Science.gov

Sample records for eukaryotic genes derived

  1. Rooting the eukaryote tree by using a derived gene fusion.

    PubMed

    Stechmann, Alexandra; Cavalier-Smith, Thomas

    2002-07-05

    Single-gene trees have failed to locate the root of the eukaryote tree because of systematic biases in sequence evolution. Structural genetic data should yield more reliable insights into deep phylogenetic relationships. We searched major protist groups for the presence or absence of a gene fusion in order to locate the root of the eukaryote tree. In striking contrast to previous molecular studies, we show that all eukaryote groups ancestrally with two cilia (bikonts) are evolutionarily derived. The root lies between bikonts and opisthokonts (animals, Fungi, Choanozoa). Amoebozoa either diverged even earlier or are sister of bikonts or (less likely) opisthokonts.

  2. Horizontal gene transfer in eukaryotes: The weak-link model

    PubMed Central

    Huang, Jinling

    2013-01-01

    The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes. PMID:24037739

  3. Horizontal gene transfer in eukaryotes: the weak-link model.

    PubMed

    Huang, Jinling

    2013-10-01

    The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes.

  4. How eukaryotic genes are transcribed

    PubMed Central

    Venters, Bryan J.; Pugh, B. Franklin

    2009-01-01

    Summary Regulation of eukaryotic gene expression is far more complex than one might have imagined thirty years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: 1) a well-defined organization of nucleosomes and modification states at most genes, 2) regulatory networks of sequence-specific transcription factors, 3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II, and 4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation. PMID:19514890

  5. Endosymbiotic origin and differential loss of eukaryotic genes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Sousa, Filipa L; Lockhart, Peter J; Bryant, David; Hazkani-Covo, Einat; McInerney, James O; Landan, Giddy; Martin, William F

    2015-08-27

    Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.

  6. Amplification and characterization of eukaryotic structural genes.

    PubMed

    Maniatis, T; Efstratiadis, A; Sim, G K; Kafatos, F

    1978-05-01

    An approach to the study of eukaryotic structural genes which are differentially expressed during development is described. This approach involves the isolation and amplification of mRNA sequences by in vitro conversion of mRNA to double-stranded cDNA followed by molecular cloning in bacterial plasmids. This procedure provides highly specific hybridization probes that can be used to identify genes and their contiguous DNA sequences in genomic DNA, and to detect specific RNA transcripts during development. The nature of the method allows the isolation of individual mRNA sequences from a complex population of molecules at different stages of development.

  7. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  8. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    PubMed Central

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic—and plant and algal—lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller’s ratchet—the origin of eukaryotic recombination, or sex—might have required surprisingly little evolutionary innovation. PMID:25733873

  9. Massive expansion of the calpain gene family in unicellular eukaryotes

    PubMed Central

    2012-01-01

    Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes. PMID:23020305

  10. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    PubMed Central

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  11. Patterns of intron gain and conservation in eukaryotic genes

    PubMed Central

    Carmel, Liran; Rogozin, Igor B; Wolf, Yuri I; Koonin, Eugene V

    2007-01-01

    Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed sharing of intron positions

  12. The effect of negative autoregulation on eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; Murphy, Kevin; Josic, Kresimir; Balázsi, G. Ábor

    2009-03-01

    Negative autoregulation is a frequent motif in gene regulatory networks, which has been studied extensively in prokaryotes. Nevertheless, some effects of negative feedback on gene expression in eukaryotic transcriptional networks remain unknown. We studied how the strength of negative feedback regulation affects the characteristics of gene expression in yeast cells carrying synthetic transcriptional cascades. We observed a drastic reduction of gene expression noise and a change in the shape of the dose-response curve. We explained these experimentally observed effects by stochastic simulations and a simple set of algebraic equations.

  13. Complex Patterns of Gene Fission in the Eukaryotic Folate Biosynthesis Pathway

    PubMed Central

    Maguire, Finlay; Henriquez, Fiona L.; Leonard, Guy; Dacks, Joel B.; Brown, Matthew W.; Richards, Thomas A.

    2014-01-01

    Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii. PMID:25252772

  14. yrGATE: a web-based gene-structure annotation tool for the identification and dissemination of eukaryotic genes.

    PubMed

    Wilkerson, Matthew D; Schlueter, Shannon D; Brendel, Volker

    2006-01-01

    Your Gene structure Annotation Tool for Eukaryotes (yrGATE) provides an Annotation Tool and Community Utilities for worldwide web-based community genome and gene annotation. Annotators can evaluate gene structure evidence derived from multiple sources to create gene structure annotations. Administrators regulate the acceptance of annotations into published gene sets. yrGATE is designed to facilitate rapid and accurate annotation of emerging genomes as well as to confirm, refine, or correct currently published annotations. yrGATE is highly portable and supports different standard input and output formats. The yrGATE software and usage cases are available at http://www.plantgdb.org/prj/yrGATE.

  15. Serial analysis of gene expression in eukaryotic pathogens.

    PubMed

    Kronstad, James W

    2006-09-01

    The tag-based method of serial analysis of gene expression (SAGE) has been used to measure mRNA abundance and differential expression in a variety of organisms including several parasites and fungal pathogens. SAGE is based on the collection of short sequence tags as a measure of transcript abundance and the method provides an alternative, and in some instances, complementary approach to array-based methods of measuring differential gene expression. These methods are being used to improve our molecular understanding of the pathogenesis of eukaryotic microbes and SAGE in particular presents valuable opportunities for gene discovery and genome annotation. For eukaryotic pathogens, the SAGE method has been employed for the parasites Plasmodium falciparum, Toxoplasma gondii and Giardia lamblia, as well as fungal pathogens of plants (Magnaporthe grisea, Blumeria graminis, Ustilago maydis) and humans (Cryptococcus neoformans, Coccidiodes posadasii, Trichophyton rubrum). The accumulating information promises to speed the identification of key pathogen functions for virulence and proliferation in the host with the hope that some of these will represent important targets for drug and vaccine development.

  16. Gene expression in the unicellular eukaryote Trichomonas vaginalis.

    PubMed

    Smith, Alias; Johnson, Patricia

    2011-01-01

    Control of gene expression is essential to the survival of an organism. Here, we review the current state of gene expression research in Trichomonas vaginalis, with particular attention to the progress made since the release of the genome of this unicellular parasite in 2007. The availability of genome data has allowed the study of an array of biological processes, including the role of small nuclear RNAs involved in the splicing of introns, the components of transcriptional complexes and the presence of discrete DNA elements involved in directing transcription. Both evolutionarily conserved and novel features of T. vaginalis serve to inspire further questions aimed at determining the molecular mechanisms used to regulate gene expression in this highly divergent eukaryote.

  17. Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes.

    PubMed

    Dávila López, Marcela; Martínez Guerra, Juan José; Samuelsson, Tore

    2010-05-14

    The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control.

  18. Analysis of Gene Order Conservation in Eukaryotes Identifies Transcriptionally and Functionally Linked Genes

    PubMed Central

    Dávila López, Marcela; Martínez Guerra, Juan José; Samuelsson, Tore

    2010-01-01

    The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control. PMID:20498846

  19. Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    PubMed Central

    O'Toole, Nicholas; Barboza, Perry S.; Ungerfeld, Emilio; Leigh, Mary Beth; Selinger, L. Brent; Butler, Greg; Tsang, Adrian; McAllister, Tim A.; Forster, Robert J.

    2011-01-01

    Background Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. Methodology/Principal Findings In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. Conclusions/Significance The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes. PMID:21655220

  20. Evolution of the multifaceted eukaryotic akirin gene family

    PubMed Central

    Macqueen, Daniel J; Johnston, Ian A

    2009-01-01

    Background Akirins are nuclear proteins that form part of an innate immune response pathway conserved in Drosophila and mice. This studies aim was to characterise the evolution of akirin gene structure and protein function in the eukaryotes. Results akirin genes are present throughout the metazoa and arose before the separation of animal, plant and fungi lineages. Using comprehensive phylogenetic analysis, coupled with comparisons of conserved synteny and genomic organisation, we show that the intron-exon structure of metazoan akirin genes was established prior to the bilateria and that a single proto-orthologue duplicated in the vertebrates, before the gnathostome-agnathan separation, producing akirin1 and akirin2. Phylogenetic analyses of seven vertebrate gene families with members in chromosomal proximity to both akirin1 and akirin2 were compatible with a common duplication event affecting the genomic neighbourhood of the akirin proto-orthologue. A further duplication of akirins occurred in the teleost lineage and was followed by lineage-specific patterns of paralogue loss. Remarkably, akirins have been independently characterised by five research groups under different aliases and a comparison of the available literature revealed diverse functions, generally in regulating gene expression. For example, akirin was characterised in arthropods as subolesin, an important growth factor and in Drosophila as bhringi, which has an essential myogenic role. In vertebrates, akirin1 was named mighty in mice and was shown to regulate myogenesis, whereas akirin2 was characterised as FBI1 in rats and promoted carcinogenesis, acting as a transcriptional repressor when bound to a 14-3-3 protein. Both vertebrate Akirins have evolved under comparably strict constraints of purifying selection, although a likelihood ratio test predicted that functional divergence has occurred between paralogues. Bayesian and maximum likelihood tests identified amino-acid positions where the rate of

  1. The frustrated gene: origins of eukaryotic gene expression

    PubMed Central

    Madhani, Hiten D.

    2014-01-01

    Eukarytotic gene expression is frustrated by a series of steps that are generally not observed in prokaryotes and are therefore not essential for the basic chemistry of transcription and translation. Their evolution may have been driven by the need to defend against parasitic nucleic acids. PMID:24209615

  2. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.

    PubMed

    Koonin, Eugene V; Csuros, Miklos; Rogozin, Igor B

    2013-01-01

    In eukaryotes, protein-coding sequences are interrupted by non-coding sequences known as introns. During mRNA maturation, introns are excised by the spliceosome and the coding regions, exons, are spliced to form the mature coding region. The intron densities widely differ between eukaryotic lineages, from 6 to 7 introns per kb of coding sequence in vertebrates, some invertebrates and green plants, to only a few introns across the entire genome in many unicellular eukaryotes. Evolutionary reconstructions using maximum likelihood methods suggest intron-rich ancestors for each major group of eukaryotes. For the last common ancestor of animals, the highest intron density of all extant and extinct eukaryotes was inferred, at 120-130% of the human intron density. Furthermore, an intron density within 53-74% of the human values was inferred for the last eukaryotic common ancestor. Accordingly, evolution of eukaryotic genes in all lines of descent involved primarily intron loss, with substantial gain only at the bases of several branches including plants and animals. These conclusions have substantial biological implications indicating that the common ancestor of all modern eukaryotes was a complex organism with a gene architecture resembling those in multicellular organisms. Alternative splicing most likely initially appeared as an inevitable result of splicing errors and only later was employed to generate structural and functional diversification of proteins.

  3. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    PubMed

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  4. Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes.

    PubMed

    Bruto, Maxime; Prigent-Combaret, Claire; Luis, Patricia; Moënne-Loccoz, Yvan; Muller, Daniel

    2014-08-22

    Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes-as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude.

  5. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments.

    PubMed

    Haas, Brian J; Salzberg, Steven L; Zhu, Wei; Pertea, Mihaela; Allen, Jonathan E; Orvis, Joshua; White, Owen; Buell, C Robin; Wortman, Jennifer R

    2008-01-11

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  6. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    SciTech Connect

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  7. Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes.

    PubMed

    Ternes, Chad M; Schönknecht, Gerald

    2014-09-01

    NAD(+) is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD(+) biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD(+) biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD(+) biosynthesis in eukaryotes was shaped by numerous gene transfers.

  8. Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes

    PubMed Central

    Bruto, Maxime; Prigent-Combaret, Claire; Luis, Patricia; Moënne-Loccoz, Yvan; Muller, Daniel

    2014-01-01

    Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes—as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude. PMID:24990676

  9. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.

    PubMed

    Archibald, J M; Logsdon, J M; Doolittle, W F

    2000-10-01

    Chaperonins are oligomeric protein-folding complexes which are divided into two distantly related structural classes. Group I chaperonins (called GroEL/cpn60/hsp60) are found in bacteria and eukaryotic organelles, while group II chaperonins are present in archaea and the cytoplasm of eukaryotes (called CCT/TriC). While archaea possess one to three chaperonin subunit-encoding genes, eight distinct CCT gene families (paralogs) have been characterized in eukaryotes. We are interested in determining when during eukaryotic evolution the multiple gene duplications producing the CCT subunits occurred. We describe the sequence and phylogenetic analysis of five CCT genes from TRICHOMONAS: vaginalis and seven from GIARDIA: lamblia, representatives of amitochondriate protist lineages thought to have diverged early from other eukaryotes. Our data show that the gene duplications producing the eight CCT paralogs took place prior to the organismal divergence of TRICHOMONAS: and GIARDIA: from other eukaryotes. Thus, these divergent protists likely possess completely hetero-oligomeric CCT complexes like those in yeast and mammalian cells. No close phylogenetic relationship between the archaeal chaperonins and specific CCT subunits was observed, suggesting that none of the CCT gene duplications predate the divergence of archaea and eukaryotes. The duplications producing the CCTdelta and CCTepsilon subunits, as well as CCTalpha, CCTbeta, and CCTeta, are the most recent in the CCT gene family. Our analyses show significant differences in the rates of evolution of archaeal chaperonins compared with the eukaryotic CCTs, as well as among the different CCT subunits themselves. We discuss these results in light of current views on the origin, evolution, and function of CCT complexes.

  10. Horizontal transfers of transposable elements in eukaryotes: The flying genes.

    PubMed

    Panaud, Olivier

    2016-01-01

    Transposable elements (TEs) are the major components of eukaryotic genomes. Their propensity to densely populate and in some cases invade the genomes of plants and animals is in contradiction with the fact that transposition is strictly controlled by several molecular pathways acting at either transcriptional or post-transcriptional levels. Horizontal transfers, defined as the transmission of genetic material between sexually isolated species, have long been considered as rare phenomena. Here, we show that the horizontal transfers of transposable elements (HTTs) are very frequent in ecosystems. The exact mechanisms of such transfers are not well understood, but species involved in close biotic interactions, like parasitism, show a propensity to exchange genetic material horizontally. We propose that HTTs allow TEs to escape the silencing machinery of their host genome and may therefore be an important mechanism for their survival and their dissemination in eukaryotes.

  11. Translational Control of Viral Gene Expression in Eukaryotes

    PubMed Central

    Gale, Michael; Tan, Seng-Lai; Katze, Michael G.

    2000-01-01

    As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell. PMID:10839817

  12. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    PubMed Central

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  13. Relationship of eukaryotic DNA replication to committed gene expression: general theory for gene control.

    PubMed Central

    Villarreal, L P

    1991-01-01

    The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and

  14. Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube?

    PubMed

    Danchin, Etienne G J

    2016-11-18

    Lateral gene transfer (LGT) is the transmission of genes, sometimes across species barriers, outwith the classic vertical inheritance from parent to offspring. LGT is recognized as an important phenomenon that has shaped the genomes and biology of prokaryotes. Whether LGT in eukaryotes is important and widespread remains controversial. A study in BMC Biology concludes that LGT in eukaryotes is neither continuous nor prevalent and suggests a rule of thumb for judging when apparent LGT may reflect contamination.See research article: http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0315-9 .

  15. The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter.

    PubMed

    Tinikul, Ruchanok; Thotsaporn, Kittisak; Thaveekarn, Wichit; Jitrapakdee, Sarawut; Chaiyen, Pimchai

    2012-12-31

    Bacterial luciferase from Vibrio campbellii is a thermostable enzyme with an in vitro thermal inactivation half-life of ~1020 min at 37°C. The enzyme also binds tightly to reduced FMN. In this study, a V. campbellii fusion luciferase construct in which the α and β subunits are linked with a decapeptide was made and characterized. In general, the overall enzymatic properties of the two enzymes are similar. Expression of the enzymes in Escherichia coli demonstrated that the V. campbellii fusion luciferase emits less light than the native luciferase, but still emits a much greater amount of light than native luciferase from Vibrio harveyi and Photobacterium leiognathi TH1. The intensity of light emitted by the V. campbellii fusion luciferase was more than 80-fold greater than that from the V. harveyi native luciferase when expressed at 37°C. Biochemical characterization has shown that the V. campbellii fusion luciferase also retains a high binding affinity for reduced flavin mononucleotide and high thermostability. The levels of bioluminescence emitted by the V. campbellii fusion luciferase expressed in HEK293T cells reached ~1×10(6) Relative Light Units/mg total protein. These findings suggest that the V. campbellii fusion luciferase is a promising candidate for further development as a luciferase-based reporter for eukaryotic systems.

  16. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes.

    PubMed

    Li, Ting; Huang, Sheng; Zhao, Xuefeng; Wright, David A; Carpenter, Susan; Spalding, Martin H; Weeks, Donald P; Yang, Bing

    2011-08-01

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  17. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    SciTech Connect

    Li, T; Huang, S; Zhao, XF; Wright, DA; Carpenter, S; Spalding, MH; Weeks, DP; Yang, B

    2011-08-08

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  18. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.

    PubMed

    Matys, V; Kel-Margoulis, O V; Fricke, E; Liebich, I; Land, S; Barre-Dirrie, A; Reuter, I; Chekmenev, D; Krull, M; Hornischer, K; Voss, N; Stegmaier, P; Lewicki-Potapov, B; Saxel, H; Kel, A E; Wingender, E

    2006-01-01

    The TRANSFAC database on transcription factors, their binding sites, nucleotide distribution matrices and regulated genes as well as the complementing database TRANSCompel on composite elements have been further enhanced on various levels. A new web interface with different search options and integrated versions of Match and Patch provides increased functionality for TRANSFAC. The list of databases which are linked to the common GENE table of TRANSFAC and TRANSCompel has been extended by: Ensembl, UniGene, EntrezGene, HumanPSD and TRANSPRO. Standard gene names from HGNC, MGI and RGD, are included for human, mouse and rat genes, respectively. With the help of InterProScan, Pfam, SMART and PROSITE domains are assigned automatically to the protein sequences of the transcription factors. TRANSCompel contains now, in addition to the COMPEL table, a separate table for detailed information on the experimental EVIDENCE on which the composite elements are based. Finally, for TRANSFAC, in respect of data growth, in particular the gain of Drosophila transcription factor binding sites (by courtesy of the Drosophila DNase I footprint database) and of Arabidopsis factors (by courtesy of DATF, Database of Arabidopsis Transcription Factors) has to be stressed. The here described public releases, TRANSFAC 7.0 and TRANSCompel 7.0, are accessible under http://www.gene-regulation.com/pub/databases.html.

  19. Three Dimensional Organization of Genome Might Have Guided the Dynamics of Gene Order Evolution in Eukaryotes.

    PubMed

    Bagadia, Meenakshi; Singh, Arashdeep; Singh Sandhu, Kuljeet

    2016-04-06

    In eukaryotes, genes are nonrandomly organized into short gene-dense regions or "gene-clusters" interspersed by long gene-poor regions. How these gene-clusters have evolved is not entirely clear. Gene duplication may not account for all the gene-clusters since the genes in most of the clusters do not exhibit significant sequence similarity. In this study, using genome-wide data sets from budding yeast, fruit-fly, and human, we show that: 1) long-range evolutionary repositioning of genes strongly associate with their spatial proximity in the nucleus; 2) presence of evolutionary DNA break-points at involved loci hints at their susceptibility to undergo long-range genomic rearrangements; and 3) correlated epigenetic and transcriptional states of engaged genes highlight the underlying evolutionary constraints. The significance of observation 1, 2, and 3 are particularly stronger for the instances of inferred evolutionary gain, as compared with loss, of linear gene-clustering. These observations suggest that the long-range genomic rearrangements guided through 3D genome organization might have contributed to the evolution of gene order. We further hypothesize that the evolution of linear gene-clusters in eukaryotic genomes might have been mediated through spatial interactions among distant loci in order to optimize co-ordinated regulation of genes. We model this hypothesis through a heuristic model of gene-order evolution.

  20. Gene flow and biological conflict systems in the origin and evolution of eukaryotes

    PubMed Central

    Aravind, L.; Anantharaman, Vivek; Zhang, Dapeng; de Souza, Robson F.; Iyer, Lakshminarayan M.

    2012-01-01

    The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary “nurseries” for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations. PMID

  1. Gene targeting for chromosome engineering applications in eukaryotic cells.

    PubMed

    Lyznik, Leszek A; Dress, Virginia

    2008-01-01

    As biotechnology advances, there is an increasing need to develop new technologies that may assist in more precise genetic engineering manipulations. Whether a placement of single genes in the proper chromosomal context, stacking a number of genes in the same chromosomal locus, rearrangement of existing chromosomal elements, or a global reconfiguration of the chromosomal structures is contemplated, the new genetic tools being developed provide technical capabilities to achieve goals that were only theoretical not long ago. We use examples of recent patent literature (issued patents and published patent applications) to illustrate trends in this fast advancing area of genetic technology. If one wants to engage in the development and utilization of such technologies, the complexity of genetic manipulations requires a careful evaluation and navigation across the legal/patent landscape of chromosomal modification/remodeling. While this review is mostly focused on the basic laboratory tools of chromosomal manipulations, their specific applications for biomedical, pharmaceutical, or agricultural purposes may deserve an additional compilation.

  2. Eukaryotic UDP-galactopyranose mutase (GLF gene) in microbial and metazoal pathogens.

    PubMed

    Beverley, Stephen M; Owens, Katherine L; Showalter, Melissa; Griffith, Cara L; Doering, Tamara L; Jones, Victoria C; McNeil, Michael R

    2005-06-01

    Galactofuranose (Gal(f)) is a novel sugar absent in mammals but present in a variety of pathogenic microbes, often within glycoconjugates that play critical roles in cell surface formation and the infectious cycle. In prokaryotes, Gal(f) is synthesized as the nucleotide sugar UDP-Gal(f) by UDP-galactopyranose mutase (UGM) (gene GLF). Here we used a combinatorial bioinformatics screen to identify a family of candidate eukaryotic GLFs that had previously escaped detection. GLFs from three pathogens, two protozoa (Leishmania major and Trypanosoma cruzi) and one fungus (Cryptococcus neoformans), had UGM activity when expressed in Escherichia coli and assayed in vivo and/or in vitro. Eukaryotic GLFs are closely related to each other but distantly related to prokaryotic GLFs, showing limited conservation of core residues around the substrate-binding site and flavin adenine dinucleotide binding domain. Several eukaryotes not previously investigated for Gal(f) synthesis also showed strong GLF homologs with conservation of key residues. These included other fungi, the alga Chlamydomonas and the algal phleovirus Feldmannia irregularis, parasitic nematodes (Brugia, Onchocerca, and Strongyloides) and Caenorhabditis elegans, and the urochordates Halocynthia and Cionia. The C. elegans open reading frame was shown to encode UGM activity. The GLF phylogenetic distribution suggests that Gal(f) synthesis may occur more broadly in eukaryotes than previously supposed. Overall, GLF/Gal(f) synthesis in eukaryotes appears to occur with a disjunct distribution and often in pathogenic species, similar to what is seen in prokaryotes. Thus, UGM inhibition may provide an attractive drug target in those eukaryotes where Gal(f) plays critical roles in cellular viability and virulence.

  3. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    SciTech Connect

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-09-27

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  4. [Establishment of a novel biotin-inducible eukaryotic gene regulation system].

    PubMed

    Ye, Lingling; Hong, Liu; Li, Shichong; Wang, Qiwei; Lan, Sanchun; Chen, Zhaolie

    2014-08-01

    To establish a gene regulation system compatible with biopharmaceutical industry and gene therapy, we constructed a fusion protein of biotin ligase from Bacillus subtilis (BS-BirA) and the trans-activation domain, and used its expression vector as the regulatory vector. Meanwhile, BS-BirA-specific operators were ligated upstream of attenuated CMV promoter to obtain the response vector. In this way, a novel eukaryotic gene regulation system responsive to biotin was established and named BS-Biotin-On system. BS-Biotin-On system was further investigated with the enhancing green fluorescent protein (EGFP) as the reporter gene. The results showed that our system was superior to the current similar regulation system in its higher induction ratio, and that the expression of interest gene could be tuned in a rapid and efficient manner by changing the biotin concentrations in the cultures, Our results show that the established system may provide a new alternative for the exogenous gene modulation.

  5. WebAUGUSTUS--a web service for training AUGUSTUS and predicting genes in eukaryotes.

    PubMed

    Hoff, Katharina J; Stanke, Mario

    2013-07-01

    The prediction of protein coding genes is an important step in the annotation of newly sequenced and assembled genomes. AUGUSTUS is one of the most accurate tools for eukaryotic gene prediction. Here, we present WebAUGUSTUS, a web interface for training AUGUSTUS and predicting genes with AUGUSTUS. Depending on the needs of the user, WebAUGUSTUS generates training gene structures automatically. Besides a genome file, either a file with expressed sequence tags or a file with protein sequences is required for this step. Alternatively, it is possible to submit an externally generated training gene structure file and a genome file. The web service optimizes AUGUSTUS parameters and predicts genes with those parameters. WebAUGUSTUS is available at http://bioinf.uni-greifswald.de/webaugustus.

  6. Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution.

    PubMed

    Raj, Dibyendu; Ghosh, Esha; Mukherjee, Avik K; Nozaki, Tomoyoshi; Ganguly, Sandipan

    2014-02-10

    Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production. To study differential gene expression under three types of oxidative stress, a Giardia genomic DNA array was constructed and hybridized with labeled cDNA of cells with or without stress. The transcriptomic data has been analyzed and further validated using real time PCR. We identified that out of 9216 genes represented on the array, more than 200 genes encoded proteins with functions in metabolism, oxidative stress management, signaling, reproduction and cell division, programmed cell death and cytoskeleton. We recognized genes modulated by at least ≥ 2 fold at a significant time point in response to oxidative stress. The study has highlighted the genes that are differentially expressed during the three experimental conditions which regulate the stress management pathway differently to achieve redox homeostasis. Identification of some unique genes in oxidative stress regulation may help in new drug designing for this common enteric parasite prone to

  7. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    NASA Technical Reports Server (NTRS)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  8. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  9. New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution.

    PubMed

    Ramadas, Rohini; Thattai, Mukund

    2013-06-04

    Extant eukaryotic cells have a dynamic traffic network that consists of diverse membrane-bound organelles exchanging matter via vesicles. This endomembrane system arose and diversified during a period characterized by massive expansions of gene families involved in trafficking after the acquisition of a mitochondrial endosymbiont by a prokaryotic host cell >1.8 billion years ago. Here we investigate the mechanistic link between gene duplication and the emergence of new nonendosymbiotic organelles, using a minimal biophysical model of traffic. Our model incorporates membrane-bound compartments, coat proteins and adaptors that drive vesicles to bud and segregate cargo from source compartments, and SNARE proteins and associated factors that cause vesicles to fuse into specific destination compartments. In simulations, arbitrary numbers of compartments with heterogeneous initial compositions segregate into a few compositionally distinct subsets that we term organelles. The global structure of the traffic system (i.e., the number, composition, and connectivity of organelles) is determined completely by local molecular interactions. On evolutionary timescales, duplication of the budding and fusion machinery followed by loss of cross-interactions leads to the emergence of new organelles, with increased molecular specificity being necessary to maintain larger organellar repertoires. These results clarify potential modes of early eukaryotic evolution as well as more recent eukaryotic diversification.

  10. ANALYSIS OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE1

    PubMed Central

    Chan, Cheong Xin; Soares, Marcelo B.; Bonaldo, Maria F.; Wisecaver, Jennifer H.; Hackett, Jeremiah D.; Anderson, Donald M.; Erdner, Deana L.; Bhattacharya, Debashish

    2012-01-01

    Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate-specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14-17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2-4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome-wide approaches to infer the tree of microbial eukaryotes. PMID:23066170

  11. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist

    PubMed Central

    Katz, Laura A.

    2015-01-01

    While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly for reconstructing deep nodes that are difficult to recover with traditional phylogenetic methods. We sought to identify interdomain LGTs by using a phylogenomic pipeline that generated 13 465 single gene trees and included up to 487 eukaryotes, 303 bacteria and 118 archaea. Our goals include searching for LGTs that unite major eukaryotic clades, and describing the relative contributions of LGT and EGT across the eukaryotic tree of life. Given the difficulties in interpreting single gene trees that aim to capture the approximately 1.8 billion years of eukaryotic evolution, we focus on presence–absence data to identify interdomain transfer events. Specifically, we identify 1138 genes found only in prokaryotes and representatives of three or fewer major clades of eukaryotes (e.g. Amoebozoa, Archaeplastida, Excavata, Opisthokonta, SAR and orphan lineages). The majority of these genes have phylogenetic patterns that are consistent with recent interdomain LGTs and, with the notable exception of EGTs involving photosynthetic eukaryotes, we detect few ancient interdomain LGTs. These analyses suggest that LGTs have probably occurred throughout the history of eukaryotes, but that ancient events are not maintained unless they are associated with endosymbiotic gene transfer among photosynthetic lineages. PMID:26323756

  12. Polycistronic peptide coding genes in eukaryotes--how widespread are they?

    PubMed

    Tautz, Diethard

    2009-01-01

    The classical textbook assumption for the structure of an eukaryotic gene is that it codes for a single polypeptide of more than 100 amino acids in length. This is also the implicit assumption in most gene annotation pipelines. A gene family has now been discovered in insects that shows that an eukaryotic mRNA can code for peptides as short as eleven amino acids and that a single mRNA can code for several such peptides. This raises the question whether short open reading frames might also have a functional potential in other mRNAs, in particular those that occur in the 5'-UTR of many mRNAs. A number of these have been shown to act in cis to regulate the translation of the main open reading frame of the mRNA. But there may be others that could act in trans on other biological processes. The question of how many peptide-coding genes may exist is therefore worth revisiting. This poses new bioinformatic challenges that can only be resolved through multiple genome comparisons within a range of evolutionary distances.

  13. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    PubMed

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species.

  14. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume

    PubMed Central

    Allen, Andrew E.; Carpenter, Edward J.; Coles, Victoria J.; Crump, Byron C.; Doherty, Mary; Foster, Rachel A.; Goes, Joaquim I.; Gomes, Helga R.; Hood, Raleigh R.; McCrow, John P.; Montoya, Joseph P.; Moustafa, Ahmed; Satinsky, Brandon M.; Sharma, Shalabh; Smith, Christa B.; Yager, Patricia L.; Paul, John H.

    2016-01-01

    The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as

  15. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?

    PubMed Central

    Koonin, Eugene V.

    2015-01-01

    The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until

  16. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?

    PubMed

    Koonin, Eugene V

    2015-09-26

    The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this 'dispersed eukaryome' implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently.

  17. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  18. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes.

  19. Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank.

    PubMed

    Piovesan, Allison; Caracausi, Maria; Ricci, Marco; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2015-12-01

    We have developed GeneBase, a full parser of the National Center for Biotechnology Information (NCBI) Gene database, which generates a fully structured local database with an intuitive user-friendly graphic interface for personal computers. Features of all the annotated eukaryotic genes are accessible through three main software tables, including for each entry details such as the gene summary, the gene exon/intron structure and the specific Gene Ontology attributions. The structuring of the data, the creation of additional calculation fields and the integration with nucleotide sequences allow users to make many types of comparisons and calculations that are useful for data retrieval and analysis. We provide an original example analysis of the existing introns across all the available species, through which the classic biological problem of the 'minimal intron' may find a solution using available data. Based on all currently available data, we can define the shortest known eukaryotic GT-AG intron length, setting the physical limit at the 30 base pair intron belonging to the human MST1L gene. This 'model intron' will shed light on the minimal requirement elements of recognition used for conventional splicing functioning. Remarkably, this size is indeed consistent with the sum of the splicing consensus sequence lengths.

  20. Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank

    PubMed Central

    Piovesan, Allison; Caracausi, Maria; Ricci, Marco; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2015-01-01

    We have developed GeneBase, a full parser of the National Center for Biotechnology Information (NCBI) Gene database, which generates a fully structured local database with an intuitive user-friendly graphic interface for personal computers. Features of all the annotated eukaryotic genes are accessible through three main software tables, including for each entry details such as the gene summary, the gene exon/intron structure and the specific Gene Ontology attributions. The structuring of the data, the creation of additional calculation fields and the integration with nucleotide sequences allow users to make many types of comparisons and calculations that are useful for data retrieval and analysis. We provide an original example analysis of the existing introns across all the available species, through which the classic biological problem of the ‘minimal intron’ may find a solution using available data. Based on all currently available data, we can define the shortest known eukaryotic GT-AG intron length, setting the physical limit at the 30 base pair intron belonging to the human MST1L gene. This ‘model intron’ will shed light on the minimal requirement elements of recognition used for conventional splicing functioning. Remarkably, this size is indeed consistent with the sum of the splicing consensus sequence lengths. PMID:26581719

  1. DNA elements regulating alpha1-tubulin gene induction during regeneration of eukaryotic flagella.

    PubMed

    Periz, G; Keller, L R

    1997-07-01

    Eukaryotic flagella are complex organelles composed of more than 200 polypeptides. Little is known about the regulatory mechanisms governing synthesis of the flagellar protein subunits and their assembly into this complex organelle. The unicellular green alga Chlamydomonas reinhardtii is the premier experimental model system for studying such cellular processes. When acid shocked, C. reinhardtii excises its flagella, rapidly and coordinately activates transcription of a set of flagellar genes, and ultimately regenerates a new flagellar pair. To define functionally the regulatory sequences that govern induction of the set of genes after acid shock, we analyzed the alpha1-tubulin gene promoter. To simplify transcriptional analysis in vivo, we inserted the selectable marker gene ARG7 on the same plasmid with a tagged alpha1-tubulin gene and stably introduced it into C. reinhardtii cells. By deletion of various sequences, two promoter regions (-176 to -122 and -85 to -16) were identified as important for induction of the tagged alpha1-tubulin gene. Deleting the region between -176 and -122 from the transcription start site resulted in an induction level which was only 45 to 70% of that of the resident gene. Deleting the region upstream of -56 resulted in a complete loss of inducibility without affecting basal expression. The alpha1-tubulin promoter region from -85 to -16 conferred partial acid shock inducibility to an arylsulfatase (ARS) reporter gene. These results show that induction of the alpha1-tubulin gene after acid shock is a complex response that requires diverse sequence elements.

  2. A Metastate HMM with Application to Gene Structure Identification in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Winters-Hilt, Stephen; Baribault, Carl

    2010-12-01

    We introduce a generalized-clique hidden Markov model (HMM) and apply it to gene finding in eukaryotes ( C. elegans). We demonstrate a HMM structure identification platform that is novel and robustly-performing in a number of ways. The generalized clique HMM begins by enlarging the primitive hidden states associated with the individual base labels (as exon, intron, or junk) to substrings of primitive hidden states, or footprint states, having a minimal length greater than the footprint state length. The emissions are likewise expanded to higher order in the fundamental joint probability that is the basis of the generalized-clique, or "metastate", HMM. We then consider application to eukaryotic gene finding and show how such a metastate HMM improves the strength of coding/noncoding-transition contributions to gene-structure identification. We will describe situations where the coding/noncoding-transition modeling can effectively recapture the exon and intron heavy tail distribution modeling capability as well as manage the exon-start needle-in-the-haystack problem. In analysis of the C. elegans genome we show that the sensitivity and specificity (SN,SP) results for both the individual-state and full-exon predictions are greatly enhanced over the standard HMM when using the generalized-clique HMM.

  3. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints.

    PubMed

    Stanke, Mario; Morgenstern, Burkhard

    2005-07-01

    We present a WWW server for AUGUSTUS, a software for gene prediction in eukaryotic genomic sequences that is based on a generalized hidden Markov model, a probabilistic model of a sequence and its gene structure. The web server allows the user to impose constraints on the predicted gene structure. A constraint can specify the position of a splice site, a translation initiation site or a stop codon. Furthermore, it is possible to specify the position of known exons and intervals that are known to be exonic or intronic sequence. The number of constraints is arbitrary and constraints can be combined in order to pin down larger parts of the predicted gene structure. The result then is the most likely gene structure that complies with all given user constraints, if such a gene structure exists. The specification of constraints is useful when part of the gene structure is known, e.g. by expressed sequence tag or protein sequence alignments, or if the user wants to change the default prediction. The web interface and the downloadable stand-alone program are available free of charge at http://augustus.gobics.de/submission.

  4. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    PubMed

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation.

  5. The role of horizontal gene transfer in kleptoplastidy and the establishment of photosynthesis in the eukaryotes

    PubMed Central

    Pillet, Loïc

    2013-01-01

    Found in different eukaryotic lineages, kleptoplastidy is the ability to sequester chloroplasts from algal preys that are ingested and partially digested. While most of the genetic information required for the activity and maintenance of the kleptoplastids disappeared with the digestion of the algal nuclei, the photosynthetic organelles remain active during extended period of time. Many different hypotheses have been proposed to explain the longevity of the kleptoplastids within their host. The most popular one involves Horizontal Gene Transfer (HGT) from the algal genome to the host nucleus. In order to test this hypothesis, transcriptome-based analyses have been performed on different kleptoplastidic organisms during the past few years. However, the variability of the results obtained does not allow drawing a convincing conclusion regarding the precise role of HGT in kleptoplastidy. Understanding the mechanism that allow persistence of the plastids is crucial, not only for the characterization of kleptoplastidy, but also for important evolutionary questions surrounding endosymbiotic events and the emergence and spread of photosynthesis in the eukaryotes. Here, I discuss alternative theories that could explain the longevity of sequestered plastids in their host, with special focus on the simplest chloroplast stability hypothesis. PMID:23914312

  6. The regulation of gene expression in eukaryotes: bistability and oscillations in repressilator models.

    PubMed

    Dilão, Rui

    2014-01-07

    To model the regulation of gene expression in eukaryotes by transcriptional activators and repressors, we introduce delays in conjugation with the mass action law. Delays are associated with the time gap between the mRNA transcription in the nucleoplasm and the protein synthesis in the cytoplasm. After re-parameterisation of the m-repressilator model with the Hill cooperative parameter n, for n=1, the m-repressilator is deducible from the mass action law and, in the limit n→∞, it is a Boolean type model. With this embedding and with delays, if m is odd and n>1, we show that there is always a choice of parameters for which the m-repressilator model has sustained oscillations (limit cycles), implying that the 1-repressilator is the simplest genetic mechanism leading to sustained oscillations in eukaryotes. If m is even and n>1, there is always a choice of parameters for which the m-repressilator model has bistability.

  7. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.

    PubMed

    Damon, Coralie; Lehembre, Frédéric; Oger-Desfeux, Christine; Luis, Patricia; Ranger, Jacques; Fraissinet-Tachet, Laurence; Marmeisse, Roland

    2012-01-01

    Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)-0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a

  8. New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation

    PubMed Central

    McLysaght, Aoife; Guerzoni, Daniele

    2015-01-01

    The origin of novel protein-coding genes de novo was once considered so improbable as to be impossible. In less than a decade, and especially in the last five years, this view has been overturned by extensive evidence from diverse eukaryotic lineages. There is now evidence that this mechanism has contributed a significant number of genes to genomes of organisms as diverse as Saccharomyces, Drosophila, Plasmodium, Arabidopisis and human. From simple beginnings, these genes have in some instances acquired complex structure, regulated expression and important functional roles. New genes are often thought of as dispensable late additions; however, some recent de novo genes in human can play a role in disease. Rather than an extremely rare occurrence, it is now evident that there is a relatively constant trickle of proto-genes released into the testing ground of natural selection. It is currently unknown whether de novo genes arise primarily through an ‘RNA-first’ or ‘ORF-first’ pathway. Either way, evolutionary tinkering with this pool of genetic potential may have been a significant player in the origins of lineage-specific traits and adaptations. PMID:26323763

  9. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes

    PubMed Central

    Leśniewska, Ewa

    2017-01-01

    RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency. PMID:28228471

  10. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes.

    PubMed

    Leśniewska, Ewa; Boguta, Magdalena

    2017-02-01

    RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.

  11. FrameD: A flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences.

    PubMed

    Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick

    2003-07-01

    We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms.

  12. FrameD: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences

    PubMed Central

    Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick

    2003-01-01

    We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms. PMID:12824407

  13. Genomic distribution of AFLP markers relative to gene locations for different eukaryotic species

    PubMed Central

    2013-01-01

    Background Amplified fragment length polymorphism (AFLP) markers are frequently used for a wide range of studies, such as genome-wide mapping, population genetic diversity estimation, hybridization and introgression studies, phylogenetic analyses, and detection of signatures of selection. An important issue to be addressed for some of these fields is the distribution of the markers across the genome, particularly in relation to gene sequences. Results Using in-silico restriction fragment analysis of the genomes of nine eukaryotic species we characterise the distribution of AFLP fragments across the genome and, particularly, in relation to gene locations. First, we identify the physical position of markers across the chromosomes of all species. An observed accumulation of fragments around (peri) centromeric regions in some species is produced by repeated sequences, and this accumulation disappears when AFLP bands rather than fragments are considered. Second, we calculate the percentage of AFLP markers positioned within gene sequences. For the typical EcoRI/MseI enzyme pair, this ranges between 28 and 87% and is usually larger than that expected by chance because of the higher GC content of gene sequences relative to intergenic ones. In agreement with this, the use of enzyme pairs with GC-rich restriction sites substantially increases the above percentages. For example, using the enzyme system SacI/HpaII, 86% of AFLP markers are located within gene sequences in A. thaliana, and 100% of markers in Plasmodium falciparun. We further find that for a typical trait controlled by 50 genes of average size, if 1000 AFLPs are used in a study, the number of those within 1 kb distance from any of the genes would be only about 1–2, and only about 50% of the genes would have markers within that distance. Conclusions The high coverage of AFLP markers across the genomes and the high proportion of markers within or close to gene sequences make them suitable for genome scans and

  14. Ranking Gene Ontology terms for predicting non-classical secretory proteins in eukaryotes and prokaryotes.

    PubMed

    Huang, Wen-Lin

    2012-11-07

    Protein secretion is an important biological process for both eukaryotes and prokaryotes. Several sequence-based methods mainly rely on utilizing various types of complementary features to design accurate classifiers for predicting non-classical secretory proteins. Gene Ontology (GO) terms are increasing informative in predicting protein functions. However, the number of used GO terms is often very large. For example, there are 60,020 GO terms used in the prediction method Euk-mPLoc 2.0 for subcellular localization. This study proposes a novel approach to identify a small set of m top-ranked GO terms served as the only type of input features to design a support vector machine (SVM) based method Sec-GO to predict non-classical secretory proteins in both eukaryotes and prokaryotes. To evaluate the Sec-GO method, two existing methods and their used datasets are adopted for performance comparisons. The Sec-GO method using m=436 GO terms yields an independent test accuracy of 96.7% on mammalian proteins, much better than the existing method SPRED (82.2%) which uses frequencies of tri-peptides and short peptides, secondary structure, and physicochemical properties as input features of a random forest classifier. Furthermore, when applying to Gram-positive bacterial proteins, the Sec-GO with m=158 GO terms has a test accuracy of 94.5%, superior to NClassG+ (90.0%) which uses SVM with several feature types, comprising amino acid composition, di-peptides, physicochemical properties and the position specific weighting matrix. Analysis of the distribution of secretory proteins in a GO database indicates the percentage of the non-classical secretory proteins annotated by GO is larger than that of classical secretory proteins in both eukaryotes and prokaryotes. Of the m top-ranked GO features, the top-four GO terms are all annotated by such subcellular locations as GO:0005576 (Extracellular region). Additionally, the method Sec-GO is easily implemented and its web tool of

  15. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    PubMed

    Stuerner, Elisabeth; Kuraku, Shigehiro; Hochstrasser, Mark; Kreft, Stefan G

    2012-01-01

    Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs), but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS). A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH) and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.

  16. Gene Ontology consistent protein function prediction: the FALCON algorithm applied to six eukaryotic genomes.

    PubMed

    Kourmpetis, Yiannis Ai; van Dijk, Aalt Dj; Ter Braak, Cajo Jf

    2013-03-27

    : Gene Ontology (GO) is a hierarchical vocabulary for the description of biological functions and locations, often employed by computational methods for protein function prediction. Due to the structure of GO, function predictions can be self- contradictory. For example, a protein may be predicted to belong to a detailed functional class, but not in a broader class that, due to the vocabulary structure, includes the predicted one.We present a novel discrete optimization algorithm called Functional Annotation with Labeling CONsistency (FALCON) that resolves such contradictions. The GO is modeled as a discrete Bayesian Network. For any given input of GO term membership probabilities, the algorithm returns the most probable GO term assignments that are in accordance with the Gene Ontology structure. The optimization is done using the Differential Evolution algorithm. Performance is evaluated on simulated and also real data from Arabidopsis thaliana showing improvement compared to related approaches. We finally applied the FALCON algorithm to obtain genome-wide function predictions for six eukaryotic species based on data provided by the CAFA (Critical Assessment of Function Annotation) project.

  17. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.

    PubMed

    Basu, Malay Kumar; Rogozin, Igor B; Deusch, Oliver; Dagan, Tal; Martin, William; Koonin, Eugene V

    2008-01-01

    Some of the principal transitions in the evolution of eukaryotes are characterized by engulfment of prokaryotes by primitive eukaryotic cells. In particular, approximately 1.6 billion years ago, engulfment of a cyanobacterium that became the ancestor of chloroplasts and other plastids gave rise to Plantae, the major branch of eukaryotes comprised of glaucophytes, red algae, green algae, and green plants. After endosymbiosis, there was large-scale migration of genes from the endosymbiont to the nuclear genome of the host such that approximately 18% of the nuclear genes in Arabidopsis appear to be of chloroplast origin. To gain insights into the process of evolution of gene structure in these, originally, intronless genes, we compared the properties and the evolutionary dynamics of introns in genes of plastid origin and ancestral eukaryotic genes in Arabidopsis, poplar, and rice genomes. We found that intron densities in plastid-derived genes were slightly but significantly lower than those in ancestral eukaryotic genes. Although most of the introns in both categories of genes were conserved between monocots (rice) and dicots (Arabidopsis and poplar), lineage-specific intron gain was more pronounced in plastid-derived genes than in ancestral genes, whereas there was no significant difference in the intron loss rates between the 2 classes of genes. Thus, after the transfer to the nuclear genome, the plastid-derived genes have undergone a massive intron invasion that, by the time of the divergence of dicots and monocots (150-200 MYA), yielded intron densities only slightly lower than those in ancestral genes. Nevertheless, the accumulation of introns in plastid-derived genes appears not to have reached saturation and continues to this time, albeit at a low rate. The overall pattern of intron gain and loss in the plastid-derived genes is shaped by this continuing gain and the more general tendency for loss that is characteristic of the recent evolution of plant genes.

  18. The frequency of eubacterium-to-eukaryote lateral gene transfers shows significant cross-taxa variation within amoebozoa.

    PubMed

    Watkins, Russell F; Gray, Michael W

    2006-12-01

    Single-celled bacterivorous eukaryotes offer excellent test cases for evaluation of the frequency of prey-to-predator lateral gene transfer (LGT). Here we use analysis of expressed sequence tag (EST) data sets to quantify the extent of LGT from eubacteria to two amoebae, Acanthamoeba castellanii and Hartmannella vermiformis. Stringent screening for LGT proceeded in several steps intended to enrich for authentic events while at the same time minimizing the incidence of false positives due to factors such as limitations in database coverage and ancient paralogy. The results were compared with data obtained when the same methodology was applied to EST libraries from a number of other eukaryotic taxa. Significant differences in the extent of apparent eubacterium-to-eukaryote LGT were found between taxa. Our results indicate that there may be substantial inter-taxon variation in the number of LGT events that become fixed even between amoebozoan species that have similar feeding modalities.

  19. Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system.

    PubMed

    Dacks, Joel B; Doolittle, W Ford

    2002-04-15

    SNAP receptors or SNARES are crucial components of the intracellular membrane system of eukaryotes. The syntaxin family of SNAREs have been shown to have roles in neurotransmission, vesicular transport, membrane fusion and even internal membrane compartment reconstruction. While syntaxins and SNAREs in general have been well characterized in mammalian and yeast models, little is known about their overall distribution across eukaryotic diversity or about the evolution of the syntaxin gene family. By combining bioinformatic, molecular biological and phylogenetic approaches, we demonstrate that various syntaxin homologs are not only present in 'eukaryotic crown taxa' but across a wide range of eukaryotic lineages. The alignment of evolutionarily diverse syntaxin paralogs shows that an isoleucine residue critical to nSec1-syntaxin complex formation and the characteristic syntaxin glutamine residue are nearly universally conserved, implying a general functional importance for these residues. Other identified functional residues involved in botulism toxicity and calcium-binding-protein interactions are also compared. The presence of Golgi-related syntaxins in the intestinal parasite Giardia intestinalis provides further evidence for a cryptic Golgi in this 'adictyosomal' taxon, and another likely case of secondary reduction in this parasite. The phylogeny of syntaxins shows a number of nested duplications, including a case of parallel evolution in the plasma membrane-associated syntaxins, and ancestral duplications in the other syntaxin paralogs. These speak to ancient events in the evolution of the syntaxin system and emphasize the universal role of the syntaxins in the eukaryotic intracellular compartment system.

  20. Eukaryotic expression vectors bearing genes encoding cytotoxic proteins for cancer gene therapy.

    PubMed

    Glinka, Elena M

    2012-09-01

    Cancer gene therapy is a promising direction for the treatment of cancer patients. A primary goal of all cancer therapies is to selectively target and kill tumour cells. Such therapies are administered via different approaches, including both viral and non-viral delivery; however, both methods have advantages and disadvantages. Transcriptional targeting enables genes encoding toxic proteins to be expressed directly in cancer cells. Numerous vectors have been created with the purpose of killing cancer cells, and some have successfully suppressed malignant tumours. Data concerning the function of vectors bearing genes that encode cytotoxic proteins under the control of different promoters, including tissue/tumour specific and constitutive promoters, is summarised here. This review focuses on vectors that bear genes encoding diphtheria toxin, Pseudomonas exotoxin A, caspases, gef, streptolysin, and melittin. Data describing the efficacy of such vectors have been summarised. Notably, there are vectors that killed cancer cell lines originating from the same type of cancer with differential efficiency. Thus, there is differential inhibition of cancer cell growth dependent on the cell line. In this review, the constructs employing genes whose expression induces cell death and the efficiency with which they suppress cancer cell growth will be summarised.

  1. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB.

    PubMed

    Dahmane, Narimane; Gadelle, Danièle; Delmas, Stéphane; Criscuolo, Alexis; Eberhard, Stephan; Desnoues, Nicole; Collin, Sylvie; Zhang, Hongliang; Pommier, Yves; Forterre, Patrick; Sezonov, Guennadi

    2016-04-07

    Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies.

  2. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB

    PubMed Central

    Dahmane, Narimane; Gadelle, Danièle; Delmas, Stéphane; Criscuolo, Alexis; Eberhard, Stephan; Desnoues, Nicole; Collin, Sylvie; Zhang, Hongliang; Pommier, Yves; Forterre, Patrick; Sezonov, Guennadi

    2016-01-01

    Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies. PMID:26908651

  3. Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes

    PubMed Central

    Naranjo-Ortíz, Miguel A.; Brock, Matthias; Brunke, Sascha; Hube, Bernhard; Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Analysis of the growing number of available fully-sequenced genomes has shown that Horizontal Gene Transfer (HGT) in eukaryotes is more common than previously thought. It has been proposed that genes with certain functions may be more prone to HGT than others, but we still have a very poor understanding of the selective forces driving eukaryotic HGT. Recent work uncovered that d-amino acid racemases have been commonly transferred from bacteria to fungi, but their role in the receiving organisms is currently unknown. Here, we set out to assess whether d-amino acid racemases are commonly transferred to and between eukaryotic groups. For this we performed a global survey that used a novel automated phylogeny-based HGT-detection algorithm (Abaccus). Our results revealed that at least 7.0% of the total eukaryotic racemase repertoire is the result of inter- or intra-domain HGT. These transfers are significantly enriched in plant-associated fungi. For these, we hypothesize a possible role for the acquired racemases allowing to exploit minoritary nitrogen sources in plant biomass, a nitrogen-poor environment. Finally, we performed experiments on a transferred aspartate-glutamate racemase in the fungal human pathogen Candida glabrata, which however revealed no obvious biological role. PMID:28066338

  4. UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan

    PubMed Central

    Ghosh, Arpan C.; Shimell, MaryJane; Leof, Emma R.; Haley, Macy J.; O’Connor, Michael B.

    2015-01-01

    Uracil phosphoribosyltransferase (UPRT) is a pyrimidine salvage pathway enzyme that catalyzes the conversion of uracil to uridine monophosphate (UMP). The enzyme is highly conserved from prokaryotes to humans and yet phylogenetic evidence suggests that UPRT homologues from higher-eukaryotes, including Drosophila, are incapable of binding uracil. Purified human UPRT also do not show any enzymatic activity in vitro, making microbial UPRT an attractive candidate for anti-microbial drug development, suicide-gene therapy, and cell-specific mRNA labeling techniques. Nevertheless, the enzymatic site of UPRT remains conserved across the animal kingdom indicating an in vivo role for the enzyme. We find that the Drosophila UPRT homologue, krishah (kri), codes for an enzyme that is required for larval growth, pre-pupal/pupal viability and long-term adult lifespan. Our findings suggest that UPRT from all higher eukaryotes is likely enzymatically active in vivo and challenges the previous notion that the enzyme is non-essential in higher eukaryotes and cautions against targeting the enzyme for therapeutic purposes. Our findings also suggest that expression of the endogenous UPRT gene will likely cause background incorporation when using microbial UPRT as a cell-specific mRNA labeling reagent in higher eukaryotes. PMID:26271729

  5. Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers.

    PubMed

    Suzuki, Katsunori; Moriguchi, Kazuki; Yamamoto, Shinji

    2015-12-01

    Horizontal gene transfer (HGT) is widespread among bacteria and plays a key role in genome dynamics. HGT is much less common in eukaryotes, but is being reported with increasing frequency in eukaryotes. The mechanism as to how eukaryotes acquired genes from distantly related organisms remains obscure yet. This paper cites examples of bacteria-derived genes found in eukaryotic organisms, and then describes experimental DNA transports to eukaryotes by bacterial type 4 secretion systems in optimized conditions. The mechanisms of the latter are efficient, quite reproducible in vitro and predictable, and thereby would provide insight into natural HGT and to the development of new research tools.

  6. A steroid-inducible promoter for the controlled overexpression of cloned genes in eukaryotic cells.

    PubMed Central

    Mader, S; White, J H

    1993-01-01

    Previous studies have shown that members of the steroid receptor family of transcriptional regulators can function synergistically when bound to multiple arrays of specific DNA binding sites known as hormone response elements, usually located upstream of target genes. We have constructed a mammalian expression vector containing a synthetic promoter composed of five high-affinity glucocorticoid response elements (termed GRE5) placed upstream of the adenovirus 2 major late promoter "TATA" region. In transiently transfected HeLa cells in the presence of dexamethasone, the GRE5 promoter was at least 50-fold more efficient than the mouse mammary tumor virus long terminal repeat in expressing bacterial chloramphenicol acetyltransferase activity. When the GRE5 vector was introduced stably into the HeLa cell genome, chloramphenicol acetyltransferase activity was induced from 10- to >50-fold by dexamethasone in six of eight responsive clones. The levels of both basal and induced expression varied from one clone to the next, probably due to an effect of chromosomal location on promoter activity. When propagated stably in HeLa cells in an Epstein-Barr virus episomal vector, the GRE5 promoter was > 50-fold inducible and its activity was strictly dependent on the presence of dexamethasone. We also show that the GRE5 promoter stably propagated in HeLa cells is inducible by progesterone in the presence of a transiently transfected progesterone receptor expression vector. The GRE5 promoter should be widely applicable for the strictly controlled high-level expression of target genes in eukaryotic cells that contain either the glucocorticoid or progesterone receptors. Images Fig. 1 Fig. 2 Fig. 3 PMID:8390672

  7. Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote

    PubMed Central

    Heller, Jens; Zhao, Jiuhai; Rosenfield, Gabriel; Kowbel, David J.; Gladieux, Pierre; Glass, N. Louise

    2016-01-01

    Microorganisms are capable of communication and cooperation to perform social activities. Cooperation can be enforced using kind discrimination mechanisms in which individuals preferentially help or punish others, depending on genetic relatedness only at certain loci. In the filamentous fungus Neurospora crassa, genetically identical asexual spores (germlings) communicate and fuse in a highly regulated process, which is associated with fitness benefits during colony establishment. Recognition and chemotropic interactions between isogenic germlings requires oscillation of the mitogen-activated protein kinase (MAPK) signal transduction protein complex (NRC-1, MEK-2, MAK-2, and the scaffold protein HAM-5) to specialized cell fusion structures termed conidial anastomosis tubes. Using a population of 110 wild N. crassa isolates, we investigated germling fusion between genetically unrelated individuals and discovered that chemotropic interactions are regulated by kind discrimination. Distinct communication groups were identified, in which germlings within one communication group interacted at high frequency, while germlings from different communication groups avoided each other. Bulk segregant analysis followed by whole genome resequencing identified three linked genes (doc-1, doc-2, and doc-3), which were associated with communication group phenotype. Alleles at doc-1, doc-2, and doc-3 fell into five haplotypes that showed transspecies polymorphism. Swapping doc-1 and doc-2 alleles from different communication group strains was necessary and sufficient to confer communication group affiliation. During chemotropic interactions, DOC-1 oscillated with MAK-2 to the tips of conidial anastomosis tubes, while DOC-2 was statically localized to the plasma membrane. Our data indicate that doc-1, doc-2, and doc-3 function as “greenbeard” genes, involved in mediating long-distance kind recognition that involves actively searching for one’s own type, resulting in cooperation

  8. Parallel re-modeling of EF-1α function: divergent EF-1α genes co-occur with EFL genes in diverse distantly related eukaryotes

    PubMed Central

    2013-01-01

    Background Elongation factor-1α (EF-1α) and elongation factor-like (EFL) proteins are functionally homologous to one another, and are core components of the eukaryotic translation machinery. The patchy distribution of the two elongation factor types across global eukaryotic phylogeny is suggestive of a ‘differential loss’ hypothesis that assumes that EF-1α and EFL were present in the most recent common ancestor of eukaryotes followed by independent differential losses of one of the two factors in the descendant lineages. To date, however, just one diatom and one fungus have been found to have both EF-1α and EFL (dual-EF-containing species). Results In this study, we characterized 35 new EF-1α/EFL sequences from phylogenetically diverse eukaryotes. In so doing we identified 11 previously unreported dual-EF-containing species from diverse eukaryote groups including the Stramenopiles, Apusomonadida, Goniomonadida, and Fungi. Phylogenetic analyses suggested vertical inheritance of both genes in each of the dual-EF lineages. In the dual-EF-containing species we identified, the EF-1α genes appeared to be highly divergent in sequence and suppressed at the transcriptional level compared to the co-occurring EFL genes. Conclusions According to the known EF-1α/EFL distribution, the differential loss process should have occurred independently in diverse eukaryotic lineages, and more dual-EF-containing species remain unidentified. We predict that dual-EF-containing species retain the divergent EF-1α homologues only for a sub-set of the original functions. As the dual-EF-containing species are distantly related to each other, we propose that independent re-modelling of EF-1α function took place in multiple branches in the tree of eukaryotes. PMID:23800323

  9. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    PubMed

    Li, Lina; Dimitriadis, Emilios K; Yang, Yu; Li, Juan; Yuan, Zhenhua; Qiao, Chunping; Beley, Cyriaque; Smith, Richard H; Garcia, Luis; Kotin, Robert M

    2013-01-01

    Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9) Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  10. Experimental examination of EFL and MATX eukaryotic horizontal gene transfers: coexistence of mutually exclusive transcripts predates functional rescue.

    PubMed

    Szabová, Jana; Ruzicka, Petr; Verner, Zdenek; Hampl, Vladimír; Lukes, Julius

    2011-08-01

    Many eukaryotic genes do not follow simple vertical inheritance. Elongation factor 1α (EF-1α) and methionine adenosyl transferase (MAT) are enzymes with complicated evolutionary histories and, interestingly, the two cases have several features in common. These essential enzymes occur as two relatively divergent paralogs (EF-1α/EFL, MAT/MATX) that have patchy distributions in eukaryotic lineages that are nearly mutually exclusive. To explain such distributions, we must invoke either multiple eukaryote-to-eukaryote horizontal gene transfers (HGTs) followed by functional replacement or presence of both paralogs in the common ancestor followed by long-term coexistence and differential losses in various eukaryotic lineages. To understand the evolution of these paralogs, we have performed in vivo experiments in Trypanosoma brucei addressing the consequences of long-term coexpression and functional replacement. In the first experiment of its kind, we have demonstrated that EF-1α and MAT can be simultaneously expressed with EFL and MATX, respectively, without affecting the growth of the flagellates. After the endogenous MAT or EF-1α was downregulated by RNA interference, MATX immediately substituted for its paralog, whereas EFL was not able to substitute for EF-1α, leading to mortality. We conclude that MATX is naturally capable of evolving patchy paralog distribution via HGTs and/or long- term coexpression and differential losses. The capability of EFL to spread by HGT is lower and so the patchy distribution of EF-1α/EFL paralogs was probably shaped mainly by deep paralogy followed by long-term coexistence and differential losses.

  11. Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang.

    PubMed

    Dacks, Joel B; Marinets, Alexandra; Ford Doolittle, W; Cavalier-Smith, Thomas; Logsdon, John M

    2002-06-01

    The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist

  12. The maximal C(3) self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses.

    PubMed

    Michel, Christian J

    2015-09-07

    In 1996, a set X of 20 trinucleotides is identified in genes of both prokaryotes and eukaryotes which has in average the highest occurrence in reading frame compared to the two shifted frames (Arquès and Michel, 1996). Furthermore, this set X has an interesting mathematical property as X is a maximal C(3) self-complementary trinucleotide circular code (Arquès and Michel, 1996). In 2014, the number of trinucleotides in prokaryotic genes has been multiplied by a factor of 527. Furthermore, two new gene kingdoms of plasmids and viruses contain enough trinucleotide data to be analysed. The approach used in 1996 for identifying a preferential frame for a trinucleotide is quantified here with a new definition analysing the occurrence probability of a complementary/permutation (CP) trinucleotide set in a gene kingdom. Furthermore, in order to increase the statistical significance of results compared to those of 1996, the circular code X is studied on several gene taxonomic groups in a kingdom. Based on this new statistical approach, the circular code X is strengthened in genes of prokaryotes and eukaryotes, and now also identified in genes of plasmids. A subset of X with 18 or 16 trinucleotides is identified in genes of viruses. Furthermore, a simple probabilistic model based on the independent occurrence of trinucleotides in reading frame of genes explains the circular code frequencies and asymmetries observed in the shifted frames in all studied gene kingdoms. Finally, the developed approach allows to identify variant X codes in genes, i.e. trinucleotide codes which differ from X. In genes of bacteria, eukaryotes and plasmids, 14 among the 47 studied gene taxonomic groups (about 30%) have variant X codes. Seven variant X codes are identified with at least 16 trinucleotides of X. Two variant X codes XA in cyanobacteria and plasmids of cyanobacteria, and XD in birds are self-complementary, without permuted trinucleotides but non-circular. Five variant X codes XB in

  13. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote

    PubMed Central

    Schübeler, Dirk; MacAlpine, David M.; Scalzo, David; Wirbelauer, Christiane; Kooperberg, Charles; van Leeuwen, Fred; Gottschling, Daniel E.; O'Neill, Laura P.; Turner, Bryan M.; Delrow, Jeffrey; Bell, Stephen P.; Groudine, Mark

    2004-01-01

    The covalent modification of nucleosomal histones has emerged as a major determinant of chromatin structure and gene activity. To understand the interplay between various histone modifications, including acetylation and methylation, we performed a genome-wide chromatin structure analysis in a higher eukaryote. We found a binary pattern of histone modifications among euchromatic genes, with active genes being hyperacetylated for H3 and H4 and hypermethylated at Lys 4 and Lys 79 of H3, and inactive genes being hypomethylated and deacetylated at the same residues. Furthermore, the degree of modification correlates with the level of transcription, and modifications are largely restricted to transcribed regions, suggesting that their regulation is tightly linked to polymerase activity. PMID:15175259

  14. Phylogenetic analysis of eukaryotic NEET proteins uncovers a link between a key gene duplication event and the evolution of vertebrates

    PubMed Central

    Inupakutika, Madhuri A.; Sengupta, Soham; Nechushtai, Rachel; Jennings, Patricia A.; Onuchic, Jose’ N.; Azad, Rajeev K.; Padilla, Pamela; Mittler, Ron

    2017-01-01

    NEET proteins belong to a unique family of iron-sulfur proteins in which the 2Fe-2S cluster is coordinated by a CDGSH domain that is followed by the “NEET” motif. They are involved in the regulation of iron and reactive oxygen metabolism, and have been associated with the progression of diabetes, cancer, aging and neurodegenerative diseases. Despite their important biological functions, the evolution and diversification of eukaryotic NEET proteins are largely unknown. Here we used the three members of the human NEET protein family (CISD1, mitoNEET; CISD2, NAF-1 or Miner 1; and CISD3, Miner2) as our guides to conduct a phylogenetic analysis of eukaryotic NEET proteins and their evolution. Our findings identified the slime mold Dictyostelium discoideum’s CISD proteins as the closest to the ancient archetype of eukaryotic NEET proteins. We further identified CISD3 homologs in fungi that were previously reported not to contain any NEET proteins, and revealed that plants lack homolog(s) of CISD3. Furthermore, our study suggests that the mammalian NEET proteins, mitoNEET (CISD1) and NAF-1 (CISD2), emerged via gene duplication around the origin of vertebrates. Our findings provide new insights into the classification and expansion of the NEET protein family, as well as offer clues to the diverged functions of the human mitoNEET and NAF-1 proteins. PMID:28205535

  15. Phylogenetic analysis of eukaryotic NEET proteins uncovers a link between a key gene duplication event and the evolution of vertebrates

    NASA Astrophysics Data System (ADS)

    Inupakutika, Madhuri A.; Sengupta, Soham; Nechushtai, Rachel; Jennings, Patricia A.; Onuchic, Jose’ N.; Azad, Rajeev K.; Padilla, Pamela; Mittler, Ron

    2017-02-01

    NEET proteins belong to a unique family of iron-sulfur proteins in which the 2Fe-2S cluster is coordinated by a CDGSH domain that is followed by the “NEET” motif. They are involved in the regulation of iron and reactive oxygen metabolism, and have been associated with the progression of diabetes, cancer, aging and neurodegenerative diseases. Despite their important biological functions, the evolution and diversification of eukaryotic NEET proteins are largely unknown. Here we used the three members of the human NEET protein family (CISD1, mitoNEET; CISD2, NAF-1 or Miner 1; and CISD3, Miner2) as our guides to conduct a phylogenetic analysis of eukaryotic NEET proteins and their evolution. Our findings identified the slime mold Dictyostelium discoideum’s CISD proteins as the closest to the ancient archetype of eukaryotic NEET proteins. We further identified CISD3 homologs in fungi that were previously reported not to contain any NEET proteins, and revealed that plants lack homolog(s) of CISD3. Furthermore, our study suggests that the mammalian NEET proteins, mitoNEET (CISD1) and NAF-1 (CISD2), emerged via gene duplication around the origin of vertebrates. Our findings provide new insights into the classification and expansion of the NEET protein family, as well as offer clues to the diverged functions of the human mitoNEET and NAF-1 proteins.

  16. Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins.

    PubMed

    Kollmar, Martin

    2015-05-29

    The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope.

  17. Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library.

    PubMed

    Ruffel, Sandrine; Caranta, Carole; Palloix, Alain; Lefebvre, Véronique; Caboche, Michel; Bendahmane, Abdelhafid

    2004-09-01

    The pvr2 locus in pepper codes for a eukaryotic translation initiation factor 4E (eIF4E) gene that confers resistance to viruses belonging to the potyvirus genus. In this work, we describe the isolation and characterisation of the genomic sequence carrying the pvr2 locus. A Bacterial Artificial Chromosome (BAC) library that consisted of 239,232 clones with an average insert size of 123 kilobases (kb) was constructed from a Capsicum annuum line with the pvr2(+) allele for susceptibility to potato virus Y (PVY) and tobacco etch virus (TEV). Based on a polymerase chain reaction (PCR) screen with single-copy markers, three to seven positive BAC clones per markers were identified, indicating that the BAC library is suitable for pepper genome analysis. To determine the genomic organization of the pepper eIF4E gene, the library was screened with primers designed from the cDNA sequence and four positive BAC clones carrying the pvr2 locus were identified. A 7-kb DNA fragment containing the complete eIF4E gene was sub-cloned from the positive BAC clones and analysed. The eIF4E gene is organised into five exons and four introns and showed a strictly conserved exon/intron structure with eIF4E genes from Arabidopsis thaliana and rice. Moreover, the splice sites between plant exons 1/2 and 2/3 are conserved among eukaryotes including human, Drosophila and yeast. Several potential binding sites for MADS box transcription factors within the 5' flanking region of eIF4E genes from the three plant species were also predicted.

  18. Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia.

    PubMed

    Liao, Jian-You; Guo, Yan-Hua; Zheng, Ling-Ling; Li, Yan; Xu, Wen-Li; Zhang, Yu-Chan; Zhou, Hui; Lun, Zhao-Rong; Ayala, Francisco J; Qu, Liang-Hu

    2014-09-30

    Small RNAs (sRNAs), including microRNAs and endogenous siRNAs (endo-siRNAs), regulate most important biologic processes in eukaryotes, such as cell division and differentiation. Although sRNAs have been extensively studied in various eukaryotes, the role of sRNAs in the early emergence of eukaryotes is unclear. To address these questions, we deep sequenced the sRNA transcriptome of four different stages in the differentiation of Giardia lamblia, one of the most primitive eukaryotes. We identified a large number of endo-siRNAs in this fascinating parasitic protozoan and found that they were produced from live telomeric retrotransposons and three genomic regions (i.e., endo-siRNA generating regions [eSGRs]). eSGR-derived endo-siRNAs were proven to target mRNAs in trans. Gradual up-regulation of endo-siRNAs in the differentiation of Giardia suggested that they might be involved in the regulation of this process. This hypothesis was supported by the impairment of the differentiation ability of Giardia when GLDICER, essential for the biogenesis of endo-siRNAs, was knocked down. Endo-siRNAs are not the only sRNA regulators in Giardia differentiation, because a great number of tRNAs-derived sRNAs showed more dramatic expression changes than endo-siRNAs in this process. We totally identified five novel kinds of tRNAs-derived sRNAs and found that the biogenesis in four of them might be correlated with that of stress-induced tRNA-derived RNA (sitRNA), which was discovered in our previous studies. Our studies reveal an unexpected complex panorama of sRNA in G. lamblia and shed light on the origin and functional evolution of eukaryotic sRNAs.

  19. Eukaryotic large nucleo-cytoplasmic DNA viruses: Clusters of orthologous genes and reconstruction of viral genome evolution

    PubMed Central

    2009-01-01

    Background The Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) comprise an apparently monophyletic class of viruses that infect a broad variety of eukaryotic hosts. Recent progress in isolation of new viruses and genome sequencing resulted in a substantial expansion of the NCLDV diversity, resulting in additional opportunities for comparative genomic analysis, and a demand for a comprehensive classification of viral genes. Results A comprehensive comparison of the protein sequences encoded in the genomes of 45 NCLDV belonging to 6 families was performed in order to delineate cluster of orthologous viral genes. Using previously developed computational methods for orthology identification, 1445 Nucleo-Cytoplasmic Virus Orthologous Groups (NCVOGs) were identified of which 177 are represented in more than one NCLDV family. The NCVOGs were manually curated and annotated and can be used as a computational platform for functional annotation and evolutionary analysis of new NCLDV genomes. A maximum-likelihood reconstruction of the NCLDV evolution yielded a set of 47 conserved genes that were probably present in the genome of the common ancestor of this class of eukaryotic viruses. This reconstructed ancestral gene set is robust to the parameters of the reconstruction procedure and so is likely to accurately reflect the gene core of the ancestral NCLDV, indicating that this virus encoded a complex machinery of replication, expression and morphogenesis that made it relatively independent from host cell functions. Conclusions The NCVOGs are a flexible and expandable platform for genome analysis and functional annotation of newly characterized NCLDV. Evolutionary reconstructions employing NCVOGs point to complex ancestral viruses. PMID:20017929

  20. Evolutionary implications of intron-exon distribution and the properties and sequences of the RPL10A gene in eukaryotes.

    PubMed

    Del Campo, Eva M; Casano, Leonardo M; Barreno, Eva

    2013-03-01

    The RPL10A gene encodes the RPL10 protein, required for joining 40S and 60S subunits into a functional 80S ribosome. This highly conserved gene, ubiquitous across all eukaryotic super-groups, is characterized by a variable number of spliceosomal introns, present in most organisms. These properties facilitate the recognition of orthologs among distant taxa and thus comparative studies of sequences as well as the distribution and properties of introns in taxonomically distant groups of eukaryotes. The present study examined the multiple ways in which RPL10A conservation vs. sequence changes in the gene over the course of evolution, including in exons, introns, and the encoded proteins, can be exploited for evolutionary analysis at different taxonomic levels. At least 25 different positions harboring introns within the RPL10A gene were determined in different taxa, including animals, plants, fungi, and alveolates. Generally, intron positions were found to be well conserved even across different kingdoms. However, certain introns seemed to be restricted to specific groups of organisms. Analyses of several properties of introns, including insertion site, phase, and length, along with exon and intron GC content and exon-intron boundaries, suggested biases within different groups of organisms. The use of a standard primer pair to analyze a portion of the intron-containing RPL10A gene in 12 genera of green algae within Chlorophyta is presented as a case study for evolutionary analyses of introns at intermediate and low taxonomic levels. Our study shows that phylogenetic reconstructions at different depths can be achieved using RPL10A nucleotide sequences from both exons and introns as well as the amino acid sequences of the encoded protein.

  1. Uncultivated microbial eukaryotic diversity: a method to link ssu rRNA gene sequences with morphology.

    PubMed

    Hirst, Marissa B; Kita, Kelley N; Dawson, Scott C

    2011-01-01

    Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA "phylotypes" from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages

  2. [Construction of nonsense-mutated eukaryotic expression vector of factor IX gene and its expression in COS-7 cells].

    PubMed

    Nie, Xin; Yang, Lin-Hua; Chai, Bao-Feng; Shen, Quan; Zhang, Yuan; Zhang, Yao-Fang; Chen, Jian-Fang

    2010-06-01

    The purpose of this study was to construct 4 types of nonsense-mutated eukaryotic expression plasmids of fIX gene, using pcDNA3.1 plasmid containing fIX cDNA as template, and to identify, then to perform their expression in COS-7 cells. These stop mutants constructed by site-directed mutagenesis based on PCR, and further confirmed by DNA sequencing. COS-7 cells were transfected with either the wild-type or mutated fIX expression constructs, then the relative expression levels of fIX mRNA were detected by real time fluorescent quantitative PCR. The result showed that except the designed sites, there were no other nucleotide mutation in the sequences of four nonsense mutants. The results of real time PCR proved that the nonsense-mutated vectors can be effectively expressed in COS-7 cells. It is concluded that the nonsense-mutated eukaryotic expression vectors of fIX gene have been successfully constructed and can express in COS-7 cells, which provides the material basis for further researches on mechanism and treatment of FIX deficiency and the function defects caused by nonsense mutation.

  3. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.

    PubMed

    Landgrebe, Jobst; Dierks, Thomas; Schmidt, Bernhard; von Figura, Kurt

    2003-10-16

    Recently, the human C(alpha)-formylglycine (FGly)-generating enzyme (FGE), whose deficiency causes the autosomal-recessively transmitted lysosomal storage disease multiple sulfatase deficiency (MSD), has been identified. In sulfatases, FGE posttranslationally converts a cysteine residue to FGly, which is part of the catalytic site and is essential for sulfatase activity. FGE is encoded by the sulfatase modifying factor 1 (SUMF1) gene, which defines a new gene family comprising orthologs from prokaryotes to higher eukaryotes. The genomes of E. coli, S. cerevisiae and C. elegans lack SUMF1, indicating a phylogenetic gap and the existence of an alternative FGly-generating system. The genomes of vertebrates including mouse, man and pufferfish contain a sulfatase modifying factor 2 (SUMF2) gene encoding an FGE paralog of unknown function. SUMF2 evolved from a single exon SUMF1 gene as found in diptera prior to divergent intron acquisition. In several prokaryotic genomes, the SUMF1 gene is cotranscribed with genes encoding sulfatases which require FGly modification. The FGE protein contains a single domain that is made up of three highly conserved subdomains spaced by nonconserved sequences of variable lengths. The similarity among the eukaryotic FGE orthologs varies between 72% and 100% for the three subdomains and is highest for the C-terminal subdomain, which is a hotspot for mutations in MSD patients.

  4. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    SciTech Connect

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  5. Origins and evolution of viruses of eukaryotes: The ultimate modularity.

    PubMed

    Koonin, Eugene V; Dolja, Valerian V; Krupovic, Mart

    2015-05-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along

  6. Horizontal transfer and evolution of prokaryote transposable elements in eukaryotes.

    PubMed

    Gilbert, Clément; Cordaux, Richard

    2013-01-01

    Horizontal transfer (HT) of transposable elements (TEs) plays a key role in prokaryotic evolution, and mounting evidence suggests that it has also had an important impact on eukaryotic evolution. Although many prokaryote-to-prokaryote and eukaryote-to-eukaryote HTs of TEs have been characterized, only few cases have been reported between prokaryotes and eukaryotes. Here, we carried out a comprehensive search for all major groups of prokaryotic insertion sequences (ISs) in 430 eukaryote genomes. We uncovered a total of 80 sequences, all deriving from the IS607 family, integrated in the genomes of 14 eukaryote species belonging to four distinct phyla (Amoebozoa, Ascomycetes, Basidiomycetes, and Stramenopiles). Given that eukaryote IS607-like sequences are most closely related to cyanobacterial IS607 and that their phylogeny is incongruent with that of their hosts, we conclude that the presence of IS607-like sequences in eukaryotic genomes is the result of several HT events. Selection analyses further suggest that our ability to detect these prokaryote TEs today in eukaryotes is because HT of these sequences occurred recently and/or some IS607 elements were domesticated after HT, giving rise to new eukaryote genes. Supporting the recent age of some of these HTs, we uncovered intact full-length, potentially active IS607 copies in the amoeba Acanthamoeba castellani. Overall, our study shows that prokaryote-to-eukaryote HT of TEs occurred at relatively low frequency during recent eukaryote evolution and it sets IS607 as the most widespread TE (being present in prokaryotes, eukaryotes, and viruses).

  7. A Maximum Likelihood Method for Reconstruction of the Evolution of Eukaryotic Gene Structure

    PubMed Central

    Carmel, Liran; Rogozin, Igor B.; Wolf, Yuri I.; Koonin, Eugene V.

    2012-01-01

    Spliceosomal introns are one of the principal distinctive features of eukaryotes. Nevertheless, different large-scale studies disagree about even the most basic features of their evolution. In order to come up with a more reliable reconstruction of intron evolution, we developed a model that is far more comprehensive than previous ones. This model is rich in parameters, and estimating them accurately is infeasible by straightforward likelihood maximization. Thus, we have developed an expectation-maximization algorithm that allows for efficient maximization. Here, we outline the model and describe the expectation-maximization algorithm in detail. Since the method works with intron presence–absence maps, it is expected to be instrumental for the analysis of the evolution of other binary characters as well. PMID:19381540

  8. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes.

    PubMed Central

    Smith, D J; Burnham, M K; Bull, J H; Hodgson, J E; Ward, J M; Browne, P; Brown, J; Barton, B; Earl, A J; Turner, G

    1990-01-01

    A cosmid clone containing closely linked beta-lactam antibiotic biosynthetic genes was isolated from a gene library of Flavobacterium sp. SC 12,154. The location within the cluster of the DNA thought to contain the gene for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), the first step in the beta-lactam antibiotic biosynthetic pathway, was identified by a novel method. This DNA facilitated the isolation, by cross-hybridization, of the corresponding DNA from Streptomyces clavuligerus ATCC 27064, Penicillium chrysogenum Oli13 and Aspergillus nidulans R153. Evidence was obtained which confirmed that the cross-hybridizing sequences contained the ACVS gene. In each case the ACVS gene was found to be closely linked to other beta-lactam biosynthetic genes and constituted part of a gene cluster. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2107074

  9. Transcription without XPB Establishes a Unified Helicase-Independent Mechanism of Promoter Opening in Eukaryotic Gene Expression.

    PubMed

    Alekseev, Sergey; Nagy, Zita; Sandoz, Jérémy; Weiss, Amélie; Egly, Jean-Marc; Le May, Nicolas; Coin, Frederic

    2017-02-02

    Transcription starts with the assembly of pre-initiation complexes on promoters followed by their opening. Current models suggest that class II gene transcription requires ATP and the TFIIH XPB subunit to open a promoter. Here, we observe that XPB depletion surprisingly leaves transcription virtually intact. In contrast, inhibition of XPB ATPase activity affects transcription, revealing that mRNA expression paradoxically accommodates the absence of XPB while being sensitive to the inhibition of its ATPase activity. The XPB-depleted TFIIH complex is recruited to active promoters and contributes to transcription. We finally demonstrate that the XPB ATPase activity is only used to relieve a transcription initiation block imposed by XPB itself. In the absence of this block, transcription initiation can take place without XPB ATPase activity. These results suggest that a helicase is dispensable for mRNA transcription, thereby unifying the mechanism of promoter DNA opening for the three eukaryotic RNA polymerases.

  10. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cauliflower Or gene affects plant growth and development in addition to conferring beta-carotene accumulation. This study was undertaken to investigate the molecular basis of the Or gene mutation in controlling plant growth. The OR protein was found to interact with cauliflower and Arabidopsis e...

  11. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans

    PubMed Central

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J.

    2016-01-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. PMID:26833505

  12. Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters

    PubMed Central

    2012-01-01

    Background The main function of gene promoters appears to be the integration of different gene products in their biological pathways in order to maintain homeostasis. Generally, promoters have been classified in two major classes, namely TATA and CpG. Nevertheless, many genes using the same combinatorial formation of transcription factors have different gene expression patterns. Accordingly, we tried to ask ourselves some fundamental questions: Why certain genes have an overall predisposition for higher gene expression levels than others? What causes such a predisposition? Is there a structural relationship of these sequences in different tissues? Is there a strong phylogenetic relationship between promoters of closely related species? Results In order to gain valuable insights into different promoter regions, we obtained a series of image-based patterns which allowed us to identify 10 generic classes of promoters. A comprehensive analysis was undertaken for promoter sequences from Arabidopsis thaliana, Drosophila melanogaster, Homo sapiens and Oryza sativa, and a more extensive analysis of tissue-specific promoters in humans. We observed a clear preference for these species to use certain classes of promoters for specific biological processes. Moreover, in humans, we found that different tissues use distinct classes of promoters, reflecting an emerging promoter network. Depending on the tissue type, comparisons made between these classes of promoters reveal a complementarity between their patterns whereas some other classes of promoters have been observed to occur in competition. Furthermore, we also noticed the existence of some transitional states between these classes of promoters that may explain certain evolutionary mechanisms, which suggest a possible predisposition for specific levels of gene expression and perhaps for a different number of factors responsible for triggering gene expression. Our conclusions are based on comprehensive data from three

  13. TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes

    PubMed Central

    Matys, V.; Kel-Margoulis, O. V.; Fricke, E.; Liebich, I.; Land, S.; Barre-Dirrie, A.; Reuter, I.; Chekmenev, D.; Krull, M.; Hornischer, K.; Voss, N.; Stegmaier, P.; Lewicki-Potapov, B.; Saxel, H.; Kel, A. E.; Wingender, E.

    2006-01-01

    The TRANSFAC® database on transcription factors, their binding sites, nucleotide distribution matrices and regulated genes as well as the complementing database TRANSCompel® on composite elements have been further enhanced on various levels. A new web interface with different search options and integrated versions of Match™ and Patch™ provides increased functionality for TRANSFAC®. The list of databases which are linked to the common GENE table of TRANSFAC® and TRANSCompel® has been extended by: Ensembl, UniGene, EntrezGene, HumanPSD™ and TRANSPRO™. Standard gene names from HGNC, MGI and RGD, are included for human, mouse and rat genes, respectively. With the help of InterProScan, Pfam, SMART and PROSITE domains are assigned automatically to the protein sequences of the transcription factors. TRANSCompel® contains now, in addition to the COMPEL table, a separate table for detailed information on the experimental EVIDENCE on which the composite elements are based. Finally, for TRANSFAC®, in respect of data growth, in particular the gain of Drosophila transcription factor binding sites (by courtesy of the Drosophila DNase I footprint database) and of Arabidopsis factors (by courtesy of DATF, Database of Arabidopsis Transcription Factors) has to be stressed. The here described public releases, TRANSFAC® 7.0 and TRANSCompel® 7.0, are accessible under . PMID:16381825

  14. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer.

    PubMed

    Uhrig, R Glen; Kerk, David; Moorhead, Greg B

    2013-12-01

    Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.

  15. The presence of a copper/zinc superoxide dismutase in the bacterium Photobacterium leiognathi: a likely case of gene transfer from eukaryotes to prokaryotes.

    PubMed

    Bannister, J V; Parker, M W

    1985-01-01

    The free-living bacterium Photobacterium leiognathi is also known to be a symbiont of ponyfish. The presence of a copper/zinc superoxide dismutase in P. leiognathi has been considered to be a case of gene transfer from eukaryotes to prokaryotes because this form of superoxide dismutase is normally present only in higher eukaryotic species. However, the amino acid sequence of the enzyme from the bacterium exhibited low identities (25-30%) with the same enzyme from eukaryotes. When amino acid mutations are taken into consideration, the weighted sequence similarity increases significantly; furthermore, the bacterial enzyme has the same active site residues and similar predicted secondary structure as the eukaryotic enzymes. The possibility of convergence is ruled out and the case of divergence is considered unlikely because of the observed phylogenetic distribution of the enzyme. This indicates that the presence of the copper/zinc superoxide dismutase in P. leiognathi can indeed be considered a case of gene transfer from eukaryotic species to prokaryotic species.

  16. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    PubMed

    Shi, Xiao Li; Lepère, Cécile; Scanlan, David J; Vaulot, Daniel

    2011-04-28

    The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  17. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    SciTech Connect

    Lee, Andrew Loyd

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  18. Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines.

    PubMed

    Ferreira, T H; Hollanda, L M; Lancellotti, M; de Sousa, E M B

    2015-06-01

    Nanostructured materials have been widely studied concerning their potential biomedical applications, primarily to selectively carry specific drugs or molecules within a tissue or organ. In this context, boron nitride nanotubes (BNNTs) have generated considerable interest in the scientific community because of their unique properties, presenting good chemical inertness and high thermal stability. Among the many applications proposed for BNNTs in the biomedical field in recent years, the most important include their use as biosensors, nanovectors for the delivery of proteins, drugs, and genes. In the present study, BNNTs were synthesized, purified, and functionalized with glycol chitosan through a chemical process, yielding the BNNT-GC. The size of BNNT-GC was reduced using an ultrasound probe. Two samples with different sizes were selected for in vitro assays. The nanostructures were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA), and dynamic light scattering (DLS). The in vitro assays MTT and neutral red (NR) were performed with NIH-3T3 and A549 cell lines and demonstrated that this material is not cytotoxic. Furthermore, the BNNT-GC was applied in gene transfection of plasmid pIRES containing a gene region that express a green fluorescent protein (GFP) in NIH-3T3 and A549 cell lines. The gene transfection was characterized by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Our results suggest that BNNT-GC has moderate stability and presents great potential as a gene carrier agent in nonviral-based therapy, with low cytotoxicity and good transfection efficiency.

  19. Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes.

    PubMed Central

    Bevec, D; Klier, H; Holter, W; Tschachler, E; Valent, P; Lottspeich, F; Baumruker, T; Hauber, J

    1994-01-01

    The hypusine-containing protein eukaryotic initiation factor 5A (eIF-5A) is a cellular cofactor critically required for the function of the Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1). eIF-5A localizes in the nuclear and cytoplasmic compartments of mammalian cells, suggesting possible activities on the level of regulated mRNA transport and/or protein translation. In this report we show that eIF-5A gene expression is constitutively low but inducible with T-lymphocyte-specific stimuli in human peripheral blood mononuclear cells (PBMCs) of healthy individuals. In contrast, eIF-5A is constitutively expressed at high levels in human cell lines as well as in various human organs. Comparison of eIF-5A levels in the PBMCs of uninfected and HIV-1-infected donors shows a significant upregulation of eIF-5A gene expression in the PBMCs of HIV-1 patients, compatible with a possible role of eIF-5A in HIV-1 replication during T-cell activation. Images PMID:7971969

  20. Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells.

    PubMed Central

    Kuchler, K; Sterne, R E; Thorner, J

    1989-01-01

    Saccharomyces cerevisiae MATa cells release a lipopeptide mating pheromone, a-factor. Radiolabeling and immunoprecipitation show that MATa ste6 mutants produce pro-a-factor and mature a-factor intracellularly, but little or no extracellular pheromone. Normal MATa cells carrying a multicopy plasmid containing both MFa1 (pro-a-factor structural gene) and the STE6 gene secrete a-factor at least five times faster than the same cells carrying only MFa1 in the same vector. The nucleotide sequence of the STE6 gene predicts a 1290 residue polypeptide with multiple membrane spanning segments and two hydrophilic domains, each strikingly homologous to a set of well-characterized prokaryotic permeases (including hlyB, oppD, hisP, malK and pstB) and sharing even greater identity with mammalian mdr (multiple drug resistance) transporters. These results suggest that the STE6 protein in yeast, and possibly mdr in animals, is a transmembrane translocator that exports polypeptides by a route independent of the classical secretory pathway. Images PMID:2686977

  1. Identification of an additional gene required for eukaryotic nonsense mRNA turnover.

    PubMed Central

    Lee, B S; Culbertson, M R

    1995-01-01

    Loss of function of any one of three UPF genes prevents the accelerated decay of nonsense mRNAs in Saccharomyces cerevisiae. We report the identification and DNA sequence of UPF3, which is present in one nonessential copy on chromosome VII. Upf3 contains three putative nuclear localization signal sequences, suggesting that it may be located in a different compartment than the cytoplasmic Upf1 protein. Epitope-tagged Upf3 (FLAG-Upf3) does not cofractionate with polyribosomes or 80S ribosomal particles. Double disruptions of UPF1 and UPF3 affect nonsense mRNA decay in a manner indistinguishable from single disruptions. These results suggest that the Upf proteins perform related functions in a common pathway. Images Fig. 1 Fig. 3 PMID:7479783

  2. Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif

    PubMed Central

    Bürglin, Thomas R

    2008-01-01

    Background The Hedgehog (Hh) signaling pathway plays important roles in human and animal development as well as in carcinogenesis. Hh molecules have been found in both protostomes and deuterostomes, but curiously the nematode Caenorhabditis elegans lacks a bona-fide Hh. Instead a series of Hh-related proteins are found, which share the Hint/Hog domain with Hh, but have distinct N-termini. Results We performed extensive genome searches such as the cnidarian Nematostella vectensis and several nematodes to gain further insights into Hh evolution. We found six genes in N. vectensis with a relationship to Hh: two Hh genes, one gene with a Hh N-terminal domain fused to a Willebrand factor type A domain (VWA), and three genes containing Hint/Hog domains with distinct novel N-termini. In the nematode Brugia malayi we find the same types of hh-related genes as in C. elegans. In the more distantly related Enoplea nematodes Xiphinema and Trichinella spiralis we find a bona-fide Hh. In addition, T. spiralis also has a quahog gene like C. elegans, and there are several additional hh-related genes, some of which have secreted N-terminal domains of only 15 to 25 residues. Examination of other Hh pathway components revealed that T. spiralis - like C. elegans - lacks some of these components. Extending our search to all eukaryotes, we recovered genes containing a Hog domain similar to Hh from many different groups of protists. In addition, we identified a novel Hint gene family present in many eukaryote groups that encodes a VWA domain fused to a distinct Hint domain we call Vint. Further members of a poorly characterized Hint family were also retrieved from bacteria. Conclusion In Cnidaria and nematodes the evolution of hh genes occurred in parallel to the evolution of other genes that contain a Hog domain but have different N-termini. The fact that Hog genes comprising a secreted N-terminus and a Hog domain are found in many protists indicates that this gene family must have

  3. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants.

    PubMed

    Schmitz, Robert J; Amasino, Richard M

    2007-01-01

    The transition from vegetative to reproductive development is a highly regulated process that, in many plant species, is sensitive to environmental cues that provide seasonal information to initiate flowering during optimal times of the year. One environmental cue is the cold of winter. Winter annuals and biennials typically require prolonged exposure to the cold of winter to flower rapidly in the spring. This process by which flowering is promoted by cold exposure is known as vernalization. The winter-annual habit of Arabidopsis thaliana is established by the ability of FRIGIDA to promote high levels of expression of the potent floral repressor FLOWERING LOCUS C (FLC). In Arabidopsis, vernalization results in the silencing of FLC in a mitotically stable (i.e., epigenetic) manner that is maintained for the remainder of the plant life cycle. The repressed "off" state of FLC has features characteristic of facultative heterochromatin. Upon passing to the next generation, the "off" state of FLC is reset to the "on" state. The environmental induction and mitotic stability of vernalization-mediated FLC repression as well as the subsequent resetting in the next generation provides a system for studying several aspects of epigenetic control of gene expression.

  4. Organization and chromosomal localization of the human platelet-derived endothelial cell growth factor gene.

    PubMed Central

    Hagiwara, K; Stenman, G; Honda, H; Sahlin, P; Andersson, A; Miyazono, K; Heldin, C H; Ishikawa, F; Takaku, F

    1991-01-01

    Human platelet-derived endothelial cell growth factor (hPD-ECGF) is a novel angiogenic factor which stimulates endothelial cell growth in vitro and promotes angiogenesis in vivo. We report here the cloning and sequencing of the gene for hPD-ECGF and its flanking regions. This gene is composed of 10 exons dispersed over a 4.3-kb region. Its promoter lacks a TATA box and a CCAAT box, structures characteristic of eukaryotic promoters. Instead, six copies of potential Sp1-binding sites (GGGCGG or CCGCCC) were clustered just upstream of the transcription start sites. Southern blot analysis using genomic DNAs from several vertebrates suggested that the gene for PD-ECGF is conserved phylogenetically among vertebrates. The gene for hPD-ECGF was localized to chromosome 22 by analysis of a panel of human-rodent somatic cell hybrid lines. Images PMID:2005900

  5. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    PubMed

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  6. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    PubMed

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  7. Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome.

    PubMed

    Razin, S V; Ulianov, S V; Ioudinkova, E S; Gushchanskaya, E S; Gavrilov, A A; Iarovaia, O V

    2012-12-01

    The eukaryotic cell genome has a multilevel regulatory system of gene expression that includes stages of preliminary activation of genes or of extended genomic regions (switching them to potentially active states) and stages of final activation of promoters and maintaining their active status in cells of a certain lineage. Current views on the regulatory systems of transcription in eukaryotes have been formed based on results of systematic studies on a limited number of model systems, in particular, on the α- and β-globin gene domains of vertebrates. Unexpectedly, these genomic domains harboring genes responsible for the synthesis of different subunits of the same protein were found to have a fundamentally different organization inside chromatin. In this review, we analyze specific features of the organization of the α- and β-globin gene domains in vertebrates, as well as principles of activities of the regulatory systems in these domains. In the final part of the review, we attempt to answer the question how the evolution of α- and β-globin genes has led to segregation of these genes into two distinct types of chromatin domains situated on different chromosomes.

  8. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus

    PubMed Central

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F. Jerry; Glöckner, Frank O.; Crowley, Susan P.; O'Sullivan, Orla; Cotter, Paul D.; Adams, Claire; Dobson, Alan D. W.; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  9. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes.

    PubMed

    Valen, Eivind; Preker, Pascal; Andersen, Peter Refsing; Zhao, Xiaobei; Chen, Yun; Ender, Christine; Dueck, Anne; Meister, Gunter; Sandelin, Albin; Jensen, Torben Heick

    2011-08-07

    Efforts to catalog eukaryotic transcripts have uncovered many small RNAs (sRNAs) derived from gene termini and splice sites. Their biogenesis pathways are largely unknown, but a mechanism based on backtracking of RNA polymerase II (RNAPII) has been suggested. By sequencing transcripts 12-100 nucleotides in length from cells depleted of major RNA degradation enzymes and RNAs associated with Argonaute (AGO1/2) effector proteins, we provide mechanistic models for sRNA production. We suggest that neither splice site-associated (SSa) nor transcription start site-associated (TSSa) RNAs arise from RNAPII backtracking. Instead, SSa RNAs are largely degradation products of splicing intermediates, whereas TSSa RNAs probably derive from nascent RNAs protected by stalled RNAPII against nucleolysis. We also reveal new AGO1/2-associated RNAs derived from 3' ends of introns and from mRNA 3' UTRs that appear to draw from noncanonical microRNA biogenesis pathways.

  10. Inactivation of the thymidine kinase gene after in vitro modification with benzo(a)pyrene-diol-epoxide and transfer to LTK- cells as a eukaryotic test for carcinogens.

    PubMed

    Schaefer-Ridder, M; Moeroey, T; Engelhardt, U

    1984-12-01

    A recombinant plasmid containing the thymidine kinase (TK) gene (pAGO; 6.36 kilobases) was reacted in vitro with (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, an ultimate carcinogenic metabolite of benzo(a)pyrene. The covalent binding of the metabolite to the circular forms of pAGO was visible by a drastic change in their mobility during agarose gel electrophoresis. The 4% modified DNA was only partially restricted by different endonucleases. Modification and limited restriction were correlated to the biological activity by transfer of the plasmid (TK gene), modified and unmodified, to TK-deficient cells. Upon transfection of mouse LTK- cells with modified plasmid or modified TK gene, no or only a few TK-positive cells were obtained, in contrast to the formation of many colonies after transfection with the unmodified plasmid (gene). Benzo(a)-pyrene itself and phenanthrene oxide, a weakly reactive but noncarcinogenic chemical, did not induce this effect. The reactive diol-epoxides of noncarcinogenic benzo(a)acridine and carcinogenic benzo(c)acridine showed a weaker but similar decreasing effect on the formation of TK+ clones. This inhibition of transformation efficiency suggests inactivation of the gene by chemical modification. Our experimental approach challenges the repair capacity of the eukaryotic cell and thus renders the strategy suitable not only as a eukaryotic test for carcinogens but also as a tool for the study of carcinogenesis as aberrant gene expression.

  11. Gene expression as a circular process: cross-talk between transcription and mRNA degradation in eukaryotes; International University of Andalusia (UNIA) Baeza, Spain.

    PubMed

    Collart, Martine A; Reese, Joseph C

    2014-01-01

    Studies on the regulation of gene expression in eukaryotes in the past 20 years have consistently revealed increasing levels of complexity. Thirty years ago it seemed that we had understood the basic principles of gene regulation in eukaryotes. It was thought that regulation of transcription was the first and most important stage at which gene expression was regulated, and transcriptional regulation was considered to be very simple, with DNA-binding activators and repressors talking to the basic transcription machinery. This simple model was overthrown when it became clear that other stages of gene expression are also highly regulated. More recently, other dogmas have started to collapse. In particular, the idea that a linkage between the different steps in gene expression is restricted to processes ongoing in the same compartment has fallen out of favor. It is now evident that functional and physical linkage occurs in eukaryotes. We know that factors contributing to transcription in the nucleus can be found in the cytoplasm, and that RNA binding proteins that contribute to RNA decay in the cytoplasm are present in the nucleus. However, shuttling of such factors between nucleus and cytoplasm has traditionally been thought to serve a simple regulatory purpose, for instance, to avoid untimely activation of a transcription factor in the nucleus. Alternatively, it was thought to be necessary to recruit RNA binding proteins to the relevant RNAs. The notion that is now emerging is that factors thought to have evolved to specialize in regulating a single step of gene regulation in one cellular compartment may be contributing to the regulation of mRNAs at multiple steps along the lifecycle of an mRNA.

  12. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    PubMed

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.

  13. Current Bacterial Gene Encoding Capsule Biosynthesis Protein CapI Contains Nucleotides Derived from Exonization

    PubMed Central

    Wang, Yong; Tao, Xia-Fang; Su, Zhi-Xi; Liu, A-Ke; Liu, Tian-Lei; Sun, Ling; Yao, Qin; Chen, Ke-Ping; Gu, Xun

    2016-01-01

    Since the proposition of introns-early hypothesis, although many studies have shown that most eukaryotic ancestors possessed intron-rich genomes, evidence of intron existence in genomes of ancestral bacteria has still been absent. While not a single intron has been found in all protein-coding genes of current bacteria, analyses on bacterial genes horizontally transferred into eukaryotes at ancient time may provide evidence of intron existence in bacterial ancestors. In this study, a bacterial gene encoding capsule biosynthesis protein CapI was found in the genome of sea anemone, Nematostella vectensis. This horizontally transferred gene contains a phase 1 intron of 40 base pairs. The nucleotides of this intron have high sequence identity with those encoding amino acids in current bacterial CapI gene, indicating that the intron and the amino acid-coding nucleotides are originated from the same ancestor sequence. Moreover, 5′-splice site of this intron is located in a GT-poor region associated with a closely following AG-rich region, suggesting that deletion mutation at 5′-splice site has been employed to remove this intron and the intron-like amino acid-coding nucleotides in current bacterial CapI gene are derived from exonization. These data suggest that bacterial CapI gene contained intron(s) at ancient time. This is the first report providing the result of sequence analysis to suggest possible existence of spliceosomal introns in ancestral bacterial genes. The methodology employed in this study may be used to identify more such evidence that would aid in settlement of the dispute between introns-early and introns-late theories. PMID:27980385

  14. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes.

    PubMed

    Meng, Gang; Dai, Fangyin; Tong, Xiaoling; Li, Niannian; Ding, Xin; Song, Jiangbo; Lu, Cheng

    2015-06-01

    WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs and phosphorylated serine/threonine-proline sites. WW domains are found in many different structural and signaling proteins that are involved in a variety of cellular processes. WW domain-containing proteins (WWCPs) and complexes have been implicated in major human diseases including cancer as well as in major signaling cascades such as the Hippo tumor suppressor pathway, making them targets for new diagnostics and therapeutics. There are a number of reports about the WWCPs in different species, but systematic analysis of the WWCP genes and its ligands is still lacking in silkworm and the other organisms. In this study, WWCP genes and PY motif-containing proteins have been identified and analyzed in 56 species including silkworm. Whole-genome screening of B. mori identified thirty-three proteins with thirty-nine WW domains located on thirteen chromosomes. In the 39 silkworm WW domains, 15 domains belong to the Group I WW domain; 14 domains were in Group II/III, 9 domains derived from 8 silkworm WWCPs could not be classified into any group, and Group IV contains only one WW domain. Based on gene annotation, silkworm WWCP genes have functions in multi-biology processes. A detailed list of WWCPs from the other 55 species was sorted in this work. In 14,623 silkworm predicted proteins, nearly 18 % contained PY motif, nearly 30 % contained various motifs totally that could be recognized by WW domains. Gene Ontology and KEGG analysis revealed that dozens of WW domain-binding proteins are involved in Wnt, Hedgehog, Notch, mTOR, EGF and Jak-STAT signaling pathway. Tissue expression patterns of WWCP genes and potential WWCP-binding protein genes on the third day of the fifth instar (L5D3) were examined by microarray analysis. Tissue expression profile analysis found that several WWCP genes and poly-proline or PY motif-containing protein genes took

  15. Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph.

    PubMed

    Zauner, S; Fraunholz, M; Wastl, J; Penny, S; Beaton, M; Cavalier-Smith, T; Maier, U G; Douglas, S

    2000-01-04

    Cells of several major algal groups are evolutionary chimeras of two radically different eukaryotic cells. Most of these "cells within cells" lost the nucleus of the former algal endosymbiont. But after hundreds of millions of years cryptomonads still retain the nucleus of their former red algal endosymbiont as a tiny relict organelle, the nucleomorph, which has three minute linear chromosomes, but their function and the nature of their ends have been unclear. We report extensive cryptomonad nucleomorph sequences (68.5 kb), from one end of each of the three chromosomes of Guillardia theta. Telomeres of the nucleomorph chromosomes differ dramatically from those of other eukaryotes, being repeats of the 23-mer sequence (AG)(7)AAG(6)A, not a typical hexamer (commonly TTAGGG). The subterminal regions comprising the rRNA cistrons and one protein-coding gene are exactly repeated at all three chromosome ends. Gene density (one per 0.8 kb) is the highest for any cellular genome. None of the 38 protein-coding genes has spliceosomal introns, in marked contrast to the chlorarachniophyte nucleomorph. Most identified nucleomorph genes are for gene expression or protein degradation; histone, tubulin, and putatively centrosomal ranbpm genes are probably important for chromosome segregation. No genes for primary or secondary metabolism have been found. Two of the three tRNA genes have introns, one in a hitherto undescribed location. Intergenic regions are exceptionally short; three genes transcribed by two different RNA polymerases overlap their neighbors. The reported sequences encode two essential chloroplast proteins, FtsZ and rubredoxin, thus explaining why cryptomonad nucleomorphs persist.

  16. Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph

    PubMed Central

    Zauner, Stefan; Fraunholz, Martin; Wastl, Jürgen; Penny, Susanne; Beaton, Margaret; Cavalier-Smith, Thomas; Maier, Uwe-G.; Douglas, Susan

    2000-01-01

    Cells of several major algal groups are evolutionary chimeras of two radically different eukaryotic cells. Most of these “cells within cells” lost the nucleus of the former algal endosymbiont. But after hundreds of millions of years cryptomonads still retain the nucleus of their former red algal endosymbiont as a tiny relict organelle, the nucleomorph, which has three minute linear chromosomes, but their function and the nature of their ends have been unclear. We report extensive cryptomonad nucleomorph sequences (68.5 kb), from one end of each of the three chromosomes of Guillardia theta. Telomeres of the nucleomorph chromosomes differ dramatically from those of other eukaryotes, being repeats of the 23-mer sequence (AG)7AAG6A, not a typical hexamer (commonly TTAGGG). The subterminal regions comprising the rRNA cistrons and one protein-coding gene are exactly repeated at all three chromosome ends. Gene density (one per 0.8 kb) is the highest for any cellular genome. None of the 38 protein-coding genes has spliceosomal introns, in marked contrast to the chlorarachniophyte nucleomorph. Most identified nucleomorph genes are for gene expression or protein degradation; histone, tubulin, and putatively centrosomal ranbpm genes are probably important for chromosome segregation. No genes for primary or secondary metabolism have been found. Two of the three tRNA genes have introns, one in a hitherto undescribed location. Intergenic regions are exceptionally short; three genes transcribed by two different RNA polymerases overlap their neighbors. The reported sequences encode two essential chloroplast proteins, FtsZ and rubredoxin, thus explaining why cryptomonad nucleomorphs persist. PMID:10618395

  17. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  18. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes.

    PubMed

    Mori, Hiroshi; Maruyama, Fumito; Kato, Hiromi; Toyoda, Atsushi; Dozono, Ayumi; Ohtsubo, Yoshiyuki; Nagata, Yuji; Fujiyama, Asao; Tsuda, Masataka; Kurokawa, Ken

    2014-01-01

    The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.

  19. Biology wars: the eukaryotes strike back.

    PubMed

    Dunning Hotopp, Julie C; Estes, Anne M

    2014-12-10

    It is increasingly clear that eukaryotes have acquired bacterial DNA and function through horizontal gene transfer (HGT). In this issue of Cell Host & Microbe, Chou et al. (2014) and Metcalf et al. (2014) report multiple HGTs of bacterial tae and lysozyme genes, respectively, to diverse eukaryotic and archaeal hosts that may complement their response to bacteria.

  20. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes.

    PubMed

    Moreira, David; Deschamps, Philippe

    2014-07-01

    Eukaryotic genomes are composed of genes of different evolutionary origins. This is especially true in the case of photosynthetic eukaryotes, which, in addition to typical eukaryotic genes and genes of mitochondrial origin, also contain genes coming from the primary plastids and, in the case of secondary photosynthetic eukaryotes, many genes provided by the nuclei of red or green algal endosymbionts. Phylogenomic analyses have been applied to detect those genes and, in some cases, have led to proposing the existence of cryptic, no longer visible endosymbionts. However, detecting them is a very difficult task because, most often, those genes were acquired a long time ago and their phylogenetic signal has been heavily erased. We revisit here two examples, the putative cryptic endosymbiosis of green algae in diatoms and chromerids and of Chlamydiae in the first photosynthetic eukaryotes. We show that the evidence sustaining them has been largely overestimated, and we insist on the necessity of careful, accurate phylogenetic analyses to obtain reliable results.

  1. Eukaryotic evolution: getting to the root of the problem.

    PubMed

    Simpson, Alastair G B; Roger, Andrew J

    2002-10-15

    Comparative analyses of multiple genes suggest most known eukaryotes can be classified into half a dozen 'super-groups'. A new investigation of the distribution of a fused gene pair amongst these 'super-groups' has greatly narrowed the possible positions of the root of the eukaryote tree, clarifying the broad outlines of early eukaryote evolution.

  2. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development.

    PubMed

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle; Cassin, Andrew; Johnson, Kim L; Salmeán, Armando A; Willats, William G T; Doblin, Monika S; Bacic, Antony; Kloareg, Bernard

    2016-03-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes.

  3. PAT-seq: a method to study the integration of 3′-UTR dynamics with gene expression in the eukaryotic transcriptome

    PubMed Central

    Harrison, Paul F.; Powell, David R.; Clancy, Jennifer L.; Preiss, Thomas; Boag, Peter R.; Traven, Ana; Seemann, Torsten; Beilharz, Traude H.

    2015-01-01

    A major objective of systems biology is to quantitatively integrate multiple parameters from genome-wide measurements. To integrate gene expression with dynamics in poly(A) tail length and adenylation site, we developed a targeted next-generation sequencing approach, Poly(A)-Test RNA-sequencing. PAT-seq returns (i) digital gene expression, (ii) polyadenylation site/s, and (iii) the polyadenylation-state within and between eukaryotic transcriptomes. PAT-seq differs from previous 3′ focused RNA-seq methods in that it depends strictly on 3′ adenylation within total RNA samples and that the full-native poly(A) tail is included in the sequencing libraries. Here, total RNA samples from budding yeast cells were analyzed to identify the intersect between adenylation state and gene expression in response to loss of the major cytoplasmic deadenylase Ccr4. Furthermore, concordant changes to gene expression and adenylation-state were demonstrated in the classic Crabtree–Warburg metabolic shift. Because all polyadenylated RNA is interrogated by the approach, alternative adenylation sites, noncoding RNA and RNA-decay intermediates were also identified. Most important, the PAT-seq approach uses standard sequencing procedures, supports significant multiplexing, and thus replication and rigorous statistical analyses can for the first time be brought to the measure of 3′-UTR dynamics genome wide. PMID:26092945

  4. The relative ages of eukaryotes and akaryotes.

    PubMed

    Penny, David; Collins, Lesley J; Daly, Toni K; Cox, Simon J

    2014-12-01

    The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.

  5. Open Questions on the Origin of Eukaryotes.

    PubMed

    López-García, Purificación; Moreira, David

    2015-11-01

    Despite recent progress, the origin of the eukaryotic cell remains enigmatic. It is now known that the last eukaryotic common ancestor was complex and that endosymbiosis played a crucial role in eukaryogenesis at least via the acquisition of the alphaproteobacterial ancestor of mitochondria. However, the nature of the mitochondrial host is controversial, although the recent discovery of an archaeal lineage phylogenetically close to eukaryotes reinforces models proposing archaea-derived hosts. We argue that, in addition to improved phylogenomic analyses with more comprehensive taxon sampling to pinpoint the closest prokaryotic relatives of eukaryotes, determining plausible mechanisms and selective forces at the origin of key eukaryotic features, such as the nucleus or the bacterial-like eukaryotic membrane system, is essential to constrain existing models.

  6. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene.

    PubMed

    Jannat, Shopan; Mou, Haipeng; Zhang, Lili; Zhang, Changtong; Ma, Weiwei; Walsh, John A; Hu, Zhongyuan; Yang, Jinghua; Zhang, Mingfang

    2017-02-28

    Recessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bβ). Silencing of eIF2Bβ in a TuMV-susceptible mustard plant line and expression of eIF2Bβ from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bβ is required for efficient TuMV infection. eIF2Bβ represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2·GTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bβ was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bβ. This article is protected by copyright. All rights reserved.

  7. Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability.

    PubMed

    Nowosielska, Anetta

    2007-01-01

    Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.

  8. Killing of cancer cells through the use of eukaryotic expression vectors harbouring genes encoding nucleases and ribonuclease inhibitor.

    PubMed

    Glinka, Elena M

    2015-05-01

    Cancer gene therapy vectors are promising tools for killing cancer cells with the purpose of eradicating malignant tumours entirely. Different delivery methods of vectors into the cancer cells, including both non-viral and viral, as well as promoters for the targeted expression of genes encoding anticancer proteins were developed for effective and selective killing of cancer cells without harming healthy cells. Many vectors have been created to kill cancer cells, and some vectors suppress malignant tumours with high efficiency. This review is focused on vectors bearing genes for nucleases such as deoxyribonucleases (caspase-activated DNase, deoxyribonuclease I-like 3, endonuclease G) and ribonucleases (human polynucleotide phosphorylase, ribonuclease L, α-sarcin, barnase), as well as vectors harbouring gene encoding ribonuclease inhibitor. The data concerning the functionality and the efficacy of such vectors are presented.

  9. A New Class of SINEs with snRNA Gene-Derived Heads.

    PubMed

    Kojima, Kenji K

    2015-05-27

    Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5' region (head) of the majority of SINEs is derived from one of the three types of RNA genes--7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)--and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5' end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar.

  10. Handling tRNA introns, archaeal way and eukaryotic way

    PubMed Central

    Yoshihisa, Tohru

    2014-01-01

    Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages. PMID:25071838

  11. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  12. Pervasive transcription constitutes a new level of eukaryotic genome regulation

    PubMed Central

    Berretta, Julia; Morillon, Antonin

    2009-01-01

    During the past few years, it has become increasingly evident that the expression of eukaryotic genomes is far more complex than had been previously noted. The idea that the transcriptome is derived exclusively from protein-coding genes and some specific non-coding RNAs—such as snRNAs, snoRNAs, tRNAs or rRNAs—has been swept away by numerous studies indicating that RNA polymerase II can be found at almost any genomic location. Pervasive transcription is widespread and, far from being a futile process, has a crucial role in controlling gene expression and genomic plasticity. Here, we review recent findings that point to cryptic transcription as a fundamental component of the regulation of eukaryotic genomes. PMID:19680288

  13. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems.

    PubMed

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R; Prochnik, Simon E; Blouin, Nicolas A; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L; Klein, Anita S; Lin, Senjie; Levine, Ira; Brawley, Susan H; Bhattacharya, Debashish

    2012-04-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.

  14. Genesis and regulatory wiring of retroelement-derived domesticated genes: a phylogenomic perspective.

    PubMed

    Kokošar, Janez; Kordiš, Dušan

    2013-05-01

    Molecular domestications of transposable elements have occurred repeatedly during the evolution of eukaryotes. Vertebrates, especially mammals, possess numerous single copy domesticated genes (DGs) that have originated from the intronless multicopy transposable elements. However, the origin and evolution of the retroelement-derived DGs (RDDGs) that originated from Metaviridae has been only partially elucidated, due to absence of genome data or to limited analysis of a single family of DGs. We traced the genesis and regulatory wiring of the Metaviridae-derived DGs through phylogenomic analysis, using whole-genome information from more than 90 chordate genomes. Phylogenomic analysis of these DGs in chordate genomes provided direct evidence that major diversification has occurred in the ancestor of placental mammals. Mammalian RDDGs have been shown to originate in several steps by independent domestication events and to diversify later by gene duplications. Analysis of syntenic loci has shown that diverse RDDGs and their chromosomal positions were fully established in the ancestor of placental mammals. By analysis of active Metaviridae lineages in amniotes, we have demonstrated that RDDGs originated from retroelement remains. The chromosomal gene movements of RDDGs were highly dynamic only in the ancestor of placental mammals. During the domestication process, de novo acquisition of regulatory regions is shown to be a prerequisite for the survival of the DGs. The origin and evolution of de novo acquired promoters and untranslated regions in diverse mammalian RDDGs have been explained by comparative analysis of orthologous gene loci. The origin of placental mammal-specific innovations and adaptations, such as placenta and newly evolved brain functions, was most probably connected to the regulatory wiring of DGs and their rapid fixation in the ancestor of placental mammals.

  15. Changing ideas about eukaryotic origins.

    PubMed

    Williams, Tom A; Embley, T Martin

    2015-09-26

    The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress.

  16. Changing ideas about eukaryotic origins

    PubMed Central

    Williams, Tom A.; Embley, T. Martin

    2015-01-01

    The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress. PMID:26323752

  17. Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus.

    PubMed

    Bell, Philip John Livingstone

    2006-11-07

    The origin of the eukaryotic cell cycle, including mitosis, meiosis, and sex are as yet unresolved aspects of the evolution of the eukaryotes. The wide phylogenetic distribution of both mitosis and meiosis suggest that these processes are integrally related to the origin of the earliest eukaryotic cells. According to the viral eukaryogenesis (VE) hypothesis, the eukaryotes are a composite of three phylogenetically unrelated organisms: a viral lysogen that evolved into the nucleus, an archaeal cell that evolved into the eukaryotic cytoplasm, and an alpha-proteobacterium that evolved into the mitochondria. In the extended VE hypothesis presented here, the eukaryotic cell cycle arises as a consequence of the derivation of the nucleus from a lysogenic DNA virus.

  18. [A model system for the assessment of the stability of eukaryotic genes and expressed proteins in extended space flight].

    PubMed

    Kalinin, Iu T; Timofeev, I V; Paletskaia, T F; Perminova, N G; Gileva, I P; Shcherbakov, G Ia

    2000-01-01

    Evidence was obtained that the changed gravity, tension profiles of the magnetic fields inside the orbital station and other spaceflight factors (SFF) substantially influence the cell genome and synthesis of recombinant proteins. The authors proposed a technique of fixation of possible alterations in genes and expressed recombinant proteins in strains-producers of human alpha-interferon: HuIFN-alpha 2b, HuIFN-alpha 8a, HuIFN-alpha 10a, and HuIFN-alpha 14a. Spaceflight factors were simulated by way of gamma-irradiation at 10 Gy and 50 Gy by a cobalt unit, and centrifugation of samples at 10 g and 50 g. Cultivation of the strains-producers during the SFF simulation yielded HuIFN-alpha proteins with altered functional characteristics. Following exposure to simulated SFF, strains-producers expressed HuIFN-alpha that preserved a high titre of antiviral activity (AVA) but suppressed the antiproliferative activity (APA) inferring some structural/functional shifts in the HuIFN-alpha molecule due to, presumably, mutations in the active center responsible for APA. Determination of species specificity of the HuIFN-alpha recombinant proteins following exposure to SFF revealed dissociation of cross-AVA in homologous and heterologous cell cultures which can be also attributed to the structural/functional shifts in the HuIFN-alpha molecule. These changes can be localized in the receptor cluster of molecule or consequent to modification of the center defining HuIFN-alpha species specificity. The proposed simulation system allows fixation of shifts in the HuIFN-alpha structural/functional characteristics and investigations of the stability of eucaryotic genes in long-term space flights.

  19. A New Class of SINEs with snRNA Gene-Derived Heads

    PubMed Central

    Kojima, Kenji K.

    2015-01-01

    Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5′ region (head) of the majority of SINEs is derived from one of the three types of RNA genes—7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)—and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5′ end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar. PMID:26019167

  20. Analysis of a eukaryotic beta-galactosidase gene: the N-terminal end of the yeast Kluyveromyces lactis protein shows homology to the Escherichia coli lacZ gene product.

    PubMed Central

    Breunig, K D; Dahlems, U; Das, S; Hollenberg, C P

    1984-01-01

    The LAC4 gene of Kluyveromyces lactis, encoding the enzyme beta-galactosidase was mapped on a cloned DNA fragment and the sequence of the 5' end was determined. This sequence includes the 5' regulatory region involved in the induction by lactose and the N-terminal end of the protein coding region. Comparison of the deduced amino acid sequence of this eukaryotic enzyme with the N-terminal end of the Escherichia coli beta-galactosidase revealed substantial homology. Two major RNA initiation sites were mapped at -115 and -105. A number of structural peculiarities of the 5'non-coding region are discussed as in comparison to Saccharomyces cerevisiae genes. Images PMID:6324114

  1. Cleavage of Eukaryotic Translation Initiation Factor 4G by Exogenously Added Hybrid Proteins Containing Poliovirus 2Apro in HeLa Cells: Effects on Gene Expression

    PubMed Central

    Novoa, Isabel; Carrasco, Luis

    1999-01-01

    Efficient cleavage of both forms of eukaryotic initiation factor 4G (eIF4G-1 and eIF4G-2) has been achieved in HeLa cells by incubation with hybrid proteins containing poliovirus 2Apro. Entry of these proteins into cells is promoted by adenovirus particles. Substantial levels of ongoing translation on preexisting cellular mRNAs still continue for several hours after eIF4G degradation. Treatment of control HeLa cells with hypertonic medium causes an inhibition of translation that is reversed upon restoration of cells to normal medium. Protein synthesis is not restored in cells lacking intact eIF4G after hypertonic treatment. Notably, induction of synthesis of heat shock proteins still occurs in cells pretreated with poliovirus 2Apro, suggesting that transcription and translation of these mRNAs takes place even in the presence of cleaved eIF4G. Finally, the synthesis of luciferase was examined in a HeLa cell line bearing the luciferase gene under control of a tetracycline-regulated promoter. Transcription of the luciferase gene and transport of the mRNA to the cytoplasm occurs at control levels in eIF4G-deficient cells. However, luciferase synthesis is strongly inhibited in these cells. These findings indicate that intact eIF4G is necessary for the translation of mRNAs not engaged in translation with the exception of heat shock mRNAs but is not necessary for the translation of mRNAs that are being translated. PMID:10082510

  2. Origins and evolution of eukaryotic RNA interference

    PubMed Central

    Shabalina, Svetlana A.; Koonin, Eugene V.

    2009-01-01

    Small interfering RNAs (siRNAs) and genome-encoded microRNAs (miRNAs) silence genes via complementary interactions with mRNAs. With thousands of miRNA genes identified and genome sequences of diverse eukaryotes available for comparison, the opportunity emerges for insights into origin and evolution of RNA interference (RNAi). The miRNA repertoires of plants and animals appear to have evolved independently. However, conservation of the key proteins involved in RNAi suggests that the last common ancestor of modern eukaryotes possessed siRNA-based mechanisms. Prokaryotes have a RNAi-like defense system that is functionally analogous but not homologous to eukaryotic RNAi. The protein machinery of eukaryotic RNAi seems to have been pieced together from ancestral proteins of archaeal, bacterial and phage origins that are involved in DNA repair and RNA-processing pathways. PMID:18715673

  3. Structure and function of eukaryotic chromosomes

    SciTech Connect

    Hennig, W.

    1987-01-01

    Contents: Introduction; Polytene Chromosomel Giant Chromosomes in Ciliates; The sp-I Genes in the Balbiani Rings of Chironomus Salivary Glands; The White Locus of Drosophila Melanogaster; The Genetic and Molecular Organization of the Dense Cluster of Functionally Related Vital Genes in the DOPA Decarboxylase Region of the Drosophila melanogaster Genome; Heat Shock Puffs and Response to Environmental Stress; The Y Chromosomal Lampbrush Loops of Drosophila; Contributions of Electron Microscopic Spreading Preparations (''Miller Spreads'') to the Analysis of Chromosome Structure; Replication of DNA in Eukaryotic Chromosomes; Gene Amplification in Dipteran Chromosomes; The Significance of Plant Transposable Elements in Biologically Relevant Processes; Arrangement of Chromosomes in Interphase Cell Nuclei; Heterochromatin and the Phenomenon of Chromosome Banding; Multiple Nonhistone Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene; Genetics of Sex Determination in Eukaryotes; Application of Basic Chromosome Research in Biotechnology and Medicine. This book presents an overview of various aspects of chromosome research.

  4. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses

    NASA Astrophysics Data System (ADS)

    Krupovic, Mart; Koonin, Eugene V.

    2014-06-01

    Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.

  5. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses

    PubMed Central

    Krupovic, Mart; Koonin, Eugene V.

    2014-01-01

    Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types. PMID:24939392

  6. Acidocalcisomes of eukaryotes.

    PubMed

    Docampo, Roberto; Huang, Guozhong

    2016-08-01

    Acidocalcisomes are organelles rich in polyphosphate and cations and acidified by proton pumps. Although they have also been described in prokaryotes they have been better characterized in unicellular and multicellular eukaryotes. Eukaryotic acidocalcisomes belong to the group of lysosome-related organelles. They have a variety of functions, from the storage of cations and phosphorus to calcium signaling, autophagy, osmoregulation, blood coagulation, and inflammation. Acidocalcisomes of several unicellular eukaryotes possess a variety of transporters, channels and pumps implying a large energetic requirement for their maintenance and suggesting other important functions waiting to be discovered.

  7. Exaptive origins of regulated mRNA decay in eukaryotes

    PubMed Central

    Hamid, Fursham M.

    2016-01-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. PMID:27438915

  8. Bacterial proteins pinpoint a single eukaryotic root

    PubMed Central

    Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B. Franz; Eliáš, Marek

    2015-01-01

    The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between “Unikonta” and “Bikonta,” with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively. PMID:25646484

  9. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    SciTech Connect

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  10. Symbiosis in eukaryotic evolution.

    PubMed

    López-García, Purificación; Eme, Laura; Moreira, David

    2017-02-28

    Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.

  11. Structural disorder in eukaryotes.

    PubMed

    Pancsa, Rita; Tompa, Peter

    2012-01-01

    Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.

  12. The Eukaryotic Replisome Goes Under the Microscope

    DOE PAGES

    O'Donnell, Mike; Li, Huilin

    2016-03-21

    The machinery at the eukaryotic replication fork has seen many new structural advances using EM and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are importantmore » to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome.« less

  13. The Eukaryotic Replisome Goes Under the Microscope

    PubMed Central

    O’Donnell, Mike; Li, Huilin

    2016-01-01

    The machinery at the eukaryotic replication fork has seen many new structural advances using electron microscopy and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are important to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome. PMID:27003891

  14. The Eukaryotic Replisome Goes Under the Microscope

    SciTech Connect

    O'Donnell, Mike; Li, Huilin

    2016-03-21

    The machinery at the eukaryotic replication fork has seen many new structural advances using EM and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are important to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome.

  15. New serine-derived gemini surfactants as gene delivery systems.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems.

  16. Reporter gene assays for algal-derived toxins.

    PubMed

    Fairey, E R; Ramsdell, J S

    1999-01-01

    We have modified the cell-based directed cytotoxicity assay for sodium channel and calcium channel active phycotoxins using a c-fos-luciferase reporter gene construct. In this report we describe the conceptual basis to the development of reporter gene assays for algal-derived toxins and summarize both published and unpublished data using this method. N2A mouse neuroblastoma cells, which express voltage-dependent sodium channels, were stably transfected with the reporter gene c-fos-luc, which contains the firefly luciferase gene under the transcriptional regulation of the human c-fos response element. The characteristics of the N2A reporter gene assay were determined by dose response with brevetoxin and ciguatoxin. Brevetoxin-1 and ciguatoxin-1 induced c-fos-luc with an EC50 of 4.6 and 3.0 ng ml(-1), respectively. Saxitoxin caused a concentration-dependent inhibition of brevetoxin-1 induction of c-fos-luc with an EC50 of 3.5 ng ml(-1). GH4C1 rat pituitary cells, which lack voltage-dependent sodium channels but express voltage-dependent calcium channels, were also stably transfected with the c-fos-luc. GH4C1 cells expressing c-fos-luciferase were responsive to maitotoxin (1 ng ml(-1)) and a putative toxin produced by Pfiesteria piscicida. Although reporter gene assays are not designed to replace existing detection methods used to measure toxin activity in seafood, they do provide a valuable means to screen algal cultures for toxin activity, to conduct assay-guided fractionation and to characterize pharmacologic properties of algal toxins.

  17. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    SciTech Connect

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  18. Transfer of DNA from Bacteria to Eukaryotes

    PubMed Central

    2016-01-01

    ABSTRACT Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  19. Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate β-Galactoside α2,3/6-Sialyltransferases (ST3Gal and ST6Gal)

    PubMed Central

    Teppa, Roxana E.; Petit, Daniel; Plechakova, Olga; Cogez, Virginie; Harduin-Lepers, Anne

    2016-01-01

    Cell surface of eukaryotic cells is covered with a wide variety of sialylated molecules involved in diverse biological processes and taking part in cell–cell interactions. Although the physiological relevance of these sialylated glycoconjugates in vertebrates begins to be deciphered, the origin and evolution of the genetic machinery implicated in their biosynthetic pathway are poorly understood. Among the variety of actors involved in the sialylation machinery, sialyltransferases are key enzymes for the biosynthesis of sialylated molecules. This review focus on β-galactoside α2,3/6-sialyltransferases belonging to the ST3Gal and ST6Gal families. We propose here an outline of the evolutionary history of these two major ST families. Comparative genomics, molecular phylogeny and structural bioinformatics provided insights into the functional innovations in sialic acid metabolism and enabled to explore how ST-gene function evolved in vertebrates. PMID:27517905

  20. tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression

    PubMed Central

    Keam, Simon P.; Hutvagner, Gyorgy

    2015-01-01

    This review will summarise the recent discoveries and current state of research on short noncoding RNAs derived from tRNAs—known as tRNA-derived fragments (tRFs). It will describe the features of the known subtypes of these RNAs; including sequence characteristics, protein interactors, expression characteristics, biogenesis, and similarity to canonical miRNA pathways. Also their role in regulating gene expression; including mediating translational suppression, will be discussed. We also highlight their potential use as biomarkers, functions in gene regulation and links to disease. Finally, this review will speculate as to the origin and rationale for the conservation of this novel class of noncoding RNAs amongst both prokaryotes and eukaryotes. PMID:26703738

  1. Eukaryotic Cell Panorama

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  2. Mitochondrial Genome Structure of Photosynthetic Eukaryotes.

    PubMed

    Yurina, N P; Odintsova, M S

    2016-02-01

    Current ideas of plant mitochondrial genome organization are presented. Data on the size and structural organization of mtDNA, gene content, and peculiarities are summarized. Special emphasis is given to characteristic features of the mitochondrial genomes of land plants and photosynthetic algae that distinguish them from the mitochondrial genomes of other eukaryotes. The data published before the end of 2014 are reviewed.

  3. Recombinant vector and eukaryotic host transformed thereby

    SciTech Connect

    Sugden, W.M.

    1987-08-11

    A recombinant plasmid is described comprising: a segment from a first plasmid which is not a lymphotrophic herpes virus segment and which facilitates the replication of the recombinant plasmid in a prokaryotic host; a segment from a lymphotrophic herpes virus which is linked to the first plasmid segment such that is a capable of assisting in maintaining the recombinant plasmid as a plasmid if the recombinant plasmid is inserted into a eukaryotic host that has been transformed by the lymphotrophic herpes virus; and a foreign eukaryotic gene component linked as part of the recombinant plasmid.

  4. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes.

    PubMed

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J; Henze, Katrin; Woehle, Christian; Gould, Sven B; Yu, Re-Young; van der Giezen, Mark; Tielens, Aloysius G M; Martin, William F

    2012-06-01

    Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.

  5. Supertrees and symbiosis in eukaryote genome evolution.

    PubMed

    Esser, Christian; Martin, William

    2007-10-01

    If we took all of the single copy genes in all sequenced genomes, made phylogenetic trees from them individually, and then made the supertree of those trees, what would we get? Recently, David Pisani and colleagues did that experiment and their results are likely to spark much discussion. Their prokaryote tree looks very familiar, but the genome history of eukaryotes appears dominated by genes of cyanobacterial (plastid) and alpha-proteobacterial (mitochondrial) origin, while the host component branches within the archaebacteria.

  6. Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles.

    PubMed

    Suwastika, I Nengah; Denawa, Masatsugu; Yomogihara, Saki; Im, Chak Han; Bang, Woo Young; Ohniwa, Ryosuke L; Bahk, Jeong Dong; Takeyasu, Kunio; Shiina, Takashi

    2014-01-01

    The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT), which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of "primary" algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases). Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all 30 eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and α-proteobacterium, respectively, through endosymbiotic gene transfer (EGT). However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase) and two localized to mitochondria were derived from cyanobacteria and α-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to α-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor α-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2) and green non-sulfur bacteria (HflX). This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants.

  7. Mitochondrion-related organelles in eukaryotic protists.

    PubMed

    Shiflett, April M; Johnson, Patricia J

    2010-01-01

    The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.

  8. Atypical mitochondrial inheritance patterns in eukaryotes.

    PubMed

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  9. Autophagy in unicellular eukaryotes.

    PubMed

    Kiel, Jan A K W

    2010-03-12

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation.

  10. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    PubMed

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  11. Eukaryotic association module in phage WO genomes from Wolbachia

    PubMed Central

    Bordenstein, Sarah R.; Bordenstein, Seth R.

    2016-01-01

    Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. PMID:27727237

  12. Origin and diversification of eukaryotes.

    PubMed

    Katz, Laura A

    2012-01-01

    The bulk of the diversity of eukaryotic life is microbial. Although the larger eukaryotes-namely plants, animals, and fungi-dominate our visual landscapes, microbial lineages compose the greater part of both genetic diversity and biomass, and contain many evolutionary innovations. Our understanding of the origin and diversification of eukaryotes has improved substantially with analyses of molecular data from diverse lineages. These data have provided insight into the nature of the genome of the last eukaryotic common ancestor (LECA). Yet, the origin of key eukaryotic features, namely the nucleus and cytoskeleton, remains poorly understood. In contrast, the past decades have seen considerable refinement in hypotheses on the major branching events in the evolution of eukaryotic diversity. New insights have also emerged, including evidence for the acquisition of mitochondria at the time of the origin of eukaryotes and data supporting the dynamic nature of genomes in LECA.

  13. Sequencing our way towards understanding global eukaryotic biodiversity

    PubMed Central

    Bik, Holly M.; Porazinska, Dorota L.; Creer, Simon; Caporaso, J. Gregory; Knight, Rob; Thomas, W. Kelley

    2011-01-01

    Microscopic eukaryotes are abundant, diverse, and fill critical ecological roles across every ecosystem on earth, yet there is a well-recognized gap in our understanding of their global biodiversity. Fundamental advances in DNA sequencing and bioinformatics now allow accurate en masse biodiversity assessments of microscopic eukaryotes from environmental samples. Despite a promising outlook, the field of eukaryotic marker gene surveys faces significant challenges: how to generate data that is most useful to the community, especially in the face of evolving sequencing technology and bioinformatics pipelines, and how to incorporate an expanding number of target genes. PMID:22244672

  14. Natural history of eukaryotic DNA methylation systems.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2011-01-01

    Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not

  15. Eukaryotic mechanosensitive channels.

    PubMed

    Arnadóttir, Jóhanna; Chalfie, Martin

    2010-01-01

    Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.

  16. Concerted gene recruitment in early plant evolution

    PubMed Central

    Huang, Jinling; Gogarten, J Peter

    2008-01-01

    Background Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. Results Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants. These genes most likely provided new functions, often essential for plant growth and development, to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the biogenesis and functionality of plastids, the defining character of plants. Conclusion Our data suggest that, although ancient horizontal gene transfer events did occur in eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene transfer in the adaptation of the recipient organism. Our data also show that multiple independently acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene transfer in the macroevolution of eukaryotes. PMID:18611267

  17. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    PubMed

    Garg, Sriram G; Martin, William F

    2016-07-02

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  18. The Corynebacterium glutamicum gene pmt encoding a glycosyltransferase related to eukaryotic protein-O-mannosyltransferases is essential for glycosylation of the resuscitation promoting factor (Rpf2) and other secreted proteins.

    PubMed

    Mahne, Martina; Tauch, Andreas; Pühler, Alfred; Kalinowski, Jörn

    2006-06-01

    Two-dimensional gel electrophoresis and immunoassays revealed several proteins of the secretory subproteome of Corynebacterium glutamicum to be glycosylated. By genome-wide searches for genes involved in glycosylation, the C. glutamicum gene cg1014 was found to exhibit significant similarity to eukaryotic protein-O-mannosyltransferases (PMTs) and to a recently identified orthologue of Mycobacterium tuberculosis, Rv1002c, which is responsible for protein-O-mannosylation. The putative membrane protein Cg1014 showed the same predicted transmembrane topology as Saccharomyces cerevisiae PMT1 and M. tuberculosis Rv1002c along with conserved amino acid residues responsible for catalytic activity. Deletion of the C. glutamicum pmt gene (cg1014) caused a complete loss of glycosylation of secreted proteins including the resuscitation promoting factor 2 (Rpf2), which is involved in intercellular communication and growth stimulation of C. glutamicum. Because the gene pmt as well as rpf genes are present in the genomes of all actinobacteria sequenced so far, this work provides new insights into bacterial protein glycosylation and new opportunities to elucidate the molecular mechanisms of Rpf activity in pathogenic growth and infection.

  19. Endosymbiotic theories for eukaryote origin

    PubMed Central

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  20. Endosymbiotic theories for eukaryote origin.

    PubMed

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe.

  1. [Isolation and gene modification of amniotic fluid derived progenitor cells].

    PubMed

    Yang, Chenmin; Fan, Shuyue; Tang, Huixiang; Gong, Zhijuan; Gong, Xiuli; Ren, Zhaorui; Zeng, Fanyi

    2014-03-01

    We established methods to isolate human amniotic fluid-derived progenitor cells (hAFPCs), and analyze the ability of hAFPCs to secrete human coagulation factor IX (hFIX) after gene modification. The hAFPCs were manually isolated by selection for attachment to gelatin coated culture dish. hFIX cDNA was transfected into hAPFCs by using a lentiviral vector. The hFIX protein concentration and activity produced from hAFPCs were determined by enzyme-linked immunosorbent assay (ELISA) and clotting assay. The isolated spindle-shaped cells showed fibroblastoid morphology after three culture passages. The doubling time in culture was 39.05 hours. Immunocytochemistry staining of the fibroblast-like cells from amniotic fluid detected expression of stem cell markers such as SSEA4 and TRA1-60. Quantitative PCR analysis demonstrated the expression of NANOG, OCT4 and SOX2 mRNAs. Transfected hAFPCs could produce and secrete hFIX into the culture medium. The observed concentration of secreted hFIX was 20.37% +/- 2.77% two days after passage, with clotting activity of 16.42% +/- 1.78%. The amount of hFIX:Ag reached a plateau of 50.35% +/- 5.42%, with clotting activity 45.34% +/- 4.67%. In conclusion, this study established method to isolate and culture amniotic fluid progenitor cells. Transfected hAFPCs can produce hFIX at stable levels in vitro, and clotting activity increases with higher hFIX concentration. Genetically engineered hAFPC are a potential method for prenatal treatment of hemophilia B.

  2. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha.

    PubMed

    Hong, Mi-Na; Nam, Ky-Youb; Kim, Kyung Kon; Kim, So-Young; Kim, InKi

    2016-05-01

    By environmental stresses, cells can initiate a signaling pathway in which eukaryotic translation initiation factor 2-alpha (eIF2-α) is involved to regulate the response. Phosphorylation of eIF2-α results in the reduction of overall protein neogenesis, which allows cells to conserve resources and to reprogram energy usage for effective stress control. To investigate the role of eIF2-α in cell stress responses, we conducted a viability-based compound screen under endoplasmic reticulum (ER) stress condition, and identified 1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate (AMC-01) and its derivatives as eIF2-α-inactivating chemical. Molecular characterization of this signaling pathway revealed that AMC-01 induced inactivation of eIF2-α by phosphorylating serine residue 51 in a dose- and time-dependent manner, while the negative control compounds did not affect eIF2-α phosphorylation. In contrast with ER stress induction by thapsigargin, phosphorylation of eIF2-α persisted for the duration of incubation with AMC-01. By pathway analysis, AMC-01 clearly induced the activation of protein kinase RNA-activated (PKR) kinase and nuclear factor-κB (NF-κB), whereas it did not modulate the activity of PERK or heme-regulated inhibitor (HRI). Finally, we could detect a lower protein translation rate in cells incubated with AMC-01, establishing AMC-01 as a potent chemical probe that can regulate eIF2-α activity. We suggest from these data that AMC-01 and its derivative compounds can be used as chemical probes in future studies of the role of eIF2-α in protein synthesis-related cell physiology.

  3. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms

    PubMed Central

    2010-01-01

    Background The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. Results In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes. Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa). H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals. We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA) confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are conserved even in

  4. The Evolution of Silicon Transport in Eukaryotes

    PubMed Central

    Marron, Alan O.; Ratcliffe, Sarah; Wheeler, Glen L.; Goldstein, Raymond E.; King, Nicole; Not, Fabrice; de Vargas, Colomban; Richter, Daniel J.

    2016-01-01

    Biosilicification (the formation of biological structures from silica) occurs in diverse eukaryotic lineages, plays a major role in global biogeochemical cycles, and has significant biotechnological applications. Silicon (Si) uptake is crucial for biosilicification, yet the evolutionary history of the transporters involved remains poorly known. Recent evidence suggests that the SIT family of Si transporters, initially identified in diatoms, may be widely distributed, with an extended family of related transporters (SIT-Ls) present in some nonsilicified organisms. Here, we identify SITs and SIT-Ls in a range of eukaryotes, including major silicified lineages (radiolarians and chrysophytes) and also bacterial SIT-Ls. Our evidence suggests that the symmetrical 10-transmembrane-domain SIT structure has independently evolved multiple times via duplication and fusion of 5-transmembrane-domain SIT-Ls. We also identify a second gene family, similar to the active Si transporter Lsi2, that is broadly distributed amongst siliceous and nonsiliceous eukaryotes. Our analyses resolve a distinct group of Lsi2-like genes, including plant and diatom Si-responsive genes, and sequences unique to siliceous sponges and choanoflagellates. The SIT/SIT-L and Lsi2 transporter families likely contribute to biosilicification in diverse lineages, indicating an ancient role for Si transport in eukaryotes. We propose that these Si transporters may have arisen initially to prevent Si toxicity in the high Si Precambrian oceans, with subsequent biologically induced reductions in Si concentrations of Phanerozoic seas leading to widespread losses of SIT, SIT-L, and Lsi2-like genes in diverse lineages. Thus, the origin and diversification of two independent Si transporter families both drove and were driven by ancient ocean Si levels. PMID:27729397

  5. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice.

    PubMed

    Zhao, Jiying; Liu, Pengcheng; Li, Chunrong; Wang, Yanyan; Guo, Lequn; Jiang, Guanghuai; Zhai, Wenxue

    2017-02-20

    Lesion mimic mutant (LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5, which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A (eEF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indica-specific manner, respectively. In addition, high-throughput mRNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous eEF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.

  6. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.).

    PubMed

    Asha, Srinivasan; Soniya, Eppurath V

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.

  7. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.)

    PubMed Central

    Asha, Srinivasan; Soniya, Eppurath V.

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5′tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5′tRFs in the infected leaf and root. The abundance of 5′tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5′AlaCGC tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5′Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper. PMID:27313593

  8. Eukaryotes in Arctic and Antarctic cyanobacterial mats.

    PubMed

    Jungblut, Anne D; Vincent, Warwick F; Lovejoy, Connie

    2012-11-01

    Cyanobacterial mats are commonly found in freshwater ecosystems throughout the polar regions. Most mats are multilayered three-dimensional structures with the filamentous cyanobacteria embedded in a gel-like matrix. Although early descriptions mentioned the presence of larger organisms including metazoans living in the mats, there have been few studies specifically focused on the microbial eukaryotes, which are often small cells with few morphological features suitable for identification by microscopy. Here, we applied 18S rRNA gene clone library analysis to identify eukaryotes in cyanobacterial mat communities from both the Antarctic and the extreme High Arctic. We identified 39 ribotypes at the level of 99% sequence similarity. These consisted of taxa within algal and other protist groups including Chlorophyceae, Prasinophyceae, Ulvophyceae, Trebouxiophyceae, Bacillariophyceae, Chrysophyceae, Ciliophora, and Cercozoa. Fungi were also recovered, as were 21 metazoan ribotypes. The eukaryotic taxa appeared habitat-specific with little overlap between lake, pond, and ice shelf communities. Some ribotypes were common to both Arctic and Antarctic mats, suggesting global dispersal of these taxa and similarity in the environmental filters acting on protist communities. Many of these eukaryotic taxa likely benefit from protected, nutrient-rich microhabitats within the cyanobacterial mat environment.

  9. Energetics and genetics across the prokaryote-eukaryote divide

    PubMed Central

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  10. The eukaryotic RNA exosome.

    PubMed

    Januszyk, Kurt; Lima, Christopher D

    2014-02-01

    The eukaryotic RNA exosome is an essential multi-subunit ribonuclease complex that contributes to the degradation or processing of nearly every class of RNA in both the nucleus and cytoplasm. Its nine-subunit core shares structural similarity to phosphorolytic exoribonucleases such as bacterial PNPase. PNPase and the RNA exosome core feature a central channel that can accommodate single stranded RNA although unlike PNPase, the RNA exosome core is devoid of ribonuclease activity. Instead, the core associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. Recent biochemical and structural studies suggest that the exosome core is essential because it coordinates Rrp44 and Rrp6 recruitment, RNA can pass through the central channel, and the association with the core modulates Rrp44 and Rrp6 activities.

  11. Single-cell transcriptomics for microbial eukaryotes.

    PubMed

    Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J

    2014-11-17

    One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity.

  12. Transcriptome analysis of common gene expression in human mesenchymal stem cells derived from four different origins.

    PubMed

    Wang, Tzu-Hao; Lee, Yun-Shien; Hwang, Shiaw-Min

    2011-01-01

    We have used Affymetrix oligonucleotide microarrays to analyze common transcriptomes and thereby learn about the core gene expression profile in human mesenchymal stem cells (MSC) from different tissues, including fetal amniotic fluid-derived MSC, term pregnancy amniotic membrane-derived MSC, term pregnancy umbilical cord blood-derived MSC, and adult bone marrow-derived MSC. The beauty of microarray analysis of gene expression (MAGE) is that it can be used to discover associating genes that were previously thought to be unrelated to a physiological or pathological event. However, interpreting complex biological processes from gene expression profiles often requires extensive knowledge mining in biomedical literature. In this chapter, we describe, step-by-step, how to use a commercially available biological database and software program, MetaCore (GeneGo Inc.), for functional network analysis.

  13. Origins of eukaryotic sexual reproduction.

    PubMed

    Goodenough, Ursula; Heitman, Joseph

    2014-03-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.

  14. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  16. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  18. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  19. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  20. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  2. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  4. Endosymbiosis and Eukaryotic Cell Evolution.

    PubMed

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics.

  5. Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  6. Cytokinesis in Eukaryotes

    PubMed Central

    Guertin, David A.; Trautmann, Susanne; McCollum, Dannel

    2002-01-01

    Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development. PMID:12040122

  7. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    PubMed

    Paugh, Steven W; Coss, David R; Bao, Ju; Laudermilk, Lucas T; Grace, Christy R; Ferreira, Antonio M; Waddell, M Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F; Panetta, John C; Wilkinson, Mark R; Pui, Ching-Hon; Naeve, Clayton W; Uberbacher, Edward C; Bonten, Erik J; Evans, William E

    2016-02-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16)) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.

  8. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    SciTech Connect

    Paugh, Steven W.; Coss, David R.; Bao, Ju; Laudermilk, Lucas T.; Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael Rex; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching -Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10-16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.

  9. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGES

    Paugh, Steven W.; Coss, David R.; Bao, Ju; ...

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10-16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  10. [Codon optimization and eukaryotic expression analysis of the analgesic peptide gene BmK AngM1 from Buthus martensii Karsch].

    PubMed

    Yang, Jin-ling; Gao, Li-li; Zhu, Ping; Hou, Qi; Wang, Fen; Yu, Wen-bo; Nie, Tao

    2012-10-01

    Codon bias is an important factor which influences heterologous gene expression. Optimizing codon sequence could improve expression level of heterologous gene. In order to improve the expression level of BmK AngM1 gene encoding the analgesic peptide from Buthus martensii Karsch in Pichia pastoris, the codon-optimized BmK AngM1 gene according to its cDNA sequence and the preference codon usage of P. pastoris were cloned into expression vector pPIC9K and then transformed into P. pastoris. The expersion of recombinant BmK AngM1 (rBmK AngM1) was inducced by methanol in the medium, and the expression level of the optimized BmK AngM1 gene was 3.7 times of the native one. These results suggested that the expression of BmK AngM1 in P. pastoris could be successfully improved by codon optimization.

  11. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  12. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  13. Construction of Eukaryotic Expression Vector with mBD1-mBD3 Fusion Genes and Exploring Its Activity against Influenza A Virus

    PubMed Central

    Li, Wanyi; Feng, Yan; Kuang, Yu; Zeng, Wei; Yang, Yuan; Li, Hong; Jiang, Zhonghua; Li, Mingyuan

    2014-01-01

    Influenza (flu) pandemics have exhibited a great threat to human health throughout history. With the emergence of drug-resistant strains of influenza A virus (IAV), it is necessary to look for new agents for treatment and transmission prevention of the flu. Defensins are small (2–6 kDa) cationic peptides known for their broad-spectrum antimicrobial activity. Beta-defensins (β-defensins) are mainly produced by barrier epithelial cells and play an important role in attacking microbe invasion by epithelium. In this study, we focused on the anti-influenza A virus activity of mouse β-defensin 1 (mBD1) and β defensin-3 (mBD3) by synthesizing their fusion peptide with standard recombinant methods. The eukaryotic expression vectors pcDNA3.1(+)/mBD1-mBD3 were constructed successfully by overlap-PCR and transfected into Madin-Darby canine kidney (MDCK) cells. The MDCK cells transfected by pcDNA3.1(+)/mBD1-mBD3 were obtained by G418 screening, and the mBD1-mBD3 stable expression pattern was confirmed in MDCK cells by RT-PCR and immunofluorescence assay. The acquired stable transfected MDCK cells were infected with IAV (A/PR/8/34, H1N1, 0.1 MOI) subsequently and the virus titers in cell culture supernatants were analyzed by TCID50 72 h later. The TCID50 titer of the experimental group was clearly lower than that of the control group (p < 0.001). Furthermore, BALB/C mice were injected with liposome-encapsulated pcDNA3.1(+)/mBD1-mBD3 through muscle and then challenged with the A/PR/8/34 virus. Results showed the survival rate of 100% and lung index inhibitory rate of 32.6% in pcDNA3.1(+)/mBD1-mBD3group; the TCID50 titer of lung homogenates was clearly lower than that of the control group (p < 0.001). This study demonstrates that mBD1-mBD3 expressed by the recombinant plasmid pcDNA3.1(+)/mBD1-mBD3 could inhibit influenza A virus replication both in vitro and in vivo. These observations suggested that the recombinant mBD1-mBD3 might be developed into an agent for influenza

  14. Collodictyon—An Ancient Lineage in the Tree of Eukaryotes

    PubMed Central

    Zhao, Sen; Burki, Fabien; Bråte, Jon; Keeling, Patrick J.; Klaveness, Dag; Shalchian-Tabrizi, Kamran

    2012-01-01

    The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the “unikont” and “bikont” groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution. PMID:22319147

  15. Collodictyon--an ancient lineage in the tree of eukaryotes.

    PubMed

    Zhao, Sen; Burki, Fabien; Bråte, Jon; Keeling, Patrick J; Klaveness, Dag; Shalchian-Tabrizi, Kamran

    2012-06-01

    The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the "unikont" and "bikont" groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution.

  16. Estimating the number of plasmids taken up by a eukaryotic cell during transfection and evidence that antisense RNA abolishes gene expression in Physarum polycephalum.

    PubMed

    Materna, Stefan C; Marwan, Wolfgang

    2005-02-01

    We have estimated the statistical distribution of the number of plasmids taken up by individual Jurkat lymphoma cells during electroporation in the presence of two plasmids, one encoding for yellow (EYFP) the other for cyan (ECFP) fluorescent protein. The plasmid concentration at which most of the cells take up only one plasmid or several molecules was determined by statistical analysis. We found that cells behaved slightly heterogeneous in plasmid uptake and describe how the homogeneity of a cell population can be quantified by Poisson statistics in order to identify experimental conditions that yield homogeneously transfection-competent cell populations. The experimental procedure worked out with Jurkat cells was applied to assay the effectiveness of antisense RNA in knocking down gene expression in Physarum polycephalum. Double transfection of flagellates with vectors encoding EYFP and antisense-EYFP revealed for the first time that gene expression can be suppressed by co-expression of antisense RNA in Physarum. Quantitative analysis revealed that one copy of antisense expressing gene per EYFP gene was sufficient to completely suppress formation of the EYFP protein in Physarum.

  17. Strategies for retargeted gene delivery using vectors derived from lentiviruses.

    PubMed

    Bartosch, Birke; Cosset, Francois-Loic

    2004-12-01

    With the development of the first viral vector systems 20 years ago [Mann et al., 1983; Watanabe and Temin, 1983] gene therapy strategies have come to the forefront of novel therapeutics [Cavazzana-Calvo et al., 2000]. A deeper understanding of vector biology and the molecular mechanisms of disease alongside tremendous advances in vector technology have significantly advanced the field of human gene therapy. Over the last few years several challenges needed to be overcome in order to bring gene therapy strategies closer to the clinic. These hurdles include the preparation of large amounts of stable, high titre vectors, minimising vector-related immunology and last but not least targeting infection and transgene expression to tissue or cells, which in many cases are not or only slowly dividing. Viral vectors are useful vehicles for the delivery of foreign genes into target cells, and retroviral vectors have been popular because of their ability to integrate into the host cell genome and maintain persistent gene expression. Moreover, lentiviruses, members of the retroviral family, have the ability to infect cells at both mitotic and post-mitotic stages of the cell cycle thus opening up the possibility to target non-dividing target cells and tissues. Human immunodeficiency virus (HIV) based vectors have been used in vitro and in vivo in a number of situations, however, safety concerns still exist, and therefore the development of vector systems based on primate as well as non-primate lentiviruses is ongoing. Concomitantly with lentiviral vector design, much has been learned about the incorporation of heterologous env proteins on lentiviral cores in order to combine specific targeting properties of envelope glycoproteins with the biological properties of lentiviral vectors. In this review article we will give an overview over advantages lentiviral vector systems offer. We will then discuss the current state of our understanding of the structure and function of viral

  18. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells

    PubMed Central

    Álvarez-Fraga, Laura; Pérez, Astrid; Rumbo-Feal, Soraya; Merino, María; Vallejo, Juan Andrés; Ohneck, Emily J.; Edelmann, Richard E.; Beceiro, Alejandro; Vázquez-Ucha, Juan C.; Valle, Jaione; Actis, Luis A.; Bou, Germán; Poza, Margarita

    2016-01-01

    ABSTRACT Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii. PMID:26854744

  19. Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification.

    PubMed

    McDonald, Tami R; Dietrich, Fred S; Lutzoni, François

    2012-01-01

    The proteins of the ammonium transporter/methylammonium permease/Rhesus factor family (AMT/MEP/Rh family) are responsible for the movement of ammonia or ammonium ions across the cell membrane. Although it has been established that the Rh proteins are distantly related to the other members of the family, the evolutionary history of the AMT/MEP/Rh family remains unclear. Here, we use phylogenetic analysis to infer the evolutionary history of this family of proteins across 191 genomes representing all main lineages of life and to provide a new classification of the proteins in this family. Our phylogenetic analysis suggests that what has heretofore been conceived of as a protein family with two clades (AMT/MEP and Rh) is instead a protein family with three clades (AMT, MEP, and Rh). We show that the AMT/MEP/Rh family illustrates two contrasting modes of gene transmission: The AMT family as defined here exhibits vertical gene transfer (i.e., standard parent-to-offspring inheritance), whereas the MEP family as defined here is characterized by several ancient independent horizontal gene transfers (HGTs). These ancient HGT events include a gene replacement during the early evolution of the fungi, which could be a defining trait for the kingdom Fungi, a gene gain from hyperthermophilic chemoautolithotrophic prokaryotes during the early evolution of land plants (Embryophyta), and an independent gain of this same gene in the filamentous ascomycetes (Pezizomycotina) that was subsequently lost in most lineages but retained in even distantly related lichenized fungi. This recircumscription of the ammonium transporters/ammonia permeases family into MEP and AMT families informs the debate on the mechanism of transport in these proteins and on the nature of the transported molecule because published crystal structures of proteins from the MEP and Rh clades may not be representative of the AMT clade. The clades as depicted in this phylogenetic study appear to correspond to

  20. Multiple Horizontal Gene Transfers of Ammonium Transporters/Ammonia Permeases from Prokaryotes to Eukaryotes: Toward a New Functional and Evolutionary Classification

    PubMed Central

    McDonald, Tami R.; Dietrich, Fred S.; Lutzoni, François

    2012-01-01

    The proteins of the ammonium transporter/methylammonium permease/Rhesus factor family (AMT/MEP/Rh family) are responsible for the movement of ammonia or ammonium ions across the cell membrane. Although it has been established that the Rh proteins are distantly related to the other members of the family, the evolutionary history of the AMT/MEP/Rh family remains unclear. Here, we use phylogenetic analysis to infer the evolutionary history of this family of proteins across 191 genomes representing all main lineages of life and to provide a new classification of the proteins in this family. Our phylogenetic analysis suggests that what has heretofore been conceived of as a protein family with two clades (AMT/MEP and Rh) is instead a protein family with three clades (AMT, MEP, and Rh). We show that the AMT/MEP/Rh family illustrates two contrasting modes of gene transmission: The AMT family as defined here exhibits vertical gene transfer (i.e., standard parent-to-offspring inheritance), whereas the MEP family as defined here is characterized by several ancient independent horizontal gene transfers (HGTs). These ancient HGT events include a gene replacement during the early evolution of the fungi, which could be a defining trait for the kingdom Fungi, a gene gain from hyperthermophilic chemoautolithotrophic prokaryotes during the early evolution of land plants (Embryophyta), and an independent gain of this same gene in the filamentous ascomycetes (Pezizomycotina) that was subsequently lost in most lineages but retained in even distantly related lichenized fungi. This recircumscription of the ammonium transporters/ammonia permeases family into MEP and AMT families informs the debate on the mechanism of transport in these proteins and on the nature of the transported molecule because published crystal structures of proteins from the MEP and Rh clades may not be representative of the AMT clade. The clades as depicted in this phylogenetic study appear to correspond to

  1. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    PubMed

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed.

  2. Archaeal ancestors of eukaryotes: not so elusive any more.

    PubMed

    Koonin, Eugene V

    2015-10-05

    The origin of eukaryotes is one of the hardest problems in evolutionary biology and sometimes raises the ominous specter of irreducible complexity. Reconstruction of the gene repertoire of the last eukaryotic common ancestor (LECA) has revealed a highly complex organism with a variety of advanced features but no detectable evolutionary intermediates to explain their origin. Recently, however, genome analysis of diverse archaea led to the discovery of apparent ancestral versions of several signature eukaryotic systems, such as the actin cytoskeleton and the ubiquitin network, that are scattered among archaea. These findings inspired the hypothesis that the archaeal ancestor of eukaryotes was an unusually complex form with an elaborate intracellular organization. The latest striking discovery made by deep metagenomic sequencing vindicates this hypothesis by showing that in phylogenetic trees eukaryotes fall within a newly identified archaeal group, the Lokiarchaeota, which combine several eukaryotic signatures previously identified in different archaea. The discovery of complex archaea that are the closest living relatives of eukaryotes is most compatible with the symbiogenetic scenario for eukaryogenesis.

  3. Adenovirus-derived vectors for prostate cancer gene therapy.

    PubMed

    de Vrij, Jeroen; Willemsen, Ralph A; Lindholm, Leif; Hoeben, Rob C; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Dautzenberg, Iris J C; de Ridder, Corrina; Dzojic, Helena; Erbacher, Patrick; Essand, Magnus; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Jennings, Ian; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nugent, Regina; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schenk-Braat, Ellen; Schooten, Erik; Seymour, Len; Slade, Michael; Szyjanowicz, Pio; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; van der Weel, Laura; van Weerden, Wytske; Wagner, Ernst; Zuber, Guy

    2010-07-01

    Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.

  4. Circular permutation of a synthetic eukaryotic chromosome with the telomerator

    PubMed Central

    Mitchell, Leslie A.; Boeke, Jef D.

    2014-01-01

    Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the “telomerator,” a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes. PMID:25378705

  5. Synthesis of polyallylamine derivatives and their use as gene transfer vectors in vitro.

    PubMed

    Boussif, O; Delair, T; Brua, C; Veron, L; Pavirani, A; Kolbe, H V

    1999-01-01

    Cationic polymers possessing primary amine groups are inefficient in transferring nucleic acids into eukaryotic cells. With appropriate chemical modification, namely glycolylation of the amine groups of polylysine and polyallylamine, the actual number of free amino groups was decreased, hydrophilic residues were introduced, and the cytotoxicity of both polymers decreased significantly. Furthermore, in the case of polyallylamine, its ability to mediate gene transfer into cells increased by several orders of magnitude. Transfection efficiency was found to be dependent on the substitution level of amino groups and reached highest levels in the presence of lysosomotropic and/or fusogenic agents. At optimal conditions, glycolylated PAM was shown to be as efficient as the linear polyethylenimine of 22 kDa.

  6. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes

    PubMed Central

    Koonin, Eugene V; Fedorova, Natalie D; Jackson, John D; Jacobs, Aviva R; Krylov, Dmitri M; Makarova, Kira S; Mazumder, Raja; Mekhedov, Sergei L; Nikolskaya, Anastasia N; Rao, B Sridhar; Rogozin, Igor B; Smirnov, Sergei; Sorokin, Alexander V; Sverdlov, Alexander V; Vasudevan, Sona; Wolf, Yuri I; Yin, Jodie J; Natale, Darren A

    2004-01-01

    Background Sequencing the genomes of multiple, taxonomically diverse eukaryotes enables in-depth comparative-genomic analysis which is expected to help in reconstructing ancestral eukaryotic genomes and major events in eukaryotic evolution and in making functional predictions for currently uncharacterized conserved genes. Results We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs (eukaryotic orthologous groups or KOGs) from seven eukaryotic genomes: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Encephalitozoon cuniculi. Conservation of KOGs through the phyletic range of eukaryotes strongly correlates with their functions and with the effect of gene knockout on the organism's viability. The approximately 40% of KOGs that are represented in six or seven species are enriched in proteins responsible for housekeeping functions, particularly translation and RNA processing. These conserved KOGs are often essential for survival and might approximate the minimal set of essential eukaryotic genes. The 131 single-member, pan-eukaryotic KOGs we identified were examined in detail. For around 20 that remained uncharacterized, functions were predicted by in-depth sequence analysis and examination of genomic context. Nearly all these proteins are subunits of known or predicted multiprotein complexes, in agreement with the balance hypothesis of evolution of gene copy number. Other KOGs show a variety of phyletic patterns, which points to major contributions of lineage-specific gene loss and the 'invention' of genes new to eukaryotic evolution. Examination of the sets of KOGs lost in individual lineages reveals co-elimination of functionally connected genes. Parsimonious scenarios of eukaryotic genome evolution and gene sets for ancestral eukaryotic forms were reconstructed. The gene set of the last common ancestor of

  7. Origins of Eukaryotic Sexual Reproduction

    PubMed Central

    2014-01-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation. PMID:24591519

  8. Giant viruses and the origin of modern eukaryotes.

    PubMed

    Forterre, Patrick; Gaïa, Morgan

    2016-06-01

    Several authors have suggested that viruses from the NucleoCytoplasmic Large DNA Viruses group (NCLDV) have played an important role in the origin of modern eukaryotes. Notably, the viral eukaryogenesis theory posits that the nucleus originated from an ancient NCLDV-related virus. Focusing on the viral factory instead of the virion adds credit to this hypothesis, but also suggests alternative scenarios. Beside a role in the emergence of the nucleus, ancient NCLDV may have provided new genes and/or chromosomes to the proto-eukaryotic lineage. Phylogenetic analyses suggest that NCLDV informational proteins, related to those of Archaea and Eukarya, were either recruited by ancient NCLDV from proto-eukaryotes and/or transferred to proto-eukaryotes, in agreement with the antiquity of NCLDV and their possible role in eukaryogenesis.

  9. An ancestral bacterial division system is widespread in eukaryotic mitochondria

    PubMed Central

    Leger, Michelle M.; Petrů, Markéta; Žárský, Vojtěch; Eme, Laura; Vlček, Čestmír; Harding, Tommy; Lang, B. Franz; Eliáš, Marek; Doležal, Pavel; Roger, Andrew J.

    2015-01-01

    Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages. PMID:25831547

  10. An ancestral bacterial division system is widespread in eukaryotic mitochondria.

    PubMed

    Leger, Michelle M; Petrů, Markéta; Žárský, Vojtěch; Eme, Laura; Vlček, Čestmír; Harding, Tommy; Lang, B Franz; Eliáš, Marek; Doležal, Pavel; Roger, Andrew J

    2015-08-18

    Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.

  11. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E-Y

    2003-05-01

    The primary diversification of eukaryotes involved protozoa, especially zooflagellates-flagellate protozoa without plastids. Understanding the origins of the higher eukaryotic kingdoms (two purely heterotrophic, Animalia and Fungi, and two primarily photosynthetic, Plantae and Chromista) depends on clarifying evolutionary relationships among the phyla of the ancestral kingdom Protozoa. We therefore sequenced 18S rRNA genes from 10 strains from the protozoan phyla Choanozoa and Apusozoa. Eukaryote diversity is encompassed by three early-radiating, arguably monophyletic groups: Amoebozoa, opisthokonts, and bikonts. Our taxon-rich rRNA phylogeny for eukaryotes allowing for intersite rate variation strongly supports the opisthokont clade (animals, Choanozoa, Fungi). It agrees with the view that Choanozoa are sisters of or ancestral to animals and reveals a novel nonflagellate choanozoan lineage, Ministeriida, sister either to choanoflagellates, traditionally considered animal ancestors, or to animals. Maximum likelihood trees suggest that within animals Placozoa are derived from medusozoan Cnidaria (we therefore place Placozoa as a class within subphylum Medusozoa of the Cnidaria) and hexactinellid sponges evolved from demosponges. The bikont and amoebozoan radiations are both very ill resolved. Bikonts comprise the kingdoms Plantae and Chromista and three major protozoan groups: alveolates, excavates, and Rhizaria. Our analysis weakly suggests that Apusozoa, represented by Ancyromonas and the apusomonads ( Apusomonas and the highly diverse and much more ancient genus Amastigomonas, from which it evolved), are not closely related to other Rhizaria and may be the most divergent bikont lineages. Although Ancyromonas and apusomonads appear deeply divergent in 18S rRNA trees, the trees neither refute nor support the monophyly of Apusozoa. The bikont phylum Cercozoa weakly but consistently appears as sister to Retaria (Foraminifera; Radiolaria), together forming a hitherto

  12. An archaeal origin of eukaryotes supports only two primary domains of life.

    PubMed

    Williams, Tom A; Foster, Peter G; Cox, Cymon J; Embley, T Martin

    2013-12-12

    The discovery of the Archaea and the proposal of the three-domains 'universal' tree, based on ribosomal RNA and core genes mainly involved in protein translation, catalysed new ideas for cellular evolution and eukaryotic origins. However, accumulating evidence suggests that the three-domains tree may be incorrect: evolutionary trees made using newer methods place eukaryotic core genes within the Archaea, supporting hypotheses in which an archaeon participated in eukaryotic origins by founding the host lineage for the mitochondrial endosymbiont. These results provide support for only two primary domains of life--Archaea and Bacteria--because eukaryotes arose through partnership between them.

  13. An XMRV Derived Retroviral Vector as a Tool for Gene Transfer

    PubMed Central

    2011-01-01

    Background Retroviral vectors are widely used tools for gene delivery and gene therapy. They are useful for gene expression studies and genetic manipulation in vitro and in vivo. Many retroviral vectors are derived from the mouse gammaretrovirus, murine leukemia virus (MLV). These vectors have been widely used in gene therapy clinical trials. XMRV, initially found in prostate cancer tissue, was the first human gammaretrovirus described. Findings We developed a new retroviral vector based on XMRV called pXC. It was developed for gene transfer to human cells and is produced by transient cotransfection of LNCaP cells with pXC and XMRV-packaging plasmids. Conclusions We demonstrated that pXC mediates expression of inserted transgenes in cell lines. This new vector will be a useful tool for gene transfer in human and non-human cell lines, including gene therapy studies. PMID:21651801

  14. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  15. A brain region-specific predictive gene map for autism derived by profiling a reference gene set.

    PubMed

    Kumar, Ajay; Swanwick, Catherine Croft; Johnson, Nicole; Menashe, Idan; Basu, Saumyendra N; Bales, Michael E; Banerjee-Basu, Sharmila

    2011-01-01

    Molecular underpinnings of complex psychiatric disorders such as autism spectrum disorders (ASD) remain largely unresolved. Increasingly, structural variations in discrete chromosomal loci are implicated in ASD, expanding the search space for its disease etiology. We exploited the high genetic heterogeneity of ASD to derive a predictive map of candidate genes by an integrated bioinformatics approach. Using a reference set of 84 Rare and Syndromic candidate ASD genes (AutRef84), we built a composite reference profile based on both functional and expression analyses. First, we created a functional profile of AutRef84 by performing Gene Ontology (GO) enrichment analysis which encompassed three main areas: 1) neurogenesis/projection, 2) cell adhesion, and 3) ion channel activity. Second, we constructed an expression profile of AutRef84 by conducting DAVID analysis which found enrichment in brain regions critical for sensory information processing (olfactory bulb, occipital lobe), executive function (prefrontal cortex), and hormone secretion (pituitary). Disease specificity of this dual AutRef84 profile was demonstrated by comparative analysis with control, diabetes, and non-specific gene sets. We then screened the human genome with the dual AutRef84 profile to derive a set of 460 potential ASD candidate genes. Importantly, the power of our predictive gene map was demonstrated by capturing 18 existing ASD-associated genes which were not part of the AutRef84 input dataset. The remaining 442 genes are entirely novel putative ASD risk genes. Together, we used a composite ASD reference profile to generate a predictive map of novel ASD candidate genes which should be prioritized for future research.

  16. Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering

    PubMed Central

    Aibar, Sara; Fontanillo, Celia; Droste, Conrad; De Las Rivas, Javier

    2015-01-01

    Summary: Functional Gene Networks (FGNet) is an R/Bioconductor package that generates gene networks derived from the results of functional enrichment analysis (FEA) and annotation clustering. The sets of genes enriched with specific biological terms (obtained from a FEA platform) are transformed into a network by establishing links between genes based on common functional annotations and common clusters. The network provides a new view of FEA results revealing gene modules with similar functions and genes that are related to multiple functions. In addition to building the functional network, FGNet analyses the similarity between the groups of genes and provides a distance heatmap and a bipartite network of functionally overlapping genes. The application includes an interface to directly perform FEA queries using different external tools: DAVID, GeneTerm Linker, TopGO or GAGE; and a graphical interface to facilitate the use. Availability and implementation: FGNet is available in Bioconductor, including a tutorial. URL: http://bioconductor.org/packages/release/bioc/html/FGNet.html Contact: jrivas@usal.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25600944

  17. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    SciTech Connect

    Robinson, Claire; Kolb, Andreas F.

    2009-02-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A {beta}-galactosidase reporter gene was inserted in place of the {beta}-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the {beta}-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal {beta}-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the {beta}-casein gene.

  18. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    PubMed

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general.

  19. Archaeal “Dark Matter” and the Origin of Eukaryotes

    PubMed Central

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  20. Archaeal "dark matter" and the origin of eukaryotes.

    PubMed

    Williams, Tom A; Embley, T Martin

    2014-03-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis.

  1. Compositional patterns in the genomes of unicellular eukaryotes

    PubMed Central

    2013-01-01

    Background The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. Results In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. Conclusions The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes. PMID:24188247

  2. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-06-24

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.

  3. Drug resistance in eukaryotic microorganisms

    PubMed Central

    Fairlamb, Alan H.; Gow, Neil A. R.; Matthews, Keith R.; Waters, Andrew P.

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  4. The revised classification of eukaryotes.

    PubMed

    Adl, Sina M; Simpson, Alastair G B; Lane, Christopher E; Lukeš, Julius; Bass, David; Bowser, Samuel S; Brown, Matthew W; Burki, Fabien; Dunthorn, Micah; Hampl, Vladimir; Heiss, Aaron; Hoppenrath, Mona; Lara, Enrique; Le Gall, Line; Lynn, Denis H; McManus, Hilary; Mitchell, Edward A D; Mozley-Stanridge, Sharon E; Parfrey, Laura W; Pawlowski, Jan; Rueckert, Sonja; Shadwick, Laura; Shadwick, Lora; Schoch, Conrad L; Smirnov, Alexey; Spiegel, Frederick W

    2012-09-01

    This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.

  5. Identification of Genes Responsive to Solar Simulated UV Radiation in Human Monocyte-Derived Dendritic Cells

    PubMed Central

    de la Fuente, Hortensia; Lamana, Amalia; Mittelbrunn, María; Perez-Gala, Silvia; Gonzalez, Salvador; García-Diez, Amaro; Vega, Miguel; Sanchez-Madrid, Francisco

    2009-01-01

    Ultraviolet (UV) irradiation has profound effects on the skin and the systemic immune system. Several effects of UV radiation on Dendritic cells (DCs) functions have been described. However, gene expression changes induced by UV radiation in DCs have not been addressed before. In this report, we irradiated human monocyte-derived DCs with solar-simulated UVA/UVB and analyzed regulated genes on human whole genome arrays. Results were validated by RT-PCR and further analyzed by Gene Set Enrichment Analysis (GSEA). Solar-simulated UV radiation up-regulated expression of genes involved in cellular stress and inflammation, and down-regulated genes involved in chemotaxis, vesicular transport and RNA processing. Twenty four genes were selected for comparison by RT-PCR with similarly treated human primary keratinocytes and human melanocytes. Several genes involved in the regulation of the immune response were differentially regulated in UVA/UVB irradiated human monocyte-derived DCs, such as protein tyrosine phosphatase, receptor type E (PTPRE), thrombospondin-1 (THBS1), inducible costimulator ligand (ICOSL), galectins, Src-like adapter protein (SLA), IL-10 and CCR7. These results indicate that UV-exposure triggers the regulation of a complex gene repertoire involved in human-DC–mediated immune responses. PMID:19707549

  6. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    SciTech Connect

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  7. Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS

    DTIC Science & Technology

    2015-08-01

    AWARD NUMBER: W81XWH-14-1-0189 TITLE: Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS PRINCIPAL...NUMBER W81XWH-14-1-0189 Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS 5b. GRANT NUMBER 5c. PROGRAM...production in muscles. Hypothesis: Intramuscular AAV5-GDNF injection will ameliorate motor neuron function in the SOD1G93A rat model of ALS. Objectives

  8. Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes.

    PubMed

    Takeshige, Yuya; Egami, Yoko; Wakimoto, Toshiyuki; Abe, Ikuro

    2015-05-01

    Sponge metagenomes are accessible genetic sources containing genes and gene clusters responsible for the biosynthesis of sponge-derived bioactive natural products. In this study, we obtained the clone pDC112, producing turbomycin A and 2,2-di(3-indolyl)-3-indolone, based on the functional screening of the metagenome library derived from the marine sponge Discodermia calyx. The subcloning experiment identified ORF 25, which is homologous to inosine 5'-monophosphate dehydrogenase and required for the production of 2,2-di(3-indolyl)-3-indolone in Escherichia coli.

  9. Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E-Y

    2003-04-01

    support and conflict between trees it might not be correct. Irrespective of their precise position, our trees (together with previous evidence that Chlamydaster sterni has the derived dihydrofolate reductase/thymidylate synthetase gene fusion unique to bikonts) indicate that centrohelid heliozoa are ancestrally derived from a bikont flagellate by the loss of cilia. The centroplast that nucleates their axonemal microtubules is therefore almost certainly homologous with the centrosome of ciliated eukaryotes and should simply be called a centrosome.

  10. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    PubMed

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  11. Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces.

    PubMed

    Blondelet-Rouault, M H; Weiser, J; Lebrihi, A; Branny, P; Pernodet, J L

    1997-05-06

    Three antibiotic resistance gene cassettes, derived from the omega interposon (Prentki and Krisch (1984) Gene 29, 303-313) were constructed. These cassettes carry different antibiotic resistance genes, conferring resistance to geneticin, hygromycin or viomycin, flanked by short inverted repeats containing transcription and translation termination signals and synthetic polylinkers. These cassettes were designated omega aac, omega hyg and omega vph. Resistance phenotypes conferred by these constructions are selectable in E. coli and Streptomyces. These cassettes can be used for insertional mutagenesis or for vector construction.

  12. Transcriptome-Derived Tetranucleotide Microsatellites and Their Associated Genes from the Giant Panda (Ailuropoda melanoleuca).

    PubMed

    Song, Xuhao; Shen, Fujun; Huang, Jie; Huang, Yan; Du, Lianming; Wang, Chengdong; Fan, Zhenxin; Hou, Rong; Yue, Bisong; Zhang, Xiuyue

    2016-09-01

    Recently, an increasing number of microsatellites or simple sequence repeats (SSRs) have been found and characterized from transcriptomes. Such SSRs can be employed as putative functional markers to easily tag corresponding genes, which play an important role in biomedical studies and genetic analysis. However, the transcriptome-derived SSRs for giant panda (Ailuropoda melanoleuca) are not yet available. In this work, we identified and characterized 20 tetranucleotide microsatellite loci from a transcript database generated from the blood of giant panda. Furthermore, we assigned their predicted transcriptome locations: 16 loci were assigned to untranslated regions (UTRs) and 4 loci were assigned to coding regions (CDSs). Gene identities of 14 transcripts contained corresponding microsatellites were determined, which provide useful information to study the potential contribution of SSRs to gene regulation in giant panda. The polymorphic information content (PIC) values ranged from 0.293 to 0.789 with an average of 0.603 for the 16 UTRs-derived SSRs. Interestingly, 4 CDS-derived microsatellites developed in our study were also polymorphic, and the instability of these 4 CDS-derived SSRs was further validated by re-genotyping and sequencing. The genes containing these 4 CDS-derived SSRs were embedded with various types of repeat motifs. The interaction of all the length-changing SSRs might provide a way against coding region frameshift caused by microsatellite instability. We hope these newly gene-associated biomarkers will pave the way for genetic and biomedical studies for giant panda in the future. In sum, this set of transcriptome-derived markers complements the genetic resources available for giant panda.

  13. Hypoxia-regulated gene expression explains differences between melanoma cell line-derived xenografts and patient-derived xenografts.

    PubMed

    Bhadury, Joydeep; Einarsdottir, Berglind O; Podraza, Agnieszka; Bagge, Roger Olofsson; Stierner, Ulrika; Ny, Lars; Dávila López, Marcela; Nilsson, Jonas A

    2016-04-26

    Cell line-derived xenografts (CDXs) are an integral part of drug efficacy testing during development of new pharmaceuticals against cancer but their accuracy in predicting clinical responses in patients have been debated. Patient-derived xenografts (PDXs) are thought to be more useful for predictive biomarker identification for targeted therapies, including in metastatic melanoma, due to their similarities to human disease. Here, tumor biopsies from fifteen patients and ten widely-used melanoma cell lines were transplanted into immunocompromised mice to generate PDXs and CDXs, respectively. Gene expression profiles generated from the tumors of these PDXs and CDXs clustered into distinct groups, despite similar mutational signatures. Hypoxia-induced gene signatures and overexpression of the hypoxia-regulated miRNA hsa-miR-210 characterized CDXs. Inhibition of hsa-miR-210 with decoys had little phenotypic effect in vitro but reduced sensitivity to MEK1/2 inhibition in vivo, suggesting down-regulation of this miRNA could result in development of resistance to MEK inhibitors.

  14. Hypoxia-regulated gene expression explains differences between melanoma cell line-derived xenografts and patient-derived xenografts

    PubMed Central

    Bhadury, Joydeep; Einarsdottir, Berglind O.; Podraza, Agnieszka; Bagge, Roger Olofsson; Stierner, Ulrika; Ny, Lars; López, Marcela Dávila; Nilsson, Jonas A.

    2016-01-01

    Cell line-derived xenografts (CDXs) are an integral part of drug efficacy testing during development of new pharmaceuticals against cancer but their accuracy in predicting clinical responses in patients have been debated. Patient-derived xenografts (PDXs) are thought to be more useful for predictive biomarker identification for targeted therapies, including in metastatic melanoma, due to their similarities to human disease. Here, tumor biopsies from fifteen patients and ten widely-used melanoma cell lines were transplanted into immunocompromised mice to generate PDXs and CDXs, respectively. Gene expression profiles generated from the tumors of these PDXs and CDXs clustered into distinct groups, despite similar mutational signatures. Hypoxia-induced gene signatures and overexpression of the hypoxia-regulated miRNA hsa-miR-210 characterized CDXs. Inhibition of hsa-miR-210 with decoys had little phenotypic effect in vitro but reduced sensitivity to MEK1/2 inhibition in vivo, suggesting down-regulation of this miRNA could result in development of resistance to MEK inhibitors. PMID:27009863

  15. The early eukaryotic fossil record.

    PubMed

    Javaux, Emmanuelle J

    2007-01-01

    The Precambrian era records the evolution of the domain Eucarya. Although the taxonomy of fossils is often impossible to resolve beyond the level of domain, their morphology and chemistry indicate the evolution of major biological innovations. The late Archean record for eukaryotes is limited to trace amounts of biomarkers. Morphological evidence appears in late Paleoproterozoic and early Mesoproterozoic (1800-1300 Ma) rocks. The moderate diversity of preservable eukaryotic organisms includes cell walls without surface ornament (but with complex ultrastructure), with regularly distributed surface ornamentation, and with irregularly or regularly arranged processes. Collectively, these fossils suggest that eukaryotes with flexible membranes and cytoskeletons existed in mid-Proterozoic oceans. The late Mesoproterozoic-early Neoproterozoic (1300-750 Ma) is a time of diversification and evolution when direct evidence for important biological innovations occurs in the fossil record such as multicellularity, sex, photosynthesis, biomineralization, predation, and heterotrophy. Members of extant clades can be recognized and include bangiophyte red algae, xanthophyte algae, cladophorale green algae, euglyphid, lobose, and filose amoebae and possible fungi. In the late Neoproterozoic, besides more diversification of ornamented fossils, florideophyte red algae and brown algae diversify, and animals take the stage. The record of biological innovations documented by the fossils shows that eukaryotes had evolved most cytological and molecular complexities very early in the Proterozoic but environmental conditions delayed their diversification within clades until oxygen level and predation pressure increased significantly.

  16. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    PubMed Central

    2009-01-01

    Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future structural and evolutionary studies

  17. Post-genomic views of a 'unique' metabolism in the eukaryotic flagellum.

    PubMed

    Ginger, M L

    2005-11-01

    This short review summarizes recent advances in our understanding of energy metabolism within the eukaryotic flagellum. Using the example of adenylate kinase, we discuss how a requirement to target metabolic enzymes into the flagellum results in the presence of genes encoding novel isoforms of ubiquitous enzymes within flagellate eukaryotes.

  18. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes.

    PubMed

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  19. Evolution: Steps on the road to eukaryotes

    NASA Astrophysics Data System (ADS)

    Embley, T. Martin; Williams, Tom A.

    2015-05-01

    A new archaeal phylum represents the closest known relatives of eukaryotes, the group encompassing all organisms that have nucleated cells. The discovery holds promise for a better understanding of eukaryotic origins. See Article p.173

  20. RNA Export through the NPC in Eukaryotes.

    PubMed

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  1. A cobalt-containing eukaryotic nitrile hydratase.

    PubMed

    Martinez, Salette; Yang, Xinhang; Bennett, Brian; Holz, Richard C

    2017-01-01

    Nitrile hydratase (NHase), an industrially important enzyme that catalyzes the hydration of nitriles to their corresponding amides, has only been characterized from prokaryotic microbes. The putative NHase from the eukaryotic unicellular choanoflagellate organism Monosiga brevicollis (MbNHase) was heterologously expressed in Escherichia coli. The resulting enzyme expressed as a single polypeptide with fused α- and β-subunits linked by a seventeen-histidine region. Size-exclusion chromatography indicated that MbNHase exists primarily as an (αβ)2 homodimer in solution, analogous to the α2β2 homotetramer architecture observed for prokaryotic NHases. The NHase enzyme contained its full complement of Co(III) and was fully functional without the co-expression of an activator protein or E. coli GroES/EL molecular chaperones. The homology model of MbNHase was developed identifying Cys400, Cys403, and Cys405 as active site ligands. The results presented here provide the first experimental data for a mature and active eukaryotic NHase with fused subunits. Since this new member of the NHase family is expressed from a single gene without the requirement of an activator protein, it represents an alternative biocatalyst for industrial syntheses of important amide compounds.

  2. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  3. Compositional differences within and between eukaryotic genomes.

    PubMed

    Karlin, S; Mrázek, J

    1997-09-16

    Eukaryotic genome similarity relationships are inferred using sequence information derived from large aggregates of genomic sequences. Comparisons within and between species sample sequences are based on the profile of dinucleotide relative abundance values (The profile is rho*XY = f*XY/f*Xf*Y for all XY, where f*X denotes the frequency of the nucleotide X and f*XY denotes the frequency of the dinucleotide XY, both computed from the sequence concatenated with its inverted complement). Previous studies with respect to prokaryotes and this study document that profiles of different DNA sequence samples (sample size >/=50 kb) from the same organism are generally much more similar to each other than they are to profiles from other organisms, and that closely related organisms generally have more similar profiles than do distantly related organisms. On this basis we refer to the collection (rho*XY) as the genome signature. This paper identifies rho*XY extremes and compares genome signature differences for a diverse range of eukaryotic species. Interpretations on the mechanisms maintaining these profile differences center on genome-wide replication, repair, DNA structures, and context-dependent mutational biases. It is also observed that mitochondrial genome signature differences between species parallel the corresponding nuclear genome signature differences despite large differences between corresponding mitochondrial and nuclear signatures. The genome signature differences also have implications for contrasts between rodents and other mammals, and between monocot and dicot plants, as well as providing evidence for similarities among fungi and the diversity of protists.

  4. Predation and eukaryote cell origins: a coevolutionary perspective.

    PubMed

    Cavalier-Smith, T

    2009-02-01

    Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.

  5. Insights into corn genes derived from large-scale cDNA sequencing.

    PubMed

    Alexandrov, Nickolai N; Brover, Vyacheslav V; Freidin, Stanislav; Troukhan, Maxim E; Tatarinova, Tatiana V; Zhang, Hongyu; Swaller, Timothy J; Lu, Yu-Ping; Bouck, John; Flavell, Richard B; Feldmann, Kenneth A

    2009-01-01

    We present a large portion of the transcriptome of Zea mays, including ESTs representing 484,032 cDNA clones from 53 libraries and 36,565 fully sequenced cDNA clones, out of which 31,552 clones are non-redundant. These and other previously sequenced transcripts have been aligned with available genome sequences and have provided new insights into the characteristics of gene structures and promoters within this major crop species. We found that although the average number of introns per gene is about the same in corn and Arabidopsis, corn genes have more alternatively spliced isoforms. Examination of the nucleotide composition of coding regions reveals that corn genes, as well as genes of other Poaceae (Grass family), can be divided into two classes according to the GC content at the third position in the amino acid encoding codons. Many of the transcripts that have lower GC content at the third position have dicot homologs but the high GC content transcripts tend to be more specific to the grasses. The high GC content class is also enriched with intronless genes. Together this suggests that an identifiable class of genes in plants is associated with the Poaceae divergence. Furthermore, because many of these genes appear to be derived from ancestral genes that do not contain introns, this evolutionary divergence may be the result of horizontal gene transfer from species not only with different codon usage but possibly that did not have introns, perhaps outside of the plant kingdom. By comparing the cDNAs described herein with the non-redundant set of corn mRNAs in GenBank, we estimate that there are about 50,000 different protein coding genes in Zea. All of the sequence data from this study have been submitted to DDBJ/GenBank/EMBL under accession numbers EU940701-EU977132 (FLI cDNA) and FK944382-FL482108 (EST).

  6. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  7. Eukaryotic evolution: early origin of canonical introns.

    PubMed

    Simpson, Alastair G B; MacQuarrie, Erin K; Roger, Andrew J

    2002-09-19

    Spliceosomal introns, one of the hallmarks of eukaryotic genomes, were thought to have originated late in evolution and were assumed not to exist in eukaryotes that diverged early -- until the discovery of a single intron with an aberrant splice boundary in the primitive 'protozoan' Giardia. Here we describe introns from a close relative of Giardia, Carpediemonas membranifera, that have boundary sequences of the normal eukaryotic type, indicating that canonical introns are likely to have arisen very early in eukaryotic evolution.

  8. The eukaryotic RNA exosome: same scaffold but variable catalytic subunits.

    PubMed

    Lykke-Andersen, Søren; Tomecki, Rafal; Jensen, Torben Heick; Dziembowski, Andrzej

    2011-01-01

    The RNA exosome is a versatile ribonucleolytic protein complex that participates in a multitude of cellular RNA processing and degradation events. It consists of an invariable nine-subunit core that associates with a variety of enzymatically active subunits and co-factors. These contribute to or even provide the catalytic activity and substrate specificity of the complex. The S. cerevisiae exosome has been intensively studied since its discovery in 1997 and thus serves as the archetype of eukaryotic exosomes. Notably, its catalytic potential, derived exclusively from associated subunits, differs between the nuclear and cytoplasmic versions of the complex. The same holds true for other eukaryotes, however, recent discoveries from various laboratories including our own have revealed that there are variations on this theme. Here, we review the latest findings concerning catalytic subunits of eukaryotic exosomes, and we discuss the apparent need for differential composition and subcellular distribution of exosome variants.

  9. The revised classification of eukaryotes

    PubMed Central

    Adl, Sina M.; Simpson, Alastair. G.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matt; Burki, Fabien; Dunthorn, Micah; Hampl, Vladimir; Heiss, Aaron; Hoppenrath, Mona; Lara, Enrique; leGall, Line; Lynn, Denis H.; McManus, Hilary; Mitchell, Edward A. D.; Mozley-Stanridge, Sharon E.; Parfrey, Laura Wegener; Pawlowski, Jan; Rueckert, Sonja; Shadwick, Lora; Schoch, Conrad; Smirnov, Alexey; Spiegel, Frederick W.

    2012-01-01

    This revision of the classification of eukaryotes, which updates that of Adl et al. (2005), retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information. PMID:23020233

  10. Biosafety of gene therapy vectors derived from herpes simplex virus type 1.

    PubMed

    Lim, Filip; Khalique, Hena; Ventosa, Maria; Baldo, Aline

    2013-12-01

    The majority of humans have been infected with Herpes Simplex Virus Type 1 (HSV-1) and harbor its viral DNA in the latent form within neurons for lifetime. This, combined with the absence of serious adverse effects due to HSV-1 derived vectors in clinical trials so far, highlight the potential to use this virus to develop neuronal gene transfer vectors which are transparent to the host, allowing the effects of the transgene to act without interference from the transfer system eg., for functional genomics in basic neuroscience or gene therapy of neurological disorders. On the other hand, other HSV-1 derived vectors which also have a promising perspective in the clinic, are designed to have enhanced cytotoxicity in certain cell types, as in the case of oncolytic vectors. Understanding virus-host interactions is fundamental not only to the success of these gene therapy vectors but also with respect to identifying and minimizing biohazards associated with their use. In this review we discuss characteristics of HSV-1 and gene therapy vectors derived from this virus which are useful to consider in the context of biosafety risk assessment and risk management.

  11. Replicating damaged DNA in eukaryotes.

    PubMed

    Chatterjee, Nimrat; Siede, Wolfram

    2013-12-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.

  12. A search for extraterrestrial eukaryotes: physical and paleontological aspects.

    PubMed

    Chela-Flores, J

    1998-10-01

    Physical and biochemical aspects of a proposed search for extraterrestrial eukaryotes (SETE) are considered. Such a program should approach the distinction between a primitive eukaryote and an archaebacteria. The emphasis on gene silencing suggests a possible assay suitable for a robotic investigation of eukaryoticity, so as to be able to decide whether the first steps towards eukaryogenesis have been taken in an extraterrestrial planet, or satellite. The experiment would consist of searching for cellular division and the systematic related delay in replication of heterochromatic chromosome segments. It should be noticed that the direct search for a membrane-bounded set of chromosomes does not necessarily determine eukaryotic identity, as there are prokaryotes that have membrane-bounded nucleoids. A closer look at the protein fraction of chromatin (mainly histones) does not help either, as there are some eukaryotes that may lack histones; there are also some bacteria as well as archaebacteria with histone-like proteins in their nucleoids. Comments on the recent suggestion of possible environments for a SETE program are discussed: the deep crust of Mars, and the Jovian satellite Europa, provided the existence of an ocean under its ice-covered surface is confirmed by the current Galileo mission.

  13. Censusing marine eukaryotic diversity in the twenty-first century

    PubMed Central

    Knowlton, Nancy

    2016-01-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481783

  14. Endosymbiosis and the design of eukaryotic electron transport.

    PubMed

    Berry, Stephan

    2003-09-30

    The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.

  15. Defensins: antifungal lessons from eukaryotes

    PubMed Central

    Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.

    2014-01-01

    Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483

  16. Defensins: antifungal lessons from eukaryotes.

    PubMed

    Silva, Patrícia M; Gonçalves, Sónia; Santos, Nuno C

    2014-01-01

    Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.

  17. Differential gene expression in human, murine, and cell line-derived macrophages upon polarization.

    PubMed

    Spiller, Kara L; Wrona, Emily A; Romero-Torres, Saly; Pallotta, Isabella; Graney, Pamela L; Witherel, Claire E; Panicker, Leelamma M; Feldman, Ricardo A; Urbanska, Aleksandra M; Santambrogio, Laura; Vunjak-Novakovic, Gordana; Freytes, Donald O

    2016-09-10

    The mechanisms by which macrophages control the inflammatory response, wound healing, biomaterial-interactions, and tissue regeneration appear to be related to their activation/differentiation states. Studies of macrophage behavior in vitro can be useful for elucidating their mechanisms of action, but it is not clear to what extent the source of macrophages affects their apparent behavior, potentially affecting interpretation of results. Although comparative studies of macrophage behavior with respect to cell source have been conducted, there has been no direct comparison of the three most commonly used cell sources: murine bone marrow, human monocytes from peripheral blood (PB), and the human leukemic monocytic cell line THP-1, across multiple macrophage phenotypes. In this study, we used multivariate discriminant analysis to compare the in vitro expression of genes commonly chosen to assess macrophage phenotype across all three sources of macrophages, as well as those derived from induced pluripotent stem cells (iPSCs), that were polarized towards four distinct phenotypes using the same differentiation protocols: M(LPS,IFN) (aka M1), M(IL4,IL13) (aka M2a), M(IL10) (aka M2c), and M(-) (aka M0) used as control. Several differences in gene expression trends were found among the sources of macrophages, especially between murine bone marrow-derived and human blood-derived M(LPS,IFN) and M(IL4,IL13) macrophages with respect to commonly used phenotype markers like CCR7 and genes associated with angiogenesis and tissue regeneration like FGF2 and MMP9. We found that the genes with the most similar patterns of expression among all sources were CXCL-10 and CXCL-11 for M(LPS,IFN) and CCL17 and CCL22 for M(IL4,IL13). Human PB-derived macrophages and human iPSC-derived macrophages showed similar gene expression patterns among the groups and genes studied here, suggesting that iPSC-derived monocytes have the potential to be used as a reliable cell source of human macrophages

  18. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).

    PubMed

    Cavalier-Smith, T

    2003-01-29

    Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non-plant (meta-algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta-algae and numerous secondarily non-photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b. I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi-targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma. These hypothetical ER-derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein-coding genes

  19. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).

    PubMed Central

    Cavalier-Smith, T

    2003-01-01

    Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non-plant (meta-algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta-algae and numerous secondarily non-photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b. I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi-targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma. These hypothetical ER-derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein-coding genes

  20. Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review

    PubMed Central

    Gutiérrez, Juan C.; Amaro, Francisco; Martín-González, Ana

    2015-01-01

    This review analyzes the advantages and disadvantages of using eukaryotic microorganisms to design whole-cell biosensors (WCBs) for monitoring environmental heavy metal pollution in soil or aquatic habitats. Basic considerations for designing a eukaryotic WCB are also shown. A comparative analysis of the promoter genes used to design WCBs is carried out, and the sensitivity and reproducibility of the main reporter genes used is also reviewed. Three main eukaryotic taxonomic groups are considered: yeasts, microalgae, and ciliated protozoa. Models that have been widely analyzed as potential WCBs are the Saccharomyces cerevisiae model among yeasts, the Tetrahymena thermophila model for ciliates and Chlamydomonas model for microalgae. The advantages and disadvantages of each microbial group are discussed, and a ranking of sensitivity to the same type of metal pollutant from reported eukaryotic WCBs is also shown. General conclusions and possible future developments of eukaryotic WCBs are reported. PMID:25750637

  1. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    NASA Astrophysics Data System (ADS)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  2. General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination.

    PubMed

    Baldo, Aline; van den Akker, Eric; Bergmans, Hans E; Lim, Filip; Pauwels, Katia

    2013-12-01

    This introductory paper gathers general considerations on the biosafety of virus-derived vectors that are used in human gene therapy and/or vaccination. The importance to assess the potential risks for human health and the environment related to the use of genetically modified organisms (GMO) in this case genetically modified viral vectors is highlighted by several examples. This environmental risk assessment is one of the requirements within the European regulatory framework covering the conduct of clinical trials using GMO. Risk assessment methodologies for the environmental risk assessment of genetically modified virus-derived vectors have been developed.

  3. Mechanism and regulation of eukaryotic protein synthesis.

    PubMed Central

    Merrick, W C

    1992-01-01

    This review presents a description of the numerous eukaryotic protein synthesis factors and their apparent sequential utilization in the processes of initiation, elongation, and termination. Additionally, the rare use of reinitiation and internal initiation is discussed, although little is known biochemically about these processes. Subsequently, control of translation is addressed in two different settings. The first is the global control of translation, which is effected by protein phosphorylation. The second is a series of specific mRNAs for which there is a direct and unique regulation of the synthesis of the gene product under study. Other examples of translational control are cited but not discussed, because the general mechanism for the regulation is unknown. Finally, as is often seen in an active area of investigation, there are several observations that cannot be readily accommodated by the general model presented in the first part of the review. Alternate explanations and various lines of experimentation are proposed to resolve these apparent contradictions. PMID:1620067

  4. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  5. (Viruses of eukaryotic green algae): Performance report

    SciTech Connect

    Not Available

    1987-01-01

    The primary objective of this research was to develop the Chlorella-PBCV-1 virus system so that it can be used as a model system for studying gene expression in a photosynthetic eukaryote. Discoveries include the finding that morphologically similar, plaque forming, dsDNA containing viruses are common in nature and can be isolated readily from fresh water; the finding that all of these Chlorella viruses contain methylated bases which range in concentration from 0.1% to 47.5% mVdC and 0 to 37% mWdA and the discovery that infection with at least some of these viruses induces the appearance of DNA modification/restriction systems. 18 refs.

  6. An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives

    PubMed Central

    Liang, Xuan; Ren, Xianyue; Liu, Zhenzhen; Liu, Yingliang; Wang, Jue; Wang, Jingnan; Zhang, Li-Ming; Deng, David YB; Quan, Daping; Yang, Liqun

    2014-01-01

    Background The purpose of this study was to synthesize and evaluate hyperbranched cationic glycogen derivatives as an efficient nonviral gene-delivery vector. Methods A series of hyperbranched cationic glycogen derivatives conjugated with 3-(dimethylamino)-1-propylamine (DMAPA-Glyp) and 1-(2-aminoethyl) piperazine (AEPZ-Glyp) residues were synthesized and characterized by Fourier-transform infrared and hydrogen-1 nuclear magnetic resonance spectroscopy. Their buffer capacity was assessed by acid–base titration in aqueous NaCl solution. Plasmid deoxyribonucleic acid (pDNA) condensation ability and protection against DNase I degradation of the glycogen derivatives were assessed using agarose gel electrophoresis. The zeta potentials and particle sizes of the glycogen derivative/pDNA complexes were measured, and the images of the complexes were observed using atomic force microscopy. Blood compatibility and cytotoxicity were evaluated by hemolysis assay and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, respectively. pDNA transfection efficiency mediated by the cationic glycogen derivatives was evaluated by flow cytometry and fluorescence microscopy in the 293T (human embryonic kidney) and the CNE2 (human nasopharyngeal carcinoma) cell lines. In vivo delivery of pDNA in model animals (Sprague Dawley rats) was evaluated to identify the safety and transfection efficiency. Results The hyperbranched cationic glycogen derivatives conjugated with DMAPA and AEPZ residues were synthesized. They exhibited better blood compatibility and lower cytotoxicity when compared to branched polyethyleneimine (bPEI). They were able to bind and condense pDNA to form the complexes of 100–250 nm in size. The transfection efficiency of the DMAPA-Glyp/pDNA complexes was higher than those of the AEPZ-Glyp/pDNA complexes in both the 293T and CNE2 cells, and almost equal to those of bPEI. Furthermore, pDNA could be more safely delivered to the blood vessels in brain

  7. A bacterial proteorhodopsin proton pump in marine eukaryotes.

    PubMed

    Slamovits, Claudio H; Okamoto, Noriko; Burri, Lena; James, Erick R; Keeling, Patrick J

    2011-02-08

    Proteorhodopsins are light-driven proton pumps involved in widespread phototrophy. Discovered in marine proteobacteria just 10 years ago, proteorhodopsins are now known to have been spread by lateral gene transfer across diverse prokaryotes, but are curiously absent from eukaryotes. In this study, we show that proteorhodopsins have been acquired by horizontal gene transfer from bacteria at least twice independently in dinoflagellate protists. We find that in the marine predator Oxyrrhis marina, proteorhodopsin is indeed the most abundantly expressed nuclear gene and its product localizes to discrete cytoplasmic structures suggestive of the endomembrane system. To date, photosystems I and II have been the only known mechanism for transducing solar energy in eukaryotes; however, it now appears that some abundant zooplankton use this alternative pathway to harness light to power biological functions.

  8. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology.

    PubMed

    Caron, David A; Countway, Peter D; Savai, Pratik; Gast, Rebecca J; Schnetzer, Astrid; Moorthi, Stefanie D; Dennett, Mark R; Moran, Dawn M; Jones, Adriane C

    2009-09-01

    DNA sequence information has increasingly been used in ecological research on microbial eukaryotes. Sequence-based approaches have included studies of the total diversity of selected ecosystems, studies of the autecology of ecologically relevant species, and identification and enumeration of species of interest for human health. It is still uncommon, however, to delineate protistan species based on their genetic signatures. The reluctance to assign species-level designations based on DNA sequences is in part a consequence of the limited amount of sequence information presently available for many free-living microbial eukaryotes and in part a consequence of the problematic nature of and debate surrounding the microbial species concept. Despite the difficulties inherent in assigning species names to DNA sequences, there is a growing need to attach meaning to the burgeoning amount of sequence information entering the literature, and there is a growing desire to apply this information in ecological studies. We describe a computer-based tool that assigns DNA sequences from environmental databases to operational taxonomic units at approximately species-level distinctions. This approach provides a practical method for ecological studies of microbial eukaryotes (primarily protists) by enabling semiautomated analysis of large numbers of samples spanning great taxonomic breadth. Derivation of the algorithm was based on an analysis of complete small-subunit (18S) rRNA gene sequences and partial gene sequences obtained from the GenBank database for morphologically described protistan species. The program was tested using environmental 18S rRNA data sets for two oceanic ecosystems. A total of 388 operational taxonomic units were observed for 2,207 sequences obtained from samples collected in the western North Atlantic and eastern North Pacific oceans.

  9. Promoter region of the human platelet-derived growth factor A-chain gene

    SciTech Connect

    Takimoto, Yasuo; Wang, Zhao Yi; Kobler, K.; Deuel, T.F. )

    1991-03-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5{prime} flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter reigon was exceptionally G + C-rich and contained a TATA box but no CAAT box. The transcription start site was identified 845 base pairs 5{prime} to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5{prime} flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results extablished an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A-chain were identified.

  10. Promoter region of the human platelet-derived growth factor A-chain gene.

    PubMed Central

    Takimoto, Y; Wang, Z Y; Kobler, K; Deuel, T F

    1991-01-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5' flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter region was exceptionally G + C-rich and contained a "TATA box" but no "CAAT box." The transcription start site was identified 845 base pairs 5' to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5' flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs (1.9, 2.3, and 2.8 kilobases) used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results established an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A chain were identified. Images PMID:1848007

  11. Evolutionary position of breviate amoebae and the primary eukaryote divergence.

    PubMed

    Minge, Marianne A; Silberman, Jeffrey D; Orr, Russell J S; Cavalier-Smith, Thomas; Shalchian-Tabrizi, Kamran; Burki, Fabien; Skjaeveland, Asmund; Jakobsen, Kjetill S

    2009-02-22

    Integration of ultrastructural and molecular sequence data has revealed six supergroups of eukaryote organisms (excavates, Rhizaria, chromalveolates, Plantae, Amoebozoa and opisthokonts), and the root of the eukaryote evolutionary tree is suggested to lie between unikonts (Amoebozoa, opisthokonts) and bikonts (the other supergroups). However, some smaller lineages remain of uncertain affinity. One of these unassigned taxa is the anaerobic, free-living, amoeboid flagellate Breviata anathema, which is of key significance as it is unclear whether it is a unikont (i.e. possibly the deepest branching amoebozoan) or a bikont. To establish its evolutionary position, we sequenced thousands of Breviata genes and calculated trees using 78 protein sequences. Our trees and specific substitutions in the 18S RNA sequence indicate that Breviata is related to other Amoebozoa, thereby significantly increasing the cellular diversity of this phylum and establishing Breviata as a deep-branching unikont. We discuss the implications of these results for the ancestral state of Amoebozoa and eukaryotes generally, demonstrating that phylogenomics of phylogenetically 'nomadic' species can elucidate key questions in eukaryote evolution. Furthermore, mitochondrial genes among the Breviata ESTs demonstrate that Breviata probably contains a modified anaerobic mitochondrion. With these findings, remnants of mitochondria have been detected in all putatively deep-branching amitochondriate organisms.

  12. Evolutionary position of breviate amoebae and the primary eukaryote divergence

    PubMed Central

    A. Minge, Marianne; Silberman, Jeffrey D.; Orr, Russell J.S.; Cavalier-Smith, Thomas; Shalchian-Tabrizi, Kamran; Burki, Fabien; Skjæveland, Åsmund; Jakobsen, Kjetill S.

    2008-01-01

    Integration of ultrastructural and molecular sequence data has revealed six supergroups of eukaryote organisms (excavates, Rhizaria, chromalveolates, Plantae, Amoebozoa and opisthokonts), and the root of the eukaryote evolutionary tree is suggested to lie between unikonts (Amoebozoa, opisthokonts) and bikonts (the other supergroups). However, some smaller lineages remain of uncertain affinity. One of these unassigned taxa is the anaerobic, free-living, amoeboid flagellate Breviata anathema, which is of key significance as it is unclear whether it is a unikont (i.e. possibly the deepest branching amoebozoan) or a bikont. To establish its evolutionary position, we sequenced thousands of Breviata genes and calculated trees using 78 protein sequences. Our trees and specific substitutions in the 18S RNA sequence indicate that Breviata is related to other Amoebozoa, thereby significantly increasing the cellular diversity of this phylum and establishing Breviata as a deep-branching unikont. We discuss the implications of these results for the ancestral state of Amoebozoa and eukaryotes generally, demonstrating that phylogenomics of phylogenetically ‘nomadic’ species can elucidate key questions in eukaryote evolution. Furthermore, mitochondrial genes among the Breviata ESTs demonstrate that Breviata probably contains a modified anaerobic mitochondrion. With these findings, remnants of mitochondria have been detected in all putatively deep-branching amitochondriate organisms. PMID:19004754

  13. A congruent phylogenomic signal places eukaryotes within the Archaea.

    PubMed

    Williams, Tom A; Foster, Peter G; Nye, Tom M W; Cox, Cymon J; Embley, T Martin

    2012-12-22

    Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook 'three domains' tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.

  14. Comparative genomics and structural biology of the molecular innovations of eukaryotes.

    PubMed

    Aravind, L; Iyer, Lakshminarayan M; Koonin, Eugene V

    2006-06-01

    Eukaryotes encode numerous proteins that either have no detectable homologs in prokaryotes or have only distant homologs. These molecular innovations of eukaryotes may be classified into three categories: proteins and domains inherited from prokaryotic precursors without drastic changes in biochemical function, but often recruited for novel roles in eukaryotes; new superfamilies or distinct biochemical functions emerging within pre-existing protein folds; and domains with genuinely new folds, apparently 'invented' at the outset of eukaryotic evolution. Most new folds emerging in eukaryotes are either alpha-helical or stabilized by metal chelation. Comparative genomics analyses point to an early phase of rapid evolution, and dramatic changes between the origin of the eukaryotic cell and the advent of the last common ancestor of extant eukaryotes. Extensive duplication of numerous genes, with subsequent functional diversification, is a distinctive feature of this turbulent era. Evolutionary analysis of ancient eukaryotic proteins is generally compatible with a two-symbiont scenario for eukaryotic origin, involving an alpha-proteobacterium (the ancestor of the mitochondria) and an archaeon, as well as key contributions from their selfish elements.

  15. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs.

  16. Application of 12S rRNA gene for the identification of animal-derived drugs.

    PubMed

    Luo, Jiaoyang; Yan, Dan; Zhang, Da; Han, Yumei; Dong, Xiaoping; Yang, Yong; Deng, Kejun; Xiao, Xiaohe

    2011-01-01

    PURPOSE. Animal-derived drugs are the major source of biological products and traditional medicine, but they are often difficult to identify, causing confusion in the clinical application. Among these medicinal animals, a number of animal species are endangered, leading to the destruction of biodiversity. The identification of animal-derived drugs and their alternatives would be a first step toward biodiversity conservation and safe medication. Until now, no effective method for identifying animal-derived drugs has been demonstrated; DNA-based species identification presents a brand-new technique. METHODS. We designed primers to amplify a 523-bp fragment of 12S rRNA and generated sequences for 13 individuals within six medicinal animal species. We examined the efficiency of species recognition based on this sequence, and we also tested the taxonomic affiliations against the GenBank database. RESULTS. All the tested drugs were identified successfully, and a visible gap was found between the inter-specific and intra-specific variation. We further demonstrated the importance of data exploration in DNA-based species identification practice by examining the sequence characteristics of relative genera in GenBank. This region of the 12S rRNA gene had a 100% success rate of species recognition within the six medicinal animal species. CONCLUSIONS. We propose that the 12S rRNA locus might be universal for identifying animal-derived drugs and their adulterants. The development of 12S rRNA for indentifying animal-derived drugs that share a common gene target would contribute significantly to the clinical application of animal-derived drugs and the conservation of medicinal animal species. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  17. The Dispersed Archaeal Eukaryome and the Complex Archaeal Ancestor of Eukaryotes

    PubMed Central

    Koonin, Eugene V.; Yutin, Natalya

    2014-01-01

    The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal “eukaryome,” such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems. PMID:24691961

  18. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes.

    PubMed

    Koonin, Eugene V; Yutin, Natalya

    2014-04-01

    The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal "eukaryome," such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems.

  19. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene

    SciTech Connect

    Shirozu, Michio; Takano, Toru; Tada, Hideaki; Honjo, Tasuku

    1995-08-10

    Stromal cell-derived factors 1{alpha} and 1{beta} are small cytokines belonging to the intercrine CXC subfamily and originally isolated from a murine bone-marrow stroma cell line by the signal sequence trap method. cDNA and genomic clones of human SDF1{alpha} and SDF1{beta} (SDF1A and SDF1B) were isolated and characterized. cDNAs of SDF1{alpha} and SDF1{beta} encode proteins of 89 and 93 amino acids, respectively. SDF1{alpha} and SDF1{beta} sequences are more than 92% identical to those of the human counterparts. The genomic structure of the SDF1 gene revealed that human SDF1{alpha} and SDF1{beta} are encoded by a single gene and arise by alternative splicing. SDF1{alpha} and SDF1{beta} are encoded by 3 and 4 exons, respectively. Ubiquitous expression of the SDF1 gene, except in blood cells, was consistent with the presence of the GC-rich sequence in the 5{prime}-flanking region of the SDF1 gene, as is often the case in the {open_quotes}housekeeping{close_quotes} genes. Although genes encoding other members of the intercrine family are localized on chromosome 4q or 17q, the human SDF1 gene was mapped to chromosome 10q by fluorescence in situ hybridization. Strong evolutionary conservation and unique chromosomal localization of the SDF1 gene suggest that SDF1{alpha} and SDF1{beta} may have important functions distinct from those of other members of the intercrine family. 37 refs., 5 figs.

  20. GLAD4U: deriving and prioritizing gene lists from PubMed literature

    PubMed Central

    2012-01-01

    Background Answering questions such as "Which genes are related to breast cancer?" usually requires retrieving relevant publications through the PubMed search engine, reading these publications, and creating gene lists. This process is not only time-consuming, but also prone to errors. Results We report GLAD4U (Gene List Automatically Derived For You), a new, free web-based gene retrieval and prioritization tool. GLAD4U takes advantage of existing resources of the NCBI to ensure computational efficiency. The quality of gene lists created by GLAD4U for three Gene Ontology (GO) terms and three disease terms was assessed using corresponding "gold standard" lists curated in public databases. For all queries, GLAD4U gene lists showed very high recall but low precision, leading to low F-measure. As a comparison, EBIMed's recall was consistently lower than GLAD4U, but its precision was higher. To present the most relevant genes at the top of a list, we studied two prioritization methods based on publication count and the hypergeometric test, and compared the ranked lists and those generated by EBIMed to the gold standards. Both GLAD4U methods outperformed EBIMed for all queries based on a variety of quality metrics. Moreover, the hypergeometric method allowed for a better performance by thresholding genes with low scores. In addition, manual examination suggests that many false-positives could be explained by the incompleteness of the gold standards. The GLAD4U user interface accepts any valid queries for PubMed, and its output page displays the ranked gene list and information associated with each gene, chronologically-ordered supporting publications, along with a summary of the run and links for file export and functional enrichment and protein interaction network analysis. Conclusions GLAD4U has a high overall recall. Although precision is generally low, the prioritization methods successfully rank truly relevant genes at the top of the lists to facilitate efficient

  1. Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models.

    PubMed

    Speijer, Dave

    2015-12-01

    Of two contending models for eukaryotic evolution the "archezoan" has an amitochondriate eukaryote take up an endosymbiont, while "symbiogenesis" states that an Archaeon became a eukaryote as the result of this uptake. If so, organelle formation resulting from new engulfments is simplified by the primordial symbiogenesis, and less informative regarding the bacterium-to-mitochondrion conversion. Gradualist archezoan visions still permeate evolutionary thinking, but are much less likely than symbiogenesis. Genuine amitochondriate eukaryotes have never been found and rapid, explosive adaptive periods characteristic of symbiogenetic models explain this. Mitochondrial proteomes, encoded by genes of "eukaryotic origin" not easily linked to host or endosymbiont, can be understood in light of rapid adjustments to new evolutionary pressures. Symbiogenesis allows "expensive" eukaryotic inventions via efficient ATP generation by nascent mitochondria. However, efficient ATP production equals enhanced toxic internal ROS formation. The synergistic combination of these two driving forces gave rise to the rapid evolution of eukaryotes. Also watch the Video Abstract.

  2. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes.

    PubMed

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-04-03

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance.

  3. Evolutionary expansion of the Ras switch regulatory module in eukaryotes

    PubMed Central

    Díez, Diego; Sánchez-Jiménez, Francisca; Ranea, Juan A. G.

    2011-01-01

    Ras proteins control many aspects of eukaryotic cell homeostasis by switching between active (GTP-bound) and inactive (GDP-bound) conformations, a reaction catalyzed by GTPase exchange factors (GEF) and GTPase activating proteins (GAP) regulators, respectively. Here, we show that the complexity, measured as number of genes, of the canonical Ras switch genetic system (including Ras, RasGEF, RasGAP and RapGAP families) from 24 eukaryotic organisms is correlated with their genome size and is inversely correlated to their evolutionary distances from humans. Moreover, different gene subfamilies within the Ras switch have contributed unevenly to the module’s expansion and speciation processes during eukaryote evolution. The Ras system remarkably reduced its genetic expansion after the split of the Euteleostomi clade and presently looks practically crystallized in mammals. Supporting evidence points to gene duplication as the predominant mechanism generating functional diversity in the Ras system, stressing the leading role of gene duplication in the Ras family expansion. Domain fusion and alternative splicing are significant sources of functional diversity in the GAP and GEF families but their contribution is limited in the Ras family. An evolutionary model of the Ras system expansion is proposed suggesting an inherent ‘decision making’ topology with the GEF input signal integrated by a homologous molecular mechanism and bifurcation in GAP signaling propagation. PMID:21447561

  4. Non-coding RNAs: the architects of eukaryotic complexity.

    PubMed

    Mattick, J S

    2001-11-01

    Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.

  5. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    SciTech Connect

    Vadas, M.A.

    1982-02-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F/sub 1/ mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR..-->..F/sub 1/ were high responders and EO-LR..-->..F/sub 1/ were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy.

  6. Signal processing in eukaryotic chemotaxis

    NASA Astrophysics Data System (ADS)

    Segota, Igor; Rachakonda, Archana; Franck, Carl

    2013-03-01

    Unlike inanimate condensed matter, living cells depend upon the detection of chemical signals for their existence. First, we experimentally determined the chemotaxis response of eukaryotic Dictyostelium cells to static folic acid gradients and show that they can respond to gradients as shallow as 0.2% across the cell body. Second, using Shannon's information theory, we showed that the information cells receive about the gradient exceeds the theoretically predicted information at the receptor-ligand binding step, resulting in the violation of the data processing inequality. Finally, we analyzed how eukaryotic cells can affect the gradient signals by secreting enzymes that degrade the signal. We analyzed this effect with a focus on a well described Dictyostelium cAMP chemotaxis system where cAMP signals are affected by an extracellular cAMP phosphodiesterase (PDE) and its inhibitor (PDI). Using a reaction-diffusion model of this set of interactions in the extracellular space, we show that cells can effectively sense much steeper chemical gradients than naively expected (up to a factor of 12). We also found that the rough estimates of experimental PDE and PDI secretion rates are close to the optimal values for gradient sensing as predicted by our model.

  7. Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes.

    PubMed

    Forsberg, Kevin J; Patel, Sanket; Witt, Evan; Wang, Bin; Ellison, Tyler D; Dantas, Gautam

    2015-11-06

    The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications.

  8. Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells.

    PubMed

    Jo, Jun-ichiro; Okazaki, Arimichi; Nagane, Kentaro; Yamamoto, Masaya; Tabata, Yasuhiko

    2010-01-01

    The objective of this study is to prepare a non-viral carrier of gene transfection from various polysaccharides and evaluate the feasibility in gene expression for mesenchymal stem cells (MSCs). Various amounts of spermine were chemically introduced into pullulan, dextran and mannan with a molecular weight of around 40 000 or pullulan with different molecular weights to prepare cationized polysaccharides with different extents of spermine introduced (spermine-polysaccharide). Each cationized polysaccharide was complexed with a plasmid DNA at various ratios and in vitro gene transfection was investigated for rat bone marrow-derived MSCs. The level of gene expression depended on the type of cationized polysaccharide. The highest level was observed for the complex of spermine-pullulan and plasmid DNA. Additionally, the level also depended on the molecular weight of pullulan and the extent of spermine introduced to pullulan. Suppression of gene expression with chlorpromazine and methyl-beta-cyclodextrin of endocytosis inhibitors demonstrated that the cellular uptake of spermine-pullulan-plasmid DNA complexes was mediated by clathrin- and raft/caveolae-dependent endocytic pathways. The cationized pullulan is a promising non-viral carrier of plasmid DNA for MSCs.

  9. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    PubMed Central

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana. PMID:27493613

  10. A Cytoplasmic RNA Vector Derived from Nontransmissible Sendai Virus with Efficient Gene Transfer and Expression

    PubMed Central

    Li, Hai-Ou; Zhu, Ya-Feng; Asakawa, Makoto; Kuma, Hidekazu; Hirata, Takahiro; Ueda, Yasuji; Lee, Yun-Sik; Fukumura, Masayuki; Iida, Akihiro; Kato, Atsushi; Nagai, Yoshiyuki; Hasegawa, Mamoru

    2000-01-01

    We have recovered a virion from defective cDNA of Sendai virus (SeV) that is capable of self-replication but incapable of transmissible-virion production. This virion delivers and expresses foreign genes in infected cells, and this is the first report of a gene expression vector derived from a defective viral genome of the Paramyxoviridae. First, functional ribonucleoprotein complexes (RNPs) were recovered from SeV cloned cDNA defective in the F (envelope fusion protein) gene, in the presence of plasmids expressing nucleocapsid protein and viral RNA polymerase. Then the RNPs were transfected to the cells inducibly expressing F protein. Virion-like particles thus obtained had a titer of 0.5 × 108 to 1.0 × 108 cell infectious units/ml and contained F-defective RNA genome. This defective vector amplified specifically in an F-expressing packaging cell line in a trypsin-dependent manner but did not spread to F-nonexpressing cells. This vector infected and expressed an enhanced green fluorescent protein reporter gene in various types of animal and human cells, including nondividing cells, with high efficiency. These results suggest that this vector has great potential for use in human gene therapy and vaccine delivery systems. PMID:10864670

  11. Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes

    PubMed Central

    Forsberg, Kevin J.; Patel, Sanket; Witt, Evan; Wang, Bin; Ellison, Tyler D.

    2015-01-01

    The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications. PMID:26546427

  12. Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces venezuelae antibiotic biosynthetic genes.

    PubMed

    Yanai, Koji; Sumida, Naomi; Okakura, Kaoru; Moriya, Tatsuki; Watanabe, Manabu; Murakami, Takeshi

    2004-07-01

    PF1022A, a cyclooctadepsipeptide possessing strong anthelmintic properties and produced by the filamentous fungus Rosellinia sp. PF1022, consists of four alternating residues of N-methyl-L-leucine and four residues of D-lactate or D-phenyllactate. PF1022A derivatives obtained through modification of their benzene ring at the para-position with nitro or amino groups act as valuable starting materials for the synthesis of compounds with improved anthelmintic activities. Here we describe the production of such derivatives by fermentation through metabolic engineering of the PF1022A biosynthetic pathway in Rosellinia sp. PF1022. Three genes cloned from Streptomyces venezuelae, and required for the biosynthesis of p-aminophenylpyruvate from chorismate in the chloramphenicol biosynthetic pathway, were expressed in a chorismate mutase-deficient strain derived from Rosellinia sp. PF1022. Liquid chromatography-mass spectrometry and NMR analyses confirmed that this approach facilitated the production of PF1022A derivatives specifically modified at the para-position. This fermentation method is environmentally safe and can be used for the industrial scale production of PF1022A derivatives.

  13. Evolution of DNA ligases of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes: a case of hidden complexity

    PubMed Central

    2009-01-01

    Background Eukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) encode most if not all of the enzymes involved in their DNA replication. It has been inferred that genes for these enzymes were already present in the last common ancestor of the NCLDV. However, the details of the evolution of these genes that bear on the complexity of the putative ancestral NCLDV and on the evolutionary relationships between viruses and their hosts are not well understood. Results Phylogenetic analysis of the ATP-dependent and NAD-dependent DNA ligases encoded by the NCLDV reveals an unexpectedly complex evolutionary history. The NAD-dependent ligases are encoded only by a minority of NCLDV (including mimiviruses, some iridoviruses and entomopoxviruses) but phylogenetic analysis clearly indicated that all viral NAD-dependent ligases are monophyletic. Combined with the topology of the NCLDV tree derived by consensus of trees for universally conserved genes suggests that this enzyme was represented in the ancestral NCLDV. Phylogenetic analysis of ATP-dependent ligases that are encoded by chordopoxviruses, most of the phycodnaviruses and Marseillevirus failed to demonstrate monophyly and instead revealed an unexpectedly complex evolutionary trajectory. The ligases of the majority of phycodnaviruses and Marseillevirus seem to have evolved from bacteriophage or bacterial homologs; the ligase of one phycodnavirus, Emiliana huxlei virus, belongs to the eukaryotic DNA ligase I branch; and ligases of chordopoxviruses unequivocally cluster with eukaryotic DNA ligase III. Conclusions Examination of phyletic patterns and phylogenetic analysis of DNA ligases of the NCLDV suggest that the common ancestor of the extant NCLDV encoded an NAD-dependent ligase that most likely was acquired from a bacteriophage at the early stages of evolution of eukaryotes. By contrast, ATP-dependent ligases from different prokaryotic and eukaryotic sources displaced the ancestral NAD-dependent ligase at different

  14. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier.

    PubMed

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson's disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood-brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson's disease.

  15. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    PubMed Central

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson’s disease. PMID:25061293

  16. Evolution of the Isd11-IscS complex reveals a single alpha-proteobacterial endosymbiosis for all eukaryotes.

    PubMed

    Richards, Thomas A; van der Giezen, Mark

    2006-07-01

    Giardia and Trichomonas are eukaryotes without standard mitochondria but contain mitochondrial-type alpha-proteobacterium-derived iron-sulfur cluster (ISC) assembly proteins, located to mitosomes in Giardia and hydrogenosomes in Trichomonas. Although these data suggest a single common endosymbiotic ancestry for mitochondria, mitosomes, and hydrogenosomes, separate origins are still being proposed. Here, we present a bioinformatic analysis of Isd11, a recently described essential component of the mitochondrial ISC assembly pathway. Isd11 is unique to eukaryotes but functions closely with the alpha-proteobacterium-derived cysteine desulfurase IscS. We demonstrate the presence of homologues of Isd11 in all 5 eukaryotic supergroups sampled, including hydrogenosomal and mitosomal lineages. The eukaryotic invention of Isd11 as a functional partner to IscS directly implies a single shared alpha-proteobacterial endosymbiotic ancestry for all eukaryotes. This pinpoints the alpha-proteobacterial endosymbiosis to before the last common ancestor of all eukaryotes without ambiguity.

  17. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons

    PubMed Central

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  18. Gene profiling of human induced pluripotent stem cell-derived astrocyte progenitors following spinal cord engraftment.

    PubMed

    Haidet-Phillips, Amanda M; Roybon, Laurent; Gross, Sarah K; Tuteja, Alisha; Donnelly, Christopher J; Richard, Jean-Philippe; Ko, Myungsung; Sherman, Alex; Eggan, Kevin; Henderson, Christopher E; Maragakis, Nicholas J

    2014-05-01

    The generation of human induced pluripotent stem cells (hiPSCs) represents an exciting advancement with promise for stem cell transplantation therapies as well as for neurological disease modeling. Based on the emerging roles for astrocytes in neurological disorders, we investigated whether hiPSC-derived astrocyte progenitors could be engrafted to the rodent spinal cord and how the characteristics of these cells changed between in vitro culture and after transplantation to the in vivo spinal cord environment. Our results show that human embryonic stem cell- and hiPSC-derived astrocyte progenitors survive long-term after spinal cord engraftment and differentiate to astrocytes in vivo with few cells from other lineages present. Gene profiling of the transplanted cells demonstrates the astrocyte progenitors continue to mature in vivo and upregulate a variety of astrocyte-specific genes. Given this mature astrocyte gene profile, this work highlights hiPSCs as a tool to investigate disease-related astrocyte biology using in vivo disease modeling with significant implications for human neurological diseases currently lacking animal models.

  19. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  20. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype.

    PubMed

    Dey, Gautam; Thattai, Mukund; Baum, Buzz

    2016-04-20

    If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although 'Loki' cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon.

  1. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes.

    PubMed

    Wheeler, Glen; Ishikawa, Takahiro; Pornsaksit, Varissa; Smirnoff, Nicholas

    2015-03-13

    Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, L-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, L-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant.

  2. Metabolic symbiosis at the origin of eukaryotes.

    PubMed

    López-Garćia, P; Moreira, D

    1999-03-01

    Thirty years after Margulis revived the endosymbiosis theory for the origin of mitochondria and chloroplasts, two novel symbiosis hypotheses for the origin of eukaryotes have been put forward. Both propose that eukaryotes arose through metabolic symbiosis (syntrophy) between eubacteria and methanogenic Archaea. They also propose that this was mediated by interspecies hydrogen transfer and that, initially, mitochondria were anaerobic. These hypotheses explain the mosaic character of eukaryotes (i.e. an archaeal-like genetic machinery and a eubacterial-like metabolism), as well as distinct eukaryotic characteristics (which are proposed to be products of symbiosis). Combined data from comparative genomics, microbial ecology and the fossil record should help to test their validity.

  3. The cellular slime mold: eukaryotic model microorganism.

    PubMed

    Urushihara, Hideko

    2009-04-01

    Cellular slime molds are eukaryotic microorganisms in the soil. They feed on bacteria as solitary amoebae but conditionally construct multicellular forms in which cell differentiation takes place. Therefore, they are attractive for the study of fundamental biological phenomena such as phagocytosis, cell division, chemotactic movements, intercellular communication, cell differentiation, and morphogenesis. The most widely used species, Dictyostelium discoideum, is highly amenable to experimental manipulation and can be used with most recent molecular biological techniques. Its genome and cDNA analyses have been completed and well-annotated data are publicly available. A larger number of orthologues of human disease-related genes were found in D. discoideum than in yeast. Moreover, some pathogenic bacteria infect Dictyostelium amoebae. Thus, this microorganism can also offer a good experimental system for biomedical research. The resources of cellular slime molds, standard strains, mutants, and genes are maintained and distributed upon request by the core center of the National BioResource Project (NBRP-nenkin) to support Dictyostelium community users as well as new users interested in new platforms for research and/or phylogenic consideration.

  4. Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene

    PubMed Central

    Lee, Ja-Rang; Park, Sang-Je; Kim, Young-Hyun; Choe, Se-Hee; Cho, Hyeon-Mu; Lee, Sang-Rae; Kim, Sun-Uk; Kim, Ji-Su; Sim, Bo-Woong; Song, Bong-Seok; Jeong, Kang-Jin; Lee, Youngjeon; Jin, Yeung Bae; Kang, Philyong; Huh, Jae-Won; Chang, Kyu-Tae

    2017-01-01

    Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element–AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crab-eating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3′ splice site. Six transcript variants (V1–V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5′ splice sites in the 5′ and 3′ flanking regions of CTSF_AluYRa1. Among them, V3–V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification. PMID:28196413

  5. Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns.

    PubMed

    Perrie, Leon R; Shepherd, Lara D; De Lange, Peter J; Brownsey, Patrick J

    2010-07-01

    Although polyploidy is widespread, its significance to the generation of biodiversity remains unclear. Many polyploids have been derived recurrently. For a particular polyploid, gene-flow between the products of independent origin is typical where they come into contact. Here, we use AFLP DNA-fingerprinting and chloroplast DNA sequences to demonstrate parallel polyploid speciation within both of the ferns Asplenium cimmeriorum and A. gracillimum. Both of these taxa comprise at least two allopolyploids, recurrently derived from the same progenitor pair. Each of these allopolyploids remain genetically distinguishable even with extensive sympatry, and could therefore be considered distinct species. To our knowledge, parallel speciation on this scale amongst recurrent polyploids has not been previously reported. With their parallel origins, these 'evolutionary replicates' provide an unrivalled opportunity to investigate how the reproductive barriers and ecological differentiation necessary for speciation arise following polyploidy.

  6. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    PubMed Central

    Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A

    2016-01-01

    Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357

  7. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs.

    PubMed

    Menon, Tushar; Firth, Amy L; Scripture-Adams, Deirdre D; Galic, Zoran; Qualls, Susan J; Gilmore, William B; Ke, Eugene; Singer, Oded; Anderson, Leif S; Bornzin, Alexander R; Alexander, Ian E; Zack, Jerome A; Verma, Inder M

    2015-04-02

    X-linked Severe Combined Immunodeficiency (SCID-X1) is a genetic disease that leaves newborns at high risk of serious infection and a predicted life span of less than 1 year in the absence of a matched bone marrow donor. The disease pathogenesis is due to mutations in the gene encoding the Interleukin-2 receptor gamma chain (IL-2Rγ), leading to a lack of functional lymphocytes. With the leukemogenic concerns of viral gene therapy there is a need to explore alternative therapeutic options. We have utilized induced pluripotent stem cell (iPSC) technology and genome editing mediated by TALENs to generate isogenic subject-specific mutant and gene-corrected iPSC lines. While the subject-derived mutant iPSCs have the capacity to generate hematopoietic precursors and myeloid cells, only wild-type and gene-corrected iPSCs can additionally generate mature NK cells and T cell precursors expressing the correctly spliced IL-2Rγ. This study highlights the potential for the development of autologous cell therapy for SCID-X1 subjects.

  8. Gene transfer properties and structural modeling of human stem cell-derived AAV.

    PubMed

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-09-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34(+) hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34(+) human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34(+) cells. Every AAV isolated from CD34(+) cells mapped to AAV Clade F. Gene transfer vectors derived from these novel AAVs efficiently underwent entry and postentry processing in human cord blood stem cells and supported stable gene transfer into long-term, in vivo engrafting human HSCs significantly better than other serotypes. AAVHSC-transduced human CD34(+) cells engrafted in vivo and gave rise to differentiated transgene-expressing progeny. Importantly, gene-marked CD34(+) stem cells persisted long term in xenograft recipients, indicating transduction of primitive progenitors. Notably, correlation of structure with function permitted identification of potential capsid components important for HSC transduction. Thus, AAVHSCs represent a new class of genetic vectors for the manipulation of HSC genomes.

  9. [Brain-derived neurotrophic factor gene (BDNF) polymorphism among Moscow citizens].

    PubMed

    2013-12-01

    Recent studies showed that brain-derived neurotrophic factor (BDNF) can participate in pathogenesis of various CNS disorders, being connected with proliferation, differentiation, and survival of neurons. In present study, analysis of occurrence rate was performed for three single nucleotide polymorphisms (SNPs) located in BDNF gene (rs6267 (A/G) allele A-0.265; rs2049046 (A/T) allele A-0.407; rs11030107 (A/G) allele A-0.872) in randomized selection of Moscow citizens. Linkage disequilibrium of rs6165 and rs2049046 loci was shown. Differences in allele frequencies in studied selection and populations of other re- gions were discovered.

  10. The expanding roles of the ghrelin-gene derived peptide obestatin in health and disease.

    PubMed

    Seim, Inge; Walpole, Carina; Amorim, Laura; Josh, Peter; Herington, Adrian; Chopin, Lisa

    2011-06-20

    Obestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, which includes adipogenesis, pancreatic homeostasis and cancer.

  11. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types

    PubMed Central

    Van Damme, Ellen; Thys, Kim; Tuefferd, Marianne; Van Hove, Carl; Aerssens, Jeroen; Van Loock, Marnix

    2016-01-01

    Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential

  12. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery

    PubMed Central

    Makarova, Kira S.; Krupovic, Mart; Koonin, Eugene V.

    2014-01-01

    The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the

  13. The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion

    PubMed Central

    Du, Hai; Liang, Zhe; Zhao, Sen; Nan, Ming-Ge; Phan Tran, Lam-Son; Lu, Kun; Huang, Yu-Bi; Li, Jia-Na

    2015-01-01

    R2R3-MYB proteins (2R-MYBs) are one of the main transcription factor families in higher plants. Since the evolutionary history of this gene family across the eukaryotic kingdom remains unknown, we performed a comparative analysis of 2R-MYBs from 50 major eukaryotic lineages, with particular emphasis on land plants. A total of 1548 candidates were identified among diverse taxonomic groups, which allowed for an updated classification of 73 highly conserved subfamilies, including many newly identified subfamilies. Our results revealed that the protein architectures, intron patterns, and sequence characteristics were remarkably conserved in each subfamily. At least four subfamilies were derived from early land plants, 10 evolved from spermatophytes, and 19 from angiosperms, demonstrating the diversity and preferential expansion of this gene family in land plants. Moreover, we determined that their remarkable expansion was mainly attributed to whole genome and segmental duplication, where duplicates were preferentially retained within certain subfamilies that shared three homologous intron patterns (a, b, and c) even though up to 12 types of patterns existed. Through our integrated distributions, sequence characteristics, and phylogenetic tree analyses, we confirm that 2R-MYBs are old and postulate that 3R-MYBs may be evolutionarily derived from 2R-MYBs via intragenic domain duplication. PMID:26047035

  14. Origin and Evolution of Eukaryotic Large Nucleo-Cytoplasmic DNA Viruses

    PubMed Central

    Koonin, Eugene V.; Yutin, Natalya

    2010-01-01

    Background/Aims The nucleo-cytoplasmic large DNA viruses (NCLDV) constitute an apparently monophyletic group that consists of 6 families of viruses infecting a broad variety of eukaryotes. A comprehensive genome comparison and maximum-likelihood reconstruction of NCLDV evolution reveal a set of approximately 50 conserved genes that can be tentatively mapped to the genome of the common ancestor of this class of eukaryotic viruses. We address the origins and evolution of NCLDV. Results Phylogenetic analysis indicates that some of the major clades of NCLDV infect diverse animals and protists, suggestive of early radiation of the NCLDV, possibly concomitant with eukaryogenesis. The core NCLDV genes seem to have originated from different sources including homologous genes of bacteriophages, bacteria and eukaryotes. These observations are compatible with a scenario of the origin of the NCLDV at an early stage of the evolution of eukaryotes through extensive mixing of genes from widely different genomes. Conclusions The common ancestor of the NCLDV probably evolved from a bacteriophage as a result of recruitment of numerous eukaryotic and some bacterial genes, and concomitant loss of the majority of phage genes except for a small core of genes coding for proteins essential for virus genome replication and virion formation. PMID:20551680

  15. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes.

    PubMed

    Hug, Laura A; Stechmann, Alexandra; Roger, Andrew J

    2010-02-01

    Protists that live in low oxygen conditions often oxidize pyruvate to acetate via anaerobic ATP-generating pathways. Key enzymes that commonly occur in these pathways are pyruvate:ferredoxin oxidoreductase (PFO) and [FeFe]-hydrogenase (H(2)ase) as well as the associated [FeFe]-H(2)ase maturase proteins HydE, HydF, and HydG. Determining the origins of these proteins in eukaryotes is of key importance to understanding the origins of anaerobic energy metabolism in microbial eukaryotes. We conducted a comprehensive search for genes encoding these proteins in available whole genomes and expressed sequence tag data from diverse eukaryotes. Our analyses of the presence/absence of eukaryotic PFO, [FeFe]-H(2)ase, and H(2)ase maturase sequences across eukaryotic diversity reveal orthologs of these proteins encoded in the genomes of a variety of protists previously not known to contain them. Our phylogenetic analyses revealed: 1) extensive lateral gene transfers of both PFO and [FeFe]-H(2)ase in eubacteria, 2) decreased support for the monophyly of eukaryote PFO domains, and 3) that eukaryotic [FeFe]-H(2)ases are not monophyletic. Although there are few eukaryote [FeFe]-H(2)ase maturase orthologs characterized, phylogenies of these proteins do recover eukaryote monophyly, although a consistent eubacterial sister group for eukaryotic homologs could not be determined. An exhaustive search for these five genes in diverse genomes from two representative eubacterial groups, the Clostridiales and the alpha-proteobacteria, shows that although these enzymes are nearly universally present within the former group, they are very rare in the latter. No alpha-proteobacterial genome sequenced to date encodes all five proteins. Molecular phylogenies and the extremely restricted distribution of PFO, [FeFe]-H(2)ases, and their associated maturases within the alpha-proteobacteria do not support a mitochondrial origin for these enzymes in eukaryotes. However, the unexpected prevalence of PFO

  16. Evolution of the eukaryotic translation termination system: origins of release factors.

    PubMed

    Inagaki, Y; Ford Doolittle, W

    2000-06-01

    Accurate translation termination is essential for cell viability. In eukaryotes, this process is strictly maintained by two proteins, eukaryotic release factor 1 (eRF1), which recognizes all stop codons and hydrolyzes peptidyl-tRNA, and eukaryotic release factor 3 (eRF3), which is an elongation factor 1alpha (EF-1alpha) homolog stimulating eRF1 activity. To retrace the evolution of this core system, we cloned and sequenced the eRF3 genes from Trichomonas vaginalis (Parabasalia) and Giardia lamblia (Diplomonada), which are generally thought to be "early-diverging eukaryotes," as well as those from two ciliates (Oxytricha trifallax and Euplotes aediculatus). We also determined the sequence of the eRF1 gene for G. lamblia. Surprisingly, the G. lamblia eRF3 appears to have only one domain, corresponding to EF-1alpha, while other eRF3s (including the T. vaginalis protein) have an additional N-terminal domain, of 66-411 amino acids. Considering this novel eRF3 structure and our extensive phylogenetic analyses, we suggest that (1) the current translation termination system in eukaryotes evolved from the archaea-like version, (2) eRF3 was introduced into the system prior to the divergence of extant eukaryotes, including G. lamblia, and (3) G. lamblia might be the first eukaryotic branch among the organisms considered.

  17. Differential expression of a subset of ribosomal protein genes in cell lines derived from human nasopharyngeal epithelium.

    PubMed

    Sim, Edmund Ui Hang; Ang, Chow Hiang; Ng, Ching Ching; Lee, Choon Weng; Narayanan, Kumaran

    2010-02-01

    Extraribosomal functions of human ribosomal proteins (RPs) include the regulation of cellular growth and differentiation, and are inferred from studies that linked congenital disorders and cancer to the deregulated expression of RP genes. We have previously shown the upregulation and downregulation of RP genes in tumors of colorectal and nasopharyngeal carcinomas (NPCs), respectively. Herein, we show that a subset of RP genes for the large ribosomal subunit is differentially expressed among cell lines derived from the human nasopharyngeal epithelium. Three such genes (RPL27, RPL37a and RPL41) were found to be significantly downregulated in all cell lines derived from NPC tissues compared with a nonmalignant nasopharyngeal epithelial cell line. The expression of RPL37a and RPL41 genes in human nasopharyngeal tissues has not been reported previously. Our findings support earlier suspicions on the existence of NPC-associated RP genes, and indicate their importance in human nasopharyngeal organogenesis.

  18. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree.

    PubMed

    Cavalier-Smith, Thomas

    2010-06-23

    I discuss eukaryotic deep phylogeny and reclassify the basal eukaryotic kingdom Protozoa and derived kingdom Chromista in the light of multigene trees. I transfer the formerly protozoan Heliozoa and infrakingdoms Alveolata and Rhizaria into Chromista, which is sister to kingdom Plantae and arguably originated by synergistic double internal enslavement of green algal and red algal cells. I establish new subkingdoms (Harosa; Hacrobia) for the expanded Chromista. The protozoan phylum Euglenozoa differs immensely from other eukaryotes in its nuclear genome organization (trans-spliced multicistronic transcripts), mitochondrial DNA organization, cytochrome c-type biogenesis, cell structure and arguably primitive mitochondrial protein-import and nuclear DNA prereplication machineries. The bacteria-like absence of mitochondrial outer-membrane channel Tom40 and DNA replication origin-recognition complexes from trypanosomatid Euglenozoa roots the eukaryotic tree between Euglenozoa and all other eukaryotes (neokaryotes), or within Euglenozoa. Given their unique properties, I segregate Euglenozoa from infrakingdom Excavata (now comprising only phyla Percolozoa, Loukozoa, Metamonada), grouping infrakingdoms Euglenozoa and Excavata as the ancestral protozoan subkingdom Eozoa. I place phylum Apusozoa within the derived protozoan subkingdom Sarcomastigota. Clarifying early eukaryote evolution requires intensive study of properties distinguishing Euglenozoa from neokaryotes and Eozoa from neozoa (eukaryotes except Eozoa; ancestrally defined by haem lyase).

  19. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree

    PubMed Central

    Cavalier-Smith, Thomas

    2010-01-01

    I discuss eukaryotic deep phylogeny and reclassify the basal eukaryotic kingdom Protozoa and derived kingdom Chromista in the light of multigene trees. I transfer the formerly protozoan Heliozoa and infrakingdoms Alveolata and Rhizaria into Chromista, which is sister to kingdom Plantae and arguably originated by synergistic double internal enslavement of green algal and red algal cells. I establish new subkingdoms (Harosa; Hacrobia) for the expanded Chromista. The protozoan phylum Euglenozoa differs immensely from other eukaryotes in its nuclear genome organization (trans-spliced multicistronic transcripts), mitochondrial DNA organization, cytochrome c-type biogenesis, cell structure and arguably primitive mitochondrial protein-import and nuclear DNA prereplication machineries. The bacteria-like absence of mitochondrial outer-membrane channel Tom40 and DNA replication origin-recognition complexes from trypanosomatid Euglenozoa roots the eukaryotic tree between Euglenozoa and all other eukaryotes (neokaryotes), or within Euglenozoa. Given their unique properties, I segregate Euglenozoa from infrakingdom Excavata (now comprising only phyla Percolozoa, Loukozoa, Metamonada), grouping infrakingdoms Euglenozoa and Excavata as the ancestral protozoan subkingdom Eozoa. I place phylum Apusozoa within the derived protozoan subkingdom Sarcomastigota. Clarifying early eukaryote evolution requires intensive study of properties distinguishing Euglenozoa from neokaryotes and Eozoa from neozoa (eukaryotes except Eozoa; ancestrally defined by haem lyase). PMID:20031978

  20. Molecular marker-assisted alien gene introgression of Sr39 for wheat stem rust resistance derived from Aegilops speltoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L.), stem rust resistance gene Sr39, derived from Aegilops speltoides, is highly effective against multiple stem rust races including Ug99. However, the gene has not been used in wheat breeding because it is located on a large 2S chromosomal segment in the current transl...

  1. MlNCD1: A novel Aegilops tauschii derived powdery mildew resistance gene identified in common wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew is a major fungal disease in wheat, especially in cool maritime climates. A novel Aegilops tauschii derived wheat powdery mildew resistance gene present in the germplasm line NC96BGTD1 was genetically characterized as a monogenic trait in field trials using F2 and F4-derived lines fr...

  2. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

  3. Mechanical Stimulation Increases Knee Meniscus Gene RNA-level Expression in Adipose-derived Stromal Cells

    PubMed Central

    Meier, Elizabeth M.; Wu, Bin; Siddiqui, Aamir; Tepper, Donna G.; Longaker, Michael T.

    2016-01-01

    Background: Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells. Methods: Human adipose-derived stromal cells were chosen for their fibrogenic nature and conduciveness for chondrogenesis. Biochemical and mechanical stimulation were investigated. Biochemical stimulation included fibrogenic and chondrogenic media. For mechanical stimulation, a custom-built device was used to apply constant, cyclical, uniaxial strain for up to 6 hours. Strain and frequency varied. Results: Under biochemical stimulation, both fibrogenic (collagen I, versican) and chondrogenic (collagen II, Sox9, aggrecan) genes were expressed by cells exposed to either fibrogenic or chondrogenic biochemical factors. Mechanical strain was found to preferentially promote fibrogenesis over chondrogenesis, confirming that tensile strain is an effective fibrogenic cue. Three hours at 10% strain and 1 Hz in chondrogenic media resulted in the highest expression of fibrochondrogenic genes. Although mechanical stimulation did not seem to affect protein level expression, biochemical means did affect protein level presence of collagen fibers. Conclusion: Mechanical stimulation can be a useful differentiation tool for mechanoresponsive cell types as long as biochemical factors are also integrated. PMID:27757329

  4. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers.

    PubMed

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the "Little Ice Age" although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of ice

  5. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers

    PubMed Central

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of

  6. CRISPR/Cas9-mediated genome editing in wild-derived mice: generation of tamed wild-derived strains by mutation of the a (nonagouti) gene.

    PubMed

    Hirose, Michiko; Hasegawa, Ayumi; Mochida, Keiji; Matoba, Shogo; Hatanaka, Yuki; Inoue, Kimiko; Goto, Tatsuhiko; Kaneda, Hideki; Yamada, Ikuko; Furuse, Tamio; Abe, Kuniya; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Wakana, Shigeharu; Honda, Arata; Ogura, Atsuo

    2017-02-14

    Wild-derived mice have contributed to experimental mouse genetics by virtue of their genetic diversity, which may help increase the chance of identifying novel modifier genes responsible for specific phenotypes and diseases. However, gene targeting using wild-derived mice has been unsuccessful because of the unavailability of stable embryonic stem cells. Here, we report that CRISPR/Cas9-mediated gene targeting can be applied to the Japanese wild-derived MSM/Ms strain (Mus musculus molossinus). We targeted the nonagouti (a) gene encoding the agouti protein that is localized in hair and the brain. We obtained three homozygous knockout mice as founders, all showing black coat colour. While homozygous knockout offspring were physiologically indistinguishable from wild-type litter-mates, they showed specific domesticated behaviours: hypoactivity in the dark phase and a decline in the avoidance of a human hand. These phenotypes were consistent over subsequent generations. Our findings support the empirical hypothesis that nonagouti is a domestication-linked gene, the loss of which might repress aggressive behaviour.

  7. CRISPR/Cas9-mediated genome editing in wild-derived mice: generation of tamed wild-derived strains by mutation of the a (nonagouti) gene

    PubMed Central

    Hirose, Michiko; Hasegawa, Ayumi; Mochida, Keiji; Matoba, Shogo; Hatanaka, Yuki; Inoue, Kimiko; Goto, Tatsuhiko; Kaneda, Hideki; Yamada, Ikuko; Furuse, Tamio; Abe, Kuniya; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Wakana, Shigeharu; Honda, Arata; Ogura, Atsuo

    2017-01-01

    Wild-derived mice have contributed to experimental mouse genetics by virtue of their genetic diversity, which may help increase the chance of identifying novel modifier genes responsible for specific phenotypes and diseases. However, gene targeting using wild-derived mice has been unsuccessful because of the unavailability of stable embryonic stem cells. Here, we report that CRISPR/Cas9-mediated gene targeting can be applied to the Japanese wild-derived MSM/Ms strain (Mus musculus molossinus). We targeted the nonagouti (a) gene encoding the agouti protein that is localized in hair and the brain. We obtained three homozygous knockout mice as founders, all showing black coat colour. While homozygous knockout offspring were physiologically indistinguishable from wild-type litter-mates, they showed specific domesticated behaviours: hypoactivity in the dark phase and a decline in the avoidance of a human hand. These phenotypes were consistent over subsequent generations. Our findings support the empirical hypothesis that nonagouti is a domestication-linked gene, the loss of which might repress aggressive behaviour. PMID:28195201

  8. Community succession of bacteria and eukaryotes in dune ecosystems of Gurbantünggüt Desert, Northwest China.

    PubMed

    Li, Ke; Bai, Zhihui; Zhang, Hongxun

    2015-01-01

    Pyrosequencing and quantitative polymerase chain reaction of small subunit rRNA genes were used to provide a comprehensive examination of bacterial, cyanobacterial, and eukaryotic communities in the biological soil crusts (BSCs) of Gurbantünggüt Desert sand dunes (China). Three succession stages were recognized based on the analyses of eukaryotic communities: a late succession stage of BSCs in a swale with eukaryotes mainly related to the Bryophyta clade, an initial succession stage in a slope with barely any eukaryotic phototrophic microorganisms detected, and an intermediate succession type detected from both the swale and slope BSCs dominated by the phylum Chlorophyta. Moreover, the cyanobacterial community dominated all of the BSCs (48.2-69.5% of the total bacteria) and differed among the three succession stages: sequences related to Microcoleus steenstrupii and the genus Scytonema were abundant in the later succession stage, whereas both the initial and intermediate stages were dominated by Microcoleus vaginatus. Compared with swales, BSCs from slopes are exposed to a harsher environment, e.g., higher irradiance and lower water availability, and thus may be restricted from developing to a higher succession stage. Other disturbances such as wind and grazing may explain the different succession stages observed in swales or slopes. However, no clear differences were detected from non-phototrophic bacterial communities of the three succession stages, and sequences related to Alphaproteobacteria and Actinobacteria were most abundant in all the BSCs. The closest matches for the most frequent non-phototrophic bacterial genera were mainly derived from harsh environments, indicating the robustness of these genera.

  9. Regulation of 2', 5'-oligoadenylate synthetase gene expression by interferons and platelet-derived growth factor

    SciTech Connect

    Garcia-Blanco, M.A. ); Lengyel, P. . Dept. of Molecular Biophysics and Biochemistry); Morrison, E.; BrownLee, C.; Stiles, C.D. ); Williams, B.R.G. )

    1989-03-01

    In murine BALB/c 3T3 cell cultures, either beta interferon or platelet-derived growth factor (PDGF) enhanced expression of the 2', 5-oligoadenylate synthetase mRNA and protein. The time course of induction in response to beta inteferon was similar to that in response to PDGF. Of several growth factors known to be present in clotted blood serum (i.e., epidermal growth factor, transforming growth factor beta, and PDGF), only PDGF enhanced expression of 2', 5-oligoadenylate synthetase. The linkage of an interferon response element-containing segment from the 5'-flanking region of a human or murine 2'-5'-oligoadenylate synthetase gene made a heterologous gene responsive to interferon. The expression of such a gene construct in transfected cells was also induced by PDGF. Induction by PDGF was inhibited by mono- or polyclonal antibodies to murine interferon, which suggested that induction by PDGF requires interferon. Both PDGF and interferon induced nuclear factors that bound to this interferon response element-containing segment in vitro.

  10. Developing genetic tools to exploit Chaetomium thermophilum for biochemical analyses of eukaryotic macromolecular assemblies

    PubMed Central

    Kellner, Nikola; Schwarz, Johannes; Sturm, Miriam; Fernandez-Martinez, Javier; Griesel, Sabine; Zhang, Wenzhu; Chait, Brian T.; Rout, Michael P.; Kück, Ulrich; Hurt, Ed

    2016-01-01

    We describe a method to genetically manipulate Chaetomium thermophilum, a eukaryotic thermophile, along with various biochemical applications. The transformation method depends on a thermostable endogenous selection marker operating at high temperatures combined with chromosomal integration of target genes. Our technique allows exploiting eukaryotic thermophiles as source for purifying thermostable native macromolecular complexes with an emphasis on the nuclear pore complex, holding great potential for applications in basic science and biotechnology. PMID:26864114

  11. Bacterial inosine 5'-monophosphate dehydrogenase ("IMPDH") DNA as a dominant selectable marker in mammals and other eukaryotes

    DOEpatents

    Huberman, Eliezer; Baccam, Mekhine J.

    2007-02-27

    The present invention relates to a nucleic acid sequence and its corresponding protein sequence useful as a dominant selectable marker in eukaryotes. More specifically the invention relates to a nucleic acid encoding a bacterial IMPDH gene that has been engineered into a eukaryotic expression vectors, thereby permitting bacterial IMPDH expression in mammalian cells. Bacterial IMPDH expression confers resistance to MPA which can be used as dominant selectable marker in eukaryotes including mammals. The invention also relates to expression vectors and cells that express the bacterial IMPDH gene as well as gene therapies and protein synthesis.

  12. Regulation of Eukaryotic Flagellar Motility

    NASA Astrophysics Data System (ADS)

    Mitchell, David R.

    2005-03-01

    The central apparatus is essential for normal eukaryotic flagellar bend propagation as evidenced by the paralysis associated with mutations that prevent central pair (CP) assembly. Interactions between doublet-associated radial spokes and CP projections are thought to modulate spoke-regulated protein kinases and phosphatases on outer doublets, and these enzymes in turn modulate dynein activity. To better understand CP control mechanisms, we determined the three-dimensional structure of the Chlamydomonas reinhardtii CP complex and analyzed CP orientation during formation and propagation of flagellar bending waves. We show that a single CP microtubule, C1, is near the outermost doublet in curved regions of the flagellum, and this orientation is maintained by twists between successive principal and reverse bends. The Chlamydomonas CP is inherently twisted; twists are not induced by bend formation, and do not depend on forces or signals transmitted through spoke-central pair interactions. We hypothesize that CP orientation passively responds to bend formation, and that bend propagation drives rotation of the CP and maintains a constant CP orientation in bends, which in turn permits signal transduction between specific CP projections and specific doublet-associated dyneins through radial spokes. The central pair kinesin, Klp1, although essential for normal motility, is therefore not the motor that drives CP rotation. The CP also acts as a scaffold for enzymes that maintain normal intraflagellar ATP concentration.

  13. Bacterial and Eukaryotic Replisome Machines

    PubMed Central

    Yao, Nina; O’Donnell, Mike

    2016-01-01

    Cellular genomic DNA is replicated by a multiprotein replisome machine. The replisome contains numerous essential factors that unwind, prime and synthesize each of the two strands of duplex DNA. The antiparallel structure of DNA, and unidirectional activity of DNA polymerases, requires the two strands of DNA to be extended in opposite directions, and this structural feature requires distinctive processes for synthesis of the two strands. Genome duplication is of central importance to all cell types, and one may expect the replisome apparatus to be conserved from bacteria to human, as is the case with RNA polymerase driven transcription and ribosome mediated translation. However, it is known that the replication factors of bacteria are not homologous to those of archaea and eukaryotes, indicating that the replication process evolved twice, independently, rather than from a common ancestor cell. Thus, the different domains of life may exhibit significant differences in their mechanistic strategy of replication. In this review, we compare and contrast the different structures and mechanistic features of the cellular replication machinery in the three domains of life. PMID:28042596

  14. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells

    PubMed Central

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F. H.

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate—the benzyl isothiocyanate (BITC)—modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC—extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase—to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  15. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina.

    PubMed

    Park, Hae-Young Lopilly; Kim, Jie Hyun; Sun Kim, Hwa; Park, Chan Kee

    2012-08-21

    As an alternative to a viral vector, the application of stem cells to transfer specific genes is under investigation in various organs. Using this strategy may provide more effective method to supply neurotrophic factor to the neurodegenerative diseases caused by neurotrophic factor deprivation. This study investigated the possibility and efficacy of stem cell-based delivery of the brain-derived neurotrophic factor (BDNF) gene to rat retina. Rat BDNF cDNA was transduced into rat bone marrow mesenchymal stem cells (rMSCs) using a retroviral vector. Its incorporation into the experimental rat retina and the expression of BDNF after intravitreal injection or subretinal injection were detected by real-time PCR, western blot analysis, and immunohistochemical staining. For the incorporated rMSCs, retinal-specific marker staining was performed to investigate the changes in morphology and the characteristics of the stem cells. Transduction of the rMSCs by retrovirus was effective, and the transduced rMSCs expressed high levels of the BDNF gene and protein. The subretinal injection of rMSCs produced rMSC migration and incorporation into the rat retina (about 15.7% incorporation rate), and retinal BDNF mRNA and protein expression was increased at 4 weeks after transplantation. When subretinal injection of rMSCs was applied to axotomized rat retina, it significantly increased the expression of BDNF until 4 weeks after transplantation. Some of the transplanted rMSCs exhibited morphological changes, but the retinal-specific marker stain was not sufficient to indicate whether neuronal differentiation had occurred. Using mesenchymal stem cells to deliver the BDNF gene to the retina may provide new treatment for glaucoma.

  16. Brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells

    PubMed Central

    HAN, ZHONG-MIN; HUANG, HE-MEI; WANG, FEI-FEI

    2015-01-01

    The present study aimed to investigate the effects of human brain-derived neurotrophic factor (hBDNF) on the differentiation of bone marrow mesenchymal stem cells (MSCs) into neuron-like cells. Lentiviral vectors carrying the hBDNF gene were used to modify the bone marrow stromal cells (BMSCs) of Sprague-Dawley (SD) rats. The rat BMSCs were isolated, cultured and identified. A lentivirus bearing hBDNF and enhanced green fluorescent protein (eGFP) genes was subcultured and used to infect the SD rat BMSCs. The expression of eGFP was observed under a fluorescence microscope to determine the infection rate and growth of the transfected cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was used to detect the proliferation rate of cells following transfection. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect the expression levels of hBDNF. Differentiation of neuron-like cells was induced in vitro and the differentiation rate of the induced neural-like cells was compared with that in control groups and analyzed statistically. In the cultured cells, flow cytometry demonstrated positive expression of cluster of differentiation (CD)90 and CD44, and negative expression of CD34 and CD45. The proliferation rate of the rat BMSCs increased following gene transfection. The expression of hBDNF-eGFP was detected in the BMSCs of the experimental group. The differentiation rate of hBDNF-modified cells into neuron-like cells in the experimental group was higher compared with that in empty plasmid and untransfected negative control groups. The difference was statistically significant (P<0.05). Thus, BDNF gene transfection is able to promote the differentiation of BMSCs into neuron-like cells. BDNF may play an important role in the differentiation of MSCs into neuron-like cells. PMID:25574226

  17. Pathogenic Eukaryotes in Gut Microbiota of Western Lowland Gorillas as Revealed by Molecular Survey

    PubMed Central

    Hamad, Ibrahim; Keita, Mamadou B.; Peeters, Martine; Delaporte, Eric; Raoult, Didier; Bittar, Fadi

    2014-01-01

    Although gorillas regarded as the largest extant species of primates and have a close phylogenetic relationship with humans, eukaryotic communities have not been previously studied in these populations. Herein, 35 eukaryotic primer sets targeting the 18S rRNA gene, internal transcribed spacer gene and other specific genes were used firstly to explore the eukaryotes in a fecal sample from a wild western lowland gorilla (Gorilla gorilla gorilla). Then specific real-time PCRs were achieved in additional 48 fecal samples from 21 individual gorillas to investigate the presence of human eukaryotic pathogens. In total, 1,572 clones were obtained and sequenced from the 15 cloning libraries, resulting in the retrieval of 87 eukaryotic species, including 52 fungi, 10 protozoa, 4 nematodes and 21 plant species, of which 52, 5, 2 and 21 species, respectively, have never before been described in gorillas. We also reported the occurrence of pathogenic fungi and parasites (i.e. Oesophagostomum bifurcum (86%), Necator americanus (43%), Candida tropicalis (81%) and other pathogenic fungi were identified). In conclusion, molecular techniques using multiple primer sets may offer an effective tool to study complex eukaryotic communities and to identify potential pathogens in the gastrointestinal tracts of primates. PMID:25231746

  18. A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic Genomics Window

    PubMed Central

    Gallot-Lavallée, Lucie; Blanc, Guillaume

    2017-01-01

    The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets—many of which are from algae and aquatic protists—contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity. PMID:28117696

  19. Protein-responsive ribozyme switches in eukaryotic cells

    PubMed Central

    Kennedy, Andrew B.; Vowles, James V.; d'Espaux, Leo; Smolke, Christina D.

    2014-01-01

    Genetic devices that directly detect and respond to intracellular concentrations of proteins are important synthetic biology tools, supporting the design of biological systems that target, respond to or alter specific cellular states. Here, we develop ribozyme-based devices that respond to protein ligands in two eukaryotic hosts, yeast and mammalian cells, to regulate the expression of a gene of interest. Our devices allow for both gene-ON and gene-OFF response upon sensing the protein ligand. As part of our design process, we describe an in vitro characterization pipeline for prescreening device designs to identify promising candidates for in vivo testing. The in vivo gene-regulatory activities in the two types of eukaryotic cells correlate with in vitro cleavage activities determined at different physiologically relevant magnesium concentrations. Finally, localization studies with the ligand demonstrate that ribozyme switches respond to ligands present in the nucleus and/or cytoplasm, providing new insight into their mechanism of action. By extending the sensing capabilities of this important class of gene-regulatory device, our work supports the implementation of ribozyme-based devices in applications requiring the detection of protein biomarkers. PMID:25274734

  20. Eukaryotes dominate new production in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Casey, J. R.; Sigman, D. M.

    2010-12-01

    The vast subtropical ocean gyres are considered unproductive “deserts” due to the extremely low concentrations of essential nutrients in their sunlit surface waters. Because of intense upper ocean stratification, phytoplankton growth in the subtropical gyres is limited by the slow supply of nitrate from below, and is assumed to be supported predominantly by “regenerated” nitrogen (N): ammonium and other reduced N sources recycled in surface waters. The phytoplankton assemblage of the subtropical Sargasso Sea is dominated by the prokaryotic cyanobacteria, Prochlorococcus and Synechococcus, which occur in very high cell numbers compared to the rarer, and usually larger, eukaryotic algae. Coupling flow cytometry and a new high-sensitivity method for N isotope analysis, we measure the 15N/14N of major phytoplankton taxa and other biologically distinct particle populations collected from the surface waters of the Sargasso Sea during the stratified summer period. We find that the cyanobacteria and eukaryotic phytoplankton show distinct N isotope signatures, indicating that they utilize different sources of N for growth. Prochlorococcus and Synechococcus have a uniformly low 15N/14N, consistent with the expectation that these phytoplankton rely on regenerated N. However, the 15N/14N of eukaryotic phytoplankton is higher and more variable, with a mean 15N/14N comparable to the new nitrate supply from below, indicating that eukaryotes dominate the consumption of this nitrate and rely on it for more than half of their N requirement. Using our measured 15N/14N values for the various sorted autotrophic populations, we calculate eukaryote-specific summer f-ratios of 0.6-0.67 and total community summer f-ratios of 0.15-0.23. These values are higher than those based on comparison of primary production and sediment-trap derived organic carbon (C) export, and agree well with annual f-ratio estimates implied by geochemical tracers. The high 15N/14N of eukaryotic biomass can

  1. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    PubMed Central

    2008-01-01

    Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS), adenosine 5'-phosphosulfate reductase (APR) and sulfite reductase (SiR). Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR) are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships. PMID:18248682

  2. Allergy assessment of foods or ingredients derived from biotechnology, gene-modified organisms, or novel foods.

    PubMed

    Poulsen, Lars K

    2004-11-01

    The introduction of novel proteins into foods carries a risk of eliciting allergic reactions in individuals sensitive to the introduced protein and a risk of sensitizing susceptible individuals. No single predictive test exists to perform a hazard assessment in relation to allergenic properties of newly expressed proteins in gene-modified organisms (GMOs). Instead, performance of a weighted risk analysis based on the decision tree approach has been suggested. The individual steps of this analysis comprise sequence homology to known allergens, specific or targeted serum screens for immunoglobulin E (IgE) cross-reactions to known allergens, digestability studies of the proteins in simulated gastric and/or intestinal fluids, and animal studies. These steps are discussed and five examples of risk evaluation of GMOs or novel foods are presented. These include ice-structuring protein derived from fish, microbial transglutaminase, GMO-soybeans, amylase and the Nangai nut.

  3. Identification of novel phytase genes from an agricultural soil-derived metagenome.

    PubMed

    Tan, Hao; Mooij, Marlies J; Barret, Matthieu; Hegarty, Pardraig M; Harington, Catriona; Dobson, Alan D W; O'Gara, Fergal

    2014-01-01

    Environmental microorganisms are emerging as an important source of new enzymes for wide-scale industrial application. In this study, novel phytase genes were identified from a soil microbial community. For this, a function-based screening approach was utilized for the identification of phytase activity in a metagenomic library derived from an agricultural soil. Two novel phytases were identified. Interestingly, one of these phytases is an unusual histidine acid phosphatase family phytase, as the conserved motif of the active site of PhyX possesses an additional amino acid residue. The second phytase belongs to a new type, which is encoded by multiple open reading frames (ORFs) and is different to all phytases known to date, which are encoded by a single ORF.

  4. How natural a kind is "eukaryote?".

    PubMed

    Doolittle, W Ford

    2014-06-02

    Systematics balances uneasily between realism and nominalism, uncommitted as to whether biological taxa are discoveries or inventions. If the former, they might be taken as natural kinds. I briefly review some philosophers' concepts of natural kinds and then argue that several of these apply well enough to "eukaryote." Although there are some sticky issues around genomic chimerism and when eukaryotes first appeared, if we allow for degrees in the naturalness of kinds, existing eukaryotes rank highly, higher than prokaryotes. Most biologists feel this intuitively: All I attempt to do here is provide some conceptual justification.

  5. [Posttranscriptional messenger RNA modifications in eukaryotes].

    PubMed

    Laptev, I G; Golovina, A Ya; Sergiev, P V; Dontsova, O A

    2015-01-01

    Genomewide mapping of posttranscriptional modification in eukaryotic RNA allowed to reveal tens of thousands modification sites. Among modified nucleotides of eukaryotic RNA 6-methyladenosine, 5-methylcytidine, pseudouridine, inosine, and others. Many modification sites are conserved, many are regulated. Function is known for a small subset of modified nucleotides, while the role of majority of them is still obscure. Global character of mRNA modifications allowed scientists to coin a new term, RNA epigenetics. The review is about posttranscriptional messenger RNA modifications in eukaryotes. Main modifications, their role in cell, their mapping techniques and proteins, that are responsible for such RNA modifications are observed.

  6. Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells.

    PubMed

    Kowalski, Tomasz J; Leong, Natalie L; Dar, Ayelet; Wu, Ling; Kabir, Nima; Khan, Adam Z; Eliasberg, Claire D; Pedron, Andrew; Karayan, Ashant; Lee, Siyoung; Di Pauli von Treuheim, Theodor; Jiacheng, Jin; Wu, Ben M; Evseenko, Denis; McAllister, David R; Petrigliano, Frank A

    2016-06-01

    There has been substantial effort directed toward the application of bone marrow and adipose-derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue-specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)-derived cell populations with the potential for ligament regeneration: ligament-forming fibroblasts (LFF: CD146(neg) , CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ), ligament perivascular cells (LPC: CD146(pos) CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ) and ligament interstitial cells (LIC: CD34(pos) CD146(neg) , CD44(pos) , CD31(neg) , CD45(neg) )-and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8- and 3.3-fold, respectively) and LFFs (by 3- and 3.5-fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4- and 3.5-fold, respectively), LFFs (by 5.5- and 3-fold, respectively), LPCs (by 10- and 4.5-fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  7. Prokaryotic and eukaryotic unicellular chronomics

    PubMed Central

    Halberg, F.; Cornélissen, G.; Faraone, P.; Poeggeler, B.; Hardeland, R.; Katinas, G.; Schwartzkopff, O.; Otsuka, K.; Bakken, E. E.

    2008-01-01

    An impeccable time series, published in 1930, consisting of hourly observations on colony advance in a fluid culture of E. coli, was analyzed by a periodogram and power spectrum in 1961. While the original senior author had emphasized specifically periodicity with no estimate of period length, he welcomed further analyses. After consulting his technician, he knew of no environmental periodicity related to human schedules other than an hourly photography. A periodogram analysis in 1961 showed a 20.75-h period. It was emphasized that “… the circadian period disclosed is not of exactly 24-h length.” Confirmations notwithstanding, a committee ruled out microbial circadian rhythms based on grounds that could have led to a different conclusion, namely first, the inability of some committee members to see (presumably by eyeballing) the rhythms in their own data, and second, what hardly follows, that there were “too many analyses” in the published papers. Our point in dealing with microbes and humans is that analyses are indispensable for quantification and for discovering a biologically novel spectrum of cyclicities, matching physical ones. The scope of circadian organization estimated in 1961 has become broader, including about 7-day, about half-yearly, about-yearly and ex-yearly and decadal periodisms, among others. Microbial circadians have become a field of their own with eyeballing, yet time-microscopy can quantify characteristics with their uncertainties and can assess broad chronomes (time structures) with features beyond circadians. As yet only suggestive differences between eukaryotes and prokaryotes further broaden the perspective and may lead to life’s sites of origin and to new temporal aspects of life’ s development as a chronomic tree by eventual rhythm dating in ontogeny and phylogeny. PMID:16275493

  8. Platelet derived growth factor B gene expression in the Xenopus laevis developing central nervous system.

    PubMed

    Giannetti, Kety; Corsinovi, Debora; Rossino, Cristina; Appolloni, Irene; Malatesta, Paolo; Ori, Michela

    2016-01-01

    Platelet-derived growth factor B (PDGF-B) belongs to the mitogen and growth factor family and like the other members it has many roles in cell differentiation, proliferation and migration during development, adult life and in pathological conditions. Among them it has been observed that aberrant PDGF signalling is frequently linked to glioma development and progression, and Pdgf-b over-expression in mouse neural progenitors leads to the formation of gliomas. Despite this evidence, the mechanisms underlying PDGF-B driven tumorigenesis and its role during brain development are not fully understood. In order to contribute to clarifying possible new roles of pdgf-b signalling, we present here the embryonic gene expression pattern of pdgf-b, so far unknown in early vertebrate development. By using Xenopus laevis as a model system we performed qRT-PCR and whole mount in situ hybridization. Pdgf-b mRNA is expressed in discrete regions of the developing central nervous system, in the cranial nerve placodes and in the notochord. We also compared the gene expression of pdgf-b with that of its receptor pdgfr-α suggesting so far unsuspected roles for this signalling pathway during the development of specific embryonic structures.

  9. Mitochondrial gene replacement in human pluripotent stem cell-derived neural progenitors.

    PubMed

    Iyer, S; Xiao, E; Alsayegh, K; Eroshenko, N; Riggs, M J; Bennett, J P; Rao, R R

    2012-05-01

    Human pluripotent stem cell-derived neural progenitor (hNP) cells are an excellent resource for understanding early neural development and neurodegenerative disorders. Given that many neurodegenerative disorders can be correlated with defects in the mitochondrial genome, optimal utilization of hNP cells requires an ability to manipulate and monitor changes in the mitochondria. Here, we describe a novel approach that uses recombinant human mitochondrial transcription factor A (rhTFAM) protein to transfect and express a pathogenic mitochondrial genome (mtDNA) carrying the G11778A mutation associated with Leber's hereditary optic neuropathy (LHON) disease, into dideoxycytidine (ddC)-treated hNPs. Treatment with ddC reduced endogenous mtDNA and gene expression, without loss of hNP phenotypic markers. Entry of G11778A mtDNA complexed with the rhTFAM was observed in mitochondria of ddC-hNPs. Expression of the pathogenic RNA was confirmed by restriction enzyme analysis of the SfaN1-digested cDNA. On the basis of the expression of neuron-specific class III beta-tubulin, neuronal differentiation occurred. Our results show for the first time that pathogenic mtDNA can be introduced and expressed into hNPs without loss of phenotype or neuronal differentiation potential. This mitochondrial gene replacement technology allows for creation of in vitro stem cell-based models useful for understanding neuronal development and treatment of neurodegenerative disorders.

  10. Glial cell line-derived neurotrophic factor gene therapy ameliorates chronic hyperprolactinemia in senile rats.

    PubMed

    Morel, G R; Sosa, Y E; Bellini, M J; Carri, N G; Rodriguez, S S; Bohn, M C; Goya, R G

    2010-05-19

    Progressive dysfunction of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons during normal aging is associated in the female rat with chronic hyperprolactinemia. We assessed the effectiveness of glial cell line-derived neurotrophic factor (GDNF) gene therapy to restore TIDA neuron function in senile female rats and reverse their chronic hyperprolactinemia. Young (2.5 months) and senile (29 months) rats received a bilateral intrahypothalamic injection (10(10) pfu) of either an adenoviral vector expressing the gene for beta-galactosidase; (Y-betagal and S-betagal, respectively) or a vector expressing rat GDNF (Y-GDNF and S-GDNF, respectively). Transgenic GDNF levels in supernatants of GDNF adenovector-transduced N2a neuronal cell cultures were 25+/-4 ng/ml, as determined by bioassay. In the rats, serum prolactin (PRL) was measured at regular intervals. On day 17 animals were sacrificed and neuronal nuclear antigen (NeuN) and tyrosine hydroxylase (TH) immunoreactive cells counted in the arcuate-periventricular hypothalamic region. The S-GDNF but not the S-betagal rats, showed a significant reduction in body weight. The chronic hyperprolactinemia of the senile females was significantly ameliorated in the S-GDNF rats (P<0.05) but not in the S-betagal rats. Neither age nor GDNF induced significant changes in the number of NeuN and TH neurons. We conclude that transgenic GDNF ameliorates chronic hyperprolactinemia in aging female rats, probably by restoring TIDA neuron function.

  11. Gene Replacement for the Generation of Designed Novel Avermectin Derivatives with Enhanced Acaricidal and Nematicidal Activities

    PubMed Central

    Huang, Jun; Chen, An-Liang; Zhang, Hui; Yu, Zhen; Li, Mei-Hong; Li, Na; Lin, Jia-Tan; Bai, Hua

    2015-01-01

    Avermectin (AVM) and ivermectin (IVM) are potent pesticides and acaricides which have been widely used during the past 30 years. As insect resistance to AVM and IVM is greatly increasing, alternatives are urgently needed. Here, we report two novel AVM derivatives, tenvermectin A (TVM A) and TVM B, which are considered a potential new generation of agricultural and veterinary drugs. The molecules of the TVMs were designed based on structure and pharmacological property comparisons among AVM, IVM, and milbemycin (MBM). To produce TVMs, a genetically engineered strain, MHJ1011, was constructed from Streptomyces avermitilis G8-17, an AVM industrial strain. In MHJ1011, the native aveA1 gene was seamlessly replaced with milA1 from Streptomyces hygroscopicus. The total titer of the two TVMs produced by MHJ1011 reached 3,400 mg/liter. Insecticidal tests proved that TVM had enhanced activities against Tetranychus cinnabarinus and Bursaphelenchus xylophilus, as desired. This study provides a typical example of exploration for novel active compounds through a new method of polyketide synthase (PKS) reassembly for gene replacement. The results of the insecticidal tests may be of use in elucidating the structure-activity relationship of AVMs and MBMs. PMID:26025902

  12. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity

    PubMed Central

    Wang, Mantian; Glock, Caspar; Quedenau, Claudia; Wang, Xi; Hou, Jingyi; Liu, Hongyu; Sun, Wei; Sambandan, Sivakumar; Chen, Tao; Schuman, Erin M.; Chen, Wei

    2015-01-01

    Circular RNAs (circRNAs) have re-emerged as an interesting RNA species. Here, by deep RNA profiling in different mouse tissues, we observed that circRNAs are significantly enriched in brain.and a disproportionate fraction of them is derived from host genes that code for synaptic proteins. Moreover, based on separate profiling of the RNAs localized in neuronal cell bodies and neuropil, on average, circRNAs are more enriched in the neuropil than their host gene mRNA isoforms. Using high resolution in situ hybridization we, for the first time, visualized circRNA punctae in the dendrites of neurons. Consistent with the idea that circRNAs might regulate synaptic function, during development, many circRNAs change their abundance abruptly at a time corresponding to synaptogenesis. In addition, following a homeostatic downscaling of neuronal activity many circRNAs exhibit significant up or down-regulation. Together, our data indicate that brain circRNAs are positioned to respond to and regulate synaptic function. PMID:25714049

  13. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity.

    PubMed

    You, Xintian; Vlatkovic, Irena; Babic, Ana; Will, Tristan; Epstein, Irina; Tushev, Georgi; Akbalik, Güney; Wang, Mantian; Glock, Caspar; Quedenau, Claudia; Wang, Xi; Hou, Jingyi; Liu, Hongyu; Sun, Wei; Sambandan, Sivakumar; Chen, Tao; Schuman, Erin M; Chen, Wei

    2015-04-01

    Circular RNAs (circRNAs) have re-emerged as an interesting RNA species. Using deep RNA profiling in different mouse tissues, we observed that circRNAs were substantially enriched in brain and a disproportionate fraction of them were derived from host genes that encode synaptic proteins. Moreover, on the basis of separate profiling of the RNAs localized in neuronal cell bodies and neuropil, circRNAs were, on average, more enriched in the neuropil than their host gene mRNA isoforms. Using high-resolution in situ hybridization, we visualized circRNA punctae in the dendrites of neurons. Consistent with the idea that circRNAs might regulate synaptic function during development, many circRNAs changed their abundance abruptly at a time corresponding to synaptogenesis. In addition, following a homeostatic downscaling of neuronal activity many circRNAs exhibited substantial up- or downregulation. Together, our data indicate that brain circRNAs are positioned to respond to and regulate synaptic function.

  14. Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs)

    PubMed Central

    Mazza, Emilia Maria Cristina; Zoso, Alessia; Mandruzzato, Susanna; Bronte, Vincenzo; Serafini, Paolo; Inverardi, Luca; Bicciato, Silvio

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) have been shown to control self-reactive and anti-graft effector T-cells in autoimmunity and transplantation, but their therapeutic use is limited by their scarce availability in the peripheral blood of tumor-free donors. We isolated and characterized a novel population of myeloid suppressor cells, named fibrocytic MDSC (f-MDSC), which are differentiated from umbilical cord blood (UCB) precursors (Zoso et al., 2014). This MDSC subset promotes regulatory T-cell expansion and induces normoglycemia in a xenogeneic model of type 1 diabetes. Here we describe in details the experimental design and the bioinformatics analyses of the gene expression dataset used to investigate the molecular mechanisms at the base of MDSC tolerogenic and suppressive properties. We also provide an R code to easily access the data and perform the quality controls and basic analyses relevant to this dataset. Raw and pre-processed data are available at Gene Expression Omnibus under accession GSE52376. PMID:26484135

  15. The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells

    PubMed Central

    Fan, Jun; Sun, Zhongjie

    2017-01-01

    Klotho was originally discovered as an aging-suppressor gene. The purpose of this study was to investigate whether secreted Klotho (SKL) affects the proliferation and differentiation of adipose-derived stem cells (ADSCs). RT-PCR and Western blot analysis showed that short-form Klotho was expressed in mouse ADSCs. The Klotho gene mutation KL(−/−) significantly decreased proliferation of ADSCs and expression of pluripotent transcription factors (Nanog, Sox-2, and Oct-4) in mice. The adipogenic differentiation of ADSCs was also decreased in KL(−/−) mice. Incubation with Klotho-deficient medium decreased ADSC proliferation, pluripotent transcription factor levels, and adipogenic differentiation, which is similar to what was found in KL(−/−) mice. These results indicate that Klotho deficiency suppresses ADSC proliferation and differentiation. Interestingly, treatment with recombinant SKL protein rescued the Klotho deficiency-induced impairment in ADSC proliferation and adipogenic differentiation. SKL also regulated ADSCs’ differentiation to other cell lineages (osteoblasts, myofibroblasts), indicating that SKL maintains stemness of ADSCs. It is intriguing that overexpression of SKL significantly increased PPAR-γ expression and lipid formation in ADSCs following adipogenic induction, indicating enhanced adipogenic differentiation. Overexpression of SKL inhibited expression of TGFβ1 and its downstream signaling mediator Smad2/3. This study demonstrates, for the first time, that SKL is essential to the maintenance of normal proliferation and differentiation in ADSCs. Klotho regulates adipogenic differentiation in ADSCs, likely via inhibition of TGFβ1 and activation of PPAR-γ. PMID:26865060

  16. Gene Replacement for the Generation of Designed Novel Avermectin Derivatives with Enhanced Acaricidal and Nematicidal Activities.

    PubMed

    Huang, Jun; Chen, An-Liang; Zhang, Hui; Yu, Zhen; Li, Mei-Hong; Li, Na; Lin, Jia-Tan; Bai, Hua; Wang, Ji-Dong; Zheng, Yu-Guo

    2015-08-15

    Avermectin (AVM) and ivermectin (IVM) are potent pesticides and acaricides which have been widely used during the past 30 years. As insect resistance to AVM and IVM is greatly increasing, alternatives are urgently needed. Here, we report two novel AVM derivatives, tenvermectin A (TVM A) and TVM B, which are considered a potential new generation of agricultural and veterinary drugs. The molecules of the TVMs were designed based on structure and pharmacological property comparisons among AVM, IVM, and milbemycin (MBM). To produce TVMs, a genetically engineered strain, MHJ1011, was constructed from Streptomyces avermitilis G8-17, an AVM industrial strain. In MHJ1011, the native aveA1 gene was seamlessly replaced with milA1 from Streptomyces hygroscopicus. The total titer of the two TVMs produced by MHJ1011 reached 3,400 mg/liter. Insecticidal tests proved that TVM had enhanced activities against Tetranychus cinnabarinus and Bursaphelenchus xylophilus, as desired. This study provides a typical example of exploration for novel active compounds through a new method of polyketide synthase (PKS) reassembly for gene replacement. The results of the insecticidal tests may be of use in elucidating the structure-activity relationship of AVMs and MBMs.

  17. Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration

    PubMed Central

    Ge, Wei; Ma, Hua-Gang; Cheng, Shun-Feng; Sun, Yuan-Chao; Sun, Li-Lan; Sun, Xiao-Feng; Li, Lan; Dyce, Paul; Li, Julang; Shi, Qing-Hua; Shen, Wei

    2015-01-01

    Infertility has long been a difficult issue for many couples. The successful differentiation of germ cells and live progeny from pluripotent stem cells brings new hope to the couples suffering with infertility. Here we successfully isolated human fetus skin-derived stem cells (hfSDSCs) from fetus skin tissue and demonstrated that hfSDSCs can be differentiated into early human germ cell-like cells (hGCLCs). These cells express human germ cell markers DAZL and VASA. Moreover, these pluripotent stem cell-derived hGCLCs are free of exogenous gene integration. When hfSDSCs were differentiated in porcine follicle fluid (PFF) conditioned media, which has been shown to promote the differentiation of mouse and porcine SDSCs into oocyte-like cells (OLCs), we observed some vesicular structures formed from hfSDSCs. Moreover, when hfSDSCs were cultured with specific conditioned media, we observed punctate and elongated SCP3 staining foci, indicating the initiation of meiosis. Ploidy analysis and fluorescent in situ hybridization (FISH) analysis indicated that a small percentage of putative 1N populations formed from hfSDSCs when compared with positive controls. In conclusion, our data here, for the first time, demonstrated that hfSDSCs possess the differentiation potential into germ lines, and they may differentiate both male and female hGCLCs in vitro under appropriate conditions. PMID:26347377

  18. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro.

    PubMed

    Calkoen, F G J; Vervat, C; van Pel, M; de Haas, V; Vijfhuizen, L S; Eising, E; Kroes, W G M; 't Hoen, P A C; van den Heuvel-Eibrink, M M; Egeler, R M; van Tol, M J D; Ball, L M

    2015-03-01

    Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS. MSCs were expanded from the bone-marrow of 17 MDS patients (RCC: n=10 and advanced MDS: n=7) and pediatric controls (n=10). No differences were observed with respect to phenotype, differentiation capacity, immunomodulatory capacity or hematopoietic support. mRNA expression analysis by Deep-SAGE revealed increased IL-6 expression in RCC- and RAEB(t)-MDS. RCC-MDS MSC expressed increased levels of DKK3, a protein associated with decreased apoptosis. RAEB(t)-MDS revealed increased CRLF1 and decreased DAPK1 expressions. This pattern has been associated with transformation in hematopoietic malignancies. Genes reported to be differentially expressed in adult MDS-MSC did not differ between MSC of pediatric MDS and controls. An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets.

  19. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    PubMed

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  20. Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes.

    PubMed

    López-Marín, Luz M; Millán-Chiu, Blanca E; Castaño-González, Karen; Aceves, Carmen; Fernández, Francisco; Varela-Echavarría, Alfredo; Loske, Achim M

    2017-02-01

    Shock waves are known to permeabilize eukaryotic cell membranes, which may be a powerful tool for a variety of drug delivery applications. However, the mechanisms involved in shock wave-mediated membrane permeabilization are still poorly understood. In this study, the effects on both the permeability and the ultrastructural features of two human cell lineages were investigated after the application of underwater shock waves in vitro. Scanning Electron Microscopy of cells derived from a human embryo kidney (HEK)-293 and Michigan Cancer Foundation (MCF)-7 cells, an immortalized culture derived from human breast adenocarcinoma, showed a small amount of microvilli (as compared to control cells), the presence of hole-like structures, and a decrease in cell size after shock wave exposure. Interestingly, these effects were accompanied by the permeabilization of acid and macromolecular dyes and gene transfection. Trypan blue exclusion assays indicated that cell membranes were porated during shock wave treatment but resealed after a few seconds. Deformations of the cell membrane lasted for at least 5 min, allowing their observation in fixed cells. For each cell line, different shock wave parameters were needed to achieve cell membrane poration. This difference was correlated to successful gene transfection by shock waves. Our results demonstrate, for the first time, that shock waves induce transient micro- and submicrosized deformations at the cell membrane, leading to cell transfection and cell survival. They also indicate that ultrastructural analyses of cell surfaces may constitute a useful way to match the use of shock waves to different cells and settings.

  1. Disentangling the Many Layers of Eukaryotic Transcriptional Regulation

    PubMed Central

    Lelli, Katherine M.; Slattery, Matthew; Mann, Richard S.

    2015-01-01

    Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models. PMID:22934649

  2. Archaea and the prokaryote-to-eukaryote transition.

    PubMed Central

    Brown, J R; Doolittle, W F

    1997-01-01

    Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis. PMID:9409149

  3. Paleobiological Perspectives on Early Eukaryotic Evolution

    PubMed Central

    Knoll, Andrew H.

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600–1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ∼800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon. PMID:24384569

  4. Metabolic Constraints on the Eukaryotic Transition

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2009-04-01

    Mutualism, obligate mutualism, symbiosis, and the eukaryotic ‘fusion’ of Serial Endosymbiosis Theory represent progressively more rapid and less distorted real-time communication between biological structures instantiating information sources. Such progression in accurate information transmission requires, in turn, progressively greater channel capacity that, through the homology between information source uncertainty and free energy density, requires ever more energetic metabolism. The eukaryotic transition, according to this model, may have been entrained by an ecosystem resilience shift from anaerobic to aerobic metabolism.

  5. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga

    PubMed Central

    Qin, Jie; Lehr, Corinne R.; Yuan, Chungang; Le, X. Chris; McDermott, Timothy R.; Rosen, Barry P.

    2009-01-01

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a Topt of 60–70 °C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases. PMID:19276121

  6. Amino acids biosynthesis and nitrogen assimilation pathways: a great genomic deletion during eukaryotes evolution

    PubMed Central

    2011-01-01

    Background Besides being building blocks for proteins, amino acids are also key metabolic intermediates in living cells. Surprisingly a variety of organisms are incapable of synthesizing some of them, thus named Essential Amino Acids (EAAs). How certain ancestral organisms successfully competed for survival after losing key genes involved in amino acids anabolism remains an open question. Comparative genomics searches on current protein databases including sequences from both complete and incomplete genomes among diverse taxonomic groups help us to understand amino acids auxotrophy distribution. Results Here, we applied a methodology based on clustering of homologous genes to seed sequences from autotrophic organisms Saccharomyces cerevisiae (yeast) and Arabidopsis thaliana (plant). Thus we depict evidences of presence/absence of EAA biosynthetic and nitrogen assimilation enzymes at phyla level. Results show broad loss of the phenotype of EAAs biosynthesis in several groups of eukaryotes, followed by multiple secondary gene losses. A subsequent inability for nitrogen assimilation is observed in derived metazoans. Conclusions A Great Deletion model is proposed here as a broad phenomenon generating the phenotype of amino acids essentiality followed, in metazoans, by organic nitrogen dependency. This phenomenon is probably associated to a relaxed selective pressure conferred by heterotrophy and, taking advantage of available homologous clustering tools, a complete and updated picture of it is provided. PMID:22369087

  7. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  8. Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene.

    PubMed

    Liu, Qianxu; Cheng, Guangui; Wang, Zhiwei; Zhan, Shujie; Xiong, Binbin; Zhao, Xiaoming

    2015-03-01

    Bone marrow-derived mesenchymal stem cells can differentiate into a variety of adult cells. Brain-derived neurotrophic factor (BDNF) is briefly active during differentiation and induces mesenchymal stem cells to differentiate into nerve cells. In this study, we cloned human BDNF to generate a recombinant pcDNA3.1(-)-BDNF vector and transfected the vector into bone marrow-derived mesenchymal stem cells. We selected these cells with Geneticin-418 to obtain BDNF-BMSCs, which were induced with retinoic acid to obtain induced BDNF-BMSCs. The transfected cells displayed the typical morphology and surface antigen profile of fibroblasts and were observed to express clusters of differentiation 29, 44, and 90 (observed in matrix and stromal cells), but not clusters of differentiation 31, 34, and 45 (observed in red blood cells and endothelial cells), via flow cytometry. Enzyme-linked immunosorbent assays showed that transfected bone marrow-derived mesenchymal stem cells secreted more BDNF than non-transfected bone marrow-derived mesenchymal stem cells. Immunocytochemistry and real-time reverse transcription polymerase chain reaction analysis showed that non-induced BDNF-BMSCs maintained a higher proliferative capacity and expressed higher amounts of brain-derived neurotrophic factor, nestin, neuron-specific enolase, and glial fibrillary acid protein than non-transfected bone marrow-derived mesenchymal stem cells. An additional increase was observed in the induced BDNF-BMSCs compared to the non-induced BDNF-BMSCs. This expression profile is characteristic of neurocytes. Our data demonstrate that bone marrow-derived mesenchymal stem cells transfected with the BDNF gene can differentiate into nerve-like cells in vitro, which may enable the generation of sufficient quantities of nerve-like cells for treatment of neuronal diseases.

  9. Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development

    PubMed Central

    Holler, Kristen L.; Hendershot, Tyler J.; Troy, Sophia E.; Vincentz, Joshua W.; Firulli, Anthony B.; Howard, Marthe J.

    2010-01-01

    The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation. PMID:20144608

  10. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum.

    PubMed Central

    Gupta, R S; Aitken, K; Falah, M; Singh, B

    1994-01-01

    The genes for two different 70-kDa heat shock protein (HSP70) homologs have been cloned and sequenced from the protozoan Giardia lamblia. On the basis of their sequence features, one of these genes corresponds to the cytoplasmic form of HSP70. The second gene, on the basis of its characteristic N-terminal hydrophobic signal sequence and C-terminal endoplasmic reticulum (ER) retention sequence (Lys-Asp-Glu-Leu), is the equivalent of ER-resident GRP78 or the Bip family of proteins. Phylogenetic trees based on HSP70 sequences show that G. lamblia homologs show the deepest divergence among eukaryotic species. The identification of a GRP78 or Bip homolog in G. lamblia strongly suggests the existence of ER in this ancient eukaryote. Detailed phylogenetic analyses of HSP70 sequences by boot-strap neighbor-joining and maximum-parsimony methods show that the cytoplasmic and ER homologs form distinct subfamilies that evolved from a common eukaryotic ancestor by gene duplication that occurred very early in the evolution of eukaryotic cells. It is postulated that because of the essential "molecular chaperone" function of these proteins in translocation of other proteins across membranes, duplication of their genes accompanied the evolution of ER or nucleus in the eukaryotic cell ancestor. The presence in all eukaryotic cytoplasmic HSP70 homologs (including the cognate, heat-induced, and ER forms) of a number of autapomorphic sequence signatures that are not present in any prokaryotic or organellar homologs provides strong evidence regarding the monophyletic nature of eukaryotic lineage. Further, all eukaryotic HSP70 homologs share in common with the Gram-negative group of eubacteria a number of sequence features that are not present in any archaebacterium or Gram-positive bacterium, indicating their evolution from this group of organisms. Some implications of these findings regarding the evolution of eukaryotic cells and ER are discussed. Images PMID:8159675

  11. Chromosomal context dependence of a eukaryotic recombinational hot spot.

    PubMed Central

    Ponticelli, A S; Smith, G R

    1992-01-01

    The single base-pair mutation M26 in the ade6 gene of the fission yeast Schizosaccharomyces pombe creates a hot spot for meiotic homologous recombination. When DNA fragments containing M26 and up to 3.0 kilobases of surrounding DNA were moved to the ura4 gene or to a multicopy plasmid, M26 had no detectable hot spot activity. Our results indicate that nucleotide sequences at least 1 kilobase away from M26 are required for M26 hot spot activity and suggest that, as for transcriptional promoters, a second site or proper chromatin structure is required for activation of this eukaryotic recombinational hot spot. We discuss the implications of these results for studies of other meiotic recombinational hot spots and for gene targeting. PMID:1729693

  12. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5.

    PubMed

    Telford, M J

    2000-03-23

    The DNA-binding homeobox motif was first identified in several Drosophila homeotic genes but also in fushi tarazu, a gene found in the Hox cluster yet involved in segmentation, not anteroposterior patterning [1]. Homeotic transformations are not seen in insect ftz mutants, and insect ftz genes do not have Hox-like expression except within the nervous system [2] [3]. Insect ftz homeobox sequences link them to the Antp-class genes and Tribolium and Schistocerca orthologs have Antp-class YPWM motifs amino-terminal to the homeobox [2] [3]. Orthologs of ftz cloned from a centipede and an onychophoran [4] show that it predates the emergence of the arthropods, but the inability to pinpoint non-arthropodan orthologs suggested that ftz is the product of a Hox gene duplication in the arthropod ancestor [4] [5]. I have cloned ftz orthologs from a mite and a tardigrade, arthropod outgroups of the insects [6]. Mite ftz is expressed in a Hox-like pattern, confirming its ancestral role in anteroposterior patterning. Phylogenetic analyses indicate that arthropod ftz genes are orthologous to the Lox5 genes of lophotrochozoans (a group that includes molluscs) [7] and, possibly, with the Mab-5 genes of nematodes and Hox6 genes of deuterostomes and would therefore have been present in the triploblast ancestor.

  13. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    PubMed

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  14. Brain-Derived Neurotrophic Factor Gene Expression in Pediatric Bipolar Disorder: Effects of Treatment and Clinical Response

    ERIC Educational Resources Information Center

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.

    2008-01-01

    The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…

  15. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters

    PubMed Central

    Matsubayashi, Miri; Shimada, Yusuke; Li, Yu-You; Harada, Hideki

    2017-01-01

    Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR), 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2–8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester. PMID:28264042

  16. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    NASA Technical Reports Server (NTRS)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  17. Ceiling culture-derived proliferative adipocytes retain high adipogenic potential suitable for use as a vehicle for gene transduction therapy.

    PubMed

    Asada, Sakiyo; Kuroda, Masayuki; Aoyagi, Yasuyuki; Fukaya, Yoshitaka; Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki; Satoh, Kaneshige; Okamoto, Yoshitaka; Nakayama, Toshinori; Saito, Yasushi; Bujo, Hideaki

    2011-07-01

    Adipose tissue is expected to provide a source of proliferative cells for regenerative medicine and cell-transplantation therapies using gene transfer manipulation. We have recently identified ceiling culture-derived proliferative adipocytes (ccdPAs) from the mature adipocyte fraction as cells suitable as a therapeutic gene vehicle because of their stable proliferative capacity. In this study, we examined the capability of adipogenic differentiation of the ccdPAs compared with stromal vascular fraction (SVF)-derived progenitor cells (adipose-derived stem cells, ASCs) with regard to their multipotential ability to be converted to another lineage and therefore their potential to be used for regenerative medicine research. After in vitro passaging, the surface antigen profile and the basal levels of adipogenic marker genes of the ccdPAs were not obviously different from those of the ASCs. However, the ccdPAs showed increased lipid-droplet accumulation accompanied with higher adipogenic marker gene expression after stimulation of differentiation compared with the ASCs. The higher adipogenic potential of the ccdPAs than the ASCs from the SVF was maintained for 42 days in culture. Furthermore, the difference in the adipogenic response was enhanced after partial stimulation without indomethacin. These results indicate that the ccdPAs retain a high adipogenic potential even after in vitro passaging, thus suggesting the commitment of ccdPAs to stable mature adipocytes after autotransplantation, indicating that they may have potential for use in regenerative and gene-manipulated medicine.

  18. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  19. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-04

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  20. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes

    PubMed Central

    Richardson, Dale N; Simmons, Mark P; Reddy, Anireddy SN

    2006-01-01

    Background Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. Results We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. Conclusion The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the

  1. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.

    PubMed

    Oborník, Miroslav; Green, Beverley R

    2005-12-01

    Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.

  2. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration.

    PubMed

    Xu, C S; Chang, C F

    2008-01-01

    Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5-4 h after PH), G0/G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72-168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, gamma-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and

  3. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing. PMID:21935348

  4. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes.

    PubMed

    Csuros, Miklos; Rogozin, Igor B; Koonin, Eugene V

    2011-09-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6-7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing.

  5. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    PubMed Central

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  6. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    PubMed

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  7. Two peptides derived from trout IL-1beta have different stimulatory effects on immune gene expression after intraperitoneal administration.

    PubMed

    Hong, Suhee; Secombes, Chris J

    2009-07-01

    The aim of this study was to examine the biological activities of two IL-1beta derivatives on immune gene expression (i.e. IL-1beta, TNF-alpha, IL-8, MX, lysozyme) in fish using RT-PCR analysis, as a means to establish whether such peptides have value as immunostimulants in vivo. Two functional domains (P1 and P3) of the trout IL-1beta molecule were produced as synthetic peptides and tested for biological effects following intraperitoneal administration into rainbow trout (Oncorhynchus mykiss). P1 and P3 showed different regulatory effects on the examined genes. P1 did not stimulate proinflammatory gene expression but induced rapid expression of the antiviral gene MX. In contrast, P3 showed more widespread stimulatory effects, and increased expression of the proinflammatory genes IL-1beta and IL-8, as well as the antibacterial lysozyme gene. Such data confirm that it is possible to produce bioactive peptide derivatives of cytokine molecules, and in addition that it is possible to engineer the peptides for different stimulatory repertoires, that may have value in enhancing particular types of immune response to enhance disease resistance in fish.

  8. Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia

    PubMed Central

    Edgcomb, Virginia P; Bernhard, Joan M; Summons, Roger E; Orsi, William; Beaudoin, David; Visscher, Pieter T

    2014-01-01

    Microbialites are organosedimentary structures that are formed through the interaction of benthic microbial communities and sediments and include mineral precipitation. These lithifying microbial mat structures include stromatolites and thrombolites. Exuma Sound in the Bahamas, and Hamelin Pool in Shark Bay, Western Australia, are two locations where significant stands of modern microbialites exist. Although prokaryotic diversity in these structures is reasonably well documented, little is known about the eukaryotic component of these communities and their potential to influence sedimentary fabrics through grazing, binding and burrowing activities. Accordingly, comparisons of eukaryotic communities in modern stromatolitic and thrombolitic mats can potentially provide insight into the coexistence of both laminated and clotted mat structures in close proximity to one another. Here we examine this possibility by comparing eukaryotic diversity based on Sanger and high-throughput pyrosequencing of small subunit ribosomal RNA (18S rRNA) genes. Analyses were based on total RNA extracts as template to minimize input from inactive or deceased organisms. Results identified diverse eukaryotic communities particularly stramenopiles, Alveolata, Metazoa, Amoebozoa and Rhizaria within different mat types at both locations, as well as abundant and diverse signatures of eukaryotes with <80% sequence similarity to sequences in GenBank. This suggests the presence of significant novel eukaryotic diversity, particularly in hypersaline Hamelin Pool. There was evidence of vertical structuring of protist populations and foraminiferal diversity was highest in bioturbated/clotted thrombolite mats of Highborne Cay. PMID:23924782

  9. The Upper Temperature Limit for Eukaryotic Organisms

    PubMed Central

    Tansey, Michael R.; Brock, Thomas D.

    1972-01-01

    An upper temperature limit near 60° for eukaryotic organisms is documented by results of a systematic search for fungi able to grow at higher temperatures. Samples from hot springs, thermal soils, self-heating coal waste piles, and other natural and man-made heated habitats did not yield fungi when enrichments were done at 62°, whereas fungi able to grow at 55-60° can be readily isolated from such habitats. Earlier work had shown that eukaryotic algae are also absent from environments with temperatures above 55-60°. It is suggested that the failure of eukaryotes to evolve members able to grow at higher temperatures is due to their inability to form organellar membranes that are both thermostable and functional. PMID:4506763

  10. Osmosensing and osmoregulation in unicellular eukaryotes.

    PubMed

    Suescún-Bolívar, Luis Parmenio; Thomé, Patricia Elena

    2015-03-01

    Eukaryotic microorganisms possess mechanisms to detect osmotic variations in their surroundings, from specialized receptors and membrane transporters, to sophisticated systems such as two-component histidine kinases. Osmotic stimuli are transduced through conserved phosphorylation cascades that result in a rapid response to mitigate stress. This response allows for the maintenance of an optimal biochemical environment for cell functioning, as well as a suitable recovery in suboptimal environments that would otherwise endanger cell survival. The molecular basis of these responses has been largely studied in yeasts and bacteria. However, fewer studies have been published concerning the molecular basis of osmoregulation in other eukaryotic microorganisms such as protozoans and microalgae. Here, we review the main osmosensors reported in unicellular eukaryotic microorganisms (yeasts, microalgae and protozoa) and the pathways that maintain homeostasis in cells encountering hyperosmotic challenges.

  11. Eukaryotes first: how could that be?

    PubMed Central

    Mariscal, Carlos; Doolittle, W. Ford

    2015-01-01

    In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such ‘eukaryotes first’ (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier ‘progenotic’ period or RNA world. Bacteria and Archaea thus must have lost these complex features secondarily, through ‘streamlining’. If the canonical three-domain tree in which Archaea and Eukarya are sisters is accepted, EF entails that Bacteria and Archaea are convergently prokaryotic. We ask what this means and how it might be tested. PMID:26323754

  12. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages.

    PubMed

    Redrejo-Rodríguez, Modesto; Muñoz-Espín, Daniel; Holguera, Isabel; Mencía, Mario; Salas, Margarita

    2012-11-06

    A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.

  13. Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes.

    PubMed

    Soto, Gabriela; Fox, Ana Romina; Ayub, Nicolás Daniel

    2013-08-01

    Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.

  14. Identification of a Novel PNMA-MS1 Gene in Marsupials Suggests the LTR Retrotransposon-Derived PNMA Genes Evolved Differently in Marsupials and Eutherians

    PubMed Central

    Iwasaki, Sawa; Suzuki, Shunsuke; Pelekanos, Matthew; Clark, Helen; Ono, Ryuichi; Shaw, Geoff; Renfree, Marilyn B.; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2013-01-01

    Two major gene families derived from Ty3/Gypsy long terminal repeat (LTR) retrotransposons were recently identified in mammals. The sushi-ichi retrotransposon homologue (SIRH) family comprises 12 genes: 11 in eutherians including Peg10 and Peg11/Rtl1 that have essential roles in the eutherian placenta and 1 that is marsupial specific. Fifteen and 12 genes were reported in the second gene family, para-neoplastic antigen MA (PNMA), in humans and mice, respectively, although their biological functions and evolutionary history remain largely unknown. Here, we identified two novel candidate PNMA genes, PNMA-MS1 and -MS2 in marsupials. Like all eutherian-specific PNMA genes, they exhibit the highest homology to a Gypsy12_DR (DR, Danio rerio) Gag protein. PNMA-MS1 is conserved in both Australian and South American marsupial species, the tammar wallaby and grey short-tailed opossum. However, no PNMA-MS1 orthologue was found in eutherians, monotremes or non-mammalian vertebrates. PNMA-MS1 was expressed in the ovary, mammary gland and brain during development and growth in the tammar, suggesting that PNMA-MS1 may have acquired a marsupial-specific function. However, PNMA-MS2 seems to be a pseudogene. The absence of marsupial orthologues of eutherian PNMA genes suggests that the retrotransposition events of the Gypsy12_DR-related retrotransposons that gave rise to the PNMA family occurred after the divergence of marsupials and eutherians. PMID:23704700

  15. Identification of a novel PNMA-MS1 gene in marsupials suggests the LTR retrotransposon-derived PNMA genes evolved differently in marsupials and eutherians.

    PubMed

    Iwasaki, Sawa; Suzuki, Shunsuke; Pelekanos, Matthew; Clark, Helen; Ono, Ryuichi; Shaw, Geoff; Renfree, Marilyn B; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2013-10-01

    Two major gene families derived from Ty3/Gypsy long terminal repeat (LTR) retrotransposons were recently identified in mammals. The sushi-ichi retrotransposon homologue (SIRH) family comprises 12 genes: 11 in eutherians including Peg10 and Peg11/Rtl1 that have essential roles in the eutherian placenta and 1 that is marsupial specific. Fifteen and 12 genes were reported in the second gene family, para-neoplastic antigen MA (PNMA), in humans and mice, respectively, although their biological functions and evolutionary history remain largely unknown. Here, we identified two novel candidate PNMA genes, PNMA-MS1 and -MS2 in marsupials. Like all eutherian-specific PNMA genes, they exhibit the highest homology to a Gypsy12_DR (DR, Danio rerio) Gag protein. PNMA-MS1 is conserved in both Australian and South American marsupial species, the tammar wallaby and grey short-tailed opossum. However, no PNMA-MS1 orthologue was found in eutherians, monotremes or non-mammalian vertebrates. PNMA-MS1 was expressed in the ovary, mammary gland and brain during development and growth in the tammar, suggesting that PNMA-MS1 may have acquired a marsupial-specific function. However, PNMA-MS2 seems to be a pseudogene. The absence of marsupial orthologues of eutherian PNMA genes suggests that the retrotransposition events of the Gypsy12_DR-related retrotransposons that gave rise to the PNMA family occurred after the divergence of marsupials and eutherians.

  16. Pandoraviruses are highly derived phycodnaviruses

    PubMed Central

    2013-01-01

    The recently discovered Pandoraviruses are by far the largest viruses known, with their 2 megabase genomes exceeding in size the genomes of numerous bacteria and archaea. Pandoraviruses show a distant relationship with other nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes, lack some of the NCLDV core genes and in particular do not appear to be specifically related to the other, better characterized family of giant viruses, the Mimiviridae. Here we report phylogenetic analysis of 6 core NCLDV genes that confidently places Pandoraviruses within the family Phycodnaviridae, with an apparent specific affinity with Coccolithoviruses. We conclude that, despite their many unusual characteristics, Pandoraviruses are highly derived phycodnaviruses. These findings imply that giant viruses have independently evolved from smaller NCLDV on at least two occasions. This article was reviewed by Patrick Forterre and Lakshminarayan Iyer. For the full reviews, see the Reviewers’ reports section. PMID:24148757

  17. Corn expressing an Escherichia coli-derived phytase gene: comparative evaluation study in broiler chicks.

    PubMed

    Nyannor, E K D; Adeola, O

    2008-10-01

    The efficacy of corn expressing an Escherichia coli-derived gene (corn-based phytase; CBP) and an E. coli-derived microbial phytase (expressed in Pichia pastoris) sprayed onto a wheat carrier (Quantum) was comparatively evaluated in two 14-d broiler chicken studies. In experiment 1, a total of 288 seven-day-old male broiler chicks were grouped by weight into 8 blocks of 6 cages, with 6 birds per cage, and used to measure growth performance, bone mineralization, and nutrient utilization. In experiment 2, a total of 192 seven-day-old male broiler chicks were used, with 4 birds per cage. Six dietary treatment groups were randomly allotted to the cages within each of 8 blocks. The corn-soybean meal-based diets used in each study consisted of a positive control adequate in P and Ca; a negative control (NC) low in P and Ca (no added inorganic P); the NC supplemented with 3,630, 36,300, or 363,000 phytase units (FTU) of CBP/kg; and the NC + 3,630 FTU of Quantum/kg. Growth performance and bone mineralization criteria were reevaluated in the second broiler study. Data from the 2 experiments were combined because there was no diet x experiment interaction and analyzed as a randomized complete block design. Weight gain decreased (P < 0.05) with a reduction in dietary P and Ca in the NC diet. Weight gain, feed efficiency, and percentage of tibia ash of birds fed 3,630 FTU/kg of either CBP or Quantum phytase were not different. There was a quadratic response (P < 0.01) to CBP supplementation of the NC diets in weight gain of the broiler chicks. Feed intake increased quadratically (P < 0.01) with CBP supplementation of the NC diets, but CBP supplementation of the NC diets did not affect feed efficiency. Tibia ash of birds fed the positive control diet was greater (P < 0.01) than that of birds fed the NC diet. There was a quadratic response (P < 0.01) to CBP supplementation of the NC diets in tibia ash of the broiler chicks. Birds fed supplemental phytase had greater (P < 0

  18. Gene dispensability.

    PubMed

    Korona, Ryszard

    2011-08-01

    Genome-wide mutagenesis studies indicate that up to about 90% of genes in bacteria and 80% in eukaryotes can be inactivated individually leaving an organism viable, often seemingly unaffected. Several strategies are used to learn what these apparently dispensable genes contribute to fitness. Assays of growth under hundreds of physical and chemical stresses are among the most effective experimental approaches. Comparative studies of genomic DNA sequences continue to be valuable in discriminating between the core bacterial genome and the more variable niche-specific genes. The concept of the core genome appears currently unfeasible for eukaryotes but progress has been made in understanding why they contain numerous gene duplicates.

  19. Reproduction, symbiosis, and the eukaryotic cell

    PubMed Central

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  20. Reproduction, symbiosis, and the eukaryotic cell.

    PubMed

    Godfrey-Smith, Peter

    2015-08-18

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this "egalitarian" evolutionary transition is compared with those that apply in "fraternal" transitions, such as the evolution of multicellularity in animals.

  1. How many novel eukaryotic 'kingdoms'? Pitfalls and limitations of environmental DNA surveys

    PubMed Central

    Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-01-01

    Background Over the past few years, the use of molecular techniques to detect cultivation-independent, eukaryotic diversity has proven to be a powerful approach. Based on small-subunit ribosomal RNA (SSU rRNA) gene analyses, these studies have revealed the existence of an unexpected variety of new phylotypes. Some of them represent novel diversity in known eukaryotic groups, mainly stramenopiles and alveolates. Others do not seem to be related to any molecularly described lineage, and have been proposed to represent novel eukaryotic kingdoms. In order to review the evolutionary importance of this novel high-level eukaryotic diversity critically, and to test the potential technical and analytical pitfalls and limitations of eukaryotic environmental DNA surveys (EES), we analysed 484 environmental SSU rRNA gene sequences, including 81 new sequences from sediments of the small river, the Seymaz (Geneva, Switzerland). Results Based on a detailed screening of an exhaustive alignment of eukaryotic SSU rRNA gene sequences and the phylogenetic re-analysis of previously published environmental sequences using Bayesian methods, our results suggest that the number of novel higher-level taxa revealed by previously published EES was overestimated. Three main sources of errors are responsible for this situation: (1) the presence of undetected chimeric sequences; (2) the misplacement of several fast-evolving sequences; and (3) the incomplete sampling of described, but yet unsequenced eukaryotes. Additionally, EES give a biased view of the diversity present in a given biotope because of the difficult amplification of SSU rRNA genes in some taxonomic groups. Conclusions Environmental DNA surveys undoubtedly contribute to reveal many novel eukaryotic lineages, but there is no clear evidence for a spectacular increase of the diversity at the kingdom level. After re-analysis of previously published data, we found only five candidate lineages of possible novel high-level eukaryotic

  2. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    PubMed

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.

  3. Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism.

    PubMed

    Rybakova, Katja N; Bruggeman, Frank J; Tomaszewska, Aleksandra; Moné, Martijn J; Carlberg, Carsten; Westerhoff, Hans V

    2015-04-01

    Activation of eukaryotic transcription is an intricate process that relies on a multitude of regulatory proteins forming complexes on chromatin. Chromatin modifications appear to play a guiding role in protein-complex assembly on chromatin. Together, these processes give rise to stochastic, often bursting, transcriptional activity. Here we present a model of eukaryotic transcription that aims to integrate those mechanisms. We use stochastic and ordinary-differential-equation modeling frameworks to examine various possible mechanisms of gene regulation by multiple transcription factors. We find that the assembly of large transcription factor complexes on chromatin via equilibrium-binding mechanisms is highly inefficient and insensitive to concentration changes of single regulatory proteins. An alternative model that lacks these limitations is a cyclic ratchet mechanism. In this mechanism, small protein complexes assemble sequentially on the promoter. Chromatin modifications mark the completion of a protein complex assembly, and sensitize the local chromatin for the assembly of the next protein complex. In this manner, a strict order of protein complex assemblies is attained. Even though the individual assembly steps are highly stochastic in duration, a sequence of them gives rise to a remarkable precision of the transcription cycle duration. This mechanism explains how transcription activation cycles, lasting for tens of minutes, derive from regulatory proteins residing on chromatin for only tens of seconds. Transcriptional bursts are an inherent feature of such transcription activation cycles. Bursting transcription can cause individual cells to remain in synchrony transiently, offering an explanation of transcriptional cycling as observed in cell populations, both on promoter chromatin status and mRNA levels.

  4. Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes

    PubMed Central

    Gupta, Radhey S.

    1998-01-01

    The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes. PMID:9841678

  5. Microinjection of Cre recombinase protein into zygotes enables specific deletion of two eukaryotic selection cassettes and enhances the expression of a DsRed2 reporter gene in Ccr2/Ccr5 double-deficient mice.

    PubMed

    Luckow, Bruno; Hänggli, Amy; Maier, Holger; Chilla, Silvia; Loewe, Robert P; Dehmel, Stefan; Schlöndorff, Detlef; Loetscher, Pius; Zerwes, Hans-Günter; Müller, Matthias

    2009-08-01

    The chemokine receptors CCR2 and CCR5 represent potential novel therapeutic targets to treat important inflammatory and infectious diseases, including atherosclerosis and HIV infection. To study the functions of both receptors in vivo, we aimed to generate Ccr2/Ccr5 double-deficient mice. As these genes are separated by <20 kb, they were inactivated consecutively by two rounds of gene targeting in embryonic stem (ES) cells. Thereby neomycin and hygromycin selection cassettes flanked by four identical loxP recognition sequences for Cre recombinase were integrated into the ES cell genome together with EGFP and DsRed2 reporter genes. Both selection cassettes could be deleted in vitro by transiently transfecting ES cells with Cre expression vectors. However, after blastocyst microinjection these cells yielded only weak chimeras, and germline transmission was not achieved. Therefore, Ccr2/Ccr5 double-deficient mice were generated from ES cells still carrying both selection cassettes. Microinjection of zygotes with a recombinant fusion protein consisting of maltose-binding protein and Cre (MBP-Cre) allowed the selective deletion of both cassettes. All sequences in between and both reporter genes were left intact. Deletion of both selection cassettes resulted in enhanced DsRed2 reporter gene expression. Cre protein microinjection of zygotes represents a novel approach to perform complex recombination tasks.

  6. EuPathDB: the eukaryotic pathogen genomics database resource.

    PubMed

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y; Brestelli, John; Brunk, Brian P; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C; Lawrence, Cris; Li, Wei; Pinney, Deborah F; Pulman, Jane A; Roos, David S; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-04

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host-pathogen interactions.

  7. Mapping paths: new approaches to dissect eukaryotic signaling circuitry

    PubMed Central

    Mutlu, Nebibe; Kumar, Anuj

    2016-01-01

    Eukaryotic cells are precisely “wired” to coordinate changes in external and intracellular signals with corresponding adjustments in the output of complex and often interconnected signaling pathways. These pathways are critical in understanding cellular growth and function, and several experimental trends are emerging with applicability toward more fully describing the composition and topology of eukaryotic signaling networks. In particular, recent studies have implemented CRISPR/Cas-based screens in mouse and human cell lines for genes involved in various cell growth and disease phenotypes. Proteomic methods using mass spectrometry have enabled quantitative and dynamic profiling of protein interactions, revealing previously undiscovered complexes and allele-specific protein interactions. Methods for the single-cell study of protein localization and gene expression have been integrated with computational analyses to provide insight into cell signaling in yeast and metazoans. In this review, we present an overview of exemplary studies using the above approaches, relevant for the analysis of cell signaling and indeed, more broadly, for many modern biological applications. PMID:27540473

  8. Metabolite sensing in eukaryotic mRNA biology

    PubMed Central

    Clingman, Carina C

    2016-01-01

    All living creatures change their gene expression program in response to nutrient availability and metabolic demands. Nutrients and metabolites can directly control transcription and activate second-messenger systems. More recent studies reveal that metabolites also affect post-transcriptional regulatory mechanisms. Here, we review the increasing number of connections between metabolism and post-transcriptional regulation in eukaryotic organisms. First, we present evidence that riboswitches, a common mechanism of metabolite sensing in bacteria, also function in eukaryotes. Next, we review an example of a double stranded RNA modifying enzyme that directly interacts with a metabolite, suggesting a link between RNA editing and metabolic state. Finally, we discuss work that shows some metabolic enzymes bind directly to RNA to affect mRNA stability or translation efficiency. These examples were discovered through gene-specific genetic, biochemical, and structural studies. A directed systems level approach will be necessary to determine whether they are anomalies of evolution or pioneer discoveries in what may be a broadly connected network of metabolism and post-transcriptional regulation. PMID:23653333

  9. EuPathDB: the eukaryotic pathogen genomics database resource

    PubMed Central

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-01

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906

  10. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content

    PubMed Central

    Elliott, Tyler A.; Gregory, T. Ryan

    2015-01-01

    Some notable exceptions aside, eukaryotic genomes are distinguished from those of Bacteria and Archaea in a number of ways, including chromosome structure and number, repetitive DNA content, and the presence of introns in protein-coding regions. One of the most notable differences between eukaryotic and prokaryotic genomes is in size. Unlike their prokaryotic counterparts, eukaryotes exhibit enormous (more than 60 000-fold) variability in genome size which is not explained by differences in gene number. Genome size is known to correlate with cell size and division rate, and by extension with numerous organism-level traits such as metabolism, developmental rate or body size. Less well described are the relationships between genome size and other properties of the genome, such as gene content, transposable element content, base pair composition and related features. The rapid expansion of ‘complete’ genome sequencing projects has, for the first time, made it possible to examine these relationships across a wide range of eukaryotes in order to shed new light on the causes and correlates of genome size diversity. This study presents the results of phylogenetically informed comparisons of genome data for more than 500 species of eukaryotes. Several relationships are described between genome size and other genomic parameters, and some recommendations are presented for how these insights can be extended even more broadly in the future. PMID:26323762

  11. DKK1 eukaryotic expression plasmid and expression product identification.

    PubMed

    Bao, G Y; Lu, K Y; Cui, S F; Xu, L

    2015-06-11

    We constructed the human dickkopf 1 (DKK1) eukaryotic expression plasmid and expressed, purified, and identified its expression product. We extracted cancer cells from cervical cancer tissue, followed by extraction of mRNA. Reverse transcription-polymerase chain reaction was conducted to obtain DKK1 gene fragments. Using these fragments, we prepared the recombinant plasmid pCMV-HA2/DKK1. The recombinant plasmid was restriction enzyme-digested and sequenced, and using liposome vectors, was transiently transfected into Free-Style 293-F cells (serum-free medium). DKK1 protein was detected by western blotting. The amplification product showed the expected size. Restriction enzyme digestion and sequence analysis showed that the recombinant plasmid was PCMV-HA2/DKK1. The expression product was verified properly by western blotting using an anti-DKKI antibody. The successful cloning of the DKKI gene and expression of DKKI protein will be useful for studying the biological activity of tumorigenesis.

  12. Synthetic biology tools for bioprospecting of natural products in eukaryotes.

    PubMed

    Unkles, Shiela E; Valiante, Vito; Mattern, Derek J; Brakhage, Axel A

    2014-04-24

    Filamentous fungi have the capacity to produce a battery of natural products of often unknown function, synthesized by complex metabolic pathways. Unfortunately, most of these pathways appear silent, many in intractable organisms, and their products consequently unidentified. One basic challenge is the difficulty of expressing a biosynthesis pathway for a complex natural product in a heterologous eukaryotic host. Here, we provide a proof-of concept solution to this challenge and describe how the entire penicillin biosynthesis pathway can be expressed in a heterologous host. The method takes advantage of a combination of improved yeast in vivo cloning technology, generation of polycistronic mRNA for the gene cluster under study, and an amenable and easily manipulated fungal host, i.e., Aspergillus nidulans. We achieve expression from a single promoter of the pathway genes to yield a large polycistronic mRNA by using viral 2A peptide sequences to direct successful cotranslational cleavage of pathway enzymes.

  13. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA.

    PubMed

    Dominissini, Dan; Nachtergaele, Sigrid; Moshitch-Moshkovitz, Sharon; Peer, Eyal; Kol, Nitzan; Ben-Haim, Moshe Shay; Dai, Qing; Di Segni, Ayelet; Salmon-Divon, Mali; Clark, Wesley C; Zheng, Guanqun; Pan, Tao; Solomon, Oz; Eyal, Eran; Hershkovitz, Vera; Han, Dali; Doré, Louis C; Amariglio, Ninette; Rechavi, Gideon; He, Chuan

    2016-02-25

    Gene expression can be regulated post-transcriptionally through dynamic and reversible RNA modifications. A recent noteworthy example is N(6)-methyladenosine (m(6)A), which affects messenger RNA (mRNA) localization, stability, translation and splicing. Here we report on a new mRNA modification, N(1)-methyladenosine (m(1)A), that occurs on thousands of different gene transcripts in eukaryotic cells, from yeast to mammals, at an estimated average transcript stoichiometry of 20% in humans. Employing newly developed sequencing approaches, we show that m(1)A is enriched around the start codon upstream of the first splice site: it preferentially decorates more structured regions around canonical and alternative translation initiation sites, is dynamic in response to physiological conditions, and correlates positively with protein production. These unique features are highly conserved in mouse and human cells, strongly indicating a functional role for m(1)A in promoting translation of methylated mRNA.

  14. Insight into the evolutionary history of symbiotic genes of Robinia pseudoacacia rhizobia deriving from Poland and Japan.

    PubMed

    Mierzwa, Bozena; Łotocka, Barbara; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Gnat, Sebastian; Małek, Wanda

    2010-05-01

    The phylogeny of symbiotic genes of Robinia pseudoacacia (black locust) rhizobia derived from Poland and Japan was studied by comparative sequence analysis of nodA, nodC, nodH, and nifH loci. In phylogenetic trees, black locust symbionts formed a branch of their own suggesting that the spread and maintenance of symbiotic genes within Robinia pseudoacacia rhizobia occurred through vertical transmission. There was 99-100% sequence similarity for nodA genes of Robinia pseudoacacia nodulators, 97-98% for nodC, and 97-100% for nodH and nifH loci. A considerable sequence conservation of sym genes shows that the symbiotic apparatus of Robinia pseudoacacia rhizobia might have evolved under strong host plant constraints. In the nodA and nodC gene phylograms, Robinia pseudoacacia rhizobia grouped with Phaseolus sp. symbionts, although they were not closely related to our isolates based on 16S rRNA genes, and with Mesorhizobium amorphae. nifH gene phylogeny of our isolates followed the evolutionary history of 16S rDNA and Robinia pseudoacacia rhizobia grouped with Mesorhizobium genus species. Nodulation assays revealed that Robinia pseudoacacia rhizobia effectively nodulated their native host and also Amorpha fruticosa and Amorpha californica resulting in a significant enhancement of plant growth. The black locust root nodules are shown to be of indeterminate type.

  15. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    PubMed Central

    Straccia, Marco; Garcia-Diaz Barriga, Gerardo; Sanders, Phil; Bombau, Georgina; Carrere, Jordi; Mairal, Pedro Belio; Vinh, Ngoc-Nga; Yung, Sun; Kelly, Claire M; Svendsen, Clive N; Kemp, Paul J; Arjomand, Jamshid; Schoenfeld, Ryan C; Alberch, Jordi; Allen, Nicholas D; Rosser, Anne E; Canals, Josep M

    2015-01-01

    A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening. PMID:26417608

  16. Gene expression signatures in CD34+-progenitor-derived dendritic cells exposed to the chemical contact allergen nickel sulfate

    SciTech Connect

    Schoeters, Elke . E-mail: elke.schoeters@vito.be; Nuijten, Jean-Marie; Heuvel, Rosette L. van den; Nelissen, Inge; Witters, Hilda; Schoeters, Greet E.R.; Tendeloo, Vigor F.I. van; Berneman, Zwi N.; Verheyen, Geert R.

    2006-10-01

    The detection of the sensitizing potential of chemicals is of great importance to industry. A promising in vitro alternative to the currently applied animal assays for sensitization testing makes use of dendritic cells (DCs) that have the capability to process and present antigens to naive T cells and induce their proliferation. Here, we studied changes in gene expression profiles after exposing DCs to the contact allergen nickel sulfate. CD34+-progenitor-derived DCs, initiated from 3 different donors, were exposed to 60 {mu}M nickel sulfate, during 0.5, 1, 3, 6, 12 and 24 h. cDNA microarrays were used to assess the transcriptional activity of about 11,000 genes. Significant changes in the expression of 283 genes were observed; 178 genes were up-regulated and 93 down-regulated. These genes were involved in metabolism, cell structure, immune response, transcription, signal transduction, transport, and apoptosis. No functional information was found for 74 genes. Real-time RT-PCR was used to confirm the microarray results of 12 genes. In addition, 3 DC maturation markers not present on the microarrays (DEC205, DC LAMP and CCR7) were analyzed using real-time RT-PCR and found to be up-regulated at several time points. Our data indicate that a broad range of biological processes is influenced by nickel. Some processes are clearly linked to the immune response and DC maturation, others may indicate a toxic effect of nickel.

  17. Ancestral and derived attributes of the dlx gene repertoire, cluster structure and expression patterns in an African cichlid fish

    PubMed Central

    2011-01-01

    Background Cichlid fishes have undergone rapid, expansive evolutionary radiations that are manifested in the diversification of their trophic morphologies, tooth patterning and coloration. Understanding the molecular mechanisms that underlie the cichlids' unique patterns of evolution requires a thorough examination of genes that pattern the neural crest, from which these diverse phenotypes are derived. Among those genes, the homeobox-containing Dlx gene family is of particular interest since it is involved in the patterning of the brain, jaws and teeth. Results In this study, we characterized the dlx genes of an African cichlid fish, Astatotilapia burtoni, to provide a baseline to later allow cross-species comparison within Cichlidae. We identified seven dlx paralogs (dlx1a, -2a, -4a, -3b, -4b, -5a and -6a), whose orthologies were validated with molecular phylogenetic trees. The intergenic regions of three dlx gene clusters (dlx1a-2a, dlx3b-4b, and dlx5a-6a) were amplified with long PCR. Intensive cross-species comparison revealed a number of conserved non-coding elements (CNEs) that are shared with other percomorph fishes. This analysis highlighted additional lineage-specific gains/losses of CNEs in different teleost fish lineages and a novel CNE that had previously not been identified. Our gene expression analyses revealed overlapping but distinct expression of dlx orthologs in the developing brain and pharyngeal arches. Notably, four of the seven A. burtoni dlx genes, dlx2a, dlx3b, dlx4a and dlx5a, were expressed in the developing pharyngeal teeth. Conclusion This comparative study of the dlx genes of A. burtoni has deepened our knowledge of the diversity of the Dlx gene family, in terms of gene repertoire, expression patterns and non-coding elements. We have identified possible cichlid lineage-specific changes, including losses of a subset of dlx expression domains in the pharyngeal teeth, which will be the targets of future functional studies. PMID:21205289

  18. Eukaryotic-Like Virus Budding in Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick

    2016-01-01

    ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130

  19. Construction of bacteria-eukaryote synthetic mutualism.

    PubMed

    Kubo, Isao; Hosoda, Kazufumi; Suzuki, Shingo; Yamamoto, Kayo; Kihara, Kumiko; Mori, Kotaro; Yomo, Tetsuya

    2013-08-01

    Mutualism is ubiquitous in nature but is known to be intrinsically vulnerable with regard to both population dynamics and evolution. Synthetic ecology has indicated that it is feasible for organisms to establish novel mutualism merely through encountering each other by showing that it is feasible to construct synthetic mutualism between organisms. However, bacteria-eukaryote mutualism, which is ecologically important, has not yet been constructed. In this study, we synthetically constructed mutualism between a bacterium and a eukaryote by using two model organisms. We mixed a bacterium, Escherichia coli (a genetically engineered glutamine auxotroph), and an amoeba, Dictyostelium discoideum, in 14 sets of conditions in which each species could not grow in monoculture but potentially could grow in coculture. Under a single condition in which the bacterium and amoeba mutually compensated for the lack of required nutrients (lipoic acid and glutamine, respectively), both species grew continuously through several subcultures, essentially establishing mutualism. Our results shed light on the establishment of bacteria-eukaryote mutualism and indicate that a bacterium and eukaryote pair in nature also has a non-negligible possibility of establishing novel mutualism if the organisms are potentially mutualistic.

  20. The origin of the eukaryotic cell

    NASA Technical Reports Server (NTRS)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  1. Eukaryotic acquisition of a bacterial operon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast Saccharomyces cerevisiae is one of the champions of basic biomedical research due to its compact eukaryotic genome and ease of experimental manipulation. Despite these immense strengths, its impact on understanding the genetic basis of natural phenotypic variation has been limited by strai...

  2. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis.

    PubMed

    Busser, Brian W; Lin, Yongshun; Yang, Yanqin; Zhu, Jun; Chen, Guokai; Michelson, Alan M

    2015-01-01

    Here we used predictive gene expression signatures within a multi-species framework to identify the genes that underlie cardiac cell fate decisions in differentiating embryonic stem cells. We show that the overlapping orthologous mouse and human genes are the most accurate candidate cardiogenic genes as these genes identified the most conserved developmental pathways that characterize the cardiac lineage. An RNAi-based screen of the candidate genes in Drosophila uncovered numerous novel cardiogenic genes. shRNA knockdown combined with transcriptome profiling of the newly-identified transcription factors zinc finger protein 503 and zinc finger E-box binding homeobox 2 and the well-known cardiac regulatory factor NK2 homeobox 5 revealed that zinc finger E-box binding homeobox 2 activates terminal differentiation genes required for cardiomyocyte structure and function whereas zinc finger protein 503 and NK2 homeobox 5 are required for specification of the cardiac lineage. We further demonstrated that an essential role of NK2 homeobox 5 and zinc finger protein 503 in specification of the cardiac lineage is the repression of gene expression programs characteristic of alternative cell fates. Collectively, these results show that orthologous gene expression signatures can be used to identify conserved cardiogenic pathways.

  3. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  4. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    PubMed Central

    Goldar, Arach; Marsolier-Kergoat, Marie-Claude; Hyrien, Olivier

    2009-01-01

    Although replication proteins are conserved among eukaryotes, the sequence requirements for replication initiation differ between species. In all species, however, replication origins fire asynchronously throughout S phase. The temporal program of origin firing is reproducible in cell populations but largely probabilistic at the single-cell level. The mechanisms and the significance of this program are unclear. Replication timing has been correlated with gene activity in metazoans but not in yeast. One potential role for a temporal regulation of origin firing is to minimize fluctuations in replication end time and avoid persistence of unreplicated DNA in mitosis. Here, we have extracted the population-averaged temporal profiles of replication initiation rates for S. cerevisiae, S. pombe, D. melanogaster, X. laevis and H. sapiens from genome-wide replication timing and DNA combing data. All the profiles have a strikingly similar shape, increasing during the first half of S phase then decreasing before its end. A previously proposed minimal model of stochastic initiation modulated by accumulation of a recyclable, limiting replication-fork factor and fork-promoted initiation of new origins, quantitatively described the observed profiles without requiring new implementations. The selective pressure for timely completion of genome replication and optimal usage of replication proteins that must be imported into the cell nucleus can explain the generic shape of the profiles. We have identified a universal behavior of eukaryotic replication initiation that transcends the mechanisms of origin specification. The population-averaged efficiency of replication origin usage changes during S phase in a strikingly similar manner in a highly diverse set of eukaryotes. The quantitative model previously proposed for origin activation in X. laevis can be generalized to explain this evolutionary conservation. PMID:19521533

  5. From the Cover: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features

    NASA Astrophysics Data System (ADS)

    Derelle, Evelyne; Ferraz, Conchita; Rombauts, Stephane; Rouzé, Pierre; Worden, Alexandra Z.; Robbens, Steven; Partensky, Frédéric; Degroeve, Sven; Echeynié, Sophie; Cooke, Richard; Saeys, Yvan; Wuyts, Jan; Jabbari, Kamel; Bowler, Chris; Panaud, Olivier; Piégu, Benoît; Ball, Steven G.; Ral, Jean-Philippe; Bouget, François-Yves; Piganeau, Gwenael; de Baets, Bernard; Picard, André; Delseny, Michel; Demaille, Jacques; van de Peer, Yves; Moreau, Hervé

    2006-08-01

    The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococcus tauri (Prasinophyceae). This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. genome heterogeneity | genome sequence | green alga | Prasinophyceae | gene prediction

  6. Gene Expression Profiles of Human Adipose Tissue-Derived Mesenchymal Stem Cells Are Modified by Cell Culture Density

    PubMed Central

    Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm2. After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs. PMID:24400072

  7. Fat depot-specific gene signature and ECM remodeling of Sca1(high) adipose-derived stem cells.

    PubMed

    Tokunaga, Masakuni; Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Buchner, David A; Chun, Tae-Hwa

    2014-06-01

    Stem cell antigen-1 (Sca1 or Ly6A/E) is a cell surface marker that is widely expressed in mesenchymal stem cells, including adipose-derived stem cells (ASCs). We hypothesized that the fat depot-specific gene signature of Sca1(high) ASCs may play the major role in defining adipose tissue function and extracellular matrix (ECM) remodeling in a depot-specific manner. Herein we aimed to characterize the unique gene signature and ECM remodeling of Sca1(high) ASCs isolated from subcutaneous (inguinal) and visceral (epididymal) adipose tissues. Sca1(high) ASCs are found in the adventitia and perivascular areas of adipose tissues. Sca1(high) ASCs purified with magnetic-activated cell sorting (MACS) demonstrate dendrite or round shape with the higher expression of cytokines and chemokines (e.g., Il6, Cxcl1) and the lower expression of a glucose transporter (Glut1). Subcutaneous and visceral fat-derived Sca1(high) ASCs particularly differ in the gene expressions of adhesion and ECM molecules. While the expression of the major membrane-type collagenase (MMP14) is comparable between the groups, the expressions of secreted collagenases (MMP8 and MMP13) are higher in visceral Sca1(high) ASCs than in subcutaneous ASCs. Consistently, slow but focal MMP-dependent collagenolysis was observed with subcutaneous adipose tissue-derived vascular stromal cells, whereas rapid and bulk collagenolysis was observed with visceral adipose tissue-derived cells in MMP-dependent and -independent manners. These results suggest that the fat depot-specific gene signatures of ASCs may contribute to the distinct patterns of ECM remodeling and adipose function in different fat depots.

  8. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton.

    PubMed

    Creuzet, Sophie; Couly, Gérard; Vincent, Christine; Le Douarin, Nicole M

    2002-09-01

    Diencephalic, mesencephalic and metencephalic neural crest cells are skeletogenic and derive from neural folds that do not express Hox genes. In order to examine the influence of Hox gene expression on skull morphogenesis, expression of Hoxa2, Hoxa3 and Hoxb4 in conjunction with that of the green fluorescent protein has been selectively targeted to the Hox-negative neural folds of the avian embryo prior to the onset of crest cell emigration. Hoxa2 expression precludes the development of the entire facial skeleton. Transgenic Hoxa2 embryos such as those from which the Hox-negative domain of the cephalic neural crest has been removed have no upper or lower jaws and no frontonasal structures. Embryos subjected to the forced expression of Hoxa3 and Hoxb4 show severe defects in the facial skeleton but not a complete absence of facial cartilage. Hoxa3 prevents the formation of the skeleton derived from the first branchial arch, but allows the development (albeit reduced) of the nasal septum. Hoxb4, by contrast, hampers the formation of the nasal bud-derived skeleton, while allowing that of a proximal (but not distal) segment of the lower jaw. The combined effect of Hoxa3 and Hoxb4 prevents the formation of facial skeletal structures, comparable with Hoxa2. None of these genes impairs the formation of neural derivatives of the crest. These results suggest that over the course of evolution, the absence of Hox gene expression in the anterior part of the chordate embryo was crucial in the vertebrate phylum for the development of a face, jaws and brain case, and, hence, also for that of the forebrain.

  9. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  10. Structure, organization, and transcription units of the human {alpha}-platelet-derived growth factor receptor gene, PDGFRA

    SciTech Connect

    Kawagishi, Jun; Yamamoto, Tokuo; Kumabe, Toshihiro; Yoshimoto, Takashi

    1995-11-20

    Isolation and characterization of genomic clones encoding human {alpha}-platelet derived growth factor receptor (HGAM-approved symbol PDGFRA) revealed that the gene spans approximately 65 kb and contains 23 exons. The 5{prime}-untranslated region of the mRNA is encoded by exon 1, and a large intron of 23 kb separates exon 2 encoding the translation initiator codon AUG and the signal sequence. The locations of exon/intron boundaries in the extracellular immunoglobulin-like domains, the transmembrane domain, the two cytoplasmic tyrosine kinase domains, and the kinase insertion domain are very similar to those in c-kit and macrophage colony stimulating factor-1 receptor genes. The transcription start site was mapped to a position 393 bp upstream of the AUG translation initiator codon by Si mapping and primer extension analysis. The 5{prime}-flanking region of the gene lacks a typical TATA box but contains a typical CCAAT box and GATA motifs. This region also contains potential sites for AP-1, AP-2, Oct-1, Oct-2, and Sp1. The 5{prime}-flanking region of the gene was fused to the luciferase reporter gene, and transcription units of the gene were determined. 49 refs., 6 figs., 1 tab.