7 was spiked into compost slurry and incubated at 25 °C. Escherichia coli O157:H7 exhibited a c. 4 log(10) reduction over 16 days. When compost was supplemented with the eukaryotic inhibitor cycloheximide, there was a minimal decrease in E. coli O157:H7 counts over the same time period. Analysis of microbial communities present in the compost with denaturing gradient gel electrophoresis (DGGE) suggested minor differences in the fungal communities present in cycloheximide-treated compost, compared with untreated compost over a period of 12 days at 25 °C. However, the DGGE profiles of protists showed drastic differences in community complexity. Clone library sequence analysis of protist populations revealed significantly different species composition between treatment and control samples at different time points. This suggests that predation of E. coli O157:H7 by protists might be a potential mechanism for reducing E. coli O157:H7 in compost materials.

  1. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    PubMed

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  2. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  3. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    PubMed Central

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  4. Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries.

    PubMed

    Chariton, Anthony A; Stephenson, Sarah; Morgan, Matthew J; Steven, Andrew D L; Colloff, Matthew J; Court, Leon N; Hardy, Christopher M

    2015-08-01

    DNA-derived measurements of biological composition have the potential to produce data covering all of life, and provide a tantalizing proposition for researchers and managers. We used metabarcoding to compare benthic eukaryote composition from five estuaries of varying condition. In contrast to traditional studies, we found biotic richness was greatest in the most disturbed estuary, with this being due to the large volume of extraneous material (i.e. run-off from aquaculture, agriculture and other catchment activities) being deposited in the system. In addition, we found strong correlations between composition and a number of environmental variables, including nutrients, pH and turbidity. A wide range of taxa responded to these environmental gradients, providing new insights into their sensitivities to natural and anthropogenic stressors. Metabarcoding has the capacity to bolster current monitoring techniques, enabling the decisions regarding ecological condition to be based on a more holistic view of biodiversity.

  5. Composition, Cognition, Creativity, and Community

    ERIC Educational Resources Information Center

    Moberg, Eric Michael; Kobylarz, Philip

    2015-01-01

    The purpose of this study was to examine the intersection between and among creativity, cognition, composition, and community. Researchers studied hundreds of adult students from several California community colleges and private universities by means of surveys, observations, and interviews to augment an extensive historical literature review.…

  6. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river

    PubMed Central

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-01-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47–48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. PMID:23520129

  7. In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice.

    PubMed

    Uhlig, Christiane; Kilpert, Fabian; Frickenhaus, Stephan; Kegel, Jessica U; Krell, Andreas; Mock, Thomas; Valentin, Klaus; Beszteri, Bánk

    2015-11-01

    Ice-binding proteins (IBPs) have been isolated from various sea-ice organisms. Their characterisation points to a crucial role in protecting the organisms in sub-zero environments. However, their in situ abundance and diversity in natural sea-ice microbial communities is largely unknown. In this study, we analysed the expression and phylogenetic diversity of eukaryotic IBP transcripts from microbial communities of Arctic and Antarctic sea ice. IBP transcripts were found in abundances similar to those of proteins involved in core cellular processes such as photosynthesis. Eighty-nine percent of the IBP transcripts grouped with known IBP sequences from diatoms, haptophytes and crustaceans, but the majority represented novel sequences not previously characterized in cultured organisms. The observed high eukaryotic IBP expression in natural eukaryotic sea ice communities underlines the essential role of IBPs for survival of many microorganisms in communities living under the extreme conditions of polar sea ice.

  8. In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice

    PubMed Central

    Uhlig, Christiane; Kilpert, Fabian; Frickenhaus, Stephan; Kegel, Jessica U; Krell, Andreas; Mock, Thomas; Valentin, Klaus; Beszteri, Bánk

    2015-01-01

    Ice-binding proteins (IBPs) have been isolated from various sea-ice organisms. Their characterisation points to a crucial role in protecting the organisms in sub-zero environments. However, their in situ abundance and diversity in natural sea-ice microbial communities is largely unknown. In this study, we analysed the expression and phylogenetic diversity of eukaryotic IBP transcripts from microbial communities of Arctic and Antarctic sea ice. IBP transcripts were found in abundances similar to those of proteins involved in core cellular processes such as photosynthesis. Eighty-nine percent of the IBP transcripts grouped with known IBP sequences from diatoms, haptophytes and crustaceans, but the majority represented novel sequences not previously characterized in cultured organisms. The observed high eukaryotic IBP expression in natural eukaryotic sea ice communities underlines the essential role of IBPs for survival of many microorganisms in communities living under the extreme conditions of polar sea ice. PMID:25885562

  9. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA.

    PubMed

    Capo, Eric; Debroas, Didier; Arnaud, Fabien; Guillemot, Typhaine; Bichet, Vincent; Millet, Laurent; Gauthier, Emilie; Massa, Charly; Develle, Anne-Lise; Pignol, Cécile; Lejzerowicz, Franck; Domaizon, Isabelle

    2016-12-01

    Assessing the extent to which changes in lacustrine biodiversity are affected by anthropogenic or climatic forces requires extensive palaeolimnological data. We used high-throughput sequencing to generate time-series data encompassing over 2200 years of microbial eukaryotes (protists and Fungi) diversity changes from the sedimentary DNA record of two lakes (Lake Bourget in French Alps and Lake Igaliku in Greenland). From 176 samples, we sequenced a large diversity of microbial eukaryotes, with a total 16 386 operational taxonomic units distributed within 50 phylogenetic groups. Thus, microbial groups, such as Chlorophyta, Dinophyceae, Haptophyceae and Ciliophora, that were not previously considered in lacustrine sediment record analyses appeared to be potential biological markers of trophic status changes. Our data suggest that shifts in relative abundance of extant species, including shifts between rare and abundant taxa, drive ecosystem responses to local and global environmental changes. Community structure shift events were concomitant with major climate variations (more particularly in Lake Igaliku). However, this study shows that the impacts of climatic fluctuations may be overpassed by the high-magnitude eutrophication impacts, as observed in the eutrophicated Lake Bourget. Overall, our data show that DNA preserved in sediment constitutes a precious archive of information on past biodiversity changes. © 2016 John Wiley & Sons Ltd.

  10. A New Database (GCD) on Genome Composition for Eukaryote and Prokaryote Genome Sequences and Their Initial Analyses

    PubMed Central

    Kryukov, Kirill; Sumiyama, Kenta; Ikeo, Kazuho; Gojobori, Takashi; Saitou, Naruya

    2012-01-01

    Eukaryote genomes contain many noncoding regions, and they are quite complex. To understand these complexities, we constructed a database, Genome Composition Database, for the whole genome composition statistics for 101 eukaryote genome data, as well as more than 1,000 prokaryote genomes. Frequencies of all possible one to ten oligonucleotides were counted for each genome, and these observed values were compared with expected values computed under observed oligonucleotide frequencies of length 1–4. Deviations from expected values were much larger for eukaryotes than prokaryotes, except for fungal genomes. Mammalian genomes showed the largest deviation among animals. The results of comparison are available online at http://esper.lab.nig.ac.jp/genome-composition-database/. PMID:22417913

  11. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    PubMed

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  12. Influence of Solar Radiation and Biotic Interactions on Bacterial and Eukaryotic Communities Associated with Sewage Decomposition in Ambient Water - Poster

    EPA Science Inventory

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biotic...

  13. Influence of solar radiation and biotic interactions on bacterial and eukaryotic communities associated with sewage decomposition in ambient water

    EPA Science Inventory

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biot...

  14. Influence of solar radiation and biotic interactions on bacterial and eukaryotic communities associated with sewage decomposition in ambient water

    EPA Science Inventory

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biot...

  15. Influence of Solar Radiation and Biotic Interactions on Bacterial and Eukaryotic Communities Associated with Sewage Decomposition in Ambient Water - Poster

    EPA Science Inventory

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biotic...

  16. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor

    PubMed Central

    Zhang, Q; Shuwen, G; Zhang, J; Fane, AG; Kjelleberg, S; Rice, SA; McDougald, D

    2015-01-01

    Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. PMID:25604265

  17. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor.

    PubMed

    Zhang, Q; Shuwen, G; Zhang, J; Fane, A G; Kjelleberg, S; Rice, S A; McDougald, D

    2015-04-01

    Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  18. Early detection of eukaryotic communities from marine biofilm using high-throughput sequencing: an assessment of different sampling devices.

    PubMed

    Pochon, Xavier; Zaiko, Anastasija; Hopkins, Grant A; Banks, Jonathan C; Wood, Susanna A

    2015-01-01

    Marine biofilms are precursors for colonization by larger fouling organisms, including non-indigenous species (NIS). In this study, high-throughput sequencing (HTS) of 18S rRNA metabarcodes was used to investigate four sampling methods (modified syringe, sterilized sponge, underwater tape and sterilized swab) for characterizing eukaryotic communities in marine biofilms. Perspex™ plates were sampled in and out of water. DNA collected with tape did not amplify. Otherwise, there were no statistical differences in communities among the remaining three sampling devices or between the two environments. Sterilized sponges are recommended for ease of use underwater. In-depth HTS analysis identified diverse eukaryotic communities, dominated by Metazoa and Chromoalveolata. Among the latter, diatoms (Bacillariophyceae) were particularly abundant (33% of reads assigned to Chromalveolata). The NIS Ciona savignyi was detected in all samples. The application of HTS in marine biofilm surveillance could facilitate early detection of NIS, improving the probability of successful eradication.

  19. Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of Carnoulès Mine, France.

    PubMed

    Volant, A; Héry, M; Desoeuvre, A; Casiot, C; Morin, G; Bertin, P N; Bruneel, O

    2016-10-01

    Microscopic eukaryotes play a key role in ecosystem functioning, but their diversity remains largely unexplored in most environments. To advance our knowledge of eukaryotic microorganisms and the factors that structure their communities, high-throughput sequencing was used to characterize their diversity and spatial distribution along the pollution gradient of the acid mine drainage at Carnoulès (France). A total of 16,510 reads were retrieved leading to the identification of 323 OTUs after normalization. Phylogenetic analysis revealed a quite diverse eukaryotic community characterized by a total of eight high-level lineages including 37 classes. The majority of sequences were clustered in four main groups: Fungi, Stramenopiles, Alveolata and Viridiplantae. The Reigous sediments formed a succession of distinct ecosystems hosting contrasted eukaryotic communities whose structure appeared to be at least partially correlated with sediment mineralogy. The concentration of arsenic in the sediment was shown to be a significant factor driving the eukaryotic community structure along this continuum.

  20. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering?

    PubMed

    Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole

    2016-07-01

    Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Community succession of bacteria and eukaryotes in dune ecosystems of Gurbantünggüt Desert, Northwest China.

    PubMed

    Li, Ke; Bai, Zhihui; Zhang, Hongxun

    2015-01-01

    Pyrosequencing and quantitative polymerase chain reaction of small subunit rRNA genes were used to provide a comprehensive examination of bacterial, cyanobacterial, and eukaryotic communities in the biological soil crusts (BSCs) of Gurbantünggüt Desert sand dunes (China). Three succession stages were recognized based on the analyses of eukaryotic communities: a late succession stage of BSCs in a swale with eukaryotes mainly related to the Bryophyta clade, an initial succession stage in a slope with barely any eukaryotic phototrophic microorganisms detected, and an intermediate succession type detected from both the swale and slope BSCs dominated by the phylum Chlorophyta. Moreover, the cyanobacterial community dominated all of the BSCs (48.2-69.5% of the total bacteria) and differed among the three succession stages: sequences related to Microcoleus steenstrupii and the genus Scytonema were abundant in the later succession stage, whereas both the initial and intermediate stages were dominated by Microcoleus vaginatus. Compared with swales, BSCs from slopes are exposed to a harsher environment, e.g., higher irradiance and lower water availability, and thus may be restricted from developing to a higher succession stage. Other disturbances such as wind and grazing may explain the different succession stages observed in swales or slopes. However, no clear differences were detected from non-phototrophic bacterial communities of the three succession stages, and sequences related to Alphaproteobacteria and Actinobacteria were most abundant in all the BSCs. The closest matches for the most frequent non-phototrophic bacterial genera were mainly derived from harsh environments, indicating the robustness of these genera.

  2. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm.

    PubMed

    Wang, Hong; Masters, Sheldon; Edwards, Marc A; Falkinham, Joseph O; Pruden, Amy

    2014-01-01

    Availability of safe, pathogen-free drinking water is vital to public health; however, it is impossible to deliver sterile drinking water to consumers. Recent microbiome research is bringing new understanding to the true extent and diversity of microbes that inhabit water distribution systems. The purpose of this study was to determine how water chemistry in main distribution lines shape the microbiome in drinking water biofilms and to explore potential associations between opportunistic pathogens and indigenous drinking water microbes. Effects of disinfectant (chloramines, chlorine), water age (2.3 days, 5.7 days), and pipe material (cement, iron, PVC) were compared in parallel triplicate simulated water distribution systems. Pyrosequencing was employed to characterize bacteria and terminal restriction fragment polymorphism was used to profile both bacteria and eukaryotes inhabiting pipe biofilms. Disinfectant and water age were both observed to be strong factors in shaping bacterial and eukaryotic community structures. Pipe material only influenced the bacterial community structure (ANOSIM test, P < 0.05). Interactive effects of disinfectant, pipe material, and water age on both bacteria and eukaryotes were noted. Disinfectant concentration had the strongest effect on bacteria, while dissolved oxygen appeared to be a major driver for eukaryotes (BEST test). Several correlations of similarity metrics among populations of bacteria, eukaryotes, and opportunistic pathogens, as well as one significant association between mycobacterial and proteobacterial operational taxonomic units, provides insight into means by which manipulating the microbiome may lead to new avenues for limiting the growth of opportunistic pathogens (e.g., Legionella) or other nuisance organisms (e.g., nitrifiers).

  3. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition.

    PubMed

    Heitlinger, Emanuel; Ferreira, Susana C M; Thierer, Dagmar; Hofer, Heribert; East, Marion L

    2017-01-01

    In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena (Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.

  4. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition

    PubMed Central

    Heitlinger, Emanuel; Ferreira, Susana C. M.; Thierer, Dagmar; Hofer, Heribert; East, Marion L.

    2017-01-01

    In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena (Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes. PMID:28670573

  5. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments

    PubMed Central

    Bik, Holly M.; Sung, Way; De Ley, Paul; Baldwin, James G.; Sharma, Jyotsna; Rocha-Olivares, Axayácatl; Thomas, W. Kelley

    2011-01-01

    Summary Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and likely play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world’s largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For OCTUs reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic datasets. PMID:21985648

  6. Contribution of eukaryotic microbial communities to the formation of Fe-rich accretions in an extreme acidic environment

    NASA Astrophysics Data System (ADS)

    Rodrigues, L.; Valente, T.; Correia, A.; Alves, A.; Foing, B.; Davies, G. R.

    2012-04-01

    In the acid mine drainage of Valdarcas, northern Portugal, Fe-rich tubular and spherical macroaccretions are directly associated with the presence of eukaryotic microorganisms. This raises the question whether they are biogenically-derived or the result of an abiotic process mediated by microeukaryotic phototrophs. The drainage water at Valdarcas is characterized by very low pH values (pH<3.5), high metal solubility and presence of iron colloids. Mineralogical analysis (XRD and SEM) of the precipitates indicates a mixture of goethite, schwertmannite and jarosite. Euglenophyta and Chlorophyta acidophilic algal were previously identified in this site. The spatial distribution of Euglena mutabilis indicated that it has a preference to grow up on schwertmannite-rich precipitates. Field observations demonstrate the existence of oxygenated microenvironments created by algal activity suggesting that algae influence iron minerals precipitation, especially schwertmannite. The mineral-microorganism interactions are relevant to understanding this unique and extreme environment. Further investigations regarding the mineralogical and chemical characterization of these deposits, and the identification of microorganisms involved in the process could be helpful to enhance our knowledge of past Fe formations throughout Earth's primordial environment. It is expectable that this information will contribute to establish a framework for recognition of biosignatures on other planets and extraterrestrial bodies. In this study, results on the chemical and mineralogical composition of the structures are presented. The biological context is characterised based on observations made by optical microscopy complemented with molecular data on the microbial communities obtained by culture independent methods. The results are discussed within the context of two models: the studied Fe-rich stromatolites are microeukaryotic-mediated as described by previous workers from similar environments or are

  7. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities

    PubMed Central

    Kittelmann, Sandra; Seedorf, Henning; Walters, William A.; Clemente, Jose C.; Knight, Rob; Gordon, Jeffrey I.; Janssen, Peter H.

    2013-01-01

    Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats. PMID:23408926

  8. Compositions and methods for the expression of selenoproteins in eukaryotic cells

    SciTech Connect

    Gladyshev, Vadim; Novoselov, Sergey

    2012-09-25

    Recombinant nucleic acid constructs for the efficient expression of eukaryotic selenoproteins and related methods for production of recombinant selenoproteins are provided. The nucleic acid constructs comprise novel selenocysteine insertion sequence (SECIS) elements. Certain novel SECIS elements of the invention contain non-canonical quartet sequences. Other novel SECIS elements provided by the invention are chimeric SECIS elements comprising a canonical SECIS element that contains a non-canonical quartet sequence and chimeric SECIS elements comprising a non-canonical SECIS element that contains a canonical quartet sequence. The novel SECIS elements of the invention facilitate the insertion of selenocysteine residues into recombinant polypeptides.

  9. Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico)

    PubMed Central

    Couradeau, Estelle; Benzerara, Karim; Moreira, David; Gérard, Emmanuelle; Kaźmierczak, Józef; Tavera, Rosaluz; López-García, Purificación

    2011-01-01

    The geomicrobiology of crater lake microbialites remains largely unknown despite their evolutionary interest due to their resemblance to some Archaean analogs in the dominance of in situ carbonate precipitation over accretion. Here, we studied the diversity of archaea, bacteria and protists in microbialites of the alkaline Lake Alchichica from both field samples collected along a depth gradient (0–14 m depth) and long-term-maintained laboratory aquaria. Using small subunit (SSU) rRNA gene libraries and fingerprinting methods, we detected a wide diversity of bacteria and protists contrasting with a minor fraction of archaea. Oxygenic photosynthesizers were dominated by cyanobacteria, green algae and diatoms. Cyanobacterial diversity varied with depth, Oscillatoriales dominating shallow and intermediate microbialites and Pleurocapsales the deepest samples. The early-branching Gloeobacterales represented significant proportions in aquaria microbialites. Anoxygenic photosynthesizers were also diverse, comprising members of Alphaproteobacteria and Chloroflexi. Although photosynthetic microorganisms dominated in biomass, heterotrophic lineages were more diverse. We detected members of up to 21 bacterial phyla or candidate divisions, including lineages possibly involved in microbialite formation, such as sulfate-reducing Deltaproteobacteria but also Firmicutes and very diverse taxa likely able to degrade complex polymeric substances, such as Planctomycetales, Bacteroidetes and Verrucomicrobia. Heterotrophic eukaryotes were dominated by Fungi (including members of the basal Rozellida or Cryptomycota), Choanoflagellida, Nucleariida, Amoebozoa, Alveolata and Stramenopiles. The diversity and relative abundance of many eukaryotic lineages suggest an unforeseen role for protists in microbialite ecology. Many lineages from lake microbialites were successfully maintained in aquaria. Interestingly, the diversity detected in aquarium microbialites was higher than in field samples

  10. Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline Lake Alchichica (Mexico).

    PubMed

    Couradeau, Estelle; Benzerara, Karim; Moreira, David; Gérard, Emmanuelle; Kaźmierczak, Józef; Tavera, Rosaluz; López-García, Purificación

    2011-01-01

    The geomicrobiology of crater lake microbialites remains largely unknown despite their evolutionary interest due to their resemblance to some Archaean analogs in the dominance of in situ carbonate precipitation over accretion. Here, we studied the diversity of archaea, bacteria and protists in microbialites of the alkaline Lake Alchichica from both field samples collected along a depth gradient (0-14 m depth) and long-term-maintained laboratory aquaria. Using small subunit (SSU) rRNA gene libraries and fingerprinting methods, we detected a wide diversity of bacteria and protists contrasting with a minor fraction of archaea. Oxygenic photosynthesizers were dominated by cyanobacteria, green algae and diatoms. Cyanobacterial diversity varied with depth, Oscillatoriales dominating shallow and intermediate microbialites and Pleurocapsales the deepest samples. The early-branching Gloeobacterales represented significant proportions in aquaria microbialites. Anoxygenic photosynthesizers were also diverse, comprising members of Alphaproteobacteria and Chloroflexi. Although photosynthetic microorganisms dominated in biomass, heterotrophic lineages were more diverse. We detected members of up to 21 bacterial phyla or candidate divisions, including lineages possibly involved in microbialite formation, such as sulfate-reducing Deltaproteobacteria but also Firmicutes and very diverse taxa likely able to degrade complex polymeric substances, such as Planctomycetales, Bacteroidetes and Verrucomicrobia. Heterotrophic eukaryotes were dominated by Fungi (including members of the basal Rozellida or Cryptomycota), Choanoflagellida, Nucleariida, Amoebozoa, Alveolata and Stramenopiles. The diversity and relative abundance of many eukaryotic lineages suggest an unforeseen role for protists in microbialite ecology. Many lineages from lake microbialites were successfully maintained in aquaria. Interestingly, the diversity detected in aquarium microbialites was higher than in field samples

  11. Stream Hydrological Fragmentation Drives Bacterioplankton Community Composition

    PubMed Central

    Fazi, Stefano; Vázquez, Eusebi; Casamayor, Emilio O.; Amalfitano, Stefano; Butturini, Andrea

    2013-01-01

    In Mediterranean intermittent streams, the hydrological fragmentation in summer and the successive water flow re-convergence in autumn allow exploring how local processes shape the microbial community within the same habitat. The objectives of this study were to determine how bacterial community composition responded to hydrological fragmentation in summer, and to evaluate whether the seasonal shifts in community composition predominate over the effects of episodic habitat fragmentation. The bacterial community was assessed along the intermittent stream Fuirosos (Spain), at different levels of phylogenetic resolution by in situ hybridization, fingerprinting, and 16S rRNA gene sequencing. The hydrological fragmentation of the stream network strongly altered the biogeochemical conditions with the depletion of oxidized solutes and caused changes in dissolved organic carbon characteristics. In the isolated ponds, beta-Proteobacteria and Actinobacteria increased their abundance with a gradual reduction of the alpha-diversity as pond isolation time increased. Moreover, fingerprinting analysis clearly showed a shift in community composition between summer and autumn. In the context of a seasonal shift, the temporary stream fragmentation simultaneously reduced the microbial dispersion and affected local environmental conditions (shift in redox regime and quality of the dissolved organic matter) tightly shaping the bacterioplankton community composition. PMID:23741302

  12. Stream hydrological fragmentation drives bacterioplankton community composition.

    PubMed

    Fazi, Stefano; Vázquez, Eusebi; Casamayor, Emilio O; Amalfitano, Stefano; Butturini, Andrea

    2013-01-01

    In Mediterranean intermittent streams, the hydrological fragmentation in summer and the successive water flow re-convergence in autumn allow exploring how local processes shape the microbial community within the same habitat. The objectives of this study were to determine how bacterial community composition responded to hydrological fragmentation in summer, and to evaluate whether the seasonal shifts in community composition predominate over the effects of episodic habitat fragmentation. The bacterial community was assessed along the intermittent stream Fuirosos (Spain), at different levels of phylogenetic resolution by in situ hybridization, fingerprinting, and 16S rRNA gene sequencing. The hydrological fragmentation of the stream network strongly altered the biogeochemical conditions with the depletion of oxidized solutes and caused changes in dissolved organic carbon characteristics. In the isolated ponds, beta-Proteobacteria and Actinobacteria increased their abundance with a gradual reduction of the alpha-diversity as pond isolation time increased. Moreover, fingerprinting analysis clearly showed a shift in community composition between summer and autumn. In the context of a seasonal shift, the temporary stream fragmentation simultaneously reduced the microbial dispersion and affected local environmental conditions (shift in redox regime and quality of the dissolved organic matter) tightly shaping the bacterioplankton community composition.

  13. Massively parallel sequencing-based survey of eukaryotic community structures in Hiroshima Bay and Ishigaki Island.

    PubMed

    Nagai, Satoshi; Hida, Kohsuke; Urusizaki, Shingo; Takano, Yoshihito; Hongo, Yuki; Kameda, Takahiko; Abe, Kazuo

    2016-02-01

    In this study, we compared the eukaryote biodiversity between Hiroshima Bay and Ishigaki Island in Japanese coastal waters by using the massively parallel sequencing (MPS)-based technique to collect preliminary data. The relative abundance of Alveolata was highest in both localities, and the second highest groups were Stramenopiles, Opisthokonta, or Hacrobia, which varied depending on the samples considered. For microalgal phyla, the relative abundance of operational taxonomic units (OTUs) and the number of MPS were highest for Dinophyceae in both localities, followed by Bacillariophyceae in Hiroshima Bay, and by Bacillariophyceae or Chlorophyceae in Ishigaki Island. The number of detected OTUs in Hiroshima Bay and Ishigaki Island was 645 and 791, respectively, and 15.3% and 12.5% of the OTUs were common between the two localities. In the non-metric multidimensional scaling analysis, the samples from the two localities were plotted in different positions. In the dendrogram developed using similarity indices, the samples were clustered into different nodes based on localities with high multiscale bootstrap values, reflecting geographic differences in biodiversity. Thus, we succeeded in demonstrating biodiversity differences between the two localities, although the read numbers of the MPSs were not high enough. The corresponding analysis showed a clear seasonal change in the biodiversity of Hiroshima Bay but it was not clear in Ishigaki Island. Thus, the MPS-based technique shows a great advantage of high performance by detecting several hundreds of OTUs from a single sample, strongly suggesting the effectiveness to apply this technique to routine monitoring programs.

  14. Predicting community composition from pairwise interactions

    NASA Astrophysics Data System (ADS)

    Friedman, Jonathan; Higgins, Logan; Gore, Jeff

    The ability to predict the structure of complex, multispecies communities is crucial for understanding the impact of species extinction and invasion on natural communities, as well as for engineering novel, synthetic communities. Communities are often modeled using phenomenological models, such as the classical generalized Lotka-Volterra (gLV) model. While a lot of our intuition comes from such models, their predictive power has rarely been tested experimentally. To directly assess the predictive power of this approach, we constructed synthetic communities comprised of up to 8 soil bacteria. We measured the outcome of competition between all species pairs, and used these measurements to predict the composition of communities composed of more than 2 species. The pairwise competitions resulted in a diverse set of outcomes, including coexistence, exclusion, and bistability, and displayed evidence for both interference and facilitation. Most pair outcomes could be captured by the gLV framework, and the composition of multispecies communities could be predicted for communities composed solely of such pairs. Our results demonstrate the predictive ability and utility of simple phenomenology, which enables accurate predictions in the absence of mechanistic details.

  15. Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia

    PubMed Central

    Heidelberg, Karla B.; Nelson, William C.; Holm, Johanna B.; Eisenkolb, Nadine; Andrade, Karen; Emerson, Joanne B.

    2013-01-01

    This study describes the community structure of the microbial eukaryotic community from hypersaline Lake Tyrrell, Australia, using near full length 18S rRNA sequences. Water samples were taken in both summer and winter over a 4-year period. The extent of eukaryotic diversity detected was low, with only 35 unique phylotypes using a 97% sequence similarity threshold. The water samples were dominated (91%) by a novel cluster of the Alveolate, Apicomplexa Colpodella spp., most closely related to C. edax. The Chlorophyte, Dunaliella spp. accounted for less than 35% of water column samples. However, the eukaryotic community entrained in a salt crust sample was vastly different and was dominated (83%) by the Dunaliella spp. The patterns described here represent the first observation of microbial eukaryotic dynamics in this system and provide a multiyear comparison of community composition by season. The lack of expected seasonal distribution in eukaryotic communities paired with abundant nanoflagellates suggests that grazing may significantly structure microbial eukaryotic communities in this system. PMID:23717306

  16. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms.

    PubMed

    Kermarrec, L; Franc, A; Rimet, F; Chaumeil, P; Humbert, J F; Bouchez, A

    2013-07-01

    The recent emergence of barcoding approaches coupled to those of next-generation sequencing (NGS) has raised new perspectives for studying environmental communities. In this framework, we tested the possibility to derive accurate inventories of diatom communities from pyrosequencing outputs with an available DNA reference library. We used three molecular markers targeting the nuclear, chloroplast and mitochondrial genomes (SSU rDNA, rbcL and cox1) and three samples of a mock community composed of 30 known diatom strains belonging to 21 species. In the goal to detect methodological biases, one sample was constituted directly from pooled cultures, whereas the others consisted of pooled PCR products. The NGS reads obtained by pyrosequencing (Roche 454) were compared first to a DNA reference library including the sequences of all the species used to constitute the mock community, and second to a complete DNA reference library with a larger taxonomic coverage. A stringent taxonomic assignation gave inventories that were compared to the real one. We detected biases due to DNA extraction and PCR amplification that resulted in false-negative detection. Conversely, pyrosequencing errors appeared to generate false positives, especially in case of closely allied species. The taxonomic coverage of DNA reference libraries appears to be the most crucial factor, together with marker polymorphism which is essential to identify taxa at the species level. RbcL offers a high resolving power together with a large DNA reference library. Although needing further optimization, pyrosequencing is suitable for identifying diatom assemblages and may find applications in the field of freshwater biomonitoring.

  17. The community ecology of pathogens: coinfection, coexistence and community composition.

    PubMed

    Seabloom, Eric W; Borer, Elizabeth T; Gross, Kevin; Kendig, Amy E; Lacroix, Christelle; Mitchell, Charles E; Mordecai, Erin A; Power, Alison G

    2015-04-01

    Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology. © 2015 John Wiley & Sons Ltd/CNRS.

  18. Composition and development of oral bacterial communities

    PubMed Central

    Palmer, Robert J.

    2012-01-01

    The oral bacterial microbiome encompasses ca. 700 commonly occurring phylotypes, approximately half of which can be present at any time in any individual. These bacteria are largely indigenous to the oral cavity; this limited range suggests that interactions between the various phylotypes, and between the phylotypes and their environment, are crucial for their existence. Molecular cataloging has confirmed many basic observations on the composition of the oral microbiome that were formulated well before ribosomal RNA-based systematics, but the power and the scope of molecular taxonomy has resulted in the discovery of new phylotypes and, more importantly, the speed and detail of molecular analyses are impossible to achieve through classical approaches. Community structure varies with location within the mouth, and changes in community structure are related to disease initiation and disease progression. Factors that influence the formation and the evolution of communities include selective adherence to epithelial or tooth surfaces, specific cell-to-cell binding as a driver of early community composition, and interorganismal interaction leading to alteration of the local environment, which represents the first step on the road to oral disease. A comprehensive understanding of how these factors interact to drive changes in the composition of the oral microbial community can lead to new strategies for the inhibition of periodontal diseases and dental caries. PMID:24320954

  19. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay.

    PubMed

    Allen, M A; Goh, F; Burns, B P; Neilan, B A

    2009-01-01

    The bacterial, archaeal and eukaryotic populations of nonlithifying mats with pustular and smooth morphology from Hamelin Pool, Shark Bay were characterised using small subunit rRNA gene analysis and microbial isolation. A highly diverse bacterial population was detected for each mat, with 16S rDNA clones related to Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonas, Planctomycetes, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Verrucomicrobia and candidate division TM6 present in each mat. Spirochaetes were detected in the smooth mat only, whereas candidate division OP11 was only detected in the pustular mat. Targeting populations with specific primers revealed additional cyanobacterial diversity. The archaeal population of the pustular mat was comprised purely of Halobacteriales, whereas the smooth mat contained 16S rDNA clones from the Halobacteriales, two groups of Euryarchaea with no close characterised matches, and the Thaumarchaea. Nematodes and fungi were present in each mat type, with diatom 18S rDNA clones only obtained from the smooth mat, and tardigrade and microalgae clones only retrieved from the pustular mat. Cultured isolates belonged to the Firmicutes, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Halobacteriales. The mat populations were significantly more diverse than those previously reported for Hamelin Pool stromatolites, suggesting specific microbial populations may be associated with the nonlithifying and lithifying microbial communities of Hamelin Pool.

  20. Mesoscale and Sub-mesoscale Variability in Phytoplankton Community Composition in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Bachman, B.; Richardson, T. L.; Lomas, M. W.

    2016-02-01

    The Sargasso Sea is a highly dynamic physical environment in which strong seasonal variability combines with forcing by mesoscale ( 100 km) eddies. Over four cruises (2011 and 2012), we investigated links between water column structure, nutrient regimes, and phytoplankton community composition at a range of time and space scales in the Sargasso Sea. On all cruises, cyanobacteria (Prochlorococcus and Synechococcus) dominated the phytoplankton numerically and haptophytes were the dominant eukaryotes (up to 60% total chl-a). We demonstrated significant effects of mesoscale and inferred sub-mesoscale forcing on phytoplankton community composition. Downwelling (in anticyclones) was coincident with Prochlorococcus abundances 22-66% higher compared to outside stations. We observed a shift in the taxonomic composition of haptophytes between a coccolithophores dominated community in a cyclone in spring 2012 (C2) and a non-coccolithophore community at BATS. At the center of cyclone C1 (summer 2011), we observed significantly higher haptophyte chl-a (non-coccolithophores) and lower cyanobacteria chl-a biomass at the center and edge as compared to BATS. In summer 2012, downwelling associated with anticyclone AC2 occurred at the edge of the eddy and we found significantly lower Synechococcus abundances and higher eukaryote chl-a compared to the center of AC2 and BATS. These along-transect nuances demonstrate the significance of small-scale perturbations that significantly alter phytoplankton community structure. Therefore, while seasonality in the North Atlantic is the primary driver of broad-scale trends in phytoplankton community composition, the effect of transient events must be considered when studying planktonic food webs in the Sargasso Sea.

  1. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  2. Mesoscale and sub-mesoscale variability in phytoplankton community composition in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Cotti-Rausch, Bridget E.; Lomas, Michael W.; Lachenmyer, Eric M.; Goldman, Emily A.; Bell, Douglas W.; Goldberg, Stacey R.; Richardson, Tammi L.

    2016-04-01

    The Sargasso Sea is a dynamic physical environment in which strong seasonal variability combines with forcing by mesoscale (~100 km) eddies. These drivers determine nutrient, light, and temperature regimes and, ultimately, the composition and productivity of the phytoplankton community. On four cruises (2011 and 2012; one eddy per cruise), we investigated links between water column structure and phytoplankton community composition in the Sargasso at a range of time and space scales. On all cruises, cyanobacteria (Prochlorococcus and Synechococcus) dominated the phytoplankton numerically, while haptophytes were the dominant eukaryotes (up to 60% of total chl-a). There were substantial effects of mesoscale and sub-mesoscale forcing on phytoplankton community composition in both spring and summer. Downwelling (in anticyclones) resulted in Prochlorococcus abundances that were 22-66% higher than at 'outside' stations. Upwelling (in cyclones) was associated with significantly higher abundances and POC biomass of nanoeukaryotes. In general, however, each eddy had its own unique characteristics. The center of anticyclone AC1 (spring 2011) had the lowest phytoplankton biomass (chl-a) of any eddy we studied and had lower nitrate+nitrite (N+N <5 mmol m-2) and eukaryote chl-a biomass as compared to its edge and to the Bermuda Atlantic Time-Series station (BATS). At the center of cyclone C1 (summer 2011), we observed uplift of the 26.5 kg m-3 isopycnal and high nutrient inventories (N+N=74±46 mmol m-2). We also observed significantly higher haptophyte chl-a (non-coccolithophores) and lower cyanobacterial chl-a at the center and edge of C1 as compared to outside the eddy at BATS. Cyclone C2 (spring 2012) exhibited a deep mixed layer, yet had relatively low nutrient concentrations. We observed a shift in the taxonomic composition of haptophytes between a coccolithophore-dominated community in C2 (98% of total haptophyte chl-a) and a non-coccolithophore community at BATS. In

  3. Microbial community compositional shifts in bleached colonies of the Brazilian reef-building coral Siderastrea stellata.

    PubMed

    Lins-de-Barros, Monica M; Cardoso, Alexander M; Silveira, Cynthia B; Lima, Joyce L; Clementino, Maysa M; Martins, Orlando B; Albano, Rodolpho M; Vieira, Ricardo P

    2013-01-01

    The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes.

  4. Eukaryotic origins

    PubMed Central

    Lake, James A.

    2015-01-01

    The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endoplasmic reticula, and other organelles all of which may hint at their origins. It is the evolutionary history of the nucleus and their other organelles that have intrigued molecular evolutionists, myself included, for the past 30 years and which continues to hold our interest as increasingly compelling evidence favours the eocyte tree. As with any orthodoxy, it takes time to embrace new concepts and techniques. PMID:26323753

  5. Eukaryotic Community Shift in Response to Organic Loading Rate of an Aerobic Trickling Filter (Down-Flow Hanging Sponge Reactor) Treating Domestic Sewage.

    PubMed

    Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2017-05-01

    In this study, changes in eukaryotic community structure and water quality were investigated in an aerobic trickling filter (down-flow hanging sponge, DHS) treating domestic sewage under different organic loading rates (OLRs). The OLR clearly influenced both sponge pore water quality and relative flagellates and ciliates (free-swimming, carnivorous, crawling, and stalked protozoa) abundances in the retained sludge. Immediately after the OLR was increased from 1.05 to 1.97 kg chemical oxygen demand (COD) m(-3) day(-1), COD and NH4(+)-N treatment efficiencies both deteriorated, and relative flagellates and ciliates abundances then increased from 2-8 % to 51-65 % total cells in the middle-bottom part of the DHS reactor. In a continuous operation at a stable OLR (2.01 kg COD m(-3) day(-1)), effluent water quality improved, and relative flagellates and ciliates abundances decreased to 15-46 % total cells in the middle-bottom part of the DHS reactor. This result may indicate that flagellates and ciliates preferentially graze on dispersed bacteria, thus, stabilizing effluent water quality. Additionally, to investigate eukaryotic community structure, clone libraries based on the 18S ribosomal ribonucleic acid (rRNA) gene of the retained sludge were constructed. The predominant group was Nucletmycea phylotypes, representing approximately 29-56 % total clones. Furthermore, a large proportion of the clones had <97 % sequence identity in the NCBI database. This result indicates that phylogenetically unknown eukaryotes were present in the DHS reactor. These results provide insights into eukaryotic community shift in the DHS reactor treating domestic sewage.

  6. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  10. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  11. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  12. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  13. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  14. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Effects of Triclosan and biosolids on microbial community composition in an agricultural soil

    PubMed Central

    Ogunyoku, Temitope A.; Young, Thomas M.; Scow, Kate M.

    2014-01-01

    Triclosan (TCS) is a widely used antimicrobial agent found at high concentrations in biosolids produced during municipal wastewater treatment. The effect of adding TCS, in the presence or absence of biosolids, on the composition of an agricultural soil microbial community was measured using phospholipid fatty acid analysis (PLFA). Most changes observed in microbial community composition were attributable to addition of biosolids or passage of time, with smaller changes due to TCS exposure, regardless of the biosolids presence. TCS slightly reduced the relative abundance of Gram positive and negative bacteria and fungi, both with or without biosolids. Bacteria were more sensitive than eukaryotes, consistent with the mode of action of TCS, which selectively targets fatty acid synthesis and disrupts cell membranes of bacteria. TCS slightly increased biomarkers of microbial stress, but stress biomarkers were lower in all biosolid treated soils, presumably due to increased availability of nutrients mitigating potential TCS toxicity. PMID:24597039

  16. Mutualistic rhizobia reduce plant diversity and alter community composition.

    PubMed

    Keller, Kane R

    2014-12-01

    Mutualistic interactions can be just as important to community dynamics as antagonistic species interactions like competition and predation. Because of their large effects on both abiotic and biotic environmental variables, resource mutualisms, in particular, have the potential to influence plant communities. Moreover, the effects of resource mutualists such as nitrogen-fixing rhizobia on diversity and community composition may be more pronounced in nutrient-limited environments. I experimentally manipulated the presence of rhizobia across a nitrogen gradient in early assembling mesocosm communities with identical starting species composition to test how the classic mutualism between nitrogen-fixing rhizobia and their legume host influence diversity and community composition. After harvest, I assessed changes in α-diversity, community composition, β-diversity, and ecosystem properties such as inorganic nitrogen availability and productivity as a result of rhizobia and nitrogen availability. The presence of rhizobia decreased plant community diversity, increased community convergence (reduced β-diversity), altered plant community composition, and increased total community productivity. These community-level effects resulted from rhizobia increasing the competitive dominance of their legume host Chamaecrista fasciculata. Moreover, different non-leguminous species responded both negatively and positively to the presence of rhizobia, indicating that rhizobia are driving both inhibitory and potentially facilitative effects in communities. These findings expand our understanding of plant communities by incorporating the effects of positive symbiotic interactions on plant diversity and composition. In particular, rhizobia that specialize on dominant plants may serve as keystone mutualists in terrestrial plant communities, reducing diversity by more than 40%.

  17. Testing the functional significance of microbial community composition.

    Treesearch

    Michael S. Strickland; Christian Lauber; Noah Fierer; Mark A. Bradford

    2009-01-01

    A critical assumption underlying terrestrial ecosystem models is that soil microbial communities, when placed in a common environment, will function in an identical manner regardless of the composition...

  18. Herbivore preference drives plant community composition.

    PubMed

    Kempel, Anne; Razanajatovo, Mialy; Stein, Claudia; Unsicker, Sybille B; Auge, Harald; Weisser, Wolfgang W; Fischer, Markus; Prati, Daniel

    2015-11-01

    Herbivores are important drivers of plant species coexistence and community assembly. However, detailed mechanistic information on how herbivores affect dominance hierarchies between plant species is scarce. Here, we used data of a multi-site herbivore exclusion experiment in grasslands to assess changes in the cover of 28 plant species in response to aboveground pesticide. application. Moreover, we assessed species-specific values of plant defense of these 28 species measured as the performance of a generalist caterpillar, and the preference of the caterpillar and a slug species in no-choice and choice feeding experiments, respectively. We show that more preferred species in the feeding experiments were those that increased in cover after herbivore exclusion in the field, whereas less preferred ones decreased. Herbivore performance and several measured leaf traits were not related to the change in plant cover in the field in response to herbivore removal. Additionally, the generalist slug and the generalist caterpillar preferred and disliked the same plant species, indicating that they perceive the balance between defense and nutritional value similarly. We conclude that the growth-defense trade-off in grassland species acts via the preference of herbivores and that among-species variation in plant growth and preference to herbivores drives plant community composition.

  19. Plankton community composition in the Three Gorges Reservoir Region revealed by PCR-dGGE and its relationships with environmental factors.

    PubMed

    Yan, Qingyun; Yu, Yuhe; Feng, Weisong; Yu, Zhigang; Chen, Hongtao

    2008-01-01

    To explore the relationships between community composition and the environment in a reservoir ecosystem, plankton communities from the Three Gorges Reservoir Region were studied by PCR-denaturing gradient gel electrophoresis fingerprinting. Bacterial and eukaryotic operational taxonomic units (OTUs), generated by DGGE analysis of the PCR-amplified 16S and 18S rRNA genes, were used as surrogates for the dominant "biodiversity units". OTU composition among the sites was heterogeneous; 46.7% of the total bacterial OTUs (45) and 64.1% of the eukaryotic OTUs (39) were identified in less than half of the sampling sites. Unweighted pair group method with arithmetic averages (UPGMA) clustering of the OTUs suggested that the plankton communities in the Xiangxi River sites were not always significantly different from those from the Yangtze River sites, despite clear differences in their environmental characterizations. Canonical correspondence analysis (CCA) was applied to further investigate the relationships between OTU composition and the environmental factors. The first two CCA ordination axes suggested that the bacterial community composition was primarily correlated with the variables of NO(3-)-N, dissolved oxygen (DO), and SiO3(2-)-Si, whereas, the eukaryotic community was mainly correlated with the concentrations of DO, PO4(3-)-P, and SiO3(2-)-Si.

  20. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants.

    PubMed

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2014-09-23

    We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive

  1. Depth matters: Microbial eukaryote diversity and community structure in the eastern North Pacific revealed through environmental gene libraries

    NASA Astrophysics Data System (ADS)

    Schnetzer, Astrid; Moorthi, Stefanie D.; Countway, Peter D.; Gast, Rebecca J.; Gilg, Ilana C.; Caron, David A.

    2011-01-01

    Protistan community structure was examined from 6 depths (1.5, 20, 42, 150, 500, 880 m) at a coastal ocean site in the San Pedro Channel, California. A total of 856 partial length 18S rDNA protistan sequences from the six clone libraries were analyzed to characterize diversity present at each depth. The sequences were grouped into a total of 259 Operational Taxonomic Units (OTUs) that were inferred using an automated OTU calling program that formed OTUs with approximately species-level distinction (95% sequence similarity). Most OTUs (194 out of 259) were observed at only one specific depth, and only two were present in clone libraries from all depths. OTUs were obtained from 21 major protistan taxonomic groups determined by their closest BLAST matches to identified protists in the NCBI database. Approximately 74% of the detected OTUs belonged to the Chromalveolates, with Group II alveolates making up the largest single group. Protistan assemblages at euphotic depths (1.5, 20 and 42 m) were characterized by the presence of clades that contained phototrophic species (stramenopiles, chlorophytes and haptophytes) as well as consumers (especially ciliates). Assemblages in the lower water column (150, 500 and 800 m) were distinct from communities at shallow depths because of strong contributions from taxa belonging to euglenozoans, acantharians, polycystines and Taxopodida ( Sticholonche spp. and close relatives). Species richness (Chao I estimate) and diversity (Shannon index) were highest within the euphotic zone and at 150 m, and lowest for protistan assemblages located in the oxygen minimum zone (500 and 880 m). Multivariate analyses (Bray-Curtis coefficient) confirmed that protistan assemblage composition differed significantly when samples were grouped into shallow (≤150 m) and deep water assemblages (≥150 m).

  2. Extending Atmospheric Composition Processing to the Community

    NASA Astrophysics Data System (ADS)

    Durbin, P.; Tilmes, C.; Balsano, R.; Martin, A.; Soika, V.; Inskeep, E.

    2007-12-01

    The Ozone Monitoring Instrument Science Investigator-led Processing System (OMI SIPS) has been the central data processing system for OMI since its launch on NASA's Aura spacecraft in July, 2004. As part of NASA's evolution from mission based processing to measurement based processing, we are evolving the system into a community oriented Atmospheric Composition Processing System (ACPS). This involves changing focus from the mission (OMI) to the measurement (total column ozone), and a widening of our focus from the mission science teams to the overall scientific community. The current system dispatches and executes software developed by scientists on a computer cluster; archiving the results and distributing the data to numerous parties. Although this works well for the production environment, access to centralized systems has been naturally limited. Ideally, scientists should be able to easily get the data, run their software, make changes and repeat the process until they are happy with the solution to the problems they are trying to solve. In addition it should be simple to migrate research improvements from the community back into the formal production system. Through NASA's "Advancing Collaborative Connections for Earth-Sun System Science," we have extended publicly accessible interfaces into the production system. The system provides an open API via a set of SOAP/XML and REST based web services, enabling scientists, researchers and operators to interact directly with the data and services offered by the central system. The system includes metadata, archive, and planner subsystems. The metadata server stores metadata about the data products and provides the ability for processing software to evaluate production rules to determine the appropriate input data files for a given data processing job. The archive server stores the data files themselves and makes then available for clients to retrieve the files as needed. The planner plans out the set of jobs to be run

  3. Microbial community composition in sediments resists perturbation by nutrient enrichment

    PubMed Central

    Bowen, Jennifer L; Ward, Bess B; Morrison, Hilary G; Hobbie, John E; Valiela, Ivan; Deegan, Linda A; Sogin, Mitchell L

    2011-01-01

    Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. PMID:21412346

  4. Microbial community composition in sediments resists perturbation by nutrient enrichment.

    PubMed

    Bowen, Jennifer L; Ward, Bess B; Morrison, Hilary G; Hobbie, John E; Valiela, Ivan; Deegan, Linda A; Sogin, Mitchell L

    2011-09-01

    Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.

  5. The Eukaryotic Cell Originated in the Integration and Redistribution of Hyperstructures from Communities of Prokaryotic Cells Based on Molecular Complementarity

    PubMed Central

    Norris, Vic; Root-Bernstein, Robert

    2009-01-01

    In the “ecosystems-first” approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions. PMID:19582221

  6. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity.

    PubMed

    Norris, Vic; Root-Bernstein, Robert

    2009-06-04

    In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.

  7. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    PubMed

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Microbial community composition of transiently wetted Antarctic Dry Valley soils.

    PubMed

    Niederberger, Thomas D; Sohm, Jill A; Gunderson, Troy E; Parker, Alexander E; Tirindelli, Joëlle; Capone, Douglas G; Carpenter, Edward J; Cary, Stephen C

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm(3) for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  9. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    PubMed Central

    Niederberger, Thomas D.; Sohm, Jill A.; Gunderson, Troy E.; Parker, Alexander E.; Tirindelli, Joëlle; Capone, Douglas G.; Carpenter, Edward J.; Cary, Stephen C.

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm3 for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas. PMID:25674080

  10. Planktonic Responses to Simulated Warming and Elevated Iron Availability in McMurdo Sound: Community Composition and Microbial Interactions

    NASA Astrophysics Data System (ADS)

    Bertrand, E. M.; McCrow, J.; Xu, K.; Zhu, Z.; Hutchins, D. A.; Sipler, R. E.; Spackeen, J.; Bronk, D. A.; McQuaid, J.; Allen, A. E.

    2016-02-01

    Western Antarctic shelf systems are home to high rates of primary productivity. The impact this production has on carbon cycling and higher trophic levels depends in part on rates of export as well as nutrient drawdown, both of which are influenced by phytoplankton community composition. Using bottle incubation bioassays from two field seasons in McMurdo Sound (Jan 2013, Jan 2015), we show that increases in temperature and iron availability had a profound influence on productivity and planktonic community composition. In 2013, chlorophyll increased over 10-fold upon a 4C increase in temperature over 10 days. In 2015, after one week, increases of 3 and 6 degrees C enhanced chlorophyll a production 3 and 4- fold respectively. Iron addition further enhanced chlorophyll production at all experimental temperatures. In both field seasons, initial eukaryotic communities were dinoflagellate, ciliate and Fragilariopsis- dominated, but increases in temperature enhanced the contribution of the pennate diatom Pseudo-nitzchia as assed via both microscopy-based cell counts as well as metatranscriptomic determination of active community composition. In addition to providing molecular insight into phytoplankton responses to elevated temperatures, metatransriptomic assessments also afforded a window into bacterial community composition and activity changes as a result of elevated temperature and changing micronutrient fields. Elevated temperature preferentially enhanced eukaryotic over bacterial contributions, as measured both by changes in cell abundance as well as mRNA attribution. These results support the notion that projected West Antarctic warming could lead to profound alterations in phytoplankton - bacterial interactions as well as key changes in overall community structure that could have implications for carbon cycling and trophic structures in the coastal Southern Ocean

  11. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers.

    PubMed

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the "Little Ice Age" although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of ice

  12. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers

    PubMed Central

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of

  13. Deviations from compositional randomness in eukaryotic and prokaryotic proteins: the hypothesis of selective-stochastic stability and a principle of charge conservation.

    PubMed

    Holmquist, R

    1975-03-24

    Eight proteins of diverse lengths, functions, and origin, are examined for compositional non-randomness amino acid by amino acid. The proteins investigated are human fibrinopeptide A, guinea pig Insulin, rattlesnake cytochrome c, MS2 phage coat protein, rabbit triosephosphate isomerase, bovine pancreatic deoxyribonuclease A, bovine glutamate dehydrogenase, and Bacillus thermoproteolyticus thermolysin. As a result of this study the experimentally testable hypothesis is put forth that for a large class of proteins the ratio of that fraction of the molecule which exhibits compositional non-randomness to that fraction which does not is on the average, stable about a mean value (estimated as 0.32 plus or minus 0.17) and (nearly) independent of protein length. Stochastic and selective evolutionary forces are viewed as interacting rather than independent phenomena. With respect to amino acid composition, this coupling ameliorates the current controversy over Darwinian vs. non-Darwinian evolution, selectionist vs. neutralist, in favor of neither: Within the context of the quantitative data, the evolution of real proteins is seen as a compromise between the two viewpoints, both important. The compositional fluctuations of the electrically charged amino acids glutamic and aspartic acid, lysine and arginine, are examined in depth for over eighty protein families, both prokaryotic and eukaryotic. For both taxa, each of the acidic amino acids is present in amounts roughly twice that predicted from the genetic code. The presence of an excess of glutamic acid is independent of the presence of an excess of aspartic acid and vice versa.

  14. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean

    PubMed Central

    Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961

  15. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.

    PubMed

    Eggers, Sarah L; Lewandowska, Aleksandra M; Barcelos E Ramos, Joana; Blanco-Ameijeiras, Sonia; Gallo, Francesca; Matthiessen, Birte

    2014-03-01

    Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω(2) ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans. © 2013 John Wiley & Sons Ltd.

  16. Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment.

    PubMed

    Aguilera, Angeles; Zettler, Erik; Gómez, Felipe; Amaral-Zettler, Linda; Rodríguez, Nuria; Amils, Ricardo

    2007-11-01

    The eukaryotic community of the Río Tinto (SW, Spain) was surveyed in fall, winter and spring through the combined use of traditional microscopy and molecular approaches, including Denaturing Gradient Gel Electrophoresis (DGGE) and sequence analysis of 18S rRNA gene fragments. Eukaryotic assemblages of surface sediment biofilms collected in January, May and September 2002 were compared from 13 sampling stations along the river. Physicochemical data revealed extremely acidic conditions (the pH ranged from 0.9 to 2.5) with high concentrations of heavy metals, including up to 20 mg l(-1) Fe, 317 mg l(-1) Zn, 47 mg l(-1) As, 42 mg l(-1) Cd and 4 mg l(-1) Ni. In total, 20 taxa were identified, including members of the Bacillariophyta, Chlorophyta and Euglenophyta phyla as well as ciliates, cercomonads, amoebae, stramenopiles, fungi, heliozoans and rotifers. In general, total cell abundances were highest in fall and spring but decreased drastically in winter, and the sampling stations with the most extreme conditions showed the lowest number of cells, as well as the lowest diversity. Species diversity did not vary much during the year. Only the filamentous algae showed a dramatic seasonal change, since they almost disappeared in winter and reached the highest biomass during the summer. Principal Components Analysis (PCA) showed a high inverse correlation between pH and most of the heavy metals analyzed, as well as Dunaliella sp., while Chlamydomonas sp. was directly related to pH during May and September. Three heavy metals (Zn, Cu and Ni) remained separate from the rest and showed an inverse correlation with most of the species analyzed, except for Dunaliella sp.

  17. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats.

    PubMed

    Eskelinen, Anu; Stark, Sari; Männistö, Minna

    2009-08-01

    Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems.

  18. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    PubMed Central

    Hosen, Jacob D.; Febria, Catherine M.; Crump, Byron C.; Palmer, Margaret A.

    2017-01-01

    Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition of headwater streams

  19. Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Fed a Mixed Diet

    PubMed Central

    Comtet-Marre, Sophie; Parisot, Nicolas; Lepercq, Pascale; Chaucheyras-Durand, Frédérique; Mosoni, Pascale; Peyretaillade, Eric; Bayat, Ali R.; Shingfield, Kevin J.; Peyret, Pierre; Forano, Evelyne

    2017-01-01

    Ruminants have a unique ability to derive energy from the degradation of plant polysaccharides through the activity of the rumen microbiota. Although this process is well studied in vitro, knowledge gaps remain regarding the relative contribution of the microbiota members and enzymes in vivo. The present study used RNA-sequencing to reveal both the expression of genes encoding carbohydrate-active enzymes (CAZymes) by the rumen microbiota of a lactating dairy cow and the microorganisms forming the fiber-degrading community. Functional analysis identified 12,237 CAZymes, accounting for 1% of the transcripts. The CAZyme profile was dominated by families GH94 (cellobiose-phosphorylase), GH13 (amylase), GH43 and GH10 (hemicellulases), GH9 and GH48 (cellulases), PL11 (pectinase) as well as GH2 and GH3 (oligosaccharidases). Our data support the pivotal role of the most characterized fibrolytic bacteria (Prevotella, Ruminocccus and Fibrobacter), and highlight a substantial, although most probably underestimated, contribution of fungi and ciliate protozoa to polysaccharide degradation. Particularly these results may motivate further exploration of the role and the functions of protozoa in the rumen. Moreover, an important part of the fibrolytic bacterial community remains to be characterized since one third of the CAZyme transcripts originated from distantly related strains. These findings are used to highlight limitations of current metatranscriptomics approaches to understand the functional rumen microbial community and opportunities to circumvent them. PMID:28197133

  20. Community Composition of Photosynthetic Picoeukaryotes in a Subtropical Coastal Ecosystem, with Particular Emphasis on Micromonas.

    PubMed

    Lin, Yun-Chi; Chung, Chih-Ching; Chen, Liang-Yin; Gong, Gwo-Ching; Huang, Chin-Yi; Chiang, Kuo-Ping

    2017-05-01

    Photosynthetic picoeukaryotes (PPEs) are important constituents in picoplankton communities in many marine ecosystems. However, little is known about their community composition in the subtropical coastal waters of the Northwestern Pacific Ocean. In order to study their taxonomic composition, this study constructed 18S rRNA gene libraries using flow cytometric sorting during the warm season. The results show that, after diatoms, prasinophyte clones are numerically dominant. Within prasinophytes, Micromonas produced the most common sequences, and included clades II, III, IV, and VI. We are establishing the new Micromonas clade VI based on our phylogenetic analysis. Sequences of this clade have previously been retrieved from the South China Sea and Red Sea, indicating a worldwide distribution, but this is the first study to detect clade VI in the coastal waters of Taiwan. The TSA-FISH results indicated that Micromonas clade VI peaked in the summer (~4 × 10(2)  cells/ml), accounting for one-fifth of Micromonas abundance on average. Overall, Micromonas contributed half of Mamiellophyceae abundance, while Mamiellophyceae contributed 40% of PPE abundance. This study demonstrates the importance of Micromonas within the Mamiellophyceae in a subtropical coastal ecosystem. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  1. A Community-oriented CEOS Atmospheric Composition Portal (ACP)

    NASA Astrophysics Data System (ADS)

    Bernonville, S.; Goussev, O.; Falke, S.; Lindsay, F.; Lynnes, C. S.; Yang, W.; Zhao, P.; Johnson, J.

    2012-04-01

    The Atmospheric Composition Constellation (ACC) and the Workgroup for Information Systems and Services (WGISS) within the Committee on Earth Observation Satellites (CEOS) is developing a portal to support interoperability among the atmospheric composition research and applications communities. The CEOS Atmospheric Composition Portal (ACP) is defining approaches for providing data access, tools and contextual guidance for an international suite of remote sensing datasets. An initial prototype provides access to data services and analysis tools hosted by the World Data Center for Remote Sensing of the Atmosphere (WDC-RSAT), NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) and DataFed. Distributed access to data is implemented via interoperability standards, including the Open Geospatial Consortium's (OGC) Web Map Service (WMS) and Web Coverage Service (WCS). A fundamental aspect to the design, implementation and evolution of the ACP is community collaboration. The portal is intended as a community resource that is created through collaboration across remotely sensed atmospheric composition data organizations and used by a variety of groups across the climate, air quality, and stratospheric ozone domains. The implementation of interoperability standards in the ACP has involved coordination on identifying the most applicable standards and the definition of community-specific conventions to ensure consistent adoption of standards. This presentation includes an overview of the ACP, its community oriented approach, and use of community-conventions in achieving standards-based interoperability.

  2. Bacterial diversity and community composition from seasurface to subseafloor

    PubMed Central

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-01-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment. PMID:26430855

  3. Creating Compositional Community in Your Classroom

    ERIC Educational Resources Information Center

    Stringham, David A.

    2016-01-01

    In performance-focused ensemble classrooms, students and teachers often work toward convergent solutions (e.g., accurate notes and rhythms, agreeing on interpretation). Hierarchical structures may be in place in which it is considered inappropriate to question or disagree with an interpretation set forth by the leader. Teaching composition, in…

  4. Soil biodiversity and soil community composition determine ecosystem multifunctionality.

    PubMed

    Wagg, Cameron; Bender, S Franz; Widmer, Franco; van der Heijden, Marcel G A

    2014-04-08

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

  5. Avian community composition of kopjes in a heterogeneous landscape.

    PubMed

    Trager, Matthew; Mistry, Shahroukh

    2003-05-01

    We examined avian communities of kopjes (naturally occurring insular rock outcrops) in grassland and thorn tree woodland habitats in the Seronera region of Serengeti National Park, northwestern Tanzania. Although kopjes cover a small proportion of the Park's area, they provide resources that are uncommon in the Serengeti landscape and are known to host diverse, yet poorly documented, biotic communities. The primary objectives of this study were (1) to compare avian communities of kopjes with those of their surrounding habitat matrixes; (2) to compare the avian communities among kopjes; and (3) to determine the effects of kopje characteristics (e.g., size, vegetation cover, level of human disturbance and matrix type) on avian diversity and community composition. The avian communities of kopjes differed significantly from those of the matrixes in species composition and guild characteristics. Rare species, frugivorous species and nectarivorous species were more abundant on kopjes, whereas there were more ground-feeding species in matrix sites. Species richness was positively correlated with the area of kopjes covered by tall vegetation (5+ m), but neither total habitat area nor total vegetation cover significantly affected avian diversity. The surrounding habitat type, the fruiting phenology of Ficus and Commiphora trees and the level of human disturbance also influenced the presence and abundance of individual species and accounted for differences in community composition among kopjes. Our results show that kopjes support unique avian assemblages comprising many species that are otherwise rare in Serengeti, and consequently that kopjes may be local hotspots of avian diversity in the region.

  6. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    PubMed Central

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  7. Cheese rind microbial communities: diversity, composition and origin.

    PubMed

    Irlinger, Françoise; Layec, Séverine; Hélinck, Sandra; Dugat-Bony, Eric

    2015-01-01

    Cheese rinds host a specific microbiota composed of both prokaryotes (such as Actinobacteria, Firmicutes and Proteobacteria) and eukaryotes (primarily yeasts and moulds). By combining modern molecular biology tools with conventional, culture-based techniques, it has now become possible to create a catalogue of the biodiversity that inhabits this special environment. Here, we review the microbial genera detected on the cheese surface and highlight the previously unsuspected importance of non-inoculated microflora--raising the question of the latter's environmental sources and their role in shaping microbial communities. There is now a clear need to revise the current view of the cheese rind ecosystem (i.e. that of a well-defined, perfectly controlled ecosystem). Inclusion of these new findings should enable us to better understand the cheese-making process.

  8. Street lighting changes the composition of invertebrate communities.

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Gaston, Kevin J

    2012-10-23

    Artificial lighting has been used to illuminate the nocturnal environment for centuries and continues to expand with urbanization and economic development. Yet, the potential ecological impact of the resultant light pollution has only recently emerged as a major cause for concern. While investigations have demonstrated that artificial lighting can influence organism behaviour, reproductive success and survivorship, none have addressed whether it is altering the composition of communities. We show, for the first time, that invertebrate community composition is affected by proximity to street lighting independently of the time of day. Five major invertebrate groups contributed to compositional differences, resulting in an increase in the number of predatory and scavenging individuals in brightly lit communities. Our results indicate that street lighting changes the environment at higher levels of biological organization than previously recognized, raising the potential that it can alter the structure and function of ecosystems.

  9. [Composition diversity of the multifunctional bacterium community NSC-7].

    PubMed

    Liu, Chang-Li; Wang, Xiao-Fen; Niu, Jun-Ling; Lü, Yu-Cai; Guo, Peng; Shen, Hai-Long; Cui, Zong-Jun

    2009-07-15

    The NSC-7 microbial community could decompose cellulose and lindan with high efficiency. In order to determine the bacterial composition of the community, 11 isolate strains were detected by plate isolation, while a community reset by the 11 isolate strains lost the capacity of degrading cellulose. The capacity of degrading of the filter paper in double deck plate and monolayer plate were determined, only the filter paper in double deck plate were degraded, that means the main or key microbe are anaerobic. The denaturing gradient gel electrophoresis (DGGE) and construction of 16S rDNA clone library were used to identify the composition diversity of NSC-7 community. 195 clones and 25 strains were detected in clone library, and about 60% closest relative among them was known the detailed information which were belonged to Clostridium, Petrobacter, Bacteria, Paenibacillus, Proteobacterium. Furthermore, there were 40% closest relative belonged to uncultured bacterium clone.

  10. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure.

    PubMed

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2017-02-15

    We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.

  11. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Rozema, Patrick D.; Biggs, Tristan; Sprong, Pim A. A.; Buma, Anita G. J.; Venables, Hugh J.; Evans, Claire; Meredith, Michael P.; Bolhuis, Henk

    2017-05-01

    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics of phytoplankton and bacteria. In the present study, we examined coastal Antarctic microbial community dynamics by pigment analysis and applying molecular tools, and analysed various environmental parameters to identify the most important environmental drivers. Sampling focussed on the austral summer of 2009-2010 at the Rothera oceanographic and biological Time Series (RaTS) site in northern Marguerite bay, Antarctica. The Antarctic summer was characterized by a salinity decrease (measured at 15 m depth) coinciding with increased meteoric water fraction. Maximum Chl-a values of 35 μg l-1 were observed during midsummer and mainly comprised of diatoms. Microbial community fingerprinting revealed four distinct periods in phytoplankton succession during the summer while bacteria showed a delayed response to the phytoplankton community. Non-metric multidimensional scaling analyses showed that phytoplankton community dynamics were mainly directed by temperature, mixed layer depth and wind speed. Both high and low N/P ratios might have influenced phytoplankton biomass accumulation. The bacterioplankton community composition was mainly governed by Chl-a, suggesting a link to phytoplankton community changes. High-throughput 16S and 18S rRNA amplicon sequencing revealed stable eukaryotic and bacterial communities with regards to observed species, yet varying temporal relative contributions. Eukaryotic sequences were dominated by pennate diatoms in December followed by polar centric diatoms in January and February. Our results imply that the reduction of mixed layer depth during summer, caused by meltwater-related surface stratification, promotes a succession in diatoms rather

  12. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  13. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations.

    PubMed

    Yi, Zhenzhen; Berney, Cedric; Hartikainen, Hanna; Mahamdallie, Shazia; Gardner, Michelle; Boenigk, Jens; Cavalier-Smith, Thomas; Bass, David

    2017-08-01

    We performed high-throughput 18S rDNA V9 region sequencing analyses of microeukaryote (protist) communities at seven sites with depths ranging from 0 to 1450 m in the southern part of Lake Baikal. We show that microeukaryotic diversity differed according to water column depth and sediment depth. Chrysophytes and perkinsids were diverse in subsurface samples, novel radiations of petalomonads and Ichthyobodo relatives were found in benthic samples, and a broad range of divergent OTUs were detected in deep subbenthic samples. Members of clades usually associated with marine habitats were also detected, including syndineans for the first time in freshwater systems. Fungal- and cercozoan-specific c. 1200 bp amplicon clone libraries also revealed many novel lineages in both planktonic and sediment samples at all depths, a novel radiation of aphelids in shallower benthic samples, and partitioning of sarcomonad lineages in shallow vs deep benthic samples. Putative parasitic lineages accounted for 12.4% of overall reads, including a novel radiation of Ichthyobodo (fish parasite) relatives. Micrometazoans were also analysed, including crustaceans, rotifers and nematodes. The deepest (>1000 m) subsurface sediment samples harboured some highly divergent sequence types, including heterotrophic flagellates, parasites, putative metazoans and sequences likely representing organisms originating from higher up in the water column. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment: methods for DNA extraction and denaturing gradient gel electrophoresis analysis.

    PubMed

    Aguilera, Angeles; Gómez, Felipe; Lospitao, Eva; Amils, Ricardo

    2006-11-01

    The diversity of the phytobenthonic community present in six acidophilic microbial mats from Río Tinto (Iberian Pyritic Belt, SW Spain) was analysed by optical microscopy and two molecular techniques, denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 18S rDNA cloned gene fragments. Sixteen DNA isolation protocols as well as two commercial DNA extraction kits were tested and their efficiency compared. Purified DNA extracts were amplified by PCR using universal eukaryotic primers and the PCR products analysed by DGGE. Bead-mill homogenization was found to be superior to the other cell lysis methodologies assayed (sonication or freeze-thawing cycles) as it allowed efficiencies of cell disruption of over 95%. The methods combining bead-mill homogenization in the presence of SDS, treatment with chemical extractants (hexadecylmethylammonium bromide or guanidine isothiocyanate) and phenol extraction resulted in DNA preparations that amplified the same number of bands when analysed by DGGE as the two commercial kits assayed. The phylogenetic affiliations of the DGGE bands were determined by a BLAST search, and nine different species related to the Chlorophyta, Ciliophora, Kinetoplastida, Ascomycota, Streptophyta and Colcochaetales taxonomical groups were identified. Similar levels of diversity were found using cloning procedures. Although not all the species observed under the microscope were detected using molecular techniques, e.g. euglenas, heliozoan, or amoebae, DGGE fingerprints showed rather well the level of diversity present in the samples analysed, with limitations similar to cloning techniques.

  15. Genetic assessment of meiobenthic community composition and spatial distribution in coastal sediments along northern Gulf of Mexico.

    PubMed

    Brannock, Pamela M; Wang, Lei; Ortmann, Alice C; Waits, Damien S; Halanych, Kenneth M

    2016-08-01

    Meiobenthic (meiofauna and micro-eukaryotes) organisms are important contributors to ecosystem functioning in aquatic environments through their roles in nutrient transport, sediment stability, and food web interactions. Despite their ecological importance, information pertaining to variation of these communities at various spatial and temporal scales is not widely known. Many studies in the Gulf of Mexico (GOM) have focused either on deep sea or continental shelf areas, while little attention has been paid to bays and coastal regions. Herein, we take a holistic approach by using high-throughput sequencing approaches to examine spatial variation in meiobenthic communities within Alabama bays and the coastal northern GOM region. Sediment samples were collected along three transects (Mississippi Sound: MS, FOCAL: FT, and Orange Beach: OB) from September 2010 to April 2012 and community composition was determined by metabarcoding the V9 hypervariable region of the nuclear18S rRNA gene. Results showed that Stramenopiles (diatoms), annelids, arthropods (copepods), and nematodes were the dominate groups within samples, while there was presence of other phyla throughout the dataset. Location played a larger role than time sampled in community composition. However, samples were collected over a short temporal scale. Samples clustered in reference to transect, with the most eastern transect (OB) having a distinct community composition in comparison to the other two transects (MS and FT). Communities also differed in reference to region (Bay versus Shelf). Bulk density and percent inorganic carbon were the only measured environmental factors that were correlated with community composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Annexin A2 Mediates Mycoplasma pneumoniae Community-Acquired Respiratory Distress Syndrome Toxin Binding to Eukaryotic Cells

    PubMed Central

    Somarajan, Sudha R.; Al-Asadi, Fadi; Ramasamy, Kumaraguruparan; Pandranki, Lavanya

    2014-01-01

    ABSTRACT Mycoplasma pneumoniae synthesizes a novel human surfactant protein A (SP-A)-binding cytotoxin, designated community-acquired respiratory distress syndrome (CARDS) toxin, that exhibits ADP-ribosylating and vacuolating activities in mammalian cells and is directly linked to a range of acute and chronic airway diseases, including asthma. In our attempt to detect additional CARDS toxin-binding proteins, we subjected the membrane fraction of human A549 airway cells to affinity chromatography using recombinant CARDS toxin as bait. A 36-kDa A549 cell membrane protein bound to CARDS toxin and was identified by time of flight (TOF) mass spectroscopy as annexin A2 (AnxA2) and verified by immunoblotting with anti-AnxA2 monoclonal antibody. Dose-dependent binding of CARDS toxin to recombinant AnxA2 reinforced the specificity of the interaction, and further studies revealed that the carboxy terminus of CARDS toxin mediated binding to AnxA2. In addition, pretreatment of viable A549 cells with anti-AnxA2 monoclonal antibody or AnxA2 small interfering RNA (siRNA) reduced toxin binding and internalization. Immunofluorescence analysis of CARDS toxin-treated A549 cells demonstrated the colocalization of CARDS toxin with cell surface-associated AnxA2 upon initial binding and with intracellular AnxA2 following toxin internalization. HepG2 cells, which express low levels of AnxA2, were transfected with a plasmid expressing AnxA2 protein, resulting in enhanced binding of CARDS toxin and increased vacuolization. In addition, NCI-H441 cells, which express both AnxA2 and SP-A, upon AnxA2 siRNA transfection, showed decreased binding and subsequent vacuolization. These results indicate that CARDS toxin recognizes AnxA2 as a functional receptor, leading to CARDS toxin-induced changes in mammalian cells. PMID:25139904

  17. Stormwater runoff drives viral community composition changes in inland freshwaters

    PubMed Central

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  18. Arctic root-associated fungal community composition reflects environmental filtering.

    PubMed

    Blaalid, Rakel; Davey, Marie L; Kauserud, Håvard; Carlsen, Tor; Halvorsen, Rune; Høiland, Klaus; Eidesen, Pernille B

    2014-02-01

    There is growing evidence that root-associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per-plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root-associated fungal community composition at both global and local scales is emphasized.

  19. Diptera community composition and succession following habitat disturbance by wildfire

    Treesearch

    Michael A. Patten; Jutta C. Burger; Thomas R. Prentice; John T. Rotenberry; Richard A. Redak

    2005-01-01

    Both biogeographic (for example, latitude) and local (for example, soil) processes determine composition and succession of biotic communities. Postfire succession of vegetation has been studied intensively in chaparral and coastal sage scrub. Fewer studies have examined postfire succession of animals, even though fires can drastically alter their abundance and...

  20. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  1. FORAGE FISH AND ZOOPLANKTON COMMUNITY COMPOSITION IN WESTERN LAKE SUPERIOR

    EPA Science Inventory

    We assessed the abundance, size, and species composition of the fish and zooplankton communities of western Lake Superior during 1996 and 1997. Data were analyzed for 3 ecoregions (Duluth-Superior (1), Apostle Islands (2), Minnesota coast (3) differing in lake bathymetry, phsiodo...

  2. Spatial patterns of microbial community composition within Lake Erie sediments

    USDA-ARS?s Scientific Manuscript database

    Lake Erie is a large freshwater ecosystem with three distinct basins that exhibit an east-west gradient of increasing productivity, as well as allochthonous inputs of nutrients and xenobiotics. To evaluate microbial community composition throughout this ecosystem, 435 16S rDNA environmental clones w...

  3. FORAGE FISH AND ZOOPLANKTON COMMUNITY COMPOSITION IN WESTERN LAKE SUPERIOR

    EPA Science Inventory

    We assessed the abundance, size, and species composition of the fish and zooplankton communities of western Lake Superior during 1996 and 1997. Data were analyzed for 3 ecoregions (Duluth-Superior (1), Apostle Islands (2), Minnesota coast (3) differing in lake bathymetry, phsiodo...

  4. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  5. Eukaryotic DNA Replication Fork.

    PubMed

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  6. Drivers of epsilonproteobacterial community composition in sulfidic caves and springs.

    PubMed

    Rossmassler, Karen; Engel, Annette S; Twing, Katrina I; Hanson, Thomas E; Campbell, Barbara J

    2012-02-01

    Epsilonproteobacteria are widely distributed in marine, freshwater, and terrestrial environments, although most well-studied groups are from hydrothermal vents and the human intestinal tract. The environmental variables that control epsilonproteobacterial communities in sulfidic terrestrial environments, however, are poorly understood. Here, the environmental variables that influence epsilonproteobacterial community composition in geographically separated sulfidic caves and springs were determined by coarse and fine-scale approaches: denaturing gradient gel electrophoresis profiling of 23S rRNA PCR amplicons and clone library sequencing of the 16S-ITS-23S rRNA operon. Sequences retrieved from this study were not closely related to cultured representatives, indicating that existing culture collections do not adequately capture the diversity of terrestrial Epsilonproteobacteria. Comparisons of 16S-ITS-23S rRNA operon sequences from four sites revealed that some distant communities (> 8000 km) share closely related populations of Epsilonproteobacteria, while other sites have nearly clonal and phylogenetically distinct populations. Statistical evaluations of sequence data reveal that multiple environmental variables (e.g. temperature, pH, salinity, dissolved oxygen, and bicarbonate concentrations) influence Epsilonproteobacteria community composition. Locations with clonal populations tended to be from higher temperatures and intermediate dissolved oxygen concentrations. rRNA operon sequences outside of the 16S rRNA gene may be critical to recognizing environmental drivers of epsilonproteobacterial community composition. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Consideration of species community composition in statistical ...

    EPA Pesticide Factsheets

    Diseases are increasing in marine ecosystems, and these increases have been attributed to a number of environmental factors including climate change, pollution, and overfishing. However, many studies pool disease prevalence into taxonomic groups, disregarding host species composition when comparing sites or assessing environmental impacts on patterns of disease presence. We used simulated data under a known environmental effect to assess the ability of standard statistical methods (binomial and linear regression, ANOVA) to detect a significant environmental effect on pooled disease prevalence with varying species abundance distributions and relative susceptibilities to disease. When one species was more susceptible to a disease and both species only partially overlapped in their distributions, models tended to produce a greater number of false positives (Type I error). Differences in disease risk between regions or along an environmental gradient tended to be underestimated, or even in the wrong direction, when highly susceptible taxa had reduced abundances in impacted sites, a situation likely to be common in nature. Including relative abundance as an additional variable in regressions improved model accuracy, but tended to be conservative, producing more false negatives (Type II error) when species abundance was strongly correlated with the environmental effect. Investigators should be cautious of underlying assumptions of species similarity in susceptib

  8. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes.

    PubMed

    Brannock, Pamela M; Ortmann, Alice C; Moss, Anthony G; Halanych, Kenneth M

    2016-08-01

    Marine environments harbour a vast diversity of micro-eukaryotic organisms (protists and other small eukaryotes) that play important roles in structuring marine ecosystems. However, micro-eukaryote diversity is not well understood. Likewise, knowledge is limited regarding micro-eukaryote spatial and seasonal distribution, especially over long temporal scales. Given the importance of this group for mobilizing energy from lower trophic levels near the base of the food chain to larger organisms, assessing community stability, diversity and resilience is important to understand ecosystem health. Herein, we use a metabarcoding approach to examine pelagic micro-eukaryote communities over a 2.5-year time series. Bimonthly surface sampling (July 2009 to December 2011) was conducted at four locations within Mobile Bay (Bay) and along the Alabama continental shelf (Shelf). Alpha-diversity only showed significant differences in Shelf sites, with the greatest differences observed between summer and winter. Beta-diversity showed significant differences in community composition in relation to season and the Bay was dominated by diatoms, while the Shelf was characterized by dinoflagellates and copepods. The northern Gulf of Mexico is heavily influenced by the Mobile River Basin, which brings low-salinity nutrient-rich water mostly during winter and spring. Community composition was correlated with salinity, temperature and dissolved silicate. However, species interactions (e.g. predation and parasitism) may also contribute to the observed variation, especially on the Shelf, which warrants further exploration. Metabarcoding revealed clear patterns in surface pelagic micro-eukaryote communities that were consistent over multiple years, demonstrating how these techniques could be greatly beneficial to ecological monitoring and management over temporal scales. © 2016 John Wiley & Sons Ltd.

  9. Land cover and rainfall interact to shape waterbird community composition.

    PubMed

    Studds, Colin E; DeLuca, William V; Baker, Matthew E; King, Ryan S; Marra, Peter P

    2012-01-01

    Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these

  10. Land Cover and Rainfall Interact to Shape Waterbird Community Composition

    PubMed Central

    Studds, Colin E.; DeLuca, William V.; Baker, Matthew E.; King, Ryan S.; Marra, Peter P.

    2012-01-01

    Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these

  11. Stable microbial community composition on the Greenland Ice Sheet.

    PubMed

    Musilova, Michaela; Tranter, Martyn; Bennett, Sarah A; Wadham, Jemma; Anesio, Alexandre M

    2015-01-01

    The first molecular-based studies of microbes in snow and on glaciers have only recently been performed on the vast Greenland Ice Sheet (GrIS). Aeolian microbial seeding is hypothesized to impact on glacier surface community compositions. Localized melting of glacier debris (cryoconite) into the surface ice forms cryoconite holes, which are considered 'hot spots' for microbial activity on glaciers. To date, few studies have attempted to assess the origin and evolution of cryoconite and cryoconite hole communities throughout a melt season. In this study, a range of experimental approaches was used for the first time to study the inputs, temporal and structural transformations of GrIS microbial communities over the course of a whole ablation season. Small amounts of aeolian (wind and snow) microbes were potentially seeding the stable communities that were already present on the glacier (composed mainly of Proteobacteria, Cyanobacteria, and Actinobacteria). However, the dominant bacterial taxa in the aeolian samples (Firmicutes) did not establish themselves in local glacier surface communities. Cryoconite and cryoconite hole community composition remained stable throughout the ablation season following the fast community turnover, which accompanied the initial snow melt. The presence of stable communities in cryoconite and cryoconite holes on the GrIS will allow future studies to assess glacier surface microbial diversity at individual study sites from sampling intervals of short duration only. Aeolian inputs also had significantly different organic δ(13)C values (-28.0 to -27.0‰) from the glacier surface values (-25.7 to -23.6‰), indicating that in situ microbial processes are important in fixing new organic matter and transforming aeolian organic carbon. The continuous productivity of stable communities over one melt season makes them important contributors to biogeochemical nutrient cycling on glaciers.

  12. Stable microbial community composition on the Greenland Ice Sheet

    PubMed Central

    Musilova, Michaela; Tranter, Martyn; Bennett, Sarah A.; Wadham, Jemma; Anesio, Alexandre M.

    2015-01-01

    The first molecular-based studies of microbes in snow and on glaciers have only recently been performed on the vast Greenland Ice Sheet (GrIS). Aeolian microbial seeding is hypothesized to impact on glacier surface community compositions. Localized melting of glacier debris (cryoconite) into the surface ice forms cryoconite holes, which are considered ‘hot spots’ for microbial activity on glaciers. To date, few studies have attempted to assess the origin and evolution of cryoconite and cryoconite hole communities throughout a melt season. In this study, a range of experimental approaches was used for the first time to study the inputs, temporal and structural transformations of GrIS microbial communities over the course of a whole ablation season. Small amounts of aeolian (wind and snow) microbes were potentially seeding the stable communities that were already present on the glacier (composed mainly of Proteobacteria, Cyanobacteria, and Actinobacteria). However, the dominant bacterial taxa in the aeolian samples (Firmicutes) did not establish themselves in local glacier surface communities. Cryoconite and cryoconite hole community composition remained stable throughout the ablation season following the fast community turnover, which accompanied the initial snow melt. The presence of stable communities in cryoconite and cryoconite holes on the GrIS will allow future studies to assess glacier surface microbial diversity at individual study sites from sampling intervals of short duration only. Aeolian inputs also had significantly different organic δ13C values (-28.0 to -27.0‰) from the glacier surface values (-25.7 to -23.6‰), indicating that in situ microbial processes are important in fixing new organic matter and transforming aeolian organic carbon. The continuous productivity of stable communities over one melt season makes them important contributors to biogeochemical nutrient cycling on glaciers. PMID:25852658

  13. Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice.

    PubMed

    Torstensson, Anders; Dinasquet, Julie; Chierici, Melissa; Fransson, Agneta; Riemann, Lasse; Wulff, Angela

    2015-10-01

    Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant.

  14. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor.

    PubMed

    Scheckenbach, Frank; Hausmann, Klaus; Wylezich, Claudia; Weitere, Markus; Arndt, Hartmut

    2010-01-05

    Eukaryotic microbial life at abyssal depths remains "uncharted territory" in eukaryotic microbiology. No phylogenetic surveys have focused on the largest benthic environment on this planet, the abyssal plains. Moreover, knowledge of the spatial patterns of deep-sea community structure is scanty, and what little is known originates primarily from morphology-based studies of foraminiferans. Here we report on the great phylogenetic diversity of microbial eukaryotic communities of all 3 abyssal plains of the southeastern Atlantic Ocean--the Angola, Cape, and Guinea Abyssal Plains--from depths of 5,000 m. A high percentage of retrieved clones had no close representatives in genetic databases. Many clones were affiliated with parasitic species. Furthermore, differences between the communities of the Cape Abyssal Plain and the other 2 abyssal plains point to environmental gradients apparently shaping community structure at the landscape level. On a regional scale, local species diversity showed much less variation. Our study provides insight into the community composition of microbial eukaryotes on larger scales from the wide abyssal sea floor realm and marks a direction for more detailed future studies aimed at improving our understanding of deep-sea microbes at the community and ecosystem levels, as well as the ecological principles at play.

  15. Comparative study of the validity of three regions of the 18S-rRNA gene for massively parallel sequencing-based monitoring of the planktonic eukaryote community.

    PubMed

    Tanabe, Akifumi S; Nagai, Satoshi; Hida, Kohsuke; Yasuike, Motoshige; Fujiwara, Atushi; Nakamura, Yoji; Takano, Yoshihito; Katakura, Seiji

    2016-03-01

    The nuclear 18S-rRNA gene has been used as a metabarcoding marker in massively parallel sequencing (MPS)-based environmental surveys for plankton biodiversity research. However, different hypervariable regions have been used in different studies, and their utility has been debated among researchers. In this study, detailed investigations into 18S-rRNA were carried out; we investigated the effective number of sequences deposited in international nucleotide sequence databases (INSDs), the amplification bias, and the amplicon sequence variability among the three variable regions, V1-3, V4-5 and V7-9, using in silico polymerase chain reaction (PCR) amplification based on INSDs. We also examined the primer universality and the taxonomic identification power, using MPS-based environmental surveys in the Sea of Okhotsk, to determine which region is more useful for MPS-based monitoring. The primer universality was not significantly different among the three regions, but the number of sequences deposited in INSDs was markedly larger for the V4-5 region than for the other two regions. The sequence variability was significantly different, with the highest variability in the V1-3 region, followed by the V7-9 region, and the lowest variability in the V4-5 region. The results of the MPS-based environmental surveys showed significantly higher identification power in the V1-3 and V7-9 regions than in the V4-5 region, but no significant difference was detected between the V1-3 and V7-9 regions. We therefore conclude that the V1-3 region will be the most suitable for future MPS-based monitoring of natural eukaryote communities, as the number of sequences deposited in INSDs increases. © 2015 John Wiley & Sons Ltd.

  16. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia.

    PubMed

    Tchioffo, Majoline T; Boissière, Anne; Abate, Luc; Nsango, Sandrine E; Bayibéki, Albert N; Awono-Ambéné, Parfait H; Christen, Richard; Gimonneau, Geoffrey; Morlais, Isabelle

    2015-01-01

    The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors.

  17. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Abate, Luc; Nsango, Sandrine E.; Bayibéki, Albert N.; Awono-Ambéné, Parfait H.; Christen, Richard; Gimonneau, Geoffrey; Morlais, Isabelle

    2016-01-01

    The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors. PMID:26779155

  18. Microbial community composition and function across an arctic tundra landscape.

    PubMed

    Zak, Donald R; Kling, George W

    2006-07-01

    Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, lowland tundra. To test this idea, we studied soil microbial communities in upland tussock, stream-side birch-willow, and lakeside wet sedge tundra in arctic Alaska, USA. These are a series of ecosystems that differ in topographic position, plant composition, and soil drainage. Phospholipid fatty acid (PLFA) analyses, coupled with compound-specific 13C isotope tracing, were used to quantify microbial community composition and function; we also assayed the activity of extracellular enzymes involved in cellulose, chitin, and lignin degradation. Surface soil from each tundra ecosystem was labeled with 13C-cellobiose,13C-N-acetylglucosamine, or 13C-vanillin. After a five-day incubation, we followed the movement of 13C into bacterial and fungal PLFAs, microbial respiration, dissolved organic carbon, and soil organic matter. Microbial community composition and function were distinct among tundra ecosystems, with tussock tundra containing a significantly greater abundance and activity of soil fungi. Although the majority of 13C-labeled substrates rapidly moved into soil organic matter in all tundra soils (i.e., 50-90% of applied 13C), microbial respiration of labeled substrates in wet sedge tundra soil was lower than in tussock and birch-willow tundra; approximately 8% of 13C-cellobiose and approximately 5% of 13C-vanillin was respired in wet sedge soil vs. 26-38% of 13C-cellobiose and 18-21% of 13C-vanillin in the other tundra ecosystems. Despite these differences, wet sedge tundra exhibited the greatest extracellular enzyme activity. Topographic variation in plant litter biochemistry

  19. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  20. Richness and Composition of Niche-Assembled Viral Pathogen Communities

    PubMed Central

    Seabloom, Eric W.; Borer, Elizabeth T.; Lacroix, Christelle; Mitchell, Charles E.; Power, Alison G.

    2013-01-01

    The pathogen and parasite community that inhabits every free-living organism can control host vital rates including lifespan and reproductive output. To date, however, there have been few experiments examining pathogen community assembly replicated at large-enough spatial scales to inform our understanding of pathogen dynamics in natural systems. Pathogen community assembly may be driven by neutral stochastic colonization and extinction events or by niche differentiation that constrains pathogen distributions to particular environmental conditions, hosts, or vectors. Here, we present results from a regionally-replicated experiment investigating the community of barley and cereal yellow dwarf viruses (B/CYDV's) in over 5000 experimentally planted individuals of six grass species along a 700 km latitudinal gradient along the Pacific coast of North America (USA) in response to experimentally manipulated nitrogen and phosphorus supplies. The composition of the virus community varied predictably among hosts and across nutrient-addition treatments, indicating niche differentiation among virus species. There were some concordant responses among the viral species. For example, the prevalence of most viral species increased consistently with perennial grass cover, leading to a 60% increase in the richness of the viral community within individual hosts (i.e., coinfection) in perennial-dominated plots. Furthermore, infection rates of the six host species in the field were highly correlated with vector preferences assessed in laboratory trials. Our results reveal the importance of niche differentiation in structuring virus assemblages. Virus species distributions reflected a combination of local host community composition, host species-specific vector preferences, and virus responses to host nutrition. In addition, our results suggest that heterogeneity among host species in their capacity to attract vectors or support pathogens between growing seasons can lead to positive

  1. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    PubMed Central

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the

  2. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    PubMed

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET

  3. Cyanobacteria drive community composition and functionality in rock-soil interface communities.

    PubMed

    Valverde, Angel; Makhalanyane, Thulani P; Seely, Mary; Cowan, Don A

    2015-02-01

    Most ecological research on hypoliths, significant primary producers in hyperarid deserts, has focused on the diversity of individual groups of microbes (i.e. bacteria). However, microbial communities are inherently complex, and the interactions between cyanobacteria, heterotrophic bacteria, protista and metazoa are likely to be very important for ecosystem functioning. Cyanobacterial and heterotrophic bacterial communities were analysed by pyrosequencing, while metazoan and protistan communities were assessed by T-RFLP analysis. Microbial functionality was estimated using carbon substrate utilization. Cyanobacterial community composition was significant in shaping community structure and function in hypoliths. Ecological network analysis showed that most significant co-occurrences were positive, representing potential synergistic interactions. There were several highly interconnected associations (modules), and specific cyanobacteria were important in driving the modular structure of hypolithic networks. Together, our results suggest that hypolithic cyanobacteria have strong effects on higher trophic levels and ecosystem functioning.

  4. Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus.

    PubMed

    Bell, Philip John Livingstone

    2006-11-07

    The origin of the eukaryotic cell cycle, including mitosis, meiosis, and sex are as yet unresolved aspects of the evolution of the eukaryotes. The wide phylogenetic distribution of both mitosis and meiosis suggest that these processes are integrally related to the origin of the earliest eukaryotic cells. According to the viral eukaryogenesis (VE) hypothesis, the eukaryotes are a composite of three phylogenetically unrelated organisms: a viral lysogen that evolved into the nucleus, an archaeal cell that evolved into the eukaryotic cytoplasm, and an alpha-proteobacterium that evolved into the mitochondria. In the extended VE hypothesis presented here, the eukaryotic cell cycle arises as a consequence of the derivation of the nucleus from a lysogenic DNA virus.

  5. Bacterial community structure in patagonian Andean Lakes above and below timberline: from community composition to community function.

    PubMed

    Bastidas Navarro, Marcela; Balseiro, Esteban; Modenutti, Beatriz

    2014-10-01

    Lakes located above the timberline are remote systems with a number of extreme environmental conditions, becoming physically harsh ecosystems, and sensors of global change. We analyze bacterial community composition and community-level physiological profiles in mountain lakes located in an altitude gradient in North Patagonian Andes below and above the timberline, together with dissolved organic carbon (DOC) characterization and consumption. Our results indicated a decrease in 71 % of DOC and 65 % in total dissolved phosphorus (TDP) concentration as well as in bacteria abundances along the altitude range (1,380 to 1,950 m a.s.l.). Dissolved organic matter (DOM) fluorescence analysis revealed a low global variability composed by two humic-like components (allochthonous substances) and a single protein-like component (autochthonous substances). Lakes below the timberline showed the presence of all the three components, while lakes above the timberline the protein-like compound constituted the main DOC component. Furthermore, bacterial community composition similarity and ordination analysis showed that altitude and resource concentration (DOC and TDP) were the main variables determining the ordination of groups. Community-level physiological profiles showed a mismatch with bacteria community composition (BCC), indicating the absence of a relationship between genetic and functional diversity in the altitude gradient. However, carbon utilization efficiencies varied according to the presence of different compounds in DOM bulk. The obtained results suggest that the different bacterial communities in these mountain lakes seem to have similar metabolic pathways in order to be able to exploit the available DOC molecules.

  6. Fungicide Effects on Fungal Community Composition in the Wheat Phyllosphere

    PubMed Central

    Karlsson, Ida; Friberg, Hanna; Steinberg, Christian; Persson, Paula

    2014-01-01

    The fungicides used to control diseases in cereal production can have adverse effects on non-target fungi, with possible consequences for plant health and productivity. This study examined fungicide effects on fungal communities on winter wheat leaves in two areas of Sweden. High-throughput 454 sequencing of the fungal ITS2 region yielded 235 operational taxonomic units (OTUs) at the species level from the 18 fields studied. It was found that commonly used fungicides had moderate but significant effect on fungal community composition in the wheat phyllosphere. The relative abundance of several saprotrophs was altered by fungicide use, while the effect on common wheat pathogens was mixed. The fungal community on wheat leaves consisted mainly of basidiomycete yeasts, saprotrophic ascomycetes and plant pathogens. A core set of six fungal OTUs representing saprotrophic species was identified. These were present across all fields, although overall the difference in OTU richness was large between the two areas studied. PMID:25369054

  7. Composition of epiphytic bacterial communities differs on petals and leaves.

    PubMed

    Junker, R R; Loewel, C; Gross, R; Dötterl, S; Keller, A; Blüthgen, N

    2011-11-01

    The epiphytic bacterial communities colonising roots and leaves have been described for many plant species. In contrast, microbiologists have rarely considered flowers of naturally growing plants. We identified bacteria isolated from the surface of petals and leaves of two plant species, Saponaria officinalis (Caryophyllaceae) and Lotus corniculatus (Fabaceae). The bacterial diversity was much lower on petals than on leaves of the same plants. Moreover, the bacterial communities differed strongly in composition: while Pseudomonadaceae and Microbacteriaceae were the most abundant families on leaves, Enterobacteriaceae dominated the floral communities. We hypothesise that antibacterial floral volatiles trigger the low diversity on petals, which is supported by agar diffusion assays using substances emitted by flowers and leaves of S. officinalis. These results suggest that bacteria should be included in the interpretation of floral traits, and possible effects of bacteria on pollination are proposed and discussed.

  8. Microbial biomass, activity and community composition in constructed wetlands.

    PubMed

    Truu, Marika; Juhanson, Jaanis; Truu, Jaak

    2009-06-15

    The aim of the current article is to give an overview about microbial communities and their functioning but also about factors affecting microbial activity in the three most common types (surface flow and two types of sub-surface flow) of constructed wetlands. The paper reviews the community composition and structural diversity of the microbial biomass, analyzing different aspects of microbial activity with respect to wastewater properties, specific wetland type, and environmental parameters. A brief introduction about the application of different novel molecular techniques for the assessment of microbial communities in constructed wetlands is also given. Microbially mediated processes in constructed wetlands are mainly dependent on hydraulic conditions, wastewater properties, including substrate and nutrient quality and availability, filter material or soil type, plants, and different environmental factors. Microbial biomass is within similar ranges in both horizontal and vertical subsurface flow and surface flow constructed wetlands. Stratification of the biomass but also a stratified structural pattern of the bacterial community can be seen in subsurface flow systems. Microbial biomass C/N ratio is higher in horizontal flow systems compared to vertical flow systems, indicating the structural differences in microbial communities between those two constructed wetland types. The total activity of the microbial community is in the same range, but heterotrophic growth is higher in the subsurface (vertical flow) system compared to the surface flow systems. Available species-specific data about microbial communities in different types of wetlands is scarce and therefore it is impossible make any general conclusions about the dynamics of microbial community structure in wetlands, its relationship to removal processes and operational parameters.

  9. Buds from the tree of life: linking compartmentalized prokaryotes and eukaryotes by a non-hyperthermophile common ancestor and implications for understanding Archaean microbial communities

    NASA Astrophysics Data System (ADS)

    Fuerst, John A.; Nisbet, Euan G.

    2004-07-01

    The origin of the first nucleated eukaryote and the nature of the last common ancestor of the three domains of life are major questions in the evolutionary biology of cellular life on Earth, the solutions to which may be linked. Planctomycetes are unusual compartmentalized bacteria that include a membrane-bounded nucleoid. The possibility that they constitute a very deep branch of the domain Bacteria suggests a model for the evolution of the three domains of life from a last common ancestor that was a mesophile or moderate thermophile with a compartmentalized eukaryote-like cell plan. Planctomycetes and some members of the domain Archaea may have retained cell compartmentalization present in an original eukaryote-like last common ancestor of the three domains of life. The implications of this model for possible habitats of the early evolution of domains of cellular life and for interpretation of geological evidence relating to those habitats and the early emergence of life are examined here.

  10. Canada's Composite Learning Index: A path towards learning communities

    NASA Astrophysics Data System (ADS)

    Cappon, Paul; Laughlin, Jarrett

    2013-09-01

    In the development of learning cities/communities, benchmarking progress is a key element. Not only does it permit cities/communities to assess their current strengths and weaknesses, it also engenders a dialogue within and between cities/communities on the means of enhancing learning conditions. Benchmarking thereby is a potentially motivational tool, energising further progress. In Canada, the Canadian Council on Learning created the world's first Composite Learning Index (CLI), the purpose of which is to measure the conditions of learning nationally, regionally and locally. Cities/communities in Canada have utilised the CLI Simulator, an online tool provided by the Canadian Council on Learning, to gauge the change in overall learning conditions which may be expected depending on which particular indicator is emphasised. In this way, the CLI has proved to be both a dynamic and a locally relevant tool for improvement, moreover a strong motivational factor in the development of learning cities/communities. After presenting the main features of the CLI, the authors of this paper sum up the lessons learned during its first 5 years (2006-2010) of existence, also with a view to its transferability to other regions. Indeed, the CLI model was already adopted in Europe by the German Bertelsmann foundation in 2010 and has the potential to be useful in many other countries as well.

  11. [Soil microbial community composition and diversity in Panax quinquefolius rhizosphere].

    PubMed

    Qi, Jianjun; Zhao, Xiaomeng; Zhou, Lilii; Sun, Peng; Zhang, Xuesong; Li, Xianen

    2010-09-01

    The objective of this work was to analyze the soil microbial community diversity and structure in Panax quinquefolius rhizosphere and elucidated the rules of the ecology shift. Two community-based microbiological measurements, community level physiological profiling (CLPP) using Biolog sole C source utilization tests and phospholipid ester-linked fatty acid (PLFA) profiles, were used to evaluate soil microbial community function and composition of different Panax quinquefolius cropping soils. The properties, pH, N, P, K and organic matter were analyzed also. There were many differences in soil properties such as lower pH (5.82) in Jilin soil but higher pH (8.27) in Beijing soil and there were significant higher content of organic matter, available N, P, K in Jilin soil than those in Beijing soil. The analysis of soil microbial ecology showed a similar result in AWCD, Biolog and PLFA pattern. According to the PC1 score in principal analysis of Biolog and PLFA, the soils in 2, 3 and 4 years cultivated P. quinquefolius rhizophere were distinguished from the control and 1 year soils. The result indicated that the metabolism function reduced and the structure shifted in rhizophere soil microbial community after P. quinquefolius cropping. These may be the primary reason of the disease occur severely in P. quinquefolius field.

  12. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  13. Do honeybees shape the bacterial community composition in floral nectar?

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers' nectar, but not from those in the uncovered flowers' nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.

  14. Effects of landscape anthropization on mosquito community composition and abundance

    PubMed Central

    Ferraguti, Martina; Martínez-de la Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-01-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control. PMID:27373794

  15. Effects of landscape anthropization on mosquito community composition and abundance

    NASA Astrophysics Data System (ADS)

    Ferraguti, Martina; Martínez-de La Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-07-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control.

  16. Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China.

    PubMed

    Niu, Yuan; Shen, Hong; Chen, Jun; Xie, Ping; Yang, Xi; Tao, Min; Ma, Zhimei; Qi, Min

    2011-08-01

    PCR-denaturing gradient gel electrophoresis (DGGE) and canonical correspondence analysis (CCA) were used to explore the relationship between succession of phytoplankton community and temporal variation of bacterioplankton community composition (BCC) in the eutrophic Lake Taihu. Serious Microcystis bloom was observed in July-December 2008 and Bacillariophyta and Cryptophyta dominated in January-June 2009. BCC was characterized by DGGE of 16S rRNA gene with subsequent sequencing. The DGGE banding patterns revealed a remarkable seasonality which was closely related to phytoplankton community succession. Variation trend of Shannon-Wiener diversity index in bacterioplankton community was similar to that of phytoplankton community. CCA revealed that temperature and phytoplankton played key roles in structuring BCC. Sequencing of DGGE bands suggested that the majority of the sequences were affiliated with common phylogenetic groups in freshwater: Alphaproteobacteria, Betaproteobacteria, Bacteroidetes and Actinobacteria. The cluster STA2-30 (affiliated with Actinobacteria) was found almost across the sampling time at the two study sites. We observed that the family Flavobacteriaceae (affiliated with Bacteroidetes) tightly coupled to diatom bloom and the cluster ML-5-51.2 (affiliated with Actinobacteria) dominated the bacterioplankton communities during Microcystis bloom. These results were quite similar at the two sampling sites, indicating that BCC changes were not random but with fixed pattern. Our study showed insights into relationships between phytoplankton and bacterioplankton communities at species level, facilitating a better understanding of microbial loop and ecosystem functioning in the lake.

  17. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells.

    PubMed Central

    Vellai, T; Vida, G

    1999-01-01

    Eukaryotes have long been thought to have arisen by evolving a nucleus, endomembrane, and cytoskeleton. In contrast, it was recently proposed that the first complex cells, which were actually proto-eukaryotes, arose simultaneously with the acquisition of mitochondria. This so-called symbiotic association hypothesis states that eukaryotes emerged when some ancient anaerobic archaebacteria (hosts) engulfed respiring alpha-proteobacteria (symbionts), which evolved into the first energy-producing organelles. Therefore, the intracellular compartmentalization of the energy-converting metabolism that was bound originally to the plasma membrane appears to be the key innovation towards eukaryotic genome and cellular organization. The novel energy metabolism made it possible for the nucleotide synthetic apparatus of cells to be no longer limited by subsaturation with substrates and catalytic components. As a consequence, a considerable increase has occurred in the size and complexity of eukaryotic genomes, providing the genetic basis for most of the further evolutionary changes in cellular complexity. On the other hand, the active uptake of exogenous DNA, which is general in bacteria, was no longer essential in the genome organization of eukaryotes. The mitochondrion-driven scenario for the first eukaryotes explains the chimera-like composition of eukaryotic genomes as well as the metabolic and cellular organization of eukaryotes. PMID:10467746

  18. Microbial communities within saltmarsh sediments: Composition, abundance and pollution constraints

    NASA Astrophysics Data System (ADS)

    Machado, Ana; Magalhães, Catarina; Mucha, Ana P.; Almeida, C. Marisa R.; Bordalo, Adriano A.

    2012-03-01

    The influence of the saltmarsh plant Halimione portucaloides and the level of sediment metal contamination on the distribution of microbial communities were investigated in two Portuguese estuarine systems with different degrees of metal contamination: the Cavado (41.5 N; 8.7 W) and Sado estuaries. In the Sado, two saltmarshes were studied: Lisnave (38.4 N; 8.7 W) and Comporta (38.4 N; 8.8 W). A PCR rDNA-DGGE approach and direct microscopic counts of DAPI-stained cells were applied to study the biodiversity and abundance of prokaryotic communities. Sediment characteristics and metal concentrations (Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn) were also evaluated to identify possible environmental pollution constraints on spatial and temporal microbial dynamics. Redundancy analysis (RDA) revealed that the Lisnave saltmarsh microbial community was usually associated with a higher degree of metal contamination, especially the metal Pb. In clear contrast, the Cavado estuary microbial assemblage composition was associated with low metal concentrations but higher organic matter content. The Comporta saltmarsh bacterial community clustered in a separate branch, and was associated with higher levels of different metals, such as Ni, Cr and Zn. Additionally, the microbial community structure of the Lisnave and Cavado showed a seasonal pattern. Moreover, microbial abundance correlated negatively with metal concentrations, being higher at the Cavado estuarine site and with general higher counts in the rhizosediment. These findings suggest that increased metal concentrations negatively affect the abundance of prokaryotic cells and that saltmarsh plants may have a pivotal role in shaping the microbial community structure.

  19. Tropical Aquatic Archaea Show Environment-Specific Community Composition

    PubMed Central

    Silveira, Cynthia B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Lima, Joyce L.; Pinto, Leonardo H.; Albano, Rodolpho M.; Clementino, Maysa M.; Martins, Orlando B.; Vieira, Ricardo P.

    2013-01-01

    The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota, a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria. PMID:24086729

  20. Tropical aquatic Archaea show environment-specific community composition.

    PubMed

    Silveira, Cynthia B; Cardoso, Alexander M; Coutinho, Felipe H; Lima, Joyce L; Pinto, Leonardo H; Albano, Rodolpho M; Clementino, Maysa M; Martins, Orlando B; Vieira, Ricardo P

    2013-01-01

    The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota, a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria.

  1. The Importance of Dispersal for Bacterial Community Composition and Functioning

    PubMed Central

    Lindström, Eva S.; Östman, Örjan

    2011-01-01

    We conducted a metacommunity experiment to investigate the role of dispersal for bacterial community composition (BCC) and function of freshwater bacteria. Bacteria were dispersed from a common source pool into three different lake communities in their natural lake water. The experiment was conducted in dialysis bags to enable a decoupling between a change in the local environment and dispersal. BCC was determined by terminal restriction fragment length polymorphism (tRFLP) of the 16S rRNA gene. We show that the greatest changes in BCC occurred between 10% and 43% of dispersal of standing stock per day. Functioning, measured as growth rate, was also affected by dispersal in all three communities but the qualitative pattern differed between communities, sometimes showing a hump-shaped relationship to dispersal and sometimes decreasing with increasing dispersal. In all waters, functioning was related to BCC. Our results show that dispersal does affect BCC and functioning but that high dispersal rates are needed. Further, the effect of dispersal on BCC and function seem to depend on the quality of the habitat to which bacteria disperse into. PMID:21998714

  2. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis.

    PubMed

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.

  3. Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis

    PubMed Central

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities. PMID:24594623

  4. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  5. Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest

    PubMed Central

    Trogisch, Stefan; Both, Sabine; Scholten, Thomas; Bruelheide, Helge; Buscot, François

    2013-01-01

    Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition. PMID:23826151

  6. Acidocalcisomes of eukaryotes.

    PubMed

    Docampo, Roberto; Huang, Guozhong

    2016-08-01

    Acidocalcisomes are organelles rich in polyphosphate and cations and acidified by proton pumps. Although they have also been described in prokaryotes they have been better characterized in unicellular and multicellular eukaryotes. Eukaryotic acidocalcisomes belong to the group of lysosome-related organelles. They have a variety of functions, from the storage of cations and phosphorus to calcium signaling, autophagy, osmoregulation, blood coagulation, and inflammation. Acidocalcisomes of several unicellular eukaryotes possess a variety of transporters, channels and pumps implying a large energetic requirement for their maintenance and suggesting other important functions waiting to be discovered.

  7. Symbiosis in eukaryotic evolution.

    PubMed

    López-García, Purificación; Eme, Laura; Moreira, David

    2017-02-28

    Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structural Disorder in Eukaryotes

    PubMed Central

    Pancsa, Rita; Tompa, Peter

    2012-01-01

    Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels – and highest variability – of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established. PMID:22496841

  9. Structural disorder in eukaryotes.

    PubMed

    Pancsa, Rita; Tompa, Peter

    2012-01-01

    Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.

  10. The others: our biased perspective of eukaryotic genomes.

    PubMed

    del Campo, Javier; Sieracki, Michael E; Molestina, Robert; Keeling, Patrick; Massana, Ramon; Ruiz-Trillo, Iñaki

    2014-05-01

    Understanding the origin and evolution of the eukaryotic cell and the full diversity of eukaryotes is relevant to many biological disciplines. However, our current understanding of eukaryotic genomes is extremely biased, leading to a skewed view of eukaryotic biology. We argue that a phylogeny-driven initiative to cover the full eukaryotic diversity is needed to overcome this bias. We encourage the community: (i) to sequence a representative of the neglected groups available at public culture collections, (ii) to increase our culturing efforts, and (iii) to embrace single cell genomics to access organisms refractory to propagation in culture. We hope that the community will welcome this proposal, explore the approaches suggested, and join efforts to sequence the full diversity of eukaryotes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  12. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  13. Quantifying the response of structural complexity and community composition to environmental change in marine communities.

    PubMed

    Ferrari, Renata; Bryson, Mitch; Bridge, Tom; Hustache, Julie; Williams, Stefan B; Byrne, Maria; Figueira, Will

    2016-05-01

    Habitat structural complexity is a key factor shaping marine communities. However, accurate methods for quantifying structural complexity underwater are currently lacking. Loss of structural complexity is linked to ecosystem declines in biodiversity and resilience. We developed new methods using underwater stereo-imagery spanning 4 years (2010-2013) to reconstruct 3D models of coral reef areas and quantified both structural complexity at two spatial resolutions (2.5 and 25 cm) and benthic community composition to characterize changes after an unprecedented thermal anomaly on the west coast of Australia in 2011. Structural complexity increased at both resolutions in quadrats (4 m(2)) that bleached, but not those that did not bleach. Changes in complexity were driven by species-specific responses to warming, highlighting the importance of identifying small-scale dynamics to disentangle ecological responses to disturbance. We demonstrate an effective, repeatable method for quantifying the relationship among community composition, structural complexity and ocean warming, improving predictions of the response of marine ecosystems to environmental change. © 2015 John Wiley & Sons Ltd.

  14. Mineralogical composition changes of postagrogenic soils under different plant communities.

    NASA Astrophysics Data System (ADS)

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions <1 micron, 1-5 micron and 5-10 micron samples were rubbed into a thick paste and sedimented. Oriented preparations of fractions were examined by XRD method. The results show that podzol processes lead to significant changes of mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest

  15. Microbial community composition and diversity in Caspian Sea sediments.

    PubMed

    Mahmoudi, Nagissa; Robeson, Michael S; Castro, Hector F; Fortney, Julian L; Techtmann, Stephen M; Joyner, Dominique C; Paradis, Charles J; Pfiffner, Susan M; Hazen, Terry C

    2015-01-01

    The Caspian Sea is heavily polluted due to industrial and agricultural effluents as well as extraction of oil and gas reserves. Microbial communities can influence the fate of contaminants and nutrients. However, insight into the microbial ecology of the Caspian Sea significantly lags behind other marine systems. Here we describe microbial biomass, diversity and composition in sediments collected from three sampling stations in the Caspian Sea. Illumina sequencing of 16S rRNA genes revealed the presence of a number of known bacterial and archaeal heterotrophs suggesting that organic carbon is a primary factor shaping microbial communities. Surface sediments collected from bottom waters with low oxygen levels were dominated by Gammaproteobacteria while surface sediments collected from bottom waters under hypoxic conditions were dominated by Deltaproteobacteria, specifically sulfate-reducing bacteria. Thaumarchaeota was dominant across all surface sediments indicating that nitrogen cycling in this system is strongly influenced by ammonia-oxidizing archaea. This study provides a baseline assessment that may serve as a point of reference as this system changes or as the efficacy of new remediation efforts are implemented.

  16. The sublittoral macrobenthic community composition of Lough Hyne, Ireland

    NASA Astrophysics Data System (ADS)

    Thrush, Simon F.; Townsend, Colin R.

    1986-10-01

    This paper describes a survey conducted across the floor of the South basin of Lough Hyne, a small sea-lough in south-west Ireland. To test for any pattern in macrobenthic community structure in relation to prevailing hydrographic conditions five stations at approximately 20 m depth were sampled on four occasions over a 14 month period, by SCUBA diving. Measurements of sediment pH, redox potential, sulphide potential, grain size, organic matter content and macrobenthic community structure allow two distinct habitats to be defined; coarse gravelly substratum adjacent to the inflow area and fine silty substratum over the remainder of the basin floor. A correlation of physicochemical parameters with axis loadings from an ordination of species composition at each station on each sampling occasion failed to reveal a continuum of change in relation to prevailing hydrographic conditions. Rather, sediment physicochemistry, the abundance of common macrobenthic species, number of species, number of individuals, variations in the numerical dominance hierarchy and station position in the ordination space fluctuated in a haphazard manner. Various localized disturbances, observed while conducting this survey, are considered to contribute to this pattern. The disturbing agents include smothering of areas of sediment by anoxic water, deposition of accumulations of detached seaweed and sediment excavations by Cancer pagurus.

  17. Microbial community composition and diversity in Caspian Sea sediments

    PubMed Central

    Mahmoudi, Nagissa; Robeson, Michael S.; Castro, Hector F.; Fortney, Julian L.; Techtmann, Stephen M.; Joyner, Dominique C.; Paradis, Charles J.; Pfiffner, Susan M.; Hazen, Terry C.

    2014-01-01

    The Caspian Sea is heavily polluted due to industrial and agricultural effluents as well as extraction of oil and gas reserves. Microbial communities can influence the fate of contaminants and nutrients. However, insight into the microbial ecology of the Caspian Sea significantly lags behind other marine systems. Here we describe microbial biomass, diversity and composition in sediments collected from three sampling stations in the Caspian Sea. Illumina sequencing of 16S rRNA genes revealed the presence of a number of known bacterial and archaeal heterotrophs suggesting that organic carbon is a primary factor shaping microbial communities. Surface sediments collected from bottom waters with low oxygen levels were dominated by Gammaproteobacteria while surface sediments collected from bottom waters under hypoxic conditions were dominated by Deltaproteobacteria, specifically sulfate-reducing bacteria. Thaumarchaeota was dominant across all surface sediments indicating that nitrogen cycling in this system is strongly influenced by ammonia-oxidizing archaea. This study provides a baseline assessment that may serve as a point of reference as this system changes or as the efficacy of new remediation efforts are implemented. PMID:25764536

  18. Diversity and composition of the bacterial community in Amphioxus feces.

    PubMed

    Pan, Minming; Yuan, Dongjuan; Chen, Shangwu; Xu, Anlong

    2015-11-01

    Amphioxus is a typical filter feeder animal and is confronted with a complex bacterial community in the seawater of its habitat. It has evolved a strong innate immune system to cope with the external bacterial stimulation, however, the ecological system of the bacterial community in Amphioxus remains unknown. Through massive parallel 16S rRNA gene tag pyrosequencing, the investigation indicated that the composition of wild and lab-cultured Amphioxus fecal bacteria was complex with more than 85,000 sequence tags being assigned to 12/13 phyla. The bacterial diversity between the two fecal samples was similar according to OTU richness of V4 tag, Chao1 index, Shannon index and Rarefaction curves, however, the most prominent bacteria in wild feces were genera Pseudoalteromonas (gamma Proteobacteria) and Arcobacter (epsilon Proteobacteria); the highly abundant bacteria in lab-cultured feces were other groups, including Leisingera, Phaeobacter (alpha Proteobacteria), and Vibrio (gamma Proteobacteria). Such difference indicates the complex fecal bacteria with the potential for multi-stability. The bacteria of habitat with 28 assigned phyla had the higher bacterial diversity and species richness than both fecal bacteria. Shared bacteria between wild feces and its habitat reached to approximately 90% (153/169 genera) and 28% (153/548 genera), respectively. As speculative, the less diversity of both fecal bacteria compared to its habitat partly because Amphioxus lives buried and the feces will ultimately end up in the sediment. Therefore, our study comprehensively investigates the complex bacterial community of Amphioxus and provides evidence for understanding the relationship of this basal chordate with the environment.

  19. Eukaryotic selenoproteins and selenoproteomes

    PubMed Central

    Lobanov, Alexey V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    Selenium is an essential trace element for which both beneficial and toxic effects in human health have been described. It is now clear that the importance of having adequate amounts of this micronutrient in the diet is primarily due to the fact that selenium is required for biosynthesis of selenocysteine, the twenty first naturally occurring amino acid in protein. In this review, we provide an overview of eukaryotic selenoproteins and selenoproteomes, which are sets of selenoproteins in these organisms. In eukaryotes, selenoproteins show a mosaic occurrence, with some organisms, such as vertebrates and algae, having dozens of these proteins, while other organisms, such as higher plants and fungi, having lost all selenoproteins during evolution. We also discuss selenoprotein functions and evolutionary trends in the use of these proteins in eukaryotes. Functional analysis of selenoproteins is critical for better understanding of the role of selenium in human health and disease. PMID:19477234

  20. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    DOE PAGES

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.

    2016-04-15

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  1. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    PubMed Central

    Li, Wei; Podar, Mircea

    2016-01-01

    ABSTRACT The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. IMPORTANCE Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and

  2. Temporal variability in the diversity and composition of stream bacterioplankton communities.

    PubMed

    Portillo, Maria C; Anderson, Suzanne P; Fierer, Noah

    2012-09-01

    Bacterioplankton in freshwater streams play a critical role in stream nutrient cycling. Despite their ecological importance, the temporal variability in the structure of stream bacterioplankton communities remains understudied. We investigated the composition and temporal variability of stream bacterial communities and the influence of physicochemical parameters on these communities. We used barcoded pyrosequencing to survey bacterial communities in 107 streamwater samples collected from four locations in the Colorado Rocky Mountains from September 2008 to November 2009. The four sampled locations harboured distinct communities yet, at each sampling location, there was pronounced temporal variability in both community composition and alpha diversity levels. These temporal shifts in bacterioplankton community structure were not seasonal; rather, their diversity and composition appeared to be driven by intermittent changes in various streamwater biogeochemical conditions. Bacterial communities varied independently of time, as indicated by the observation that communities in samples collected close together in time were no more similar than those collected months apart. The temporal turnover in community composition was higher than observed in most previously studied microbial, plant or animal communities, highlighting the importance of stochastic processes and disturbance events in structuring these communities over time. Detailed temporal sampling is important if the objective is to monitor microbial community dynamics in pulsed ecosystems like streams.

  3. Eukaryotic Cell Panorama

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  4. Eukaryotic Cell Panorama

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  5. Eukaryotes in Arctic and Antarctic cyanobacterial mats.

    PubMed

    Jungblut, Anne D; Vincent, Warwick F; Lovejoy, Connie

    2012-11-01

    Cyanobacterial mats are commonly found in freshwater ecosystems throughout the polar regions. Most mats are multilayered three-dimensional structures with the filamentous cyanobacteria embedded in a gel-like matrix. Although early descriptions mentioned the presence of larger organisms including metazoans living in the mats, there have been few studies specifically focused on the microbial eukaryotes, which are often small cells with few morphological features suitable for identification by microscopy. Here, we applied 18S rRNA gene clone library analysis to identify eukaryotes in cyanobacterial mat communities from both the Antarctic and the extreme High Arctic. We identified 39 ribotypes at the level of 99% sequence similarity. These consisted of taxa within algal and other protist groups including Chlorophyceae, Prasinophyceae, Ulvophyceae, Trebouxiophyceae, Bacillariophyceae, Chrysophyceae, Ciliophora, and Cercozoa. Fungi were also recovered, as were 21 metazoan ribotypes. The eukaryotic taxa appeared habitat-specific with little overlap between lake, pond, and ice shelf communities. Some ribotypes were common to both Arctic and Antarctic mats, suggesting global dispersal of these taxa and similarity in the environmental filters acting on protist communities. Many of these eukaryotic taxa likely benefit from protected, nutrient-rich microhabitats within the cyanobacterial mat environment.

  6. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  7. Eukaryotic diversity at pH extremes.

    PubMed

    Amaral-Zettler, Linda A

    2012-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations.

  8. Immigration, local dispersal limitation, and the repeatability of community composition under neutral and niche dynamics.

    PubMed

    Ai, Dexiecuo; Desjardins-Proulx, Philippe; Chu, Chengjin; Wang, Gang

    2012-01-01

    Repeatability of community composition has been a critical aspect for community structure, which is closely associated with community stability, predictability, conservation biology and ecological restoration. It has been shown that both immigration and local dispersal limitation can affect the community composition in both neutral and niche model. Hence, we use a spatially explicit individual-based model to investigate the potential influence of immigration rate and strength of local dispersal limitation on repeatability in both neutral and niche models. Similarity measures are used to quantify repeatability. We examine the repeatability of community composition among replicate communities (which means the same community repeats many times), and between niche and neutral replicate communities. We find the correlation between repeatability and immigration rate is positive in the neutral model and an inverted unimodal in the niche model. The correlation between repeatability and local dispersal distance is positive in the niche model and negative in the neutral model. High repeatability between niche communities and neutral communities is observed with high immigration rates or when high local dispersal distance appears in the niche model or low local dispersal distance in the neutral model. Our results show that repeatability of community composition is not only dependent on the types of community models (niche vs. neutrality) but also strongly determined by immigration rates and local dispersal limitation.

  9. Teaching Communities and Two-Year Colleges: Establishing Dialogue among Composition Instructors.

    ERIC Educational Resources Information Center

    Warner, Sterling

    Composition instructors at two-year colleges embrace a large array of approaches and pedagogies, and forming a "teaching community" among these instructors is both a rewarding and a challenging commitment. The positive and negative implications of such a community were examined in a case study of one community college using…

  10. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    SciTech Connect

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.

    2016-04-15

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web

  11. Precambrian Skeletonized Microbial Eukaryotes

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  12. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  13. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-04

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  14. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses.

    PubMed

    Lima, Diane A; Cibulski, Samuel P; Finkler, Fabrine; Teixeira, Thais F; Varela, Ana Paula M; Cerva, Cristine; Loiko, Márcia R; Scheffer, Camila M; Dos Santos, Helton F; Mayer, Fabiana Q; Roehe, Paulo M

    2017-04-01

    This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.

  15. Mycorrhizal fungal diversity and community composition in a lithophytic and epiphytic orchid.

    PubMed

    Xing, Xiaoke; Gai, Xuege; Liu, Qiang; Hart, Miranda M; Guo, Shunxing

    2015-05-01

    Some orchid species are present as epiphytes and lithophytes in the same habitat, but little is known about the differences of their mycorrhizal fungal communities. We used Coelogyne viscosa, which occurs both as an epiphyte and a lithophyte, as a study system to investigate orchid mycorrhizal fungal communities in lithophytes and epiphytes in Xishuangbanna National Nature Reserve (Yunnan Province, China). Twenty-three fungal operational taxonomic units (OTUs) from 18 sampling sites were identified. Results indicated that mycorrhizal fungal community composition was different between epi- and lithophytes. When we analyzed the Tulasnellaceae and Sebacinales communities separately, we found that the Sebacinales fungal communities were significantly different in the two growth habitats, but the Tulasnellaceae fungal communities were not. Our results provide evidence for distinct orchid mycorrhiza fungal communities depending on the growth habitat of the orchid. Consistent with some recent investigations of mycorrhizal fungus community composition, this study suggests that for one orchid, growth habitat affects mycorrhizal symbioses.

  16. Eukaryotic transcriptional control.

    PubMed

    Kornberg, R D

    1999-12-01

    Some 30 years ago, following the elucidation of transcriptional control in prokaryotes, attention turned to the corresponding problem in eukaryotes: how are so many genes transcribed in a cell-type-specific, developmentally regulated manner? The answer has been found in two modes of regulation, one involving chromatin and the other the chief transcribing enzyme, RNA polymerase II. Although basic features of the prokaryotic mechanism have been preserved, the demands of eukaryotic transcription control are met by a huge increase in complexity and by the addition of new layers to the transcription apparatus. Discovering the components of this apparatus has been a major theme of research over the past three decades; unravelling the mechanisms is a challenge for the future.

  17. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny.

    PubMed

    Takishita, Kiyotaka; Miyake, Hiroshi; Kawato, Masaru; Maruyama, Tadashi

    2005-06-01

    Recent culture-independent molecular analyses have shown the diversity and ecological importance of microbial eukaryotes (protists) in various marine environments. In the present study we directly extracted DNA from anoxic sediment near active fumaroles on a submarine caldera floor at a depth of 200 m and constructed genetic libraries of PCR-amplified eukaryotic small-subunit (SSU) rDNA. By sequencing cloned SSU rDNA of the libraries and their phylogenetic analyses, it was shown that most sequences have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, stramenopiles and Opisthokonta). In particular, some sequences were closely related to those of representatives of eukaryotic parasites, such as Phagomyxa and Cryothecomonas of Cercozoa, Pirsonia of stramenopiles and Ichthyosporea of Opisthokonta, although it is not clear whether the organisms occur in free-living or parasitic forms. In addition, other sequences did not seem to be related to any described eukaryotic lineages suggesting the existence of novel eukaryotes at a high-taxonomic level in the sediment. The community composition of microbial eukaryotes in the sediment we surveyed was different overall from those of other anoxic marine environments previously investigated.

  18. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities.

    PubMed

    Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A

    2015-01-01

    Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.

  19. Mesozooplankton community composition, feeding, and export production during SOIREE

    NASA Astrophysics Data System (ADS)

    Zeldis, John

    The community composition and feeding rates of mesozooplankton (>200 μm length) were determined using plankton hauls, bottle incubations and gut pigment determinations during Southern Ocean Iron RElease Experiment (SOIREE) in the Southern Ocean in February 1999. Upper-ocean (0-65 m) mesozooplankton biomass (4.2 and 3.2 g m -2, inside and outside the iron-fertilised patch, respectively) was dominated by large copepodites (>1.5 mm). Salps and euphausiids were absent and very rare, respectively. Incubations using large copepods showed no significant difference in clearance rates of nano- (2-20 μm) and net- (>20 μm) plankton. Mean clearance rates inside and outside the iron-fertilised patch also did not differ and were very low (ca. 50 ml mg DW -1 d -1). Mean ingestion rate, however, was significantly greater in the patch due to higher algal and heterotrophic nanoflagellate (HNAN) biomass there. Gut pigment analysis showed that most ingestion by large, medium and small copepods occurred at night, and that specific ingestion was greatest in small copepods. Daily integrated ingestion rates determined by the incubation and gut pigment methods were similar for comparable large copepods. Phytoplankton and HNAN ingestion met only 14% of the estimated daily respiratory carbon requirements of the large copepods inside the patch, and 4% outside. Little ciliate or detrital carbon was available in the system, which could have further supplemented the food supply. A number of other studies have found a similar disparity between ingestion and nutritional requirements in copepods. Reasons for this include the possibility that fine-scale aggregations of copepods and their food have not been adequately sampled, or that measured metabolic rates have been systematically overestimated. Ingestion of phytoplankton by the total copepod community was low, with <1% of standing stock removed per day (inside and outside the patch) and 4% and 8% of primary production removed (inside and

  20. Autophagy in unicellular eukaryotes

    PubMed Central

    Kiel, Jan A. K. W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation. PMID:20124347

  1. Autophagy in unicellular eukaryotes.

    PubMed

    Kiel, Jan A K W

    2010-03-12

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation.

  2. Canada's Composite Learning Index: A Path Towards Learning Communities

    ERIC Educational Resources Information Center

    Cappon, Paul; Laughlin, Jarrett

    2013-01-01

    In the development of learning cities/communities, benchmarking progress is a key element. Not only does it permit cities/communities to assess their current strengths and weaknesses, it also engenders a dialogue within and between cities/communities on the means of enhancing learning conditions. Benchmarking thereby is a potentially motivational…

  3. Canada's Composite Learning Index: A Path Towards Learning Communities

    ERIC Educational Resources Information Center

    Cappon, Paul; Laughlin, Jarrett

    2013-01-01

    In the development of learning cities/communities, benchmarking progress is a key element. Not only does it permit cities/communities to assess their current strengths and weaknesses, it also engenders a dialogue within and between cities/communities on the means of enhancing learning conditions. Benchmarking thereby is a potentially motivational…

  4. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland

    PubMed Central

    Qu, Tong-bao; Du, Wei-chao; Yuan, Xia; Yang, Zhi-ming; Liu, Dong-bo; Wang, De-li; Yu, Li-jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha−1; and heavy grazing, 6 sheep·ha−1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  5. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe.

  6. Does stability in local community composition depend on temporal variation in rates of dispersal and connectivity?

    NASA Astrophysics Data System (ADS)

    Valanko, Sebastian; Norkko, Joanna; Norkko, Alf

    2015-04-01

    In ecology understanding variation in connectivity is central for how biodiversity is maintained. Field studies on dispersal and temporal dynamics in community regulating processes are, however, rare. We test the short-term temporal stability in community composition in a soft-sediment benthic community by determining among-sampling interval similarity in community composition. We relate stability to in situ measures of connectivity (wind, wave, current energy) and rates of dispersal (quantified in different trap types). Waves were an important predictor of when local community taxa are most likely to disperse in different trap-types, suggesting that wave energy is important for connectivity in a region. Community composition at the site was variable and changed stochastically over time. We found changes in community composition (occurrence, abundance, dominance) to be greater at times when connectivity and rates of dispersal were low. In response to periods of lower connectedness dominant taxa in the local community only exhibited change in their relative abundance. In contrast, locally less abundant taxa varied in both their presence, as well as in relative abundance. Constancy in connectivity and rates of dispersal promotes community stability and persistence, suggesting that local community composition will be impacted by changes in the spatial extent over which immigration and emigration operates in the region. Few empirical studies have actually measured dispersal directly in a multi-species context to demonstrate the role it plays in maintaining local community structure. Even though our study does not evaluate coexistence over demographic time scales, it importantly demonstrates that dispersal is not only important in initial recruitment or following a disturbance, but also key in maintaining local community composition.

  7. Fire severity mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska

    Treesearch

    Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin

    2011-01-01

    Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...

  8. Compositional, Contextual, and Collective Community Factors in Mental Health and Well-Being in Australian Rural Communities.

    PubMed

    Collins, Jessica; Ward, Bernadette M; Snow, Pamela; Kippen, Sandra; Judd, Fiona

    2017-04-01

    There are disproportionately higher and inconsistently distributed rates of recorded suicides in rural areas. Patterns of rural suicide are well documented, but they remain poorly understood. Geographic variations in physical and mental health can be understood through the combination of compositional, contextual, and collective factors pertaining to particular places. The aim of this study was to explore the role of "place" contributing to suicide rates in rural communities. Seventeen mental health professionals participated in semi-structured in-depth interviews. Principles of grounded theory were used to guide the analysis. Compositional themes were demographics and perceived mental health issues; contextual themes were physical environment, employment, housing, and mental health services; and collective themes were town identity, community values, social cohesion, perceptions of safety, and attitudes to mental illness. It is proposed that connectedness may be the underlying mechanism by which compositional, contextual, and collective factors influence mental health and well-being in rural communities.

  9. Compositional, Contextual, and Collective Community Factors in Mental Health and Well-Being in Australian Rural Communities

    PubMed Central

    Collins, Jessica; Ward, Bernadette M.; Snow, Pamela; Kippen, Sandra; Judd, Fiona

    2016-01-01

    There are disproportionately higher and inconsistently distributed rates of recorded suicides in rural areas. Patterns of rural suicide are well documented, but they remain poorly understood. Geographic variations in physical and mental health can be understood through the combination of compositional, contextual, and collective factors pertaining to particular places. The aim of this study was to explore the role of “place” contributing to suicide rates in rural communities. Seventeen mental health professionals participated in semi-structured in-depth interviews. Principles of grounded theory were used to guide the analysis. Compositional themes were demographics and perceived mental health issues; contextual themes were physical environment, employment, housing, and mental health services; and collective themes were town identity, community values, social cohesion, perceptions of safety, and attitudes to mental illness. It is proposed that connectedness may be the underlying mechanism by which compositional, contextual, and collective factors influence mental health and well-being in rural communities. PMID:26848083

  10. Origin and diversification of eukaryotes.

    PubMed

    Katz, Laura A

    2012-01-01

    The bulk of the diversity of eukaryotic life is microbial. Although the larger eukaryotes-namely plants, animals, and fungi-dominate our visual landscapes, microbial lineages compose the greater part of both genetic diversity and biomass, and contain many evolutionary innovations. Our understanding of the origin and diversification of eukaryotes has improved substantially with analyses of molecular data from diverse lineages. These data have provided insight into the nature of the genome of the last eukaryotic common ancestor (LECA). Yet, the origin of key eukaryotic features, namely the nucleus and cytoskeleton, remains poorly understood. In contrast, the past decades have seen considerable refinement in hypotheses on the major branching events in the evolution of eukaryotic diversity. New insights have also emerged, including evidence for the acquisition of mitochondria at the time of the origin of eukaryotes and data supporting the dynamic nature of genomes in LECA.

  11. Microbial community composition and denitrifying enzyme activities in salt marsh sediments.

    PubMed

    Cao, Yiping; Green, Peter G; Holden, Patricia A

    2008-12-01

    Denitrifying microbial communities and denitrification in salt marsh sediments may be affected by many factors, including environmental conditions, nutrient availability, and levels of pollutants. The objective of this study was to examine how microbial community composition and denitrification enzyme activities (DEA) at a California salt marsh with high nutrient loading vary with such factors. Sediments were sampled from three elevations, each with different inundation and vegetation patterns, across 12 stations representing various salinity and nutrient conditions. Analyses included determination of cell abundance, total and denitrifier community compositions (by terminal restriction fragment length polymorphism), DEA, nutrients, and eluted metals. Total bacterial (16S rRNA) and denitrifier (nirS) community compositions and DEA were analyzed for their relationships to environmental variables and metal concentrations via multivariate direct gradient and regression analyses, respectively. Community composition and DEA were highly variable within the dynamic salt marsh system, but each was strongly affected by elevation (i.e., degree of inundation) and carbon content as well as by selected metals. Carbon content was highly related to elevation, and the relationships between DEA and carbon content were found to be elevation specific when evaluated across the entire marsh. There were also lateral gradients in the marsh, as evidenced by an even stronger association between community composition and elevation for a marsh subsystem. Lastly, though correlated with similar environmental factors and selected metals, denitrifier community composition and function appeared uncoupled in the marsh.

  12. Effects of Disturbance Intensity and Frequency on Bacterial Community Composition and Function

    PubMed Central

    Berga, Mercè; Székely, Anna J.; Langenheder, Silke

    2012-01-01

    Disturbances influence community structure and ecosystem functioning. Bacteria are key players in ecosystems and it is therefore crucial to understand the effect of disturbances on bacterial communities and how they respond to them, both compositionally and functionally. The main aim of this study was to test the effect of differences in disturbance strength on bacterial communities. For this, we implemented two independent short-term experiments with dialysis bags containing natural bacterial communities, which were transplanted between ambient and ‘disturbed’ incubation tanks, manipulating either the intensity or the frequency of a salinity disturbance. We followed changes in community composition by terminal restriction fragment analysis (T-RFLP) and measured various community functions (bacterial production, carbon substrate utilization profiles and rates) directly after and after a short period of recovery under ambient conditions. Increases in disturbance strength resulted in gradually stronger changes in bacterial community composition and functions. In the disturbance intensity experiment, the sensitivity to the disturbance and the ability of recovery differed between different functions. In the disturbance frequency experiment, effects on the different functions were more consistent and recovery was not observed. Moreover, in case of the intensity experiment, there was also a time lag in the responses of community composition and functions, with functional responses being faster than compositional ones. To summarize, our study shows that disturbance strength has the potential to change the functional performance and composition of bacterial communities. It further highlights that the overall effects, rates of recovery and the degree of congruence in the response patterns of community composition and functioning along disturbance gradients depend on the type of function and the character of the disturbance. PMID:22606316

  13. Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds

    PubMed Central

    Lear, Gavin; Bellamy, Julia; Case, Bradley S; Lee, Jack E; Buckley, Hannah L

    2014-01-01

    The extent to which non-host-associated bacterial communities exhibit small-scale biogeographic patterns in their distribution remains unclear. Our investigation of biogeography in bacterial community composition and function compared samples collected across a smaller spatial scale than most previous studies conducted in freshwater. Using a grid-based sampling design, we abstracted 100+ samples located between 3.5 and 60 m apart within each of three alpine ponds. For every sample, variability in bacterial community composition was monitored using a DNA-fingerprinting methodology (automated ribosomal intergenic spacer analysis) whereas differences in bacterial community function (that is, carbon substrate utilisation patterns) were recorded from Biolog Ecoplates. The exact spatial position and dominant physicochemical conditions (for example, pH and temperature) were simultaneously recorded for each sample location. We assessed spatial differences in bacterial community composition and function within each pond and found that, on average, community composition or function differed significantly when comparing samples located >20 m apart within any pond. Variance partitioning revealed that purely spatial variation accounted for more of the observed variability in both bacterial community composition and function (range: 24–38% and 17–39%) than the combination of purely environmental variation and spatially structured environmental variation (range: 17–32% and 15–20%). Clear spatial patterns in bacterial community composition, but not function were observed within ponds. We therefore suggest that some of the observed variation in bacterial community composition is functionally ‘redundant'. We confirm that distinct bacterial communities are present across unexpectedly small spatial scales suggesting that populations separated by distances of >20 m may be dispersal limited, even within the highly continuous environment of lentic water. PMID:24577354

  14. Influence of shrub encroachment on the soil microbial community composition of remnant hill prairies.

    PubMed

    Yannarell, Anthony C; Menning, Sarah E; Beck, Alyssa M

    2014-05-01

    Hill prairies are remnant grasslands perched on the bluffs of major river valleys, and because their steep slopes make them unsuitable for traditional row crop agriculture, they have some of the lowest levels of anthropogenic disturbance of any prairie ecosystems in the Midwestern USA. However, many decades of fire suppression have allowed for shrub encroachment from the surrounding forests. While shrub encroachment of grasslands can modify soil respiration rates and nutrient storage, it is not known whether shrubs also alter the community composition of soil microorganisms. We conducted transect sampling of nine different hill prairie remnants showing varying degrees of shrub encroachment, and we used DNA-based community profiling (automated ribosomal intergenic spacer analysis) to characterize the composition of bacterial and fungal communities in the open prairie habitat, the shrub-encroached border, and the surrounding forest. While both bacterial and fungal communities showed statistically significant variation across these habitats, their predominant patterns were different. Bacterial communities of forest soils were distinct from those of the open prairie and the shrub-encroached areas, while fungal communities of the open prairie were distinct from those of the forest and the shrub-encroached border. Shrub encroachment significantly altered the community composition of soil fungal communities. Furthermore, fungal communities of heavily encroached prairie remnants more closely resembled those of the surrounding forest than those of lightly encroached prairies. Thus, shrub encroachment can cause soil fungi to shift from a "grassland" community to a "woody" community, with potential consequences for soil processes and plant-microbe interactions.

  15. Do climate factors govern soil microbial community composition and biomass at a regional scale?

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R.

    2014-12-01

    Soil microbial communities play important role in organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about factors driving soil microbial community composition at large scales. The objective of this study was to determine whether climate dominates among environmental factors governing microbial community composition and biomass at a regional scale. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations in North-East China Transect (850 km x 50 km). The results showed that soil water availability and land use changes exhibited the dominant effects on soil microbial community composition and biomass at the regional scale, while climate factors (expressed as a function of large-scale spatial variation) did not show strong relationships with distribution of microbial community composition. Likewise, factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Wetter soils had higher contributions of gram-positive bacteria, whereas drier soils had higher contributions of gram-negative bacteria and fungi. Heavily disturbed soils had lower contributions of gram-negative bacteria and fungi than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate factors, commonly known to structure distribution of macroorganisms, were not the most important drivers governing regional pattern of microbial communities because of inclusion of irrigated and managed practices. In comparison, soil water regime and land use types appear to be primary determinants of microbial community composition and biomass.

  16. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland

    PubMed Central

    Weedon, James T.; Kowalchuk, George A.; Aerts, Rien; Freriks, Stef; Röling, Wilfred F. M.; van Bodegom, Peter M.

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50–100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12–15% of variance explained) > temporal variation (7–11%) > climate treatment (4–9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates—evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts. PMID:28326062

  17. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem

    PubMed Central

    Hu, Ziye; Meng, Han; Shi, Jin-Huan; Bu, Nai-Shun; Fang, Chang-Ming; Quan, Zhe-Xue

    2014-01-01

    Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA) are much higher than that of ammonia oxidizing bacteria (AOB). The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition. PMID:25101072

  18. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    PubMed

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  19. Distribution of eukaryotic plankton in the English Channel and the North Sea in summer

    NASA Astrophysics Data System (ADS)

    Masquelier, Sylvie; Foulon, Elodie; Jouenne, Fabien; Ferréol, Martial; Brussaard, Corina P. D.; Vaulot, Daniel

    2011-08-01

    The distribution of eukaryotic plankton was investigated in the English Channel and the North Sea during the MICROVIR cruise in summer 2007. The size distribution of autotrophic, heterotrophic eukaryotes and species composition was analyzed with a focus on two major divisions, Haptophyta and Chlorophyta, targeted by 18S rRNA probes. Picoeukaryotes (< 2 μm) dominated over the larger eukaryotes at all stations. Eukaryotes larger than 5 μm were mainly composed of diatoms in the English Channel and of dinoflagellates in the North Sea. The contribution of Haptophyta was maximal in the 2 to 5 μm fraction and they appeared more abundant in the central region of the North Sea. Chlorophyta, especially Micromonas pusilla, generally dominated the picoplanktonic fraction in the English Channel. Micromonas contribution decreased between the South and the North-east of the North Sea and it was even absent at some stations. Although this species is dominant among the picoeukaryote community of the English Channel, other Chlorophyta species may also play an important ecological role in these temperate ecosystems.

  20. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow.

    PubMed

    Bochdansky, Alexander B; Clouse, Melissa A; Herndl, Gerhard J

    2017-02-01

    In the bathypelagic realm of the ocean, the role of marine snow as a carbon and energy source for the deep-sea biota and as a potential hotspot of microbial diversity and activity has not received adequate attention. Here, we collected bathypelagic marine snow by gentle gravity filtration of sea water onto 30 μm filters from ~1000 to 3900 m to investigate the relative distribution of eukaryotic microbes. Compared with sediment traps that select for fast-sinking particles, this method collects particles unbiased by settling velocity. While prokaryotes numerically exceeded eukaryotes on marine snow, eukaryotic microbes belonging to two very distant branches of the eukaryote tree, the fungi and the labyrinthulomycetes, dominated overall biomass. Being tolerant to cold temperature and high hydrostatic pressure, these saprotrophic organisms have the potential to significantly contribute to the degradation of organic matter in the deep sea. Our results demonstrate that the community composition on bathypelagic marine snow differs greatly from that in the ambient water leading to wide ecological niche separation between the two environments.

  1. Eukaryotic mechanosensitive channels.

    PubMed

    Arnadóttir, Jóhanna; Chalfie, Martin

    2010-01-01

    Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.

  2. Protist community composition during early phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Georges, C.; Monchy, S.; Genitsaris, S.; Christaki, U.

    2014-10-01

    Microbial eukaryotic community composition was examined by 18S rRNA gene tag pyrosequencing, during the early phase of spring phytoplankton blooms induced by natural iron fertilization, off Kerguelen Island in the Southern Ocean (KEOPS2 cruise). A total of 999 operational taxonomical units (OTUs), affiliated to 30 known high-level taxonomic groups, were retrieved from 16 samples collected in the upper 300 m water column. The alveolata group was the most abundant in terms of sequence number and diversity (696 OTUs). The majority of alveolata sequences were affiliated to Dinophyceae and to two major groups of marine alveolates (MALV-I and MALV-II). In the upper 180 m, only 13% of the OTUs were shared between of the fertilized stations and the reference site characterized by high-nutrient low-chlorophyll (HNLC) waters. Fungi and Cercozoa were present in iron-fertilized waters, but almost absent in the HNLC samples, while Haptophyta and Chlorophyta characterized the HNLC sample. Finally, the 300 m depth samples of all stations were differentiated by the presence of MALV-II and Radiolaria. Multivariate analysis, examining the level of similarity between different samples, showed that protistan assemblages differed significantly between the HNLC and iron-fertilized stations, but also between the diverse iron-fertilized blooms.

  3. Protist community composition during early phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Georges, C.; Monchy, S.; Genitsaris, S.; Christaki, U.

    2014-07-01

    Microbial eukaryotic community composition was examined by 18S rRNA gene tag pyrosequencing, during the early phase of spring phytoplankton blooms induced by natural iron fertilization, off Kerguelen Island in the Southern Ocean (KEOPS2 cruise). A total of 999 operational taxonomical units (OTUs), affiliated to 30 known high-level taxonomic groups, were retrieved from 16 samples collected in the upper 300 m water column. The alveolata group was the most abundant in terms of sequence number and diversity (696 OTUs). The majority of alveolata sequences were affiliated to Dinophyceae and to two major groups of marine alveolates (MALV-I and MALV-II). In the upper 180 m, only 13% of the OTUs were shared between of the fertilized stations and the reference site characterized by high nutrient low chlorophyll (HNLC) waters. Fungi and Cercozoa were present in iron-fertilized waters, but almost absent in the HNLC samples, while Haptophyta and Chlorophyta characterized the HNLC sample. Finally, the 300 m depth samples of all stations were differentiated by the presence of MALV-II and Radiolaria. Multivariate analysis, examining the level of similarity between different samples, showed that protistan assemblages differed significantly between the HNLC and iron-fertilized stations, but also between the diverse iron-fertilized blooms.

  4. Remotely-sensed predictive models of forest composition: community-unit classification versus continuous gradient modeling

    NASA Astrophysics Data System (ADS)

    Hakkenberg, C.; Song, C.; Peet, R. K.

    2016-12-01

    Spatially-nested field plots were used in conjunction with LiDAR/hyperspectral data from the Goddard LiDAR, hyperspectral, thermal (G-LiHT) airborne sensor to map forest composition in Duke Forest, NC. Results reveal that the primary dimensions of the data space - including (1) topo-physiognomy from LiDAR last returns, (2) biochemical properties of canopy leaves via image spectroscopy, and (3) biophysical properties of forest structure derived from all LiDAR returns - each map directly, and almost exclusively, unto the first three axes of the compositional ordination space. In addition to maps of forest composition inclusive of all vascular plant species in the under- and over-story, results include weighted trait maps and spatially-explicit uncertainty estimation. Beyond the production of compositional gradient maps for this species-rich Piedmont forest landscape, this research likewise seeks to use remote sensing and machine learning to advance theory on the community-continua debate in community ecology by comparing community-unit classification and continuous gradient modeling. Wall-to-wall community-unit classifications are derived from parsimonious clusterings of ordinated community types. Compositional gradient modeling, on the other hand, is predicated on random forest regression, which predicts compositional identity in terms of continuous ordination space rather than discrete community types. While continuous gradient maps of composition lend themselves to accurate characterization of trait and environmental gradients from which ecosystem models can be parameterized, they suffer from poor interpretability. In comparing these two distinct approaches to remotely-sensed community mapping, no one approach is deemed intrinsically superior for all applications. Instead, the complementarity of the two is demonstrated, such that community-units may serve as landmarks from which the compositional identity of individual pixels in a gradient map can be triangulated.

  5. Endosymbiotic theories for eukaryote origin.

    PubMed

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe.

  6. Endosymbiotic theories for eukaryote origin

    PubMed Central

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  7. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.

  8. Predicting ecosystem stability from community composition and biodiversity

    USDA-ARS?s Scientific Manuscript database

    The intuitive idea that biodiversity allows different species to compensate for each other and thereby leads to more stable communities was challenged by later theoretical work. The paradox can be resolved by the fact that diversity often has a dual effect on community stability: it stabilizes comm...

  9. Bacterial Community Composition and Potential Driving Factors in Different Reef Habitats of the Spermonde Archipelago, Indonesia

    PubMed Central

    Kegler, Hauke F.; Lukman, Muhammad; Teichberg, Mirta; Plass-Johnson, Jeremiah; Hassenrück, Christiane; Wild, Christian; Gärdes, Astrid

    2017-01-01

    Coastal eutrophication is a key driver of shifts in bacterial communities on coral reefs. With fringing and patch reefs at varying distances from the coast the Spermonde Archipelago in southern Sulawesi, Indonesia offers ideal conditions to study the effects of coastal eutrophication along a spatially defined gradient. The present study investigated bacterial community composition of three coral reef habitats: the water column, sediments, and mucus of the hard coral genus Fungia, along that cross-shelf environmental and water quality gradient. The main research questions were: (1) How do water quality and bacterial community composition change along a coastal shelf gradient? (2) Which water quality parameters influence bacterial community composition? (3) Is there a difference in bacterial community composition among the investigated habitats? For this purpose, a range of key water parameters were measured at eight stations in distances from 2 to 55 km from urban Makassar. This was supplemented by sampling of bacterial communities of important microbial habitats using 454 pyrosequencing. Findings revealed that the population center Makassar had a strong effect on the concentrations of Chlorophyll a, suspended particulate matter (SPM), and transparent exopolymer particles (TEP), which were all significantly elevated at the inshore compared the other seven sites. Shifts in the bacterial communities were specific to each sampled habitat. Two OTUs, belonging to the genera Escherichia/Shigella (Gammaproteobacteria) and Ralstonia (Betaproteobacteria), respectively, both dominated the bacterial community composition of the both size fractions of the water column and coral mucus. The sampled reef sediments were more diverse, and no single OTUs was dominant. There was no gradual shift in bacterial classes or OTUs within the sampled habitats. In addition, we observed very distinct communities between the investigated habitats. Our data show strong changes in the bacterial

  10. Effects of climate change on plant population growth rate and community composition change.

    PubMed

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  11. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils.

    PubMed

    Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H

    2010-08-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    PubMed

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-08

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  13. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    PubMed Central

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-01-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities. PMID:24811826

  14. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  15. Phytoplankton Microcosm: An Oceanic Study on Algal Blooms and Ciliate Community Composition

    NASA Astrophysics Data System (ADS)

    Grattepanche, J. D.; Juarez, D.; McManus, G. B.; Katz, L. A.

    2016-02-01

    To understand the dynamics of microbes in marine food webs, we conducted an environmental study on the effects of algal blooms on ciliate communities. To date, there is limited information on how microbial communities function in marine settings. We assessed whether differences in size of prey influence community composition based on the basic principle that the bigger you are, the more you will eat. To represent the blooms, we used four treatments: control (No phytoplankton addition), Phaeodactylum tricornutum (diatom), Tetraselmis chuii (chlorophyte) and Isochrysis galbana (haptophyte). By using DGGE, a molecular fingerprinting technique, we are elucidating the impact of bloom on ciliate community composition.Our preliminary data suggest (1) the size does not matter: there is very little difference in responses by nanosized and microsized ciliate, (2) the chlorophyte seems to support a more diverse community, and (3) incubation affects ciliate communities (T0).

  16. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments

    EPA Science Inventory

    Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

  17. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types.

    PubMed

    Urbanová, Zuzana; Bárta, Jiří

    2014-12-01

    It is not well understood how the ecological status and microbial community composition of spruce swamp forests (SSF) relate to those found in bogs and fens. To clarify this, we investigated biogeochemical parameters and microbial community composition in a bog, a fen and two SSF using high throughput barcoded sequencing of the small ribosomal subunit (SSU) variable region V4. The results demonstrated that the microbial community of SSF is positioned between those of bogs and fens, and this was confirmed by in silico predicted metabolic potentials. This corresponds well with the position of SSF on the trophic gradient and reflects distinct responses of microbial communities to environmental variables. Species richness and microbial diversity increased significantly from bog to fen, with SSF in between, reflecting the variation in pH, nutrient availability and peat decomposability. The archaeal community, dominated by hydrogenotrophic methanogens, was more similar in SSF and the bog compared with the fen. The composition of the bacterial community of SSF was intermediate between those of bog and fen. However, the production of CO2 (an indicator of peat decomposability) did not differ between SSF and bog, suggesting the limiting effect of low pH and poor litter quality on the functioning of the bacterial community in SSF. These results help to clarify the transitional position of SSF between bogs and fens and showed the strong effect of environmental conditions on microbial community composition and functioning.

  18. The assembly of ecological communities inferred from taxonomic and functional composition

    Treesearch

    Eric R. Sokol; E.F. Benfield; Lisa K. Belden; H. Maurice. Valett

    2011-01-01

    Among-site variation in metacommunities (beta diversity) is typically correlated with the distance separating the sites (spatial lag). This distance decay in similarity pattern has been linked to both niche-based and dispersal-based community assembly hypotheses. Here we show that beta diversity patterns in community composition, when supplemented with functional-trait...

  19. Effects of biochar blends on microbial community composition in two Coastal Plain soils

    USDA-ARS?s Scientific Manuscript database

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated both positive and negative effects on soil microbial communities. These effect...

  20. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments

    EPA Science Inventory

    Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

  1. Epiphytic Macrolichen Community Composition Database—epiphytic lichen synusiae in forested areas of the US

    Treesearch

    Sarah. Jovan

    2012-01-01

    The Forest Inventory and Analysis (FIA) Program's Lichen Communities Indicator is used for tracking epiphytic macrolichen diversity and is applied for monitoring air quality and climate change effects on forest health in the United States. Started in 1994, the Epiphytic Macrolichen Community Composition Database (GIVD ID NA-US-012) now has over 8,000 surveys of...

  2. Avian community composition and habitat importance in the Rio Grande corridor of New Mexico

    Treesearch

    David A. Leal; Raymond A. Meyer; Bruce C. Thompson

    1996-01-01

    We investigated avian species richness and abundance within vegetation communities of the Rio Grande Corridor of New Mexico during spring, summer, and fall 1992 and 1993. A subset of 64 transects, for which all bird and vegetation variables were available, representing 16 composite vegetation community types were subjected to canonical correlation analysis to...

  3. Riparian-associated gastropods in western Washington: community composition and the effects of forest management

    Treesearch

    Alex D. Foster; Joan. Ziegltrum

    2013-01-01

    We evaluated the abundance of riparian gastropod communities along headwater streams and their response to logging in southwestern Washington State. Terrestrial mollusks near logged streams with ~15 m fixed-width buffers were compared to logged streams with no buffers and to unlogged controls. Mollusk communities varied among sites relative to vegetative composition,...

  4. Runoff and erosional response to a drought-induced shift in a desert grassland community composition

    USDA-ARS?s Scientific Manuscript database

    This study investigates how drought-induced change in semiarid grassland community composition affected runoff and sediment yield in a small 1.8 ha watershed in southeast Arizona, USA. Three distinct periods in ecosystem composition and associated runoff and sediment yield were identified according ...

  5. Autobiographical Writing and the Building of a Freshman Composition Research Community.

    ERIC Educational Resources Information Center

    Paddison, John

    For some instructors, the use of students' own experiences has proven to be an extremely useful starting point in the college composition classroom. In a first semester freshman composition course, students wrote autobiographies in which they examined different perspectives of the many communities in which they lived. Students then used the…

  6. Advancing Student Success with Competency Points: Elevating Engagement and Motivation in Community College English Composition Students

    ERIC Educational Resources Information Center

    Keller, Jill Lenett

    2011-01-01

    This research tested and evaluated how one method--Competency Points (CPs)--increased student success by enhancing engagement and motivation in community college English composition students. In 2005 I introduced Competency Points in my English Composition 1 classes, and began tracking how engaged and motivated students were to succeed as revealed…

  7. Advancing Student Success with Competency Points: Elevating Engagement and Motivation in Community College English Composition Students

    ERIC Educational Resources Information Center

    Keller, Jill Lenett

    2011-01-01

    This research tested and evaluated how one method--Competency Points (CPs)--increased student success by enhancing engagement and motivation in community college English composition students. In 2005 I introduced Competency Points in my English Composition 1 classes, and began tracking how engaged and motivated students were to succeed as revealed…

  8. Using a trait-based approach to link microbial community composition and functioning to soil salinity

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Fierer, Noah; Rousk, Johannes

    2017-04-01

    Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared

  9. Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities.

    PubMed

    Zha, Yinghua; Berga, Mercè; Comte, Jérôme; Langenheder, Silke

    2016-01-01

    Natural communities are open systems and consequently dispersal can play an important role for the diversity, composition and functioning of communities at the local scale. It is, however, still unclear how effects of dispersal differ depending on the initial diversity of local communities. Here we implemented an experiment where we manipulated the initial diversity of natural freshwater bacterioplankton communities using a dilution-to-extinction approach as well as dispersal from a regional species pool. The aim was further to test whether dispersal effects on bacterial abundance and functional parameters (average community growth rates, respiration rates, substrate utilisation ability) differ in dependence of the initial diversity of the communities. First of all, we found that both initial diversity and dispersal rates had an effect on the recruitment of taxa from a regional source, which was higher in communities with low initial diversity and at higher rates of dispersal. Higher initial diversity and dispersal also promoted higher levels of richness and evenness in local communities and affected, both, separately or interactively, the functional performance of communities. Our study therefore suggests that dispersal can influence the diversity, composition and functioning of bacterial communities and that this effect may be enhanced if the initial diversity of communities is depleted.

  10. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances.

  11. Phenological variation in the composition of a temperate forest leaf tie community.

    PubMed

    Sigmon, Elisha; Lill, John T

    2013-02-01

    Arthropod communities in an array of temperate ecosystems follow similar phenological patterns of distinct compositional turnovers during the course of a season. The arthropod community inhabiting leaf ties is no exception. Many caterpillars build leaf ties, shelters between overlapping leaves attached together with silk, which are colonized secondarily by a variety of arthropods. We created experimental leaf ties by clipping overlapping leaves together with metal clips. We censused the arthropod community within experimental ties on two host plants, American beech (Fagus grandifolia Ehrhart), and white oak (Quercus alba L.), weekly for 10 wk during the summer of 2009. Diversity measures for leaf-tying caterpillars and the entire arthropod community within ties varied little between tree species and sampling periods, but caterpillar and arthropod density per tie was significantly higher on white oak than beech and abundance increased on both tree species as the season progressed. The composition (i.e., species presence and abundance) of the leaf-tying caterpillar community and the arthropod community as a whole differed between host-tree species and sampling periods. Although the arthropod communities on American beech and white oak differed, they showed similar patterns of compositional turnover, with distinct communities in early and late summer and a transitional community midsummer.

  12. Composition and physiological profiling of sprout-associated microbial communities

    NASA Technical Reports Server (NTRS)

    Matos, Anabelle; Garland, Jay L.; Fett, William F.

    2002-01-01

    The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of

  13. Composition and physiological profiling of sprout-associated microbial communities.

    PubMed

    Matos, Anabelle; Garland, Jay L; Fett, William F

    2002-12-01

    The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of

  14. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    PubMed Central

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  15. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    PubMed

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  16. Sequencing our way towards understanding global eukaryotic biodiversity

    PubMed Central

    Bik, Holly M.; Porazinska, Dorota L.; Creer, Simon; Caporaso, J. Gregory; Knight, Rob; Thomas, W. Kelley

    2011-01-01

    Microscopic eukaryotes are abundant, diverse, and fill critical ecological roles across every ecosystem on earth, yet there is a well-recognized gap in our understanding of their global biodiversity. Fundamental advances in DNA sequencing and bioinformatics now allow accurate en masse biodiversity assessments of microscopic eukaryotes from environmental samples. Despite a promising outlook, the field of eukaryotic marker gene surveys faces significant challenges: how to generate data that is most useful to the community, especially in the face of evolving sequencing technology and bioinformatics pipelines, and how to incorporate an expanding number of target genes. PMID:22244672

  17. Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain

    PubMed Central

    Almado, Roosevelt P; Miazaki, Angela S; Diniz, Écio S; Moreira, Luis C B; Meira-Neto, João A.A.

    2016-01-01

    Abstract Background To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil. New information We report diameter at breast height, basal area and height measurements of 3417 trees and treelets identified during three censuses in both areas. PMID:27660529

  18. Compositional and functional stability of arthropod communities in the face of ant invasions.

    PubMed

    Krushelnycky, Paul D; Gillespie, Rosemary G

    2008-09-01

    There is a general consensus that the diversity of a biotic community can have an influence on its stability, but the strength, ubiquity, and relative importance of this effect is less clear. In the context of biological invasions, diversity has usually been studied in terms of its effect on a community's invasibility, but diversity may also influence stability by affecting the magnitude of compositional or functional changes experienced by a community upon invasion. We examined the impacts of invasive ants on arthropod communities at five natural area sites in the Hawaiian Islands, and assessed whether differences among sites in community diversity and density variables were related to measures of stability. Ant invasion was usually associated with significant changes in overall community composition, as measured by Bray-Curtis distances, particularly among endemic subsets of the communities. Changes in mean species richness were also strong at three of the five sites. Among sites, diversity was negatively related to stability as measured by resistance to overall compositional change, but this effect could not be separated from the strong negative effect of invasive ant density on compositional stability. When compositional stability was measured as proportional change in richness, the best predictor of stability among endemic community subsets was endemic richness, with richer communities losing proportionately more species than species-poor communities. This effect was highly significant even after controlling for differences in invasive ant density and suggested that communities that had already lost many endemic species were resistant to further species loss upon ant invasion, while more intact communities remained vulnerable to species loss. Communities underwent strong but idiosyncratic functional shifts in association with ant invasion, both in terms of trophic structure and total arthropod biomass. There were no apparent relationships, however, between

  19. The eukaryotic RNA exosome.

    PubMed

    Januszyk, Kurt; Lima, Christopher D

    2014-02-01

    The eukaryotic RNA exosome is an essential multi-subunit ribonuclease complex that contributes to the degradation or processing of nearly every class of RNA in both the nucleus and cytoplasm. Its nine-subunit core shares structural similarity to phosphorolytic exoribonucleases such as bacterial PNPase. PNPase and the RNA exosome core feature a central channel that can accommodate single stranded RNA although unlike PNPase, the RNA exosome core is devoid of ribonuclease activity. Instead, the core associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. Recent biochemical and structural studies suggest that the exosome core is essential because it coordinates Rrp44 and Rrp6 recruitment, RNA can pass through the central channel, and the association with the core modulates Rrp44 and Rrp6 activities.

  20. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat.

    PubMed

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-08-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4 ) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark. We used terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and clone libraries to characterize the soils' archaeal community composition to gain a better understanding of relationships between peat properties and land use, respectively, and CH4 dynamics. Samples were taken at three different depths and at four different seasons. Archaeal community composition varied considerably between the three peatlands and, to a certain degree, also with peat depth, but seemed to be quite stable at individual sampling depths throughout the year. Archaeal community composition was mainly linked to soil pH. No methanogens were detected at one fen site with soil pH ranging from 3.2 to 4.4. The methanogenic community of the bog (soil pH 3.9-4.6) was dominated by hydrogenotrophs, whereas the second fen site (soil pH 5.0-5.3) comprised both aceticlastic and hydrogenotrophic methanogens. Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling.

  1. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities.

    PubMed

    Rochex, Alice; Godon, Jean-Jacques; Bernet, Nicolas; Escudié, Renaud

    2008-12-01

    This article evaluates the effect of shear stress on the composition of biofilm bacterial communities. For the first time, a Conical Couette-Taylor Reactor (CCTR) was used to develop biofilms at varying shear stresses (from 0.055 to 0.27 Pa) and provided a useful model for studying the effect of hydrodynamics on biofilms. The composition, diversity and dynamics of biofilm bacterial communities were analysed using the PCR-SSCP fingerprint method. Results clearly demonstrate a link between shear stress and composition of the microbial communities. High shear stresses decrease biofilm diversity and the analysis of biofilm community dynamics suggests that shear stress would slow down biofilm maturation and tend to maintain a young biofilm.

  2. Single-cell transcriptomics for microbial eukaryotes.

    PubMed

    Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J

    2014-11-17

    One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity.

  3. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    PubMed

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  4. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    PubMed Central

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  5. Predicting ecosystem stability from community composition and biodiversity

    USGS Publications Warehouse

    Mazancourt, Claire de; Isbell, Forest; Larocque, Allen; Berendse, Frank; De Luca, Enrica; Grace, James B.; Haegeman, Bart; Polley, H. Wayne; Roscher, Christiane; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J.; Loreau, Michel

    2013-01-01

    As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species’ responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22–75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.

  6. Predicting ecosystem stability from community composition and biodiversity.

    PubMed

    de Mazancourt, Claire; Isbell, Forest; Larocque, Allen; Berendse, Frank; De Luca, Enrica; Grace, James B; Haegeman, Bart; Wayne Polley, H; Roscher, Christiane; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J; Loreau, Michel

    2013-05-01

    As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. © 2013 Blackwell Publishing Ltd/CNRS.

  7. Megafauna community composition associated with Lophelia pertusa colonies in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lessard-Pilon, Stephanie A.; Podowski, Elizabeth L.; Cordes, Erik E.; Fisher, Charles R.

    2010-11-01

    The deep-water coral Lophelia pertusa provides habitat for diverse communities in the Gulf of Mexico. Photomosaics and analyses within a Geographic Information System (GIS) were used as non-destructive sampling tools to examine megafauna community composition associated with L. pertusa colonies on authigenic carbonate outcrops in two regions of the Gulf of Mexico. Megafauna communities associated with L. pertusa were more similar within a region than between regions. Within regions, the amount of dead coral, number of abiotic and biotic substrata, and percentage of live L. pertusa influenced the diversity, composition, and structure of the coral-associated communities. Elevated diversity levels in the communities associated with L. pertusa structure indicate that L. pertusa provides a distinct, localized habitat source. Outcrops with high proportions of dead L. pertusa harbored more higher order consumers than outcrops with primarily live coral framework.

  8. Predicting effects of climate change on the composition and function of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Dubinsky, E.; Brodie, E.; Myint, C.; Ackerly, D.; van Nostrand, J.; Bird, J.; Zhou, J.; Andersen, G.; Firestone, M.

    2008-12-01

    Complex soil microbial communities regulate critical ecosystem processes that will be altered by climate change. A critical step towards predicting the impacts of climate change on terrestrial ecosystems is to determine the primary controllers of soil microbial community composition and function, and subsequently evaluate climate change scenarios that alter these controllers. We surveyed complex soil bacterial and archaeal communities across a range of climatic and edaphic conditions to identify critical controllers of soil microbial community composition in the field and then tested the resulting predictions using a 2-year manipulation of precipitation and temperature using mesocosms of California annual grasslands. Community DNA extracted from field soils sampled from six different ecosystems was assayed for bacterial and archaeal communities using high-density phylogenetic microarrays as well as functional gene arrays. Correlations among the relative abundances of thousands of microbial taxa and edaphic factors such as soil moisture and nutrient content provided a basis for predicting community responses to changing soil conditions. Communities of soil bacteria and archaea were strongly structured by single environmental predictors, particularly variables related to soil water. Bacteria in the Actinomycetales and Bacilli consistently demonstrated a strong negative response to increasing soil moisture, while taxa in a greater variety of lineages responded positively to increasing soil moisture. In the climate change experiment, overall bacterial community structure was impacted significantly by total precipitation but not by plant species. Changes in soil moisture due to decreased rainfall resulted in significant and predictable alterations in community structure. Over 70% of the bacterial taxa in common with the cross-ecosystem study responded as predicted to altered precipitation, with the most conserved response from Actinobacteria. The functional consequences

  9. Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing.

    PubMed

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  10. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    PubMed Central

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  11. Changes in bacterial community composition in the system of rice intensification (SRI) in Chiang Mai, Thailand.

    PubMed

    Sooksa-Nguan, Thanwalee; Gypmantasiri, Phrek; Boonkerd, Nantakorn; Thies, Janice E; Teaumroong, Neung

    2010-01-01

    The factors of alternating flooding and draining during the vegetative growth phase and applying compost to investigate changes in bacterial community composition between the system of rice intensification (SRI) and conventionally managed rice were investigated. 16S rRNA gene T-RFLP analysis showed the major changes in the bacterial communities from the beginning of cultivation to vegetative phase, at which time the groups formed remained consistent until the end of cropping season. Significant and consistent separations of microbial communities between the two systems were revealed. These results suggested that the differences in rice cultivation practice can cause the changes in microbial communities.

  12. Interspecific interactions between primates, birds, bats, and squirrels may affect community composition on Borneo.

    PubMed

    Beaudrot, Lydia; Struebig, Matthew J; Meijaard, Erik; van Balen, Sebastianus; Husson, Simon; Young, Carson F; Marshall, Andrew J

    2013-02-01

    For several decades, primatologists have been interested in understanding how sympatric primate species are able to coexist. Most of our understanding of primate community ecology derives from the assumption that these animals interact predominantly with other primates. In this study, we investigate to what extent multiple community assembly hypotheses consistent with this assumption are supported when tested with communities of primates in isolation versus with communities of primates, birds, bats, and squirrels together. We focus on vertebrate communities on the island of Borneo, where we examine the determinants of presence or absence of species, and how these communities are structured. We test for checkerboard distributions, guild proportionality, and Fox's assembly rule for favored states, and predict that statistical signals reflecting interactions between ecologically similar species will be stronger when nonprimate taxa are included in analyses. We found strong support for checkerboard distributions in several communities, particularly when taxonomic groups were combined, and after controlling for habitat effects. We found evidence of guild proportionality in some communities, but did not find significant support for Fox's assembly rule in any of the communities examined. These results demonstrate the presence of vertebrate community structure that is ecologically determined rather than randomly generated, which is a finding consistent with the interpretation that interactions within and between these taxonomic groups may have shaped species composition in these communities. This research highlights the importance of considering the broader vertebrate communities with which primates co-occur, and so we urge primatologists to explicitly consider nonprimate taxa in the study of primate ecology.

  13. Origins of eukaryotic sexual reproduction.

    PubMed

    Goodenough, Ursula; Heitman, Joseph

    2014-03-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.

  14. A statistical anomaly indicates symbiotic origins of eukaryotic membranes

    PubMed Central

    Bansal, Suneyna; Mittal, Aditya

    2015-01-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite—the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson's paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the “third front” (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins. PMID:25631820

  15. Microbial community composition is unaffected by anode potential.

    PubMed

    Zhu, Xiuping; Yates, Matthew D; Hatzell, Marta C; Ananda Rao, Hari; Saikaly, Pascal E; Logan, Bruce E

    2014-01-21

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials.

  16. Camparison of benthic bacterial community composition in nine streams

    Treesearch

    Xuqing Gao; Ola A. Olapade; Laura G. Leff

    2005-01-01

    In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental conditions. Taxa examined...

  17. LATITUDINAL GRADIENTS IN BENTHIC COMMUNITY COMPOSITION IN WESTERN ATLANTIC ESTUARIES

    EPA Science Inventory

    The community structure of benthic macroinvertebrates from estuaries along the Atlantic coast of North America from Cape Cod, MA, to Biscayne Bay, FL, were compared. Benthic data were collected over a 5 year period (1990 to 1995) by the U.S. Environmental Protection Agency's Envi...

  18. LATITUDINAL GRADIENTS IN BENTHIC COMMUNITY COMPOSITION IN WESTERN ATLANTIC ESTUARIES

    EPA Science Inventory

    The community structure of benthic macroinvertebrates from estuaries along the Atlantic coast of North America from Cape Cod, MA, to Biscayne Bay, FL, were compared. Benthic data were collected over a 5 year period (1990 to 1995) by the U.S. Environmental Protection Agency's Envi...

  19. Root exudate diversity regulates soil fungal community composition and diversity

    USDA-ARS?s Scientific Manuscript database

    Plant diversity is thought to influence diversity of the soil microbial community, though how this occurs is poorly understood. We report that under greenhouse conditions, two model plant species (Arabidopsis thaliana and Medicago truncatula) show an inability to support the native soil fungal comm...

  20. Competing Goals, Competing Discourses: ESL Composition at the Community College.

    ERIC Educational Resources Information Center

    Curry, Mary Jane

    This study examined the experiences of participants in a basic writing course in a Midwestern community college. Two-thirds of the 18 students were highly educated students from Russia, Turkey, Japan, Korea, and Taiwan who were retirees, spouses of Americans, spouses of international students at the local university, or spouses of foreign…

  1. Comparison of benthic bacterial community composition in nine streams

    Treesearch

    Xueqing Gao; Ola A. Olapade; Laura G. Leff

    2005-01-01

    In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental...

  2. Endosymbiosis and Eukaryotic Cell Evolution.

    PubMed

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics.

  3. Plant competition varies with community composition in an edaphically complex landscape.

    PubMed

    Elmendorf, Sarah C; Moore, Kara A

    2007-10-01

    There is currently no consensus on how physical and biological factors affect competitive intensity. Tests of whether competitive intensity varies along axes of environmental change have commonly been conducted in systems with a single strong environmental gradient, such as productivity, a soil resource, or an environmental stress. Frequently, these same axes are associated with changes in species composition, yet few studies have asked whether shifts in the identity of competitors affect competitive intensity. We ask whether resources (nutrients, water), stressors (heavy metals, Ca:Mg ratio), productivity (aboveground biomass), or species identity (an ordination axis of plant community composition) were the best predictors of the intensity of competition in a heterogeneous grassland landscape that included multiple independent environmental gradients. The reproductive fitness of six annual plant species was measured in the presence and absence of competitors and used to calculate relative interaction intensity (RII). We found that RII was best predicted by community composition. Nutrient availability was also important, and a post hoc test showed that competitive intensity was best explained by the combined effects of community composition and nutrient availability. We argue that community composition may be the most effective metric for predicting competitive intensity in many ecosystems because it includes both the competitive effects of the local community and information about covarying environmental characteristics.

  4. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    PubMed

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Effects of tampons and menses on the composition and diversity of vaginal microbial communities over time.

    PubMed

    Hickey, R J; Abdo, Z; Zhou, X; Nemeth, K; Hansmann, M; Osborn, T W; Wang, F; Forney, L J

    2013-05-01

    To investigate the influence of menses on the vaginal microbiota and determine whether tampons that differ in material composition influence these bacterial communities in different ways. A single-centre trial with randomised, complete block design. Procter & Gamble facility. Seven self-declared healthy, female volunteers of reproductive age. Volunteers used a pad and two types of tampons during the study, one product exclusively each month for three sequential menstrual cycles. During menses and once each mid-cycle, vaginal bacterial community composition was characterised by cultivation-independent methods based on pyrosequencing of V1-V2 variable regions of 16S ribosomal RNA genes. Changes in the species composition, abundance and diversity in vaginal bacterial communities over time and between treatments. The vaginal microbiotas of all seven women were dominated by Lactobacillus spp. at mid-cycle, and the compositions of those communities were largely consistent between cycles. Community dynamic patterns during menses varied considerably and were more or less individualised. In three of the seven women the community diversity during pad use was significantly different from at least one tampon cycle. Changes in the composition of the vaginal microbiota during menses were common, but the magnitude of change varied between women. Despite these changes, most communities were capable of resuming a composition similar to previous mid-cycle sampling times following menstruation. Overall we conclude that the two tampons tested do not significantly impact the vaginal microbiota in different ways; however, larger studies should be performed to confirm these findings. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  6. Intraspecific variation in herbivore community composition and transcriptional profiles in field-grown Brassica oleracea cultivars

    PubMed Central

    Broekgaarden, Colette; Poelman, Erik H.; Voorrips, Roeland E.; Dicke, Marcel; Vosman, Ben

    2010-01-01

    Intraspecific differences in plant defence traits are often correlated with variation in transcriptional profiles and can affect the composition of herbivore communities on field-grown plants. However, most studies on transcriptional profiling of plant–herbivore interactions have been carried out under controlled conditions in the laboratory or greenhouse and only a few examine intraspecific transcriptional variation. Here, intraspecific variation in herbivore community composition and transcriptional profiles between two Brassica oleracea cultivars grown in the field is addressed. Early in the season, no differences in community composition were found for naturally occurring herbivores, whereas cultivars differed greatly in abundance, species richness, and herbivore community later in the season. Genome-wide transcriptomic analysis using an Arabidopsis thaliana oligonucleotide microarray showed clear differences for the expression levels of 26 genes between the two cultivars later in the season. Several defence-related genes showed higher levels of expression in the cultivar that harboured the lowest numbers of herbivores. Our study shows that herbivore community composition develops differentially throughout the season on the two B. oleracea cultivars grown in the field. The correlation between the differences in herbivore communities and differential expression of particular defence-related genes is discussed. PMID:19934173

  7. Gender and Race, Online Communities, and Composition Classrooms

    ERIC Educational Resources Information Center

    Morris, Jill

    2011-01-01

    As the culmination of a two-year long Internet ethnographic study of three separate sites, I use examples of women and minorities fighting against discrimination online to explore the power structures inherent to networks and how these might affect classroom practice. I will show how our ordinary assumptions in rhetoric and composition as well as…

  8. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  9. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation.

    PubMed

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L; Steele, Andrew

    2013-10-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  10. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    PubMed Central

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  11. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  12. Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  13. Cytokinesis in Eukaryotes

    PubMed Central

    Guertin, David A.; Trautmann, Susanne; McCollum, Dannel

    2002-01-01

    Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development. PMID:12040122

  14. Comparative analysis of eukaryotic marine microbial assemblages from 18S rRNA gene and gene transcript clone libraries by using different methods of extraction.

    PubMed

    Koid, Amy; Nelson, William C; Mraz, Amy; Heidelberg, Karla B

    2012-06-01

    Eukaryotic marine microbes play pivotal roles in biogeochemical nutrient cycling and ecosystem function, but studies that focus on the protistan biogeography and genetic diversity lag-behind studies of other microbes. 18S rRNA PCR amplification and clone library sequencing are commonly used to assess diversity that is culture independent. However, molecular methods are not without potential biases and artifacts. In this study, we compare the community composition of clone libraries generated from the same water sample collected at the San Pedro Ocean Time Series (SPOTs) station in the northwest Pacific Ocean. Community composition was assessed using different cell lysis methods (chemical and mechanical) and the extraction of different nucleic acids (DNA and RNA reverse transcribed to cDNA) to build Sanger ABI clone libraries. We describe specific biases for ecologically important phylogenetic groups resulting from differences in nucleic acid extraction methods that will inform future designs of eukaryotic diversity studies, regardless of the target sequencing platform planned.

  15. Effects of triclosan on bacterial community composition and ...

    EPA Pesticide Factsheets

    Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, Vibrio, a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm) can induce a significant Vibrio growth response (68–1,700 fold increases) in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary), Doctors Arm Canal (Big Pine Key, FL), and Clam Bank Landing (North Inlet Estuary, Georgetown, SC). Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of Vibrionaceae (17-fold), Pseudoalteromonadaceae (65-fold), Alteromonadaceae (108-fold), Colwelliaceae (430-fold), and Oceanospirillaceae (1,494-fold). While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to u

  16. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities.

    PubMed

    Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R

    2016-12-01

    There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously.

  17. Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms.

    PubMed

    Lawes, Jasmin C; Neilan, Brett A; Brown, Mark V; Clark, Graeme F; Johnston, Emma L

    2016-01-01

    Biofilms are integral to many marine processes but their formation and function may be affected by anthropogenic inputs that alter environmental conditions, including fertilisers that increase nutrients. Density composition and connectivity of biofilms developed in situ (under ambient and elevated nutrients) were compared using 454-pyrosequencing of the 16S gene. Elevated nutrients shifted community composition from bacteria involved in higher processes (eg Pseudoalteromonas spp. invertebrate recruitment) towards more nutrient-tolerant bacterial species (eg Terendinibacter sp.). This may enable the persistence of biofilm communities by increasing resistance to nutrient inputs. A core biofilm microbiome was identified (predominantly Alteromonadales and Oceanospirillales) and revealed shifts in abundances of core microbes that could indicate enrichment by fertilisers. Fertiliser decreased density and connectivity within biofilms indicating that associations were disrupted perhaps via changes to energetic allocations within the core microbiome. Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities.

  18. Relationship of wooded riparian zones and runoff potential to fish community composition in agricultural streams

    USGS Publications Warehouse

    Stauffer, J.C.; Goldstein, R.M.; Newman, R.M.

    2000-01-01

    The relationship of fish community composition to riparian cover and runoff potential was investigated in 20 streams in the agricultural Minnesota River Basin during the summer of 1997. Analysis of variance indicated significant differences in fish community composition due to both riparian cover (wooded versus open) and runoff potential (high or low). Streams with wooded riparian zones had higher index of biological integrity (IBI) scores, species richness, diversity, and percentages of benthic insectivores and herbivores than streams with open riparian zones. Streams with low runoff potential had higher IBI scores and species richness than streams with high runoff potential. The riparian cover and runoff potential interaction was marginally significant with respect to IBI scores and species richness, suggesting a weak interaction between the two factors. Although both factors were important, riparian cover influenced fish community composition more than runoff potential in these streams, indicating that local factors (close to the stream) dominated landscape- or basin-level factors.

  19. Looking inside and out: the impact of employee and community demographic composition on organizational diversity climate.

    PubMed

    Pugh, S Douglas; Dietz, Joerg; Brief, Arthur P; Wiley, Jack W

    2008-11-01

    An organization's diversity climate refers to employees' shared perceptions of the policies and practices that communicate the extent to which fostering diversity and eliminating discrimination is a priority in the organization. The authors propose a salient element of the organizational context, the racial composition of the community where the organization is located, serves an important signaling function that shapes the formation of climate perceptions. In a study of 142 retail bank units in the United States, evidence is found for a relationship between the racial composition of an organization's workforce and diversity climate that is moderated by the racial composition of the community where the organization is located. The results suggest that when few racial minorities live in the community in which an organization is embedded, workforce diversity has an impact on employees' diversity climate perceptions. As racial minority popular share increases, workforce diversity tends to lose this signaling value.

  20. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought

    USDA-ARS?s Scientific Manuscript database

    The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition...

  1. Comparative assessment of bacterial diversity associated with co-occurring eukaryotic hosts of Palk Bay origin.

    PubMed

    Viszwapriya, Dharmaprakash; Aravindraja, Chairmandurai; Pandian, Shunmugiah Karutha

    2015-06-01

    Epibacterial communities of co-occurring eukaryotic hosts of Palk Bay origin (five seaweed species (Gracilaria sp, Padina sp, Enteromorpha sp, Sargassum sp, and Turbinaria sp) and one seagrass [Cymodaceae sp]) were analyzed for diversity and compared using 16S rRNA based Denaturant Gradient Gel Electrophoresis analysis. Diversity index revealed that Turbinaria sp hosts highest bacterial diversity while it was least in Gracilaria sp. The DGGE band profile showed that the epibacterial community differed considerably among the studied species. Statistical assessment using cluster analysis and Non-metric multidimensional scale analysis also authenticated the observed variability. Despite huge overlap, the composition of bacterial community structure differed significantly among the three closely related species namely Sargassum, Turbinaria and Padina. In addition, Enteromorpha and Sargassum, one being chlorophyta and the other phaeophyta showed about 80% similarity in bacterial composition. This differs from the general notion that epibacterial community composition will vary widely depending on the host phyla. The results extended the phenomenon of host specific epibacterial community irrespective of phylogeny and similarity in geographical location.

  2. Night-time lighting alters the composition of marine epifaunal communities

    PubMed Central

    Davies, Thomas W.; Coleman, Matthew; Griffith, Katherine M.; Jenkins, Stuart R.

    2015-01-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  3. Night-time lighting alters the composition of marine epifaunal communities.

    PubMed

    Davies, Thomas W; Coleman, Matthew; Griffith, Katherine M; Jenkins, Stuart R

    2015-04-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities

    PubMed Central

    Carvalhais, Lilia C.; Dennis, Paul G.; Badri, Dayakar V.; Tyson, Gene W.; Vivanco, Jorge M.; Schenk, Peer M.

    2013-01-01

    Jasmonic acid (JA) signalling plays a central role in plant defences against necrotrophic pathogens and herbivorous insects, which afflict both roots and shoots. This pathway is also activated following the interaction with beneficial microbes that may lead to induced systemic resistance. Activation of the JA signalling pathway via application of methyl jasmonate (MeJA) alters the composition of carbon containing compounds released by roots, which are implicated as key determinants of rhizosphere microbial community structure. In this study, we investigated the influence of the JA defence signalling pathway activation in Arabidopsis thaliana on the structure of associated rhizosphere bacterial communities using 16S rRNA gene amplicon pyrosequencing. Application of MeJA did not directly influence bulk soil microbial communities but significant changes in rhizosphere community composition were observed upon activation of the jasmonate signalling pathway. Our results suggest that JA signalling may mediate plant-bacteria interactions in the soil upon necrotrophic pathogen and herbivorous insect attacks. PMID:23424661

  5. Interactive effects between plant functional types and soil factors on tundra species diversity and community composition.

    PubMed

    Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela

    2016-11-01

    Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis: Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating

  6. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  7. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    PubMed Central

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  8. Interactions between assembly order and temperature can alter both short- and long-term community composition

    PubMed Central

    Clements, Christopher F; Warren, Philip H; Collen, Ben; Blackburn, Tim; Worsfold, Nicholas; Petchey, Owen

    2013-01-01

    Both the order in which species arrive in a community, and environmental conditions, such as temperature, are known to affect community structure. Little is known, however, about the potential for, and occurrence of, interactions between assembly history and the environment. Of particular, interest may be the interaction between temperature and community assembly dynamics, especially in the light of predicted global climatic change and the fundamental processes that are governed, through metabolic rate, by an individual's environmental temperature. We present, to our knowledge, the first experimental exploration of how the influence of assembly history, temperature, and the interaction between the two alters the structure of communities of competitors, using small-scale protist microcosm communities where temperature and assembly order were manipulated factorially. In our experiment, the most important driver of long-term abundance was temperature but long-lasting assembly order effects influenced the relationship between temperature and abundance. Any advantage of early colonization proved to be short-lived, and there was rarely any long-term advantage to colonizing a habitat before other species. The results presented here suggest that environmental conditions shape community composition, but that occasionally temperature could interact with the stochastic nature of community assembly to significantly alter future community composition, especially where temperature change has been large. This could have important implications for the dynamics of both rare and invasive species. PMID:24455149

  9. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    NASA Astrophysics Data System (ADS)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  10. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    PubMed

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  11. Interactions between assembly order and temperature can alter both short- and long-term community composition.

    PubMed

    Clements, Christopher F; Warren, Philip H; Collen, Ben; Blackburn, Tim; Worsfold, Nicholas; Petchey, Owen

    2013-12-01

    Both the order in which species arrive in a community, and environmental conditions, such as temperature, are known to affect community structure. Little is known, however, about the potential for, and occurrence of, interactions between assembly history and the environment. Of particular, interest may be the interaction between temperature and community assembly dynamics, especially in the light of predicted global climatic change and the fundamental processes that are governed, through metabolic rate, by an individual's environmental temperature. We present, to our knowledge, the first experimental exploration of how the influence of assembly history, temperature, and the interaction between the two alters the structure of communities of competitors, using small-scale protist microcosm communities where temperature and assembly order were manipulated factorially. In our experiment, the most important driver of long-term abundance was temperature but long-lasting assembly order effects influenced the relationship between temperature and abundance. Any advantage of early colonization proved to be short-lived, and there was rarely any long-term advantage to colonizing a habitat before other species. The results presented here suggest that environmental conditions shape community composition, but that occasionally temperature could interact with the stochastic nature of community assembly to significantly alter future community composition, especially where temperature change has been large. This could have important implications for the dynamics of both rare and invasive species.

  12. Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu.

    PubMed

    Zhou, Jian; Qin, Boqiang; Casenave, Céline; Han, Xiaoxia; Yang, Guijun; Wu, Tingfeng; Wu, Pan; Ma, Jianrong

    2015-08-01

    Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.

  13. Substantial compositional turnover of fungal communities in an alpine ridge-to-snowbed gradient.

    PubMed

    Yao, Fang; Vik, Unni; Brysting, Anne K; Carlsen, Tor; Halvorsen, Rune; Kauserud, Håvard

    2013-10-01

    The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind-exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge-to-snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag-encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.

  14. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest

    PubMed Central

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523

  15. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    PubMed Central

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob; Feld, Louise; Holben, William E.

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition. PMID:24610853

  16. High-resolution melt analysis for rapid comparison of bacterial community compositions.

    PubMed

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Baelum, Jacob; Feld, Louise; Holben, William E; Jacobsen, Carsten Suhr

    2014-06-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition.

  17. Watershed Urbanization Alters the Composition and Function of Stream Bacterial Communities

    PubMed Central

    Wang, Si-Yi; Sudduth, Elizabeth B.; Wallenstein, Matthew D.; Wright, Justin P.; Bernhardt, Emily S.

    2011-01-01

    Watershed urbanization leads to dramatic changes in draining streams, with urban streams receiving a high frequency of scouring flows, together with the nutrient, contaminant, and thermal pollution associated with urbanization. These changes are known to cause significant losses of sensitive insect and fish species from urban streams, yet little is known about how these changes affect the composition and function of stream microbial communities. Over the course of two years, we repeatedly sampled sediments from eight central North Carolina streams affected to varying degrees by watershed urbanization. For each stream and sampling date, we characterized both overall and denitrifying bacterial communities and measured denitrification potentials. Denitrification is an ecologically important process, mediated by denitrifying bacteria that use nitrate and organic carbon as substrates. Differences in overall and denitrifying bacterial community composition were strongly associated with the gradient in urbanization. Denitrification potentials, which varied widely, were not significantly associated with substrate supply. By incorporating information on the community composition of denitrifying bacteria together with substrate supply in a linear mixed-effects model, we explained 45% of the variation in denitrification potential (p-value<0.001). Our results suggest that (1) the composition of stream bacterial communities change in response to watershed urbanization and (2) such changes may have important consequences for critical ecosystem functions such as denitrification. PMID:21857975

  18. Variation of summer phytoplankton community composition and its relationship to nitrate and regenerated nitrogen assimilation across the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Van Oostende, N.; Fawcett, S. E.; Marconi, D.; Lueders-Dumont, J.; Sabadel, A. J. M.; Woodward, E. M. S.; Jönsson, B. F.; Sigman, D. M.; Ward, B. B.

    2017-03-01

    The North Atlantic Ocean is considered a nitrogen (N) limited system once vernal stabilisation of the water column alleviates light limitation and allows phytoplankton growth to deplete surface nutrients to virtually undetectable levels. Ammonium and other regenerated N forms are then the main surface N source for phytoplankton production. The effort to determine which phytoplankton groups contribute to long-term biological export production would be greatly aided by information on which phytoplankton groups are responsible for the assimilation of nitrate, as opposed to those assimilating predominantly regenerated N. In this study, we used the natural abundance N isotopes to examine basin-scale patterns of nitrate and regenerated N assimilation and evaluated the relationships between these trends and phytoplankton community composition. Samples were collected during a summertime cruise transect (August-September 2013) from the subtropical (36°N 73°W) to the subarctic (54°N 20°W) North Atlantic and analysed for the N isotopic composition (δ15N vs. N2 in air) of particulate nitrogen (PN) and nitrate, size-fractionated chlorophyll a, and phytoplankton group biomass using flow cytometry. The depth of the 300 nmol l-1 nitrate isopleth shoaled from the subtropics (79 m), where phytoplankton stripped surface waters of nitrate, to the subarctic, where it intersected with the surface and the upward nutrient supply drove a summer phytoplankton bloom. The δ15N of PN above the nitracline increased from the subtropics (-0.3‰) to the subarctic (4.2‰), reflecting both a change in the δ15N of the subsurface nitrate source (from 2.4‰ to 5.1‰) and increased reliance by phytoplankton on nitrate relative to regenerated N. Throughout the transect, the phytoplankton community was mainly composed of pico- and nano-sized cells (>88% of chlorophyll a in the <20 μm size fraction). In the part of the transect southwest of the Grand Banks, Prochlorococcus and Synechococcus

  19. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes

    PubMed Central

    Crary, Benjamin C.; Shade, Ashley; Owens, Sarah; Gilbert, Jack A.; Knight, Rob; McMahon, Katherine D.

    2017-01-01

    ABSTRACT Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likely reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “Candidatus Omnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. IMPORTANCE Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial

  20. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes.

    PubMed

    Linz, Alexandra M; Crary, Benjamin C; Shade, Ashley; Owens, Sarah; Gilbert, Jack A; Knight, Rob; McMahon, Katherine D

    2017-01-01

    Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likely reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and "Candidatus Omnitrophica" in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. IMPORTANCE Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community

  1. Salinity affects compositional traits of epibacterial communities on the brown macroalga Fucus vesiculosus.

    PubMed

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2014-05-01

    Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14 days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial α-diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed.

  2. Electrogenic capacity and community composition of anodic biofilms in soil-based bioelectrochemical systems.

    PubMed

    Ringelberg, David B; Foley, Karen L; Reynolds, Charles M

    2011-06-01

    Although a number of bacteria are known to be capable of generating an electrical current, the diversity of electrogenic bacteria in soils and the commonality across soil types is relatively unknown. Simple bioelectrochemical cells were constructed to measure the electrogenic capacity and community composition of bacteria originating on cell anodes from three biogeochemically distinct soil types. All three soils supported electrogenic activity, amounting to a maximum sustained current of 1.5-2.1 mA over 55 days. Analysis of fatty acids identified differences in microbial community composition between anode biofilms and far-field soil materials. Anode communities showed greater percentages of fatty acids indicative of Gram-negative bacteria and Actinomycetes. By analysis of anode biofilm genomic DNA via terminal-restriction fragment-length polymorphisms, commonalities in community composition across the three soil types were identified, specifically, the putative presence of bacterial species belonging to the α- and ß-Proteobacteria and the Firmicutes. Subsequent culture and isolation of bacteria from the anodes confirmed the presence of similar classes of bacteria. Results showed that, under saturated conditions, different soils can support electrogenic activity and that the bacterial communities that develop on the anodes share certain common inherent community traits.

  3. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities.

    PubMed

    Moora, Mari; Davison, John; Öpik, Maarja; Metsis, Madis; Saks, Ülle; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2014-12-01

    Arbuscular mycorrhizal (AM) fungi play an important role in ecosystems, but little is known about how soil AM fungal community composition varies in relation to habitat type and land-use intensity. We molecularly characterized AM fungal communities in soil samples (n = 88) from structurally open (permanent grassland, intensive and sustainable agriculture) and forested habitats (primeval forest and spruce plantation). The habitats harboured significantly different AM fungal communities, and there was a broad difference in fungal community composition between forested and open habitats, the latter being characterized by higher average AM fungal richness. Within both open and forest habitats, intensive land use significantly influenced community composition. There was a broad difference in the phylogenetic structure of AM fungal communities between mechanically disturbed and nondisturbed habitats. Taxa from Glomeraceae served as indicator species for the nondisturbed habitats, while taxa from Archaeosporaceae, Claroideoglomeraceae and Diversisporaceae were indicators for the disturbed habitats. The distribution of these indicator taxa among habitat types in the MaarjAM global database of AM fungal diversity was in accordance with their local indicator status.

  4. On the origin of eukaryotic cells and their endomembranes.

    PubMed

    Vesteg, Matej; Krajcovic, Juraj; Ebringer, Libor

    2006-01-01

    A novel hypothesis for the origin of eukaryotic cells is presented. It is assumed that the universal ancestor was bounded by two membranes of heterochiral lipid composition. We propose that the prokaryotic cells (the hypothetical host entity for alpha proteic-bacteria), though sharing a common ancestor with Archaea, was bounded by two membranes. The hypothesis suggests that an alpha proteic-bacterial symbiont was enclosed in the prokaryotic cells intermembrane space. In this view, the eukaryotic nuclear membrane and endomembrane system arose from the prokaryotic cells inner membrane while the eukaryotic plasma membrane arose from the prokaryotic cells outer membrane. The outlined scenario agrees with the view that engulfment of an alpha-proteic-bacterial cell by a host entity and its transformation to a mitochondrion was the driving force leading to the appearance of the first eukaryotic cell. The hypothesis seems to be consistent with the pre-cell theory, theory of membrane heredity, and the phagocytosis-late scenario.

  5. A beginner's guide to eukaryotic genome annotation.

    PubMed

    Yandell, Mark; Ence, Daniel

    2012-04-18

    The falling cost of genome sequencing is having a marked impact on the research community with respect to which genomes are sequenced and how and where they are annotated. Genome annotation projects have generally become small-scale affairs that are often carried out by an individual laboratory. Although annotating a eukaryotic genome assembly is now within the reach of non-experts, it remains a challenging task. Here we provide an overview of the genome annotation process and the available tools and describe some best-practice approaches.

  6. Changes in fungal community composition in response to experimental soil warming at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Bjorn; Dawes, Melissa; Peter, Martina; Souza, Romulo; Rixen, Christian; Hagedorn, Frank

    2017-04-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the reduction of low temperature limitation in the plant-soil system, faster nitrogen cycling and changes in the carbon allocation of host plants to the rhizosphere. Shifts in fungal community composition due to global changes are likely to affect the routes of carbon and nitrogen flows in the plant-soil system and alter the rates at which organic matter is decomposed. The main aim of our study was to estimate the effects of multiple years of free air CO2 enrichment (ambient concentration +200 ppm) and soil warming (+ 4°C) on the fungal community structure and composition. At an alpine treeline in Switzerland featuring two key high-elevation tree species, Larix decidua and Pinus uncinata, fungal communities within different organic horizons were analysed by high-throughput 454-pyrosequencing of ITS2 amplicons. In addition, we assessed the ectomycorrhizal community composition on root tips and monitored changes in sporocarp productivity of fungal species during the course of the experiment. Three years of experimental warming at the alpine treeline altered the composition of the fungal community in the organic horizons, whereas nine years of CO2 enrichment had only weak effects. Tree species influenced the composition of the fungal community and the magnitude of the responses of fungal functional groups to soil warming differed between plots with Larix and those with Pinus. The abundance of ectomycorrhizal fungi was positively correlated with nitrogen availability, and ectomycorrhizal taxa specialized for conditions of high nitrogen availability proliferated with warming, corresponding to considerable increases in extractable inorganic nitrogen in warmed soils. Changes in productivity of specific fungal fruiting bodies in response to soil warming (e.g. more Lactarius rufus sporocarps and less Hygrophorus speciousus sporocarps) were consistent with the 454-sequencing

  7. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition.

    PubMed

    Veen, G F Ciska; Geuverink, Elzemiek; Olff, Han

    2012-02-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground-belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant-soil-vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground-belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground-belowground interactions for small-scale plant community composition.

  8. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting

    PubMed Central

    Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen

    2013-01-01

    Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after

  9. Mycorrhizal Fungal Diversity and Community Composition in Two Closely Related Platanthera (Orchidaceae) Species

    PubMed Central

    Esposito, Fabiana; Jacquemyn, Hans; Waud, Michael; Tyteca, Daniel

    2016-01-01

    While it is generally acknowledged that orchid species rely on mycorrhizal fungi for completion of their life cycle, little is yet known about how mycorrhizal fungal diversity and community composition vary within and between closely related orchid taxa. In this study, we used 454 amplicon pyrosequencing to investigate variation in mycorrhizal communities between pure (allopatric) and mixed (sympatric) populations of two closely related Platanthera species (Platanthera bifolia and P. chlorantha) and putative hybrids. Consistent with previous research, the two species primarily associated primarily with members of the Ceratobasidiaceae and, to a lesser extent, with members of the Sebacinales and Tulasnellaceae. In addition, a large number of ectomycorrhizal fungi belonging to various families were observed. Although a considerable number of mycorrhizal fungi were common to both species, the fungal communities were significantly different between the two species. Individuals with intermediate morphology showed communities similar to P. bifolia, confirming previous results based on the genetic architecture and fragrance composition that putative hybrids essentially belonged to one of the parental species (P. bifolia). Differences in mycorrhizal communities between species were smaller in mixed populations than between pure populations, suggesting that variation in mycorrhizal communities was largely controlled by local environmental conditions. The small differences in mycorrhizal communities in mixed populations suggests that mycorrhizal fungi are most likely not directly involved in maintaining species boundaries between the two Platanthera species. However, seed germination experiments are needed to unambiguously assess the contribution of mycorrhizal divergence to reproductive isolation. PMID:27695108

  10. Mycorrhizal Fungal Diversity and Community Composition in Two Closely Related Platanthera (Orchidaceae) Species.

    PubMed

    Esposito, Fabiana; Jacquemyn, Hans; Waud, Michael; Tyteca, Daniel

    2016-01-01

    While it is generally acknowledged that orchid species rely on mycorrhizal fungi for completion of their life cycle, little is yet known about how mycorrhizal fungal diversity and community composition vary within and between closely related orchid taxa. In this study, we used 454 amplicon pyrosequencing to investigate variation in mycorrhizal communities between pure (allopatric) and mixed (sympatric) populations of two closely related Platanthera species (Platanthera bifolia and P. chlorantha) and putative hybrids. Consistent with previous research, the two species primarily associated primarily with members of the Ceratobasidiaceae and, to a lesser extent, with members of the Sebacinales and Tulasnellaceae. In addition, a large number of ectomycorrhizal fungi belonging to various families were observed. Although a considerable number of mycorrhizal fungi were common to both species, the fungal communities were significantly different between the two species. Individuals with intermediate morphology showed communities similar to P. bifolia, confirming previous results based on the genetic architecture and fragrance composition that putative hybrids essentially belonged to one of the parental species (P. bifolia). Differences in mycorrhizal communities between species were smaller in mixed populations than between pure populations, suggesting that variation in mycorrhizal communities was largely controlled by local environmental conditions. The small differences in mycorrhizal communities in mixed populations suggests that mycorrhizal fungi are most likely not directly involved in maintaining species boundaries between the two Platanthera species. However, seed germination experiments are needed to unambiguously assess the contribution of mycorrhizal divergence to reproductive isolation.

  11. Origins of Eukaryotic Sexual Reproduction

    PubMed Central

    2014-01-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation. PMID:24591519

  12. Diversity and Community Composition of Vertebrates in Desert River Habitats

    PubMed Central

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  13. Diversity and Community Composition of Vertebrates in Desert River Habitats.

    PubMed

    Free, C L; Baxter, G S; Dickman, C R; Lisle, A; Leung, L K-P

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning.

  14. Predator community composition is linked to soil carbon retention across a human land use gradient.

    PubMed

    Schmitz, Oswald J; Buchkowski, Robert W; Smith, Jeffrey R; Telthorst, Mark; Rosenblatt, Adam E

    2017-05-01

    Soil carbon (C) storage is a major component of the carbon cycle. Consensus holds that soil C uptake and storage is regulated by plant-microbe-soil interactions. However, the contribution of animals in aboveground food webs to this process has been overlooked. Using insights from prior long-term experimentation in an old-field ecosystem and mathematical modeling, we predicted that the amount of soil C retention within a field should increase with the proportion of active hunting predators comprising the aboveground community of active hunting and sit-and-wait predators. This comes about because predators with different hunting modes have different cascading effects on plants. Our test of the prediction revealed that the composition of the arthropod predator community and associated cascading effects on the plant community explained 41% of variation in soil C retention among 15 old fields across a human land use gradient. We also evaluated the potential for several other candidate factors to explain variation in soil C retention among fields, independent of among-field variation in the predator community. These included live plant biomass, insect herbivore community composition, soil arthropod decomposer community composition, degree of land use development around the fields, field age, and soil texture. None of these candidate variables significantly explained soil C retention among the fields. The study offers a generalizable understanding of the pathways through which arthropod predator community composition can contribute to old-field ecosystem carbon storage. This insight helps support ongoing efforts to understand and manage the effects of anthropogenic land use change on soil C storage. © 2017 by the Ecological Society of America.

  15. RNA Preservation Agents and Nucleic Acid Extraction Method Bias Perceived Bacterial Community Composition

    PubMed Central

    McCarthy, Ann; Chiang, Edna; Schmidt, Marian L.; Denef, Vincent J.

    2015-01-01

    Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA samples. PMID:25798612

  16. Land-use history alters contemporary insect herbivore community composition and decouples plant-herbivore relationships.

    PubMed

    Hahn, Philip G; Orrock, John L

    2015-05-01

    Past land use can create altered soil conditions and plant communities that persist for decades, although the effects of these altered conditions on consumers are rarely investigated. Using a large-scale field study at 36 sites in longleaf pine (Pinus palustris) woodlands, we examined whether historic agricultural land use leads to differences in the abundance and community composition of insect herbivores (grasshoppers, families Acrididae and Tettigoniidae). We measured the cover of six plant functional groups and several environmental variables to determine whether historic agricultural land use affects the relationships between plant cover or environmental conditions and grasshopper assemblages. Land-use history had taxa-specific effects and interacted with herbaceous plant cover to alter grasshopper abundances, leading to significant changes in community composition. Abundance of most grasshopper taxa increased with herbaceous cover in woodlands with no history of agriculture, but there was no relationship in post-agricultural woodlands. We also found that grasshopper abundance was negatively correlated with leaf litter cover. Soil hardness was greater in post-agricultural sites (i.e. more compacted) and was associated with grasshopper community composition. Both herbaceous cover and leaf litter cover are influenced by fire frequency, suggesting a potential indirect role of fire on grasshopper assemblages. Our results demonstrate that historic land use may create persistent differences in the composition of grasshopper assemblages, while contemporary disturbances (e.g. prescribed fire) may be important for determining the abundance of grasshoppers, largely through the effect of fire on plants and leaf litter. Therefore, our results suggest that changes in the contemporary management regimes (e.g. increasing prescribed fire) may not be sufficient to shift the structure of grasshopper communities in post-agricultural sites towards communities in non

  17. RNA preservation agents and nucleic acid extraction method bias perceived bacterial community composition.

    PubMed

    McCarthy, Ann; Chiang, Edna; Schmidt, Marian L; Denef, Vincent J

    2015-01-01

    Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA samples.

  18. Land-use history alters contemporary insect herbivore community composition and decouples plant-herbivore relationships.

    SciTech Connect

    Hahn, Philip G.; Orrock, John L.

    2015-04-01

    1. Past land use can create altered soil conditions and plant communities that persist for decades, although the effects of these altered conditions on consumers are rarely investigated. 2. Using a large-scale field study at 36 sites in longleaf pine (Pinus palustris) woodlands, we examined whether historic agricultural land use leads to differences in the abundance and community composition of insect herbivores (grasshoppers, families Acrididae and Tettigoniidae). 3. We measured the cover of six plant functional groups and several environmental variables to determine whether historic agricultural land use affects the relationships between plant cover or environmental conditions and grasshopper assemblages. 4. Land-use history had taxa-specific effects and interacted with herbaceous plant cover to alter grasshopper abundances, leading to significant changes in community composition. Abundance of most grasshopper taxa increased with herbaceous cover in woodlands with no history of agriculture, but there was no relationship in post-agricultural woodlands. We also found that grasshopper abundance was negatively correlated with leaf litter cover. Soil hardness was greater in post-agricultural sites (i.e. more compacted) and was associated with grasshopper community composition. Both herbaceous cover and leaf litter cover are influenced by fire frequency, suggesting a potential indirect role of fire on grasshopper assemblages. 5. Our results demonstrate that historic land use may create persistent differences in the composition of grasshopper assemblages, while contemporary disturbances (e.g. prescribed fire) may be important for determining the abundance of grasshoppers, largely through the effect of fire on plants and leaf litter. Therefore, our results suggest that changes in the contemporary management regimes (e.g. increasing prescribed fire) may not be sufficient to shift the structure of grasshopper communities in post-agricultural sites towards communities in

  19. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    PubMed

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  20. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities

    PubMed Central

    2013-01-01

    Background Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms’ specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Results Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms

  1. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics.

  2. Archaeology of Eukaryotic DNA Replication

    PubMed Central

    Makarova, Kira S.; Koonin, Eugene V.

    2013-01-01

    Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously uncharacterized archaeal proteins involved in replication and currently reveal a nearly complete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were comparable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionalization of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific duplications of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal replication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. PMID:23881942

  3. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

    NASA Astrophysics Data System (ADS)

    Balasooriya, W. K.; Denef, K.; Peters, J.; Verhoest, N. E. C.; Boeckx, P.

    2007-10-01

    Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were distinguished along the hydrological gradient; textit{Caricetum gracilis} at the wet depression and textit{Arrhenatherum elatioris} at the drier upper site. Microbial community structural changes were studied by a combined in situ 13CO2 pulse labeling and phospholipid fatty acid (PLFA) based stable isotope probing approach, which identifies the microbial groups actively involved in assimilation of newly photosynthesized, root-derived C in the rhizosphere soils. Gram negative bacterial communities were relatively more abundant in the surface soils of the drier upper site than in the surface soils of the wetter lower site, while the lower site and the deeper soil layers were relatively more inhabited by gram positive bacterial communities. Despite their large abundance, the metabolically active proportion of gram positive bacterial and actinomycetes communities was much smaller at both sites, compared to that of the gram negative bacterial and fungal communities. This suggests much slower assimilation of root-derived C by gram positive and actinomycetes communities than by gram negative bacteria and fungi at both sites. Ground water depth showed a significant effect on the relative abundance of several microbial communities. Relative abundance of gram negative bacteria was significantly decreased with increasing ground water depth while the relative abundance of gram positive bacteria and actinomycetes at the surface layer increased with increasing ground water depth.

  4. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

    NASA Astrophysics Data System (ADS)

    Balasooriya, W. K.; Denef, K.; Peters, J.; Verhoest, N. E. C.; Boeckx, P.

    2008-02-01

    Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were distinguished along the hydrological gradient; Caricetum gracilis at the wet depression and Arrhenatheretum elatioris at the drier upper site. Microbial community structural changes were studied by a combined in situ 13CO2 pulse labeling and phospholipid fatty acid (PLFA) based stable isotope probing approach, which identifies the microbial groups actively involved in assimilation of newly photosynthesized, root-derived C in the rhizosphere soils. Gram negative bacterial communities were relatively more abundant in the surface soils of the drier upper site than in the surface soils of the wetter lower site, while the lower site and the deeper soil layers were relatively more inhabited by gram positive bacterial communities. Despite their large abundance, the metabolically active proportion of gram positive bacterial and actinomycetes communities was much smaller at both sites, compared to that of the gram negative bacterial and fungal communities. This suggests much slower assimilation of root-derived C by gram positive and actinomycetes communities than by gram negative bacteria and fungi at both sites. Ground water depth showed a significant effect on the relative abundance of several microbial communities. Relative abundance of gram negative bacteria significantly decreased with increasing ground water depth while the relative abundance of gram positive bacteria and actinomycetes at the surface layer increased with increasing ground water depth.

  5. Response of microbial community composition and function to soil climate change

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak-grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their "life history" envelopes. ?? 2006 Springer Science+Business Media, Inc.

  6. Community composition and temporal change at deep Gulf of Mexico cold seeps

    NASA Astrophysics Data System (ADS)

    Lessard-Pilon, Stephanie; Porter, Matthew D.; Cordes, Erik E.; MacDonald, Ian; Fisher, Charles R.

    2010-11-01

    Specialized cold-seep communities have been known to exist in the Gulf of Mexico (GOM) since the mid-1980s, but only recently has extensive research been carried out on sites at depths >1000 m. This study uses a combination of imagery and analyses within a Geographic Information Systems (GIS) framework to examine the composition of mussel and tubeworm communities at depths between 2200 and 2800 m in the Gulf of Mexico, spatial relations among the fauna, and changes in these communities over time. Photomosaics at three discrete seep communities were obtained in 2006 and a video mosaic of another community was obtained in 1992. Each of these communities was re-imaged in 2007. In addition, quantitative physical collections were made within two of the photomosaic sites and used to confirm the identification of megafauna, quantify the occurrence of smaller and cryptic macrofauna, and allow first-order calculations of biomass within the sites. Substrate type had a significant effect on community composition. Significant associations were identified between live mussels with anemones, shrimp, and sea cucumbers, and between tubeworm aggregations and Munidopsis sp. crabs and encrusting fauna, indicating differences in the composition of megafauna associated with adjacent mussel and tubeworm aggregations. Little change was seen in the total area colonized by foundation fauna (tubeworms and mussels) between years at any site. However, significant changes occurred in the positions of mussels, even over periods of a single year, at all sites, and evidence for the establishment of new tubeworm aggregations between 1992 and 2007 was noted at one site. These photomosaics provide data suggesting that environmental conditions can change over small spatial and temporal scales and mussels move in response to these changes. The successional trends are examined and compared to the patterns that have been documented in shallow (<1000-m depth) Gulf of Mexico seep communities.

  7. Standardized Criteria and the Responsibilities of the Instructor in a Community College English Composition Course

    ERIC Educational Resources Information Center

    McGowan, Holly

    2011-01-01

    The purpose of this study was to explore the responsibilities of the instructor in an English composition course at a community college. In particular, the study explored the role of the instructor in implementing required department curriculum and learning objectives into the course plan. The study was conducted through multiple case study.…

  8. pH Dynamics and Bacterial Community Composition in the Rumen of Lactating Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    The influence of pH dynamics on ruminal bacterial community composition was studied in 8 ruminally cannulated Holstein cows fitted with indwelling electrodes that recorded pH at 10-min intervals over a 3-d period. Cows were fed a silage-based TMR supplemented with monensin. Ruminal samples were col...

  9. Learning How to Feel: Conversion Narratives and Community Membership in First-Year Composition

    ERIC Educational Resources Information Center

    Kurtyka, Faith M.

    2017-01-01

    This article examines the rhetoric of the conversion narratives told by a group of women joining a new social sorority on campus. I argue that these sorority conversion narratives are of interest to composition scholars because they document the emotional work involved in entering a community in one's first year of college. My close analysis of…

  10. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation

    USDA-ARS?s Scientific Manuscript database

    Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences...

  11. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  12. Composition Instructors' Interactions with Classroom Discourse Communities: A Qualitative Study

    ERIC Educational Resources Information Center

    Winterberg, Sarah Griffith

    2017-01-01

    This study offered insight on the intermingling of discourse communities in the learning environment by examining experiences of composition instructors from a regional Southern university and their reflections of teaching students who struggled to navigate from home discourse to academic discourse. Merriam's basic qualitative research design…

  13. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  14. pH Dynamics and Bacterial Community Composition in the Rumen of Lactating Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    The effect of pH dynamics on ruminal bacterial community composition (BCC) was studied in 8 ruminally cannulated Holstein cows fitted with indwelling electrodes that recorded pH at 10-min intervals over a 2.4-d period. Cows were fed a silage-based TMR supplemented with monensin. Ruminal samples wer...

  15. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community

    Treesearch

    Mitchell A. Pavao-Zuckerman; David C. Coleman

    2007-01-01

    We evaluated the response of riparian forest soil nematode community structure to the physico-chemical environment associated with urban land use. Soils were sampled seasonally between December 2000 and October 2002 along an urban-rural transect in Asheville, North Carolina. We characterized the taxonomic (to genus) and functional composition (trophic groups) of the...

  16. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  17. Microbial Community Composition Impacts Pathogen Iron Availability during Polymicrobial Infection

    PubMed Central

    Stacy, Apollo; Whiteley, Marvin

    2016-01-01

    Iron is an essential nutrient for bacterial pathogenesis, but in the host, iron is tightly sequestered, limiting its availability for bacterial growth. Although this is an important arm of host immunity, most studies examine how bacteria respond to iron restriction in laboratory rather than host settings, where the microbiome can potentially alter pathogen strategies for acquiring iron. One of the most important transcriptional regulators controlling bacterial iron homeostasis is Fur. Here we used a combination of RNA-seq and chromatin immunoprecipitation (ChIP)-seq to characterize the iron-restricted and Fur regulons of the biofilm-forming opportunistic pathogen Aggregatibacter actinomycetemcomitans. We discovered that iron restriction and Fur regulate 4% and 3.5% of the genome, respectively. While most genes in these regulons were related to iron uptake and metabolism, we found that Fur also directly regulates the biofilm-dispersing enzyme Dispersin B, allowing A. actinomycetemcomitans to escape from iron-scarce environments. We then leveraged these datasets to assess the availability of iron to A. actinomycetemcomitans in its primary infection sites, abscesses and the oral cavity. We found that A. actinomycetemcomitans is not restricted for iron in a murine abscess mono-infection, but becomes restricted for iron upon co-infection with the oral commensal Streptococcus gordonii. Furthermore, in the transition from health to disease in human gum infection, A. actinomycetemcomitans also becomes restricted for iron. These results suggest that host iron availability is heterogeneous and dependent on the infecting bacterial community. PMID:27973608

  18. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak

    PubMed Central

    Sharma, Rahul; Schmidt, Susanne I.; Bahrdt, Sebastian; Horn, Henriette G.; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P.; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2. PMID:28445483

  19. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    PubMed

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  20. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus.

    PubMed

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2013-04-01

    The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15 °C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga.

  1. Benthic community composition on submerged reefs in the central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Roberts, T. E.; Moloney, J. M.; Sweatman, H. P. A.; Bridge, T. C. L.

    2015-06-01

    Community dynamics on coral reefs are often examined only in relatively shallow waters, which are most vulnerable to many disturbances. The Great Barrier Reef World Heritage Area (GBRWHA) includes extensive submerged reefs that do not approach sea level and are within depths that support many coral reef taxa that also occur in shallow water. However, the composition of benthic communities on submerged reefs in the GBRWHA is virtually unknown. We examined spatial patterns in benthic community composition on 13 submerged reefs in the central Great Barrier Reef (GBR) at depths of 10-30 m. We show that benthic communities on submerged reefs include similar species groups to those on neighbouring emergent reefs. The spatial distribution of species groups was well explained by depth and cross-shelf gradients that are well-known determinants of community composition on emergent reefs. Many equivalent species groups occurred at greater depths on submerged reefs, likely due to variability in the hydrodynamic environment among reef morphologies. Hard coral cover and species richness were lowest at the shallowest depth (6 m) on emergent reefs and were consistently higher on submerged reefs for any given depth. These results suggest that disturbances are less frequent on submerged reefs, but evidence that a severe tropical cyclone in 2011 caused significant damage to shallow regions of more exposed submerged reefs demonstrates that they are not immune. Our results confirm that submerged reefs in the central GBR support extensive and diverse coral assemblages that deserve greater attention in ecosystem assessments and management decisions.

  2. Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine

    PubMed Central

    Wu, Shangong; Wang, Guitang; Angert, Esther R.; Wang, Weiwei; Li, Wenxiang; Zou, Hong

    2012-01-01

    Gut microbiota has become an integral component of the host, and received increasing attention. However, for many domestic animals, information on the microbiota is insufficient and more effort should be exerted to manage the gastrointestinal bacterial community. Understanding the factors that influence the composition of microbial community in the host alimentary canal is essential to manage or improve the microbial community composition. In the present study, 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp (Ctenopharyngodon idellus) intestinal contents and fish culture-associated environments are performed. The results show that the fish intestinal microbiota harbors many cellulose-decomposing bacteria, including sequences related to Anoxybacillus, Leuconostoc, Clostridium, Actinomyces, and Citrobacter. The most abundant bacterial operational taxonomic units (OTUs) in the grass carp intestinal content are those related to feed digestion. In addition, the potential pathogens and probiotics are important members of the intestinal microbiota. Further analyses show that grass carp intestine holds a core microbiota composed of Proteobacteria, Firmicutes, and Actinobacteria. The comparison analyses reveal that the bacterial community in the intestinal contents is most similar to those from the culture water and sediment. However, feed also plays significant influence on the composition of gut microbiota. PMID:22363439

  3. Resource effects on denitrification are mediated by community composition in tidal freshwater wetlands soils.

    PubMed

    Morrissey, Ember M; Franklin, Rima B

    2015-05-01

    Accurate prediction of denitrification rates remains difficult, potentially owing to complex uncharacterized interactions between resource conditions and denitrifier communities. To better understand how the availability of organic matter (OM) and nitrate (NO3 (-) ), two of the resources most fundamental to denitrifiers, affect these populations and their activity, we performed an in situ resource manipulation in tidal freshwater wetland soils. Soils were augmented with OM to double ambient concentrations, using either compost or plant litter, and fertilized with KNO3 at two levels (low: ∼ 5 mg l(-1)  NO3 (-) -N and high: ∼ 50 mg l(-1)  NO3 (-) -N) in a full factorial design. Community composition of nirS-denitrifers (assessed using terminal restriction fragment length polymorphism) was interactively regulated by both NO3 (-) concentration and OM type, and the associated shifts in community composition were relatively consistent across sampling dates (6, 9 and 12 months of incubation). Denitrification potential (pDNF) rates were also strongly affected by NO3 (-) fertilization and increased by ∼ 10-100-fold. Path analysis revealed that the influence of resource availability on pDNF rates was largely mediated through changes in nirS-denitrifier community composition. These results suggest that a greater understanding of denitrifier community ecology may enable more accurate prediction of denitrification rates.

  4. Effects of Functionalized and Raw Multi-Walled Carbon Nanotubes on Soil Bacterial Community Composition

    PubMed Central

    Kerfahi, Dorsaf; Tripathi, Binu M.; Singh, Dharmesh; Kim, Hyoki; Lee, Sujin; Lee, Junghoon; Adams, Jonathan M.

    2015-01-01

    Carbon nanotubes (CNTs) are widely used in industry, but their environmental impacts on soil microbial communities are poorly known. In this paper, we compare the effect of both raw and acid treated or functionalized (fCNTs) multi-walled carbon nanotubes (MWCNTs) on soil bacterial communities, applying different concentrations of MWCNTs (0 µg/g, 50 µg/g, 500 µg/g and 5000 µg/g) to a soil microcosm system. Soil DNA was extracted at 0, 2 and 8 weeks and the V3 region of the 16S rRNA gene was PCR-amplified and sequenced using paired-end Illumina bar-coded sequencing. The results show that bacterial diversity was not affected by either type of MWCNT. However, overall soil bacterial community composition, as illustrated by NMDS, was affected only by fMWCNT at high concentrations. This effect, detectable at 2 weeks, remained equally strong by 8 weeks. In the case of fMWCNTs, overall changes in relative abundance of the dominant phyla were also found. The stronger effect of fMWCNTs could be explained by their intrinsically acidic nature, as the soil pH was lower at higher concentrations of fMWCNTs. Overall, this study suggests that fMWCNTs may at least temporarily alter microbial community composition on the timescale of at least weeks to months. It appears, by contrast, that raw MWCNTs do not affect soil microbial community composition. PMID:25825905

  5. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus

    PubMed Central

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2013-01-01

    The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15°C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga. PMID:23568841

  6. Variability in microbial community composition and function between different niches within a coral reef.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Webster, Nicole S; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2014-04-01

    To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.

  7. Seasonal and Successional Influences on Bacterial Community Composition Exceed That of Protozoan Grazing in River Biofilms

    PubMed Central

    Jürgens, Klaus; Weitere, Markus

    2012-01-01

    The effects of protozoa (heterotrophic flagellates and ciliates) on the morphology and community composition of bacterial biofilms were tested under natural background conditions by applying size fractionation in a river bypass system. Confocal laser scanning microscopy (CLSM) was used to monitor the morphological structure of the biofilm, and fingerprinting methods (single-stranded conformation polymorphism [SSCP] and denaturing gradient gel electrophoresis [DGGE]) were utilized to assess changes in bacterial community composition. Season and internal population dynamics had a greater influence on the bacterial biofilm than the presence of protozoa. Within this general framework, bacterial area coverage and microcolony abundance were nevertheless enhanced by the presence of ciliates (but not by the presence of flagellates). We also found that the richness of bacterial operational taxonomic units was much higher in planktonic founder communities than in the ones establishing the biofilm. Within the first 2 h of colonization of an empty substrate by bacteria, the presence of flagellates additionally altered their biofilm community composition. As the biofilms matured, the number of bacterial operational taxonomic units increased when flagellates were present in high abundances. The additional presence of ciliates tended to at first reduce (days 2 to 7) and later increase (days 14 to 29) bacterial operational taxonomic unit richness. Altogether, the response of the bacterial community to protozoan grazing pressure was small compared to that reported in planktonic studies, but our findings contradict the assumption of a general grazing resistance of bacterial biofilms toward protozoa. PMID:22247162

  8. Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition.

    PubMed

    Kerfahi, Dorsaf; Tripathi, Binu M; Singh, Dharmesh; Kim, Hyoki; Lee, Sujin; Lee, Junghoon; Adams, Jonathan M

    2015-01-01

    Carbon nanotubes (CNTs) are widely used in industry, but their environmental impacts on soil microbial communities are poorly known. In this paper, we compare the effect of both raw and acid treated or functionalized (fCNTs) multi-walled carbon nanotubes (MWCNTs) on soil bacterial communities, applying different concentrations of MWCNTs (0 µg/g, 50 µg/g, 500 µg/g and 5000 µg/g) to a soil microcosm system. Soil DNA was extracted at 0, 2 and 8 weeks and the V3 region of the 16S rRNA gene was PCR-amplified and sequenced using paired-end Illumina bar-coded sequencing. The results show that bacterial diversity was not affected by either type of MWCNT. However, overall soil bacterial community composition, as illustrated by NMDS, was affected only by fMWCNT at high concentrations. This effect, detectable at 2 weeks, remained equally strong by 8 weeks. In the case of fMWCNTs, overall changes in relative abundance of the dominant phyla were also found. The stronger effect of fMWCNTs could be explained by their intrinsically acidic nature, as the soil pH was lower at higher concentrations of fMWCNTs. Overall, this study suggests that fMWCNTs may at least temporarily alter microbial community composition on the timescale of at least weeks to months. It appears, by contrast, that raw MWCNTs do not affect soil microbial community composition.

  9. Use of community-composition data to predict the fecundity and abundance of species.

    PubMed

    Elmendorf, Sarah C; Moore, Kara A

    2008-12-01

    Species distribution models are critical tools for the prediction of invasive species spread and conservation of biodiversity. The majority of species distribution models have been built with environmental data. Community ecology theory suggests that species co-occurrence data could also be used to predict current and potential distributions of species. Species assemblages are the products of biotic and environmental constraints on the distribution of individual species and as a result may contain valuable information for niche modeling. We compared the predictive ability of distribution models of annual grassland plants derived from either environmental or community-composition data. Composition-based models were built with the presence or absence of species at a site as predictors of site quality, whereas environment-based models were built with soil chemistry, moisture content, above-ground biomass, and solar radiation as predictors. The reproductive output of experimentally seeded individuals of 4 species and the abundance of 100 species were used to evaluate the resulting models. Community-composition data were the best predictors of both the site-specific reproductive output of sown individuals and the site-specific abundance of existing populations. Successful community-based models were robust to omission of data on the occurrence of rare species, which suggests that even very basic survey data on the occurrence of common species may be adequate for generating such models. Our results highlight the need for increased public availability of ecological survey data to facilitate community-based modeling at scales relevant to conservation.

  10. Effects of long-term drainage on microbial community composition vary between peatland types

    NASA Astrophysics Data System (ADS)

    Urbanová, Zuzana; Barta, Jiri

    2016-04-01

    Peatlands represent an important reservoir of carbon, but their functioning can be threatened by water level drawdown caused by climate or land use change. Knowledge of how microbial communities respond to long-term drainage in different peatland types could help improve predictions of the effect of climate change on these ecosystems. We investigated the effect of long-term drainage on microbial community composition in bog, fen and spruce swamp forests (SSF) in the Sumava Mountains (Czech Republic), using high-throughput barcoded sequencing, in relation to peat biochemical properties. Longterm drainage had substantial effects, which depended strongly on peatland type, on peat biochemical properties and microbial community composition. The effect of drainage was most apparent on fen, followed by SSF, and lowest on bog. Long-term drainage led to lower pH, reduced peat decomposability and increased bulk density, which was reflected by reduced microbial activity. Bacterial diversity decreased and Acidobacteria became the dominant phylum on drained sites, reflecting a convergence in bacterial community composition across peatlands after long-term drainage. The archaeal communities changed very strongly and became similar across drained peatlands. Overall, the characteristic differences between distinct peatland types under natural conditions were diminished by long-term drainage. Bog represented a relatively resilient system while fen seemed to be very sensitive to environmental changes.

  11. Brazilian kefir: structure, microbial communities and chemical composition

    PubMed Central

    Magalhães, Karina Teixeira; de Melo Pereira, Gilberto Vinícius; Campos, Cássia Roberta; Dragone, Giuliano; Schwan, Rosane Freitas

    2011-01-01

    Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5%) were the major isolated group identified, followed by yeasts (30.6%) and acetic acid bacteria (8.9%). Lactobacillus paracasei (89 isolates), Lactobacillus parabuchneri (41 isolates), Lactobacillus casei (32 isolates), Lactobacillus kefiri (31 isolates), Lactococcus lactis (24 isolates), Acetobacter lovaniensis (32 isolates), Kluyveromyces lactis (31 isolates), Kazachstania aerobia (23 isolates), Saccharomyces cerevisiae (41 isolates) and Lachancea meyersii (15 isolates) were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long) cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml. PMID:24031681

  12. Strong Seasonality of Marine Microbial Eukaryotes in a High-Arctic Fjord (Isfjorden, in West Spitsbergen, Norway)

    PubMed Central

    Vader, Anna; Stübner, Eike I.; Reigstad, Marit

    2016-01-01

    The Adventfjorden time series station (IsA) in Isfjorden, West Spitsbergen, Norway, was sampled frequently from December 2011 to December 2012. The community composition of microbial eukaryotes (size, 0.45 to 10 μm) from a depth of 25 m was determined using 454 sequencing of the 18S V4 region amplified from both DNA and RNA. The compositional changes throughout the year were assessed in relation to in situ fjord environmental conditions. Size fractionation analyses of chlorophyll a showed that the photosynthetic biomass was dominated by small cells (<10 μm) most of the year but that larger cells dominated during the spring and summer. The winter and early-spring communities were more diverse than the spring and summer/autumn communities. Dinophyceae were predominant throughout the year. The Arctic Micromonas ecotype was abundant mostly in the early-bloom and fall periods, whereas heterotrophs, such as marine stramenopiles (MASTs), Picozoa, and the parasitoid marine alveolates (MALVs), displayed higher relative abundance in the winter than in other seasons. Our results emphasize the extreme seasonality of Arctic microbial eukaryotic communities driven by the light regime and nutrient availability but point to the necessity of a thorough knowledge of hydrography for full understanding of their succession and variability. PMID:26746718

  13. Strong Seasonality of Marine Microbial Eukaryotes in a High-Arctic Fjord (Isfjorden, in West Spitsbergen, Norway).

    PubMed

    Marquardt, Miriam; Vader, Anna; Stübner, Eike I; Reigstad, Marit; Gabrielsen, Tove M

    2016-01-08

    The Adventfjorden time series station (IsA) in Isfjorden, West Spitsbergen, Norway, was sampled frequently from December 2011 to December 2012. The community composition of microbial eukaryotes (size, 0.45 to 10 μm) from a depth of 25 m was determined using 454 sequencing of the 18S V4 region amplified from both DNA and RNA. The compositional changes throughout the year were assessed in relation to in situ fjord environmental conditions. Size fractionation analyses of chlorophyll a showed that the photosynthetic biomass was dominated by small cells (<10 μm) most of the year but that larger cells dominated during the spring and summer. The winter and early-spring communities were more diverse than the spring and summer/autumn communities. Dinophyceae were predominant throughout the year. The Arctic Micromonas ecotype was abundant mostly in the early-bloom and fall periods, whereas heterotrophs, such as marine stramenopiles (MASTs), Picozoa, and the parasitoid marine alveolates (MALVs), displayed higher relative abundance in the winter than in other seasons. Our results emphasize the extreme seasonality of Arctic microbial eukaryotic communities driven by the light regime and nutrient availability but point to the necessity of a thorough knowledge of hydrography for full understanding of their succession and variability.

  14. Nitrous Oxide Emissions from Ephemeral Wetland Soils are Correlated with Microbial Community Composition

    PubMed Central

    Ma, Wai K.; Farrell, Richard E.; Siciliano, Steven D.

    2011-01-01

    Nitrous oxide (N2O) is a greenhouse gas with a global warming potential far exceeding that of CO2. Soil N2O emissions are a product of two microbially mediated processes: nitrification and denitrification. Understanding the effects of landscape on microbial communities, and the subsequent influences of microbial abundance and composition on the processes of nitrification and denitrification are key to predicting future N2O emissions. The objective of this study was to examine microbial abundance and community composition in relation to N2O associated with nitrification and denitrification processes over the course of a growing season in soils from cultivated and uncultivated wetlands. The denitrifying enzyme assay and N15O3− pool dilution methods were used to compare the rates of denitrification and nitrification and their associated N2O emissions. Functional gene composition was measured with restriction fragment length polymorphism profiles and abundance was measured with quantitative polymerase chain reaction. The change in denitrifier nitrous oxide reductase gene (nosZ) abundance and community composition was a good predictor of net soil N2O emission. However, neither ammonia oxidizing bacteria ammonia monooxygenase (bacterial amoA) gene abundance nor composition predicted nitrification-associated-N2O emissions. Alternative strategies might be necessary if bacterial amoA are to be used as predictive in situ indicators of nitrification rate and nitrification-associated-N2O emission. PMID:21712943

  15. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs.

    PubMed

    Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin

    2011-10-01

    Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Nitrous Oxide Emissions from Ephemeral Wetland Soils are Correlated with Microbial Community Composition.

    PubMed

    Ma, Wai K; Farrell, Richard E; Siciliano, Steven D

    2011-01-01

    Nitrous oxide (N(2)O) is a greenhouse gas with a global warming potential far exceeding that of CO(2). Soil N(2)O emissions are a product of two microbially mediated processes: nitrification and denitrification. Understanding the effects of landscape on microbial communities, and the subsequent influences of microbial abundance and composition on the processes of nitrification and denitrification are key to predicting future N(2)O emissions. The objective of this study was to examine microbial abundance and community composition in relation to N(2)O associated with nitrification and denitrification processes over the course of a growing season in soils from cultivated and uncultivated wetlands. The denitrifying enzyme assay and [Formula: see text] pool dilution methods were used to compare the rates of denitrification and nitrification and their associated N(2)O emissions. Functional gene composition was measured with restriction fragment length polymorphism profiles and abundance was measured with quantitative polymerase chain reaction. The change in denitrifier nitrous oxide reductase gene (nosZ) abundance and community composition was a good predictor of net soil N(2)O emission. However, neither ammonia oxidizing bacteria ammonia monooxygenase (bacterial amoA) gene abundance nor composition predicted nitrification-associated-N(2)O emissions. Alternative strategies might be necessary if bacterial amoA are to be used as predictive in situ indicators of nitrification rate and nitrification-associated-N(2)O emission.

  17. Associations between retail food store exterior advertisements and community demographic and socioeconomic composition.

    PubMed

    Isgor, Zeynep; Powell, Lisa; Rimkus, Leah; Chaloupka, Frank

    2016-05-01

    This paper examines the association between the prevalence of various types of outdoor food and beverage advertising found on the building exteriors and properties of retail food outlets and community racial/ethnic and socioeconomic composition in a nationwide sample of food outlets in the U.S. Our major finding from multivariable analysis is that food stores in low-income communities have higher prevalence of all food and beverage ads, including those for unhealthy products such as regular soda, controlling for community racial/ethnic composition and other covariates. This adds to growing research pointing to socioeconomic disparities in food and beverage marketing exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp.

    PubMed

    Dai, Wenfang; Yu, Weina; Zhang, Jinjie; Zhu, Jinyong; Tao, Zhen; Xiong, Jinbo

    2017-08-01

    Increasing evidence has revealed a close interplay between the gut bacterial communities and host growth performance. However, until recently, studies generally ignored the contribution of eukaryotes, endobiotic organisms. To fill this gap, we used Illumina sequencing technology on eukaryotic 18S rRNA gene to compare the structures of gut eukaryotic communities among cohabitating retarded, overgrown, and normal shrimp obtained from identically managed ponds. Results showed that a significant difference between gut eukaryotic communities differed significantly between water and intestine and among three shrimp categories. Structural equation modeling revealed that changes in the gut eukaryotic community were positively related to digestive enzyme activities, which in turn influenced shrimp growth performance (λ = 0.97, P < 0.001). Overgrown shrimp exhibited a more complex and cooperative gut eukaryotic interspecies interaction than retarded and normal shrimp, which may facilitate their nutrient acquisition efficiency. Notably, the distribution of dominant eukaryotic genera and shifts in keystone species were closely concordant with shrimp growth performance. In summary, this study provides an integrated overview on direct roles of gut eukaryotic communities in shrimp growth performance instead of well-studied bacterial assembly.

  19. Microbial Community Composition Associated with Maotai Liquor Fermentation.

    PubMed

    Wang, Qiang; Zhang, Hongxun; Liu, Xiu

    2016-06-01

    The solid-state fermentation state of Chinese Maotai liquor involves the interaction of several complex microbial communities leading to the generation of the most complex liquor fermentation system in the world and contributes to the unique flavor and aroma of the liquor. In this study, total DNA was extracted from 3 fermented grain samples (FG1, FG2, and FG3) and 12 environmental samples, including Daqu (DA1, DA2, DA3, and DA4), cellar mud (CS1, CS2, and CS3), soil (SL1 and SL2), air (A1 and A2), and sorghum (SH), and the 16S and 18S rRNA genes were amplified. The distribution of typical microorganisms in the samples was analyzed using nested PCR-denaturing gradient gel electrophoresis, while quantitative PCR amplification of 16S rRNA and internal transcribed spacer genes was performed to estimate the microbial abundance present in each sample. The results indicated that Daqu was the primary source of bacteria, followed by the air, soil, and sorghum samples, while the majority of the fungi responsible for Maotai liquor fermentation were from Daqu and sorghum. Highest bacterial concentrations were found in fermented grains, followed by Daqu and sorghum, while the highest fungal concentrations were found in Daqu, followed by sorghum and an air sample from outside the liquor production area. The findings of this study may provide information regarding the mechanisms responsible for flavor development in Maotai liquor, and may be used to further optimize the traditional art of making liquor. © 2016 Institute of Food Technologists®

  20. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought?

    PubMed

    Evans, Sarah E; Wallenstein, Matthew D; Burke, Ingrid C

    2014-01-01

    Both biogeographical and rainfall manipulation studies show that soil water content can be a strong driver of microbial community composition. However, we do not yet know if these patterns emerge because certain bacterial taxa are better able to survive at dry soil moisture regimes or if they are due to other drought-sensitive ecosystem properties indirectly affecting microbial community composition. In this study, we evaluated (1) whether bacterial community composition changed under an 11-year drought manipulation and (2) whether shifts under drought could be explained by variation in the moisture sensitivity of growth among bacterial taxa (moisture niche partitioning). Using 454 pyrosequencing of 16S rRNA, we observed shifts in bacterial community composition under drought, coincident with changes in other soil properties. We wet-up dry soils from drought plots to five moisture levels, and measured respiration and the composition of actively growing communities using bromodeoxyuridine (BrdU) labeling of DNA. The field drought experiment affected the composition of the active community when incubated at different moisture levels in the laboratory, as well as short-term (36-hour) respiration rates. Independent of history, bacterial communities also displayed strong niche partitioning across the wet-up moisture gradient. Although this indicates that moisture has the potential to drive bacterial community composition under long-term drought, species distributions predicted by response to moisture did not reflect the community composition of plots that were subjected to long-term drought. Bacterial community structure was likely more strongly driven by other environmental factors that changed under long-term drought, or not shaped by response to water level upon wet-up. The approach that we present here for linking niches to community composition could be adapted for other environmental variables to aid in predicting microbial species distributions and community

  1. Body Composition Outcomes of a Qigong Intervention Among Community-Dwelling Aging Adults.

    PubMed

    Chang, Mei-Ying; Chen, Hsiao-Yu

    2016-12-01

    Aging causes various changes in body composition, which are critical implications for health and physical functioning in aging adults. The aim of this study was to explore the body composition outcomes of a qigong intervention among community-dwelling aging adults. This was a quasi-experimental study in which 90 participants were recruited. Forty-eight participants (experimental group) attended a 30-min qigong program 3 times per week for 12 weeks, whereas 42 participants (control group) continued performing their usual daily activities. The experimental group achieved a greater reduction in the fat mass percentage at the posttest, and exhibited increased fat-free mass, lean body mass percentage, and lean body mass to fat mass ratio compared with the controls. No difference between the two groups in body mass index, fat mass, and lean body mass was observed. These results indicated that the qigong intervention showed beneficial outcomes of body composition among community-dwelling aging adults.

  2. Seed Density Significantly Affects Species Richness and Composition in Experimental Plant Communities

    PubMed Central

    Münzbergová, Zuzana

    2012-01-01

    Studies on the importance of seed arrival for community richness and composition have not considered the number of seeds arriving and its effect on species richness and composition of natural communities is thus unknown. A series of experimental dry grassland communities were established. All communities were composed of the same 44 species in exactly the same proportions on two substrates using three different seed densities. The results showed that seed density had an effect on species richness only at the beginning of the experiment. In contrast, the effects on species composition persisted across the entire study period. The results do not support the prediction that due to higher competition for light in nutrient-rich soil, species richness will be the highest in the treatment with the lowest seed density. However, the prevalence of small plants in the lowest seed density supported the expectation that low seed density guarantees low competition under high soil nutrients. In the nutrient-poor soil, species richness was the highest at the medium seed density, indicating that species richness reflects the balance between competition and limitations caused by the availability of propagules or their ability to establish themselves. This medium seed density treatment also contained the smallest plants. The results demonstrate that future seed addition experiments need to consider the amount of seed added so that it reflects the amount of seed that is naturally found in the field. Differences in seed density, mimicking different intensity of the seed rain may also explain differences in the composition of natural communities that cannot be attributed to habitat conditions. The results also have important implications for studies regarding the consequences of habitat fragmentation suggesting that increasing fragmentation may change species compositions not only due to different dispersal abilities but also due to differential response of plants to overall seed

  3. Body composition as a frailty marker for the elderly community.

    PubMed

    Falsarella, Gláucia Regina; Gasparotto, Lívia Pimenta Renó; Barcelos, Caroline Coutinho; Coimbra, Ibsen Bellini; Moretto, Maria Clara; Pascoa, Mauro Alexandre; Ferreira, Talita C B Rezende; Coimbra, Arlete Maria Valente

    2015-01-01

    Body composition (BC) in the elderly has been associated with diseases and mortality; however, there is a shortage of data on frailty in the elderly. To investigate the association between BC and frailty, and identify BC profiles in nonfrail, prefrail, and frail elderly people. A cross-sectional study comprising 235 elderly (142 females and 93 males) aged ≥65 years, from the city of Amparo, State of São Paulo, Brazil, was undertaken. Sociodemographic and cognitive features, comorbidities, medication, frailty, body mass index (BMI), muscle mass, fat mass, bone mass, and fat percent (%) data were evaluated. Aiming to examine the relationship between BC and frailty, the Mann-Whitney and Kruskal-Wallis nonparametric tests were applied. The statistical significance level was P<0.05. The nonfrail elderly showed greater muscle mass and greater bone mass compared with the prefrail and frail ones. The frail elderly had greater fat % than the nonfrail elderly. There was a positive association between grip strength and muscle mass with bone mass (P<0.001), and a negative association between grip strength and fat % (P<0.001). Gait speed was positively associated with fat mass (P=0.038) and fat % (P=0.002). The physical activity level was negatively associated with fat % (P=0.022). The weight loss criterion was positively related to muscle mass (P<0.001), bone mass (P=0.009), fat mass (P=0.018), and BMI (P=0.003). There was a negative association between fatigue and bone mass (P=0.008). Frailty in the elderly was characterized by a BC profile/phenotype with lower muscle mass and lower bone mass and with a higher fat %. The BMI was not effective in evaluating the relationship between BC and frailty. The importance of evaluating the fat % was verified when considering the tissue distribution in the elderly BC.

  4. Shifts in the microbial community composition of Gulf Coast beaches following beach oiling.

    PubMed

    Newton, Ryan J; Huse, Susan M; Morrison, Hilary G; Peake, Colin S; Sogin, Mitchell L; McLellan, Sandra L

    2013-01-01

    Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls). Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise relatively stable sand

  5. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia)

    PubMed Central

    Schneider, Dominik; Engelhaupt, Martin; Allen, Kara; Kurniawan, Syahrul; Krashevska, Valentyna; Heinemann, Melanie; Nacke, Heiko; Wijayanti, Marini; Meryandini, Anja; Corre, Marife D.; Scheu, Stefan; Daniel, Rolf

    2015-01-01

    Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio

  6. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach

    PubMed Central

    Gontang, Erin A.; Aylward, Frank O.; Carlos, Camila; Glavina del Rio, Tijana; Chovatia, Mansi; Fern, Alison; Lo, Chien-Chi; Malfatti, Stephanie A.; Tringe, Susannah G.; Currie, Cameron R.; Kolter, Roberto

    2017-01-01

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach’s food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans. PMID:28545131

  7. Shifts in the Microbial Community Composition of Gulf Coast Beaches Following Beach Oiling

    PubMed Central

    Newton, Ryan J.; Huse, Susan M.; Morrison, Hilary G.; Peake, Colin S.; Sogin, Mitchell L.; McLellan, Sandra L.

    2013-01-01

    Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls). Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise relatively stable sand

  8. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach.

    PubMed

    Gontang, Erin A; Aylward, Frank O; Carlos, Camila; Glavina Del Rio, Tijana; Chovatia, Mansi; Fern, Alison; Lo, Chien-Chi; Malfatti, Stephanie A; Tringe, Susannah G; Currie, Cameron R; Kolter, Roberto

    2017-01-01

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.

  9. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia).

    PubMed

    Schneider, Dominik; Engelhaupt, Martin; Allen, Kara; Kurniawan, Syahrul; Krashevska, Valentyna; Heinemann, Melanie; Nacke, Heiko; Wijayanti, Marini; Meryandini, Anja; Corre, Marife D; Scheu, Stefan; Daniel, Rolf

    2015-01-01

    Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio

  10. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature

    PubMed Central

    Khachane, Amit; Dungait, Jennifer A. J.; Fraser, Fiona; Hopkins, David W.; Wookey, Philip A.; Singh, Brajesh K.; Freitag, Thomas E.; Hartley, Iain P.; Prosser, James I.

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited. PMID:27798702

  11. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics.

    PubMed

    Shade, Ashley; Jones, Stuart E; McMahon, Katherine D

    2008-04-01

    Multiple forces structure natural microbial communities, but the relative roles and interactions of these drivers are poorly understood. Gradients of physical and chemical parameters can be especially influential. In traditional ecological theory, variability in environmental conditions across space and time represents habitat heterogeneity, which may shape communities. Here we used aquatic microbial communities as a model to investigate the relationship between habitat heterogeneity and community composition and dynamics. We defined spatial habitat heterogeneity as vertical temperature and dissolved oxygen (DO) gradients in the water column, and temporal habitat heterogeneity as variation throughout the open-water season in these environmental parameters. Seasonal lake mixing events contribute to temporal habitat heterogeneity by destroying and re-creating these gradients. Because of this, we selected three lakes along a range of annual mixing frequency (polymictic, dimictic, meromictic) for our study. We found that bacterial community composition (BCC) was distinct between the epilimnion and hypolimnion within stratified lakes, and also more variable within the epilimnia through time. We found stark differences in patterns of epilimnion and hypolimnion dynamics over time and across lakes, suggesting that specific drivers have distinct relative importance for each community.

  12. Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor

    PubMed Central

    Perrotta, Allison R.; Kumaraswamy, Rajkumari; Bastidas-Oyanedel, Juan R.; Alm, Eric J.

    2017-01-01

    The sustainable recovery of resources from wastewater streams can provide many social and environmental benefits. A common strategy to recover valuable resources from wastewater is to harness the products of fermentation by complex microbial communities. In these fermentation bioreactors high microbial community diversity within the inoculum source is commonly assumed as sufficient for the selection of a functional microbial community. However, variability of the product profile obtained from these bioreactors is a persistent challenge in this field. In an attempt to address this variability, the impact of inoculum on the microbial community structure and function within the bioreactor was evaluated using controlled laboratory experiments. In the course of this work, sequential batch reactors were inoculated with three complex microbial inocula and the chemical and microbial compositions were monitored by HPLC and 16S rRNA amplicon analysis, respectively. Microbial community dynamics and chemical profiles were found to be distinct to initial inoculate and highly reproducible. Additionally we found that the generation of a complex volatile fatty acid profile was not specific to the diversity of the initial microbial inoculum. Our results suggest that the composition of the original inoculum predictably contributes to bioreactor community structure and function. PMID:28196102

  13. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    PubMed

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  14. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  15. Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor.

    PubMed

    Perrotta, Allison R; Kumaraswamy, Rajkumari; Bastidas-Oyanedel, Juan R; Alm, Eric J; Rodríguez, Jorge

    2017-01-01

    The sustainable recovery of resources from wastewater streams can provide many social and environmental benefits. A common strategy to recover valuable resources from wastewater is to harness the products of fermentation by complex microbial communities. In these fermentation bioreactors high microbial community diversity within the inoculum source is commonly assumed as sufficient for the selection of a functional microbial community. However, variability of the product profile obtained from these bioreactors is a persistent challenge in this field. In an attempt to address this variability, the impact of inoculum on the microbial community structure and function within the bioreactor was evaluated using controlled laboratory experiments. In the course of this work, sequential batch reactors were inoculated with three complex microbial inocula and the chemical and microbial compositions were monitored by HPLC and 16S rRNA amplicon analysis, respectively. Microbial community dynamics and chemical profiles were found to be distinct to initial inoculate and highly reproducible. Additionally we found that the generation of a complex volatile fatty acid profile was not specific to the diversity of the initial microbial inoculum. Our results suggest that the composition of the original inoculum predictably contributes to bioreactor community structure and function.

  16. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem.

    PubMed

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.

  17. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem

    PubMed Central

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A.; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems. PMID:26421612

  18. Factors determining parasite community richness and species composition in black snook Centropomus nigrescens (Centropomidae) from coastal lagoons in Guerrero, Mexico.

    PubMed

    Violante-González, Juan; Mendoza-Franco, Edgar F; Rojas-Herrera, Agustín; Gil Guerrero, Salvador

    2010-06-01

    Species richness and composition were determined for parasite communities in the black snook Centropomus nigrescens collected from five coastal lagoons in the Guerrero state, Mexico. A total of 354 fish were collected between December 2007 and November 2008. Twenty-four species of parasite were identified: 2 monogeneans, 12 digeneans, 4 acanthocephalans, 1 cestode, 4 nematodes, and 1 pentastomid. The communities consisted mainly of autogenic parasites, and all were dominated by the digenean Paracrytogonimus yamagutii. Community species composition was similar among lagoons, although the influence of local conditions prevented them from being identical. Host traits such as predator feeding habits, body size, and vagility contributed to parasite community structure and species composition.

  19. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.

    PubMed

    de Vargas, Colomban; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro; Lara, Enrique; Berney, Cédric; Le Bescot, Noan; Probert, Ian; Carmichael, Margaux; Poulain, Julie; Romac, Sarah; Colin, Sébastien; Aury, Jean-Marc; Bittner, Lucie; Chaffron, Samuel; Dunthorn, Micah; Engelen, Stefan; Flegontova, Olga; Guidi, Lionel; Horák, Aleš; Jaillon, Olivier; Lima-Mendez, Gipsi; Lukeš, Julius; Malviya, Shruti; Morard, Raphael; Mulot, Matthieu; Scalco, Eleonora; Siano, Raffaele; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Bowler, Chris; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Raes, Jeroen; Sieracki, Michael E; Speich, Sabrina; Stemmann, Lars; Sunagawa, Shinichi; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric

    2015-05-22

    Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.

  20. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    SciTech Connect

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  1. Language Diversity in College Composition Courses: Multilingual Students in English Composition at Tacoma Community College

    ERIC Educational Resources Information Center

    Rompogren, Darlene K.

    2010-01-01

    This study was performed in order to gain a deeper understanding of the experience of nonnative English speaking students in college composition courses, including residents (citizens, refugees, and immigrants) and international students. The design of the study is largely qualitative, but it also includes quantitative data on success rates of…

  2. Large-Scale Changes in Community Composition: Determining Land Use and Climate Change Signals

    PubMed Central

    Kampichler, Christian; van Turnhout, Chris A. M.; Devictor, Vincent; van der Jeugd, Henk P.

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact—land use and climate change—are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant. PMID:22523579

  3. Large-scale changes in community composition: determining land use and climate change signals.

    PubMed

    Kampichler, Christian; van Turnhout, Chris A M; Devictor, Vincent; van der Jeugd, Henk P

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.

  4. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton

    PubMed Central

    Bertrand, Erin M.; Allen, Andrew E.

    2012-01-01

    While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12) and thiamine (B1) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2) B12 and B1 starvation impacts on polyamine biosynthesis, and (3) influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful

  5. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems

    PubMed Central

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  6. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    PubMed

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  7. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    PubMed

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  8. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting.

    PubMed

    Zeng, Guangming; Yu, Zhen; Chen, Yaoning; Zhang, Jiachao; Li, Hui; Yu, Man; Zhao, Mingjie

    2011-05-01

    Two composting piles were prepared by adding to a mixture of rice straw, vegetables and bran: (i) raw soil free from pentachlorophenol (PCP) contamination (pile A) and (ii) PCP-contaminated soil (pile B). It was shown by the results that compost maturity characterized by water soluble carbon (WSC), TOC/TN ratio, germination index (GI) and dehydrogenase activity (DA) was significantly affected by PCP exposure, which resulted in an inferior degree of maturity for pile B. DGGE analysis revealed an inhibited effect of PCP on compost microbial abundance. The bacteria community shifts were mainly consistent with composting factors such as temperature, pH, moisture content and substrates. By contrast, the fungal communities were more sensitive to PCP contamination due to the significant correlation between fungal community shifts and PCP removal. Therefore, the different microbial community compositions for properly evaluating the degree of maturity and PCP contamination were suggested. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    PubMed

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear.

  10. Estimating size and composition of biological communities by modeling the occurrence of species

    USGS Publications Warehouse

    Dorazio, R.M.; Royle, J. Andrew

    2005-01-01

    We develop a model that uses repeated observations of a biological community to estimate the number and composition of species in the community. Estimators of community-level attributes are constructed from model-based estimators of occurrence of individual species that incorporate imperfect detection of individuals. Data from the North American Breeding Bird Survey are analyzed to illustrate the variety of ecologically important quantities that are easily constructed and estimated using our model-based estimators of species occurrence. In particular, we compute site-specific estimates of species richness that honor classical notions of species-area relationships. We suggest extensions of our model to estimate maps of occurrence of individual species and to compute inferences related to the temporal and spatial dynamics of biological communities.

  11. In-feed administered sub-therapeutic chlortetracycline alters community composition and structure but not the abundance of community resistance determinants in the fecal flora of the rat.

    PubMed

    Brooks, S P J; Kheradpir, E; McAllister, M; Kwan, J; Burgher-McLellan, K; Kalmokoff, M

    2009-08-01

    The impact of continuous sub-therapeutic chlortetracycline on community structure, composition and abundance of tetracycline resistance genes in the rat fecal community was investigated. Rats were fed a standard diet containing chlortetracycline at 15 microg g(-1) diet for 28 days, followed by 30 microg g(-1) diet to completion of the study on day-56. These levels are similar to those administered to swine during the grow-out phase. Sub-therapeutic chlortetracycline affected the fecal community as determined through change in the cultivable anaerobic community and through molecular-based analyses including denaturing gradient gel electrophoresis profiles of the variable 2-3 region community 16S rRNA genes over time and through comparative sequence analysis of 16S rRNA gene community libraries. Significant decreases in fecal phylotype diversity occurred in response to sub-therapeutic chlortetracycline, although total bacterial output remained constant over the entire feeding trial. Chlortetracycline at 15 microg g(-1) diet resulted in significant change in community composition, but only modest change to the fecal community structure in terms of the distribution of individual phylotypes among the major fecal lineages. Chlortetracycline at 30 microg g(-1) diet significantly altered the distribution of phylotypes among the major fecal lineages shifting the overall community such that Gram-negative phylotypes aligning within the phylum Bacteroidetes became the dominant lineage (>60% of total community). While chlortetracycline impacted both fecal community structure and composition, there was no significant effect on the abundance of community tetracycline resistance genes [tet(Q), tet(W), tet(O)] or on the emergence of a new putative tetracycline resistance gene identified within the fecal community. While sub-therapeutic chlortetracycline provides sufficient selective pressure to significantly alter the fecal community, the primary outcome appears to be the

  12. High genetic diversity and novelty in eukaryotic plankton assemblages inhabiting saline lakes in the Qaidam basin.

    PubMed

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution.

  13. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    PubMed Central

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  14. The Nature and Frequency of Chimeras in Eukaryotic Metagenetic Samples.

    PubMed Central

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Sung, Way; Thomas, W. Kelley

    2012-01-01

    Pyrosequencing of an artificially assembled nematode community of known nematode species at known densities allowed us to characterize the potential extent of chimera problems in multi-template eukaryotic samples. Chimeras were confirmed to be very common, making up to 17% of all high quality pyrosequencing reads and exceeding 40% of all OCTUs (operationally clustered taxonomic units). Typically, chimeric OCTUs were made up of single or double reads, but very well covered OCTUs were also present. As expected, the majority of chimeras were formed between two DNA molecules of nematode origin, but a small proportion involved a nematode and a fragment of another eukaryote origin. In addition, examples of a combination of three or even four different template origins were observed. All chimeras were associated with the presence of conserved regions with 80% of all recombinants following a conserved region of about 25bp. While there was a positive influence of species abundance on the overall number of chimeras, the influence of specific-species identity was less apparent. We also suggest that the problem is not nematode exclusive, but instead applies to other eukaryotes typically accompanying nematodes (e.g. fungi, rotifers, tardigrades). An analysis of real environmental samples revealed the presence of chimeras for all eukaryotic taxa in patterns similar to that observed in artificial nematode communities. This information warrants caution for biodiversity studies utilizing a step of PCR amplification of complex DNA samples. When unrecognized, generated abundant chimeric sequences falsely overestimate eukaryotic biodiversity. PMID:23482827

  15. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    PubMed

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  16. Microbial Community Composition and Dynamics of Moving Bed Biofilm Reactor Systems Treating Municipal Sewage

    PubMed Central

    Turner, Susan J.

    2012-01-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined usin