Science.gov

Sample records for eukaryotic translation initiation

  1. Eukaryotic translation initiation factors and cancer.

    PubMed

    Ali, Muhammad Umar; Ur Rahman, Muhammad Saif; Jia, Zhenyu; Jiang, Cao

    2017-06-01

    Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.

  2. The scanning mechanism of eukaryotic translation initiation.

    PubMed

    Hinnebusch, Alan G

    2014-01-01

    In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.

  3. Structure-function insights into prokaryotic and eukaryotic translation initiation.

    PubMed

    Myasnikov, Alexander G; Simonetti, Angelita; Marzi, Stefano; Klaholz, Bruno P

    2009-06-01

    Translation initiation is the rate-limiting and most complexly regulated step of protein synthesis in prokaryotes and eukaryotes. In the last few years, cryo-electron microscopy has provided several novel insights into the universal process of translation initiation. Structures of prokaryotic 30S and 70S ribosomal initiation complexes with initiator transfer RNA (tRNA), messenger RNA (mRNA), and initiation factors have recently revealed the mechanism of initiator tRNA recruitment to the assembling ribosomal machinery, involving molecular rearrangements of the ribosome and associated factors. First three-dimensional pictures of the particularly complex eukaryotic translation initiation machinery have been obtained, revealing how initiation factors tune the ribosome for recruiting the mRNA. A comparison of the available prokaryotic and eukaryotic structures shows that--besides significant differences--some key ribosomal features are universally conserved.

  4. Eukaryotic aspects of translation initiation brought into focus.

    PubMed

    Aylett, Christopher H S; Ban, Nenad

    2017-03-19

    In all organisms, mRNA-directed protein synthesis is catalysed by ribosomes. Although the basic aspects of translation are preserved in all kingdoms of life, important differences are found in the process of translation initiation, which is rate-limiting and the most important step for translation regulation. While great strides had been taken towards a complete structural understanding of the initiation of translation in eubacteria, our understanding of the eukaryotic process, which includes numerous eukaryotic-specific initiation factors, was until recently limited owing to a lack of structural information. In this review, we discuss recent results in the field that provide an increasingly complete molecular description of the eukaryotic initiation process. The structural snapshots obtained using a range of methods now provide insights into the architecture of the initiation complex, start-codon recognition by the initiator tRNA and the process of subunit joining. Future advances will require both higher-resolution insights into previously characterized complexes and mapping of initiation factors that control translation on an additional level by interacting only peripherally or transiently with ribosomal subunits.This article is part of the themed issue 'Perspectives on the ribosome'. © 2017 The Author(s).

  5. [Role of eukaryotic translation initiation factor 4G in tumor].

    PubMed

    Zhang, Si; Huang, Nan; Pan, Xia; Zang, Jing-Lei; Guan, Xin-Xin; Zhang, Jian-Hua; Liu, Liu-Cheng; Lei, Xiao-Yong

    2016-04-25

    Eukaryotic translation initiation factor 4G (eIF4G) is a scaffold component of eukaryotic translation initiation factor 4F (eIF4F) complex, which takes principal part in the initiating of protein synthesis. Both two subtypes (eIF4G1 and eIF4G2) of eIF4G were found to be closely related with various tumors. The eIF4G1 expression is significantly up-regulated in breast cancer, cervical cancer, nasopharyngeal carcinoma, lung squamous cell carcinoma, prostatic carcinoma and other malignant tumors, compared with those in adjacent tissues; and the eIF4G2 is obviously over-expressed in diffuse large B cell lymphoma and acute myeloid leukemia, but low-expressed in bladder transitional cell carcinoma. This paper reviews the progress in the study of the role of eIF4G in tumor genesis, development, diagnosis and prognosis.

  6. New Universal Rules of Eukaryotic Translation Initiation Fidelity

    PubMed Central

    Zur, Hadas; Tuller, Tamir

    2013-01-01

    The accepted model of eukaryotic translation initiation begins with the scanning of the transcript by the pre-initiation complex from the 5′end until an ATG codon with a specific nucleotide (nt) context surrounding it is recognized (Kozak rule). According to this model, ATG codons upstream to the beginning of the ORF should affect translation. We perform for the first time, a genome-wide statistical analysis, uncovering a new, more comprehensive and quantitative, set of initiation rules for improving the cost of translation and its efficiency. Analyzing dozens of eukaryotic genomes, we find that in all frames there is a universal trend of selection for low numbers of ATG codons; specifically, 16–27 codons upstream, but also 5–11 codons downstream of the START ATG, include less ATG codons than expected. We further suggest that there is selection for anti optimal ATG contexts in the vicinity of the START ATG. Thus, the efficiency and fidelity of translation initiation is encoded in the 5′UTR as required by the scanning model, but also at the beginning of the ORF. The observed nt patterns suggest that in all the analyzed organisms the pre-initiation complex often misses the START ATG of the ORF, and may start translation from an alternative initiation start-site. Thus, to prevent the translation of undesired proteins, there is selection for nucleotide sequences with low affinity to the pre-initiation complex near the beginning of the ORF. With the new suggested rules we were able to obtain a twice higher correlation with ribosomal density and protein levels in comparison to the Kozak rule alone (e.g. for protein levels r = 0.7 vs. r = 0.31; p<10−12). PMID:23874179

  7. Principles of start codon recognition in eukaryotic translation initiation

    PubMed Central

    Lind, Christoffer; Åqvist, Johan

    2016-01-01

    Selection of the correct start codon during initiation of translation on the ribosome is a key event in protein synthesis. In eukaryotic initiation, several factors have to function in concert to ensure that the initiator tRNA finds the cognate AUG start codon during mRNA scanning. The two initiation factors eIF1 and eIF1A are known to provide important functions for the initiation process and codon selection. Here, we have used molecular dynamics free energy calculations to evaluate the energetics of initiator tRNA binding to different near-cognate codons on the yeast 40S ribosomal subunit, in the presence and absence of these two initiation factors. The results show that eIF1 and eIF1A together cause a relatively uniform and high discrimination against near-cognate codons. This works such that eIF1 boosts the discrimination against a first position near-cognate G-U mismatch, and also against a second position A-A base pair, while eIF1A mainly acts on third codon position. The computer simulations further reveal the structural basis of the increased discriminatory effect caused by binding of eIF1 and eIF1A to the 40S ribosomal subunit. PMID:27280974

  8. Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1)

    PubMed Central

    Ivanov, Ivaylo P.; Loughran, Gary; Sachs, Matthew S.; Atkins, John F.

    2010-01-01

    The central feature of standard eukaryotic translation initiation is small ribosome subunit loading at the 5′ cap followed by its 5′ to 3′ scanning for a start codon. The preferred start is an AUG codon in an optimal context. Elaborate cellular machinery exists to ensure the fidelity of start codon selection. Eukaryotic initiation factor 1 (eIF1) plays a central role in this process. Here we show that the translation of eIF1 homologs in eukaryotes from diverse taxa involves initiation from an AUG codon in a poor context. Using human eIF1 as a model, we show that this poor context is necessary for an autoregulatory negative feedback loop in which a high level of eIF1 inhibits its own translation, establishing that variability in the stringency of start codon selection is used for gene regulation in eukaryotes. We show that the stringency of start codon selection (preferential utilization of optimal start sites) is increased to a surprising degree by overexpressing eIF1. The capacity for the cellular level of eIF1 to impact initiation through the variable stringency of initiation codon selection likely has significant consequences for the proteome in eukaryotes. PMID:20921384

  9. Computational modeling and analysis of insulin induced eukaryotic translation initiation.

    PubMed

    Lequieu, Joshua; Chakrabarti, Anirikh; Nayak, Satyaprakash; Varner, Jeffrey D

    2011-11-01

    Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow.

  10. [Similar features in mechanisms of translation initiation of mRNAs in eukaryotic and prokaryotic systems].

    PubMed

    Andreev, D E; Terenin, I M; Dmitriev, S E; Shatskiĭ, I N

    2006-01-01

    Using as examples non-canonical features of translation initiation for some bacterial and mammalian mRNAs with unusual 5'- untranslated regions (5'-UTR) or lacking these regions (leaderless mRNAs), the authors of this review discuss similarities in mechanisms of translation initiation on prokaryotic and eukaryotic ribosomes.

  11. Four translation initiation pathways employed by the leaderless mRNA in eukaryotes

    PubMed Central

    Akulich, Kseniya A.; Andreev, Dmitry E.; Terenin, Ilya M.; Smirnova, Victoria V.; Anisimova, Aleksandra S.; Makeeva, Desislava S.; Arkhipova, Valentina I.; Stolboushkina, Elena A.; Garber, Maria B.; Prokofjeva, Maria M.; Spirin, Pavel V.; Prassolov, Vladimir S.; Shatsky, Ivan N.; Dmitriev, Sergey E.

    2016-01-01

    mRNAs lacking 5′ untranslated regions (leaderless mRNAs) are molecular relics of an ancient translation initiation pathway. Nevertheless, they still represent a significant portion of transcriptome in some taxons, including a number of eukaryotic species. In bacteria and archaea, the leaderless mRNAs can bind non-dissociated 70 S ribosomes and initiate translation without protein initiation factors involved. Here we use the Fleeting mRNA Transfection technique (FLERT) to show that translation of a leaderless reporter mRNA is resistant to conditions when eIF2 and eIF4F, two key eukaryotic translation initiation factors, are inactivated in mammalian cells. We report an unconventional translation initiation pathway utilized by the leaderless mRNA in vitro, in addition to the previously described 80S-, eIF2-, or eIF2D-mediated modes. This mechanism is a bacterial-like eIF5B/IF2-assisted initiation that has only been reported for hepatitis C virus-like internal ribosome entry sites (IRESs). Therefore, the leaderless mRNA is able to take any of four different translation initiation pathways in eukaryotes. PMID:27892500

  12. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Woese, C. R.

    1998-01-01

    As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.

  13. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Woese, C. R.

    1998-01-01

    As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.

  14. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families.

    PubMed

    Kyrpides, N C; Woese, C R

    1998-03-31

    As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.

  15. Initiation of Translation in Bacteria by a Structured Eukaryotic IRES RNA

    PubMed Central

    Colussi, Timothy M.; Costantino, David A.; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A.; Jaafar, Zane A.; Plank, Terra-Dawn M.; Noller, Harry F.; Kieft, Jeffrey S.

    2015-01-01

    The central dogma of gene expression (DNA→RNA→protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive1,2. However, the core structures and conformational dynamics of ribosomes that are responsible for the steps of translation following initiation are ancient and conserved across the domains of life3,4. We asked whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here, we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by tRNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence as an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. PMID:25652826

  16. Translation elongation can control translation initiation on eukaryotic mRNAs

    PubMed Central

    Chu, Dominique; Kazana, Eleanna; Bellanger, Noémie; Singh, Tarun; Tuite, Mick F; von der Haar, Tobias

    2014-01-01

    Synonymous codons encode the same amino acid, but differ in other biophysical properties. The evolutionary selection of codons whose properties are optimal for a cell generates the phenomenon of codon bias. Although recent studies have shown strong effects of codon usage changes on protein expression levels and cellular physiology, no translational control mechanism is known that links codon usage to protein expression levels. Here, we demonstrate a novel translational control mechanism that responds to the speed of ribosome movement immediately after the start codon. High initiation rates are only possible if start codons are liberated sufficiently fast, thus accounting for the observation that fast codons are overrepresented in highly expressed proteins. In contrast, slow codons lead to slow liberation of the start codon by initiating ribosomes, thereby interfering with efficient translation initiation. Codon usage thus evolved as a means to optimise translation on individual mRNAs, as well as global optimisation of ribosome availability. PMID:24357599

  17. Dynamic regulation of the translation initiation helicase complex by mitogenic signal transduction to eukaryotic translation initiation factor 4G.

    PubMed

    Dobrikov, Mikhail I; Dobrikova, Elena Y; Gromeier, Matthias

    2013-03-01

    Eukaryotic translation initiation factor 4F (eIF4F), comprising the cap-binding protein eIF4E, the helicase eIF4A, and the central scaffold eIF4G, is a convergence node for a complex signaling network that controls protein synthesis. Together with eIF3 and eIF4A/4B, eIF4G recruits ribosomal subunits to mRNAs and facilitates 5' untranslated region unwinding. Mammalian eIF4G contains three HEAT domains and unstructured regions involved in protein-protein interactions. Despite detailed eIF4G structure data, the mechanisms controlling initiation scaffold formation remain obscure. We found a new, highly regulated eIF4B/-3 binding site within the HEAT-1/-2 interdomain linker, harboring two phosphorylation sites that we identified as substrates for Erk1/2 and casein kinase 2. Phorbol ester-induced sequential phosphorylation of both sites detached HEAT-2 from the complex with eIF4A/-4B/-3 and stimulated the association of HEAT-3 with the mitogen-activated protein kinase signal integrating kinase Mnk1. Our results provide a mechanistic link between intracellular signal transduction and dynamic initiation complex formation coordinated by flexible eIF4G structure.

  18. Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication.

    PubMed

    Zhou, Xinying; Xu, Lei; Wang, Yijin; Wang, Wenshi; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2015-12-01

    Hepatitis E virus (HEV) infection, one of the foremost causes of acute hepatitis, is becoming a health problem of increasing magnitude. As other viruses, HEV exploits elements from host cell biochemistry, but we understand little as to which components of the human hepatocellular machinery are perverted for HEV multiplication. It is, however, known that the eukaryotic translation initiation factors 4F (eIF4F) complex, the key regulator of the mRNA-ribosome recruitment phase of translation initiation, serves as an important component for the translation and replication of many viruses. Here we aim to investigate the role of three subunits of the eIF4F complex: eukaryotic translation initiation factor 4A (eIF4A), eukaryotic translation initiation factor 4G (eIF4G) and eukaryotic translation initiation factor 4E (eIF4E) in HEV replication. We found that efficient replication of HEV requires eIF4A, eIF4G and eIF4E. Consistently, the negative regulatory factors of this complex: programmed cell death 4 (PDCD4) and eIF4E-binding protein 1 (4E-BP1) exert anti-HEV activities, which further illustrates the requirement for eIF4A and eIF4E in supporting HEV replication. Notably, phosphorylation of eIF4E induced by MNK1/2 activation is not involved in HEV replication. Although ribavirin and interferon-α (IFN-α), the most often-used off-label drugs for treating hepatitis E, interact with this complex, their antiviral activities are independent of eIF4E. In contrast, eIF4E silencing provokes enhanced anti-HEV activity of these compounds. Thus, HEV replication requires eIF4F complex and targeting essential elements of this complex provides important clues for the development of novel antiviral therapy against HEV. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network.

    PubMed

    Bellé, Robert; Prigent, Sylvain; Siegel, Anne; Cormier, Patrick

    2010-03-01

    The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.

  20. Eukaryotic Initiation Factor 2 Phosphorylation and Translational Control in Metabolism12

    PubMed Central

    Baird, Thomas D.; Wek, Ronald C.

    2012-01-01

    Regulation of mRNA translation is a rapid and effective means to couple changes in the cellular environment with global rates of protein synthesis. In response to stresses, such as nutrient deprivation and accumulation of misfolded proteins in the endoplasmic reticulum, phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α~P) reduces general translation initiation while facilitating the preferential translation of select transcripts, such as that encoding activating transcription factor 4 (ATF4), a transcriptional activator of genes subject to the integrated stress response (ISR). In this review, we highlight the translational control processes regulated by nutritional stress, with an emphasis on the events triggered by eIF2α~P, and describe the family of eukaryotic initiation factor 2 kinases and the mechanisms by which each sense different stresses. We then address 3 questions. First, what are the mechanisms by which eIF2α~P confers preferential translation on select mRNA and what are the consequences of the gene expression induced by the ISR? Second, what are the molecular processes by which certain stresses can differentially activate eIF2α~P and ATF4 expression? The third question we address is what are the modes of cross-regulation between the ISR and other stress response pathways, such as the unfolded protein response and mammalian target of rapamycin, and how do these regulatory schemes provide for gene expression programs that are tailored for specific stresses? This review highlights recent advances in each of these areas of research, emphasizing how eIF2α~P and the ISR can affect metabolic health and disease. PMID:22585904

  1. ‘Ribozoomin’ – Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs)

    PubMed Central

    Valášek, Leoš Shivaya

    2012-01-01

    Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation. PMID:22708493

  2. Association of eukaryotic translation initiation factor eIF2B with fully solubilized CXCR4.

    PubMed

    Palmesino, Elena; Apuzzo, Tiziana; Thelen, Sylvia; Mueller, Bernd; Langen, Hanno; Thelen, Marcus

    2016-06-01

    Chemokine receptors are key regulators of leukocyte trafficking but also have an important role in development, tumor growth, and metastasis. Among the chemokine receptors, CXCR4 is the only one that leads to perinatal death when genetically ablated in mice, indicating a more-widespread function in development. To identify pathways that are activated downstream of CXCR4, a solubilization protocol was elaborated, which allows for the isolation of the endogenous receptor from human cells in its near-native conformation. Solubilized CXCR4 is recognized by the conformation-sensitive monoclonal antibody 12G5 and retains the ability to bind CXCL12 in solution, which was abolished in the presence of receptor antagonists. Mass spectrometry of CXCR4 immunoprecipitates revealed a specific interaction with the pentameric eukaryotic translation initiation factor 2B. The observation that the addition of CXCL12 leads to the dissociation of eukaryotic translation initiation factor 2B from CXCR4 suggests that stimulation of the receptor may trigger the local protein synthesis required for efficient cell movement. © Society for Leukocyte Biology.

  3. Eukaryotic Initiation Factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation

    SciTech Connect

    Guo, Jianjun; Jin, Zhaoqing; Yang, Xiaohan; Li, Jian-Feng; Chen, Jay

    2011-01-01

    We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.

  4. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression

    PubMed Central

    Homma, Miwako Kato; Wada, Ikuo; Suzuki, Toshiyuki; Yamaki, Junko; Krebs, Edwin G.; Homma, Yoshimi

    2005-01-01

    Casein kinase 2 (CK2) is a ubiquitous eukaryotic Ser/Thr protein kinase that plays an important role in cell cycle progression. Although its function in this process remains unclear, it is known to be required for the G1 and G2/M phase transitions in yeast. Here, we show that CK2 activity changes notably during cell cycle progression and is increased within 3 h of serum stimulation of quiescent cells. During the time period in which it exhibits high enzymatic activity, CK2 associates with and phosphorylates a key molecule for translation initiation, eukaryotic translation initiation factor (eIF) 5. Using MS, we show that Ser-389 and -390 of eIF5 are major sites of phosphorylation by CK2. This is confirmed using eIF5 mutants that lack CK2 sites; the phosphorylation levels of mutant eIF5 proteins are significantly reduced, relative to WT eIF5, both in vitro and in vivo. Expression of these mutants reveals that they have a dominant-negative effect on phosphorylation of endogenous eIF5, and that they perturb synchronous progression of cells through S to M phase, resulting in a significant reduction in growth rate. Furthermore, the formation of mature eIF5/eIF2/eIF3 complex is reduced in these cells, and, in fact, restricted diffusional motion of WT eIF5 was almost abolished in a GFP-tagged eIF5 mutant lacking CK2 phosphorylation sites, as measured by fluorescence correlation spectroscopy. These results suggest that CK2 may be involved in the regulation of cell cycle progression by associating with and phosphorylating a key molecule for translation initiation. PMID:16227438

  5. Isolation and mapping of the human eukaryotic translation initiation factor 5 to chromosome 14

    SciTech Connect

    Romano, D.M.; Wasco, W.; Murell, J.

    1994-09-01

    Eukaryotic translation initiation factor 5 (eIF-5) is essential for the initiation of protein synthesis. eIF-5 catalyzes the hydrolysis of GTP on the 40S ribosomal initiation complex. Subsequent to GTP hydrolysis and the release of eIF-2-GDP, the 60S ribosomal subunit is joined to the 40S subunit to form an 80S initiation complex which can engage in peptide transfer. In an effort to isolate the major early-onset familial Alzheimer`s disease (FAD) gene on chromosome 14, we have isolated expressed sequences from this autosome in the form of exons `trapped` from chromosome 14-specific cosmids (library provided by L. Deaven, Los Alamos, NM). One cosmid yielded multiple exons displaying strong DNA and amino acid homology (>90%) with the rat eIF-5 gene. These exons were used to isolate full-length cDNAs from a human brain library. The eIF-5 message is approximately 3.6 kB in size and is ubiquitously expressed. The predicted amino acid sequence reveals multiple phosphorylation sites which may be involved in regulation of activity of eIF-5 and regions with homology to the GTPase superfamily, consistent with eIF-5`s role in GTP hydrolysis. Further studies are underway to determine whether the eIF-5 gene resides within the FAD minimal candidate region on chromosome 14q24.3.

  6. Eukaryotic initiation factor 2B epsilon induces cap-dependent translation and skeletal muscle hypertrophy

    PubMed Central

    Mayhew, David L; Hornberger, Troy A; Lincoln, Hannah C; Bamman, Marcas M

    2011-01-01

    Abstract The purpose of this study was to identify signalling components known to control mRNA translation initiation in skeletal muscle that are responsive to mechanical load and may be partly responsible for myofibre hypertrophy. To accomplish this, we first utilized a human cluster model in which skeletal muscle samples from subjects with widely divergent hypertrophic responses to resistance training were used for the identification of signalling proteins associated with the degree myofibre hypertrophy. We found that of 11 translational signalling molecules examined, the response of p(T421/S424)-p70S6K phosphorylation and total eukaryotic initiation factor 2Bɛ (eIF2Bɛ) protein abundance after a single bout of unaccustomed resistance exercise was associated with myofibre hypertrophy following 16 weeks of training. Follow up studies revealed that overexpression of eIF2Bɛ alone was sufficient to induce an 87% increase in cap-dependent translation in L6 myoblasts in vitro and 21% hypertrophy of myofibres in mouse skeletal muscle in vivo (P < 0.05). However, genetically altering p70S6K activity had no impact on eIF2Bɛ protein abundance in mouse skeletal muscle in vivo or multiple cell lines in vitro (P > 0.05), suggesting that the two phenomena were not directly related. These are the first data that mechanistically link eIF2Bɛ abundance to skeletal myofibre hypertrophy, and indicate that eIF2Bɛ abundance may at least partially underlie the widely divergent hypertrophic phenotypes in human skeletal muscle exposed to mechanical stimuli. PMID:21486778

  7. Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex

    PubMed Central

    Hussain, Tanweer; Llácer, Jose L.; Fernández, Israel S.; Munoz, Antonio; Martin-Marcos, Pilar; Savva, Christos G.; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2014-01-01

    Summary During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2α, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon. PMID:25417110

  8. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    SciTech Connect

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan; Li, Qiuping; Yang, Zhiyuan; Wu, Guoqiang; Sun, Shuhui; Gu, Jianxin; Wei, Yuanyan; Jiang, Jianhai

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  9. Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex

    PubMed Central

    Llácer, Jose L.; Hussain, Tanweer; Marler, Laura; Aitken, Colin Echeverría; Thakur, Anil; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2015-01-01

    Summary Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5′ end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2β as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition. PMID:26212456

  10. Posttranslational hypusination of the eukaryotic translation initiation factor-5A regulates Fusarium graminearum virulence

    PubMed Central

    Martinez-Rocha, Ana Lilia; Woriedh, Mayada; Chemnitz, Jan; Willingmann, Peter; Kröger, Cathrin; Hadeler, Birgit; Hauber, Joachim; Schäfer, Wilhelm

    2016-01-01

    Activation of eukaryotic translation initiation factor eIF5A requires a posttranslational modification, forming the unique amino acid hypusine. This activation is mediated by two enzymes, deoxyhypusine synthase, DHS, and deoxyhypusine hydroxylase, DOHH. The impact of this enzymatic complex on the life cycle of a fungal pathogen is unknown. Plant pathogenic ascomycetes possess a single copy of the eIF5A activated by hypusination. We evaluated the importance of imbalances in eIF5A hypusination in Fusarium graminearum, a devastating fungal pathogen of cereals. Overexpression of DHS leads to increased virulence in wheat, elevated production of the mycotoxin deoxynivalenol, more infection structures, faster wheat tissue invasion in plants and increases vegetatively produced conidia. In contrast, overexpression of DOHH completely prevents infection structure formation, pathogenicity in wheat and maize, leads to overproduction of ROS, reduced DON production and increased sexual reproduction. Simultaneous overexpression of both genes restores wild type-like phenotypes. Analysis of eIF5A posttranslational modification displayed strongly increased hypusinated eIF5A in DOHH overexpression mutant in comparison to wild type, and the DHS overexpression mutants. These are the first results pointing to different functions of differently modified eIF5A. PMID:27098988

  11. The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond

    SciTech Connect

    Monzingo,A.; Dhaliwal, S.; Dutt-Chaudhuri, A.; Lyon, A.; Sadow, J.; Hoffman, D.; Robertus, J.; Browning, K.

    2007-01-01

    Eukaryotic translation initiation factor-4E (eIF4E) recognizes and binds the m{sup 7} guanosine nucleotide at the 5' end of eukaryotic messenger RNAs; this protein-RNA interaction is an essential step in the initiation of protein synthesis. The structure of eIF4E from wheat (Triticum aestivum) was investigated using a combination of x-ray crystallography and nuclear magnetic resonance (NMR) methods. The overall fold of the crystallized protein was similar to eIF4E from other species, with eight {beta}-strands, three {alpha}-helices, and three extended loops. Surprisingly, the wild-type protein did not crystallize with m{sup 7}GTP in its binding site, despite the ligand being present in solution; conformational changes in the cap-binding loops created a large cavity at the usual cap-binding site. The eIF4E crystallized in a dimeric form with one of the cap-binding loops of one monomer inserted into the cavity of the other. The protein also contained an intramolecular disulfide bridge between two cysteines (Cys) that are conserved only in plants. A Cys-to-serine mutant of wheat eIF4E, which lacked the ability to form the disulfide, crystallized with m{sup 7}GDP in its binding pocket, with a structure similar to that of the eIF4E-cap complex of other species. NMR spectroscopy was used to show that the Cys that form the disulfide in the crystal are reduced in solution but can be induced to form the disulfide under oxidizing conditions. The observation that the disulfide-forming Cys are conserved in plants raises the possibility that their oxidation state may have a role in regulating protein function. NMR provided evidence that in oxidized eIF4E, the loop that is open in the ligand-free crystal dimer is relatively flexible in solution. An NMR-based binding assay showed that the reduced wheat eIF4E, the oxidized form with the disulfide, and the Cys-to-serine mutant protein each bind m{sup 7}GTP in a similar and labile manner, with dissociation rates in the range of 20

  12. Universally increased mRNA stability downstream of the translation initiation site in eukaryotes and prokaryotes.

    PubMed

    Mao, Yuanhui; Wang, Wangtian; Cheng, Nan; Li, Qian; Tao, Shiheng

    2013-04-01

    Local secondary structures in coding sequences have important functions across various translational processes. To date, however, the local structures and their functions in the early stage of translation elongation remain poorly understood. Here, we surveyed the structural stability in the first 180 nucleotides of the coding sequence of 27 species using computational method. We found that the structural stability in the 30-80 nucleotide interval was significantly higher than that in other regions in eukaryotes and most prokaryotes. No significant correlation between local translation efficiency and structural stability was observed, suggesting that this structural region has undergone selection pressure directly to maintain high stability. Furthermore, ribosome was blocked by this region, providing an opportunity for co-translational regulation. Remarkably, in eukaryotes, we found that mRNAs with higher structural stability in the 30-80 nucleotide interval tended to encode the secreted proteins. Overall, our results revealed a previously unappreciated correlation between structural stability and protein localization. Copyright © 2012. Published by Elsevier B.V.

  13. Role of eukaryotic translation initiation factor 3a in bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Xian-Wei; Wu, Yue-Han; Li, Xiao-Hui; Li, Dai; Du, Jie; Hu, Chang-Ping; Li, Yuan-Jian

    2015-02-15

    Eukaryotic translation initiation factor 3a (eIF3a) is a multifunctional protein and plays an important role in regulation of cellular function including proliferation and differentiation. In the present study, we tested the function of eIF3a in pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5mg/kg) in rats. Primary pulmonary fibroblasts were cultured for proliferation investigation by BrdU incorporation method and flow cytometry. The expression/level of eIF3a, TGF-β1, ERK1/2 and α-SMA were analyzed by ELISA, real-time PCR or western blot. Results showed that the expression of eIF3a was obviously increased in lungs of pulmonary fibrosis rats accompanied by up-regulation of α-SMA and collagens. In cultured pulmonary fibroblasts, application of exogenous TGF-β1 induced cell proliferation and differentiation concomitantly with up-regulation of eIF3a expression and ERK1/2 phosphorylation. The effects of TGF-β1-induced proliferation of fibroblasts and up-regulation of α-SMA were abolished by eIF3a siRNA. TGF-β1-induced eIF3a expression was reversed in the presence of PD98059, an inhibitor of ERK1/2. These findings suggest that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis by regulating pulmonary fibroblasts׳ function, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway.

  14. Eukaryotic translation initiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma cells.

    PubMed

    Cao, Ting-Ting; Lin, Shu-Hai; Fu, Li; Tang, Zhi; Che, Chi-Ming; Zhang, Li-Yi; Ming, Xiao-Yan; Liu, Teng-Fei; Tang, Xu-Ming; Tan, Bin-Bin; Xiang, Di; Li, Feng; Chan, On-Yee; Xie, Dan; Cai, Zongwei; Guan, Xin-Yuan

    2017-01-01

    Reprogramming of intracellular metabolism is common in liver cancer cells. Understanding the mechanisms of cell metabolic reprogramming may present a new basis for liver cancer treatment. In our previous study, we reported that a novel oncogene eukaryotic translation initiation factor 5A2 (EIF5A2) promotes tumorigenesis under hypoxic condition. Here, we aim to investigate the role of EIF5A2 in cell metabolic reprogramming during hepatocellular carcinoma (HCC) development. In this study, we reported that the messenger RNA (mRNA) level of EIF5A2 was upregulated in 59 of 105 (56.2%) HCC clinical samples (P = 0.015), and EIF5A2 overexpression was significantly associated with shorter survival time of patients with HCC (P = 0.021). Ectopic expression of EIF5A2 in HCC cell lines significantly promoted cell growth and accelerated glucose utilization and lipogenesis rates. The high rates of glucose uptake and lactate secretion conferred by EIF5A2 revealed an abnormal activity of aerobic glycolysis in HCC cells. Several key enzymes involved in glycolysis including glucose transporter type 1 and 2, hexokinase 2, phosphofructokinase liver type, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase M2 isoform, phosphoglycerate mutase 1 and lactate dehydrogenase A were upregulated by overexpression of EIF5A2. Moreover, EIF5A2 showed positive correlations with FASN and ACSS2, two key enzymes involved in the fatty acid de novo biosynthetic pathway, at both protein and mRNA levels in HCC. These results indicated that EIF5A2 may regulate fatty acid de novo biosynthesis by increasing the uptake of acetate. In conclusion, our findings demonstrate that EIF5A2 has a critical role in HCC cell metabolic reprogramming and may serve as a prominent novel therapeutic target for liver cancer treatment. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Impact of a Eukaryotic Translation Initiation Factor 3a Polymorphism on Susceptibility to Gastric Cancer.

    PubMed

    Liu, Kuijie; Lei, Zhendong; Yao, Hongliang; Lei, Sanlin; Zhao, Hua

    To investigate single nucleotide polymorphisms in the eukaryotic translation initiation factor 3a (eIF3a) gene and the risk for gastric cancer within the Chinese population. A total of 322 patients with gastric cancer were selected as the patient group and 340 non-gastric cancer patients were selected as the control group using the case-control method. Polymerase chain reaction-sequence-specific primer technology was leveraged to genotype the rs77382849 single nucleotide polymorphism in the eIF3a gene. The demographic characteristics of the study population and other exposures to risk factors were collected. Unconditional logistic regression analysis was performed to determine the association between the risk factors and gastric cancer. A higher frequency of the eIF3a rs77382849 GG homozygote genotype was observed in the gastric cancer patients compared with the controls (63.98 vs. 54.41%, p < 0.05). After adjustment of exposure risks, such as age, gender, smoking, and drinking, the rs77382849 single nucleotide polymorphism was still associated with susceptibility to gastric cancer. When the eIF3a rs77382849 GG homozygote genotype was used as the reference group, the GA genotype (GA vs. GG: OR = 0.545, 95% CI: 0.386-0.769, p = 0.001) and AA genotype (AA vs. GG: OR = 0.245, 95% CI: 0.072-0.836, p = 0.025) were both correlated with a significantly decreased risk for gastric cancer development. An association between eIF3a rs77382849 polymorphism and susceptibility to gastric cancer was observed in these Chinese patients. © 2016 S. Karger AG, Basel.

  16. Innate immune evasion mediated by the Ambystoma tigrinum virus eukaryotic translation initiation factor 2alpha homologue.

    PubMed

    Jancovich, James K; Jacobs, Bertram L

    2011-05-01

    Ranaviruses (family Iridoviridae, genus Ranavirus) are large, double-stranded DNA (dsDNA) viruses whose replication is restricted to ectothermic vertebrates. Many highly pathogenic members of the genus Ranavirus encode a homologue of the eukaryotic translation initiation factor 2α (eIF2α). Data in a heterologous vaccinia virus system suggest that the Ambystoma tigrinum virus (ATV) eIF2α homologue (vIF2αH; open reading frame [ORF] 57R) is involved in evading the host innate immune response by degrading the interferon-inducible, dsRNA-activated protein kinase, PKR. To test this hypothesis directly, the ATV vIF2αH gene (ORF 57R) was deleted by homologous recombination, and a selectable marker was inserted in its place. The ATVΔ57R virus has a small plaque phenotype and is 8-fold more sensitive to interferon than wild-type ATV (wtATV). Infection of fish cells with the ATVΔ57R virus leads to eIF2α phosphorylation, in contrast to infection with wtATV, which actively inhibits eIF2α phosphorylation. The inability of ATVΔ57R to prevent phosphorylation of eIF2α correlates with degradation of fish PKZ, an interferon-inducible enzyme that is closely related to mammalian PKR. In addition, salamanders infected with ATVΔ57R displayed an increased time to death compared to that of wtATV-infected salamanders. Therefore, in a biologically relevant system, the ATV vIF2αH gene acts as an innate immune evasion factor, thereby enhancing virus pathogenesis.

  17. Phosphorylation of eukaryotic translation initiation factor 4E and eukaryotic translation initiation factor 4E-binding protein (4EBP) and their upstream signaling components undergo diurnal oscillation in the mouse hippocampus: implications for memory persistence.

    PubMed

    Saraf, Amit; Luo, Jie; Morris, David R; Storm, Daniel R

    2014-07-18

    Translation of mRNA plays a critical role in consolidation of long-term memory. Here, we report that markers of initiation of mRNA translation are activated during training for contextual memory and that they undergo diurnal oscillation in the mouse hippocampus with maximal activity observed during the daytime (zeitgeber time 4-8 h). Phosphorylation and activation of eukaryotic translation initiation factor 4E (eIF4E), eIF4E-binding protein 1 (4EBP1), ribosomal protein S6, and eIF4F cap-complex formation, all of which are markers for translation initiation, were higher in the hippocampus during the daytime compared with night. The circadian oscillation in markers of mRNA translation was lost in memory-deficient transgenic mice lacking calmodulin-stimulated adenylyl cyclases. Moreover, disruption of the circadian rhythm blocked diurnal oscillations in eIF4E, 4EBP1, rpS6, Akt, and ERK1/2 phosphorylation and impaired memory consolidation. Furthermore, repeated inhibition of translation in the hippocampus 48 h after contextual training with the protein synthesis inhibitor anisomycin impaired memory persistence. We conclude that repeated activation of markers of translation initiation in hippocampus during the circadian cycle might be critical for memory persistence. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The N-terminal region of eukaryotic translation initiation factor 5A signals to nuclear localization of the protein

    SciTech Connect

    Parreiras-e-Silva, Lucas T.; Gomes, Marcelo D.; Oliveira, Eduardo B.; Costa-Neto, Claudio M.

    2007-10-19

    The eukaryotic translation initiation factor 5A (eIF5A) is a ubiquitous protein of eukaryotic and archaeal organisms which undergoes hypusination, a unique post-translational modification. We have generated a polyclonal antibody against murine eIF5A, which in immunocytochemical assays in B16-F10 cells revealed that the endogenous protein is preferentially localized to the nuclear region. We therefore analyzed possible structural features present in eIF5A proteins that could be responsible for that characteristic. Multiple sequence alignment analysis of eIF5A proteins from different eukaryotic and archaeal organisms showed that the former sequences have an extended N-terminal segment. We have then performed in silico prediction analyses and constructed different truncated forms of murine eIF5A to verify any possible role that the N-terminal extension might have in determining the subcellular localization of the eIF5A in eukaryotic organisms. Our results indicate that the N-terminal extension of the eukaryotic eIF5A contributes in signaling this protein to nuclear localization, despite of bearing no structural similarity with classical nuclear localization signals.

  19. Modelling and analysis of an ensemble of eukaryotic translation initiation models.

    PubMed

    Nayak, S; Siddiqui, J K; Varner, J D

    2011-01-01

    Programmed protein synthesis plays an important role in the cell cycle. Deregulated translation has been observed in several cancers. In this study, the authors constructed an ensemble of mathematical models describing the integration of growth factor signals with translation initiation. Using these models, the authors estimated critical structural features of the translation architecture. Sensitivity and robustness analysis with and without growth factors suggested that a balance between competing regulatory programmes governed translation initiation. Proteins such as Akt and mTor promoted initiation by integrating growth factor signals with the assembly of the 80S initiation complex. However, negative regulators such as PTEN and 4EBP1 restrained initiation in the absence of stimulation. Other proteins such as eIF4E were also found to be structurally critical as deletion of amplification of these components resulted in a network incapable of nominal operation. These findings could help understand the molecular basis of translation deregulation observed in cancer and perhaps lead to new anti-cancer therapeutic strategies. [Includes supplementary material].

  20. A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent

    PubMed Central

    Terenin, Ilya M.; Andreev, Dmitri E.; Dmitriev, Sergey E.; Shatsky, Ivan N.

    2013-01-01

    Resistance of translation of some eukaryotic messenger RNAs (mRNAs) to inactivation of the cap-binding factor eIF4E under unfavorable conditions is well documented. To date, it is the mechanism of internal ribosome entry that is predominantly thought to underlay this stress tolerance. However, many cellular mRNAs that had been considered to contain internal ribosome entry sites (IRESs) failed to pass stringent control tests for internal initiation, thus raising the question of how they are translated under stress conditions. Here, we show that inserting an eIF4G-binding element from a virus IRES into 5′-UTRs of strongly cap-dependent mRNAs dramatically reduces their requirement for the 5′-terminal m7G-cap, though such cap-independent translation remains dependent on a vacant 5′-terminus of these mRNAs. Importantly, direct binding of eIF4G to the 5′-UTR of mRNA makes its translation resistant to eIF4F inactivation both in vitro and in vivo. These data may substantiate a new paradigm of translational control under stress to complement IRES-driven mechanism of translation. PMID:23268449

  1. Inactivation of the mTORC1-Eukaryotic Translation Initiation Factor 4E Pathway Alters Stress Granule Formation

    PubMed Central

    Fournier, Marie-Josée; Coudert, Laetitia; Mellaoui, Samia; Adjibade, Pauline; Gareau, Cristina; Côté, Marie-France; Sonenberg, Nahum; Gaudreault, René C.

    2013-01-01

    Stress granules (SG) are cytoplasmic multimeric RNA bodies that form under stress conditions known to inhibit cap-dependent translation. SG contain translation initiation factors, RNA binding proteins, and signaling molecules. SG are known to inhibit apoptotic pathways, thus contributing to chemo- and radioresistance in tumor cells. However, whether stress granule formation involves oncogenic signaling pathways is currently unknown. Here, we report a novel role of the mTORC1-eukaryotic translation initiation factor 4E (eIF4E) pathway, a key regulator of cap-dependent translation initiation of oncogenic factors, in SG formation. mTORC1 specifically drives the eIF4E-mediated formation of SG through the phosphorylation of 4E-BP1, a key factor known to inhibit formation of the mTORC1-dependent eIF4E-eIF4GI interactions. Disrupting formation of SG by inactivation of mTOR with its specific inhibitor pp242 or by depletion of eIF4E or eIF4GI blocks the SG-associated antiapoptotic p21 pathway. Finally, pp242 sensitizes cancer cells to death in vitro and inhibits the growth of chemoresistant tumors in vivo. This work therefore highlights a novel role of the oncogenic mTORC1-eIF4E pathway, namely, the promotion of formation of antiapoptotic SG. PMID:23547259

  2. Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells.

    PubMed

    Yu, Xiaojun; Zheng, Bo'an; Chai, Rui

    2014-12-12

    Dysregulation of protein synthesis is emerging as a major contributory factor in cancer development. eIF3D (eukaryotic translation initiation factor 3 subunit D) is one member of the eIF3 (eukaryotic translation initiation factor 3) family, which is essential for initiation of protein synthesis in eukaryotic cells. Acquaintance with eIF3D is little since it has been identified as a dispensable subunit of eIF3 complex. Recently, eIF3D was found to embed somatic mutations in human colorectal cancers, indicating its importance for tumour progression. To further probe into its action in colon cancer, we utilized lentivirus-mediated RNA interference to knock down eIF3D expression in one colon cancer cell line HCT116. Knockdown of eIF3D in HCT116 cells significantly inhibited cell proliferation and colony formation in vitro. Flow cytometry analysis indicated that depletion of eIF3D led to cell-cycle arrest in the G2/M phase, and induced an excess accumulation of HCT116 cells in the sub-G1 phase representing apoptotic cells. Signalling pathways responsible for cell growth and apoptosis have also been found altered after eIF3D silencing, such as AMPKα (AMP-activated protein kinase alpha), Bad, PRAS40 [proline-rich Akt (PKB) substrate of 40 kDa], SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase), GSK3β and PARP [poly(ADP-ribose) polymerase]. Taken together, these findings suggest that eIF3D might play an important role in colon cancer progression.

  3. Structure, organization and expression of the eukaryotic translation initiation factor 5, eIF-5, gene in Zea mays.

    PubMed

    López Ribera, I; Puigdomènech, P

    1999-11-29

    The maize genomic DNA sequence encoding the eukaryotic translation initiation factor 5 (eIF-5) has been isolated from genomic library of maize seedlings and the exon-intron structure determined (accession number AJ132240). The length of genomic DNA sequenced was about 7kb and contained two exons with the translation start site in exon 2. The only intron is located in the non-coding 5' region and it is 1298bp long with the splice acceptor and donor sites conforming to the AG/GT rules. Repetitive sequence fragments are located in the 5' and 3' intergenic region. The accumulation of eIF-5 mRNA was studied by RNA blot and in situ hybridization. The observed distribution of mRNA may correlate with the function of the protein, as it appears to be highly abundant in tissues where the proportion of cells actively dividing is very high, such as meristematic regions.

  4. Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons.

    PubMed

    Kar, Amar N; MacGibeny, Margaret A; Gervasi, Noreen M; Gioio, Anthony E; Kaplan, Barry B

    2013-04-24

    Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, miR16, modulates the axonal expression of eIF2B2 and eIF4G2. Transfection of axons with precursor miR16 and anti-miR16 showed that local miR16 levels modulated axonal eIF2B2 and eIF4G2 mRNA and protein levels, as well as axon outgrowth. siRNA-mediated knock-down of axonal eIF2B2 and eIF4G2 mRNA also resulted in a significant decrease in axonal eIF2B2 and eIF4G2 protein. Moreover, results of metabolic labeling studies showed that downregulation of axonal eIF2B2 and eIF4G2 expression also inhibited local protein synthesis and axon growth. Together, these data provide evidence that miR16 mediates axonal growth, at least in part, by regulating the local protein synthesis of eukaryotic translation initiation factors eIF2B2 and eIF4G2 in the axon.

  5. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists

    PubMed Central

    Jagus, Rosemary; Bachvaroff, Tsvetan R.; Joshi, Bhavesh; Place, Allen R.

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in “text-book” model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed. PMID:22778692

  6. Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells.

    PubMed

    Wagner, Susan; Herrmannová, Anna; Malík, Radek; Peclinovská, Lucie; Valášek, Leoš Shivaya

    2014-08-01

    The main role of the translation initiation factor 3 (eIF3) is to orchestrate formation of 43S-48S preinitiation complexes (PICs). Until now, most of our knowledge on eIF3 functional contribution to regulation of gene expression comes from yeast studies. Hence, here we developed several novel in vivo assays to monitor the integrity of the 13-subunit human eIF3 complex, defects in assembly of 43S PICs, efficiency of mRNA recruitment, and postassembly events such as AUG recognition. We knocked down expression of the PCI domain-containing eIF3c and eIF3a subunits and of eIF3j in human HeLa and HEK293 cells and analyzed the functional consequences. Whereas eIF3j downregulation had barely any effect and eIF3a knockdown disintegrated the entire eIF3 complex, eIF3c knockdown produced a separate assembly of the a, b, g, and i subunits (closely resembling the yeast evolutionary conserved eIF3 core), which preserved relatively high 40S binding affinity and an ability to promote mRNA recruitment to 40S subunits and displayed defects in AUG recognition. Both eIF3c and eIF3a knockdowns also severely reduced protein but not mRNA levels of many other eIF3 subunits and indeed shut off translation. We propose that eIF3a and eIF3c control abundance and assembly of the entire eIF3 and thus represent its crucial scaffolding elements critically required for formation of PICs. Copyright © 2014 Wagner et al.

  7. Eukaryotic translation initiation factor 6 is a novel regulator of reactive oxygen species-dependent megakaryocyte maturation.

    PubMed

    Ricciardi, S; Miluzio, A; Brina, D; Clarke, K; Bonomo, M; Aiolfi, R; Guidotti, L G; Falciani, F; Biffo, S

    2015-11-01

    Ribosomopathies constitute a class of inherited disorders characterized by defects in ribosome biogenesis and function. Classically, bone marrow (BM) failure is a clinical symptom shared between these syndromes, including Shwachman-Bodian-Diamond syndrome (SBDS). Eukaryotic translation initiation factor 6 (eIF6) is a critical translation factor that rescues the quasilethal effect of the loss of the SBDS protein. To determine whether eIF6 activity is necessary for BM development. We used eIF6(+/-) mice and primary BM megakaryocytes to investigate the involvement of eIF6 in the regulation of hematopoiesis. We provide evidence that reduced eIF6 expression negatively impacts on megakaryopoiesis. We show that inhibition of eIF6 leads to a reduction in cell size and mean ploidy level of megakaryocytes and a delay in megakaryocyte maturation by blocking the G1 /S transition. Consistent with this phenotype, only few megakaryocyte-forming proplatelets were found in eIF6(+/-) cells. We also discovered that, in eIF6(+/-) cells, the steady-state abundance of mitochondrial respiratory chain complex I-encoding mRNAs is decreased, resulting in decreased reactive oxygen species (ROS) production. Intriguingly, connectivity map analysis showed that eIF6-mediated changes overlap with specific translational inhibitors. eIF6 is a translation factor acting downstream of insulin/phorbol 12-myristate 13-acetate (PMA) stimulation. PMA treatment significantly restored eIF6(+/-) megakaryocyte maturation, indicating that activation of eIF6 is essential for the rescue of the phenotype. Taken together, our results show a role for eIF6-driven translation in megakaryocyte development, and unveil the novel connection between translational control and ROS production in this cell subset. © 2015 International Society on Thrombosis and Haemostasis.

  8. Eukaryotic translation initiation factor eIFiso4G is required to regulate violaxanthin De-epoxidase expression in Arabidopsis.

    PubMed

    Chen, Zhong; Jolley, Blair; Caldwell, Christian; Gallie, Daniel R

    2014-05-16

    The eukaryotic translation initiation factor (eIF) 4G is a scaffold protein that organizes the assembly of those initiation factors needed to recruit the 40 S ribosomal subunit to an mRNA. Plants, like many eukaryotes, express two eIF4G isoforms. eIFiso4G, one of the isoforms specific to plants, is unique among eukaryotic eIF4G proteins in that it is highly divergent and unusually small in size, raising the possibility of functional specialization. In this study, the role of eIFiso4G in plant growth was investigated using null mutants for the eIF4G isoforms in Arabidopsis. eIFiso4G loss of function mutants exhibited smaller cell, leaf, plant size, and biomass accumulation that correlated with its reduced photosynthetic activity, phenotypes not observed with the eIF4G loss of function mutant. Although no change in photorespiration or dark respiration was observed in the eIFiso4G loss of function mutant, a reduction in chlorophyll levels and an increase in the level of nonphotochemical quenching were observed. An increase in xanthophyll cycle activity and the generation of reactive oxygen species contributed to the qE and qI components of nonphotochemical quenching, respectively. An increase in the transcript and protein levels of violaxanthin de-epoxidase in the eIFiso4G loss of function mutant and an increase in its xanthophyll de-epoxidation state correlated with the higher qE associated with loss of eIFiso4G expression. These observations indicate that eIFiso4G expression is required to regulate violaxanthin de-epoxidase expression and to support photosynthetic activity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Eukaryotic Translation Initiation Factor 4E Is a Feed-Forward Translational Coactivator of Transforming Growth Factor β Early Protransforming Events in Breast Epithelial Cells.

    PubMed

    Decarlo, Lindsey; Mestel, Celine; Barcellos-Hoff, Mary-Helen; Schneider, Robert J

    2015-08-01

    Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed early in breast cancers in association with disease progression and reduced survival. Much remains to be understood regarding the role of eIF4E in human cancer. We determined, using immortalized human breast epithelial cells, that elevated expression of eIF4E translationally activates the transforming growth factor β (TGF-β) pathway, promoting cell invasion, a loss of cell polarity, increased cell survival, and other hallmarks of early neoplasia. Overexpression of eIF4E is shown to facilitate the selective translation of integrin β1 mRNA, which drives the translationally controlled assembly of a TGF-β receptor signaling complex containing α3β1 integrins, β-catenin, TGF-β receptor I, E-cadherin, and phosphorylated Smad2/3. This receptor complex acutely sensitizes nonmalignant breast epithelial cells to activation by typically substimulatory levels of activated TGF-β. TGF-β can promote cellular differentiation or invasion and transformation. As a translational coactivator of TGF-β, eIF4E confers selective mRNA translation, reprogramming nonmalignant cells to an invasive phenotype by reducing the set point for stimulation by activated TGF-β. Overexpression of eIF4E may be a proinvasive facilitator of TGF-β activity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Eukaryotic Translation Initiation Factor 4E Is a Feed-Forward Translational Coactivator of Transforming Growth Factor β Early Protransforming Events in Breast Epithelial Cells

    PubMed Central

    Decarlo, Lindsey; Mestel, Celine; Barcellos-Hoff, Mary-Helen

    2015-01-01

    Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed early in breast cancers in association with disease progression and reduced survival. Much remains to be understood regarding the role of eIF4E in human cancer. We determined, using immortalized human breast epithelial cells, that elevated expression of eIF4E translationally activates the transforming growth factor β (TGF-β) pathway, promoting cell invasion, a loss of cell polarity, increased cell survival, and other hallmarks of early neoplasia. Overexpression of eIF4E is shown to facilitate the selective translation of integrin β1 mRNA, which drives the translationally controlled assembly of a TGF-β receptor signaling complex containing α3β1 integrins, β-catenin, TGF-β receptor I, E-cadherin, and phosphorylated Smad2/3. This receptor complex acutely sensitizes nonmalignant breast epithelial cells to activation by typically substimulatory levels of activated TGF-β. TGF-β can promote cellular differentiation or invasion and transformation. As a translational coactivator of TGF-β, eIF4E confers selective mRNA translation, reprogramming nonmalignant cells to an invasive phenotype by reducing the set point for stimulation by activated TGF-β. Overexpression of eIF4E may be a proinvasive facilitator of TGF-β activity. PMID:25986608

  11. Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans.

    PubMed

    Yu, Xiang; Vought, Valarie E; Conradt, Barbara; Maine, Eleanor M

    2006-09-01

    In C. elegans, a population of proliferating germ cells is maintained via GLP-1/Notch signaling; in the absence of GLP-1 signaling, germ cells prematurely enter meiosis and differentiate. We previously identified ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we report that iffb-1 (initiation factor five B) is an ego gene. iffb-1 encodes the sole C. elegans isoform of eukaryotic translation initiation factor 5B, a protein essential for translation. We have used RNA interference and a deletion mutation to determine the developmental consequences of reduced iffb-1 activity. Our data indicate that maternal iffb-1 gene expression is sufficient for embryogenesis, and zygotic iffb-1 expression is required for development beyond late L1/early L2 stage. Partial reduction in iffb-1 expression delays larval development and can severely disrupt proliferation and differentiation of germ cells. We hypothesize that germline development is particularly sensitive to iffb-1 expression level.

  12. The Rice Eukaryotic Translation Initiation Factor 3 Subunit e (OseIF3e) Influences Organ Size and Pollen Maturation

    PubMed Central

    Wang, Wenyi; Xu, Mengyun; Liu, Xuejiao; Tu, Jumin

    2016-01-01

    Eukaryotic translation initiation factor 3 (eIF3) is a large protein complex that participates in most translation initiation processes. While eIF3 has been well characterized, less is known about the roles of individual eIF3 subunits, particularly in plants. Here, we identified and characterized OseIF3e in rice (Oryza sativa L.). OseIF3e was constitutively expressed in various tissues, but most strongly in vigorously growing organs. Transgenic OseIF3e-silenced rice plants showed inhibited growth in seedling and vegetative stages. Repression of OseIF3e led to defects in pollen maturation but did not affect pollen mitosis. In rice, eIF3e interacted with eIF3 subunits b, d, e, f, h, and k, and with eIF6, forming homo- and heterodimers to initiate translation. Furthermore, OseIF3e was shown by yeast two-hybrid assay to specifically bind to inhibitors of cyclin-dependent kinases 1, 5, and 6. This interaction was mediated by the sequence of amino acid residues at positions 118–138, which included a conserved motif (IGPEQIETLYQFAKF). These results suggested although OseIF3e is not a “functional core” subunit of eIF3, it still plays crucial roles in rice growth and development, in combination with other factors. We proposed a pathway by which OseIF3e influence organ size and pollen maturation in rice, providing an opportunity to optimize plant architecture for crop breeding. PMID:27703462

  13. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining.

    PubMed

    Fringer, Jeanne M; Acker, Michael G; Fekete, Christie A; Lorsch, Jon R; Dever, Thomas E

    2007-03-01

    The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.

  14. Eukaryotic translation initiation factor 5A (eIF5A) is essential for HIF-1α activation in hypoxia.

    PubMed

    Tariq, Mohammad; Ito, Akihiro; Ishfaq, Muhammad; Bradshaw, Elliot; Yoshida, Minoru

    2016-02-05

    The eukaryotic initiation factor 5A (eIF5A) is an essential protein involved in translation elongation and cell proliferation. eIF5A undergoes several post-translational modifications including hypusination and acetylation. Hypusination is indispensable for the function of eIF5A. On the other hand, the precise function of acetylation remains unknown, but it may render the protein inactive since hypusination blocks acetylation. Here, we report that acetylation of eIF5A increases under hypoxia. During extended hypoxic periods an increase in the level of eIF5A acetylation correlated with a decrease in HIF-1α, suggesting involvement of eIF5A activity in HIF-1α expression under hypoxia. Indeed, suppression of eIF5A by siRNA oligo-mediated knockdown or treatment with GC7, a deoxyhypusine synthase inhibitor, led to significant reduction of HIF-1α activity. Furthermore, knockdown of eIF5A or GC7 treatment reduced tumor spheroid formation with a concomitant decrease in HIF-1α expression. Our results suggest that functional, hypusinated eIF5A is necessary for HIF-1α expression during hypoxia and that eIF5A is an attractive target for cancer therapy.

  15. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    PubMed Central

    Guerrero, Santiago; Batisse, Julien; Libre, Camille; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe

    2015-01-01

    Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication. PMID:25606970

  16. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  17. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha.

    PubMed Central

    Sood, R; Porter, A C; Olsen, D A; Cavener, D R; Wek, R C

    2000-01-01

    A family of protein kinases regulates translation in response to different cellular stresses by phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha). In yeast, an eIF-2alpha kinase, GCN2, functions in translational control in response to amino acid starvation. It is thought that uncharged tRNA that accumulates during amino acid limitation binds to sequences in GCN2 homologous to histidyl-tRNA synthetase (HisRS) enzymes, leading to enhanced kinase catalytic activity. Given that starvation for amino acids also stimulates phosphorylation of eIF-2alpha in mammalian cells, we searched for and identified a GCN2 homologue in mice. We cloned three different cDNAs encoding mouse GCN2 isoforms, derived from a single gene, that vary in their amino-terminal sequences. Like their yeast counterpart, the mouse GCN2 isoforms contain HisRS-related sequences juxtaposed to the kinase catalytic domain. While GCN2 mRNA was found in all mouse tissues examined, the isoforms appear to be differentially expressed. Mouse GCN2 expressed in yeast was found to inhibit growth by hyperphosphorylation of eIF-2alpha, requiring both the kinase catalytic domain and the HisRS-related sequences. Additionally, lysates prepared from yeast expressing mGCN2 were found to phosphorylate recombinant eIF-2alpha substrate. Mouse GCN2 activity in both the in vivo and in vitro assays required the presence of serine-51, the known regulatory phosphorylation site in eIF-2alpha. Together, our studies identify a new mammalian eIF-2alpha kinase, GCN2, that can mediate translational control. PMID:10655230

  18. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation.

    PubMed

    Lorsch, Jon R; Dever, Thomas E

    2010-07-09

    A central step to high fidelity protein synthesis is selection of the proper start codon. Recent structural, biochemical, and genetic analyses have provided molecular insights into the coordinated activities of the initiation factors in start codon selection. A molecular model is emerging in which start codon recognition is linked to dynamic reorganization of factors on the ribosome and structural changes in the ribosome itself.

  19. Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases.

    PubMed

    Eiler, Daniel; Lin, Jinzhong; Simonetti, Angelita; Klaholz, Bruno P; Steitz, Thomas A

    2013-09-24

    The initiation of protein synthesis uses initiation factor 2 (IF2) in prokaryotes and a related protein named eukaryotic initiation factor 5B (eIF5B) in eukaryotes. IF2 is a GTPase that positions the initiator tRNA on the 30S ribosomal initiation complex and stimulates its assembly to the 50S ribosomal subunit to make the 70S ribosome. The 3.1-Å resolution X-ray crystal structures of the full-length Thermus thermophilus apo IF2 and its complex with GDP presented here exhibit two different conformations (all of its domains except C2 domain are visible). Unlike all other translational GTPases, IF2 does not have an effecter domain that stably contacts the switch II region of the GTPase domain. The domain organization of IF2 is inconsistent with the "articulated lever" mechanism of communication between the GTPase and initiator tRNA binding domains that has been proposed for eIF5B. Previous cryo-electron microscopy reconstructions, NMR experiments, and this structure show that IF2 transitions from being flexible in solution to an extended conformation when interacting with ribosomal complexes.

  20. Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer.

    PubMed

    Wang, Shu Qian; Liu, Yu; Yao, Min Ya; Jin, Jing

    2016-10-01

    Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma.

  1. Mutations in the genes encoding eukaryotic translation initiation factor 2B in Japanese patients with vanishing white matter disease.

    PubMed

    Shimada, Shino; Shimojima, Keiko; Sangu, Noriko; Hoshino, Ai; Hachiya, Yasuo; Ohto, Tatsuyuki; Hashi, Yuichiro; Nishida, Katsuya; Mitani, Maki; Kinjo, Saori; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Morimoto, Masafumi; Yamamoto, Toshiyuki

    2015-11-01

    Vanishing white matter disease (VWM) is a chronic, progressive leukoencephalopathy associated with episodes of rapid deterioration following minor stress events such as head traumas or infectious disorders. The white matter of the patients with VWM exhibits characteristic radiological findings. The genes encoding all five subunits of eukaryotic translation initiation factor 2B (EIF2B) were analyzed in patients, who were tentatively diagnosed with VWM, by Sanger sequencing. Seven mutations were identified in the genes encoding the subunits 1, 2, 4, and 5 of EIF2B. Among them, one mutation (p.V83E) in the subunit 2 (EIF2B2) was recurrently identified in three alleles, indicating the most common mutation in Japanese patients with VWM. Two patients were homozygous, and the other four patients were compound heterozygous. All patients showed white matter abnormalities with various degrees. One patient showed manifestations of end-stage VWM disease. Some patients showed late onset and slow progression associated with brain magnetic resonance imaging displaying T2 high intensity only in the deep white matter. There was clinical heterogeneity among patients with VWM. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. The Arabidopsis eukaryotic translation initiation factor eIF5A-2 regulates root protoxylem development by modulating cytokinin signaling.

    PubMed

    Ren, Bo; Chen, Qingguo; Hong, Sulei; Zhao, Wenming; Feng, Jian; Feng, Haizhong; Zuo, Jianru

    2013-10-01

    The phytohormone cytokinin regulates various aspects of plant growth and development, including root vascular development. In Arabidopsis thaliana, mutations in the cytokinin signaling components cause misspecification of protoxylem cell files. Auxin antagonizes cytokinin-regulated root protoxylem differentiation by inducing expression of Arabidopsis phosphotransfer protein6 (AHP6), a negative regulator of cytokinin signaling. However, the molecular mechanism of cytokinin-regulated protoxylem differentiation is not fully understood. Here, we show that a mutation in Arabidopsis fumonisin B1-resistant12 (FBR12), which encodes a eukaryotic translation initiation factor 5A, causes defective protoxylem development and reduced sensitivity to cytokinin. FBR12 genetically interacts with the cytokinin receptor cytokinin response1 (CRE1) and downstream AHP genes, as double mutants show enhanced phenotypes. FBR12 forms a protein complex with CRE1 and AHP1, and cytokinin regulates formation of this protein complex. Intriguingly, ahp6 partially suppresses the fbr12 mutant phenotype, and the fbr12 mutation causes increased expression of AHP6, indicating that FBR12 negatively regulates AHP6. Consistent with this, ectopic expression of FBR12 in the CRE1-expressing domain partially rescues defective protoxylem development in fbr12, and overexpression of AHP6 causes an fbr12-like phenotype. These results define a regulatory role of the highly conserved FBR12 in cytokinin-mediated root protoxylem specification.

  3. Intragenic suppressor mutations restore GTPase and translation functions of a eukaryotic initiation factor 5B switch II mutant.

    PubMed

    Shin, Byung-Sik; Acker, Michael G; Maag, David; Kim, Joo-Ran; Lorsch, Jon R; Dever, Thomas E

    2007-03-01

    Structural studies of GTP-binding proteins identified the Switch I and Switch II elements as contacting the gamma-phosphate of GTP and undergoing marked conformational changes upon GTP versus GDP binding. Movement of a universally conserved Gly at the N terminus of Switch II is thought to trigger the structural rearrangement of this element. Consistently, we found that mutation of this Gly in the Switch II element of the eukaryotic translation initiation factor 5B (eIF5B) from Saccharomyces cerevisiae impaired cell growth and the guanine nucleotide-binding, GTPase, and ribosomal subunit joining activities of eIF5B. In a screen for mutations that bypassed the critical requirement for this Switch II Gly in eIF5B, intragenic suppressors were identified in the Switch I element and at a residue in domain II of eIF5B that interacts with Switch II. The intragenic suppressors restored yeast cell growth and eIF5B nucleotide-binding, GTP hydrolysis, and subunit joining activities. We propose that the Switch II mutation distorts the geometry of the GTP-binding active site, impairing nucleotide binding and the eIF5B domain movements associated with GTP binding. Accordingly, the Switch I and domain II suppressor mutations induce Switch II to adopt a conformation favorable for nucleotide binding and hydrolysis and thereby reestablish coupling between GTP binding and eIF5B domain movements.

  4. Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer

    PubMed Central

    2016-01-01

    Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma. PMID:27550487

  5. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    SciTech Connect

    Nakai, Yuji; Shiratsuchi, Akiko; Manaka, Junko; Nakayama, Hiroshi; Takio, Koji; Zhang Jianting; Suganuma, Tatsuo; Nakanishi, Yoshinobu . E-mail: nakanaka@kenroku.kanazawa-u.ac.jp

    2005-09-10

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis.

  6. Eukaryotic translation initiation factor 5A (eIF5A) is essential for HIF-1α activation in hypoxia

    SciTech Connect

    Tariq, Mohammad; Ito, Akihiro; Ishfaq, Muhammad; Bradshaw, Elliot; Yoshida, Minoru

    2016-02-05

    The eukaryotic initiation factor 5A (eIF5A) is an essential protein involved in translation elongation and cell proliferation. eIF5A undergoes several post-translational modifications including hypusination and acetylation. Hypusination is indispensable for the function of eIF5A. On the other hand, the precise function of acetylation remains unknown, but it may render the protein inactive since hypusination blocks acetylation. Here, we report that acetylation of eIF5A increases under hypoxia. During extended hypoxic periods an increase in the level of eIF5A acetylation correlated with a decrease in HIF-1α, suggesting involvement of eIF5A activity in HIF-1α expression under hypoxia. Indeed, suppression of eIF5A by siRNA oligo-mediated knockdown or treatment with GC7, a deoxyhypusine synthase inhibitor, led to significant reduction of HIF-1α activity. Furthermore, knockdown of eIF5A or GC7 treatment reduced tumor spheroid formation with a concomitant decrease in HIF-1α expression. Our results suggest that functional, hypusinated eIF5A is necessary for HIF-1α expression during hypoxia and that eIF5A is an attractive target for cancer therapy. - Highlights: • Hypoxia induces acetylation of eIF5A. • Active eIF5A is necessary for HIF-1α activation in hypoxia. • Active eIF5A is important for tumor spheroid growth.

  7. The eukaryotic translation initiation factor eIF4E wears a “cap” for many occasions

    PubMed Central

    Borden, Katherine L. B.

    2016-01-01

    ABSTRACT The eukaryotic translation initiation factor eIF4E plays important roles in controlling the composition of the proteome. Indeed, dysregulation of eIF4E is associated with poor prognosis cancers. The traditional view has been that eIF4E acts solely in translation. However, over the last ∼25 years, eIF4E was found in the nucleus where it acts in mRNA export and in the last ∼10 years, eIF4E was found in cytoplasmic processing bodies (P-bodies) where it functions in mRNA sequestration and stability. The common biochemical thread for these activities is the ability of eIF4E to bind the 7-methylguanosine cap on the 5′ end of mRNAs. Recently, the possibility that eIF4E directly binds some mRNA elements independently of the cap has also been raised. Importantly, the effects of eIF4E are not genome-wide with a subset of transcripts targeted depending on the presence of specific mRNA elements and context-dependent regulatory factors. Indeed, eIF4E governs RNA regulons through co-regulating the expression of groups of transcripts acting in the same biochemical pathways. In addition, studies over the past ∼15 years indicate that there are multiple strategies that regulatory factors employ to modulate eIF4E activities in context-dependent manners. This perspective focuses on these new findings and incorporates them into a broader model for eIF4E function. PMID:28090419

  8. Defects in tRNA Processing and Nuclear Export Induce GCN4 Translation Independently of Phosphorylation of the α Subunit of Eukaryotic Translation Initiation Factor 2

    PubMed Central

    Qiu, Hongfang; Hu, Cuihua; Anderson, James; Björk, Glenn R.; Sarkar, Srimonti; Hopper, Anita K.; Hinnebusch, Alan G.

    2000-01-01

    Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNAMet binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNAAACVal (tRNAVal*) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd− phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd− phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNAMet levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd− phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5′-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNATyr that cannot be processed by RNase P had a Gcd− phenotype. Interestingly, the Gcd− phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Δ cells have a Gcd− phenotype. Overproduced PUS4 appears to impede 5′-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNAVal* showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNAMet binding to the ribosome. PMID:10713174

  9. The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications.

    PubMed

    Burroughs, A Maxwell; Zhang, Dapeng; Aravind, L

    2015-05-15

    Deciphering the origin of uniquely eukaryotic features of sub-cellular systems, such as the translation apparatus, is critical in reconstructing eukaryogenesis. One such feature is the highly conserved, but poorly understood, eukaryotic protein CDC123, which regulates the abundance of the eukaryotic translation initiation eIF2 complex and binds one of its components eIF2γ. We show that the eukaryotic protein CDC123 defines a novel clade of ATP-grasp enzymes distinguished from all other members of the superfamily by a RAGNYA domain with two conserved lysines (henceforth the R2K clade). Combining the available biochemical and genetic data on CDC123 with the inferred enzymatic function, we propose that the eukaryotic CDC123 proteins are likely to function as ATP-dependent protein-peptide ligases which modify proteins by ribosome-independent addition of an oligopeptide tag. We also show that the CDC123 family emerged first in bacteria where it appears to have diversified along with the two other families of the R2K clade. The bacterial CDC123 family members are of two distinct types, one found as part of type VI secretion systems which deliver polymorphic toxins and the other functioning as potential effectors delivered to amoeboid eukaryotic hosts. Representatives of the latter type have also been independently transferred to phylogenetically unrelated amoeboid eukaryotes and their nucleo-cytoplasmic large DNA viruses. Similarly, the two other prokaryotic R2K clade families are also proposed to participate in biological conflicts between bacteriophages and their hosts. These findings add further evidence to the recently proposed hypothesis that the horizontal transfer of enzymatic effectors from the bacterial endosymbionts of the stem eukaryotes played a fundamental role in the emergence of the characteristically eukaryotic regulatory systems and sub-cellular structures.

  10. A bacterial homolog YciH of eukaryotic translation initiation factor eIF1 regulates stress-related gene expression and is unlikely to be involved in translation initiation fidelity

    PubMed Central

    Osterman, Ilya A; Evfratov, Sergey A; Dzama, Margarita M; Pletnev, Philipp I; Kovalchuk, Sergey I; Butenko, Ivan O; Pobeguts, Olga V; Golovina, Anna Ya; Govorun, Vadim M; Bogdanov, Alexey A; Sergiev, Petr V; Dontsova, Olga A

    2015-01-01

    YciH is a bacterial protein, homologous to eukaryotic translation initiation factor eIF1. Preceding evidence obtained with the aid of in vitro translation initiation system suggested that it may play a role of a translation initiation factor, ensuring selection against suboptimal initiation complexes. Here we studied the effect of Escherichia coli yciH gene inactivation on translation of model mRNAs. Neither the translation efficiency of leaderless mRNAs, nor mRNAs with non AUG start codons, was found to be affected by YciH in vivo. Comparative proteome analysis revealed that yciH gene knockout leads to a more than fold2- increase in expression of 66 genes and a more than fold2- decrease in the expression of 20 genes. Analysis of these gene sets allowed us to suggest a role of YciH as an inhibitor of translation in a stress response rather than the role of a translation initiation factor. PMID:26177339

  11. Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance.

    PubMed

    Wang, Liuqiang; Xu, Chenxi; Wang, Chao; Wang, Yucheng

    2012-07-26

    The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood. In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress. These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions.

  12. Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance

    PubMed Central

    2012-01-01

    Background The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood. Results In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress. Conclusions These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions. PMID:22834699

  13. Linking the 3′ Poly(A) Tail to the Subunit Joining Step of Translation Initiation: Relations of Pab1p, Eukaryotic Translation Initiation Factor 5B (Fun12p), and Ski2p-Slh1p

    PubMed Central

    Searfoss, Anjanette; Dever, Thomas E.; Wickner, Reed

    2001-01-01

    The 3′ poly(A) structure improves translation of a eukaryotic mRNA by 50-fold in vivo. This enhancement has been suggested to be due to an interaction of the poly(A) binding protein, Pab1p, with eukaryotic translation initiation factor 4G (eIF4G). However, we find that mutation of eIF4G eliminating its interaction with Pab1p does not diminish the preference for poly(A)+ mRNA in vivo, indicating another role for poly(A). We show that either the absence of Fun12p (eIF5B), or a defect in eIF5, proteins involved in 60S ribosomal subunit joining, specifically reduces the translation of poly(A)+ mRNA, suggesting that poly(A) may have a role in promoting the joining step. Deletion of two nonessential putative RNA helicases (genes SKI2 and SLH1) makes poly(A) dispensable for translation. However, in the absence of Fun12p, eliminating Ski2p and Slh1p shows little enhancement of expression of non-poly(A) mRNA. This suggests that Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecting 60S subunit joining. PMID:11438647

  14. Universally conserved translation initiation factors.

    PubMed

    Kyrpides, N C; Woese, C R

    1998-01-06

    The process by which translation is initiated has long been considered similar in Bacteria and Eukarya but accomplished by a different unrelated set of factors in the two cases. This not only implies separate evolutionary histories for the two but also implies that at the universal ancestor stage, a translation initiation mechanism either did not exist or was of a different nature than the extant processes. We demonstrate herein that (i) the "analogous" translation initiation factors IF-1 and eIF-1A are actually related in sequence, (ii) the "eukaryotic" translation factor SUI1 is universal in distribution, and (iii) the eukaryotic/archaeal translation factor eIF-5A is homologous to the bacterial translation factor EF-P. Thus, the rudiments of translation initiation would seem to have been present in the universal ancestor stage. However, significant development and refinement subsequently occurred independently on both the bacterial lineage and on the archaeal/eukaryotic line.

  15. Prognostic significance of the expression of nuclear eukaryotic translation initiation factor 5A2 in human melanoma.

    PubMed

    Khosravi, Shahram; Martinka, Magdalena; Zhou, Youwen; Ong, Christopher J

    2016-11-01

    Eukaryotic translation initiation factor 5A2 (EIF5A2) expression is upregulated in various cancers. The present authors previously demonstrated that cytoplasmic EIF5A2 expression increases with melanoma progression and inversely correlates with patient survival. Other studies have suggested that nuclear EIF5A2 may also play a role in oncogenesis. The present study used immunohistochemistry and tissue microarray with a large number of melanocytic lesions (n=459) and demonstrated that nuclear EIF5A2 expression was significantly upregulated between common acquired nevi, dysplastic nevi and primary melanomas, and between primary melanomas and metastatic melanomas. Nuclear EIF5A2 expression was inversely associated with overall and disease-specific 5-year survival rate for all (P<0.001) and primary (P=0.014 and P=0.015, respectively) melanoma patients. Nuclear EIF5A2 expression was directly associated with melanoma thickness (P=0.036) and American Joint Committee on Cancer staging (P<0.001), which suggests the possible role of nuclear EIF5A2 in melanoma cell invasion. Subsequently, the present study investigated the association between the expression of nuclear EIF5A2 and matrix metalloproteinase-2 (MMP-2), which is an important factor for promoting cancer cell invasion. Nuclear EIF5A2 and a strong MMP-2 expression were directly associated, and their concurrent expression was significantly associated with a poorer overall and disease-specific 5-year survival rate for all and primary melanoma patients. Nuclear and cytoplasmic EIF5A2 expression were also demonstrated to be significantly associated, and simultaneous expression of the two forms of EIF5A2 was significantly associated with poor overall and disease-specific 5-year survival rates for all and primary melanoma patients. Multivariate Cox regression analysis revealed that nuclear EIF5A2 expression alone and in combination with cytoplasmic EIF5A2 expression was an adverse independent prognostic factor for all and

  16. Prognostic significance of the expression of nuclear eukaryotic translation initiation factor 5A2 in human melanoma

    PubMed Central

    Khosravi, Shahram; Martinka, Magdalena; Zhou, Youwen; Ong, Christopher J.

    2016-01-01

    Eukaryotic translation initiation factor 5A2 (EIF5A2) expression is upregulated in various cancers. The present authors previously demonstrated that cytoplasmic EIF5A2 expression increases with melanoma progression and inversely correlates with patient survival. Other studies have suggested that nuclear EIF5A2 may also play a role in oncogenesis. The present study used immunohistochemistry and tissue microarray with a large number of melanocytic lesions (n=459) and demonstrated that nuclear EIF5A2 expression was significantly upregulated between common acquired nevi, dysplastic nevi and primary melanomas, and between primary melanomas and metastatic melanomas. Nuclear EIF5A2 expression was inversely associated with overall and disease-specific 5-year survival rate for all (P<0.001) and primary (P=0.014 and P=0.015, respectively) melanoma patients. Nuclear EIF5A2 expression was directly associated with melanoma thickness (P=0.036) and American Joint Committee on Cancer staging (P<0.001), which suggests the possible role of nuclear EIF5A2 in melanoma cell invasion. Subsequently, the present study investigated the association between the expression of nuclear EIF5A2 and matrix metalloproteinase-2 (MMP-2), which is an important factor for promoting cancer cell invasion. Nuclear EIF5A2 and a strong MMP-2 expression were directly associated, and their concurrent expression was significantly associated with a poorer overall and disease-specific 5-year survival rate for all and primary melanoma patients. Nuclear and cytoplasmic EIF5A2 expression were also demonstrated to be significantly associated, and simultaneous expression of the two forms of EIF5A2 was significantly associated with poor overall and disease-specific 5-year survival rates for all and primary melanoma patients. Multivariate Cox regression analysis revealed that nuclear EIF5A2 expression alone and in combination with cytoplasmic EIF5A2 expression was an adverse independent prognostic factor for all and

  17. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs.

    PubMed

    Wallace, Adam; Filbin, Megan E; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E

    2010-04-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.

  18. Overexpression of eukaryotic initiation factor 5 rescues the translational defect of tpk1w in a manner that necessitates a novel phosphorylation site.

    PubMed

    Bavli-Kertselli, Ira; Melamed, Daniel; Bar-Ziv, Lavi; Volf, Hila; Arava, Yoav

    2015-02-01

    Cells respond to changes in their environment through mechanisms that often necessitate reprogramming of the translation machinery. The fastest and strongest of all tested responses is the translation inhibition observed following abrupt depletion of glucose from the media of yeast cells. The speed of the response suggests a post-translational modification of a key component of the translation machinery. This translation factor is as yet unknown. A cAMP-dependent protein kinase mutant yeast strain (tpk1(w)) that does not respond properly to glucose depletion and maintains translation was described previously. We hypothesized that the inability of tpk1(w) to arrest translation results from abnormal expression of key translation mediators. Genome-wide analysis of steady-state mRNA levels in tpk1(w) revealed underexpression of several candidates. Elevating the cellular levels of eukaryotic initiation factor (eIF) 5 by overexpression rescued the translational defect of tpk1(w). Restoring ribosomal dissociation by eIF5 necessitated an active GAP domain and multiple regions throughout this protein. Phosphoproteomics analysis of wild-type cells overexpressing eIF5 revealed increased phosphorylation in a novel site (Thr191) upon glucose depletion. Mutating this residue and introducing it into tpk1(w) abolished the ability of eIF5 to rescue the translational defect. Intriguingly, introducing this mutation into the wild-type strain did not hamper its translational response. We further show that Thr191 is phosphorylated in vitro by Casein Kinase II (CKII), and yeast cells with a mutated CKII have a reduced response to glucose depletion. These results implicate phosphorylation of eIF5 at Thr191 by CKII as one of the pathways for regulating translation upon glucose depletion. © 2014 FEBS.

  19. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initation of hepatitis C and classical swine fever virus RNAs

    PubMed Central

    Pestova, Tatyana V.; Shatsky, Ivan N.; Fletcher, Simon P.; Jackson, Richard J.; Hellen, Christopher U.T.

    1998-01-01

    Initiation of translation of hepatitis C virus and classical swine fever virus mRNAs results from internal ribosomal entry. We reconstituted internal ribosomal entry in vitro from purified translation components and monitored assembly of 48S ribosomal preinitiation complexes by toe-printing. Ribosomal subunits (40S) formed stable binary complexes on both mRNAs. The complex structure of these RNAs determined the correct positioning of the initiation codon in the ribosomal “P” site in binary complexes. Ribosomal binding and positioning on these mRNAs did not require the initiation factors eIF3, eIF4A, eIF4B, and eIF4F and translation of these mRNAs was not inhibited by a trans-dominant eIF4A mutant. Addition of Met–tRNAiMet, eIF2, and GTP to these binary ribosomal complexes resulted in formation of 48S preinitiation complexes. The striking similarities between this eukaryotic initiation mechanism and the mechanism of translation initiation in prokaryotes are discussed. PMID:9420332

  20. Deoxyhypusine Modification of Eukaryotic Translation Initiation Factor 5A (eIF5A) Is Essential for Trypanosoma brucei Growth and for Expression of Polyprolyl-containing Proteins*

    PubMed Central

    Nguyen, Suong; Leija, Chrisopher; Kinch, Lisa; Regmi, Sandesh; Li, Qiong; Grishin, Nick V.; Phillips, Margaret A.

    2015-01-01

    The eukaryotic protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis. Polyamine biosynthesis is essential in T. brucei, and the polyamine spermidine is required for synthesis of a novel cofactor called trypanothione and for deoxyhypusine modification of eukaryotic translation initiation factor 5A (eIF5A). eIF5A promotes translation of proteins containing polyprolyl tracts in mammals and yeast. To evaluate the function of eIF5A in T. brucei, we used RNA interference (RNAi) to knock down eIF5A levels and found that it is essential for T. brucei growth. The RNAi-induced growth defect was complemented by expression of wild-type human eIF5A but not by a Lys-50 mutant that blocks modification by deoxyhypusine. Bioinformatics analysis showed that 15% of the T. brucei proteome contains 3 or more consecutive prolines and that actin-related proteins and cysteine proteases were highly enriched in the group. Steady-state protein levels of representative proteins containing 9 consecutive prolines that are involved in actin assembly (formin and CAP/Srv2p) were significantly reduced by knockdown of eIF5A. Several T. brucei polyprolyl proteins are involved in flagellar assembly. Knockdown of TbeIF5A led to abnormal cell morphologies and detached flagella, suggesting that eIF5A is important for translation of proteins needed for these processes. Potential specialized functions for eIF5A in T. brucei in translation of variable surface glycoproteins were also uncovered. Inhibitors of deoxyhypusination would be expected to cause a pleomorphic effect on multiple cell processes, suggesting that deoxyhypusine/hypusine biosynthesis could be a promising drug target in not just T. brucei but in other eukaryotic pathogens. PMID:26082486

  1. Deoxyhypusine Modification of Eukaryotic Translation Initiation Factor 5A (eIF5A) Is Essential for Trypanosoma brucei Growth and for Expression of Polyprolyl-containing Proteins.

    PubMed

    Nguyen, Suong; Leija, Chrisopher; Kinch, Lisa; Regmi, Sandesh; Li, Qiong; Grishin, Nick V; Phillips, Margaret A

    2015-08-07

    The eukaryotic protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis. Polyamine biosynthesis is essential in T. brucei, and the polyamine spermidine is required for synthesis of a novel cofactor called trypanothione and for deoxyhypusine modification of eukaryotic translation initiation factor 5A (eIF5A). eIF5A promotes translation of proteins containing polyprolyl tracts in mammals and yeast. To evaluate the function of eIF5A in T. brucei, we used RNA interference (RNAi) to knock down eIF5A levels and found that it is essential for T. brucei growth. The RNAi-induced growth defect was complemented by expression of wild-type human eIF5A but not by a Lys-50 mutant that blocks modification by deoxyhypusine. Bioinformatics analysis showed that 15% of the T. brucei proteome contains 3 or more consecutive prolines and that actin-related proteins and cysteine proteases were highly enriched in the group. Steady-state protein levels of representative proteins containing 9 consecutive prolines that are involved in actin assembly (formin and CAP/Srv2p) were significantly reduced by knockdown of eIF5A. Several T. brucei polyprolyl proteins are involved in flagellar assembly. Knockdown of TbeIF5A led to abnormal cell morphologies and detached flagella, suggesting that eIF5A is important for translation of proteins needed for these processes. Potential specialized functions for eIF5A in T. brucei in translation of variable surface glycoproteins were also uncovered. Inhibitors of deoxyhypusination would be expected to cause a pleomorphic effect on multiple cell processes, suggesting that deoxyhypusine/hypusine biosynthesis could be a promising drug target in not just T. brucei but in other eukaryotic pathogens. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Norovirus Translation Requires an Interaction between the C Terminus of the Genome-linked Viral Protein VPg and Eukaryotic Translation Initiation Factor 4G*

    PubMed Central

    Chung, Liliane; Bailey, Dalan; Leen, Eoin N.; Emmott, Edward P.; Chaudhry, Yasmin; Roberts, Lisa O.; Curry, Stephen; Locker, Nicolas; Goodfellow, Ian G.

    2014-01-01

    Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5′ end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation. PMID:24928504

  3. Norovirus translation requires an interaction between the C Terminus of the genome-linked viral protein VPg and eukaryotic translation initiation factor 4G.

    PubMed

    Chung, Liliane; Bailey, Dalan; Leen, Eoin N; Emmott, Edward P; Chaudhry, Yasmin; Roberts, Lisa O; Curry, Stephen; Locker, Nicolas; Goodfellow, Ian G

    2014-08-01

    Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5' end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit.

    PubMed

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G; Maher, Kathryn N; Lorsch, Jon R; Dever, Thomas E

    2009-02-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.

  5. Knockdown of eukaryotic translation initiation factors 3B (EIF3B) inhibits proliferation and promotes apoptosis in glioblastoma cells.

    PubMed

    Liang, Hong; Ding, Xuehua; Zhou, Chun; Zhang, Yihua; Xu, Minhui; Zhang, Chengqu; Xu, Lunshan

    2012-10-01

    Eukaryotic initiation factors 3 (EIF3) complex is essential for initiation of protein synthesis for both cells and virus. It consists of 13 subunits (EIF3A to M), among which EIF3B serves as a major scaffolding subunit. However, its functions in human glioblastoma have not been explored yet. Here, we showed that EIF3B was expressed in human glioblastoma (Grade I-IV) and human glioblastoma cell lines (U251, U87, A172 and U373). Loss of function analysis was performed on U87 cells using lentivirus-mediated siRNA against EIF3B. EIF3B-shRNA expressing lentivirus could effectively infect U87 glioma cells and downregulate EIF3B expression. Knockdown of EIF3B expression significantly inhibited proliferation of U87 cells. Further study showed that the proliferation inhibitory effect was associated with accumulation in G0/G1-phase cell number and an increased rate of apoptosis. In conclusion, EIF3B promotes the proliferation of U87 cells and may play an important role in human glioblastoma development.

  6. Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection.

    PubMed

    Hiraishi, Hiroyuki; Shin, Byung-Sik; Udagawa, Tsuyoshi; Nemoto, Naoki; Chowdhury, Wasimul; Graham, Jymie; Cox, Christian; Reid, Megan; Brown, Susan J; Asano, Katsura

    2013-09-01

    In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.

  7. Knockdown of eukaryotic translation initiation factor 3 subunit D (eIF3D) inhibits proliferation of acute myeloid leukemia cells.

    PubMed

    Liu, Guo-Zhen; Liu, Ji-Zhu; Li, Xiao-Qing; Zhang, Li; Li, Shuang-Jing; Xiao, Tai-Wu; Wang, Jing-Xia; Li, Guang-Yao; Liu, Yusen

    2017-08-12

    Various eukaryotic translation initiation factors (eIFs) have been implicated in carcinoma development. Eukaryotic translation initiation factor 3 subunit D (eIF3D) has recently been shown to regulate the growth of several types of human cancer cells. However, the function of eIF3D in acute myeloid leukemia (AML) remains unclear. In this study, we investigated the expression of eIF3D in three AML cell lines and a lymphoblast cell line, and found that eIF3D was expressed in all four leukemia cell lines. To explore the role of eIF3D in AML cell proliferation, lentivirus-mediated RNA interference was applied to knock down the expression of eIF3D in U937 cells. The expression of eIF3D was significantly downregulated in U937 cells after eIF3D knockdown, as confirmed by quantitative real-time PCR (qRT-PCR) and Western blot analysis. Knockdown of eIF3D significantly inhibited proliferation of U937 cells. Furthermore, flow cytometry analysis revealed that eIF3D silencing induced cell cycle arrest at the G2/M phase, ultimately leading to apoptosis. Our results indicate that eIF3D plays a key role in the proliferation of AML cells, and suggest that eIF3D silencing might be a potential therapeutic strategy for leukemia.

  8. Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency

    PubMed Central

    Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi

    2012-01-01

    Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199

  9. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene.

    PubMed

    Jannat, Shopan; Mou, Haipeng; Zhang, Lili; Zhang, Changtong; Ma, Weiwei; Walsh, John A; Hu, Zhongyuan; Yang, Jinghua; Zhang, Mingfang

    2017-02-28

    Recessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bβ). Silencing of eIF2Bβ in a TuMV-susceptible mustard plant line and expression of eIF2Bβ from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bβ is required for efficient TuMV infection. eIF2Bβ represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2·GTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bβ was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bβ. This article is protected by copyright. All rights reserved.

  10. Cleavage of Eukaryotic Translation Initiation Factor 4G by Exogenously Added Hybrid Proteins Containing Poliovirus 2Apro in HeLa Cells: Effects on Gene Expression

    PubMed Central

    Novoa, Isabel; Carrasco, Luis

    1999-01-01

    Efficient cleavage of both forms of eukaryotic initiation factor 4G (eIF4G-1 and eIF4G-2) has been achieved in HeLa cells by incubation with hybrid proteins containing poliovirus 2Apro. Entry of these proteins into cells is promoted by adenovirus particles. Substantial levels of ongoing translation on preexisting cellular mRNAs still continue for several hours after eIF4G degradation. Treatment of control HeLa cells with hypertonic medium causes an inhibition of translation that is reversed upon restoration of cells to normal medium. Protein synthesis is not restored in cells lacking intact eIF4G after hypertonic treatment. Notably, induction of synthesis of heat shock proteins still occurs in cells pretreated with poliovirus 2Apro, suggesting that transcription and translation of these mRNAs takes place even in the presence of cleaved eIF4G. Finally, the synthesis of luciferase was examined in a HeLa cell line bearing the luciferase gene under control of a tetracycline-regulated promoter. Transcription of the luciferase gene and transport of the mRNA to the cytoplasm occurs at control levels in eIF4G-deficient cells. However, luciferase synthesis is strongly inhibited in these cells. These findings indicate that intact eIF4G is necessary for the translation of mRNAs not engaged in translation with the exception of heat shock mRNAs but is not necessary for the translation of mRNAs that are being translated. PMID:10082510

  11. NIa-Pro of Papaya ringspot virus interacts with Carica papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G).

    PubMed

    Gao, Le; Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-02-01

    The interaction of papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G) with Papaya ringspot virus (PRSV) NIa-Pro was validated using a bimolecular fluorescence complementation assay in papaya protoplasts based on the previous yeast two-hybrid assay results. The C-terminal (residues 133-239) fragment of PRSV NIa-Pro and the central domain (residues 59-167) of CpeIF3G were required for effective interaction between NIa-Pro and CpeIF3G as shown by a Sos recruitment yeast two-hybrid system with several deletion mutants of NIa-Pro and CpeIF3G. The central domain of CpeIF3G, which contains a C2HC-type zinc finger motif, is required to bind to other eIFs of the translational machinery. In addition, quantitative real-time reverse transcription PCR assay confirmed that PRSV infection leads to a 2- to 4.5-fold up-regulation of CpeIF3G mRNA in papaya. Plant eIF3G is involved in various stress response by enhancing the translation of resistance-related proteins. It is proposed that the NIa-Pro-CpeIF3G interaction may impair translation preinitiation complex assembly of defense proteins and interfere with host defense.

  12. Eukaryotic Translation Initiation Factor 4G Is Targeted for Proteolytic Cleavage by Caspase 3 during Inhibition of Translation in Apoptotic Cells

    PubMed Central

    Marissen, Wilfred E.; Lloyd, Richard E.

    1998-01-01

    Although much is known about the multiple mechanisms which induce apoptosis, comparatively little is understood concerning the execution phase of apoptosis and the mechanism(s) of cell killing. Several reports have demonstrated that cellular translation is shut off during apoptosis; however, details of the mechanism of translation inhibition are lacking. Translation initiation factor 4G (eIF4G) is a crucial protein required for binding cellular mRNA to ribosomes and is known to be cleaved as the central part of the mechanism of host translation shutoff exerted by several animal viruses. Treatment of HeLa cells with the apoptosis inducers cisplatin and etoposide resulted in cleavage of eIF4G, and the extent of its cleavage correlated with the onset and extent of observed inhibition of cellular translation. The eIF4G-specific cleavage activity could be measured in cell lysates in vitro and was inhibited by the caspase inhibitor Ac-DEVD-CHO at nanomolar concentrations. A combination of in vivo and in vitro inhibitor studies suggest the involvement of one or more caspases in the activation and execution of eIF4G cleavage. Furthermore recombinant human caspase 3 was expressed in bacteria, and when incubated with HeLa cell lysates, was shown to produce the same eIF4G cleavage products as those observed in apoptotic cells. In addition, purified caspase 3 caused cleavage of purified eIF4G, demonstrating that eIF4G could serve as a substrate for caspase 3. Taken together, these data suggest that cellular translation is specifically inhibited during apoptosis by a mechanism involving cleavage of eIF4G, an event dependent on caspase activity. PMID:9819442

  13. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis.

    PubMed

    Gallie, Daniel R

    2016-01-15

    The eukaryotic translation initiation factor (eIF) 4G is required during protein synthesis to promote the assembly of several factors involved in the recruitment of a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, the eIF4G isoforms in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization but both can interact with eIF4A, eIF4B, eIF4E isoforms, and the poly(A)-binding protein. Nevertheless, eIF4G and eIFiso4G from wheat exhibit preferences in the mRNAs they translate optimally. For example, mRNA containing the 5'-leader (called Ω) of tobacco mosaic virus preferentially uses eIF4G in wheat germ lysate. In this study, the eIF4G isoform specificity of Ω was used to examine functional differences of the eIF4G isoforms in Arabidopsis. As in wheat, Ω-mediated translation was reduced in an eif4g null mutant. Loss of the eIFiso4G1 isoform, which is similar in sequence to wheat eIFiso4G, did not substantially affect Ω-mediated translation. However, loss of the eIFiso4G2 isoform substantially reduced Ω-mediated translation. eIFiso4G2 is substantially divergent from eIFiso4G1 and is present only in the Brassicaceae, suggesting a recent evolution. eIFiso4G2 isoforms exhibit sequence-specific differences in regions representing partner protein and RNA binding sites. Loss of any eIF4G isoform also resulted in a substantial reduction in reporter transcript level. These results suggest that eIFiso4G2 appeared late in plant evolution and exhibits more functional similarity with eIF4G than with eIFiso4G1 during Ω-mediated translation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis*

    PubMed Central

    Gallie, Daniel R.

    2016-01-01

    The eukaryotic translation initiation factor (eIF) 4G is required during protein synthesis to promote the assembly of several factors involved in the recruitment of a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, the eIF4G isoforms in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization but both can interact with eIF4A, eIF4B, eIF4E isoforms, and the poly(A)-binding protein. Nevertheless, eIF4G and eIFiso4G from wheat exhibit preferences in the mRNAs they translate optimally. For example, mRNA containing the 5′-leader (called Ω) of tobacco mosaic virus preferentially uses eIF4G in wheat germ lysate. In this study, the eIF4G isoform specificity of Ω was used to examine functional differences of the eIF4G isoforms in Arabidopsis. As in wheat, Ω-mediated translation was reduced in an eif4g null mutant. Loss of the eIFiso4G1 isoform, which is similar in sequence to wheat eIFiso4G, did not substantially affect Ω-mediated translation. However, loss of the eIFiso4G2 isoform substantially reduced Ω-mediated translation. eIFiso4G2 is substantially divergent from eIFiso4G1 and is present only in the Brassicaceae, suggesting a recent evolution. eIFiso4G2 isoforms exhibit sequence-specific differences in regions representing partner protein and RNA binding sites. Loss of any eIF4G isoform also resulted in a substantial reduction in reporter transcript level. These results suggest that eIFiso4G2 appeared late in plant evolution and exhibits more functional similarity with eIF4G than with eIFiso4G1 during Ω-mediated translation. PMID:26578519

  15. Elevated expression of eukaryotic translation initiation factor 4E is associated with proliferation, invasion and acquired resistance to erlotinib in lung cancer.

    PubMed

    Li, Yikun; Fan, Songqing; Koo, Junghui; Yue, Ping; Chen, Zhuo Georgia; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2012-03-01

    Eukaryotic translation initiation factor 4E (eIF4E) is the rate-limiting factor for cap-dependent translation initiation, which is known to regulate oncogenesis. Elevated eIF4E and its negative impact on prognosis in human non-small cell lung cancer (NSCLC) have been reported previously. However, its potential as a therapeutic target and role in regulation of sensitivity to EGFR inhibitors is an area of ongoing investigations. In this study, we detected increased levels of eIF4E in 16 human NSCLC cell lines compared with their normal bronchial epithelial cells. Consistently, human tissue array analysis showed that eIF4E expression was significantly higher in human NSCLC tissues than normal tissues. Inhibition of eIF4E using eIF4E siRNA inhibited the growth and invasion of NSCLC cells. These data suggest that eIF4E overexpression plays a crucial role in positive regulation of the growth and invasion of NSCLC cells. By proteomics, we found that eIF4E levels were elevated in erlotinib-resistant cell lines compared with the sensitive parental cell line. In agreement, assembly of the eIF4F cap complex and several oncogenic proteins regulated by the cap-dependent translation mechanism, were also increased in erlotinib-resistant cells. Thus, erlotinib-resistant cells exhibit elevated eIF4E expression and cap-dependent translation. Inhibition of eIF4F with different means (e.g., gene knockdown) downregulated c-Met expression and partially restored cell sensitivity to erlotinib, suggesting that elevated eIF4E contributes to development of erlotinib resistance, likely through positive regulation of c-Met expression. Taken together, we suggest that elevated eIF4E in NSCLC cells is associated with proliferation, invasion and acquired erlotinib resistance.

  16. Induction of Apoptosis by Double-Stranded-RNA-Dependent Protein Kinase (PKR) Involves the α Subunit of Eukaryotic Translation Initiation Factor 2 and NF-κB

    PubMed Central

    Gil, Jesús; Alcamí, José; Esteban, Mariano

    1999-01-01

    The double-stranded (ds) RNA-dependent protein kinase (PKR) is a key mediator of antiviral effects of interferon (IFN) and an active player in apoptosis induced by different stimuli. The translation initiation factor eIF-2α (α subunit of eukaryotic translation initiation factor 2) and IκBα, the inhibitor of the transcription factor NF-κB, have been proposed as downstream mediators of PKR effects. To evaluate the involvement of NF-κB and eIF-2α in the induction of apoptosis by PKR, we have used vaccinia virus (VV) recombinants that inducibly express PKR concomitantly with a dominant negative mutant of eIF-2α or a repressor form of IκBα. We found that while expression of PKR by a VV vector resulted in extensive inhibition of protein synthesis and induction of apoptosis, coexpression of PKR with a dominant negative mutant of eIF-2α (Ser-51→Ala) reversed both the PKR-mediated translational block and PKR-induced apoptosis. Coexpression of PKR with a repressor form of IκBα (Ser-32,36-Ala) also leads to the inhibition of apoptosis by abolishing NF-κB induction, while translation remains blocked. Treating cells with two different proteasome inhibitors which block IκBα degradation, prevented PKR-induced apoptosis, supporting results from coexpression studies. Biochemical analysis and transient assays revealed that PKR expression by a VV vector induced NF-κB binding and transactivation. In addition, upregulation of Fas mRNA transcription occurred during PKR activation. Our findings provide direct evidence for the involvement of eIF-2α and NF-κB in the induction of apoptosis by PKR. PMID:10373514

  17. Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analyses

    SciTech Connect

    Costa-Neto, Claudio M. . E-mail: claudio@fmrp.usp.br; Parreiras-e-Silva, Lucas T.; Ruller, Roberto; Oliveira, Eduardo B.; Miranda, Antonio; Oliveira, Laerte; Ward, Richard J.

    2006-09-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a protein ubiquitously present in archaea and eukarya, which undergoes a unique two-step post-translational modification called hypusination. Several studies have shown that hypusination is essential for a variety of functional roles for eIF5A, including cell proliferation and synthesis of proteins involved in cell cycle control. Up to now neither a totally selective inhibitor of hypusination nor an inhibitor capable of directly binding to eIF5A has been reported in the literature. The discovery of such an inhibitor might be achieved by computer-aided drug design based on the 3D structure of the human eIF5A. In this study, we present a molecular model for the human eIF5A protein based on the crystal structure of the eIF5A from Leishmania brasiliensis, and compare the modeled conformation of the loop bearing the hypusination site with circular dichroism data obtained with a synthetic peptide of this loop. Furthermore, analysis of amino acid variability between different human eIF5A isoforms revealed peculiar structural characteristics that are of functional relevance.

  18. Antisense oligonucleotide targeting eukaryotic translation initiation factor 4E reduces growth and enhances chemosensitivity of non-small-cell lung cancer cells.

    PubMed

    Thumma, S C; Jacobson, B A; Patel, M R; Konicek, B W; Franklin, M J; Jay-Dixon, J; Sadiq, A; De, A; Graff, J R; Kratzke, R A

    2015-08-01

    Elevated levels of eukaryotic translation initiation factor 4E (eIF4E) enhance translation of many malignancy-related proteins, such as vascular endothelial growth factor (VEGF), c-Myc and osteopontin. In non-small-cell lung cancer (NSCLC), levels of eIF4E are significantly increased compared with normal lung tissue. Here, we used an antisense oligonucleotide (ASO) to inhibit the expression of eIF4E in NSCLC cell lines. eIF4E levels were significantly reduced in a dose-dependent manner in NSCLC cells treated with eIF4E-specific ASO (4EASO) compared with control ASO. Treatment of NSCLC cells with the 4EASO resulted in decreased cap-dependent complex formation, decreased cell proliferation and increased sensitivity to gemcitabine. At the molecular level, repression of eIF4E with ASO resulted in decreased expression of the oncogenic proteins VEGF, c-Myc and osteopontin, whereas expression of β-actin was unaffected. Based on these findings, we conclude that eIF4E-silencing therapy alone or in conjunction with chemotherapy represents a promising approach deserving of further investigation in future NSCLC clinical trials.

  19. Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling.

    PubMed Central

    Valentini, Sandro R; Casolari, Jason M; Oliveira, Carla C; Silver, Pamela A; McBride, Anne E

    2002-01-01

    The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIF5A domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIF5A may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes. PMID:11861547

  20. An eukaryotic translation initiation factor, AteIF5A-2, affects cadmium accumulation and sensitivity in Arabidopsis.

    PubMed

    Xu, Xiao-Yan; Ding, Zhong-Jie; Chen, Lei; Yan, Jin-Ying; Li, Gui-Xin; Zheng, Shao-Jian

    2015-10-01

    Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H2 O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.

  1. RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells.

    PubMed

    Wang, Zheng; Chen, Jinxian; Sun, Jianhua; Cui, Zhe; Wu, Hui

    2012-06-26

    A key factor underlying the control of the cellular growth, size and proliferation involves the regulation of the total protein synthesis. Most often, the initial stages of mRNA translation are rate limiting, which involves a group of eukaryotic translation initiation factors (EIFs). Research advances focused on the inhibition of their expression and activity hold the key to the initiation and progression of tumor and tumor prognosis. We performed RNA interference (RNAi) with the lentivirus vector system to silence the EIF3B gene using the colon cancer cell strain SW1116. The negative control included the normal target cells infected with the negative control virus whereas the knockdown cells included the normal target cells transfected with the RNAi target virus. We tested the inhibition resulting from the decreased expression of EIF3B gene on the proliferation rate of SW1116 cells, including the cell cycle, apoptosis and clonability. Compared with the negative control, the impact of EIF3B gene expression in SW1116 cells on the levels of mRNA and protein in the knockdown group, was significantly inhibited (P < 0.01). Furthermore, the cell proliferation rate and clonability were also significantly inhibited (P < 0.01). The apoptosis rate increased significantly (P < 0.05). A significant decrease in the number of cells in the G1 phase (P < 0.01) and significant increases in S (P < 0.01) and G2 phases (P < 0.05) were observed. The silencing of EIF3B gene expression inhibits the proliferation of colon cancer cells.

  2. Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex

    PubMed Central

    Aitken, Colin Echeverría; Beznosková, Petra; Vlčkova, Vladislava; Chiu, Wen-Ling; Zhou, Fujun; Valášek, Leoš Shivaya; Hinnebusch, Alan G; Lorsch, Jon R

    2016-01-01

    Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA. DOI: http://dx.doi.org/10.7554/eLife.20934.001 PMID:27782884

  3. Hsp90 Binds and Regulates the Ligand-Inducible α Subunit of Eukaryotic Translation Initiation Factor Kinase Gcn2

    PubMed Central

    Donzé, Olivier; Picard, Didier

    1999-01-01

    The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2. PMID:10567567

  4. Conserved initiator proteins in eukaryotes.

    PubMed

    Gavin, K A; Hidaka, M; Stillman, B

    1995-12-08

    The origin recognition complex (ORC), a multisubunit protein identified in Saccharomyces cerevisiae, binds to chromosomal replicators and is required for the initiation of cellular DNA replication. Complementary DNAs (cDNAs) encoding proteins related to the two largest subunits of ORC were cloned from various eukaryotes. The cDNAs encoding proteins related to S. cerevisiae Orc1p were cloned from the budding yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and human cells. These proteins show similarity to regulators of the S and M phases of the cell cycle. Genetic analysis of orc1+ from S. pombe reveals that it is essential for cell viability. The cDNAs encoding proteins related to S. cerevisiae Orc2p were cloned from Arabidopsis thaliana, Caenorhabditis elegans, and human cells. The human ORC-related proteins interact in vivo to form a complex. These studies studies suggest that ORC subunits are conserved and that the role of ORC is a general feature of eukaryotic DNA replication.

  5. N1-guanyl-1,7-diaminoheptane enhances the chemosensitivity of NSCLC cells to cetuximab through inhibition of eukaryotic translation initiation factor 5A2 activation.

    PubMed

    Wang, X; Jiang, R; Cui, E-H; Feng, W-M; Guo, H-H; Gu, D-H; Tang, C-W; Xue, T; Bao, Y

    2016-04-01

    N1-guanyl-1, 7-diaminoheptane (GC7), an inhibitor of deoxyhypusine synthase has been shown to exhibit significant anti-cancer activity. However, the biological role of eukaryotic translation initiation factor 5A2 activation (EIF5A2) and GC7 on drug resistance in non-small cell lung cancer (NSCLC) has not been investigated. In this study, we aimed to investigate the therapeutic effect of GC7 combined with cetuximab in NSCLC therapy. The current study used cell viability assays, EdU incorporation assays, and western blot to detect that the GC7 exhibited synergistic cytotoxicity with cetuximab in NSCLC. CCK-8 assays showed that combined treatment with GC7 and cetuximab significantly inhibited the viabilities in three NSCLC cell lines. In addition, EdU incorporation assays also indicated that GC7 co-treatment remarkably enhanced the cetuximab sensitivity in NSCLC cells. Nevertheless, down-regulation of EIF5A2 diminished the regulatory role of GC7 in cetuximab cytotoxicity. Western blot showed that transfection of EIF5A2 siRNA significantly suppressed the protein expression of EIF5A2 in NSCLC cells. These findings demonstrate that combined treatment with GC7 could enhance cetuximab sensitivity by inhibiting EIF5A2 in NSCLC cells, implying the potential clinical application of GC7 in cetuximab-based chemotherapy for NSCLC patients.

  6. N1-guanyl-1, 7-diaminoheptane enhances the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine via the inhibition of eukaryotic translation initiation factor 5A2.

    PubMed

    Yao, Minya; Hong, Yun; Liu, Yu; Chen, Wei; Wang, Weilin

    2017-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy due to its broad resistance to chemotherapy. Gemcitabine is used as a standard chemotherapeutic drug for PDAC treatment, either alone or in combination with other chemotherapeutics. However, in patients with advanced disease, survival is rarely improved. This study aimed to investigate the therapeutic efficacy of N1-guanyl-1, 7-diaminoheptane (GC7) combined with gemcitabine in PDAC therapy. We measured eukaryotic translation initiation factor 5A2 (eIF5A2) expression and gemcitabine sensitivity in different PDAC cell lines (Panc-1, BxPC-3, and T3-M4). The synergistic cytotoxic effects of gemcitabine combined with GC7 were measured using Cell Counting Kit-8 assays. Western blots were performed to measure eIF5A2 and multi-drug resistance 1 (MDR1) protein expression in PDAC cells. The present findings demonstrated that combined treatment with GC7 and gemcitabine significantly inhibited PDAC cell line viability (P<0.05). EdU incorporation assays also indicated that GC7 co-treatment remarkably enhanced gemcitabine sensitivity in PDAC cells. Furthermore, downregulation of eIF5A2 diminished the regulatory role of GC7 in gemcitabine cytotoxicity. Western blotting data indicated that GC7 downregulated the expression of MDR1 while gemcitabine induced MDR1 upregulation. These findings showed that GC7 combination therapy may enhance the therapeutic efficacy of gemcitabine in PDAC by downregulating MDR1 expression.

  7. The Arabidopsis Eukaryotic Translation Initiation Factor eIF5A-2 Regulates Root Protoxylem Development by Modulating Cytokinin Signaling[W

    PubMed Central

    Ren, Bo; Chen, Qingguo; Hong, Sulei; Zhao, Wenming; Feng, Jian; Feng, Haizhong; Zuo, Jianru

    2013-01-01

    The phytohormone cytokinin regulates various aspects of plant growth and development, including root vascular development. In Arabidopsis thaliana, mutations in the cytokinin signaling components cause misspecification of protoxylem cell files. Auxin antagonizes cytokinin-regulated root protoxylem differentiation by inducing expression of ARABIDOPSIS PHOSPHOTRANSFER PROTEIN6 (AHP6), a negative regulator of cytokinin signaling. However, the molecular mechanism of cytokinin-regulated protoxylem differentiation is not fully understood. Here, we show that a mutation in Arabidopsis FUMONISIN B1-RESISTANT12 (FBR12), which encodes a eukaryotic translation initiation factor 5A, causes defective protoxylem development and reduced sensitivity to cytokinin. FBR12 genetically interacts with the cytokinin receptor CYTOKININ RESPONSE1 (CRE1) and downstream AHP genes, as double mutants show enhanced phenotypes. FBR12 forms a protein complex with CRE1 and AHP1, and cytokinin regulates formation of this protein complex. Intriguingly, ahp6 partially suppresses the fbr12 mutant phenotype, and the fbr12 mutation causes increased expression of AHP6, indicating that FBR12 negatively regulates AHP6. Consistent with this, ectopic expression of FBR12 in the CRE1-expressing domain partially rescues defective protoxylem development in fbr12, and overexpression of AHP6 causes an fbr12-like phenotype. These results define a regulatory role of the highly conserved FBR12 in cytokinin-mediated root protoxylem specification. PMID:24163315

  8. Myxoma Virus Immunomodulatory Protein M156R is a Structural Mimic of Eukaryotic Translation Initiation Factor eIF2 alpha

    SciTech Connect

    Ramelot, Theresa A.; Cort, John R.; Yee, Adelinda; Liu, Furong; Goshe, Michael B.; Edwards, Aled M.; Smith, Richard D.; Arrowsmith, Cheryl H.; Dever, Thomas E.; Kennedy, Michael A.

    2002-10-04

    M156R, the product of the myxoma virus M156R open reading frame, is a protein of unknown function. However, several homologs of M156R from other viruses are immunomodulatory proteins that bind to interferon-induced protein kinase PKR and inhibit phosphorylation of the eukaryotic translation initiation factor eIF2a. In this study, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel b-barrel with two of the strands connected by a long loop and a short a-helix. The similarity between M156R and the predicted S1 motif structure of eIF2a suggests that the viral homologs are pseudosubstrate inhibitors of PKR that mimic eIF2a in order to compete for binding to PKR. A homology modeled structure of the well studied vaccinia virus K3L was generated based on alignment with M156R. Residues important for binding to PKR are conserved residues on the surface of the b-barrel and in the mobile loop, identifying the putative PKR recognition motif.

  9. MicroRNA-216a inhibits the growth and metastasis of oral squamous cell carcinoma by targeting eukaryotic translation initiation factor 4B.

    PubMed

    Li, Lei; Ma, Hui-Qiang

    2015-08-01

    There is increasing evidence to suggest that microRNAs (miRNAs; miRs) are involved in the development of oral squamous cell carcinoma (OSCC). miR-216a has been identified as being involved in tumorigenesis, however, the mechanisms of miR-216a in various types of cancer, either as a tumor suppressor or as an oncogenic miRNA, and the specific regulatory role of miR-216a in OSCC remain to be elucidated. The present study demonstrated that the expression of miR-216a was significantly reduced in OSCC tissues and cell lines. Overexpression of miR-216a significantly suppressed the proliferation, colony formation, migration and invasion of the OSCC cells. In addition, eukaryotic translation initiation factor 4B (EIF4B) was identified as a direct target of miR-216a, which was observed to be upregulated in the OSCC tissues. Furthermore, overexpression of EIF4B significantly attenuated the antitumor effect of miR-216a, and a negative correlation was observed between miR-216a and EIF4B in the OSCC tissues. Taken together, these findings indicated that miR-216a has a suppressive role in OSCC cells by directly targeting EIF4B, and may function as a potential prognostic biomarker and novel therapeutic target.

  10. Hydrogen sulfide modulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation status in the integrated stress-response pathway.

    PubMed

    Yadav, Vinita; Gao, Xing-Huang; Willard, Belinda; Hatzoglou, Maria; Banerjee, Ruma; Kabil, Omer

    2017-08-11

    Hydrogen sulfide (H2S) regulates various physiological processes, including neuronal activity, vascular tone, inflammation, and energy metabolism. Moreover, H2S elicits cytoprotective effects against stressors in various cellular models of injury. However, the mechanism of the signaling pathways mediating the cytoprotective functions of H2S is not well understood. We previously uncovered a heme-dependent metabolic switch for transient induction of H2S production in the trans-sulfuration pathway. Here, we demonstrate that increased endogenous H2S production or its exogenous administration modulates major components of the integrated stress response promoting a metabolic state primed for stress response. We show that H2S transiently increases phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) resulting in inhibition of general protein synthesis. The H2S-induced increase in eIF2α phosphorylation was mediated at least in part by inhibition of protein phosphatase-1 (PP1c) via persulfidation at Cys-127. Overexpression of a PP1c cysteine mutant (C127S-PP1c) abrogated the H2S effect on eIF2α phosphorylation. Our data support a model in which H2S exerts its cytoprotective effect on ISR signaling by inducing a transient adaptive reprogramming of global mRNA translation. Although a transient increase in endogenous H2S production provides cytoprotection, its chronic increase such as in cystathionine β-synthase deficiency may pose a problem. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance.

    PubMed

    Nellist, Charlotte F; Qian, Wei; Jenner, Carol E; Moore, Jonathan D; Zhang, Shujiang; Wang, Xiaowu; Briggs, William H; Barker, Guy C; Sun, Rifei; Walsh, John A

    2014-01-01

    Recessive strain-specific resistance to a number of plant viruses in the Potyvirus genus has been found to be based on mutations in the eukaryotic translation initiation factor 4E (eIF4E) and its isoform, eIF(iso)4E. We identified three copies of eIF(iso)4E in a number of Brassica rapa lines. Here we report broad-spectrum resistance to the potyvirus Turnip mosaic virus (TuMV) due to a natural mechanism based on the mis-splicing of the eIF(iso)4E allele in some TuMV-resistant B. rapa var. pekinensis lines. Of the splice variants, the most common results in a stop codon in intron 1 and a much truncated, non-functional protein. The existence of multiple copies has enabled redundancy in the host plant's translational machinery, resulting in diversification and emergence of the resistance. Deployment of the resistance is complicated by the presence of multiple copies of the gene. Our data suggest that in the B. rapa subspecies trilocularis, TuMV appears to be able to use copies of eIF(iso)4E at two loci. Transformation of different copies of eIF(iso)4E from a resistant B. rapa line into an eIF(iso)4E knockout line of Arabidopsis thaliana proved misleading because it showed that, when expressed ectopically, TuMV could use multiple copies which was not the case in the resistant B. rapa line. The inability of TuMV to access multiple copies of eIF(iso)4E in B. rapa and the broad spectrum of the resistance suggest it may be durable.

  12. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons.

    PubMed

    Nédélec, Stéphane; Foucher, Isabelle; Brunet, Isabelle; Bouillot, Colette; Prochiantz, Alain; Trembleau, Alain

    2004-07-20

    We report that Emx2 homeogene is expressed at the mRNA and protein levels in the adult mouse olfactory neuroepithelium. As expected for a transcription factor, Emx2 is present in the nucleus of immature and mature olfactory sensory neurons. However, the protein is also detected in the axonal compartment of these neurons, both in the olfactory mucosa axon bundles and in axon terminals within the olfactory bulb. Emx2 axonal staining is heterogeneous, suggesting an association with particles. Subcellular fractionations of olfactory bulb synaptosomes, combined with chemical lesions of olfactory neurons, confirm the presence of Emx2 in axon terminals. Significant amounts of Emx2 protein cosediment with high density synaptosomal subfractions containing eukaryotic translation initiation factor 4E (eIF4E). Nonionic detergents and RNase treatments failed to detach eIF4E and Emx2 from these high-density fractions enriched in vesicles and granular structures. In addition, Emx2 and eIF4E can be coimmunoprecipitated from olfactory mucosa and bulb extracts and interact directly, as demonstrated in pull-down experiments. Emx2 axonal localization, association with high-density particles and interaction with eIF4E strongly suggest that this transcription factor has new nonnuclear functions most probably related to the local control of protein translation in the olfactory sensory neuron axons. Finally, we show that two other brain-expressed homeoproteins, Otx2 and Engrailed 2, also bind eIF4E, indicating that several homeoproteins may modulate eIF4E functions in the developing and adult nervous system.

  13. Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis

    PubMed Central

    Dias, Camila A. O.; Cano, Veridiana S. P.; Rangel, Suzana M.; Apponi, Luciano H.; Frigieri, Mariana C.; Muniz, João R. C.; Garcia, Wanius; Park, Myung H.; Garratt, Richard C.; Zanelli, Cleslei F.; Valentini, Sandro R.

    2017-01-01

    Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal α-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins – eIF5AK56A and eIF5AQ22H,L93F – and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression. PMID:18341589

  14. Functional analysis of recently identified mutations in eukaryotic translation initiation factor 2Bɛ (eIF2Bɛ) identified in Chinese patients with vanishing white matter disease.

    PubMed

    Leng, Xuerong; Wu, Ye; Wang, Xuemin; Pan, Yanxia; Wang, Jingmin; Li, Jiao; Du, Li; Dai, Lifang; Wu, Xiru; Proud, Christopher G; Jiang, Yuwu

    2011-04-01

    Vanishing white matter disease (VWM) is the first human hereditary disease known to be caused by defects in initiation of protein synthesis. Gene defects in each of the five subunits of eukaryotic translation initiation factor 2B (eIF2B α-ɛ) are responsible for the disease, although the mechanism of the pathogenesis is not well understood. In our previous study, four novel eIF2Bɛ mutations were found in Chinese patients: p.Asp62Val, p.Cys335Ser, p.Asn376Asp and p.Ser610-Asp613del. Functional analysis was performed on these mutations and the recently reported p.Arg269X. Our data showed that all resulted in a decrease in the guanine nucleotide exchange (GEF) activity of the eIF2B complex. p.Arg269X and p.Ser610-Asp613del mutants displayed the lowest activity, followed by p.Cys335Ser, p.Asn376Asp and p.Asp62Val. p.Arg269X and p.Ser610-Asp613del could not produce stable eIF2Bɛ, leading to almost complete loss-of-function. No evidence was obtained for the three missense mutations in changes in eIF2Bɛ protein level or eIF2BɛSer(540) phosphorylation, and disruption of holocomplex assembly, or binding to eIF2. All patients in our study had the classical phenotype. p.Asp62Val and p.Asn376Asp mutations caused only mildly decreased GEF activity, were probably responsible for relatively mild phenotype in cases of classical VWM.

  15. Fluorofenidone attenuates bleomycin-induced pulmonary fibrosis by inhibiting eukaryotic translation initiation factor 3a (eIF3a) in rats.

    PubMed

    Wu, Yue-Han; Li, Xian-Wei; Li, Wen-Qun; Li, Xiao-Hui; Li, Yuan-Jian; Hu, Gao-Yun; Liu, Zhao-Qian; Li, Dai

    2016-02-15

    Fluorofenidone is a novel derivative of l-mimosine. It has remarkable anti-fibrotic properties. In this study, we established that fluorofenidone ameliorates pulmonary fibrosis (PF) both in vivo and in vitro by specifically inhibiting the expression of eukaryotic translation initiation factor 3a (eIF3a). eIF3a plays an important role in the development and progression of PF. An animal model of PF was induced by intratracheal instillation of bleomycin (5mg/kg) in rats. Rats were orally administered with fluorofenidone (250, 500 mg/kg/d·[i.g.]) and pirfenidone (500 mg/kg/d·[i.g.]) for 28 days. Primary pulmonary fibroblasts were cultured to determine the effect of fluorofenidone on TGF-β1-induced (5 ng/ml) proliferation and differentiation of fibroblasts. The expression/level of eIF3a, TGF-β1, α-SMA, collagen I, and collagen III were analyzed by ELISA, real-time PCR, and western blot. The cell proliferation rate was determined by MTS assay. The results indicate that fluorofenidone significantly improves the pathological changes in lung tissues and reduces the deposition of collagen by inhibiting eIF3a in rats with bleomycin-induced PF. Moreover, in a culture of pulmonary fibroblasts, fluorofenidone decreased the up-regulation of TGF-β1-induced eIF3a by inhibiting the proliferation of cells and reducing the expression of α-SMA, collagen I, and collagen III. These findings suggest that eIF3a is a new and special target of fluorofenidone, which could be potentially used in the development of a drug that treats PF.

  16. MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2

    PubMed Central

    Xu, Guodong; Shao, Guofeng; Pan, Qiaoling; Sun, Lebo; Zheng, Dawei; Li, Minghui; Li, Ni; Shi, Huoshun; Ni, Yiming

    2017-01-01

    MicroRNAs (miRNAs) play a critical role in cancer development and progression. Bioinformatics analyses has identified eukaryotic translation initiation factor 5A2 (eIF5A2) as a target of miR-9. In this study, we attempted to determine whether miR-9 regulates non-small cell lung cancer (NSCLC) cell invasion and migration by targeting eIF5A2 We examined eIF5A2 expression using reverse transcription-quantitative PCR (RT-qPCR) and subsequently transfected A549 and NCI-H1299 NSCLC cells with a miR-9 mimic or miR-9 inhibitor to determine the migration and invasive capability of the cells via wound healing assay and Transwell invasion assay, respectively. E-cadherin and vimentin expression was detected with western blotting. The miR-9 mimic significantly reduced NSCLC cell invasive and metastatic ability, and the miR-9 inhibitor enhanced NSCLC cell migration activity, increasing the number of migrated cells. There was no significant difference between the negative control siRNA and miR-9 mimic groups after knockdown of eIF5A2; western blotting showed that miR-9 regulated E-cadherin and vimentin expression. These data show that miR-9 regulates NSCLC cell invasion and migration through regulating eIF5A2 expression. Taken together, our findings suggest that the mechanism of miR-9-regulated NSCLC cell invasion and migration may be related to epithelial-mesenchymal transition. PMID:28337276

  17. Translational stimulation by reovirus polypeptide sigma 3: substitution for VAI RNA and inhibition of phosphorylation of the alpha subunit of eukaryotic initiation factor 2.

    PubMed Central

    Lloyd, R M; Shatkin, A J

    1992-01-01

    COS cells transfected with plasmids that activate DAI depend on expression of virus-associated I (VAI) RNA to prevent the inhibitory effects of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) kinase (DAI) and restore the translation of vector-derived dihydrofolate reductase mRNA. This VAI RNA requirement could be completely replaced by reovirus polypeptide sigma 3, consistent with its double-stranded RNA (dsRNA)-binding activity. S4 gene transfection of 293 cells also partially restored adenovirus protein synthesis after infection with the VAI-negative dl331 mutant. In dl331-infected 293 cells, eIF-2 alpha was present mainly in the acidic, phosphorylated form, and trans complementation with polypeptide sigma 3 or VAI RNA decreased the proportion of eIF-2 alpha (P) from approximately 85 to approximately 30%. Activation of DAI by addition of dsRNA to extracts of S4 DNA-transfected COS cells required 10-fold-higher levels of dsRNA than extracts made from cells that were not producing polypeptide sigma 3. In extracts of reovirus-infected mouse L cells, the concentration of dsRNA needed to activate DAI was dependent on the viral serotype used for the infection. Although the proportion of eIF-2 alpha (P) was greater than that in uninfected cells, most of the factor remained in the unphosphorylated form, even at 16 h after infection, consistent with the partial inhibition of host protein synthesis observed with all three viral serotypes. The results indicate that reovirus polypeptide sigma 3 participates in the regulation of protein synthesis by modulating DAI and eIF-2 alpha phosphorylation. Images PMID:1433498

  18. Complex formation between deoxyhypusine synthase and its protein substrate, the eukaryotic translation initiation factor 5A (eIF5A) precursor.

    PubMed Central

    Lee, Y B; Joe, Y A; Wolff, E C; Dimitriadis, E K; Park, M H

    1999-01-01

    Deoxyhypusine synthase catalyses the first step in the post-translational synthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl) lysine] in a single cellular protein, the precursor of eukaryotic initiation factor 5A (eIF5A). Deoxyhypusine synthase exists as a tetramer with four potential active sites. The formation of a stable complex between human deoxyhypusine synthase and its protein substrate, human recombinant eIF5A precursor (ec-eIF5A), was examined by affinity chromatography using polyhistidine-tagged (His.Tag) ec-eIF5A, by a gel mobility-shift method, and by analytical ultracentrifugation. Deoxyhypusine synthase was selectively retained by His.Tag-ec-eIF5A immobilized on a resin. The complex of deoxyhypusine synthase and ec-eIF5A was separated from the free enzyme and protein substrate by electrophoresis under non-denaturing conditions. The stoichiometry of the two components in the complex was estimated to be 1 deoxyhypusine synthase tetramer to 1 ec-eIF5A monomer by N-terminal amino acid sequencing of the complex. Equilibrium ultracentrifugation data further supported this 1:1 ratio and indicated a very strong interaction of the enzyme with ec-eIF5A (Kd

  19. Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5' cap.

    PubMed

    Modrak-Wojcik, Anna; Gorka, Michal; Niedzwiecka, Katarzyna; Zdanowski, Konrad; Zuberek, Joanna; Niedzwiecka, Anna; Stolarski, Ryszard

    2013-12-11

    Initiation is the rate-limiting step during mRNA 5' cap-dependent translation, and thus a target of a strict control in the eukaryotic cell. It is shown here by analytical ultracentrifugation and fluorescence spectroscopy that the affinity of the human translation inhibitor, eIF4E-binding protein (4E-BP1), to the translation initiation factor 4E is significantly higher when eIF4E is bound to the cap. The 4E-BP1 binding stabilizes the active eIF4E conformation and, on the other hand, can facilitate dissociation of eIF4E from the cap. These findings reveal the particular allosteric effects forming a thermodynamic cycle for the cooperative regulation of the translation initiation inhibition. © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E

    PubMed Central

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Osborne, Michael J.; Ramteke, Anup; Sun, Qingxiang; Niesman, Ashley; Chook, Yuh Min; Borden, Katherine L. B.

    2016-01-01

    Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m7G)–capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients’ responses. During clinical responses to the m7G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m7G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8–eIF4E complex as a novel therapeutic target. PMID:27114554

  1. Eukaryotic initiation factor 3 (eIF3) and 5’ mRNA leader sequences as agents of translational regulation in Arabidopsis. Final report

    SciTech Connect

    von Arnim, Albrecht G.

    2015-02-04

    Protein synthesis, or translation, consumes a sizable fraction of the cell’s energy budget, estimated at 5% and up to 50% in differentiated and growing cells, respectively. Plants also invest significant energy and biomass to construct and maintain the translation apparatus. Translation is regulated by a variety of external stimuli. Compared to transcriptional control, attributes of translational control include reduced sensitivity to stochastic fluctuation, a finer gauge of control, and more rapid responsiveness to environmental stimuli. Yet, our murky understanding of translational control allows few generalizations. Consequently, translational regulation is underutilized in the context of transgene regulation, although synthetic biologists are now beginning to appropriate RNA-level gene regulation into their regulatory circuits. We also know little about how translational control contributes to the diversity of plant form and function. This project explored how an emerging regulatory mRNA sequence element, upstream open reading frames (uORFs), is integrated with the general translation initiation machinery to permit translational regulation on specific mRNAs.

  2. Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability

    PubMed Central

    Kernohan, Kristin D.; Tétreault, Martine; Liwak-Muir, Urszula; Geraghty, Michael T.; Qin, Wen; Venkateswaran, Sunita; Davila, Jorge; Holcik, Martin; Majewski, Jacek; Richer, Julie; Boycott, Kym M.

    2015-01-01

    Protein translation is an essential cellular process initiated by the association of a methionyl–tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B–PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases. PMID:26307080

  3. Engineering of ribosomal shunt-modulating eukaryotic ON riboswitches by using a cell-free translation system.

    PubMed

    Ogawa, Atsushi

    2015-01-01

    A number of natural and artificial bacterial riboswitches have been reported thus far. However, they generally function only in bacteria, not in eukaryotes. This is because of the differences of expression mechanisms (transcription, translation, and so on) between these two main types of organisms. For example, the mechanism of translation initiation is quite different between bacteria and eukaryotes, especially in ribosome loading on mRNA. While the bacterial ribosome binds to a well-conserved, internal sequence some bases before the start codon to initiate translation, the eukaryotic one is loaded on the 5' terminus with the help of certain eukaryotic initiation factors. This means not only that bacterial riboswitches regulating translation initiation are not available in eukaryotic translation systems, but also that it is physically difficult to construct eukaryotic ON riboswitches that regulate the eukaryotic canonical translation initiation, because an aptamer cannot be inserted upstream of the ribosome loading site. However, the mechanism of noncanonical translation initiation via "ribosomal shunt" enables us to design translation initiation-modulating (specifically, ribosomal shunt-modulating) eukaryotic ON riboswitches. This chapter describes a facile method for engineering these ribosomal shunt-modulating eukaryotic ON riboswitches by using a cell-free translation system. Because these riboswitches do not require hybridization switching thanks to a unique shunting mechanism, they have the major advantages of a low energy requirement for upregulation and relatively straightforward design over common hybridization switch-based ON riboswitches. © 2015 Elsevier Inc. All rights reserved.

  4. Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G.

    PubMed

    Papadopoulos, Evangelos; Jenni, Simon; Kabha, Eihab; Takrouri, Khuloud J; Yi, Tingfang; Salvi, Nicola; Luna, Rafael E; Gavathiotis, Evripidis; Mahalingam, Poornachandran; Arthanari, Haribabu; Rodriguez-Mias, Ricard; Yefidoff-Freedman, Revital; Aktas, Bertal H; Chorev, Michael; Halperin, Jose A; Wagner, Gerhard

    2014-08-05

    The interaction of the eukaryotic translation initiation factor eIF4E with the initiation factor eIF4G recruits the 40S ribosomal particle to the 5' end of mRNAs, facilitates scanning to the AUG start codon, and is crucial for eukaryotic translation of nearly all genes. Efficient recruitment of the 40S particle is particularly important for translation of mRNAs encoding oncoproteins and growth-promoting factors, which often harbor complex 5' UTRs and require efficient initiation. Thus, inhibiting the eIF4E/eIF4G interaction has emerged as a previously unpursued route for developing anticancer agents. Indeed, we discovered small-molecule inhibitors of this eIF4E/eIF4G interaction (4EGIs) that inhibit translation initiation both in vitro and in vivo and were used successfully in numerous cancer-biology and neurobiology studies. However, their detailed molecular mechanism of action has remained elusive. Here, we show that the eIF4E/eIF4G inhibitor 4EGI-1 acts allosterically by binding to a site on eIF4E distant from the eIF4G binding epitope. Data from NMR mapping and high-resolution crystal structures are congruent with this mechanism, where 4EGI-1 attaches to a hydrophobic pocket of eIF4E between β-sheet2 (L60-T68) and α-helix1 (E69-N77), causing localized conformational changes mainly in the H78-L85 region. It acts by unfolding a short 310-helix (S82-L85) while extending α-helix1 by one turn (H78-S82). This unusual helix rearrangement has not been seen in any previous eIF4E structure and reveals elements of an allosteric inhibition mechanism leading to the dislocation of eIF4G from eIF4E.

  5. Activation of the Mammalian Target of Rapamycin Complex 1 is Both Necessary and Sufficient to Stimulate Eukaryotic Initiation Factor 2Bε mRNA Translation and Protein Synthesis

    PubMed Central

    Kubica, Neil; Crispino, Jamie L.; Gallagher, James W.; Kimball, Scot R.; Jefferson, Leonard S.

    2008-01-01

    In a previous study we demonstrated a requirement for activation of mTORC1 in the stimulation of eIF2Bε mRNA translation in skeletal muscle in response to resistance exercise. Although that study established the necessity of mTORC1 activation, the experimental model used did not lend itself readily to address the question of whether or not mTORC1 activation was sufficient to produce the response. Therefore, the present study was designed to address the sufficiency of mTORC1 activation, using cultures of Rat2 fibroblasts in which mTORC1 signaling was repressed by serum/leucine-depletion and stimulated by repletion of leucine and/or IGF-1. Repletion with leucine and IGF-1 caused a shift of eIF2Bε mRNA into actively translating polysomes and a stimulation of new eIF2Bε protein synthesis, but had no effect on mRNAs encoding the other four eIF2B subunits. Stimulation of eIF2Bε translation was reversed by pre-treatment with the mTORC1 inhibitor rapamycin. Exogenous overexpression of FLAG-Rheb, a proximal activator of mTORC1, also caused a re-distribution of eIF2Bε mRNA into polysomes and a stimulation of eIF2Bε protein synthesis. The stimulation of eIF2Bε mRNA translation occurred in the absence of any effect on eIF2Bε mRNA abundance. RNAi-mediated knockdown of eIF2Bε resulted in reduced cellular proliferation, a result that phenocopied the known cytostatic effect of mTORC1 repression. Overall the results demonstrate that activation of mTORC1 is both necessary and sufficient to stimulate eIF2Bε mRNA translation and that this response may represent a novel mechanism through which mTORC1 can affect mRNA translation initiation, rates of protein synthesis, and cellular growth/proliferation. PMID:18556237

  6. Conformational transitions of the catalytic domain of heme-regulated eukaryotic initiation factor 2α kinase, a key translational regulatory molecule.

    PubMed

    Sreejith, R K; Suresh, C G; Bhosale, Siddharth H; Bhavnani, Varsha; Kumar, Avinash; Gaikwad, Sushama M; Pal, Jayanta K

    2012-01-01

    In mammalian cells, the heme-regulated inhibitor (HRI) plays a critical role in the regulation of protein synthesis at the initiation step through phosphorylation of α-subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have cloned and performed biophysical characterization of the kinase catalytic domain (KD) of rabbit HRI. The KD described here comprises kinase 1, the kinase insertion domain (KI) and kinase 2. We report here the existence of an active and stable monomer of HRI (KD). The HRI (KD) containing three tryptophan residues was examined for its conformational transitions occurring under various denaturing conditions using steady-state and time-resolved tryptophan fluorescence, circular dichroism (CD) and hydrophobic dye binding. The parameter A and phase diagram analysis revealed multi-state unfolding and existence of three stable intermediates during guanidine hydrochloride (Gdn-HCl) induced unfolding of HRI (KD). The protein treated with 6 M Gdn-HCl showed collisional and static mechanism of acrylamide quenching and the constants (K(sv) = 3.08 M(-1) and K(s)= 5.62 M(-1)) were resolved using time resolved fluorescence titration. Based on pH, guanidine hydrochloride and temperature mediated transitions, HRI (KD) appears to exemplify a rigid molten globule-like intermediate with compact secondary structure, altered tertiary structure and exposed hydrophobic patches at pH 3.0. The results indicate the inherent structural stability of HRI (KD), a member of the class of stress response proteins.

  7. The elongation, termination, and recycling phases of translation in eukaryotes.

    PubMed

    Dever, Thomas E; Green, Rachel

    2012-07-01

    This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.

  8. PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha.

    PubMed

    Dey, Madhusudan; Trieselmann, Bruce; Locke, Emily G; Lu, Jingfang; Cao, Chune; Dar, Arvin C; Krishnamoorthy, Thanuja; Dong, Jinsheng; Sicheri, Frank; Dever, Thomas E

    2005-04-01

    Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.

  9. Translational Control of Viral Gene Expression in Eukaryotes

    PubMed Central

    Gale, Michael; Tan, Seng-Lai; Katze, Michael G.

    2000-01-01

    As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell. PMID:10839817

  10. Structural modelling and phylogenetic analyses of PgeIF4A2 (Eukaryotic translation initiation factor) from Pennisetum glaucum reveal signature motifs with a role in stress tolerance and development

    PubMed Central

    Agarwal, Aakrati; Mudgil, Yashwanti; Pandey, Saurabh; Fartyal, Dhirendra; Reddy, Malireddy K

    2016-01-01

    Eukaryotic translation initiation factor 4A (eIF4A) is an indispensable component of the translation machinery and also play a role in developmental processes and stress alleviation in plants and animals. Different eIF4A isoforms are present in the cytosol of the cell, namely, eIF4A1, eIF4A2, and eIF4A3 and their expression is tightly regulated in cap-dependent translation. We revealed the structural model of PgeIF4A2 protein using the crystal structure of Homo sapiens eIF4A3 (PDB ID: 2J0S) as template by Modeller 9.12. The resultant PgeIF4A2 model structure was refined by PROCHECK, ProSA, Verify3D and RMSD that showed the model structure is reliable with 77 % amino acid sequence identity with template. Investigation revealed two conserved signatures for ATP-dependent RNA Helicase DEAD-box conserved site (VLDEADEML) and RNA helicase DEAD-box type, Q-motif in sheet-turn-helix and α-helical region respectively. All these conserved motifs are responsible for response during developmental stages and stress tolerance in plants. PMID:28358146

  11. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex.

    PubMed

    Nanda, Jagpreet S; Saini, Adesh K; Muñoz, Antonio M; Hinnebusch, Alan G; Lorsch, Jon R

    2013-02-22

    Accurate recognition of the start codon in an mRNA by the eukaryotic translation preinitiation complex (PIC) is essential for proper gene expression. The process is mediated by eukaryotic translation initiation factors (eIFs) in conjunction with the 40 S ribosomal subunit and (initiator) tRNA(i). Here, we provide evidence that the C-terminal tail (CTT) of eIF1A, which we previously implicated in start codon recognition, moves closer to the N-terminal domain of eIF5 when the PIC encounters an AUG codon. Importantly, this movement is coupled to dissociation of eIF1 from the PIC, a critical event in start codon recognition, and is dependent on the scanning enhancer elements in the eIF1A CTT. The data further indicate that eIF1 dissociation must be accompanied by the movement of the eIF1A CTT toward eIF5 in order to trigger release of phosphate from eIF2, which converts the latter to its GDP-bound state. Our results also suggest that release of eIF1 from the PIC and movement of the CTT of eIF1A are triggered by the same event, most likely accommodation of tRNA(i) in the P site of the 40 S subunit driven by base pairing between the start codon in the mRNA and the anticodon in tRNA(i). Finally, we show that the C-terminal domain of eIF5 is responsible for the factor's activity in antagonizing eIF1 binding to the PIC. Together, our data provide a more complete picture of the chain of molecular events that is triggered when the scanning PIC encounters an AUG start codon in the mRNA.

  12. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death.

    PubMed

    Feng, Haizhong; Chen, Qingguo; Feng, Jian; Zhang, Jian; Yang, Xiaohui; Zuo, Jianru

    2007-07-01

    The eukaryotic translation initiation factor 5A (eIF-5A) is a highly conserved protein found in all eukaryotic organisms. Although originally identified as a translation initiation factor, recent studies in mammalian and yeast (Saccharomyces cerevisiae) cells suggest that eIF-5A is mainly involved in RNA metabolism and trafficking, thereby regulating cell proliferation, cell growth, and programmed cell death. In higher plants, the physiological function of eIF-5A remains largely unknown. Here, we report the identification and characterization of an Arabidopsis (Arabidopsis thaliana) mutant fumonisin B(1)-resistant12 (fbr12). The fbr12 mutant shows an antiapoptotic phenotype and has reduced dark-induced leaf senescence. Moreover, fbr12 displays severe defects in plant growth and development. The fbr12 mutant plant is extreme dwarf with substantially reduced size and number of all adult organs. During reproductive development, fbr12 causes abnormal development of floral organs and defective sporogenesis, leading to the abortion of both female and male germline cells. Microscopic studies revealed that these developmental defects are associated with abnormal cell division and cell growth. Genetic and molecular analyses indicated that FBR12 encodes a putative eIF-5A-2 protein. When expressed in a yeast mutant strain carrying a mutation in the eIF-5A gene, FBR12 cDNA is able to rescue the lethal phenotype of the yeast mutant, indicating that FBR12 is a functional eIF-5A. We propose that FBR12/eIF-5A-2 is fundamental for plant growth and development by regulating cell division, cell growth, and cell death.

  13. Skeletal muscle–specific eukaryotic translation initiation factor 2α phosphorylation controls amino acid metabolism and fibroblast growth factor 21–mediated non–cell-autonomous energy metabolism

    PubMed Central

    Miyake, Masato; Nomura, Akitoshi; Ogura, Atsushi; Takehana, Kenji; Kitahara, Yoshihiro; Takahara, Kazuna; Tsugawa, Kazue; Miyamoto, Chinobu; Miura, Naoko; Sato, Ryosuke; Kurahashi, Kiyoe; Harding, Heather P.; Oyadomari, Miho; Ron, David; Oyadomari, Seiichi

    2016-01-01

    The eukaryotic translation initiation factor 2α (eIF2α) phosphorylation-dependent integrated stress response (ISR), a component of the unfolded protein response, has long been known to regulate intermediary metabolism, but the details are poorly worked out. We report that profiling of mRNAs of transgenic mice harboring a ligand-activated skeletal muscle–specific derivative of the eIF2α protein kinase R-like ER kinase revealed the expected up-regulation of genes involved in amino acid biosynthesis and transport but also uncovered the induced expression and secretion of a myokine, fibroblast growth factor 21 (FGF21), that stimulates energy consumption and prevents obesity. The link between the ISR and FGF21 expression was further reinforced by the identification of a small-molecule ISR activator that promoted Fgf21 expression in cell-based screens and by implication of the ISR-inducible activating transcription factor 4 in the process. Our findings establish that eIF2α phosphorylation regulates not only cell-autonomous proteostasis and amino acid metabolism, but also affects non–cell-autonomous metabolic regulation by induced expression of a potent myokine.—Miyake, M., Nomura, A., Ogura, A., Takehana, K., Kitahara, Y., Takahara, K., Tsugawa, K., Miyamoto, C., Miura, N., Sato, R., Kurahashi, K., Harding, H. P., Oyadomari, M., Ron, D., Oyadomari, S. Skeletal muscle–specific eukaryotic translation initiation factor 2α phosphorylation controls amino acid metabolism and fibroblast growth factor 21–mediated non–cell-autonomous energy metabolism. PMID:26487695

  14. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in Planta.

    PubMed

    Beauchemin, Chantal; Boutet, Nathalie; Laliberté, Jean-François

    2007-01-01

    The RNA genome of Turnip mosaic virus is covalently linked at its 5' end to a viral protein known as VPg. This protein binds to the translation eukaryotic initiation factor iso 4E [eIF(iso)4E]. This interaction has been shown to be important for virus infection, although its exact biological function(s) has not been elucidated. In this study, we investigated the subcellular site of the VPg-eIF(iso)4E interaction using bimolecular fluorescence complementation (BiFC). As a first step, eIF(iso)4E, 6K-VPg-Pro, and VPg-Pro were expressed as full-length green fluorescent protein (GFP) fusions in Nicotiana benthamiana, and their subcellular localizations were visualized by confocal microscopy. eIF(iso)4E was predominantly associated with the endoplasmic reticulum (ER), and VPg-Pro was observed in the nucleus and possibly the nucleolus, while 6K-VPg-Pro-GFP induced the formation of cytoplasmic vesicles budding from the ER. In BiFC experiments, reconstituted green fluorescence was observed throughout the nucleus, with a preferential accumulation in subnuclear structures when the GFP split fragments were fused to VPg-Pro and eIF(iso)4E. On the other hand, the interaction of 6K-VPg-Pro with eIF(iso)4E was observed in cytoplasmic vesicles embedded in the ER. These data suggest that the association of VPg with the translation factor might be needed for two different functions, depending of the VPg precursor involved in the interaction. VPg-Pro interaction with eIF(iso)4E may be involved in perturbing normal cellular functions, while 6K-VPg-Pro interaction with the translation factor may be needed for viral RNA translation and/or replication.

  15. Translation initiation of viral mRNAs.

    PubMed

    López-Lastra, Marcelo; Ramdohr, Pablo; Letelier, Alejandro; Vallejos, Maricarmen; Vera-Otarola, Jorge; Valiente-Echeverría, Fernando

    2010-05-01

    Viruses depend on cells for their replication but have evolved mechanisms to achieve this in an efficient and, in some instances, a cell-type-specific manner. The expression of viral proteins is frequently subject to translational control. The dominant target of such control is the initiation step of protein synthesis. Indeed, during the early stages of infection, viral mRNAs must compete with their host counterparts for the protein synthetic machinery, especially for the limited pool of eukaryotic translation initiation factors (eIFs) that mediate the recruitment of ribosomes to both viral and cellular mRNAs. To circumvent this competition viruses use diverse strategies so that ribosomes can be recruited selectively to viral mRNAs. In this review we focus on the initiation of protein synthesis and outline some of the strategies used by viruses to ensure efficient translation initiation of their mRNAs.

  16. Alternative splicing: a pivotal step between eukaryotic transcription and translation.

    PubMed

    Kornblihtt, Alberto R; Schor, Ignacio E; Alló, Mariano; Dujardin, Gwendal; Petrillo, Ezequiel; Muñoz, Manuel J

    2013-03-01

    Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.

  17. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis.

    PubMed

    Musa, J; Orth, M F; Dallmayer, M; Baldauf, M; Pardo, C; Rotblat, B; Kirchner, T; Leprivier, G; Grünewald, T G P

    2016-09-08

    Protein synthesis activity is abnormally enhanced in cancer cells to support their uncontrolled growth. However, this process needs to be tightly restricted under metabolic stress-a condition often found within the tumor microenvironment-to preserve cell viability. mTORC1 is critical to link protein synthesis activity to nutrient and oxygen levels, in part by controlling the 4E-BP1-eIF4E axis. Whereas mTORC1 and eIF4E are known pro-tumorigenic factors, whose expression or activity is increased in numerous cancers, the role of 4E-BP1 in cancer is not yet definitive. On the one hand, 4E-BP1 has tumor suppressor activity by inhibiting eIF4E and, thus, blocking mRNA translation and proliferation. This is corroborated by elevated levels of phosphorylated and hence inactive 4E-BP1, which are detected in various cancers. On the other hand, 4E-BP1 has pro-tumorigenic functions as it promotes tumor adaptation to metabolic and genotoxic stress by selectively enhancing or preventing the translation of specific transcripts. Here we describe the molecular and cellular functions of 4E-BP1 and highlight the distinct roles of 4E-BP1 in cancer depending on the microenvironmental context of the tumor.

  18. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents

    PubMed Central

    Low, Woon-Kai; Li, Jing; Zhu, Mingzhao; Kommaraju, Sai Shilpa; Shah-Mittal, Janki; Hull, Ken; Liu, Jun O.; Romo, Daniel

    2014-01-01

    A series of pateamine A (1) derivatives were synthesized for structure/activity relationship (SAR) studies and a selection of previous generation analogs were re-evaluated based on current information regarding the mechanism of action of these translation inhibitors. Structural modifications in the new generation of derivatives focused on alternations to the C19-C22 Z, E-diene and the trienyl side chain of the previously described simplified, des-methyl, des-amino pateamine A (DMDAPatA, 2). Derivatives were tested for anti-proliferative activity in cell culture and for inhibition of mammalian cap-dependent translation in vitro. Activity was highly dependent on the rigidity and conformation of the macrolide and the functionality of the side chain. The only well tolerated substitutions were replacement of the N,N-dimethyl amino group found on the side chain of 2 with other tertiary amine groups. SAR reported here suggests that this site may be modified in future studies to improve serum stability, cell-type specificity, and/or specificity towards rapidly proliferating cells. PMID:24359706

  19. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha.

    PubMed

    Hong, Mi-Na; Nam, Ky-Youb; Kim, Kyung Kon; Kim, So-Young; Kim, InKi

    2016-05-01

    By environmental stresses, cells can initiate a signaling pathway in which eukaryotic translation initiation factor 2-alpha (eIF2-α) is involved to regulate the response. Phosphorylation of eIF2-α results in the reduction of overall protein neogenesis, which allows cells to conserve resources and to reprogram energy usage for effective stress control. To investigate the role of eIF2-α in cell stress responses, we conducted a viability-based compound screen under endoplasmic reticulum (ER) stress condition, and identified 1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate (AMC-01) and its derivatives as eIF2-α-inactivating chemical. Molecular characterization of this signaling pathway revealed that AMC-01 induced inactivation of eIF2-α by phosphorylating serine residue 51 in a dose- and time-dependent manner, while the negative control compounds did not affect eIF2-α phosphorylation. In contrast with ER stress induction by thapsigargin, phosphorylation of eIF2-α persisted for the duration of incubation with AMC-01. By pathway analysis, AMC-01 clearly induced the activation of protein kinase RNA-activated (PKR) kinase and nuclear factor-κB (NF-κB), whereas it did not modulate the activity of PERK or heme-regulated inhibitor (HRI). Finally, we could detect a lower protein translation rate in cells incubated with AMC-01, establishing AMC-01 as a potent chemical probe that can regulate eIF2-α activity. We suggest from these data that AMC-01 and its derivative compounds can be used as chemical probes in future studies of the role of eIF2-α in protein synthesis-related cell physiology.

  20. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex.

    PubMed

    Saini, Adesh K; Nanda, Jagpreet S; Martin-Marcos, Pilar; Dong, Jinsheng; Zhang, Fan; Bhardwaj, Monika; Lorsch, Jon R; Hinnebusch, Alan G

    2014-09-01

    eIF5 is the GTPase activating protein (GAP) for the eIF2 · GTP · Met-tRNAi (Met) ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2 · GDP · Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui(-) mutations in numerous factors. We conclude that both of eIF5's functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex

    PubMed Central

    Saini, Adesh K.; Nanda, Jagpreet S.; Martin-Marcos, Pilar; Dong, Jinsheng; Zhang, Fan; Bhardwaj, Monika; Lorsch, Jon R.; Hinnebusch, Alan G.

    2014-01-01

    eIF5 is the GTPase activating protein (GAP) for the eIF2·GTP·Met-tRNAiMet ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2·GDP·Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui− mutations in numerous factors. We conclude that both of eIF5's functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo. PMID:25114053

  2. Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor β1-3 (TGF-β1-3).

    PubMed

    Yue, Michael M; Lv, Kaosheng; Meredith, Stephen C; Martindale, Jennifer L; Gorospe, Myriam; Schuger, Lucia

    2014-12-05

    P311, a conserved 8-kDa intracellular protein expressed in brain, smooth muscle, regenerating tissues, and malignant glioblastomas, represents the first documented stimulator of TGF-β1-3 translation in vitro and in vivo. Here we initiated efforts to define the mechanism underlying P311 function. PONDR® (Predictor Of Naturally Disordered Regions) analysis suggested and CD confirmed that P311 is an intrinsically disordered protein, therefore requiring an interacting partner to acquire tertiary structure and function. Immunoprecipitation coupled with mass spectroscopy identified eIF3 subunit b (eIF3b) as a novel P311 binding partner. Immunohistochemical colocalization, GST pulldown, and surface plasmon resonance studies revealed that P311-eIF3b interaction is direct and has a Kd of 1.26 μm. Binding sites were mapped to the non-canonical RNA recognition motif of eIF3b and a central 11-amino acid-long region of P311, here referred to as eIF3b binding motif. Disruption of P311-eIF3b binding inhibited translation of TGF-β1, 2, and 3, as indicated by luciferase reporter assays, polysome fractionation studies, and Western blot analysis. RNA precipitation assays after UV cross-linking and RNA-protein EMSA demonstrated that P311 binds directly to TGF-β 5'UTRs mRNAs through a previously unidentified RNA recognition motif-like motif. Our results demonstrate that P311 is a novel RNA-binding protein that, by interacting with TGF-βs 5'UTRs and eIF3b, stimulates the translation of TGF-β1, 2, and 3. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Identification of compounds that decrease the fidelity of start codon recognition by the eukaryotic translational machinery

    PubMed Central

    Takacs, Julie E.; Neary, Timothy B.; Ingolia, Nicholas T.; Saini, Adesh K.; Martin-Marcos, Pilar; Pelletier, Jerry; Hinnebusch, Alan G.; Lorsch, Jon R.

    2011-01-01

    Translation initiation in eukaryotes involves more than a dozen protein factors. Alterations in six factors have been found to reduce the fidelity of start codon recognition by the ribosomal preinitiation complex in yeast, a phenotype referred to as Sui−. No small molecules are known that affect the fidelity of start codon recognition. Such compounds would be useful tools for probing the molecular mechanics of translation initiation and its regulation. To find compounds with this effect, we set up a high-throughput screen using a dual luciferase assay in S. cerevisiae. Screening of over 55,000 compounds revealed two structurally related molecules that decrease the fidelity of start codon selection by approximately twofold in the dual luciferase assay. This effect was confirmed using additional in vivo assays that monitor translation from non-AUG start codons. Both compounds increase translation of a natural upstream open reading frame previously shown to initiate translation at a UUG. The compounds were also found to exacerbate increased use of UUG as a start codon (Sui− phenotype) conferred by haploinsufficiency of wild-type eukaryotic initiation factor (eIF) 1, or by mutation in eIF1. Furthermore, the effects of the compounds are suppressed by overexpressing eIF1, which is known to restore the fidelity of start codon selection in strains harboring Sui− mutations in various other initiation factors. Together, these data strongly suggest that the compounds affect the translational machinery itself to reduce the accuracy of selecting AUG as the start codon. PMID:21220547

  4. Identification of compounds that decrease the fidelity of start codon recognition by the eukaryotic translational machinery.

    PubMed

    Takacs, Julie E; Neary, Timothy B; Ingolia, Nicholas T; Saini, Adesh K; Martin-Marcos, Pilar; Pelletier, Jerry; Hinnebusch, Alan G; Lorsch, Jon R

    2011-03-01

    Translation initiation in eukaryotes involves more than a dozen protein factors. Alterations in six factors have been found to reduce the fidelity of start codon recognition by the ribosomal preinitiation complex in yeast, a phenotype referred to as Sui(-). No small molecules are known that affect the fidelity of start codon recognition. Such compounds would be useful tools for probing the molecular mechanics of translation initiation and its regulation. To find compounds with this effect, we set up a high-throughput screen using a dual luciferase assay in S. cerevisiae. Screening of over 55,000 compounds revealed two structurally related molecules that decrease the fidelity of start codon selection by approximately twofold in the dual luciferase assay. This effect was confirmed using additional in vivo assays that monitor translation from non-AUG start codons. Both compounds increase translation of a natural upstream open reading frame previously shown to initiate translation at a UUG. The compounds were also found to exacerbate increased use of UUG as a start codon (Sui(-) phenotype) conferred by haploinsufficiency of wild-type eukaryotic initiation factor (eIF) 1, or by mutation in eIF1. Furthermore, the effects of the compounds are suppressed by overexpressing eIF1, which is known to restore the fidelity of start codon selection in strains harboring Sui(-) mutations in various other initiation factors. Together, these data strongly suggest that the compounds affect the translational machinery itself to reduce the accuracy of selecting AUG as the start codon.

  5. N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial–mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation

    PubMed Central

    Yang, Jinsong; Yu, Haogang; Shen, Mo; Wei, Wei; Xia, Lihong; Zhao, Peng

    2014-01-01

    Drug resistance greatly reduces the efficacy of doxorubicin-based chemotherapy in bladder cancer treatment; however, the underlying mechanisms are poorly understood. We aimed to investigate whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation, exerts synergistic cytotoxicity with doxorubicin in bladder cancer, and whether eIF5A2 is involved in chemoresistance to doxorubicin-based bladder cancer treatment. BIU-87, J82, and UM-UC-3 bladder cancer cells were transfected with eIF5A2 siRNA or negative control siRNA before incubation with doxorubicin alone or doxorubicin plus GC7 for 48 h. Doxorubicin cytotoxicity was enhanced by GC7 in BIU-87, J82, and UM-UC-3 cells. It significantly inhibited activity of eIF5A2, suppressed doxorubicin-induced epithelial–mesenchymal transition in BIU-87 cells, and promoted mesenchymal–epithelial transition in J82 and UM-UC-3 cells. Knockdown of eIF5A2 sensitized bladder cancer cells to doxorubicin, prevented doxorubicin-induced EMT in BIU-87 cells, and encouraged mesenchymal–epithelial transition in J82 and UM-UC-3 cells. Combination therapy with GC7 may enhance the therapeutic efficacy of doxorubicin in bladder cancer by inhibiting eIF5A2 activation and preventing epithelial–mesenchymal transition. PMID:24262005

  6. The eukaryotic translation initiation factor 5, eIF-5, a protein from Zea mays, containing a zinc-finger structure, binds nucleic acids in a zinc-dependent manner.

    PubMed

    López Ribera, I; Ruiz-Avila, L; Puigdomènech, P

    1997-07-18

    A maize cDNA encoding the eukaryotic translation initiation factor 5 (eIF-5) has been isolated from an 8-day-old seedling cDNA library. The 1975 bp cDNA encodes a protein of 451 amino acids, with a predicted molecular weight of 49.04 kDa, and hybridizes to a single sequence in the maize genome. The deduced sequence contains motifs characteristic of proteins belonging to the GPTase superfamily, a zinc finger well conserved in all the protein sequences for eIF-5 reported so far, and a fragment also present in prokaryotic and chloroplast L11 ribosomal protein. Polymer-binding assays have been used to assess the predicted RNA binding property of the protein and to characterize its function. It is shown that the eIF-5-encoded protein binds to single-stranded DNA and to polyuridylic acid and that the binding is dependent on the presence of Zn2+ ions. These results suggest that the zinc-finger structure is involved in the binding of the eIF-5 protein to RNA.

  7. N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition through Inhibition of Eukaryotic Translation Initiation Factor 5A2 Activation.

    PubMed

    Liu, Yu; Liu, Rongrong; Fu, Peifen; Du, Feiya; Hong, Yun; Yao, Minya; Zhang, Xianning; Zheng, Shusen

    2015-01-01

    Approximately 30% of breast cancer does not express the estrogen receptor (ER), which is necessary for endocrine-based therapy approaches. Many studies demonstrated that eukaryotic translation initiation factor 5A2 (eIF5A2) serves as a proliferation-related oncogene in tumorigenic processes. The present study used cell viability assays, EdU incorporation assays, western blot, and immunofluorescence to explore whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eIF5A2 activation, exerts synergistic cytotoxicity with doxorubicin in breast cancer. We found that GC7 enhanced doxorubicin cytotoxicity in ER-negative HCC1937 cells but had little effect in ER-positive MCF-7 and Bcap-37 cells. Administration of GC7 reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in ER-negative breast cancer cells. Knockdown of eIF5A2 by siRNA inhibited the doxorubicin-induced EMT in ER-negative HCC1937 cells. These data demonstrated that GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in estrogen negative breast cancer cells by preventing EMT through inhibition of eIF5A2 activation. © 2015 S. Karger AG, Basel.

  8. Sonic Hedgehog-GLI Family Zinc Finger 1 Signaling Pathway Promotes the Growth and Migration of Pancreatic Cancer Cells by Regulating the Transcription of Eukaryotic Translation Initiation Factor 5A2.

    PubMed

    Xu, Xuanfu; Liu, Hua; Zhang, Hui; Dai, Weiqi; Guo, Chuanyong; Xie, Chuangao; Wei, Shumei; He, Shengli; Xu, Xiaorong

    2015-11-01

    The Hh (hedgehog) signaling pathway is still waiting for further studies because its downstream molecular mechanism remains elusive. Because EIF5A2 (eukaryotic translation initiation factor 5A2) gene was up-regulated upon Gli1 (GLI family zinc finger 1) in pancreatic cancer (PC) cells, we speculated that this pathway might promote tumor progression through regulating EIF5A2. We investigated regulation effect of Hh signaling pathway to EIF5A2 gene transcription by Gli1 knockdown or overexpression in PC cell lines first. Then, the regulation mechanism of Gli1 to EIF5A2 gene was studied at transcription level. Finally, we studied cancer-promoting effects of Gli1-dependent EIF5A2 in PC cells. The data showed that Gli1 up-regulated expression of EIF5A2 by promoting transcription via cis-acting elements in PC cells. Moreover, vimentin gene was up-regulated significantly by sonic hedgehog (SHh)/Gli1 expression increasing, and E-cadherin was significantly reduced. The EIF5A2 knockdown partially reversed cell proliferation and migration induced by artificial SHh overexpression and inhibited epithelial mesenchymal transition process in PC cells with SHh overexpression (P < 0.05). Our data establish a novel transcription mechanism of Gli1 to EIF5A2 gene in cis-regulatory manner in PC cells. Thus, EIF5A2 oncogene effect could be incorporated into cancer-promoting molecular network upon Hh signaling pathway.

  9. Stress Granule Induction after Brain Ischemia Is Independent of Eukaryotic Translation Initiation Factor (eIF) 2α Phosphorylation and Is Correlated with a Decrease in eIF4B and eIF4E Proteins.

    PubMed

    Ayuso, María I; Martínez-Alonso, Emma; Regidor, Ignacio; Alcázar, Alberto

    2016-12-30

    Stress granules (SGs) are cytoplasmic ribonucleoprotein aggregates that are directly connected with the translation initiation arrest response to cellular stresses. Translation inhibition (TI) is observed in transient brain ischemia, a condition that induces persistent TI even after reperfusion, i.e. when blood flow is restored, and causes delayed neuronal death (DND) in selective vulnerable regions. We previously described a connection between TI and DND in the hippocampal cornu ammonis 1 (CA1) in an animal model of transient brain ischemia. To link the formation of SGs to TI and DND after brain ischemia, we investigated SG induction in brain regions with differential vulnerabilities to ischemia-reperfusion (IR) in this animal model. SG formation is triggered by both eukaryotic translation initiation factor (eIF) 2α phosphorylation and eIF4F complex dysfunction. We analyzed SGs by immunofluorescence colocalization of granule-associated protein T-cell internal antigen-1 with eIF3b, eIF4E, and ribosomal protein S6 and studied eIF2 and eIF4F complex. The results showed that IR stress induced SG formation in the CA1 region after 3-day reperfusion, consistent with TI and DND in CA1. SGs were formed independently of eIF2α phosphorylation, and their appearance was correlated with a decrease in the levels of eIF4F compounds, the cap-binding protein eIF4E, and eIF4B, suggesting that remodeling of the eIF4F complex was required for SG formation. Finally, pharmacological protection of CA1 ischemic neurons with cycloheximide decreased the formation of SGs and restored eIF4E and eIF4B levels in CA1. These findings link changes in eIF4B and eIF4E to SG induction in regions vulnerable to death after IR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Suppression of eukaryotic translation termination by selected RNAs.

    PubMed Central

    Carnes, J; Frolova, L; Zinnen, S; Drugeon, G; Phillippe, M; Justesen, J; Haenni, A L; Leinwand, L; Kisselev, L L; Yarus, M

    2000-01-01

    Using selection-amplification, we have isolated RNAs with affinity for translation termination factors eRF1 and eRF1.eRF3 complex. Individual RNAs not only bind, but inhibit eRF1-mediated release of a model nascent chain from eukaryotic ribosomes. There is also significant but weaker inhibition of eRF1-stimulated eRF3 GTPase and eRF3 stimulation of eRF1 release activity. These latter selected RNAs therefore hinder eRF1.eRF3 interactions. Finally, four RNA inhibitors of release suppress a UAG stop codon in mammalian extracts dependent for termination on eRF1 from several metazoan species. These RNAs are therefore new specific inhibitors for the analysis of eukaryotic termination, and potentially a new class of omnipotent termination suppressors with possible therapeutic significance. PMID:11073222

  11. N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation.

    PubMed

    Yang, Jinsong; Yu, Haogang; Shen, Mo; Wei, Wei; Xia, Lihong; Zhao, Peng

    2014-02-01

    Drug resistance greatly reduces the efficacy of doxorubicin-based chemotherapy in bladder cancer treatment; however, the underlying mechanisms are poorly understood. We aimed to investigate whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation, exerts synergistic cytotoxicity with doxorubicin in bladder cancer, and whether eIF5A2 is involved in chemoresistance to doxorubicin-based bladder cancer treatment. BIU-87, J82, and UM-UC-3 bladder cancer cells were transfected with eIF5A2 siRNA or negative control siRNA before incubation with doxorubicin alone or doxorubicin plus GC7 for 48 h. Doxorubicin cytotoxicity was enhanced by GC7 in BIU-87, J82, and UM-UC-3 cells. It significantly inhibited activity of eIF5A2, suppressed doxorubicin-induced epithelial-mesenchymal transition in BIU-87 cells, and promoted mesenchymal-epithelial transition in J82 and UM-UC-3 cells. Knockdown of eIF5A2 sensitized bladder cancer cells to doxorubicin, prevented doxorubicin-induced EMT in BIU-87 cells, and encouraged mesenchymal-epithelial transition in J82 and UM-UC-3 cells. Combination therapy with GC7 may enhance the therapeutic efficacy of doxorubicin in bladder cancer by inhibiting eIF5A2 activation and preventing epithelial-mesenchymal transition. © 2013 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  12. Knockdown of eukaryotic translation initiation factor 4E suppresses cell growth and invasion, and induces apoptosis and cell cycle arrest in a human lung adenocarcinoma cell line.

    PubMed

    Chen, Baofu; Zhang, Bo; Xia, Lilong; Zhang, Jian; Chen, Yu; Hu, Quanteng; Zhu, Chengchu

    2015-12-01

    Eukaryotic translation initiation factor 4E (eIF4E) was shown to be upregulated in malignant human tumors. To assess the effect of downregulation of eIF4E on the proliferation and invasiveness of a human lung adenocarcinoma cell line, a short hairpin (sh)RNA targeting eIF4E was constructed and transfected into A549 human lung adenocarcinoma cells. The expression of eIF4E was determined by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell viability was assessed using a Cell Counting kit‑8, and apoptosis levels and cell cycle distribution were assessed by flow cytometry. Invasiveness was assessed using Transwell chambers. Transfection of the A549 cells with eIF4E targeting shRNA reduced the mRNA and protein expression levels of eIF4E by >70% 48 and 72 h following transfection, and eIF4E targeting shRNA‑transfected cells were significantly less viable compared with the cells transfected with scrambled shRNA. The rate of apoptosis was also significantly increased, significantly more cells were in the G0/G1 phase and fewer were in the S phase, indicating cell cycle arrest. The fraction of transfected cells migrating across Transwell inserts were also reduced. In conclusion, inhibition of eIF4E suppressed cell growth and invasion, induced apoptosis and cell cycle arrest, suggesting that eIF4E may be a potential therapeutic target in lung adenocarcinoma.

  13. Architecture of human translation initiation factor 3.

    PubMed

    Querol-Audi, Jordi; Sun, Chaomin; Vogan, Jacob M; Smith, M Duane; Gu, Yu; Cate, Jamie H D; Nogales, Eva

    2013-06-04

    Eukaryotic translation initiation factor 3 (eIF3) plays a central role in protein synthesis by organizing the formation of the 43S preinitiation complex. Using genetic tag visualization by electron microscopy, we reveal the molecular organization of ten human eIF3 subunits, including an octameric core. The structure of eIF3 bears a close resemblance to that of the proteasome lid, with a conserved spatial organization of eight core subunits containing PCI and MPN domains that coordinate functional interactions in both complexes. We further show that eIF3 subunits a and c interact with initiation factors eIF1 and eIF1A, which control the stringency of start codon selection. Finally, we find that subunit j, which modulates messenger RNA interactions with the small ribosomal subunit, makes multiple independent interactions with the eIF3 octameric core. These results highlight the conserved architecture of eIF3 and how it scaffolds key factors that control translation initiation in higher eukaryotes, including humans.

  14. IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems

    PubMed Central

    Brödel, Andreas K.; Sonnabend, Andrei; Roberts, Lisa O.; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  15. Inhibition of eukaryotic translation by tetratricopeptide-repeat proteins of Orientia tsutsugamushi.

    PubMed

    Bang, Sunyoung; Min, Chan-Ki; Ha, Na-Young; Choi, Myung-Sik; Kim, Ik-Sang; Kim, Yeon-Sook; Cho, Nam-Hyuk

    2016-02-01

    Orientia tsutsugamushi, an obligate intracellular bacterium, is the causative agent of scrub typhus. The genome of Orientia tsutsugamushi has revealed multiple ORFs encoding tetratricopeptide-repeat (TPR) proteins. The TPR protein family has been shown to be involved in a diverse spectrum of cellular functions such as cell cycle control, transcription, protein transport, and protein folding, especially in eukaryotic cells. However, little is known about the function of the TPR proteins in O. tsutsugamushi. To investigate the potential role of TPR proteins in host-pathogen interaction, two oriential TPR proteins were expressed in E. coli and applied for GSTpull down assay. DDX3, a DEAD-box containing RNA helicase, was identified as a specific eukaryotic target of the TPR proteins. Since the RNA helicase is involved in multiple RNA-modifying processes such as initiation of translation reaction, we performed in vitro translation assay in the presence of GST-TPR fusion proteins by using rabbit reticulocyte lysate system. The TPR proteins inhibited in vitro translation of a reporter luciferase in a dose dependent manner whereas the GST control proteins did not. These results suggested TPR proteins of O. tsutsugamushi might be involved in the modulation of eukaryotic translation through the interaction with DDX3 RNA helicase after secretion into host cytoplasm.

  16. Cap-dependent, scanning-free translation initiation mechanisms.

    PubMed

    Haimov, Ora; Sinvani, Hadar; Dikstein, Rivka

    2015-11-01

    Eukaryotic translation initiation is an intricate and multi-step process that includes 43S Pre-Initiation Complex (PIC) assembly, attachment of the PIC to the mRNA, scanning, start codon selection and 60S subunit joining. Translation initiation of most mRNAs involves recognition of a 5'end m7G cap and ribosomal scanning in which the 5' UTR is checked for complementarity with the AUG. There is however an increasing number of mRNAs directing translation initiation that deviate from the predominant mechanism. In this review we summarize the canonical translation initiation process and describe non-canonical mechanisms that are cap-dependent but operate without scanning. In particular we focus on several examples of translation initiation driven either by mRNAs with extremely short 5' leaders or by highly complex 5' UTRs that promote ribosome shunting.

  17. Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression

    PubMed Central

    Sharma, Divya Khandige; Bressler, Kamiko; Patel, Harshil; Balasingam, Nirujah

    2016-01-01

    Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation. PMID:28083147

  18. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  19. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  20. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling

    PubMed Central

    Andreev, Dmitry E.; O'Connor, Patrick B. F.; Loughran, Gary; Dmitriev, Sergey E.; Baranov, Pavel V.; Shatsky, Ivan N.

    2017-01-01

    The development of Ribosome Profiling (RiboSeq) has revolutionized functional genomics. RiboSeq is based on capturing and sequencing of the mRNA fragments enclosed within the translating ribosome and it thereby provides a ‘snapshot’ of ribosome positions at the transcriptome wide level. Although the method is predominantly used for analysis of differential gene expression and discovery of novel translated ORFs, the RiboSeq data can also be a rich source of information about molecular mechanisms of polypeptide synthesis and translational control. This review will focus on how recent findings made with RiboSeq have revealed important details of the molecular mechanisms of translation in eukaryotes. These include mRNA translation sensitivity to drugs affecting translation initiation and elongation, the roles of upstream ORFs in response to stress, the dynamics of elongation and termination as well as details of intrinsic ribosome behavior on the mRNA after translation termination. As the RiboSeq method is still at a relatively early stage we will also discuss the implications of RiboSeq artifacts on data interpretation. PMID:27923997

  1. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    PubMed

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors.

  2. Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode.

    PubMed

    Singh, Chingakham Ranjit; Watanabe, Ryosuke; Chowdhury, Wasimul; Hiraishi, Hiroyuki; Murai, Marcelo J; Yamamoto, Yasufumi; Miles, David; Ikeda, Yuka; Asano, Masayo; Asano, Katsura

    2012-10-01

    During translation initiation in Saccharomyces cerevisiae, an Arg- and Ser-rich segment (RS1 domain) of eukaryotic translation initiation factor 4G (eIF4G) and the Lys-rich segment (K-boxes) of eIF2β bind three common partners, eIF5, eIF1, and mRNA. Here, we report that both of these segments are involved in mRNA recruitment and AUG recognition by distinct mechanisms. First, the eIF4G-RS1 interaction with the eIF5 C-terminal domain (eIF5-CTD) directly links eIF4G to the preinitiation complex (PIC) and enhances mRNA binding. Second, eIF2β-K-boxes increase mRNA binding to the 40S subunit in vitro in a manner reversed by the eIF5-CTD. Third, mutations altering eIF4G-RS1, eIF2β-K-boxes, and eIF5-CTD restore the accuracy of start codon selection impaired by an eIF2β mutation in vivo, suggesting that the mutual interactions of the eIF segments within the PIC prime the ribosome for initiation in response to start codon selection. We propose that the rearrangement of interactions involving the eIF5-CTD promotes mRNA recruitment through mRNA binding by eIF4G and eIF2β and assists the start codon-induced release of eIF1, the major antagonist of establishing tRNA(i)(Met):mRNA binding to the P site.

  3. Use of in vitro translation extract depleted in specific initiation factors for the investigation of translational regulation.

    PubMed

    Gallie, Daniel R

    2007-01-01

    Regulation of gene expression often involves the control of translation mediated through one or more initiation factors that are required for the translation of eukaryotic mRNAs. Genetic and molecular biological approaches can be highly useful in the initial identification of translational regulation, but the use of in vitro translation lysates can be essential in elucidating the details of translational regulatory mechanisms. Wheat germ lysate has long been used for in vitro translation studies. The noncompetitive conditions that prevail in this lysate as it is normally produced, however, preclude the translational regulatory analysis of many mRNAs involving the preferential recruitment of initiation factors. The development of lysate depleted in specific translation initiation factors converts wheat germ lysate from a noncompetitive system to one that is competitive in a fast and simple procedure that enables it to be used in the analysis of many more translational regulatory mechanisms than is currently possible with unfractionated lysate.

  4. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    PubMed

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  5. Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3' cap-independent translation element (BTE).

    PubMed

    Zhao, Pei; Liu, Qiao; Miller, W Allen; Goss, Dixie J

    2017-04-07

    Barley yellow dwarf virus RNA, lacking a 5' cap and a 3' poly(A) tail, contains a cap-independent translation element (BTE) in the 3'-untranslated region that interacts with host translation initiation factor eIF4G. To determine how eIF4G recruits the mRNA, three eIF4G deletion mutants were constructed: (i) eIF4G601-1196, containing amino acids 601-1196, including the putative BTE-binding region, and binding domains for eIF4E, eIF4A, and eIF4B; (ii) eIF4G601-1488, which contains an additional C-terminal eIF4A-binding domain; and (iii) eIF4G742-1196, which lacks the eIF4E-binding site. eIF4G601-1196 binds BTE tightly and supports efficient translation. The helicase complex, consisting of eIF4A, eIF4B, and ATP, stimulated BTE binding with eIF4G601-1196 but not eIF4G601-1488, suggesting that the eIF4A binding domains may serve a regulatory role, with the C-terminal binding site having negative effects. eIF4E binding to eIF4G601-1196 induced a conformational change, significantly increasing the binding affinity to BTE. A comparison of the binding of eIF4G deletion mutants with BTEs containing mutations showed a general correlation between binding affinity and ability to facilitate translation. In summary, these results reveal a new role for the helicase complex in 3' cap-independent translation element-mediated translation and show that the functional core domain of eIF4G plus an adjacent probable RNA-binding domain mediate translation initiation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors.

    PubMed

    Chen, Zhang-Qun; Dong, Jinsheng; Ishimura, Akihiko; Daar, Ira; Hinnebusch, Alan G; Dean, Michael

    2006-03-17

    The ABCE1 gene is a member of the ATP-binding cassette (ABC) multigene family and is composed of two nucleotide binding domains and an N-terminal Fe-S binding domain. The ABCE1 gene encodes a protein originally identified for its inhibition of ribonuclease L, a nuclease induced by interferon in mammalian cells. The protein is also required for the assembly of the HIV and SIV gag polypeptides. However, ABCE1 is one of the most highly conserved proteins and is found in one or two copies in all characterized eukaryotes and archaea. Yeast ABCE1/RLI1 is essential to cell division and interacts with translation initiation factors in the assembly of the pre-initiation complex. We show here that the human ABCE1 protein is essential for in vitro and in vivo translation of mRNA and that it binds to eIF2alpha and eIF5. Inhibition of the Xenopus ABCE1 arrests growth at the gastrula stage of development, consistent with a block in translation. The human ABCE1 gene contains 16 introns, and the extremely high degree of amino acid identity allows the evolution of its introns to be examined throughout eukaryotes. The demonstration that ABCE1 plays a role in vertebrate translation initiation extends the known functions of this highly conserved protein. Translation is a highly regulated process important to development and pathologies such as cancer, making ABCE1 a potential target for therapeutics. The evolutionary analysis supports a model in which an ancestral eukaryote had large number of introns and that many of these introns were lost in non-vertebrate lineages.

  7. Determinants of Initiation Codon Selection during Translation in Mammalian Cells

    PubMed Central

    Matsuda, Daiki; Mauro, Vincent P.

    2010-01-01

    Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, including AUG codon-accessibility and 5′ leader length have been proposed as potential determinants that affect where ribosomes initiate translation. To explore this issue, we performed studies using synthetic mRNAs with two in-frame AUG codons−both in excellent context. Open reading frames initiating at AUG1 and AUG2 encode large and small isoforms of a reporter protein, respectively. Translation of such an mRNA in COS-7 cells was shown to be 5′ cap-dependent and to occur efficiently from both AUG codons. AUG codon-accessibility was modified by using two different elements: an antisense locked nucleic acid oligonucleotide and an exon-junction complex. When either element was used to mask AUG1, the ratio of the proteins synthesized changed, favoring the smaller (AUG2-initiated) protein. In addition, we observed that increased leader length by itself changed the ratio of the proteins and favored initiation at AUG1. These observations demonstrate that initiation codon selection is affected by various factors, including AUG codon-accessibility and 5′ leader length, and is not necessarily determined by the order of AUG codons (5′→3′). The modulation of AUG codon accessibility may provide a powerful means of translation regulation in eukaryotic cells. PMID:21124832

  8. Insights into the Initiation of Eukaryotic DNA Replication.

    PubMed

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  9. Insights into the Initiation of Eukaryotic DNA Replication

    PubMed Central

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2–7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2–7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2–7 complex. Sld3 recruits Cdc45 to Mcm2–7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2–7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2–7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted. PMID:26710261

  10. Evolution of the eukaryotic translation termination system: origins of release factors.

    PubMed

    Inagaki, Y; Ford Doolittle, W

    2000-06-01

    Accurate translation termination is essential for cell viability. In eukaryotes, this process is strictly maintained by two proteins, eukaryotic release factor 1 (eRF1), which recognizes all stop codons and hydrolyzes peptidyl-tRNA, and eukaryotic release factor 3 (eRF3), which is an elongation factor 1alpha (EF-1alpha) homolog stimulating eRF1 activity. To retrace the evolution of this core system, we cloned and sequenced the eRF3 genes from Trichomonas vaginalis (Parabasalia) and Giardia lamblia (Diplomonada), which are generally thought to be "early-diverging eukaryotes," as well as those from two ciliates (Oxytricha trifallax and Euplotes aediculatus). We also determined the sequence of the eRF1 gene for G. lamblia. Surprisingly, the G. lamblia eRF3 appears to have only one domain, corresponding to EF-1alpha, while other eRF3s (including the T. vaginalis protein) have an additional N-terminal domain, of 66-411 amino acids. Considering this novel eRF3 structure and our extensive phylogenetic analyses, we suggest that (1) the current translation termination system in eukaryotes evolved from the archaea-like version, (2) eRF3 was introduced into the system prior to the divergence of extant eukaryotes, including G. lamblia, and (3) G. lamblia might be the first eukaryotic branch among the organisms considered.

  11. GTP-independent tRNA Delivery to the Ribosomal P-site by a Novel Eukaryotic Translation Factor*

    PubMed Central

    Dmitriev, Sergey E.; Terenin, Ilya M.; Andreev, Dmitri E.; Ivanov, Pavel A.; Dunaevsky, Jacov E.; Merrick, William C.; Shatsky, Ivan N.

    2010-01-01

    During translation, aminoacyl-tRNAs are delivered to the ribosome by specialized GTPases called translation factors. Here, we report the tRNA binding to the P-site of 40 S ribosomes by a novel GTP-independent factor eIF2D isolated from mammalian cells. The binding of tRNAiMet occurs after the AUG codon finds its position in the P-site of 40 S ribosomes, the situation that takes place during initiation complex formation on the hepatitis C virus internal ribosome entry site or on some other specific RNAs (leaderless mRNA and A-rich mRNAs with relaxed scanning dependence). Its activity in tRNA binding with 40 S subunits does not require the presence of the aminoacyl moiety. Moreover, the factor possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40 S subunit. The corresponding gene is found in all eukaryotes and includes an SUI1 domain present also in translation initiation factor eIF1. The versatility of translation initiation strategies in eukaryotes is discussed. PMID:20566627

  12. Conservation of the RNA Transport Machineries and Their Coupling to Translation Control across Eukaryotes

    PubMed Central

    Vazquez-Pianzola, Paula; Suter, Beat

    2012-01-01

    Restriction of proteins to discrete subcellular regions is a common mechanism to establish cellular asymmetries and depends on a coordinated program of mRNA localization and translation control. Many processes from the budding of a yeast to the establishment of metazoan embryonic axes and the migration of human neurons, depend on this type of cell polarization. How factors controlling transport and translation assemble to regulate at the same time the movement and translation of transported mRNAs, and whether these mechanisms are conserved across kingdoms is not yet entirely understood. In this review we will focus on some of the best characterized examples of mRNA transport machineries, the “yeast locasome” as an example of RNA transport and translation control in unicellular eukaryotes, and on the Drosophila Bic-D/Egl/Dyn RNA localization machinery as an example of RNA transport in higher eukaryotes. This focus is motivated by the relatively advanced knowledge about the proteins that connect the localizing mRNAs to the transport motors and the many well studied proteins involved in translational control of specific transcripts that are moved by these machineries. We will also discuss whether the core of these RNA transport machineries and factors regulating mRNA localization and translation are conserved across eukaryotes. PMID:22666086

  13. Reinitiation and other unconventional posttermination events during eukaryotic translation.

    PubMed

    Skabkin, Maxim A; Skabkina, Olga V; Hellen, Christopher U T; Pestova, Tatyana V

    2013-07-25

    During ribosome recycling, posttermination complexes are dissociated by ABCE1 and eRF1 into 60S and tRNA/mRNA-associated 40S subunits, after which tRNA and mRNA are released by eIF1/eIF1A, Ligatin, or MCT-1/DENR. Occasionally, 40S subunits remain associated with mRNA and reinitiate at nearby AUGs. We recapitulated reinitiation using a reconstituted mammalian translation system. The presence of eIF2, eIF3, eIF1, eIF1A, and Met-tRNAi(Met) was sufficient for recycled 40S subunits to remain on mRNA, scan bidirectionally, and reinitiate at upstream and downstream AUGs if mRNA regions flanking the stop codon were unstructured. Imposition of 3' directionality additionally required eIF4F. Strikingly, posttermination ribosomes were not stably anchored on mRNA and migrated bidirectionally to codons cognate to the P site tRNA. Migration depended on the mode of peptide release (puromycin > eRF1⋅eRF3) and nature of tRNA and was enhanced by eEF2. The mobility of posttermination ribosomes suggests that some reinitiation events could involve 80S ribosomes rather than 40S subunits. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B.

    PubMed

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-04-03

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Evolutionarily Conserved Binding of Translationally Controlled Tumor Protein to Eukaryotic Elongation Factor 1B*

    PubMed Central

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-01-01

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. PMID:25635048

  16. A set of ligation-independent in vitro translation vectors for eukaryotic protein production

    PubMed Central

    Bardóczy, Viola; Géczi, Viktória; Sawasaki, Tatsuya; Endo, Yaeta; Mészáros, Tamás

    2008-01-01

    Background The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. Results We designed four ligation independent cloning (LIC) vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Conclusion Four newly designed in vitro translation

  17. Translation in Giant Viruses: A Unique Mixture of Bacterial and Eukaryotic Termination Schemes

    PubMed Central

    Jeudy, Sandra; Abergel, Chantal; Claverie, Jean-Michel; Legendre, Matthieu

    2012-01-01

    Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses. PMID:23271980

  18. Translation in giant viruses: a unique mixture of bacterial and eukaryotic termination schemes.

    PubMed

    Jeudy, Sandra; Abergel, Chantal; Claverie, Jean-Michel; Legendre, Matthieu

    2012-01-01

    Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses.

  19. Distinct Structural Features ofCaprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation Initiation Factor 2α, Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mRNAs▿

    PubMed Central

    Solomon, Samuel; Xu, Yaoxian; Wang, Bin; David, Muriel D.; Schubert, Peter; Kennedy, Derek; Schrader, John W.

    2007-01-01

    Caprin-1 is a ubiquitously expressed, well-conserved cytoplasmic phosphoprotein that is needed for normal progression through the G1-S phase of the cell cycle and occurs in postsynaptic granules in dendrites of neurons. We demonstrate that Caprin-1 colocalizes with RasGAP SH3 domain binding protein-1 (G3BP-1) in cytoplasmic RNA granules associated with microtubules and concentrated in the leading and trailing edge of migrating cells. Caprin-1 exhibits a highly conserved motif, F(M/I/L)Q(D/E)Sx(I/L)D that binds to the NTF-2-like domain of G3BP-1. The carboxy-terminal region of Caprin-1 selectively bound mRNA for c-Myc or cyclin D2, this binding being diminished by mutation of the three RGG motifs and abolished by deletion of the RGG-rich region. Overexpression of Caprin-1 induced phosphorylation of eukaryotic translation initiation factor 2α (eIF-2α) through a mechanism that depended on its ability to bind mRNA, resulting in global inhibition of protein synthesis. However, cells lacking Caprin-1 exhibited no changes in global rates of protein synthesis, suggesting that physiologically, the effects of Caprin-1 on translation were limited to restricted subsets of mRNAs. Overexpression of Caprin-1 induced the formation of cytoplasmic stress granules (SG). Its ability to bind RNA was required to induce SG formation but not necessarily its ability to enter SG. The ability of Caprin-1 or G3BP-1 to induce SG formation or enter them did not depend on their association with each other. The Caprin-1/G3BP-1 complex is likely to regulate the transport and translation of mRNAs of proteins involved with synaptic plasticity in neurons and cellular proliferation and migration in multiple cell types. PMID:17210633

  20. Crystal Structure of Hypusine-Containing Translation Factor eIF5A Bound to a Rotated Eukaryotic Ribosome.

    PubMed

    Melnikov, Sergey; Mailliot, Justine; Shin, Byung-Sik; Rigger, Lukas; Yusupova, Gulnara; Micura, Ronald; Dever, Thomas E; Yusupov, Marat

    2016-09-11

    Eukaryotic translation initiation factor eIF5A promotes protein synthesis by resolving polyproline-induced ribosomal stalling. Here, we report a 3.25-Å resolution crystal structure of eIF5A bound to the yeast 80S ribosome. The structure reveals a previously unseen conformation of an eIF5A-ribosome complex and highlights a possible functional link between conformational changes of the ribosome during protein synthesis and the eIF5A-ribosome association.

  1. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome

    PubMed Central

    Schmidt, Christian; Becker, Thomas; Heuer, André; Braunger, Katharina; Shanmuganathan, Vivekanandan; Pech, Markus; Berninghausen, Otto; Wilson, Daniel N.; Beckmann, Roland

    2016-01-01

    During protein synthesis, ribosomes become stalled on polyproline-containing sequences, unless they are rescued in archaea and eukaryotes by the initiation factor 5A (a/eIF-5A) and in bacteria by the homologous protein EF-P. While a structure of EF-P bound to the 70S ribosome exists, structural insight into eIF-5A on the 80S ribosome has been lacking. Here we present a cryo-electron microscopy reconstruction of eIF-5A bound to the yeast 80S ribosome at 3.9 Å resolution. The structure reveals that the unique and functionally essential post-translational hypusine modification reaches toward the peptidyltransferase center of the ribosome, where the hypusine moiety contacts A76 of the CCA-end of the P-site tRNA. These findings would support a model whereby eIF-5A stimulates peptide bond formation on polyproline-stalled ribosomes by stabilizing and orienting the CCA-end of the P-tRNA, rather than by directly contributing to the catalysis. PMID:26715760

  2. Purification of eukaryotic translation factors from wheat germ for reconstitution of protein synthesis.

    PubMed

    Nagano, Hikaru; Sugihara, Shouhei; Takagi, Hisanori; Ogasawara, Tomio; Endo, Yaeta; Takai, Kazuyuki

    2008-01-01

    The wheat germ cell-free protein synthesis is a powerful and versatile method for preparation of proteins based on the accumulated DNA sequence information. As the cell extract used for it contains many factors that are unknown or do not directly involve in protein synthesis, details of the translation reaction is yet to be understood. Therefore, we have decided to try reconstitution of protein synthesis, which would be useful for better understanding of the mechanisms supporting eukaryotic protein synthesis and translational regulation and probably applicable to synthetic biology. In the present study, we fractionated an extract from crude wheat germ according to published protocols to obtain the fractions containing the eukaryotic elongation factors (eEFs) 1A, 1B, and 2. The eEF1A and eEF2 fractions supported polyphenylalanine synthesis.

  3. Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases

    PubMed Central

    de Breyne, Sylvain; Bonderoff, Jennifer M.; Chumakov, Konstantin M.; Lloyd, Richard E.; Hellen, Christopher U. T.

    2008-01-01

    The enteroviruses poliovirus (PV), Coxsackie B virus (CVB) and rhinovirus (HRV) are members of Picornaviridae that inhibit host cell translation early in infection. Enterovirus translation soon predominates in infected cells, but eventually also shuts off. This complex pattern of modulation of translation suggests regulation by a multifactorial mechanism. We report here that eIF5B is proteolytically cleaved during PV and CVB infection of cultured cells, beginning at 3 hours post-infection and increasing thereafter. Recombinant PV, CVB and HRV 3Cpro cleaved purified native rabbit eukaryotic initiation factor (eIF) 5B in vitro at a single site (VVEQ↓G, equivalent to VMEQ↓G479in human eIF5B) that is consistent with the cleavage specificity of enterovirus 3C proteases. Cleavage separates the N-terminal domain of eIF5B from its essential conserved central GTPase and C-terminal domains. 3Cpro-mediated cleavage of eIF5B may thus play an accessory role in the shut-off of translation that occurs in enterovirus-infected cells. PMID:18572216

  4. The Unexpected Roles of Eukaryotic Translation Elongation Factors in RNA Virus Replication and Pathogenesis

    PubMed Central

    Li, Dongsheng; Wei, Ting; Abbott, Catherine M.

    2013-01-01

    SUMMARY The prokaryotic translation elongation factors were identified as essential cofactors for RNA-dependent RNA polymerase activity of the bacteriophage Qβ more than 40 years ago. A growing body of evidence now shows that eukaryotic translation elongation factors (eEFs), predominantly eEF1A, acting in partially characterized complexes sometimes involving additional eEFs, facilitate virus replication. The functions of eEF1A as a protein chaperone and an RNA- and actin-binding protein enable its “moonlighting” roles as a virus replication cofactor. A diverse group of viruses, from human immunodeficiency type 1 and West Nile virus to tomato bushy stunt virus, have adapted to use eEFs as cofactors for viral transcription, translation, assembly, and pathogenesis. Here we review the mechanisms used by viral pathogens to usurp these abundant cellular proteins for their replication. PMID:23699257

  5. Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2

    PubMed Central

    Caster, Stephen Z.; Castillo, Kathrina; Sachs, Matthew S.; Bell-Pedersen, Deborah

    2016-01-01

    The circadian clock has a profound effect on gene regulation, controlling rhythmic transcript accumulation for up to half of expressed genes in eukaryotes. Evidence also exists for clock control of mRNA translation, but the extent and mechanisms for this regulation are not known. In Neurospora crassa, the circadian clock generates daily rhythms in the activation of conserved mitogen-activated protein kinase (MAPK) pathways when cells are grown in constant conditions, including rhythmic activation of the well-characterized p38 osmosensing (OS) MAPK pathway. Rhythmic phosphorylation of the MAPK OS-2 (P-OS-2) leads to temporal control of downstream targets of OS-2. We show that osmotic stress in N. crassa induced the phosphorylation of a eukaryotic elongation factor-2 (eEF-2) kinase, radiation sensitivity complementing kinase-2 (RCK-2), and that RCK-2 is necessary for high-level phosphorylation of eEF-2, a key regulator of translation elongation. The levels of phosphorylated RCK-2 and phosphorylated eEF-2 cycle in abundance in wild-type cells but not in cells deleted for OS-2 or the core clock component FREQUENCY (FRQ). Translation extracts from cells grown in constant conditions show decreased translational activity in the late subjective morning, coincident with the peak in eEF-2 phosphorylation, and rhythmic translation of glutathione S-transferase (GST-3) from constitutive mRNA levels in vivo is dependent on circadian regulation of eEF-2 activity. In contrast, rhythms in phosphorylated eEF-2 levels are not necessary for rhythms in accumulation of the clock protein FRQ, indicating that clock control of eEF-2 activity promotes rhythmic translation of specific mRNAs. PMID:27506798

  6. Rapamycin-sensitive induction of eukaryotic initiation factor 4F in regenerating mouse liver.

    PubMed

    Goggin, Melissa M; Nelsen, Christopher J; Kimball, Scot R; Jefferson, Leonard S; Morley, Simon J; Albrecht, Jeffrey H

    2004-09-01

    Following acute injuries that diminish functional liver mass, the remaining hepatocytes substantially increase overall protein synthesis to meet increased metabolic demands and to allow for compensatory liver growth. Previous studies have not clearly defined the mechanisms that promote protein synthesis in the regenerating liver. In the current study, we examined the regulation of key proteins involved in translation initiation following 70% partial hepatectomy (PH) in mice. PH promoted the assembly of eukaryotic initiation factor (eIF) 4F complexes consisting of eIF4E, eIF4G, eIF4A1, and poly-A binding protein. eIF4F complex formation after PH occurred without detectable changes in eIF4E-binding protein 1 (4E-BP1) phosphorylation or its binding eIF4E. The amount of serine 1108-phosphorylated eIF4G (but not Ser209-phosphorylated eIF4E) was induced following PH. These effects were antagonized by treatment with rapamycin, indicating that target of rapamycin (TOR) activity is required for eIF4F assembly in the regenerating liver. Rapamycin inhibited the induction of cyclin D1, a known eIF4F-sensitive gene, at the level of protein expression but not messenger RNA (mRNA) expression. In conclusion, increased translation initiation mediated by the mRNA cap-binding complex eIF4F contributes to the induction of protein synthesis during compensatory liver growth. Further study of factors that regulate translation initiation may provide insight into mechanisms that govern metabolic homeostasis and regeneration in response to liver injury.

  7. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs.

    PubMed Central

    Kozak, M

    1984-01-01

    5-Noncoding sequences have been tabulated for 211 messenger RNAs from higher eukaryotic cells. The 5'-proximal AUG triplet serves as the initiator codon in 95% of the mRNAs examined. The most conspicuous conserved feature is the presence of a purine (most often A) three nucleotides upstream from the AUG initiator codon; only 6 of the mRNAs in the survey have a pyrimidine in that position. There is a predominance of C in positions -1, -2, -4 and -5, just upstream from the initiator codon. The sequence CCAGCCAUG (G) thus emerges as a consensus sequence for eukaryotic initiation sites. The extent to which the ribosome binding site in a given mRNA matches the -1 to -5 consensus sequence varies: more than half of the mRNAs in the tabulation have 3 or 4 nucleotides in common with the CCACC consensus, but only ten mRNAs conform perfectly. PMID:6694911

  8. Cap-independent translation initiation in Xenopus oocytes.

    PubMed Central

    Keiper, B D; Rhoads, R E

    1997-01-01

    Eukaryotic cellular mRNAs contain a cap at their 5'-ends, but some viral and cellular mRNAs bypass the cap-dependent mechanism of translation initiation in favor of internal entry of ribosomes at specific RNA sequences. Cap-dependent initiation requires intact initiation factor eIF4G (formerly eIF-4gamma, eIF-4Fgamma or p220), whereas internal initiation can proceed with eIF4G cleaved by picornaviral 2A or L proteases. Injection of recombinant coxsackievirus B4 protease 2A into Xenopus oocytes led to complete cleavage of endogenous eIF4G, but protein synthesis decreased by only 35%. Co-injection of edeine reduced synthesis by >90%, indicating that eIF4G-independent synthesis involved ongoing initiation. The spectrum of endogenous proteins synthesized was very similar in the presence or absence of intact eIF4G. Translation of exogenous rabbit globin mRNA, by contrast, was drastically inhibited by eIF4G cleavage. The N-terminal cleavage product of eIF4G (cpN), which binds eIF4E, was completely degraded within 6-12 h, while the C-terminal cleavage product (cpC), which binds to eIF3 and eIF4A, was more stable over the same period. Thus, translation initiation of most endogenous mRNAs inXenopusoocytes requires no eIF4G, or perhaps only cpC, suggesting a cap-independent mechanism. PMID:9016570

  9. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells

    PubMed Central

    Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S.

    2015-01-01

    We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein–RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5′ untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells. PMID:25845589

  10. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells.

    PubMed

    Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S

    2015-04-30

    We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein-RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5' untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells.

  11. Curcumin modulates eukaryotic initiation factors in human lung adenocarcinoma epithelial cells.

    PubMed

    Chen, Lixia; Tian, Guoqing; Shao, Changxia; Cobos, Everardo; Gao, Weimin

    2010-10-01

    Curcumin, a polyphenolic compound, is the active component of Curcuma longa and has been extensively investigated as an anticancer drug that modulates multiple pathways. Eukaryotic initiation factors (eIFs) have been known to play important roles in translation initiation, which controls cell growth and proliferation. Little is known about the effects of curcumin on eIFs in lung cancer. The objective of this study was to exam the curcumin cytotoxic effect and modulation of two major rate-limiting translation initiation factors, including eIF2α and eIF4E protein expression levels in lung adenocarcinoma epithelial cell line A549. Cytotoxicity was measured by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and protein changes were determined by Western blot. A549 cells were treated with 0-240 μM curcumin for 4-96 h. The inhibitory effects of curcumin on cytotoxicity were dose- and time-dependent (P < 0.001). The 50% inhibitory curcumin concentrations (IC50s) at 24, 48, 72, and 96 h were 93, 65, 40, and 24 μM, respectively. Protein expressions of eIF2α, eIF4E, Phospho-4E-BP1 were down-regulated, while Phospho-eIF2α and Phospho-eIF4E were up-regulated after A549 cells were treated with 20 and 40 μM curcumin for 24 h. In addition, the effects of curcumin on these protein expression changes followed a significant dose-response (P < 0.05, trend test). These findings suggest that curcumin could reduce cell viability through prohibiting the initiation of protein synthesis by modulating eIF2α and eIF4E.

  12. Genome-Wide Profiling of Alternative Translation Initiation Sites.

    PubMed

    Gao, Xiangwei; Wan, Ji; Qian, Shu-Bing

    2016-01-01

    Regulation of translation initiation is a central control point in protein synthesis. Variations of start codon selection contribute to protein diversity and complexity. Systemic mapping of start codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we describe a ribosome profiling approach that enables identification of translation initiation sites on a genome-wide scale. By capturing initiating ribosomes using lactimidomycin, this approach permits qualitative and quantitative analysis of alternative translation initiation.

  13. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors

    SciTech Connect

    Ray, B.K.; Lawson, T.G.; Kramer, J.C.; Cladaras, M.H.; Grifo, J.A.; Abramson, R.D.; Merrick, W.C.; Thach, R.E.

    1985-06-25

    Interaction of protein synthesis initiation factors with mRNA has been studied in order to characterize early events in the eukaryotic translation pathway. Individual reovirus mRNAs labeled with /sup 32/P in the alpha position relative to the m7G cap and eukaryotic initiation factor (eIF)-4A, -4B, and -4F purified from rabbit reticulocytes were employed. It was found that eIF-4A causes a structural change in mRNA, as evidenced by a nuclease sensitivity test: addition of high concentrations of eIF-4A greatly increase the nuclease sensitivity of the mRNA, suggesting that this factor can melt or ''unwind'' mRNA structure. ATP is required for this reaction. At low concentrations of eIF-4A, addition of eIF-4B is required for maximal unwinding activity. Thus eIF-4B enhances eIF-4A activity. Addition of eIF-4F also makes the mRNA sensitive to nuclease indicating a similar unwinding role to that of eIF-4A. Stoichiometric comparisons indicate that eIF-4F is more than 20-fold more efficient than eIF-4A in catalyzing this reaction. The unwinding activity of eIF-4F is inhibited by m7GDP, while that of eIF-4A is not. This suggests that eIF-4A functions independent of the 5' cap structure. These results also suggest that the unwinding activity of eIF-4F is located in the 46,000-dalton polypeptide of this complex, which has shown by others to be similar or identical to eIF-4A.

  14. Functional importance of RNA interactions in selection of translation initiation codons.

    PubMed

    Sprengart, M L; Porter, A G

    1997-04-01

    RNA base pairing between the initiation codon and anticodon loop of initiator tRNA is essential but not sufficient for the selection of the 'correct' mRNA translational start site by ribosomes. In prokaryotes, additional RNA interactions between small ribosomal subunit RNA and mRNA sequences just upstream of the start codon can efficiently direct the ribosome to the initiation site. Although there is presently no proof for a similar important ribosomal RNA interaction in eukaryotes, the 5' non-coding regions of their mRNAs and 'consensus sequences' surrounding initiation codons have been shown to be strong determinants for initiation-site selection, but the exact mechanisms are not yet understood. Intramolecular base pairing in mRNA and participation of translation initiation factors can strongly influence the formation of mRNA-small ribosomal subunit-initiator tRNA complexes and modulate translational activities in both prokaryotes and eukaryotes. Only recently has it been appreciated that alternative mechanisms may also contribute to the selection of initiation codons in all organisms. Although direct proof is currently lacking, there is accumulating evidence that additional cis-acting mRNA elements and trans-acting proteins may form specific 'bridging' interactions with ribosomes during translation initiation.

  15. Internal Initiation of Translation of mRNA in the Methylotrophic Yeast Hansenula polymorpha.

    PubMed

    Mardanova, E S; Beletsky, A V; Ravin, N V

    2016-05-01

    Besides regular cap-dependent translation of mRNA, eukaryotes exploit internal initiation of translation driven by internal ribosome entry sites (IRESs). It is supposed that internal initiation provides translation of cellular mRNAs under stress conditions where the cap-dependent initiation is reduced. A number of IRESs have been characterized in mammalian mRNAs, but only a few examples are known in lower eukaryotes, particularly in yeasts. Here we identified two IRESs in the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1. These sites are located in 5'-untranslated regions of genes HPODL_02249 and HPODL_04025 encoding a hypothetical membrane protein and actin-binding protein, respectively. In Saccharomyces cerevisiae cells, both IRESs drive expression of a second gene of a bicistronic mRNA, as well as translation of hairpin-containing monocistronic mRNA. The possibility of spurious splicing or presence of a cryptic promoter in the IRES sequences was ruled out, indicating that expression of a second gene of a bicistronic mRNA was IRES-dependent. We evaluated IRES activity of both elements and found that under normal physiological conditions its contribution to the overall translation of the respective mRNAs in yeast cells is about 0.3-0.4%. Therefore, these results suggest that the IRES-dependent translation initiation mechanism exists in Hansenula polymorpha.

  16. Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control.

    PubMed

    Deplazes, Anna; Möckli, Natalie; Luke, Brian; Auerbach, Daniel; Peter, Matthias

    2009-05-20

    Translation initiation in eukaryotes is accomplished by a large set of translation initiation factors, some of which are regulated by signals monitoring intracellular and environmental conditions. Here, we show that Uri1p is required for efficient translation initiation in budding yeast. Indeed, uri1Delta cells are slow growing, sensitive to translation inhibitors and they exhibit an increased 80S peak in polysome profiles. Moreover, GCN4 translation is derepressed in uri1Delta cells, strongly supporting an initiation defect. Genetic and biochemical experiments indicate that Uri1p interacts with the translation initiation factor eIF1A and promotes ternary complex (TC) recruitment to the 40S subunit. Interestingly, we found that Uri1p is also part of a chaperone-network, including the prefoldin Pfd6p and several other proteins involved in cotranslational quality control such as the ribosome-associated Hsp70 chaperone Ssb1p, the Hsp40 Sis1p and the translation elongation factor eEF1A. Together with genetic data, these interactions indicate that Uri1p may coordinate translation initiation and cotranslational quality control.

  17. Molecular characterization and functional analysis of subunit 7 of eukaryotic initiation factor 3 from Eimeria tenella.

    PubMed

    Han, Hongyu; Kong, Chunlin; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Zhai, Qi; Liang, Siting; Li, Sha; Yang, Shihan; Huang, Bing

    2015-07-01

    The initiation of translation in eukaryotic cells is stimulated by proteins known as initiation factors (eIFs). A structurally complex eIF composed of multiple subunits, eIF3 has been shown to have various functions in translation in a variety of eukaryotes. Until now, little is known about eIF3 in Eimeria tenella. Based on a previously identified expressed sequence tag(EST), we cloned the eIF3 subunit 7 gene (EteIF3s7) from E. tenella by rapid amplification of the cDNA ends(RACE). The 2278-bp full-length complementary DNA of EteIF3s7 contained a 1716-bp open reading frame (ORF) that encoded a 571-amino acid (aa) polypeptide. The EteIF3s7 protein contained the subunit 7 domain that is characteristic of members of the eIF3 zeta superfamily. The levels of EteIF3s7 messenger RNA and protein were higher in second generation merozoites than in sporulated oocysts, unsporulated oocysts, or sporozoites, and the EteIF3s7 protein was barely detectable in unsporulated oocysts. Our immunofluorescence analysis showed that the EteIF3s7 protein was uniformly distributed throughout the cytoplasm of sporozoites. After sporozoites were incubated in complete medium, the EteIF3s7 protein localized to the anterior region of the parasite. Following the first schizogenous division, the protein was uniformly dispersed in trophozoites, immature schizonts, and mature schizonts, and the EteIF3s7 protein was observed to be closely associated with the parasitophorous vacuole membrane. An anti-rEteIF3s7 polyclonal antibody inhibited the ability of E. tenella to invade DF-1 cells, which suggested that EteIF3s7 might be involved in host cell invasion and required for the growth of the parasite in the host. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms

    PubMed Central

    Cridge, Andrew G.; Major, Louise L.; Mahagaonkar, Alhad A.; Poole, Elizabeth S.; Isaksson, Leif A.; Tate, Warren P.

    2006-01-01

    Six diverse prokaryotic and five eukaryotic genomes were compared to deduce whether the protein synthesis termination signal has common determinants within and across both kingdoms. Four of the six prokaryotic and all of the eukaryotic genomes investigated demonstrated a similar pattern of nucleotide bias both 5′ and 3′ of the stop codon. A preferred core signal of 4 nt was evident, encompassing the stop codon and the following nucleotide. Codons decoded by hyper-modified tRNAs were over-represented in the region 5′ to the stop codon in genes from both kingdoms. The origin of the 3′ bias was more variable particularly among the prokaryotic organisms. In both kingdoms, genes with the highest expression index exhibited a strong bias but genes with the lowest expression showed none. Absence of bias in parasitic prokaryotes may reflect an absence of pressure to evolve more efficient translation. Experiments were undertaken to determine if a correlation existed between bias in signal abundance and termination efficiency. In Escherichia coli signal abundance correlated with termination efficiency for UAA and UGA stop codons, but not in mammalian cells. Termination signals that were highly inefficient could be made more efficient by increasing the concentration of the cognate decoding release factor. PMID:16614446

  19. Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote.

    PubMed

    Miyagishima, Shin-ya; Fujiwara, Takayuki; Sumiya, Nobuko; Hirooka, Shunsuke; Nakano, Akihiko; Kabeya, Yukihiro; Nakamura, Mami

    2014-05-08

    Circadian rhythms of cell division have been observed in several lineages of eukaryotes, especially photosynthetic unicellular eukaryotes. However, the mechanism underlying the circadian regulation of the cell cycle and the nature of the advantage conferred remain unknown. Here, using the unicellular red alga Cyanidioschyzon merolae, we show that the G1/S regulator RBR-E2F-DP complex links the G1/S transition to circadian rhythms. Time-dependent E2F phosphorylation promotes the G1/S transition during subjective night and this phosphorylation event occurs independently of cell cycle progression, even under continuous dark or when cytosolic translation is inhibited. Constitutive expression of a phospho-mimic of E2F or depletion of RBR unlinks cell cycle progression from circadian rhythms. These transgenic lines are exposed to higher oxidative stress than the wild type. Circadian inhibition of cell cycle progression during the daytime by RBR-E2F-DP pathway likely protects cells from photosynthetic oxidative stress by temporally compartmentalizing photosynthesis and cell cycle progression.

  20. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates.

    PubMed

    Jones, Grant D; Williams, Ernest P; Place, Allen R; Jagus, Rosemary; Bachvaroff, Tsvetan R

    2015-02-10

    Dinoflagellates are eukaryotes with unusual cell biology and appear to rely on translational rather than transcriptional control of gene expression. The eukaryotic translation initiation factor 4E (eIF4E) plays an important role in regulating gene expression because eIF4E binding to the mRNA cap is a control point for translation. eIF4E is part of an extended, eukaryote-specific family with different members having specific functions, based on studies of model organisms. Dinoflagellate eIF4E diversity could provide a mechanism for dinoflagellates to regulate gene expression in a post-transcriptional manner. Accordingly, eIF4E family members from eleven core dinoflagellate transcriptomes were surveyed to determine the diversity and phylogeny of the eIF4E family in dinoflagellates and related lineages including apicomplexans, ciliates and heterokonts. The survey uncovered eight to fifteen (on average eleven) different eIF4E family members in each core dinoflagellate species. The eIF4E family members from heterokonts and dinoflagellates segregated into three clades, suggesting at least three eIF4E cognates were present in their common ancestor. However, these three clades are distinct from the three previously described eIF4E classes, reflecting diverse approaches to a central eukaryotic function. Heterokonts contain four clades, ciliates two and apicomplexans only a single recognizable eIF4E clade. In the core dinoflagellates, the three clades were further divided into nine sub-clades based on the phylogenetic analysis and species representation. Six of the sub-clades included at least one member from all eleven core dinoflagellate species, suggesting duplication in their shared ancestor. Conservation within sub-clades varied, suggesting different selection pressures. Phylogenetic analysis of eIF4E in core dinoflagellates revealed complex layering of duplication and conservation when compared to other eukaryotes. Our results suggest that the diverse eIF4E family in

  1. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    PubMed Central

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  2. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  3. G-actin provides substrate-specificity to eukaryotic initiation factor 2α holophosphatases

    PubMed Central

    Chen, Ruming; Rato, Cláudia; Yan, Yahui; Crespillo-Casado, Ana; Clarke, Hanna J; Harding, Heather P; Marciniak, Stefan J; Read, Randy J; Ron, David

    2015-01-01

    Dephosphorylation of eukaryotic translation initiation factor 2a (eIF2a) restores protein synthesis at the waning of stress responses and requires a PP1 catalytic subunit and a regulatory subunit, PPP1R15A/GADD34 or PPP1R15B/CReP. Surprisingly, PPP1R15-PP1 binary complexes reconstituted in vitro lacked substrate selectivity. However, selectivity was restored by crude cell lysate or purified G-actin, which joined PPP1R15-PP1 to form a stable ternary complex. In crystal structures of the non-selective PPP1R15B-PP1G complex, the functional core of PPP1R15 made multiple surface contacts with PP1G, but at a distance from the active site, whereas in the substrate-selective ternary complex, actin contributes to one face of a platform encompassing the active site. Computational docking of the N-terminal lobe of eIF2a at this platform placed phosphorylated serine 51 near the active site. Mutagenesis of predicted surface-contacting residues enfeebled dephosphorylation, suggesting that avidity for the substrate plays an important role in imparting specificity on the PPP1R15B-PP1G-actin ternary complex. DOI: http://dx.doi.org/10.7554/eLife.04871.001 PMID:25774600

  4. Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding.

    PubMed

    Sun, Yingjie; Atas, Evrim; Lindqvist, Lisa M; Sonenberg, Nahum; Pelletier, Jerry; Meller, Amit

    2014-07-08

    The eukaryotic translation initiation factor 4AI (eIF4AI) is the prototypical DEAD-box RNA helicase. It has a "dumbbell" structure consisting of two domains connected by a flexible linker. Previous studies demonstrated that eIF4AI, in conjunction with eIF4H, bind to loop structures and repetitively unwind RNA hairpins. Here, we probe the conformational dynamics of eIF4AI in real time using single-molecule FRET. We demonstrate that eIF4AI/eIF4H complex can repetitively unwind RNA hairpins by transitioning between an eIF4AI "open" and a "closed" conformation using the energy derived from ATP hydrolysis. Our experiments directly track the conformational changes in the catalytic cycle of eIF4AI and eIF4H, and this correlates precisely with the kinetics of RNA unwinding. Furthermore, we show that the small-molecule eIF4A inhibitor hippuristanol locks eIF4AI in the closed conformation, thus efficiently inhibiting RNA unwinding. These results indicate that the large conformational changes undertaken by eIF4A during the helicase catalytic cycle are rate limiting.

  5. Phosphorylation of Eukaryotic Initiation Factor-2α during Stress and Encystation in Entamoeba Species.

    PubMed

    Hendrick, Holland M; Welter, Brenda H; Hapstack, Matthew A; Sykes, Steven E; Sullivan, William J; Temesvari, Lesly A

    2016-12-01

    Entamoeba histolytica is an enteric pathogen responsible for amoebic dysentery and liver abscess. It alternates between the host-restricted trophozoite form and the infective environmentally-stable cyst stage. Throughout its lifecycle E. histolytica experiences stress, in part, from host immune pressure. Conversion to cysts is presumed to be a stress-response. In other systems, stress induces phosphorylation of a serine residue on eukaryotic translation initiation factor-2α (eIF2α). This inhibits eIF2α activity resulting in a general decline in protein synthesis. Genomic data reveal that E. histolytica possesses eIF2α (EheIF2α) with a conserved phosphorylatable serine at position 59 (Ser59). Thus, this pathogen may have the machinery for stress-induced translational control. To test this, we exposed cells to different stress conditions and measured the level of total and phospho-EheIF2α. Long-term serum starvation, long-term heat shock, and oxidative stress induced an increase in the level of phospho-EheIF2α, while short-term serum starvation, short-term heat shock, or glucose deprivation did not. Long-term serum starvation also caused a decrease in polyribosome abundance, which is in accordance with the observation that this condition induces phosphorylation of EheIF2α. We generated transgenic cells that overexpress wildtype EheIF2α, a non-phosphorylatable variant of eIF2α in which Ser59 was mutated to alanine (EheIF2α-S59A), or a phosphomimetic variant of eIF2α in which Ser59 was mutated to aspartic acid (EheIF2α-S59D). Consistent with the known functions of eIF2α, cells expressing wildtype or EheIF2α-S59D exhibited increased or decreased translation, respectively. Surprisingly, cells expressing EheIF2α-S59A also exhibited reduced translation. Cells expressing EheIF2α-S59D were more resistant to long-term serum starvation underscoring the significance of EheIF2α phosphorylation in managing stress. Finally, phospho-eIF2α accumulated during

  6. Phosphorylation of Eukaryotic Initiation Factor-2α during Stress and Encystation in Entamoeba Species

    PubMed Central

    Hendrick, Holland M.; Welter, Brenda H.; Sykes, Steven E.; Sullivan, William J.; Temesvari, Lesly A.

    2016-01-01

    Entamoeba histolytica is an enteric pathogen responsible for amoebic dysentery and liver abscess. It alternates between the host-restricted trophozoite form and the infective environmentally-stable cyst stage. Throughout its lifecycle E. histolytica experiences stress, in part, from host immune pressure. Conversion to cysts is presumed to be a stress-response. In other systems, stress induces phosphorylation of a serine residue on eukaryotic translation initiation factor-2α (eIF2α). This inhibits eIF2α activity resulting in a general decline in protein synthesis. Genomic data reveal that E. histolytica possesses eIF2α (EheIF2α) with a conserved phosphorylatable serine at position 59 (Ser59). Thus, this pathogen may have the machinery for stress-induced translational control. To test this, we exposed cells to different stress conditions and measured the level of total and phospho-EheIF2α. Long-term serum starvation, long-term heat shock, and oxidative stress induced an increase in the level of phospho-EheIF2α, while short-term serum starvation, short-term heat shock, or glucose deprivation did not. Long-term serum starvation also caused a decrease in polyribosome abundance, which is in accordance with the observation that this condition induces phosphorylation of EheIF2α. We generated transgenic cells that overexpress wildtype EheIF2α, a non-phosphorylatable variant of eIF2α in which Ser59 was mutated to alanine (EheIF2α-S59A), or a phosphomimetic variant of eIF2α in which Ser59 was mutated to aspartic acid (EheIF2α-S59D). Consistent with the known functions of eIF2α, cells expressing wildtype or EheIF2α-S59D exhibited increased or decreased translation, respectively. Surprisingly, cells expressing EheIF2α-S59A also exhibited reduced translation. Cells expressing EheIF2α-S59D were more resistant to long-term serum starvation underscoring the significance of EheIF2α phosphorylation in managing stress. Finally, phospho-eIF2α accumulated during

  7. Use of Eukaryotic Native Small Ribosomal Subunits for the Translation of Globin Messenger RNA

    PubMed Central

    Freienstein, Christoph; Blobel, Günter

    1974-01-01

    A highly active in vitro system for the translation of globin mRNA, resulting in more than 10 rounds of translation, is described. The reconstituted system consists of native small ribosomal subunits of rabbit reticulocytes (as a source of initiation factors as well as small ribosomal subunits), large subunits derived from rat liver polysomes by the puromycin-KCl procedure, and a pH 5 fraction obtained from a Krebs ascites cell high speed supernatant. In this system no differences were found between globin messenger ribonucleoprotein and globin mRNA. Images PMID:4530315

  8. The role of eukaryotic initiation factor 2alpha during the metabolic depression associated with estivation.

    PubMed

    Pakay, Julian L; Hobbs, Andrew A; Kimball, Scot R; Guppy, Michael

    2003-07-01

    We have investigated the role of eukaryotic initiation factor 2alpha (eIF2alpha) in two estivating organisms previously shown to downregulate protein synthesis during metabolic depression, the land snail Helix aspersa Müller and the desert frog Neobatrachus sutor Main 1957. We have developed a method using a single antibody (which binds specifically to the phosphorylated, conserved phosphorylation region) by which the total levels of eIF2alpha and the ratio of phosphorylated eIF2alpha [eIF2alpha(P)] to total (phosphorylated and unphosphorylated) eIF2alpha can be determined. In H. aspersa, we have shown that the level of eIF2alpha mRNA expression is unchanged between the awake and estivating states. The amount of total eIF2alpha is the same in the estivating and awake states, and eIF2alpha(P) is undetectable and must represent < or =10% of total eIF2alpha in both states. Conversely, in N. sutor during estivation, the level of total eIF2alpha increases approximately 1.6-fold and the ratio of eIF2alpha(P)/eIF2alpha increases from 0.22+/-0.11 to 0.52+/-0.08, implicating eIF2alpha phosphorylation in the downregulation of protein synthesis during estivation in this animal. The differences in the amounts of eIF2alpha and the level of its phosphorylation between these two species also suggest possible differences either in the mechanism by which protein synthesis is downregulated during estivation or in the sensitivity of the initiation of translation to eIF2alpha(P) levels.

  9. Norovirus-mediated modification of the translational landscape via virus and host-induced cleavage of translation initiation factors.

    PubMed

    Emmott, Edward; Sorgeloos, Frederic; Caddy, Sarah L; Vashist, Surender; Sosnovtsev, Stanislav; Lloyd, Richard; Heesom, Kate; Locker, Nicolas; Goodfellow, Ian

    2017-01-13

    Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded VPg protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyse changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.

  10. Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania.

    PubMed

    Yoffe, Yael; Zuberek, Joanna; Lerer, Asaf; Lewdorowicz, Magdalena; Stepinski, Janusz; Altmann, Michael; Darzynkiewicz, Edward; Shapira, Michal

    2006-12-01

    The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.

  11. The initiation of eukaryotic and prokaryotic protein synthesis: a selective accessibility and multisubstrate enzyme reaction.

    PubMed

    Nakamoto, Tokumasa

    2007-11-15

    An extension of our unique accessibility hypothesis for the initiation of protein synthesis is proposed following a review of the initiation of protein synthesis. The E. coli model initiation sequence generated by computer from 68 initiation sequences and the eukaryotic consensus initiation sequence derived by non-computer analysis of 211 initiation sequences do not contain a specific base in any position; they are only assigned preferred bases. The initiation site, in other words, is a varied sequence of preferred bases and its sequence is non-unique. This indicates that the ribosomal recognition of the initiation site may be the result of multiple interactions that are cooperative and cumulative and typical of multisubstrate enzymes. Because of this characteristic, the model of multisubstrate enzymes with broad substrate specificity is proposed as a paradigm for the initiation of protein synthesis. As predicted by this model, changes in the leader and downstream sequences that improve the agreement with the preferred base sequence do indeed enhance the rate of protein synthesis. The eukaryotic/prokaryotic hybrid studies show a considerable overlap in the specificities of the two groups of ribosomes. The scanning of the mRNA from the 5'-end postulated by the scanning hypothesis is not a necessary step since eukaryotic ribosomes are able to bind to internal mRNA sites and initiate synthesis. Our unique accessibility hypothesis, which is extended by coupling cooperative and cumulative specificity in ribosomal function, is referred to for brevity as the cumulative specificity hypothesis. The hypothesis actually postulates a selective accessibility and cooperative-cumulative specificity mechanism; it is able to account for the behavior of both eukaryotic and prokaryotic initiation of protein synthesis. From another perspective, the hypothesis can be regarded as providing a mechanism that enables ribosomes to recognize the IS in the absence of a unique initiation

  12. Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1.

    PubMed

    Wu, Huiling; Shi, Yan; Lin, Ying; Qian, Wei; Yu, Yao; Huo, Keke

    2011-11-01

    SIAH-1, an E3 ubiquitin ligase, plays an important role in regulating cell cycle, tumorigenesis and several neurodegenerative diseases. In this study, we found a novel SIAH-1-interacting protein, EEF1D (Eukaryotic translation elongation factor 1 delta). The interaction was confirmed in vitro and in vivo, and both proteins were co-localized in the cytoplasm. The Cys-rich domain of SIAH-1 was essential for its interaction with EEF1D. Overexpressing SIAH-1 had no effect on the protein level of EEF1D, implying that EFF1D is not the substrate of SIAH-1. In contrast, the protein level of SIAH-1 increased significantly in the cells overexpressing EEF1D. Increased amount of SIAH-1 was caused by the EEF1D-mediated inhibition of auto-ubiquitination and degradation of SIAH-1. Furthermore, EEF1D was able to inhibit the degradation of HPH2, a known substrate of SIAH-1. Taken together, our data suggest EFF1D functions as a novel negative regulator of SIAH-1.

  13. Eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay by two genetically separable mechanisms.

    PubMed

    Joncourt, Raphael; Eberle, Andrea B; Rufener, Simone C; Mühlemann, Oliver

    2014-01-01

    Nonsense-mediated mRNA decay (NMD), which is best known for degrading mRNAs with premature termination codons (PTCs), is thought to be triggered by aberrant translation termination at stop codons located in an environment of the mRNP that is devoid of signals necessary for proper termination. In mammals, the cytoplasmic poly(A)-binding protein 1 (PABPC1) has been reported to promote correct termination and therewith antagonize NMD by interacting with the eukaryotic release factors 1 (eRF1) and 3 (eRF3). Using tethering assays in which proteins of interest are recruited as MS2 fusions to a NMD reporter transcript, we show that the three N-terminal RNA recognition motifs (RRMs) of PABPC1 are sufficient to antagonize NMD, while the eRF3-interacting C-terminal domain is dispensable. The RRM1-3 portion of PABPC1 interacts with eukaryotic initiation factor 4G (eIF4G) and tethering of eIF4G to the NMD reporter also suppresses NMD. We identified the interactions of the eIF4G N-terminus with PABPC1 and the eIF4G core domain with eIF3 as two genetically separable features that independently enable tethered eIF4G to inhibit NMD. Collectively, our results reveal a function of PABPC1, eIF4G and eIF3 in translation termination and NMD suppression, and they provide additional evidence for a tight coupling between translation termination and initiation.

  14. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5.

    PubMed

    Loughran, Gary; Sachs, Matthew S; Atkins, John F; Ivanov, Ivaylo P

    2012-04-01

    An AUG in an optimal nucleotide context is the preferred translation initiation site in eukaryotic cells. Interactions among translation initiation factors, including eIF1 and eIF5, govern start codon selection. Experiments described here showed that high intracellular eIF5 levels reduced the stringency of start codon selection in human cells. In contrast, high intracellular eIF1 levels increased stringency. High levels of eIF5 induced translation of inhibitory upstream open reading frames (uORFs) in eIF5 mRNA that initiate with AUG codons in conserved poor contexts. This resulted in reduced translation from the downstream eIF5 start codon, indicating that eIF5 autoregulates its own synthesis. As with eIF1, which is also autoregulated through translation initiation, features contributing to eIF5 autoregulation show deep evolutionary conservation. The results obtained provide the basis for a model in which auto- and cross-regulation of eIF5 and eIF1 translation establish a regulatory feedback loop that would stabilize the stringency of start codon selection.

  15. PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism.

    PubMed

    Liang, Hui; He, Shiming; Yang, Jingyi; Jia, Xinying; Wang, Pan; Chen, Xi; Zhang, Zhong; Zou, Xiajuan; McNutt, Michael A; Shen, Wen Hong; Yin, Yuxin

    2014-05-06

    PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Alternative Translation Initiation of a Haloarchaeal Serine Protease Transcript Containing Two In-Frame Start Codons

    PubMed Central

    Tang, Wei; Wu, Yufeng; Li, Moran; Wang, Jian; Mei, Sha

    2016-01-01

    ABSTRACT Recent studies have shown that haloarchaea employ leaderless and Shine-Dalgarno (SD)-less mechanisms for translation initiation of leaderless transcripts with a 5′ untranslated region (5′ UTR) of <10 nucleotides (nt) and leadered transcripts with a 5′ UTR of ≥10 nt, respectively. However, whether the two mechanisms can operate on the same naturally occurring haloarchaeal transcript carrying multiple potential start codons is unknown. In this study, the transcript of the sptA gene (encoding an extracellular serine protease of Natrinema sp. strain J7-2) was experimentally determined and found to contain two potential in-frame AUG codons (AUG1 and AUG2) located 5 and 29 nt, respectively, downstream of the transcription start site. Mutational analysis revealed that both AUGs can function as the translation start codon for production of active SptA, although AUG1 is more efficient than AUG2 for translation initiation. Insertion of a stable stem-loop structure between the two AUGs completely abolished initiation at AUG1 but did not affect initiation at AUG2, indicating that AUG2-initiated translation does not involve ribosome scanning from the 5′ end of the transcript. Furthermore, the efficiency of AUG2-initiated translation was not influenced by an upstream SD-like sequence. In addition, both AUG1 and AUG2 contribute to transcript stability, probably by recruiting ribosomes to protect the transcript against degradation. These data suggest that depending on which of two in-frame start codons is used, the sptA transcript can act as either a leaderless or a leadered transcript for SptA production in haloarchaea. IMPORTANCE In eukaryotes and bacteria, alternative translation start sites contribute to proteome complexity and can be used as a functional mechanism to increase translation efficiency. However, little is known about alternative translation initiation in archaea. Our results demonstrate that leaderless and SD-less mechanisms can be used for

  17. Alternative Translation Initiation of a Haloarchaeal Serine Protease Transcript Containing Two In-Frame Start Codons.

    PubMed

    Tang, Wei; Wu, Yufeng; Li, Moran; Wang, Jian; Mei, Sha; Tang, Bing; Tang, Xiao-Feng

    2016-07-01

    Recent studies have shown that haloarchaea employ leaderless and Shine-Dalgarno (SD)-less mechanisms for translation initiation of leaderless transcripts with a 5' untranslated region (5' UTR) of <10 nucleotides (nt) and leadered transcripts with a 5' UTR of ≥10 nt, respectively. However, whether the two mechanisms can operate on the same naturally occurring haloarchaeal transcript carrying multiple potential start codons is unknown. In this study, the transcript of the sptA gene (encoding an extracellular serine protease of Natrinema sp. strain J7-2) was experimentally determined and found to contain two potential in-frame AUG codons (AUG(1) and AUG(2)) located 5 and 29 nt, respectively, downstream of the transcription start site. Mutational analysis revealed that both AUGs can function as the translation start codon for production of active SptA, although AUG(1) is more efficient than AUG(2) for translation initiation. Insertion of a stable stem-loop structure between the two AUGs completely abolished initiation at AUG(1) but did not affect initiation at AUG(2), indicating that AUG(2)-initiated translation does not involve ribosome scanning from the 5' end of the transcript. Furthermore, the efficiency of AUG(2)-initiated translation was not influenced by an upstream SD-like sequence. In addition, both AUG(1) and AUG(2) contribute to transcript stability, probably by recruiting ribosomes to protect the transcript against degradation. These data suggest that depending on which of two in-frame start codons is used, the sptA transcript can act as either a leaderless or a leadered transcript for SptA production in haloarchaea. In eukaryotes and bacteria, alternative translation start sites contribute to proteome complexity and can be used as a functional mechanism to increase translation efficiency. However, little is known about alternative translation initiation in archaea. Our results demonstrate that leaderless and SD-less mechanisms can be used for translation

  18. Translation from unconventional 5′ start sites drives tumour initiation

    PubMed Central

    Sendoel, Ataman; Dunn, Joshua G.; Rodriguez, Edwin H.; Naik, Shruti; Gomez, Nicholas C.; Hurwitz, Brian; Levorse, John; Dill, Brian D.; Schramek, Daniel; Molina, Henrik; Weissman, Jonathan S.; Fuchs, Elaine

    2017-01-01

    We are just beginning to understand how translational control affects tumour initiation and malignancy. Here we use an epidermis-specific, in vivo ribosome profiling strategy to investigate the translational landscape during the transition from normal homeostasis to malignancy. Using a mouse model of inducible SOX2, which is broadly expressed in oncogenic RAS-associated cancers, we show that despite widespread reductions in translation and protein synthesis, certain oncogenic mRNAs are spared. During tumour initiation, the translational apparatus is redirected towards unconventional upstream initiation sites, enhancing the translational efficiency of oncogenic mRNAs. An in vivo RNA interference screen of translational regulators revealed that depletion of conventional eIF2 complexes has adverse effects on normal but not oncogenic growth. Conversely, the alternative initiation factor eIF2A is essential for cancer progression, during which it mediates initiation at these upstream sites, differentially skewing translation and protein expression. Our findings unveil a role for the translation of 5′ untranslated regions in cancer, and expose new targets for therapeutic intervention. PMID:28077873

  19. Structural and mechanistic insights into hepatitis C viral translation initiation.

    PubMed

    Fraser, Christopher S; Doudna, Jennifer A

    2007-01-01

    Hepatitis C virus uses an internal ribosome entry site (IRES) to control viral protein synthesis by directly recruiting ribosomes to the translation-start site in the viral mRNA. Structural insights coupled with biochemical studies have revealed that the IRES substitutes for the activities of translation-initiation factors by binding and inducing conformational changes in the 40S ribosomal subunit. Direct interactions of the IRES with initiation factor eIF3 are also crucial for efficient translation initiation, providing clues to the role of eIF3 in protein synthesis.

  20. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA

    PubMed Central

    Winther, Kristoffer S.; Gerdes, Kenn

    2011-01-01

    Eukaryotic PIN (PilT N-terminal) domain proteins are ribonucleases involved in quality control, metabolism and maturation of mRNA and rRNA. The majority of prokaryotic PIN-domain proteins are encoded by the abundant vapBC toxin—antitoxin loci and inhibit translation by an unknown mechanism. Here we show that enteric VapCs are site-specific endonucleases that cleave tRNAfMet in the anticodon stem-loop between nucleotides +38 and +39 in vivo and in vitro. Consistently, VapC inhibited translation in vivo and in vitro. Translation-reactions could be reactivated by the addition of VapB and extra charged tRNAfMet. Similarly, ectopic production of tRNAfMet counteracted VapC in vivo. Thus, tRNAfMet is the only cellular target of VapC. Depletion of tRNAfMet by vapC induction was bacteriostatic and stimulated ectopic translation initiation at elongator codons. Moreover, addition of chloramphenicol to cells carrying vapBC induced VapC activity. Thus, by cleavage of tRNAfMet, VapC simultaneously may regulate global cellular translation and reprogram translation initiation. PMID:21502523

  1. Alternative translation initiation in immunity: MAVS learns new tricks

    PubMed Central

    Ivanov, Pavel; Anderson, Paul

    2015-01-01

    Translational control of gene expression contributes to various aspects of immune function [1]. Recent results by Brubaker et al. [2] show how alternative translation initiation produces distinct isoforms of Mitochondrial Antiviral Signaling (MAVS), an adaptor protein associated with RIG-I and MDA5 that possess unique immunomodulatory properties. PMID:24685172

  2. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    PubMed Central

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  3. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation.

    PubMed

    Fernandez, James; Yaman, Ibrahim; Huang, Charles; Liu, Haiyan; Lopez, Alex B; Komar, Anton A; Caprara, Mark G; Merrick, William C; Snider, Martin D; Kaufman, Randal J; Lamers, Wouter H; Hatzoglou, Maria

    2005-02-04

    It was previously shown that the mRNA for the cat-1 Arg/Lys transporter is translated from an internal ribosome entry site (IRES) that is regulated by cellular stress. Amino acid starvation stimulated cat-1 translation via a mechanism that requires translation of an ORF in the mRNA leader and remodeling of the leader to form an active IRES (the "zipper model" of translational control). It is shown here that slowing of the leader peptide elongation rate, either by cycloheximide or the introduction of rare codons, stimulated translation of the downstream ORF. These results suggest that ribosome stalling in the upstream ORF causes mRNA remodeling and formation of an active IRES. This control is reminiscent of translation attenuation in prokaryotic operons, where inhibition of translation elongation can regulate both mRNA translation and gene transcription by altering mRNA structure.

  4. Predicting Translation Initiation Rates for Designing Synthetic Biology

    PubMed Central

    Reeve, Benjamin; Hargest, Thomas; Gilbert, Charlie; Ellis, Tom

    2013-01-01

    In synthetic biology, precise control over protein expression is required in order to construct functional biological systems. A core principle of the synthetic biology approach is a model-guided design and based on the biological understanding of the process, models of prokaryotic protein production have been described. Translation initiation rate is a rate-limiting step in protein production from mRNA and is dependent on the sequence of the 5′-untranslated region and the start of the coding sequence. Translation rate calculators are programs that estimate protein translation rates based on the sequence of these regions of an mRNA, and as protein expression is proportional to the rate of translation initiation, such calculators have been shown to give good approximations of protein expression levels. In this review, three currently available translation rate calculators developed for synthetic biology are considered, with limitations and possible future progress discussed. PMID:25152877

  5. Moco biosynthesis and the ATAC acetyltransferase engage translation initiation by inhibiting latent PKR activity.

    PubMed

    Suganuma, Tamaki; Swanson, Selene K; Florens, Laurence; Washburn, Michael P; Workman, Jerry L

    2016-02-01

    Molybdenum cofactor (Moco) biosynthesis is linked to c-Jun N-terminal kinase (JNK) signaling in Drosophila through MoaE, a molybdopterin (MPT) synthase subunit that is also a component of the Ada Two A containing (ATAC) acetyltransferase complex. Here, we show that human MPT synthase and ATAC inhibited PKR, a double-stranded RNA-dependent protein kinase, to facilitate translation initiation of iron-responsive mRNA. MPT synthase and ATAC directly interacted with PKR and suppressed latent autophosphorylation of PKR and its downstream phosphorylation of JNK and eukaryotic initiation factor 2α (eIF2α). The suppression of eIF2α phosphorylation via MPT synthase and ATAC prevented sequestration of the guanine nucleotide exchange factor eIF2B, which recycles eIF2-GDP to eIF2-GTP, resulting in the promotion of translation initiation. Indeed, translation of the iron storage protein, ferritin, was reduced in the absence of MPT synthase or ATAC subunits. Thus, MPT synthase and ATAC regulate latent PKR signaling and link transcription and translation initiation. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  6. Eukaryote-specific motif of ribosomal protein S15 neighbors A site codon during elongation and termination of translation.

    PubMed

    Khairulina, Julia; Graifer, Dmitri; Bulygin, Konstantin; Ven'yaminova, Aliya; Frolova, Ludmila; Karpova, Galina

    2010-07-01

    The eukaryotic ribosomal protein S15 is a key component of the decoding site in contrast to its prokaryotic counterpart, S19p, which is located away from the mRNA binding track on the ribosome. Here, we determined the oligopeptide of S15 neighboring the A site mRNA codon on the human 80S ribosome with the use of mRNA analogues bearing perfluorophenyl azide-modified nucleotides in the sense or stop codon targeted to the 80S ribosomal A site. The protein was cross-linked to mRNA analogues in specific ribosomal complexes that were obtained in the presence of eRF1 in the experiments with mRNAs bearing stop codon. Digestion of modified S15 with various specific proteolytic agents followed by identification of the resulting modified oligopeptides showed that cross-link was in C-terminal fragment in positions 131-145, most probably, in decapeptide 131-PGIGATHSSR-140. The position of cross-linking site on the S15 protein did not depend on the nature of the A site-bound codon (sense or stop codon) and on the presence of polypeptide chain release factor eRF1 in the ribosomal complexes with mRNA analogues bearing a stop codon. The results indicate an involvement of the mentioned decapeptide in the formation of the ribosomal decoding site during elongation and termination of translation. Alignment of amino acid sequences of eukaryotic S15 and its prokaryotic counterpart, S19p from eubacteria and archaea, revealed that decapeptide PGIGATHSSR in positions 131-140 is strongly conserved in eukaryotes and has minor variations in archaea but has no homology with any sequence in C-terminal part of eubacterial S19p, which suggests involvement of the decapeptide in the translation process in a eukaryote-specific manner.

  7. eIF3d is an mRNA cap-binding protein required for specialized translation initiation

    PubMed Central

    Lee, Amy S.Y.; Kranzusch, Philip J.; Doudna, Jennifer A.; Cate, Jamie H.D.

    2016-01-01

    Eukaryotic mRNAs contain a 5' cap structure critical for recruitment of the translation machinery and initiation of protein synthesis. mRNA recognition is thought to require direct interactions between eukaryotic initiation factor 4E (eIF4E) and the mRNA cap. However, translation of numerous capped mRNAs remains robust during cellular stress, early development, and cell cycle progression1 despite eIF4E inactivation. Here we describe a new cellular cap-dependent pathway of translation initiation that relies on a previously unknown cap-binding activity of eIF3d, a subunit of the 800-kilodalton eukaryotic initiation factor 3 (eIF3) complex. A 1.4 Å crystal structure of the eIF3d cap-binding domain reveals unexpected homology to endonucleases involved in RNA turnover, and allows modeling of cap recognition by eIF3d. eIF3d makes specific contacts to the cap, as exemplified by cap analog competition, and these interactions are essential for assembly of translation initiation complexes on eIF3-specialized mRNAs2 such as the cell proliferation regulator c-Jun. The c-Jun mRNA further encodes an inhibitory RNA element that blocks eIF4E recruitment, thus enforcing alternative cap recognition by eIF3d. Our results reveal a new mechanism of cap-dependent translation independent of eIF4E, and illustrate how modular RNA elements work in concert to direct specialized forms of translation initiation. PMID:27462815

  8. Translation initiation of the HIV-1 mRNA

    PubMed Central

    Ohlmann, Théophile; Mengardi, Chloé; López-Lastra, Marcelo

    2014-01-01

    Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation. PMID:26779410

  9. Translation initiation of the HIV-1 mRNA.

    PubMed

    Ohlmann, Théophile; Mengardi, Chloé; López-Lastra, Marcelo

    2014-09-01

    Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation.

  10. Small-molecule targeting of translation initiation for cancer therapy

    PubMed Central

    Aktas, Bertal H.; Qiao, Yuan; Ozdelen, Esra; Schubert, Roland; Sevinc, Sema; Harbinski, Fred; Grubissich, Luciano; Singer, Samuel; Halperin, Jose A.

    2013-01-01

    Translation initiation plays a critical role in the regulation of cell growth and tumorigenesis. We report here that inhibiting translation initiation through induction of eIF2α phosphorylation by small-molecular-weight compounds restricts the availability of the eIF2·GTP·Met-tRNAi ternary complex and abrogates the proliferation of cancer cells in vitro and tumor growth in vivo. Restricting the availability of the ternary complex preferentially down-regulates the expression of growth-promoting proteins and up-regulates the expression of ER stress response genes in cancer cells as well as in tumors excised from either animal models of human cancer or cancer patients. These findings provide the first direct evidence for translational control of gene-specific expression by small molecules in vivo and indicate that translation initiation factors are bona fide targets for development of mechanism-specific anti-cancer agents. PMID:24091475

  11. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation.

    PubMed

    Boex-Fontvieille, Edouard; Daventure, Marlène; Jossier, Mathieu; Zivy, Michel; Hodges, Michael; Tcherkez, Guillaume

    2013-01-01

    Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.

  12. How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

    PubMed

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  13. How MCM loading and spreading specify eukaryotic DNA replication initiation sites

    PubMed Central

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes. PMID:27635237

  14. Dynamic evolution of translation initiation mechanisms in prokaryotes

    PubMed Central

    Nakagawa, So; Niimura, Yoshihito; Miura, Kin-ichiro; Gojobori, Takashi

    2010-01-01

    It is generally believed that prokaryotic translation is initiated by the interaction between the Shine-Dalgarno (SD) sequence in the 5′ UTR of an mRNA and the anti-SD sequence in the 3′ end of a 16S ribosomal RNA. However, there are two exceptional mechanisms, which do not require the SD sequence for translation initiation: one is mediated by a ribosomal protein S1 (RPS1) and the other used leaderless mRNA that lacks its 5′ UTR. To understand the evolutionary changes of the mechanisms of translation initiation, we examined how universal the SD sequence is as an effective initiator for translation among prokaryotes. We identified the SD sequence from 277 species (249 eubacteria and 28 archaebacteria). We also devised an SD index that is a proportion of SD-containing genes in which the differences of GC contents are taken into account. We found that the SD indices varied among prokaryotic species, but were similar within each phylum. Although the anti-SD sequence is conserved among species, loss of the SD sequence seems to have occurred multiple times, independently, in different phyla. For those phyla, RPS1-mediated or leaderless mRNA-used mechanisms of translation initiation are considered to be working to a greater extent. Moreover, we also found that some species, such as Cyanobacteria, may acquire new mechanisms of translation initiation. Our findings indicate that, although translation initiation is indispensable for all protein-coding genes in the genome of every species, its mechanisms have dynamically changed during evolution. PMID:20308567

  15. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    SciTech Connect

    Sally A. Mackenzie

    2011-04-18

    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility that had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.

  16. Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation.

    PubMed

    Dabbah, Mahmoud; Attar-Schneider, Oshrat; Zismanov, Victoria; Tartakover Matalon, Shelly; Lishner, Michael; Drucker, Liat

    2016-10-01

    The role of the bone marrow microenvironment in multiple myeloma pathogenesis and progression is well recognized. Indeed, we have shown that coculture of bone marrow mesenchymal stem cells from normal donors and multiple myeloma cells comodulated translation initiation. Here, we characterized the timeline of mesenchymal stem cells conditioning by multiple myeloma cells, the persistence of this effect, and the consequences on cell phenotype. Normal donor mesenchymal stem cells were cocultured with multiple myeloma cell lines (U266, ARP1) (multiple myeloma-conditioned mesenchymal stem cells) (1.5 h,12 h, 24 h, 48 h, and 3 d) and were assayed for translation initiation status (eukaryotic translation initiation factor 4E; eukaryotic translation initiation factor 4G; regulators: mechanistic target of rapamycin, MNK, 4EBP; targets: SMAD family 5, nuclear factor κB, cyclin D1, hypoxia inducible factor 1, c-Myc) (immunoblotting) and migration (scratch assay, inhibitors). Involvement of mitogen-activated protein kinases in mesenchymal stem cell conditioning and altered migration was also tested (immunoblotting, inhibitors). Multiple myeloma-conditioned mesenchymal stem cells were recultured alone (1-7 d) and were assayed for translation initiation (immunoblotting). Quantitative polymerase chain reaction of extracted ribonucleic acid was tested for microRNAs levels. Mitogen-activated protein kinases were activated within 1.5 h of coculture and were responsible for multiple myeloma-conditioned mesenchymal stem cell translation initiation status (an increase of >200%, P < 0.05) and elevated migration (16 h, an increase of >400%, P < 0.05). The bone marrow mesenchymal stem cells conditioned by multiple myeloma cells were reversible after only 1 d of multiple myeloma-conditioned mesenchymal stem cell culture alone. Decreased expression of microRNA-199b and microRNA-125a (an increase of <140%, P < 0.05) in multiple myeloma-conditioned mesenchymal stem cells supported elevated

  17. Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling

    PubMed Central

    Jaafar, Zane A; Oguro, Akihiro; Nakamura, Yoshikazu; Kieft, Jeffrey S

    2016-01-01

    Internal ribosome entry sites (IRESs) are important RNA-based translation initiation signals, critical for infection by many pathogenic viruses. The hepatitis C virus (HCV) IRES is the prototype for the type 3 IRESs and is also invaluable for exploring principles of eukaryotic translation initiation, in general. Current mechanistic models for the type 3 IRESs are useful but they also present paradoxes, including how they can function both with and without eukaryotic initiation factor (eIF) 2. We discovered that eIF1A is necessary for efficient activity where it stabilizes tRNA binding and inspects the codon-anticodon interaction, especially important in the IRES’ eIF2-independent mode. These data support a model in which the IRES binds preassembled translation preinitiation complexes and remodels them to generate eukaryotic initiation complexes with bacterial-like features. This model explains previous data, reconciles eIF2-dependent and -independent pathways, and illustrates how RNA structure-based control can respond to changing cellular conditions. DOI: http://dx.doi.org/10.7554/eLife.21198.001 PMID:28009256

  18. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation

    PubMed Central

    Toribio, René; Díaz-López, Irene; Boskovic, Jasminka; Ventoso, Iván

    2016-01-01

    During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680–914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts. PMID:26984530

  19. Expression of translation initiation factor IF2 is regulated during osteoblast differentiation.

    PubMed

    Weber, J A; Gay, C V

    2001-01-01

    We isolated and characterized a cDNA for the N-terminal half of the eukaryotic initiation of translation factor 2 (cIF2) during a screen of chicken osteoblast cDNAs. The apparent size of the message for this protein, approximately 5.6 kb, is slightly larger in size than that for human IF2 (hIF2). There is a high degree of sequence similarity between the human and chicken N-terminal portions of the protein that extends to the encoding nucleotide sequence. The tissue specific expression pattern for cIF2 and hIF2 are similar, being moderately abundant in brain, liver, and skeletal muscle, and detectable in kidney, chondrocytes, and freshly isolated osteoblasts. The ratio of message for cIF2 to that of beta-actin was 0.10 and 0.18 for liver and brain. Message levels peak in osteoblasts between 8 and 12 days of culture, coinciding with high levels of matrix protein synthesis. At peak expression, the ratio of cIF2:beta-actin for 8 day osteoblasts was 0.76. Treatment of osteoblast cultures with cycloheximide markedly reduces the level of cIF2 message indicating that novel protein synthesis is required for its expression. Hybridization of RNA samples from either chicken osteoblasts or a human osteoblast cell line with a probe for a subunit of human eukaryotic initiation of translation factor 2 (eIF2alpha), the housekeeping initiation factor, indicates that levels of eIF2 remain low. With hIF2, cIF2 represents the only other vertebrate homolog of IF2 for which a major portion of the coding sequence has been identified. This is the first report of regulated expression for a eukaryotic IF2 and is the first demonstration of its abundance in osteoblasts.

  20. The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling.

    PubMed

    Shandilya, Jayasha; Roberts, Stefan G E

    2012-05-01

    The cycle of eukaryotic transcription, from initiation to elongation and termination is regulated at multiple steps. Coordinated action of regulatory factors keeps in check the transcriptional competence of RNA polymerase II (RNAPII) at different stages. Productive transcription requires the escape of the paused RNAPII from the promoter and transition to rapid elongation of the transcript. Numerous studies have identified diverse mechanisms of initiating transcription by overriding inhibitory signals at the gene promoter. The general theme that has emerged is that the balance between positive and negative regulatory factors determines the overall rate of transcription. Recently transcription termination has emerged as an important area of transcriptional regulation that is coupled with the efficient recycling of RNAPII. The factors associated with transcription termination can also mediate gene looping and thereby determine the efficiency of re-initiation. This review highlights these regulatory steps, the key modulators involved in transcription dynamics, and the emerging tools to analyze them.

  1. An Isoform of Eukaryotic Initiation Factor 4E from Chrysanthemum morifolium Interacts with Chrysanthemum Virus B Coat Protein

    PubMed Central

    Chen, Sumei; Sun, Zuxia; Guan, Zhiyong; Fang, Weimin; Teng, Nianjun; Chen, Fadi

    2013-01-01

    Background Eukaryotic translation initiation factor 4E (eIF4E) plays an important role in plant virus infection as well as the regulation of gene translation. Methodology/Principal Findings Here, we describe the isolation of a cDNA encoding CmeIF(iso)4E (GenBank accession no. JQ904592), an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso)4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso)4E and the Chrysanthemum virus B coat protein (CVBCP). Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso)4E with other reported plant eIF(iso)4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso)4E belongs to the eIF(iso)4E subfamily of the eIF4E family. CmeIF(iso)4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso)4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso)4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso)4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. Conclusions/Significance These results inferred that CmeIF(iso)4E as the cap-binding subunit eIF(iso)4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial. PMID:23505421

  2. Begin at the beginning: evolution of translational initiation.

    PubMed

    Benelli, Dario; Londei, Paola

    2009-09-01

    Initiation of protein synthesis, entailing ribosomal recognition of the mRNA start codon and setting of the correct reading frame, is the rate-limiting step in translation and the main target of translation regulation in all modern cells. As efficient selection of the translation start site is vital for survival of extant cells, a mechanism for ensuring this may already have been in existence in the last universal common ancestor of present-day cells. This article reviews known features of the molecular machinery for initiation in the primary domains of life, Bacteria, Archaea and Eukarya, and attempts to identify conserved features that may be useful for reconstructing a model of the ancestral initiation apparatus.

  3. Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface.

    PubMed

    Lukhele, Sabelo; Bah, Alaji; Lin, Hong; Sonenberg, Nahum; Forman-Kay, Julie D

    2013-12-03

    Cap-dependent translation initiation is regulated by the interaction of eukaryotic initiation factor 4E (eIF4E) with eIF4E binding proteins (4E-BPs). Whereas the binding of 4E-BP peptides containing the eIF4E-binding ⁵⁴YXXXXLΦ⁶⁰ motif has been studied, atomic-level characterization of the interaction of eIF4E with full-length 4E-BPs has been lacking. Here, we use isothermal titration calorimetry and nuclear magnetic resonance spectroscopy to characterize the dynamic, structural and binding properties of 4E-BP2. Although disordered, 4E-BP2 contains significant fluctuating secondary structure and binds eIF4E at an extensive bipartite interface including the canonical ⁵⁴YXXXXLΦ⁶⁰ and ⁷⁸IPGVT⁸² sites. Each of the two binding elements individually has submicromolar affinity and exchange on and off of the eIF4E surface within the context of the overall nanomolar complex. This dynamic interaction facilitates exposure of regulatory phosphorylation sites within the complex. The 4E-BP2 interface on eIF4E overlaps yet is more extensive than the eIF4G:eIF4E interface, suggesting that these key interactions may be differentially targeted for therapeutics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Identification of ubiquitin-modified lysine residues and novel phosphorylation sites on eukaryotic initiation factor 2B epsilon

    PubMed Central

    Tuckow, Alexander P.; Kazi, Abid A.; Kimball, Scot R.; Jefferson, Leonard S.

    2013-01-01

    Eukaryotic initiation factor 2Bε (eIF2Bε) plays a critical role in the initiation of mRNA translation and its expression and guanine nucleotide exchange activity are major determinants of the rate of protein synthesis. In this work we provide evidence that the catalytic epsilon subunit of eIF2B is subject to ubiquitination and proteasome-mediated degradation. Lysates of C2C12 myoblasts treated with proteasome inhibitor were subjected to sequential immunoprecipitations for eIF2Bε followed by ubiquitin. Tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated proteins resulted in the identification of five peptides containing ubiquitin (diglycine) modifications on eIF2Bε. The specific lysine residues containing the ubiquitin modifications were localized as Lys-56, Lys-98, Lys-136, Lys-212 and Lys-500 (corresponding to the rat protein sequence). In addition three novel phosphorylation sites were identified including Ser-22, Ser-125, and Thr-317. Moreover, peptides corresponding to the amino acid sequence of the E3 ligase NEDD4 were also detected in the LC-MS/MS analysis, and an interaction between endogenous eIF2Bε with NEDD4 was confirmed by co-immunoprecipitation. PMID:23707720

  5. A translation system reconstituted with human factors proves that processing of encephalomyocarditis virus proteins 2A and 2B occurs in the elongation phase of translation without eukaryotic release factors.

    PubMed

    Machida, Kodai; Mikami, Satoshi; Masutani, Mamiko; Mishima, Kurumi; Kobayashi, Tominari; Imataka, Hiroaki

    2014-11-14

    The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library.

    PubMed

    Ruffel, Sandrine; Caranta, Carole; Palloix, Alain; Lefebvre, Véronique; Caboche, Michel; Bendahmane, Abdelhafid

    2004-09-01

    The pvr2 locus in pepper codes for a eukaryotic translation initiation factor 4E (eIF4E) gene that confers resistance to viruses belonging to the potyvirus genus. In this work, we describe the isolation and characterisation of the genomic sequence carrying the pvr2 locus. A Bacterial Artificial Chromosome (BAC) library that consisted of 239,232 clones with an average insert size of 123 kilobases (kb) was constructed from a Capsicum annuum line with the pvr2(+) allele for susceptibility to potato virus Y (PVY) and tobacco etch virus (TEV). Based on a polymerase chain reaction (PCR) screen with single-copy markers, three to seven positive BAC clones per markers were identified, indicating that the BAC library is suitable for pepper genome analysis. To determine the genomic organization of the pepper eIF4E gene, the library was screened with primers designed from the cDNA sequence and four positive BAC clones carrying the pvr2 locus were identified. A 7-kb DNA fragment containing the complete eIF4E gene was sub-cloned from the positive BAC clones and analysed. The eIF4E gene is organised into five exons and four introns and showed a strictly conserved exon/intron structure with eIF4E genes from Arabidopsis thaliana and rice. Moreover, the splice sites between plant exons 1/2 and 2/3 are conserved among eukaryotes including human, Drosophila and yeast. Several potential binding sites for MADS box transcription factors within the 5' flanking region of eIF4E genes from the three plant species were also predicted.

  7. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.

    PubMed

    Gutu, Andrian; Nesbit, April D; Alverson, Andrew J; Palmer, Jeffrey D; Kehoe, David M

    2013-10-01

    Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.

  8. Mechanism of chromosomal DNA replication initiation and replication fork stabilization in eukaryotes.

    PubMed

    Wu, LiHong; Liu, Yang; Kong, DaoChun

    2014-05-01

    Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replication of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdc18, MCM, ORC and Cdt1, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC component called Sap1/Girdin was identified. Sap1/Girdin is required for loading Cdc18/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cyclindependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polα, PCNA, topoisomerase, Cdc45, polδ, and polɛ are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene transcription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization.

  9. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth.

    PubMed

    Roffé, Martín; Hajj, Glaucia N M; Azevedo, Hátylas F; Alves, Viviane S; Castilho, Beatriz A

    2013-04-12

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system.

  10. Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective

    PubMed Central

    Mahlab, Shelly; Linial, Michal

    2014-01-01

    Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation

  11. Supporting knowledge translation through collaborative translational research initiatives: 'bridging' versus 'blurring' boundary-spanning approaches in the UK CLAHRC initiative.

    PubMed

    Evans, Sarah; Scarbrough, Harry

    2014-04-01

    Recent policy initiatives in the UK and internationally have sought to promote knowledge translation between the 'producers' and 'users' of research. Within this paper we explore how boundary-spanning interventions used within such initiatives can support knowledge translation between diverse groups. Using qualitative data from a 3-year research study conducted from January 2010 to December 2012 of two case-sites drawn from the CLAHRC initiative in the UK, we distinguish two different approaches to supporting knowledge translation; a 'bridging' approach that involves designated roles, discrete events and activities to span the boundaries between communities, and a 'blurring' approach that de-emphasises the boundaries between groups, enabling a more continuous process of knowledge translation as part of day-to-day work-practices. In this paper, we identify and differentiate these boundary-spanning approaches and describe how they emerged from the context defined by the wider CLAHRC networks. This highlights the need to develop a more contextualised analysis of the boundary-spanning that underpins knowledge translation processes, relating this to the distinctive features of a particular case. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Synthesis and site-directed fluorescence labeling of azido proteins using eukaryotic cell-free orthogonal translation systems.

    PubMed

    Quast, Robert B; Claussnitzer, Iris; Merk, Helmut; Kubick, Stefan; Gerrits, Michael

    2014-04-15

    Eukaryotic cell-free systems based on wheat germ and Spodoptera frugiperda insect cells were equipped with an orthogonal amber suppressor tRNA-synthetase pair to synthesize proteins with a site-specifically incorporated p-azido-l-phenylalanine residue in order to provide their chemoselective fluorescence labeling with azide-reactive dyes by Staudinger ligation. The specificity of incorporation and bioorthogonality of labeling within complex reaction mixtures was shown by means of translation and fluorescence detection of two model proteins: β-glucuronidase and erythropoietin. The latter contained the azido amino acid in proximity to a signal peptide for membrane translocation into endogenous microsomal vesicles of the insect cell-based system. The results indicate a stoichiometric incorporation of the azido amino acid at the desired position within the proteins. Moreover, the compatibility of cotranslational protein translocation, including glycosylation and amber suppression-based incorporation of p-azido-l-phenylalanine within a cell-free system, is demonstrated. The presented approach should be particularly useful for providing eukaryotic and membrane-associated proteins for investigation by fluorescence-based techniques.

  13. Intrauterine growth restriction inhibits expression of eukaryotic elongation factor 2 kinase, a regulator of protein translation.

    PubMed

    McKnight, Robert A; Yost, Christian C; Zinkhan, Erin K; Fu, Qi; Callaway, Christopher W; Fung, Camille M

    2016-08-01

    Nutrient deprivation suppresses protein synthesis by blocking peptide elongation. Transcriptional upregulation and activation of eukaryotic elongation factor 2 kinase (eEF2K) blocks peptide elongation by phosphorylating eukaryotic elongation factor 2. Previous studies examining placentas from intrauterine growth restricted (IUGR) newborn infants show decreased eEF2K expression and activity despite chronic nutrient deprivation. However, the effect of IUGR on hepatic eEF2K expression in the fetus is unknown. We, therefore, examined the transcriptional regulation of hepatic eEF2K gene expression in a Sprague-Dawley rat model of IUGR. We found decreased hepatic eEF2K mRNA and protein levels in IUGR offspring at birth compared with control, consistent with previous placental observations. Furthermore, the CpG island within the eEF2K promoter demonstrated increased methylation at a critical USF 1/2 transcription factor binding site. In vitro methylation of this binding site caused near complete loss of eEF2K promoter activity, designating this promoter as methylation sensitive. The eEF2K promotor in IUGR offspring also lost the protective histone covalent modifications associated with unmethylated CGIs. In addition, the +1 nucleosome was displaced 3' and RNA polymerase loading was reduced at the IUGR eEF2K promoter. Our findings provide evidence to explain why IUGR-induced chronic nutrient deprivation does not result in the upregulation of eEF2K gene transcription. Copyright © 2016 the American Physiological Society.

  14. Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes.

    PubMed Central

    Bevec, D; Klier, H; Holter, W; Tschachler, E; Valent, P; Lottspeich, F; Baumruker, T; Hauber, J

    1994-01-01

    The hypusine-containing protein eukaryotic initiation factor 5A (eIF-5A) is a cellular cofactor critically required for the function of the Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1). eIF-5A localizes in the nuclear and cytoplasmic compartments of mammalian cells, suggesting possible activities on the level of regulated mRNA transport and/or protein translation. In this report we show that eIF-5A gene expression is constitutively low but inducible with T-lymphocyte-specific stimuli in human peripheral blood mononuclear cells (PBMCs) of healthy individuals. In contrast, eIF-5A is constitutively expressed at high levels in human cell lines as well as in various human organs. Comparison of eIF-5A levels in the PBMCs of uninfected and HIV-1-infected donors shows a significant upregulation of eIF-5A gene expression in the PBMCs of HIV-1 patients, compatible with a possible role of eIF-5A in HIV-1 replication during T-cell activation. Images PMID:7971969

  15. Thermodynamics of molecular recognition of mRNA 5' cap by yeast eukaryotic initiation factor 4E.

    PubMed

    Kiraga-Motoszko, Katarzyna; Niedzwiecka, Anna; Modrak-Wojcik, Anna; Stepinski, Janusz; Darzynkiewicz, Edward; Stolarski, Ryszard

    2011-07-14

    Molecular mechanisms underlying the recognition of the mRNA 5' terminal structure called "cap" by the eukaryotic initiation factor 4E (eIF4E) are crucial for cap-dependent translation. To gain a deeper insight into how the yeast eIF4E interacts with the cap structure, isothermal titration calorimetry and the van't Hoff analysis based on intrinsic protein fluorescence quenching upon titration with a series of chemical cap analogs were performed, providing a consistent thermodynamic description of the binding process in solution. Equilibrium association constants together with thermodynamic parameters revealed similarities and differences between yeast and mammalian eIF4Es. The yeast eIF4E complex formation was enthalpy-driven and entropy-opposed for each cap analog at 293 K. A nontrivial isothermal enthalpy–entropy compensation was found, described by a compensation temperature, T(c) = 411 ± 18 K. For a low affinity analog, 7-methylguanosine monophosphate, a heat capacity change was detected, ΔC(p)° = +5.2 ± 1.3 kJ·mol(-1)·K(-1). The charge-related interactions involving the 5′-5′ triphosphate bridge of the cap and basic amino acid side chains at the yeast eIF4E cap-binding site were significantly weaker (by ΔΔH°(vH) of about +10 kJ·mol(-1)) than those for the mammalian homologues, suggesting their optimization during the evolution.

  16. Timelines of translational science: From technology initiation to FDA approval.

    PubMed

    McNamee, Laura M; Walsh, Michael Jay; Ledley, Fred D

    2017-01-01

    While timelines for clinical development have been extensively studied, there is little data on the broader path from initiation of research on novel drug targets, to approval of drugs based on this research. We examined timelines of translational science for 138 drugs and biologicals approved by the FDA from 2010-2014 using an analytical model of technology maturation. Research on targets for 102 products exhibited a characteristic (S-curve) maturation pattern with exponential growth between statistically defined technology initiation and established points. The median initiation was 1974, with a median of 25 years to the established point, 28 years to first clinical trials, and 36 years to FDA approval. No products were approved before the established point, and development timelines were significantly longer when the clinical trials began before this point (11.5 vs 8.5 years, p<0.0005). Technological maturation represents the longest stage of translation, and significantly impacts the efficiency of drug development.

  17. Eukaryotic initiation factor eIF6 modulates the expression of Kermit 2/XGIPC in IGF- regulated eye development.

    PubMed

    De Marco, N; Tussellino, M; Carotenuto, R; Ronca, R; Rizzolio, S; Biffo, S; Campanella, C

    2017-07-01

    The eukaryotic initiation translation factor eIF6 is a highly conserved, essential protein implicated in translation. eIF6 is regulated in vivo by extracellular signals, such as IGF signaling (for a review see Miluzio et al., 2009). In Xenopus, eif6 over-expression causes a delay in eye development (De Marco et al., 2011). In this study we showed that eif6 co-immunoprecipitates with the insulin-like growth factor receptor (igfr) and may function downstream of igf in eye formation. The relationship between eif6 and gipc2, a protein partner of a variety of molecules including membrane proteins, was investigated. gipc2 is required for maintaining igf-induced akt activation on eye development (Wu et al., 2006). Significantly eif6 and gipc2 have opposite effects in eye development. While eif6 is required for eye formation below threshold levels, gipc2 knockdown impairs eye development (De Marco et al., 2011; Wu et al., 2006). In this study, it was shown that in eif6 over-expressors, the delay in eye morphogenesis is reversed by gipc2 injection, while the injection of eif6 down-regulates gipc2 expression. Real-time-PCR indicates that eif6 regulates gipc2 expression in a dose-dependent manner. In contrast, gipc2 knockdown has no significant effect on eif6 mRNA levels. These results suggest that eif6 regulation of gipc2 enables correct morphogenesis of Xenopus eye and stimulate questions on the molecular network implicated in this process. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. An in vivo control map for the eukaryotic mRNA translation machinery.

    PubMed

    Firczuk, Helena; Kannambath, Shichina; Pahle, Jürgen; Claydon, Amy; Beynon, Robert; Duncan, John; Westerhoff, Hans; Mendes, Pedro; McCarthy, John Eg

    2013-01-01

    Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non-intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non-stoichiometric combination of proteins manifesting functional convergence on a shared maximal translation rate. In exponentially growing cells, polypeptide elongation (eEF1A, eEF2, and eEF3) exerts the strongest control. The two other strong control points are recruitment of mRNA and tRNA(i) to the 40S ribosomal subunit (eIF4F and eIF2) and termination (eRF1; Dbp5). In contrast, factors that are found to promote mRNA scanning efficiency on a longer than-average 5'untranslated region (eIF1, eIF1A, Ded1, eIF2B, eIF3, and eIF5) exceed the levels required for maximal control. This is expected to allow the cell to minimize scanning transition times, particularly for longer 5'UTRs. The analysis reveals these and other collective adaptations of control shared across the factors, as well as features that reflect functional modularity and system robustness. Remarkably, gene duplication is implicated in the fine control of cellular protein synthesis.

  19. Inhibition of eukaryotic translation elongation by the antitumor natural product Mycalamide B

    PubMed Central

    Dang, Yongjun; Schneider-Poetsch, Tilman; Eyler, Daniel E.; Jewett, John C.; Bhat, Shridhar; Rawal, Viresh H.; Green, Rachel; Liu, Jun O.

    2011-01-01

    Mycalamide B (MycB) is a marine sponge-derived natural product with potent antitumor activity. Although it has been shown to inhibit protein synthesis, the molecular mechanism of action by MycB remains incompletely understood. We verified the inhibition of translation elongation by in vitro HCV IRES dual luciferase assays, ribosome assembly, and in vivo [35S]methinione labeling experiments. Similar to cycloheximide (CHX), MycB inhibits translation elongation through blockade of eEF2-mediated translocation without affecting the eEF1A-mediated loading of tRNA onto the ribosome, AUG recognition, or dipeptide synthesis. Using chemical footprinting, we identified the MycB binding site proximal to the C3993 28S rRNA residue on the large ribosomal subunit. However, there are also subtle, but significant differences in the detailed mechanisms of action of MycB and CHX. First, MycB arrests the ribosome on the mRNA one codon ahead of CHX. Second, MycB specifically blocked tRNA binding to the E-site of the large ribosomal subunit. Moreover, they display different polysome profiles in vivo. Together, these observations shed new light on the mechanism of inhibition of translation elongation by MycB. PMID:21693620

  20. Interaction of Eukaryote Initiator Methionyl-tRNA with the Eukaryote Equivalent of Bacterial Elongation Factor T and Guanosine Triphosphate

    PubMed Central

    Richter, Dietmar; Lipmann, Fritz; Tarragó, Adela; Allende, Jorge E.

    1971-01-01

    The initiator tRNA, methionyl-tRNAiMet, of yeast and wheat germ forms relatively unstable ternary complexes with their corresponding elongation factors T and GTP. Such complexes can be demonstrated only with fast separation techniques such as Sephadex G-50 and Millipore filtration, but not with the slow Sephadex G-100 method, although both techniques yield stable ternary complexes with all other aminoacyl-tRNAs, including the internal Met-tRNAmMet. To bind yeast-initiating Met-tRNAiMet to ribosomes, initiation factors present in a ribosomal wash fraction from yeast are needed. PMID:5288767

  1. Directional transition from initiation to elongation in bacterial translation

    PubMed Central

    Goyal, Akanksha; Belardinelli, Riccardo; Maracci, Cristina; Milón, Pohl; Rodnina, Marina V.

    2015-01-01

    The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNAfMet from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S–mRNA–IF1–IF2–fMet-tRNAfMet complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation. PMID:26338773

  2. Automated production of functional membrane proteins using eukaryotic cell-free translation systems.

    PubMed

    Quast, Robert B; Kortt, Oliver; Henkel, Jörg; Dondapati, Srujan K; Wüstenhagen, Doreen A; Stech, Marlitt; Kubick, Stefan

    2015-06-10

    Due to their high abundance and pharmacological relevance there is a growing demand for the efficient production of functional membrane proteins. In this context, cell-free protein synthesis represents a valuable alternative that allows for the high-throughput synthesis of functional membrane proteins. Here, we demonstrate the potential of our cell-free protein synthesis system, based on lysates from cultured Spodoptera frugiperda 21 cells, to produce pro- and eukaryotic membrane proteins with individual topological characteristics in an automated fashion. Analytical techniques, including confocal laser scanning microscopy, fluorescence detection of eYFP fusion proteins in a microplate reader and in-gel fluorescence of statistically incorporated fluorescent amino acid derivatives were employed. The reproducibility of our automated synthesis approach is underlined by coefficients of variation below 7.2%. Moreover, the functionality of the cell-free synthesized potassium channel KcsA was analyzed electrophysiologically. Finally, we expanded our cell-free membrane protein synthesis system by an orthogonal tRNA/synthetase pair for the site-directed incorporation of p-Azido-l-phenylalanine based on stop codon suppression. Incorporation was optimized by performance of a two-dimensional screening with different Mg(2+) and lysate concentrations. Subsequently, the selective modification of membrane proteins with incorporated p-Azido-l-phenylalanine was exemplified by Staudinger ligation with a phosphine-based fluorescence dye. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Mechanism of polypeptide chain initiation in eukaryotes and its control by phosphorylation of the alpha subunit of initiation factor 2.

    PubMed Central

    Siekierka, J; Mauser, L; Ochoa, S

    1982-01-01

    Earlier, we isolated eukaryotic initiation factor 2 (eIF-2)-stimulating protein (SP) as a homogeneous complex with eIF-2 (eIF-2-SP) and showed that, in the presence of Mg2+, eIF-2-SP promotes formation of a ternary complex with GTP and eukaryotic initiator methionyl tRNA (Met-tRNAi) (eIF-2-GTP-Met-tRNAi) catalytically. We now show that SP-bound eIF-2 exchanges with eIF-2 (eIF-2 exchange). Furthermore, in the presence of Mg2+, eIF-2-SP catalyzes the exchange of eIF-2-bound [3H]GDP with unlabeled GDP or GTP (GDP exchange) and the release of [3H]GDP when the ternary complex is formed from eIF-2-[3H]GDP, GTP, and [35S]Met-tRNAi. All these reactions are blocked by alpha-subunit, but not by beta-subunit, phosphorylation of eIF-2. The eIF-2 and GDP exchanges are compatible with the reaction eIF-2-GDP + SP in equilibrium EIF-2-SP + GDP reminiscent of the exchange between the Tu and Ts components of prokaryotic elongation factor 1 (EF-Tu and EF-Ts, respectively) EF-Tu-GDP + EF-Ts in equilibrium EF-Tu-EF-Ts + GDP. Due to the high affinity of GDP (approximately 100 times greater than that of GDP) for eIF-2, 40S (eIF-2-GTP-Met-tRNAi-40S) to 80S (Met-tRNAi-mRNA-80S) initiation complex conversion, which is accompanied by GTP hydrolysis, probably releases eIF-2 as eIF-2-GDP. Our results suggest that, in the presence of Mg2+, GDP binding restricts the availability of eIF-2 for chain initiation and that SP relieves this restriction in a catalytic fashion, provided that the alpha subunit of eIF-2 is not phosphorylated. Images PMID:6953412

  4. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer.

    PubMed

    Lacerda, Rafaela; Menezes, Juliane; Romão, Luísa

    2017-05-01

    The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N (6)-methyladenosine (m(6)A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.

  5. Zinc inhibits protein synthesis in neurons. Potential role of phosphorylation of translation initiation factor-2alpha.

    PubMed

    Alirezaei, M; Nairn, A C; Glowinski, J; Prémont, J; Marin, P

    1999-11-05

    In the central nervous system, Zn(2+) is concentrated in the cerebral cortex and hippocampus and has been found to be toxic to neurons. In this study, we show that exposure of cultured cortical neurons from mouse to increasing concentrations of Zn(2+) (10-300 microM) induces a progressive decrease in global protein synthesis. The potency of Zn(2+) was increased by about 2 orders of magnitude in the presence of Na(+)-pyrithione, a Zn(2+) ionophore. The basal rate of protein synthesis was restored 3 h after Zn(2+) removal. Zn(2+) induced a sustained increase in phosphorylation of the alpha subunit of the translation eukaryotic initiation factor-2 (eIF-2alpha), whereas it triggered a transient increase in phosphorylation of eukaryotic elongation factor-2 (eEF-2). Protein synthesis was still depressed 60 min after the onset of Zn(2+) exposure while the state of eEF-2 phosphorylation had already returned to its basal level. Moreover, Zn(2+) was less effective than glutamate to increase eEF-2 phosphorylation, whereas it induced a more profound inhibition of protein synthesis. These results suggest that Zn(2+)-induced inhibition of protein synthesis mainly correlates with the increase in eIF-2alpha phosphorylation. Supporting further that Zn(2+) acts at the initiation step of protein synthesis, it strongly decreased the amount of polyribosomes.

  6. Prolyl hydroxylase-dependent modulation of eukaryotic elongation factor 2 activity and protein translation under acute hypoxia.

    PubMed

    Romero-Ruiz, Antonio; Bautista, Lucía; Navarro, Virginia; Heras-Garvín, Antonio; March-Díaz, Rosana; Castellano, Antonio; Gómez-Díaz, Raquel; Castro, María J; Berra, Edurne; López-Barneo, José; Pascual, Alberto

    2012-03-16

    Early adaptive responses to hypoxia are essential for cell survival, but their nature and underlying mechanisms are poorly known. We have studied the post-transcriptional changes in the proteome of mammalian cells elicited by acute hypoxia and found that phosphorylation of eukaryotic elongation factor 2 (eEF2), a ribosomal translocase whose phosphorylation inhibits protein synthesis, is under the precise and reversible control of O(2) tension. Upon exposure to hypoxia, phosphorylation of eEF2 at Thr(56) occurred rapidly (<15 min) and resulted in modest translational arrest, a fundamental homeostatic response to hypoxia that spares ATP and thus facilitates cell survival. Acute inhibitory eEF2 phosphorylation occurred without ATP depletion or AMP kinase activation. Furthermore, eEF2 phosphorylation was mimicked by prolyl hydroxylase (PHD) inhibition with dimethyloxalylglycine or by selective PHD2 siRNA silencing but was independent of hypoxia-inducible factor α stabilization. Moreover, overexpression of PHD2 blocked hypoxic accumulation of phosphorylated eEF2. Therefore, our findings suggest that eEF2 phosphorylation status (and, as a consequence, translation rate) is controlled by PHD2 activity. They unravel a novel pathway for cell adaptation to hypoxia that could have pathophysiologic relevance in tissue ischemia and cancer.

  7. Conformational characterization of human eukaryotic initiation factor 2alpha: a single tryptophan protein.

    PubMed

    Sreejith, R K; Yadav, Viveka Nand; Varshney, Nishant K; Berwal, Sunil K; Suresh, C G; Gaikwad, Sushama M; Pal, Jayanta K

    2009-12-11

    The alpha-subunit of the human eukaryotic initiation factor 2 (heIF2alpha), a GTP binding protein, plays a major role in the initiation of protein synthesis. During various cytoplasmic stresses, eIF2alpha gets phosphorylated by eIF2alpha-specific kinases resulting in inhibition of protein synthesis. The cloned and over expressed heIF2alpha, a protein with a single tryptophan (trp) residue was examined for its conformational characteristics using steady-state and time-resolved tryptophan fluorescence, circular dichroism (CD) and hydrophobic dye binding. The steady-state fluorescence spectrum, fluorescence lifetimes (tau(1)=1.13ns and tau(2)=4.74ns) and solute quenching studies revealed the presence of trp conformers in hydrophobic and differential polar environment at any given time. Estimation of the alpha-helix and beta-sheet content showed: (i) more compact structure at pH 2.0, (ii) distorted alpha-helix and rearranged beta-sheet in presence of 4M guanidine hydrochloride and (iii) retention of more than 50% ordered structure at 95 degrees C. Hydrophobic dye binding to the protein with loosened tertiary structure was observed at pH 2.0 indicating the existence of a molten globule-like structure. These observations indicate the inherent structural stability of the protein under various denaturing conditions.

  8. Knowledge Translation Interventions to Improve the Timing of Dialysis Initiation

    PubMed Central

    Chau, Elaine M. T.; Manns, Braden J.; Garg, Amit X.; Sood, Manish M.; Kim, S. Joseph; Naimark, David; Nesrallah, Gihad E.; Soroka, Steven D.; Beaulieu, Monica; Dixon, Stephanie; Alam, Ahsan; Tangri, Navdeep

    2016-01-01

    Background: Early initiation of chronic dialysis (starting dialysis with higher vs lower kidney function) has risen rapidly in the past 2 decades in Canada and internationally, despite absence of established health benefits and higher costs. In 2014, a Canadian guideline on the timing of dialysis initiation, recommending an intent-to-defer approach, was published. Objective: The objective of this study is to evaluate the efficacy and safety of a knowledge translation intervention to promote the intent-to-defer approach in clinical practice. Design: This study is a multicenter, 2-arm parallel, cluster randomized trial. Setting: The study involves 55 advanced chronic kidney disease clinics across Canada. Patients: Patients older than 18 years who are managed by nephrologists for more than 3 months, and initiate dialysis in the follow-up period are included in the study. Measurements: Outcomes will be measured at the patient-level and enumerated within a cluster. Data on characteristics of each dialysis start will be determined by linkages with the Canadian Organ Replacement Register. Primary outcomes include the proportion of patients who start dialysis early with an estimated glomerular filtration rate greater than 10.5 mL/min/1.73 m2 and start dialysis in hospital as inpatients or in an emergency room setting. Secondary outcomes include the rate of change in early dialysis starts; rates of hospitalizations, deaths, and cost of predialysis care (wherever available); quarterly proportion of new starts; and acceptability of the knowledge translation materials. Methods: We randomized 55 multidisciplinary chronic disease clinics (clusters) in Canada to receive either an active knowledge translation intervention or no intervention for the uptake of the guideline on the timing of dialysis initiation. The active knowledge translation intervention consists of audit and feedback as well as patient- and provider-directed educational tools delivered at a comprehensive in

  9. Nucleotide sequences important for translation initiation of enterovirus RNA.

    PubMed Central

    Iizuka, N; Yonekawa, H; Nomoto, A

    1991-01-01

    An infectious cDNA clone was constructed from the genome of coxsackievirus B1 strain. A number of RNA transcripts that have mutations in the 5' noncoding region were synthesized in vitro from the modified cDNA clones and examined for their abilities to act as mRNAs in a cell-free translation system prepared from HeLa S3 cells. RNAs that lack nucleotide sequences at positions 568 to 726 and 565 to 726 were found to be less efficient and inactive mRNAs, respectively. To understand the biological significance of this region of RNA, small deletions and point mutations were introduced in the nucleotide sequence between positions 538 and 601. Except for a nucleotide substitution at 592 (U----C) within the 7-base conserved sequence, mutations introduced in the sequence downstream of position 568 did not affect much, if any, of the ability of RNA to act as mRNA. Except for a point mutation at 558 (C----U), mutations upstream of position 567 appeared to inactivate the mRNA. In the upstream region, a sequence consisting of 21 nucleotides at positions 546 to 566 is perfectly conserved in the 5' noncoding regions of enterovirus and rhinovirus genomes. These results suggest that the 7-base conserved sequence functions to maintain the efficiency of translation initiation and that the nucleotide sequence upstream of position 567, including the 21-base conserved sequence, plays essential roles in translation initiation. A deletion mutant whose genome lacks the nucleotide sequence at positions 568 to 726 showed a small-plaque phenotype and less virulence against suckling mice than the wild-type virus. Thus, reduction of the efficiency of translation initiation may result in the construction of enteroviruses with the lower-virulence phenotype. Images PMID:1651409

  10. Conflict between Translation Initiation and Elongation in Vertebrate Mitochondrial Genomes

    PubMed Central

    Xia, Xuhua; Huang, Huang; Carullo, Malisa; Betrán, Esther; Moriyama, Etsuko N.

    2007-01-01

    The strand-biased mutation spectrum in vertebrate mitochondrial genomes results in an AC-rich L-strand and a GT-rich H-strand. Because the L-strand is the sense strand of 12 protein-coding genes out of the 13, the third codon position is overall strongly AC-biased. The wobble site of the anticodon of the 22 mitochondrial tRNAs is either U or G to pair with the most abundant synonymous codon, with only one exception. The wobble site of Met-tRNA is C instead of U, forming the Watson-Crick match with AUG instead of AUA, the latter being much more frequent than the former. This has been attributed to a compromise between translation initiation and elongation; i.e., AUG is not only a methionine codon, but also an initiation codon, and an anticodon matching AUG will increase the initiation rate. However, such an anticodon would impose selection against the use of AUA codons because AUA needs to be wobble-translated. According to this translation conflict hypothesis, AUA should be used relatively less frequently compared to UUA in the UUR codon family. A comprehensive analysis of mitochondrial genomes from a variety of vertebrate species revealed a general deficiency of AUA codons relative to UUA codons. In contrast, urochordate mitochondrial genomes with two tRNAMet genes with CAU and UAU anticodons exhibit increased AUA codon usage. Furthermore, six bivalve mitochondrial genomes with both of their tRNA-Met genes with a CAU anticodon have reduced AUA usage relative to three other bivalve mitochondrial genomes with one of their two tRNA-Met genes having a CAU anticodon and the other having a UAU anticodon. We conclude that the translation conflict hypothesis is empirically supported, and our results highlight the fine details of selection in shaping molecular evolution. PMID:17311091

  11. Small-molecule inhibition of oncogenic eukaryotic protein translation in mesothelioma cells.

    PubMed

    Chen, Esther Z; Jacobson, Blake A; Patel, Manish R; Okon, Aniekan M; Li, Shui; Xiong, Kerry; Vaidya, Abhishek J; Bitterman, Peter B; Wagner, Carston R; Kratzke, Robert A

    2014-08-01

    Deranged cap-mediated translation is implicated in the genesis, maintenance and progression of many human cancers including mesothelioma. In this study, disrupting the eIF4F complex by antagonizing the eIF4E-mRNA-cap interaction is assessed as a therapy for mesothelioma. Mesothelioma cells were treated with 4Ei-1, a membrane permeable prodrug that when converted to the active drug, 7-benzyl guanosine monophosphate (7Bn-GMP) displaces capped mRNAs from the eIF4F complex. Colony formation was measured in mesothelioma treated with 4Ei-1 alone or combined with pemetrexed. Proliferation was examined in cells treated with 4Ei-1. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation in lysates exposed to 4Ei-1. 4Ei-1 treatment resulted in a dose dependent decrease in colony formation and cell viability. Combination therapy of 4Ei-1 with pemetrexed further reduced colony number. Formation of eIF4F cap-complex decreased in response to 4Ei-1 exposure. 4Ei-1 is a novel prodrug that reduces proliferation, represses colony formation, diminishes association of eIF4F with the mRNA cap, and sensitizes mesothelioma cells to pemetrexed.

  12. Genome-wide structure and organization of eukaryotic pre-initiation complexes

    PubMed Central

    Rhee, Ho Sung; Pugh, B. Franklin

    2011-01-01

    SUMMARY The structural and positional organization of transcription pre-initiation complexes (PICs) across eukaryotic genomes is unknown. We employed ChIP-exo to precisely examine ~6,000 PICs in Saccharomyces. PICs, including RNA polymerase II and general factors TFIIA, -B, -D/TBP, -E, -F, -H, and -K were positioned within promoters and excluded from coding regions. Exonuclease patterns agreed with crystallographic models of the PIC, and were sufficiently precise to identify TATA-like elements at so-called TATA-less promoters. These PICs and their transcription start sites were positionally constrained at TFIID-engaged +1 nucleosomes. At TATA box-containing promoters, which are depleted of TFIID, a +1 nucleosome was positioned to be in competition with the PIC, which may afford greater latitude in start site selection. Our genomic localization of mRNA and noncoding RNA PICs reveal that two PICs, in inverted orientation, may occupy the flanking borders of nucleosome-free regions. Their unambiguous detection may help distinguish bona-fide genes from transcriptional noise. PMID:22258509

  13. Process of Hypertrophic Scar Formation: Expression of Eukaryotic Initiation Factor 6

    PubMed Central

    Yang, Qing-Qing; Yang, Si-Si; Tan, Jiang-Lin; Luo, Gao-Xing; He, Wei-Feng; Wu, Jun

    2015-01-01

    Background: Hypertrophic scar is one of the most common complications and often causes the disfigurement or deformity in burn or trauma patients. Therapeutic methods on hypertrophic scar treatment have limitations due to the poor understanding of mechanisms of hypertrophic scar formation. To throw light on the molecular mechanism of hypertrophic scar formation will definitely improve the outcome of the treatment. This study aimed to illustrate the negative role of eukaryotic initiation factor 6 (eIF6) in the process of human hypertrophic scar formation, and provide a possible indicator of hypertrophic scar treatment and a potential target molecule for hypertrophic scar. Methods: In the present study, we investigated the protein expression of eIF6 in the human hypertrophic scar of different periods by immunohistochemistry and Western blot analysis. Results: In the hypertrophic scar tissue, eIF6 expression was significantly decreased and absent in the basal layer of epidermis in the early period, and increased slowly and began to appear in the basal layer of epidermis by the scar formation time. Conclusions: This study confirmed that eIF6 expression was significantly related to the development of hypertrophic scar, and the eIF6 may be a target molecule for hypertrophic scar control or could be an indicator of the outcomes for other treatment modalities. PMID:26481747

  14. Small molecule modulators of eukaryotic initiation factor 2α kinases, the key regulators of protein synthesis.

    PubMed

    Joshi, Manali; Kulkarni, Abhijeet; Pal, Jayanta K

    2013-11-01

    Eukaryotic initiation factor 2 alpha kinases (eIF-2α kinases) are key mediators of stress response in cells. In mammalian cells, there are four eIF-2α kinases, namely HRI (Heme-Regulated Inhibitor), PKR (RNA-dependent Protein Kinase), PERK (PKR-like ER Kinase) and GCN2 (General Control Non-derepressible 2). These kinases get activated during diverse cytoplasmic stress conditions and phosphorylate the alpha-subunit of eIF2, leading to global protein synthesis inhibition. Therefore, eIF-2α kinases play a vital role in various cellular processes such as proliferation, differentiation, apoptosis and cell signaling. Deregulation of eIF-2α kinases and protein synthesis has been linked to numerous pathological conditions such as certain cancers, anemia and neurodegenerative disorders. Thus, modulation of these kinases by small molecules holds a great therapeutic promise. In this review we have compiled the available information on inhibitors and activators of these four eIF-2α kinases. The review concludes with a note on the selectivity issue of currently available modulators and future perspectives for the design of specific small molecule probes.

  15. Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F

    PubMed Central

    Cencic, Regina; Hall, David R.; Robert, Francis; Du, Yuhong; Min, Jaeki; Li, Lian; Qui, Min; Lewis, Iestyn; Kurtkaya, Serdar; Dingledine, Ray; Fu, Haian; Kozakov, Dima; Vajda, Sandor; Pelletier, Jerry

    2011-01-01

    Deregulation of cap-dependent translation is associated with cancer initiation and progression. The rate-limiting step of protein synthesis is the loading of ribosomes onto mRNA templates stimulated by the heterotrimeric complex, eukaryotic initiation factor (eIF)4F. This step represents an attractive target for anticancer drug discovery because it resides at the nexus of the TOR signaling pathway. We have undertaken an ultra-high-throughput screen to identify inhibitors that prevent assembly of the eIF4F complex. One of the identified compounds blocks interaction between two subunits of eIF4F. As a consequence, cap-dependent translation is inhibited. This compound can reverse tumor chemoresistance in a genetically engineered lymphoma mouse model by sensitizing cells to the proapoptotic action of DNA damage. Molecular modeling experiments provide insight into the mechanism of action of this small molecule inhibitor. Our experiments validate targeting the eIF4F complex as a strategy for cancer therapy to modulate chemosensitivity. PMID:21191102

  16. Phosphorylation states of translational initiation factors affect mRNA cap binding in wheat.

    PubMed

    Khan, Mateen A; Goss, Dixie J

    2004-07-20

    Phosphorylation of eukaryotic translational initiation factors (eIFs) has been shown to be an important means of regulating protein synthesis. Plant initiation factors undergo phosphorylation/dephosphorylation under a variety of stress and growth conditions. We have shown that recombinant wheat cap-binding protein, eIF(iso)4E, produced from E. coli can be phosphorylated in vitro. Phosphorylation of eIF(iso)4E has effects on m(7)G cap-binding affinity similar to those of phosphorylation of mammalian eIF4E even though eIF(iso)4E lacks an amino acid that can be phosphorylated at the residue corresponding to Ser-209, the phosphorylation site in mammalian eIF4E. The cap-binding affinity was reduced 1.2-2.6-fold when eIF(iso)4E was phosphorylated. The in vitro phosphorylation site for wheat eIF(iso)4E was identified as Ser-207. Addition of eIF(iso)4G and eIF4B that had also been phosphorylated in vitro further reduced cap-binding affinity. Temperature-dependent studies showed that DeltaH(degrees) was favorable for cap binding regardless of the phosphorylation state of the initiation factors. The entropy, however, was unfavorable (negative) except when eIF(iso)4E was phosphorylated and interacting with eIF(iso)4G. Phosphorylation may modulate not only cap-binding activity, but other functions of eukaryotic initiation factors as well.

  17. Inhibition of eukaryotic initiation factor 4E phosphorylation by cercosporamide selectively suppresses angiogenesis, growth and survival of human hepatocellular carcinoma.

    PubMed

    Liu, Yongdong; Sun, Liling; Su, Xingwang; Guo, Sien

    2016-12-01

    Mnk kinase is required for the phosphorylation and activation of the eukaryotic initiation factor 4E (eIF4E), which regulates translation of proteins involve in important aspects of hepatocellular carcinoma (HCC). Here we investigated whether an antifungal agent, cercosporamide, which had been recently identified as a potent Mnk inhibitor, is active against HCC and angiogenesis. We showed that cercosporamide significantly inhibited growth and induced caspase-dependent apoptosis on numerous HCC cell lines, while sparing normal liver cells. In addition, cercosporamide impaired HCC angiogenesis via inhibiting HCC-endothelial cells (HCC-EC) capillary network formation, migration, proliferation and survival. Importantly, cercosporamide sensitized HCC cells to cisplatin in in vitro cell culture and in vivo HCC xenograft mouse model. Cercosporamide blocked the phosphorylation of eIF4E but not Erk or p38 in a dose- and time-dependent manner in HCC and HCC-EC cells, suggesting that suppression of eIF4E phosphorylation was the result of inhibition of Mnk but not Mnk upstream pathways. Overexpression of constitutively active eIF4E (S209D) but not the nonphosphorylatable eIF4E (S209A) abolished the inhibitory effects of cercosporamide in HepG2 cells. Altogether, our work demonstrates that cercosporamide acts as a Mnk inhibitor through blockage of eIF4E phosphorylation and selectively exhibits anti-HCC activities. Our work suggests that targeting MNK-eIF4E pathway represents a therapeutic strategy to overcome chemo-resistance for HCC treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Reduced Eukaryotic Initiation Factor 2B ε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein

    PubMed Central

    Gallagher, James W.; Kubica, Neil; Kimball, Scot R.; Jefferson, Leonard S.

    2009-01-01

    Eukaryotic initiation factor 2B (eIF2B), a five subunit guanine nucleotide exchange factor (GEF), plays a key role in the regulation of mRNA translation. Expression of its ε-subunit is specifically upregulated in certain conditions associated with increased cell growth. Therefore, the purpose of the present study was to examine the effect of repressing eIF2Bε expression on growth rate, protein synthesis, and other characteristics of two tumorigenic cell lines that display upregulated expression of the ε-subunit. Experiments were designed to compare spontaneously transformed fibroblasts (TMEF’s) to TMEFs infected with a lentivirus containing a short hairpin (sh)RNA directed against eIF2Bε. Cells expressing the shRNA displayed a reduction in eIF2Bε abundance to 30% of the value observed in uninfected TMEF’s with no change in the expression of any of the other four subunits. The repression of eIF2Bε expression was accompanied by reductions in GEF activity and global rates of protein synthesis. Moreover, repressed eIF2Bε expression led to marked reductions in cell growth rate in culture, colony formation in soft agar, and tumor progression in nude mice. Similar results were obtained in MCF-7 human breast cancer cells in which eIF2Bε expression was repressed through transient transfection with a siRNA directed against the ε-subunit. Overall, the results support a role for eIF2Bε in the regulation of cell growth and suggest that it might represent a therapeutic target for the treatment of human cancer. PMID:18974117

  19. CIF-1, a shared subunit of the COP9/signalosome and eukaryotic initiation factor 3 complexes, regulates MEL-26 levels in the Caenorhabditis elegans embryo.

    PubMed

    Luke-Glaser, Sarah; Roy, Marcia; Larsen, Brett; Le Bihan, Thierry; Metalnikov, Pavel; Tyers, Mike; Peter, Matthias; Pintard, Lionel

    2007-06-01

    The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation.

  20. CIF-1, a Shared Subunit of the COP9/Signalosome and Eukaryotic Initiation Factor 3 Complexes, Regulates MEL-26 Levels in the Caenorhabditis elegans Embryo▿

    PubMed Central

    Luke-Glaser, Sarah; Roy, Marcia; Larsen, Brett; Le Bihan, Thierry; Metalnikov, Pavel; Tyers, Mike; Peter, Matthias; Pintard, Lionel

    2007-01-01

    The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation. PMID:17403899

  1. Prodigal: prokaryotic gene recognition and translation initiation site identification

    SciTech Connect

    Chen, Gwo-Liang; LoCascio, Philip F; Land, Miriam L; Larimer, Frank W; Hauser, Loren John

    2010-01-01

    The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines. The goals of Prodigal were to attain greater sensitivity in identifying existing genes, to predict translation initiation sites more accurately, and to minimize the number of false positive predictions. The results of Prodigal were compared to existing methods for both purely experimentally verified genes as well as curated Genbank files for a number of genomes. Prodigal's performance was found to be comparable or better to existing methods in the prediction of genes while also predicting fewer overall genes. In the prediction of translation initiation sites, Prodigal performed competitively with existing methods. Prodigal is currently already in use at many institutions, and it has been used to annotate all finished microbial genomes submitted to Genbank by DOE-JGI in 2008 and onward (a substantial percentage of the overall finished microbial genomes at NCBI). It is

  2. The Innovative Medicines Initiative moves translational immunology forward.

    PubMed

    Goldman, Michel; Wittelsberger, Angela; De Magistris, Maria-Teresa

    2013-02-01

    The Innovative Medicines Initiative (IMI) was established in 2008 as a public-private partnership between the European Union and the European Federation of Pharmaceutical Industries and Associations with the mission to promote the development of novel therapies through collaborative efforts based on the concept of pre-competitive research. Several consortia supported by IMI are dedicated to immuno-inflammatory disorders, immune-based biopharmaceuticals and vaccines. Herein, we present the key principles underlying IMI, briefly review the status of projects related to translational immunology, and present future topics of interest to immunologists.

  3. Loss of the eukaryotic initiation factor 2α kinase general control nonderepressible 2 protects mice from pressure overload-induced congestive heart failure without affecting ventricular hypertrophy.

    PubMed

    Lu, Zhongbing; Xu, Xin; Fassett, John; Kwak, Dongmin; Liu, Xiaoyu; Hu, Xinli; Wang, Huan; Guo, Haipeng; Xu, Dachun; Yan, Shuo; McFalls, Edward O; Lu, Fei; Bache, Robert J; Chen, Yingjie

    2014-01-01

    In response to several stresses, including nutrient deprivation, general control nonderepressible 2 kinase (GCN2) attenuates mRNA translation by phosphorylating eukaryotic initiation factor 2α(Ser51). Energy starvation is known to exacerbate congestive heart failure, and eukaryotic initiation factor 2α(Ser51) phosphorylation is increased in the failing heart. However, the effect of GCN2 during the evolution of congestive heart failure has not been tested. In this study, we examined the influence of GCN2 expression in response to a cardiac stress by inducing chronic pressure overload with transverse aortic constriction in wild-type and GCN2 knockout mice. Under basal conditions, GCN2 knockout mice had normal left ventricular structure and function, but after transverse aortic constriction, they demonstrated less contractile dysfunction, less increase in lung weight, less increase in lung inflammation and vascular remodeling, and less myocardial apoptosis and fibrosis compared with wild-type mice, despite an equivalent degree of left ventricular hypertrophy. As expected, GCN2 knockout attenuated transverse aortic constriction-induced cardiac eukaryotic initiation factor 2α(Ser51) phosphorylation and preserved sarcoplasmic reticulum Ca(2+) ATPase expression compared with wild-type mice. Interestingly, the expression of the antiapoptotic protein Bcl-2 was significantly elevated in GCN2 knockout hearts, whereas in isolated neonatal cardiomyocytes, selective knockdown of GCN2 increased Bcl-2 protein expression and enhanced myocyte resistance to an apoptotic stress. Collectively, our data support the notion that GCN2 impairs the ventricular adaptation to chronic pressure overload by reducing Bcl-2 expression and increasing cardiomyocyte susceptibility to apoptotic stimuli. Our findings suggest that strategies to reduce GCN2 activity in cardiac tissue may be a novel approach to attenuate congestive heart failure development.

  4. Efficient translation initiation dictates codon usage at gene start

    PubMed Central

    Bentele, Kajetan; Saffert, Paul; Rauscher, Robert; Ignatova, Zoya; Blüthgen, Nils

    2013-01-01

    The genetic code is degenerate; thus, protein evolution does not uniquely determine the coding sequence. One of the puzzles in evolutionary genetics is therefore to uncover evolutionary driving forces that result in specific codon choice. In many bacteria, the first 5–10 codons of protein-coding genes are often codons that are less frequently used in the rest of the genome, an effect that has been argued to arise from selection for slowed early elongation to reduce ribosome traffic jams. However, genome analysis across many species has demonstrated that the region shows reduced mRNA folding consistent with pressure for efficient translation initiation. This raises the possibility that unusual codon usage is a side effect of selection for reduced mRNA structure. Here we discriminate between these two competing hypotheses, and show that in bacteria selection favours codons that reduce mRNA folding around the translation start, regardless of whether these codons are frequent or rare. Experiments confirm that primarily mRNA structure, and not codon usage, at the beginning of genes determines the translation rate. PMID:23774758

  5. Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells.

    PubMed

    Wu, Ching-Fen; Seo, Ean-Jeong; Klauck, Sabine M; Efferth, Thomas

    2016-02-15

    Unfolded protein responses (UPR) determine cell fate and are recognized as anticancer targets. In a previous research, we reported that cryptotanshinone (CPT) exerted cytotoxic effects toward acute lymphoblastic leukemia cells through mitochondria-mediated apoptosis. In the present study, we further investigated the role of UPR in CPT-induced cytotoxicity on acute lymphoblastic leukemia cells by applying tools of pharmacogenomics and bioinformatics. Gene expression profiling was performed by mRNA microarray hybridization. Potential transcription factor binding motifs were identified in the promoter regions of the deregulated genes by Cistrome software. Molecular docking on eIF-4A and PI3K was performed to investigate the inhibitory activity of CPT on translation initiation. CPT regulated genes related to UPR and eIF2 signaling pathways. The DNA-Damage-Inducible Transcript 3 (DDIT3) gene, which is activated as consequence of UPR malfunction during apoptosis, was induced and validated by in vitro experiments. Transcription factor binding motif analysis of the microarrary-retrieved deregulated genes in the promoter region emphasized the relevance of transcription factors, such as ATF2, ATF4 and XBP1, regulating UPR and cell apoptosis. Molecular docking suggested inhibitory effects of CPT by binding to eIF-4A and PI3K providing evidence for a role of CPT's in the disruption of protein synthesis. CPT triggered UPR and inhibited protein synthesis via eIF-mediated translation initiation, potentially supporting CPT-induced cytotoxic effects toward acute leukemia cells. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Evolutionary Conservation and Diversification of the Translation Initiation Apparatus in Trypanosomatids

    PubMed Central

    Zinoviev, Alexandra; Shapira, Michal

    2012-01-01

    Trypanosomatids are ancient eukaryotic parasites that migrate between insect vectors and mammalian hosts, causing a range of diseases in humans and domestic animals. Trypanosomatids feature a multitude of unusual molecular features, including polycistronic transcription and subsequent processing by trans-splicing and polyadenylation. Regulation of protein coding genes is posttranscriptional and thus, translation regulation is fundamental for activating the developmental program of gene expression. The spliced-leader RNA is attached to all mRNAs. It contains an unusual hypermethylated cap-4 structure in its 5′ end. The cap-binding complex, eIF4F, has gone through evolutionary changes in accordance with the requirement to bind cap-4. The eIF4F components in trypanosomatids are highly diverged from their orthologs in higher eukaryotes, and their potential functions are discussed. The cap-binding activity in all eukaryotes is a target for regulation and plays a similar role in trypanosomatids. Recent studies revealed a novel eIF4E-interacting protein, involved in directing stage-specific and stress-induced translation pathways. Translation regulation during stress also follows unusual regulatory cues, as the increased translation of Hsp83 following heat stress is driven by a defined element in the 3′ UTR, unlike higher eukaryotes. Overall, the environmental switches experienced by trypanosomatids during their life cycle seem to affect their translational machinery in unique ways. PMID:22829751

  7. Evolutionary conservation and diversification of the translation initiation apparatus in trypanosomatids.

    PubMed

    Zinoviev, Alexandra; Shapira, Michal

    2012-01-01

    Trypanosomatids are ancient eukaryotic parasites that migrate between insect vectors and mammalian hosts, causing a range of diseases in humans and domestic animals. Trypanosomatids feature a multitude of unusual molecular features, including polycistronic transcription and subsequent processing by trans-splicing and polyadenylation. Regulation of protein coding genes is posttranscriptional and thus, translation regulation is fundamental for activating the developmental program of gene expression. The spliced-leader RNA is attached to all mRNAs. It contains an unusual hypermethylated cap-4 structure in its 5' end. The cap-binding complex, eIF4F, has gone through evolutionary changes in accordance with the requirement to bind cap-4. The eIF4F components in trypanosomatids are highly diverged from their orthologs in higher eukaryotes, and their potential functions are discussed. The cap-binding activity in all eukaryotes is a target for regulation and plays a similar role in trypanosomatids. Recent studies revealed a novel eIF4E-interacting protein, involved in directing stage-specific and stress-induced translation pathways. Translation regulation during stress also follows unusual regulatory cues, as the increased translation of Hsp83 following heat stress is driven by a defined element in the 3' UTR, unlike higher eukaryotes. Overall, the environmental switches experienced by trypanosomatids during their life cycle seem to affect their translational machinery in unique ways.

  8. Alternative translation initiation augments the human mitochondrial proteome

    PubMed Central

    Kazak, Lawrence; Reyes, Aurelio; Duncan, Anna L.; Rorbach, Joanna; Wood, Stuart R.; Brea-Calvo, Gloria; Gammage, Payam A.; Robinson, Alan J.; Minczuk, Michal; Holt, Ian J.

    2013-01-01

    Alternative translation initiation (ATI) is a mechanism of producing multiple proteins from a single transcript, which in some cases regulates trafficking of proteins to different cellular compartments, including mitochondria. Application of a genome-wide computational screen predicts a cryptic mitochondrial targeting signal for 126 proteins in mouse and man that is revealed when an AUG codon located downstream from the canonical initiator methionine codon is used as a translation start site, which we term downstream ATI (dATI). Experimental evidence in support of dATI is provided by immunoblotting of endogenous truncated proteins enriched in mitochondrial cell fractions or of co-localization with mitochondria using immunocytochemistry. More detailed cellular localization studies establish mitochondrial targeting of a member of the cytosolic poly(A) binding protein family, PABPC5, and of the RNA/DNA helicase PIF1α. The mitochondrial isoform of PABPC5 co-immunoprecipitates with the mitochondrial poly(A) polymerase, and is markedly reduced in abundance when mitochondrial DNA and RNA are depleted, suggesting it plays a role in RNA metabolism in the organelle. Like PABPC5 and PIF1α, most of the candidates identified by the screen are not currently annotated as mitochondrial proteins, and so dATI expands the human mitochondrial proteome. PMID:23275553

  9. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification

    SciTech Connect

    Hyatt, Philip Douglas; Chen, Gwo-Liang; Larimer, Frank W; LoCascio, Philip F; Hauser, Loren John; Land, Miriam L

    2010-01-01

    Background The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. Results With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. Conclusion We built a fast, lightweight, open source gene prediction program called Prodigal (http://compbio.ornl.gov/prodigal/). Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.

  10. Accumulation of Polyribosomes in Dendritic Spine Heads, But Not Bases and Necks, during Memory Consolidation Depends on Cap-Dependent Translation Initiation.

    PubMed

    Ostroff, Linnaea E; Botsford, Benjamin; Gindina, Sofya; Cowansage, Kiriana K; LeDoux, Joseph E; Klann, Eric; Hoeffer, Charles

    2017-02-15

    Translation in dendrites is believed to support synaptic changes during memory consolidation. Although translational control mechanisms are fundamental mediators of memory, little is known about their role in local translation. We previously found that polyribosomes accumulate in dendritic spines of the adult rat lateral amygdala (LA) during consolidation of aversive pavlovian conditioning and that this memory requires cap-dependent initiation, a primary point of translational control in eukaryotic cells. Here we used serial electron microscopy reconstructions to quantify polyribosomes in LA dendrites when consolidation was blocked by the cap-dependent initiation inhibitor 4EGI-1. We found that 4EGI-1 depleted polyribosomes in dendritic shafts and selectively prevented their upregulation in spine heads, but not bases and necks, during consolidation. Cap-independent upregulation was specific to spines with small, astrocyte-associated synapses. Our results reveal that cap-dependent initiation is involved in local translation during learning and that local translational control varies with synapse type.SIGNIFICANCE STATEMENT Translation initiation is a central regulator of long-term memory formation. Local translation in dendrites supports memory by providing necessary proteins at synaptic sites, but it is unknown whether this requires initiation or bypasses it. We used serial electron microscopy reconstructions to examine polyribosomes in dendrites when memory formation was blocked by an inhibitor of translation initiation. This revealed two major pools of polyribosomes that were upregulated during memory formation: one pool in dendritic spine heads that was initiation dependent and another pool in the bases and necks of small spines that was initiation independent. Thus, translation regulation differs between spine types and locations, and translation that occurs closest to individual synapses during memory formation is initiation dependent. Copyright © 2017 the

  11. Machine Assisted Translation of Health Materials to Chinese: An Initial Evaluation.

    PubMed

    Turner, Anne M; Desai, Loma; Dew, Kristin; Martin, Nathalie; Kirchhoff, Katrin

    2015-01-01

    There is an unmet need for Chinese language health materials in the USA. We investigated the use of machine translation (MT) plus human post-editing (PE) to produce Chinese translations of public health materials. We collected 60 documents that had been manually translated from English to traditional Chinese. The English versions were translated to Chinese using MT and assessed for errors and time required to correct via PE. Results suggest poor initial translation may explain the lack of quality translations despite PE.

  12. Leishmania eukaryotic initiation factor (LeIF) inhibits parasite growth in murine macrophages.

    PubMed

    Koutsoni, Olga; Barhoumi, Mourad; Guizani, Ikram; Dotsika, Eleni

    2014-01-01

    The leishmaniases constitute neglected global public health problems that require adequate control measures, prophylactic clinical vaccines and effective and non-toxic drug treatments. In this study, we explored the potential of Leishmania infantum eukaryotic initiation factor (LieIF), an exosomal protein, as a novel anti-infective therapeutic molecule. More specifically, we assessed the efficacy of recombinant LieIF, in combination with recombinant IFN-γ, in eliminating intracellular L. donovani parasites in an in vitro macrophage model. J774A.1 macrophages were initially treated with LieIF/IFN-γ prior to in vitro infection with L. donovani stationary phase promastigotes (pre-infection treatment), and resistance to infection was observed 72 h after infection. J774A.1 macrophages were also treated with LieIF/IFN-γ after L. donovani infection (post-infection treatment), and resistance to infection was also observed at both time points tested (19 h and 72 h) after infection. To elucidate the LieIF/IFN-γ-induced mechanism(s) that mediate the reduction of intracellular parasite growth, we examined the generation of potent microbicidal molecules, such as nitric oxide (NO) and reactive oxygen species (ROS), within infected macrophages. Furthermore, macrophages pre-treated with LieIF/IFN-γ showed a clear up-regulation in macrophage inflammatory protein 1α (MIP-1α) as well as tumor necrosis factor alpha (TNF-α) expression. However, significant different protein levels were not detected. In addition, macrophages pre-treated with LieIF/IFN-γ combined with anti-TNF-α monoclonal antibody produced significantly lower amounts of ROS. These data suggest that during the pre-treatment state, LieIF induces intramacrophage parasite growth inhibition through the production of TNF-α, which induces microbicidal activity by stimulating NO and ROS production. The mechanisms of NO and ROS production when macrophages are treated with LieIF after infection are probably different

  13. Viral Genome-Linked Protein (VPg) Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV).

    PubMed

    Zhu, Jie; Wang, Binbin; Miao, Qiuhong; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Guo, Huimin; Liu, Guangqing

    2015-01-01

    Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.

  14. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells.

    PubMed

    Beznosková, Petra; Cuchalová, Lucie; Wagner, Susan; Shoemaker, Christopher J; Gunišová, Stanislava; von der Haar, Tobias; Valášek, Leoš Shivaya

    2013-11-01

    Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined "initiation-specific" binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation.

  15. Cryo-EM study of start codon selection during archaeal translation initiation

    PubMed Central

    Coureux, Pierre-Damien; Lazennec-Schurdevin, Christine; Monestier, Auriane; Larquet, Eric; Cladière, Lionel; Klaholz, Bruno P.; Schmitt, Emmanuelle; Mechulam, Yves

    2016-01-01

    Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNAiMet) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM structures of the full archaeal 30S initiation complex showing two conformational states of the TC. In the first state, the TC is bound to the ribosome in a relaxed conformation with the tRNA oriented out of the P site. In the second state, the tRNA is accommodated within the peptidyl (P) site and the TC becomes constrained. This constraint is compensated by codon/anticodon base pairing, whereas in the absence of a start codon, aIF2 contributes to swing out the tRNA. This spring force concept highlights a mechanism of codon/anticodon probing by the initiator tRNA directly assisted by aIF2. PMID:27819266

  16. Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha.

    PubMed

    Lang, Charles H; Frost, Robert A

    2007-01-01

    Inhibition of translational efficiency is responsible at least in part for the sepsis-induced decrease in protein synthesis observed in skeletal muscle. Moreover, infusion of the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) into naive rats produces a comparable decrement. Therefore, the purpose of the present study was to determine whether inhibition of TNF action under in vivo conditions could prevent the sepsis-induced decrease in translation initiation observed in the postabsorptive state. To address this aim, sepsis was produced by cecal ligation and puncture (CLP) and rats were studied in the fasted condition 20 to 24 hours thereafter. Both septic and time-matched nonseptic control rats were pretreated with TNF-binding protein (TNF(BP)) before CLP or sham surgery to neutralize endogenously produced TNF. Sepsis altered the distribution of eukaryotic initiation factor 4E (eIF4E) in the gastrocnemius by increasing the amount associated with 4E-BP1 (inactive complex) and decreasing the amount bound to eIF4G (active complex). This change in eIF4E availability was associated with a decreased phosphorylation of 4E-BP1. Furthermore, the phosphorylation of ribosomal protein S6 and mammalian target of rapamycin (mTOR) was also decreased in the gastrocnemius from septic rats. Pretreatment of septic rats with TNF(BP) largely ameliorated the altered distribution of eIF4E as well as the reduced phosphorylation of 4E-BP1, S6, and mTOR. In contrast, sepsis did not change either the total amount or the phosphorylation state of eIF2alpha or eIF2Bepsilon. Furthermore, no sepsis-induced change in eIFs was detected in the slow-twitch soleus muscle. The ability of TNF(BP) to prevent the sepsis-induced alterations in translation initiation was independent of change in plasma insulin and proportional to the insulinlike growth factor I content in blood and muscle but was associated with a reduction in plasma corticosterone. Hence, the decreased constitutive protein

  17. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition.

    PubMed Central

    Bertram, G; Bell, H A; Ritchie, D W; Fullerton, G; Stansfield, I

    2000-01-01

    Eukaryote ribosomal translation is terminated when release factor eRF1, in a complex with eRF3, binds to one of the three stop codons. The tertiary structure and dimensions of eRF1 are similar to that of a tRNA, supporting the hypothesis that release factors may act as molecular mimics of tRNAs. To identify the yeast eRF1 stop codon recognition domain (analogous to a tRNA anticodon), a genetic screen was performed to select for mutants with disabled recognition of only one of the three stop codons. Nine out of ten mutations isolated map to conserved residues within the eRF1 N-terminal domain 1. A subset of these mutants, although wild-type for ribosome and eRF3 interaction, differ in their respective abilities to recognize each of the three stop codons, indicating codon-specific discrimination defects. Five of six of these stop codon-specific mutants define yeast domain 1 residues (I32, M48, V68, L123, and H129) that locate at three pockets on the eRF1 domain 1 molecular surface into which a stop codon can be modeled. The genetic screen results and the mutant phenotypes are therefore consistent with a role for domain 1 in stop codon recognition; the topology of this eRF1 domain, together with eRF1-stop codon complex modeling further supports the proposal that this domain may represent the site of stop codon binding itself. PMID:10999601

  18. Translation initiation in Drosophila melanogaster is reduced by mutations upstream of the AUG initiator codon

    SciTech Connect

    Feng, Yue; Gunter, L.E.; Organ, E.L.; Cavener, D.R. )

    1991-04-01

    The importance to in vivo translation of sequences immediately upstream of the Drosophila alcohol dehydrogenase (Adh) start codon was examined at two developmental stages. Mutations were introduced into the Adh gene in vitro, and the mutant gene was inserted into the genome via germ line transformation. An A-to-T substitution at the [minus]3 position did not affect relative translation of ADH at the adult stage. A second mutant gene, containing five mutations in the region [minus]1 to [minus]9, was designed to completely block translation initiation. However, transformant lines bearing these mutations still exhibit detectable ADH, albeit at substantially reduced levels. The average fold reduction at the second-instar larval stage was 5.9, while at the adult stage a 12.5-fold reduction was observed.

  19. Gene and translation initiation site prediction in metagenomic sequences

    SciTech Connect

    Hyatt, Philip Douglas; LoCascio, Philip F; Hauser, Loren John; Uberbacher, Edward C

    2012-01-01

    Gene prediction in metagenomic sequences remains a difficult problem. Current sequencing technologies do not achieve sufficient coverage to assemble the individual genomes in a typical sample; consequently, sequencing runs produce a large number of short sequences whose exact origin is unknown. Since these sequences are usually smaller than the average length of a gene, algorithms must make predictions based on very little data. We present MetaProdigal, a metagenomic version of the gene prediction program Prodigal, that can identify genes in short, anonymous coding sequences with a high degree of accuracy. The novel value of the method consists of enhanced translation initiation site identification, ability to identify sequences that use alternate genetic codes and confidence values for each gene call. We compare the results of MetaProdigal with other methods and conclude with a discussion of future improvements.

  20. Accuracy improvement for identifying translation initiation sites in microbial genomes.

    PubMed

    Zhu, Huai-Qiu; Hu, Gang-Qing; Ouyang, Zheng-Qing; Wang, Jin; She, Zhen-Su

    2004-12-12

    At present the computational gene identification methods in microbial genomes have a high prediction accuracy of verified translation termination site (3' end), but a much lower accuracy of the translation initiation site (TIS, 5' end). The latter is important to the analysis and the understanding of the putative protein of a gene and the regulatory machinery of the translation. Improving the accuracy of prediction of TIS is one of the remaining open problems. In this paper, we develop a four-component statistical model to describe the TIS of prokaryotic genes. The model incorporates several features with biological meanings, including the correlation between translation termination site and TIS of genes, the sequence content around the start codon; the sequence content of the consensus signal related to ribosomal binding sites (RBSs), and the correlation between TIS and the upstream consensus signal. An entirely non-supervised training system is constructed, which takes as input a set of annotated coding open reading frames (ORFs) by any gene finder, and gives as output a set of organism-specific parameters (without any prior knowledge or empirical constants and formulas). The novel algorithm is tested on a set of reliable datasets of genes from Escherichia coli and Bacillus subtillis. MED-Start may correctly predict 95.4% of the start sites of 195 experimentally confirmed E.coli genes, 96.6% of 58 reliable B.subtillis genes. Moreover, the test results indicate that the algorithm gives higher accuracy for more reliable datasets, and is robust to the variation of gene length. MED-Start may be used as a postprocessor for a gene finder. After processing by our program, the improvement of gene start prediction of gene finder system is remarkable, e.g. the accuracy of TIS predicted by MED 1.0 increases from 61.7 to 91.5% for 854 E.coli verified genes, while that by GLIMMER 2.02 increases from 63.2 to 92.0% for the same dataset. These results show that our algorithm is

  1. Alteration of the major phosphorylation site of eukaryotic protein synthesis initiation factor 4E prevents its association with the 48 S initiation complex.

    PubMed

    Joshi-Barve, S; Rychlik, W; Rhoads, R E

    1990-02-15

    Site-directed mutagenesis was used to replace the serine residue at the primary phosphorylation site of human eukaryotic initiation factor (eIF) 4E with an alanine residue. The mutated cDNA was transcribed in vitro, and the transcript was used to direct protein synthesis in a reticulocyte lysate system. The variant protein (eIF-4EAla) was retained on a 7-methylguanosine 5'-triphosphate (m7GTP)-Sepharose affinity column and was specifically eluted by m7GTP. Examination of eIF-4EAla by isoelectric focusing revealed two species which had the same pI values as the phosphorylated and nonphosphorylated forms of unaltered eIF-4E (here designated eIF-4ESer). However, conversion of unphosphorylated eIF-4EAla to the putative phosphorylated eIF-4EAla in the reticulocyte lysate system was slower than the corresponding conversion of eIF-4ESer. The possibility that the more acidic form of eIF-4EAla was due to NH2-terminal acetylation was ruled out by an experiment in which the acetyl-CoA pool of the reticulocyte lysate system was depleted with oxaloacetate and citrate synthase. The more acidic form of eIF-4EAla was, however, eliminated by treatment with calf intestine alkaline phosphatase, suggesting that it results from a second-site phosphorylation. When translation reaction mixtures were resolved on sucrose density gradients, the 35S-labeled eIF-4ESer was found on the 48 S initiation complex in the presence of guanylyl imidodiphosphate, as reported earlier (Hiremath, L.S., Hiremath, S.T., Rychlik, W., Joshi, S., Domier, L.L., and Rhoads, R.E. (1989) J. Biol. Chem. 264, 1132-1138). eIF-4EAla, by contrast, was not found on the 48 S complex, suggesting that phosphorylation of eIF-4E is necessary for it to carry out its role of transferring mRNA to the 48 S complex. Supporting this interpretation was the finding that eIF-4ESer isolated from 48 S initiation complexes consisted predominantly of the phosphorylated form.

  2. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    PubMed

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2017-10-01

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues ( P < .05). And the in vivo tumorigenic ability of HeLa cells was reduced by inhibition of eukaryotic initiation factor 5A2. Knockdown of eukaryotic initiation factor 5A2 in HeLa cells decreased the cell viability compared with normal cells and induced G1 phase cell cycle arrest ( P < .05). Moreover, the cell migration ability of eukaryotic initiation factor 5A2 knockdown cells was dramatically inhibited. Associated with alterations in phenotypes, RhoA, ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that

  3. The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase.

    PubMed

    Sun, Yingjie; Atas, Evrim; Lindqvist, Lisa; Sonenberg, Nahum; Pelletier, Jerry; Meller, Amit

    2012-07-01

    Eukaryotic translation initiation is a highly regulated process in protein synthesis. The principal translation initiation factor eIF4AI displays helicase activity, unwinding secondary structures in the mRNAs 5'-UTR. Single molecule fluorescence resonance energy transfer (sm-FRET) is applied here to directly observe and quantify the helicase activity of eIF4AI in the presence of the ancillary RNA-binding factor eIF4H. Results show that eIF4H can significantly enhance the helicase activity of eIF4AI by strongly binding both to loop structures within the RNA transcript as well as to eIF4AI. In the presence of ATP, the eIF4AI/eIF4H complex exhibits persistent rapid and repetitive cycles of unwinding and re-annealing. ATP titration assays suggest that this process consumes a single ATP molecule per cycle. In contrast, helicase unwinding activity does not occur in the presence of the non-hydrolysable analog ATP-γS. Based on our sm-FRET results, we propose an unwinding mechanism where eIF4AI/eIF4H can bind directly to loop structures to destabilize duplexes. Since eIF4AI is the prototypical example of a DEA(D/H)-box RNA helicase, it is highly likely that this unwinding mechanism is applicable to a myriad of DEAD-box helicases employed in RNA metabolism.

  4. Measurements of translation initiation from all 64 codons in E. coli

    PubMed Central

    Hecht, Ariel; Glasgow, Jeff; Bawazer, Lukmaan A.; Munson, Matthew S.; Cochran, Jennifer R.

    2017-01-01

    Abstract Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the ‘start codons’ for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation of green fluorescent protein and nanoluciferase in E. coli from all 64 triplet codons and across a range of DNA copy number. We detected initiation of protein synthesis above measurement background for 47 codons. Translation from non-canonical start codons ranged from 0.007 to 3% relative to translation from AUG. Translation from 17 non-AUG codons exceeded the highest reported rates of non-cognate codon recognition. Translation initiation from non-canonical start codons may contribute to the synthesis of peptides in both natural and synthetic biological systems. PMID:28334756

  5. Why is start codon selection so precise in eukaryotes?

    PubMed Central

    Asano, Katsura

    2014-01-01

    Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes. PMID:26779403

  6. Depletion of eIF2.GTP.Met-tRNAi translation initiation complex up-regulates BRCA1 expression in vitro and in vivo

    PubMed Central

    Peker, Selen; Merajver, Sophia; Halperin, Jose A.

    2015-01-01

    Most sporadic breast and ovarian cancers express low levels of the breast cancer susceptibility gene, BRCA1. The BRCA1 gene produces two transcripts, mRNAa and mRNAb. mRNAb, present in breast cancer but not in normal mammary epithelial cells, contains three upstream open reading frames (uORFs) in its 5′UTR and is translationally repressed. Comparable tandem uORFs are characteristically seen in mRNAs whose translational efficiency paradoxically increases when the overall translation rate is decreased due to phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α). Here we show fish oil derived eicosopanthenoic acid (EPA) that induces eIF2α phosphorylation translationally up-regulates the expression of BRCA1 in human breast cancer cells. We demonstrate further that a diet rich in EPA strongly induces expression of BRCA1 in human breast cancer xenografts. PMID:25762631

  7. Alternative translation initiation codons for the plastid maturase MatK: unraveling the pseudogene misconception in the Orchidaceae.

    PubMed

    Barthet, Michelle M; Moukarzel, Keenan; Smith, Kayla N; Patel, Jaimin; Hilu, Khidir W

    2015-09-29

    The plastid maturase MatK has been implicated as a possible model for the evolutionary "missing link" between prokaryotic and eukaryotic splicing machinery. This evolutionary implication has sparked investigations concerning the function of this unusual maturase. Intron targets of MatK activity suggest that this is an essential enzyme for plastid function. The matK gene, however, is described as a pseudogene in many photosynthetic orchid species due to presence of premature stop codons in translations, and its high rate of nucleotide and amino acid substitution. Sequence analysis of the matK gene from orchids identified an out-of-frame alternative AUG initiation codon upstream from the consensus initiation codon used for translation in other angiosperms. We demonstrate translation from the alternative initiation codon generates a conserved MatK reading frame. We confirm that MatK protein is expressed and functions in sample orchids currently described as having a matK pseudogene using immunodetection and reverse-transcription methods. We demonstrate using phylogenetic analysis that this alternative initiation codon emerged de novo within the Orchidaceae, with several reversal events at the basal lineage and deep in orchid history. These findings suggest a novel evolutionary shift for expression of matK in the Orchidaceae and support the function of MatK as a group II intron maturase in the plastid genome of land plants including the orchids.

  8. Initiation of chromosomal DNA replication in eukaryotic cells; contribution of yeast genetics to the elucidation.

    PubMed

    Araki, Hiroyuki

    2011-01-01

    Chromosomal DNA replication is a fundamental process in the transmission of genetic information through generations. While the molecular mechanism of DNA replication has been studied for a long time, knowledge regarding this process in eukaryotic cells has advanced rapidly in the past 20 years. Yeast genetics contributed profoundly to this rapid advancement. Reverse genetics and genetic screenings identified all genes encoding replication proteins in budding yeast. Moreover, the genetic interactions that were used in screenings and analyses provided an insight into the molecular mechanism of chromosomal DNA replication. Further studies showed that complicated but sophisticated mechanisms govern chromosomal DNA replication. The retrospective view of the genetic approaches used to elucidate DNA replication in eukaryotes, together with current knowledge, tell us the reasons why some of the genetic screenings are successful, and also provide ideas for future directions.

  9. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay.

    PubMed

    Fatscher, Tobias; Boehm, Volker; Weiche, Benjamin; Gehring, Niels H

    2014-10-01

    Nonsense-mediated mRNA decay (NMD) eliminates different classes of mRNA substrates including transcripts with long 3' UTRs. Current models of NMD suggest that the long physical distance between the poly(A) tail and the termination codon reduces the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and the eukaryotic release factor 3a (eRF3a) during translation termination. In the absence of PABPC1 binding, eRF3a recruits the NMD factor UPF1 to the terminating ribosome, triggering mRNA degradation. Here, we have used the MS2 tethering system to investigate the suppression of NMD by PABPC1. We show that tethering of PABPC1 between the termination codon and a long 3' UTR specifically inhibits NMD-mediated mRNA degradation. Contrary to the current model, tethered PABPC1 mutants unable to interact with eRF3a still efficiently suppress NMD. We find that the interaction of PABPC1 with eukaryotic initiation factor 4G (eIF4G), which mediates the circularization of mRNAs, is essential for NMD inhibition by tethered PABPC1. Furthermore, recruiting either eRF3a or eIF4G in proximity to an upstream termination codon antagonizes NMD. While tethering of an eRF3a mutant unable to interact with PABPC1 fails to suppress NMD, tethered eIF4G inhibits NMD in a PABPC1-independent manner, indicating a sequential arrangement of NMD antagonizing factors. In conclusion, our results establish a previously unrecognized link between translation termination, mRNA circularization, and NMD suppression, thereby suggesting a revised model for the activation of NMD at termination codons upstream of long 3' UTR. © 2014 Fatscher et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Mitotic phosphorylation of eukaryotic initiation factor 4G1 (eIF4G1) at Ser1232 by Cdk1:cyclin B inhibits eIF4A helicase complex binding with RNA.

    PubMed

    Dobrikov, Mikhail I; Shveygert, Mayya; Brown, Michael C; Gromeier, Matthias

    2014-02-01

    During mitosis, global translation is suppressed, while synthesis of proteins with vital mitotic roles must go on. Prior evidence suggests that the mitotic translation shift involves control of initiation. Yet, no signals specifically targeting translation initiation factors during mitosis have been identified. We used phosphoproteomics to investigate the central translation initiation scaffold and "ribosome adaptor," eukaryotic initiation factor 4G1 (eIF4G1) in interphase or nocodazole-arrested mitotic cells. This approach and kinase inhibition assays, in vitro phosphorylation with recombinant kinase, and kinase depletion-reconstitution experiments revealed that Ser1232 in eIF4G1 is phosphorylated by cyclin-dependent kinase 1 (Cdk1):cyclin B during mitosis. Ser1232 is located in an unstructured region of the C-terminal portion of eIF4G1 that coordinates assembly of the eIF4G/-4A/-4B helicase complex and binding of the mitogen-activated protein kinase (MAPK) signal-integrating kinase, Mnk. Intense phosphorylation of Ser1232 in mitosis strongly enhanced the interactions of eIF4A with HEAT domain 2 of eIF4G and decreased association of eIF4G/-4A with RNA. Our findings implicate phosphorylation of eIF4G1(Ser1232) by Cdk1:cyclin B and its inhibitory effects on eIF4A helicase activity in the mitotic translation initiation shift.

  11. Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues.

    PubMed

    Wei, C C; Balasta, M L; Ren, J; Goss, D J

    1998-02-17

    Most eukaryotic mRNAs contain a 5' cap (m7GppX) and a 3' poly(A) tail to increase synergistically the translational efficiency. Recently, the poly(A) binding protein (PABP) and cap-binding protein, eIF-4F, were found to interact [Le et al. (1997) J. Biol. Chem. 272, 16247-16255; Tarun and Sachs (1996) EMBO J. 15, 7168-7177]. These data suggest that PABP may exert its effect on translational efficiency either by increasing the formation of initiation factor-mRNA complex or by enhancing ribosome recycling. To investigate the functional consequences of these interactions, the fluorescent cap analogue, ant-m7GTP, which is an environmentally sensitive fluorescent probe [Ren and Goss (1996) Nucleic Acids Res. 24, 3629-3634] was used to investigate the cap-binding affinity. Our data show that the binding of eIF-(iso)4F or eIF-4F to cap analogue enhanced their binding affinity toward PABP approximately 40-fold. Similarly, the eIF-4F/PABP or eIF-(iso)4F/PABP complexes show a 40-fold enhancement of cap analogue binding as compared to eIF-4F or eIF-(iso)4F alone. At least part of the enhancement of the translational initiation by PABP can be accounted for by direct changes in cap-binding affinity. The interactions of these components also suggest a mechanism whereby the poly(A) tail is brought into close proximity with m7G cap. This effect was examined by fluorescence energy transfer, and it was determined that the PABP/eIF-4F complex could bind both poly(A) and 5' cap simultaneously.

  12. N-myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion.

    PubMed

    Lane, Darius J R; Saletta, Federica; Suryo Rahmanto, Yohan; Kovacevic, Zaklina; Richardson, Des R

    2013-01-01

    Iron is critical for cellular proliferation and its depletion leads to a suppression of both DNA synthesis and global translation. These observations suggest that iron depletion may trigger a cellular "stress response". A canonical response of cells to stress is the formation of stress granules, which are dynamic cytoplasmic aggregates containing stalled pre-initiation complexes that function as mRNA triage centers. By differentially prioritizing mRNA translation, stress granules allow for the continued and selective translation of stress response proteins. Although the multi-subunit eukaryotic initiation factor 3 (eIF3) is required for translation initiation, its largest subunit, eIF3a, may not be essential for this activity. Instead, eIF3a is a vital constituent of stress granules and appears to act, in part, by differentially regulating specific mRNAs during iron depletion. Considering this, we investigated eIF3a's role in modulating iron-regulated genes/proteins that are critically involved in proliferation and metastasis. In this study, eIF3a was down-regulated and recruited into stress granules by iron depletion as well as by the classical stress-inducers, hypoxia and tunicamycin. Iron depletion also increased expression of the metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), and a known downstream repressed target of eIF3a, namely the cyclin-dependent kinase inhibitor, p27(kip1). To determine if eIF3a regulates NDRG1 expression, eIF3a was inducibly over-expressed or ablated. Importantly, eIF3a positively regulated NDRG1 expression and negatively regulated p27(kip1) expression during iron depletion. This activity of eIF3a could be due to its recruitment to stress granules and/or its ability to differentially regulate mRNA translation during cellular stress. Additionally, eIF3a positively regulated proliferation, but negatively regulated cell motility and invasion, which may be due to the eIF3a-dependent changes in expression of NDRG1 and p27

  13. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling.

    PubMed

    Nag, Nabanita; Lin, Kai Ying; Edmonds, Katherine A; Yu, Jielin; Nadkarni, Devika; Marintcheva, Boriana; Marintchev, Assen

    2016-09-06

    Eukaryotic translation initiation is a highly regulated process involving multiple steps, from 43S pre-initiation complex (PIC) assembly, to ribosomal subunit joining. Subunit joining is controlled by the G-protein eukaryotic translation initiation factor 5B (eIF5B). Another protein, eIF1A, is involved in virtually all steps, including subunit joining. The intrinsically disordered eIF1A C-terminal tail (eIF1A-CTT) binds to eIF5B Domain-4 (eIF5B-D4). The ribosomal complex undergoes conformational rearrangements at every step of translation initiation; however, the underlying molecular mechanisms are poorly understood. Here we report three novel interactions involving eIF5B and eIF1A: (i) a second binding interface between eIF5B and eIF1A; (ii) a dynamic intramolecular interaction in eIF1A between the folded domain and eIF1A-CTT; and (iii) an intramolecular interaction between eIF5B-D3 and -D4. The intramolecular interactions within eIF1A and eIF5B interfere with one or both eIF5B/eIF1A contact interfaces, but are disrupted on the ribosome at different stages of translation initiation. Therefore, our results indicate that the interactions between eIF1A and eIF5B are being continuously rearranged during translation initiation. We present a model how the dynamic eIF1A/eIF5B interaction network can promote remodeling of the translation initiation complexes, and the roles in the process played by intrinsically disordered protein segments.

  14. Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle.

    PubMed

    Liu, Zhenqi; Li, Guolian; Kimball, Scot R; Jahn, Linda A; Barrett, Eugene J

    2004-08-01

    Amino acids are unique anabolic agents in that they nutritively signal to mRNA translation initiation and serve as substrates for protein synthesis in skeletal muscle. Glucocorticoid excess antagonizes the anabolic action of amino acids on protein synthesis in laboratory animals. To examine whether excessive glucocorticoids modulate mixed amino acid-signaled translation initiation in human skeletal muscle, we infused an amino acid mixture (10% Travasol) systemically to 16 young healthy male volunteers for 6 h in the absence (n = 8) or presence (n = 8) of glucocorticoid excess (dexamethasone 2 mg orally every 6 h for 3 days). Vastus lateralis muscles were biopsied before and after amino acid infusion, and the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (p70(S6K)), and eIF2alpha and the guanine nucleotide exchange activity of eIF2B were measured. Systemic infusion of mixed amino acids significantly stimulated the phosphorylation of 4E-BP1 (P < 0.04) and p70(S6K) (P < 0.001) and the dephosphorylation of eIF2alpha (P < 0.003) in the control group. Dexamethasone treatment did not alter the basal phosphorylation state of 4E-BP1, p70(S6K), or eIF2alpha; however, it abrogated the stimulatory effect of amino acid infusion on the phosphorylation of 4E-BP1 (P = 0.31) without affecting amino acid-induced phosphorylation of p70(S6K) (P = 0.002) or dephosphorylation of eIF2alpha (P = 0.003). Neither amino acid nor dexamethasone treatment altered the guanine nucleotide exchange activity of eIF2B. We conclude that changes of amino acid concentrations within the physiological range stimulate mRNA translation by enhancing the binding of mRNA to the 43S preinitiation complex, and the activity of p70(S6K) and glucocorticoid excess blocks the former action in vivo in human skeletal muscle.

  15. The RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis

    PubMed Central

    Regmi, Sandesh; Rothberg, Karen G; Hubbard, James G; Ruben, Larry

    2008-01-01

    RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukaryotic translation elongation factor-1a (eEF1A) as determined by tandem MS of TAP-TbRACK1 affinity eluates, co-sedimentation in a sucrose gradient, and co-precipitation assays. Consistent with these observations, sucrose gradient purified 80S monosomes and translating polysomes each contained TbRACK1. When RNAi was used to deplete cells of TbRACK1, a shift in the polysome profile was observed, while the phosphorylation of a ribosomal protein increased. Under these conditions, cell growth became hypersensitive to the translational inhibitor anisomycin. The kinetoplasts and nuclei were misaligned in the postmitotic cells, resulting in partial cleavage furrow ingression during cytokinesis. Overall, these findings identify eEF1A as a novel TbRACK1 binding partner and establish TbRACK1 as a component of the trypanosome translational apparatus. The synergy between anisomycin and TbRACK1 RNAi suggests that continued translation is required for complete ingression of the cleavage furrow. PMID:18786142

  16. Fas-activated Ser/Thr phosphoprotein (FAST) is a eukaryotic initiation factor 4E-binding protein that regulates mRNA stability and cell survival

    PubMed Central

    Li, Wei; Ivanov, Pavel; Anderson, Paul

    2013-01-01

    The recognition of T cell intracellular antigen-1 (TIA-1) by Fas-activated Ser/Thr phosphoprotein (FAST) results in prolonged cell survival by inducing the expression of inhibitors of apoptosis. Here we show that the functional effects of FAST are dependent on its interactions with eukaryotic translation initiation factor 4E (eIF4E) which is the major cytosolic cap binding protein in cells. FAST binds to eIF4E via a consensus motif (428YXXXXLL433) that is also found in eIF4G, 4E-BP1/2/3, 4E-T, and cup. A point mutation within this motif at Y428 dampens the ability of FAST to recognize eIF4E. Wild-type (WT) FAST, but not its Y428G mutant, increases the expression of co-transfected cellular inhibitor of apoptosis-1 (cIAP-1) and β-gal mRNA and protein, but inhibits the Fas-induced activation of caspase-3. Increased expression of the co-transfected proteins results, in part, from stabilization of mRNA, suggesting that FAST:eIF4E interactions can inhibit mRNA decay. We propose that eIF4E:FAST:TIA-1 complexes regulate the translation and stability of specific mRNAs that encode proteins important for cell survival. PMID:26824015

  17. Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51.

    PubMed

    Dey, Madhusudan; Velyvis, Algirdas; Li, John J; Chiu, Elaine; Chiovitti, David; Kay, Lewis E; Sicheri, Frank; Dever, Thomas E

    2011-03-15

    As phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) on Ser51 inhibits protein synthesis, cells restrict this phosphorylation to the antiviral protein kinase PKR and related eIF2α kinases. In the crystal structure of the PKR-eIF2α complex, the C-terminal lobe of the kinase contacts eIF2α on a face remote from Ser51, leaving Ser51 ∼ 20 Å from the kinase active site. PKR mutations that cripple the eIF2α-binding site impair phosphorylation; here, we identify mutations in eIF2α that restore Ser51 phosphorylation by PKR with a crippled substrate-binding site. These eIF2α mutations either disrupt a hydrophobic network that restricts the position of Ser51 or alter a linkage between the PKR-docking region and the Ser51 loop. We propose that the protected state of Ser51 in free eIF2α prevents promiscuous phosphorylation and the attendant translational regulation by heterologous kinases, whereas docking of eIF2α on PKR induces a conformational change that regulates the degree of Ser51 exposure and thus restricts phosphorylation to the proper kinases.

  18. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors.

    PubMed

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant's resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  19. Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea

    PubMed Central

    Graf, Michael; Blaby, Ian K.; Makkay, Andrea M.; Starosta, Agata L.; Papke, R. Thane; Oshima, Tairo; Wilson, Daniel N.

    2016-01-01

    Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies. PMID:28053595

  20. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    PubMed Central

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593

  1. Mammalian target of rapamycin/eukaryotic initiation factor 4F pathway regulates follicle growth and development of theca cells in mice.

    PubMed

    Zhang, Chao; Liu, Xiao-Ran; Cao, Yong-Chun; Tian, Jin-Ling; Zhen, Di; Luo, Xiao-Fei; Wang, Xin-Mei; Tian, Jian-Hui; Gao, Jian-Ming

    2016-01-11

    The aim of the present study was to clarify the roles of the mammalian target of rapamycin (mTOR) signalling pathway in follicular growth and development of thecal cells. Using in vivo-grown and in vitro-cultured ovaries, histological changes were evaluated using haematoxylin and eosin (HE) staining. Differentially expressed genes (DEGs) from 0 day post partum (d.p.p.) to 8 d.p.p. ovaries were screened by microarray and verified by quantitative real-time polymerase chain reaction. Forty-two DEGs related to cell proliferation and differentiation were screened out, with most DEGs being related to the to mTOR signalling pathway. Then, 3 d.p.p. ovaries were retrieved and used to verify the role of mTOR signalling in follicle and thecal cell development using its activators (Ras homologue enriched in brain (Rheb) and GTP) and inhibitor (rapamycin). The development of follicles and thecal cells was significantly impaired in ovaries cultured in vitro Day 3 to Day 8. In in vitro-cultured ovaries, Rheb and GTP (is 100 ng mL-1 Rheb and 500 ng mL-1 GTP for 48 h) significantly increased follicle diameter, the percentage of primary and secondary follicles and the umber of thecal cells, and upregulated expression of mTOR, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), eukaryotic initiation factor (eIF) 4F and cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). Rapamycin (10 nM rapamycin for 24 h) had opposite effects to those of Rheb and GTP, and partly abrogated (significant) the effects of Rheb and GTP when added to the culture in combination with these drugs. Thus, mTOR signalling plays an important role in follicle growth and thecal cell development.

  2. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach.

    PubMed

    Tikole, Suhas; Sankararamakrishnan, Ramasubbu

    2008-05-16

    Translation of eukaryotic mRNAs is often regulated by nucleotides around the start codon. A purine at position -3 and a guanine at position +4 contribute significantly to enhance the translation efficiency. Algorithms to predict the translation initiation site often fail to predict the start site if the sequence context is not present. We have developed a neural network method to predict the initiation site of mRNA sequences that lack the preferred nucleotides at the positions -3 and +4 surrounding the translation initiation site. Neural networks of various architectures comprising different number of hidden layers were designed and tested for various sizes of windows of nucleotides surrounding translation initiation sites. We found that the neural network with two hidden layers showed a sensitivity of 83% and specificity of 73% indicating a vastly improved performance in successfully predicting the translation initiation site of mRNA sequences with weak Kozak context. WeakAUG server is freely available at http://bioinfo.iitk.ac.in/AUGPred/.

  3. Transductive learning as an alternative to translation initiation site identification.

    PubMed

    Nunes Pinto, Cristiano Lacerda; Nobre, Cristiane Neri; Zárate, Luis Enrique

    2017-02-02

    The correct protein coding region identification is an important and latent problem in the molecular biology field. This problem becomes a challenge due to the lack of deep knowledge about the biological systems and unfamiliarity of conservative characteristics in the messenger RNA (mRNA). Therefore, it is fundamental to research for computational methods aiming to help the patterns discovery for identification of the Translation Initiation Sites (TIS). In the field of Bioinformatics, machine learning methods have been widely applied based on the inductive inference, as Inductive Support Vector Machine (ISVM). On the other hand, not so much attention has been given to transductive inference-based machine learning methods such as Transductive Support Vector Machine (TSVM). The transductive inference performs well for problems in which the amount of unlabeled sequences is considerably greater than the labeled ones. Similarly, the problem of predicting the TIS may take advantage of transductive methods due to the fact that the amount of new sequences grows rapidly with the progress of Genome Project that allows the study of new organisms. Consequently, this work aims to investigate the transductive learning towards TIS identification and compare the results with those obtained in inductive method. The transductive inference presents better results both in F-measure and in sensitivity in comparison with the inductive method for predicting the TIS. Additionally, it presents the least failure rate for identifying the TIS, presenting a smaller number of False Negatives (FN) than the ISVM. The ISVM and TSVM methods were validated with the molecules from the most representative organisms contained in the RefSeq database: Rattus norvegicus, Mus musculus, Homo sapiens, Drosophila melanogaster and Arabidopsis thaliana. The transductive method presented F-measure and sensitivity higher than 90% and also higher than the results obtained with ISVM. The ISVM and TSVM approaches

  4. A comprehensive analysis of the importance of translation initiation factors for Haloferax volcanii applying deletion and conditional depletion mutants.

    PubMed

    Gäbel, Katrin; Schmitt, Jessica; Schulz, Sebastian; Näther, Daniela J; Soppa, Jörg

    2013-01-01

    Translation is an important step in gene expression. The initiation of translation is phylogenetically diverse, since currently five different initiation mechanisms are known. For bacteria the three initiation factors IF1 - IF3 are described in contrast to archaea and eukaryotes, which contain a considerably higher number of initiation factor genes. As eukaryotes and archaea use a non-overlapping set of initiation mechanisms, orthologous proteins of both domains do not necessarily fulfill the same function. The genome of Haloferax volcanii contains 14 annotated genes that encode (subunits of) initiation factors. To gain a comprehensive overview of the importance of these genes, it was attempted to construct single gene deletion mutants of all genes. In 9 cases single deletion mutants were successfully constructed, showing that the respective genes are not essential. In contrast, the genes encoding initiation factors aIF1, aIF2γ, aIF5A, aIF5B, and aIF6 were found to be essential. Factors aIF1A and aIF2β are encoded by two orthologous genes in H. volcanii. Attempts to generate double mutants failed in both cases, indicating that also these factors are essential. A translatome analysis of one of the single aIF2β deletion mutants revealed that the translational efficiency of the second ortholog was enhanced tenfold and thus the two proteins can replace one another. The phenotypes of the single deletion mutants also revealed that the two aIF1As and aIF2βs have redundant but not identical functions. Remarkably, the gene encoding aIF2α, a subunit of aIF2 involved in initiator tRNA binding, could be deleted. However, the mutant had a severe growth defect under all tested conditions. Conditional depletion mutants were generated for the five essential genes. The phenotypes of deletion mutants and conditional depletion mutants were compared to that of the wild-type under various conditions, and growth characteristics are discussed.

  5. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation.

    PubMed

    Lee, Amy S; Kranzusch, Philip J; Doudna, Jennifer A; Cate, Jamie H D

    2016-08-04

    Eukaryotic mRNAs contain a 5′ cap structure that is crucial for recruitment of the translation machinery and initiation of protein synthesis. mRNA recognition is thought to require direct interactions between eukaryotic initiation factor 4E (eIF4E) and the mRNA cap. However, translation of numerous capped mRNAs remains robust during cellular stress, early development, and cell cycle progression despite inactivation of eIF4E. Here we describe a cap-dependent pathway of translation initiation in human cells that relies on a previously unknown cap-binding activity of eIF3d, a subunit of the 800-kilodalton eIF3 complex. A 1.4 Å crystal structure of the eIF3d cap-binding domain reveals unexpected homology to endonucleases involved in RNA turnover, and allows modelling of cap recognition by eIF3d. eIF3d makes specific contacts with the cap, as exemplified by cap analogue competition, and these interactions are essential for assembly of translation initiation complexes on eIF3-specialized mRNAs such as the cell proliferation regulator c-Jun (also known as JUN). The c-Jun mRNA further encodes an inhibitory RNA element that blocks eIF4E recruitment, thus enforcing alternative cap recognition by eIF3d. Our results reveal a mechanism of cap-dependent translation that is independent of eIF4E, and illustrate how modular RNA elements work together to direct specialized forms of translation initiation.

  6. Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms

    SciTech Connect

    Simonetti, Angelita; Fabbretti, Attilio; Hazemann, Isabelle; Jenner, Lasse; Gualerzi, Claudio O.; Klaholz, Bruno P.

    2013-06-01

    The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.

  7. Phosphorylation of the eukaryotic initiation factor 3f by cyclin dependent kinase 11 during apoptosis

    PubMed Central

    Shi, Jiaqi; Hershey, John W. B.; Nelson, Mark A.

    2009-01-01

    eIF3f is a subunit of eIF3. We previously showed that eIF3f is phosphorylated by CDK11p46 which is an important effector in apoptosis. Here, we identified a second eIF3f phosphorylation site (Thr119) by CDK11p46 during apoptosis. We demonstrated that eIF3f is directly phosphorylated by CDK11p46 in vivo. Phosphorylation of eIF3f plays an important role in regulating its function in translation and apoptosis. Phosphorylation of eIF3f enhances the association of eIF3f with the core eIF3 subunits during apoptosis. Our data suggested that eIF3f may inhibit translation by increasing the binding to the eIF3 complex during apoptosis. PMID:19245811

  8. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus

    PubMed Central

    Asnani, Mukta; Pestova, Tatyana V.; Hellen, Christopher U.T.

    2016-01-01

    Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5′-terminal IRES. We report that the 982-nt long 5′UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341–950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12). In vitro reconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction. PMID:26873921

  9. The roles of translation initiation regulation in ultraviolet light-induced apoptosis.

    PubMed

    Parker, Suzanne H; Parker, Todd A; George, Kimberly S; Wu, Shiyong

    2006-12-01

    Ultraviolet light (UV) inhibits translation initiation through activation of kinases that phosphorylate the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha). Two eIF2alpha kinases, PERK and GCN2, are known to phosphorylate the Serine-51 of eIF2alpha in response to UV-irradiation. In this report, we present evidence that phosphorylation of eIF2alpha plays a role in UV-induced apoptosis. Our data show that wild-type mouse embryo fibroblasts (MEF(s/s)) are less sensitive to UV-induced apoptosis than MEF(A/A) cells in which the phosphorylation site, Ser51, of eIF2alpha is replaced with a non-phosphorylatable Ala (Ser51Ala). PARP expression in MEF(A/A) cells is reduced without being cleaved after UV-irradiation. In contrast, PARP is cleaved without a significant decrease in parental PARP in MEF(S/S) cells after UV-irradiation. Our data also show that MEF(GCN2-/-) cells, in which GCN2 is knocked out, are more sensitive to UV-irradiation, agreeing with the observation from MEF(A/A) cells. However, MEF(PERK-/-) cells, in which PERK is knocked out, are less sensitive to UV-irradiation. In addition, MCF-7-PERKDeltaC cells, which are stably transfected with a kinase domain deleted mutant of PERK (PERKDeltaC), are more resistant to UV-induced apoptosis than parental MCF-7 cells. Overexpression of wild-type PERK sensitizes MCF-7 cells to UV-induced apoptosis without directly inducing cell death. These results suggest that the level of eIF2alpha phosphorylation impacts PARP expression upon UV-irradiation. The eIF2alpha kinases may mediate UV-induced apoptosis via an eIF2alpha dependent or independent signaling pathway.

  10. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation

    PubMed Central

    Pánek, Josef; Kolář, Michal; Vohradský, Jiří; Shivaya Valášek, Leoš

    2013-01-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA–rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5′ untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5′ UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5′ UTRs of mRNAs. PMID:23804757

  11. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5' UTRs and its implications for eukaryotic gene translation regulation.

    PubMed

    Pánek, Josef; Kolár, Michal; Vohradský, Jirí; Shivaya Valásek, Leos

    2013-09-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA-rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5' untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5' UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5' UTRs of mRNAs.

  12. 70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria

    PubMed Central

    Yamamoto, Hiroshi; Wittek, Daniela; Gupta, Romi; Qin, Bo; Ueda, Takuya; Krause, Roland; Yamamoto, Kaori; Albrecht, Renate; Pech, Markus; Nierhaus, Knud H.

    2016-01-01

    According to the standard model of bacterial translation initiation, the small ribosomal 30S subunit binds to the initiation site of an mRNA with the help of three initiation factors (IF1–IF3). Here, we describe a novel type of initiation termed “70S-scanning initiation,” where the 70S ribosome does not necessarily dissociate after translation of a cistron, but rather scans to the initiation site of the downstream cistron. We detailed the mechanism of 70S-scanning initiation by designing unique monocistronic and polycistronic mRNAs harboring translation reporters, and by reconstituting systems to characterize each distinct mode of initiation. Results show that 70S scanning is triggered by fMet-tRNA and does not require energy; the Shine–Dalgarno sequence is an essential recognition element of the initiation site. IF1 and IF3 requirements for the various initiation modes were assessed by the formation of productive initiation complexes leading to synthesis of active proteins. IF3 is essential and IF1 is highly stimulating for the 70S-scanning mode. The task of IF1 appears to be the prevention of untimely interference by ternary aminoacyl (aa)-tRNA•elongation factor thermo unstable (EF-Tu)•GTP complexes. Evidence indicates that at least 50% of bacterial initiation events use the 70S-scanning mode, underscoring the relative importance of this translation initiation mechanism. PMID:26888283

  13. Translation initiation factor 2gamma mutant alters start codon selection independent of Met-tRNA binding.

    PubMed

    Alone, Pankaj V; Cao, Chune; Dever, Thomas E

    2008-11-01

    Selection of the AUG start codon for translation in eukaryotes is governed by codon-anticodon interactions between the initiator Met-tRNA(i)(Met) and the mRNA. Translation initiation factor 2 (eIF2) binds Met-tRNA(i)(Met) to the 40S ribosomal subunit, and previous studies identified Sui(-) mutations in eIF2 that enhanced initiation from a noncanonical UUG codon, presumably by impairing Met-tRNA(i)(Met) binding. Consistently, an eIF2gamma-N135D GTP-binding domain mutation impairs Met-tRNA(i)(Met) binding and causes a Sui(-) phenotype. Intragenic A208V and A382V suppressor mutations restore Met-tRNA(i)(Met) binding affinity and cell growth; however, only A208V suppresses the Sui(-) phenotype associated with the eIF2gamma-N135D mutation. An eIF2gamma-A219T mutation impairs Met-tRNA(i)(Met) binding but unexpectedly enhances the fidelity of initiation, suppressing the Sui(-) phenotype associated with the eIF2gamma-N135D,A382V mutant. Overexpression of eIF1, which is thought to monitor codon-anticodon interactions during translation initiation, likewise suppresses the Sui(-) phenotype of the eIF2gamma mutants. We propose that structural alterations in eIF2gamma subtly alter the conformation of Met-tRNA(i)(Met) on the 40S subunit and thereby affect the fidelity of start codon recognition independent of Met-tRNA(i)(Met) binding affinity.

  14. Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex

    PubMed Central

    Erzberger, Jan P.; Stengel, Florian; Pellarin, Riccardo; Zhang, Suyang; Schaefer, Tanja; Aylett, Christopher H.S.; Cimermančič, Peter; Boehringer, Daniel; Sali, Andrej; Aebersold, Ruedi; Ban, Nenad

    2014-01-01

    Summary Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. PMID:25171412

  15. EATRIS, a European initiative to boost translational biomedical research.

    PubMed

    van Dongen, Guus Ams; Ussi, Anton E; de Man, Frank H; Migliaccio, Giovanni

    2013-01-01

    Recent advances in molecular and cellular biology have facilitated the discovery of the key molecular drivers of major diseases. This knowledge raised some optimism in the beginning of this century, yet its impact on disease prevention, diagnosis and targeted intervention remains low. At the same time the pharmaceutical industry is facing the dual challenges of a dwindling drug pipeline and ever increasing cost of drug development. It is against this background that a number of European countries decided to establish EATRIS, the European Advanced Translational Research InfraStructure in Medicine. EATRIS aims for faster and more efficient translation of basic research into innovative products, by providing academia and industry access to the state-of-the-art expertise and highly capital-intensive facilities residing in Europe's top translational research centers and hospitals. To this end, EATRIS formed product groups that provide translational services in the fields of development and supply of (1) molecular imaging and tracing, (2) vaccines, (3) biomarkers, (4) small molecules and (5) advanced therapeutic medicinal products. Herein we describe the background, goals, functions and structure of EATRIS. As an example, it will be described how EATRIS centers involved in imaging and tracing might contribute to more efficient drug development and personalized medicine.

  16. Ctk1 Function Is Necessary for Full Translation Initiation Activity in Saccharomyces cerevisiae

    PubMed Central

    Coordes, Britta; Brünger, Katharina M.; Burger, Kaspar; Soufi, Boumediene; Horenk, Juliane; Eick, Dirk; Olsen, Jesper V.

    2014-01-01

    Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1-depleted cells show impaired translation activity of capped mRNA, but not mRNA reporters containing the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a stimulatory function of Ctk1 in 80S formation during translation initiation. PMID:25416238

  17. Differential Phosphorylation of Plant Translation Initiation Factors by Arabidopsis thaliana CK2 Holoenzymes*

    PubMed Central

    Dennis, Michael D.; Browning, Karen S.

    2009-01-01

    A previously described wheat germ protein kinase (Yan, T. F., and Tao, M. (1982) J. Biol. Chem. 257, 7037–7043) was identified unambiguously as CK2 using mass spectrometry. CK2 is a ubiquitous eukaryotic protein kinase that phosphorylates a wide range of substrates. In previous studies, this wheat germ kinase was shown to phosphorylate eIF2α, eIF3c, and three large subunit (60 S) ribosomal proteins (Browning, K. S., Yan, T. F., Lauer, S. J., Aquino, L. A., Tao, M., and Ravel, J. M. (1985) Plant Physiol. 77, 370–373). To further characterize the role of CK2 in the regulation of translation initiation, Arabidopsis thaliana catalytic (α1 and α2) and regulatory (β1, β2, β3, and β4) subunits of CK2 were cloned and expressed in Escherichia coli. Recombinant A. thaliana CK2β subunits spontaneously dimerize and assemble into holoenzymes in the presence of either CK2α1 or CK2α2 and exhibit autophosphorylation. The purified CK2 subunits were used to characterize the properties of the individual subunits and their ability to phosphorylate various plant protein substrates. CK2 was shown to phosphorylate eIF2α, eIF2β, eIF3c, eIF4B, eIF5, and histone deacetylase 2B but did not phosphorylate eIF1, eIF1A, eIF4A, eIF4E, eIF4G, eIFiso4E, or eIFiso4G. Differential phosphorylation was exhibited by CK2 in the presence of various regulatory β-subunits. Analysis of A. thaliana mutants either lacking or overexpressing CK2 subunits showed that the amount of eIF2β protein present in extracts was affected, which suggests that CK2 phosphorylation may play a role in eIF2β stability. These results provide evidence for a potential mechanism through which the expression and/or subcellular distribution of CK2 β-subunits could participate in the regulation of the initiation of translation and other physiological processes in plants. PMID:19509278

  18. Translation Initiation Factor AteIF(iso)4E Is Involved in Selective mRNA Translation in Arabidopsis Thaliana Seedlings

    PubMed Central

    Martínez-Silva, Ana Valeria; Aguirre-Martínez, César; Flores-Tinoco, Carlos E.; Alejandri-Ramírez, Naholi D.; Dinkova, Tzvetanka D.

    2012-01-01

    One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5′end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso)4F complexes proposed to mediate selective translation. Using a microarray analysis of polyribosome- and non-polyribosome-purified mRNAs from 15 day-old Arabidopsis thaliana wild type [WT] and eIF(iso)4E knockout mutant [(iso)4E-1] seedlings we found 79 transcripts shifted from polyribosomes toward non-polyribosomes, and 47 mRNAs with the opposite behavior in the knockout mutant. The translationally decreased mRNAs were overrepresented in root-preferentially expressed genes and proteins from the endomembrane system, including several transporters such as the phosphate transporter PHOSPHATE1 (PHO1), Sucrose transporter 3 (SUC3), ABC transporter-like with ATPase activity (MRP11) and five electron transporters, as well as signal transduction-, protein modification- and transcription-related proteins. Under normal growth conditions, eIF(iso)4E expression under the constitutive promoter 35 S enhanced the polyribosomal recruitment of PHO1 supporting its translational preference for eIF(iso)4E. Furthermore, under phosphate deficiency, the PHO1 protein increased in the eIF(iso)4E overexpressing plants and decreased in the knockout mutant as compared to wild type. In addition, the knockout mutant had larger root, whereas the 35 S directed expression of eIF(iso)4E caused shorter root under normal growth conditions, but not under phosphate deficiency. These results indicate that selective translation mediated by eIF(iso)4E is relevant for Arabidopsis root development under normal growth conditions. PMID:22363683

  19. The 5' untranslated region of the human T-cell lymphotropic virus type 1 mRNA enables cap-independent translation initiation.

    PubMed

    Olivares, Eduardo; Landry, Dori M; Cáceres, C Joaquín; Pino, Karla; Rossi, Federico; Navarrete, Camilo; Huidobro-Toro, Juan Pablo; Thompson, Sunnie R; López-Lastra, Marcelo

    2014-06-01

    The human T-cell leukemia virus type 1 (HTLV-1) is a complex human retrovirus that causes adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis. The mRNA of some complex retroviruses, including the human and simian immunodeficiency viruses (HIV and SIV), can initiate translation using a canonical cap-dependent mechanism or through an internal ribosome entry site (IRES). In this study, we present strong evidence showing that like HIV-1 and SIV, the 5'-untranslated region (5'UTR) of the HTLV-1 full-length mRNA harbors an IRES. Cap-independent translational activity was evaluated and demonstrated using dual luciferase bicistronic mRNAs in rabbit reticulocyte lysate, in mammalian cell culture, and in Xenopus laevis oocytes. Characterization of the HTLV-1 IRES shows that its activity is dependent on the ribosomal protein S25 (RPS25) and that its function is highly sensitive to the drug edeine. Together, these findings suggest that the 5'UTR of the HTLV-1 full-length mRNA enables internal recruitment of the eukaryotic translation initiation complex. However, the recognition of the initiation codon requires ribosome scanning. These results suggest that, after internal recruitment by the HTLV-1 IRES, a scanning step takes place for the 40S ribosomal subunit to be positioned at the translation initiation codon. The mechanism by which retroviral mRNAs recruit the 40S ribosomal subunit internally is not understood. This study provides new insights into the mechanism of translation initiation used by the human T-cell lymphotropic virus type 1 (HTLV-1). The results show that the HTLV-1 mRNA can initiate translation via a noncanonical mechanism mediated by an internal ribosome entry site (IRES). This study also provides evidence showing the involvement of cellular proteins in HTLV-1 IRES-mediated translation initiation. Together, the data presented in this report significantly contribute to the understanding of HTLV-1 gene expression.

  20. The Non-core Subunit eIF3h of Translation Initiation Factor eIF3 Regulates Zebrafish Embryonic Development

    PubMed Central

    Choudhuri, Avik; Evans, Todd; Maitra, Umadas

    2011-01-01

    Eukaryotic translation initiation factor eIF3, that plays a central role in translation initiation, consists of five core subunits that are present in both the budding yeast and higher eukaryotes. However, higher eukaryotic eIF3 contains additional (non-core) subunits that are absent in the budding yeast. We investigated the role of one such non-core eIF3 subunit eIF3h, encoded by two distinct genes – eif3ha and eif3hb, as a regulator of embryonic development in zebrafish. Both eif3h genes are expressed during early embryogenesis, and display overlapping yet distinct and highly dynamic spatial expression patterns. Loss of function analysis using specific morpholino oligomers indicates that each isoform has specific as well as redundant functions during early development. The morphant phenotypes correlate with their spatial expression patterns, indicating that eif3h regulates development of the brain, heart, vasculature, and lateral line. These results indicate that the non-core subunits of eIF3 regulate specific developmental programs during vertebrate embryogenesis. PMID:20503360

  1. Therapeutic Targeting of Alternative Translation Initiation in Breast Cancer

    DTIC Science & Technology

    2009-04-01

    investigation within the next 6 months. Cell type specific cancer cell killing of the prototype oncolytic poliovirus , PVS-RIPO, depends on selective...demanded by FDA. 15. SUBJECT TERMS Translation, eIF4E, eIF4G, IRES, Cancer, Poliovirus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...genetically recombinant poliovirus . Moreover, my work has laid the groundwork for correlative testing and efficacy studies of a vast array of protein kinase

  2. Expression of human eukaryotic initiation factor 3f oscillates with cell cycle in A549 cells and is essential for cell viability

    PubMed Central

    2010-01-01

    Background Transcriptional and postranslational regulation of the cell cycle has been widely studied. However, there is scarce knowledge concerning translational control of this process. Several mammalian eukaryotic initiation factors (eIFs) seem to be implicated in controlling cell proliferation. In this work, we investigated if the human eIF3f expression and function is cell cycle related. Results The human eIF3f expression has been found to be upregulated in growth-stimulated A549 cells and downregulated in G0. Western blot analysis and eIF3f promotor-luciferase fusions revealed that eIF3f expression peaks twice in the cell cycle: in the S and the M phases. Deregulation of eIF3f expression negatively affects cell viability and induces apoptosis. Conclusions The expression pattern of human eIF3f during the cell cycle confirms that this gene is cell division related. The fact that eIF3f expression peaks in two cell cycle phases raises the possibility that this gene may exert a differential function in the S and M phases. Our results strongly suggest that eIF3f is essential for cell proliferation. PMID:20462454

  3. Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation.

    PubMed Central

    McCarthy, J E; Schairer, H U; Sebald, W

    1985-01-01

    The c, b and delta subunit genes of the Escherichia coli atp operon were cloned individually in an expression vector between the tac fusion promoter and the galK gene. The relative rates of subunit synthesis directed by the cloned genes were similar in vitro and in vivo and compared favourably with the subunit stoichiometry of the assembled proton-translocating ATP synthase of E. coli in vivo. The rate of synthesis of subunit c was at least six times that of subunit b and 18 times that of subunit delta. Progressive shortening of the long intercistronic sequence lying upstream of the subunit c gene showed that maximal expression of this gene is dependent upon the presence of a sequence stretching greater than 20 bp upstream of the Shine-Dalgarno site. This sequence thus acts to enhance the rate of translational initiation. The possibility that similar sequences might perform the same function in other operons of E. coli and bacteriophage lambda is also discussed. Translation of the subunit b cistron is partially coupled to translation of the preceding subunit c cistron. In conclusion, the expression of all the atp operon genes could be adjusted to accommodate the subunit requirements of ATP synthase assembly primarily by means of mechanisms which control the efficiency of translational initiation and re-initiation at the respective cistron start codons. Images Fig. 3. Fig. 4. PMID:2862030

  4. Mapping the translation initiation landscape of an S. cerevisiae gene using fluorescent proteins.

    PubMed

    Ben-Yehezkel, Tuval; Zur, Hadas; Marx, Tzipy; Shapiro, Ehud; Tuller, Tamir

    2013-10-01

    Accurate and efficient gene expression requires that protein translation initiates from mRNA transcripts with high fidelity. At the same time, indiscriminate initiation of translation from multiple ATG start-sites per transcript has been demonstrated, raising fundamental questions regarding the rate and rationale governing alternative translation initiation. We devised a sensitive fluorescent reporter assay for monitoring alternative translation initiation. To demonstrate it, we map the translation initiation landscape of a Saccharomyces cerevisiae gene (RMD1) with a typical ATG sequence context profile. We found that up to 3%-5% of translation initiation events occur from alternative out-of-frame start codons downstream of the main ATG. Initiation from these codons follows the ribosome scanning model: initiation rates from different start sites are determined by ATG order, rather than their context strength. Genomic analysis of S. cerevisiae further supports the scanning model: ATG codons downstream rather than upstream of the main ATG tend to have higher context scores. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Supporting knowledge translation through collaborative translational research initiatives: ‘Bridging’ versus ‘blurring’ boundary-spanning approaches in the UK CLAHRC initiative

    PubMed Central

    Evans, Sarah; Scarbrough, Harry

    2014-01-01

    Recent policy initiatives in the UK and internationally have sought to promote knowledge translation between the ‘producers’ and ‘users’ of research. Within this paper we explore how boundary-spanning interventions used within such initiatives can support knowledge translation between diverse groups. Using qualitative data from a 3-year research study conducted from January 2010 to December 2012 of two case-sites drawn from the CLAHRC initiative in the UK, we distinguish two different approaches to supporting knowledge translation; a ‘bridging’ approach that involves designated roles, discrete events and activities to span the boundaries between communities, and a ‘blurring’ approach that de-emphasises the boundaries between groups, enabling a more continuous process of knowledge translation as part of day-to-day work-practices. In this paper, we identify and differentiate these boundary-spanning approaches and describe how they emerged from the context defined by the wider CLAHRC networks. This highlights the need to develop a more contextualised analysis of the boundary-spanning that underpins knowledge translation processes, relating this to the distinctive features of a particular case. PMID:24561773

  6. Removal of 5'-terminal m7G from eukaryotic mRNAs by potato nucleotide pyrophosphatase and its effect on translation.

    PubMed Central

    Zan-Kowalczewska, M; Bretner, M; Sierakowska, H; Szczesna, E; Filipowicz, W; Shatkin, A J

    1977-01-01

    The procedure for isolation of nucleotide pyrophosphatase (E.C. 3.6.1.9.) from potato has been modified to yield an endonuclease-free preparation purified 2300-fold. The enzyme was used for specific cleavage of pyrophosphate linkages in the 5'-terminal cap (m7GpppN) of several eukaryotic messenger RNAs. Enzymatic removal of 5'-terminal pm7G from reovirus, rabbit globin and Artemia salina mRNAs resulted in an almost complete loss (greater than 80%) of their template activities in a cell-free protein synthesizing system from wheat germ. Incubation with nucleotide pyrophosphatase did not decrease the translation of phage f2 RNA in an Escherichia coli cell-free system. Images PMID:909799

  7. Expression of eukaryotic polypeptides in chloroplasts

    SciTech Connect

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  8. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  9. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA.

    PubMed

    Weingarten-Gabbay, S; Khan, D; Liberman, N; Yoffe, Y; Bialik, S; Das, S; Oren, M; Kimchi, A

    2014-01-30

    Translational regulation of the p53 mRNA can determine the ratio between p53 and its N-terminal truncated isoforms and therefore has a significant role in determining p53-regulated signaling pathways. Although its importance in cell fate decisions has been demonstrated repeatedly, little is known about the regulatory mechanisms that determine this ratio. Two internal ribosome entry sites (IRESs) residing within the 5'UTR and the coding sequence of p53 mRNA drive the translation of full-length p53 and Δ40p53 isoform, respectively. Here, we report that DAP5, a translation initiation factor shown to positively regulate the translation of various IRES containing mRNAs, promotes IRES-driven translation of p53 mRNA. Upon DAP5 depletion, p53 and Δ40p53 protein levels were decreased, with a greater effect on the N-terminal truncated isoform. Functional analysis using bicistronic vectors driving the expression of a reporter gene from each of these two IRESs indicated that DAP5 preferentially promotes translation from the second IRES residing in the coding sequence. Furthermore, p53 mRNA expressed from a plasmid carrying this second IRES was selectively shifted to lighter polysomes upon DAP5 knockdown. Consequently, Δ40p53 protein levels and the subsequent transcriptional activation of the 14-3-3σ gene, a known target of Δ40p53, were strongly reduced. In addition, we show here that DAP5 interacts with p53 IRES elements in in vitro and in vivo binding studies, proving for the first time that DAP5 directly binds a target mRNA. Thus, through its ability to regulate IRES-dependent translation of the p53 mRNA, DAP5 may control the ratio between different p53 isoforms encoded by a single mRNA.

  10. Yeast eukaryotic initiation factor 4B (eIF4B) enhances complex assembly between eIF4A and eIF4G in vivo.

    PubMed

    Park, Eun-Hee; Walker, Sarah E; Zhou, Fujun; Lee, Joseph M; Rajagopal, Vaishnavi; Lorsch, Jon R; Hinnebusch, Alan G

    2013-01-25

    Translation initiation factor eIF4F (eukaryotic initiation factor 4F), composed of eIF4E, eIF4G, and eIF4A, binds to the m(7)G cap structure of mRNA and stimulates recruitment of the 43S preinitiation complex and subsequent scanning to the initiation codon. The HEAT domain of eIF4G stabilizes the active conformation of eIF4A required for its RNA helicase activity. Mammalian eIF4B also stimulates eIF4A activity, but this function appears to be lacking in yeast, making it unclear how yeast eIF4B (yeIF4B/Tif3) stimulates translation. We identified Ts(-) mutations in the HEAT domains of yeast eIF4G1 and eIF4G2 that are suppressed by overexpressing either yeIF4B or eIF4A, whereas others are suppressed only by eIF4A overexpression. Importantly, suppression of HEAT domain substitutions by yeIF4B overexpression was correlated with the restoration of native eIF4A·eIF4G complexes in vivo, and the rescue of specific mutant eIF4A·eIF4G complexes by yeIF4B was reconstituted in vitro. Association of eIF4A with WT eIF4G in vivo also was enhanced by yeIF4B overexpression and was impaired in cells lacking yeIF4B. Furthermore, we detected native complexes containing eIF4G and yeIF4B but lacking eIF4A. These and other findings lead us to propose that yeIF4B acts in vivo to promote eIF4F assembly by enhancing a conformation of the HEAT domain of yeast eIF4G conducive for stable binding to eIF4A.

  11. An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation.

    PubMed

    Imai, Shunsuke; Kumar, Parimal; Hellen, Christopher U T; D'Souza, Victoria M; Wagner, Gerhard

    2016-09-01

    Many viruses bypass canonical cap-dependent translation in host cells by using internal ribosomal entry sites (IRESs) in their transcripts; IRESs hijack initiation factors for the assembly of initiation complexes. However, it is currently unknown how IRES RNAs recognize initiation factors that have no endogenous RNA binding partners; in a prominent example, the IRES of encephalomyocarditis virus (EMCV) interacts with the HEAT-1 domain of eukaryotic initiation factor 4G (eIF4G). Here we report the solution structure of the J-K region of this IRES and show that its stems are precisely organized to position protein-recognition bulges. This multisite interaction mechanism operates on an all-or-nothing principle in which all domains are required. This preorganization is accomplished by an 'adjuster module': a pentaloop motif that acts as a dual-sided docking station for base-pair receptors. Because subtle changes in the orientation abrogate protein capture, our study highlights how a viral RNA acquires affinity for a target protein.

  12. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation

    PubMed Central

    Moura, Danielle MN; Reis, Christian RS; Xavier, Camila C; da Costa Lima, Tamara D; Lima, Rodrigo P; Carrington, Mark; de Melo Neto, Osvaldo P

    2015-01-01

    In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation. PMID:25826663

  13. Deep sequencing reveals global patterns of mRNA recruitment during translation initiation

    PubMed Central

    Gao, Rong; Yu, Kai; Nie, Jukui; Lian, Tengfei; Jin, Jianshi; Liljas, Anders; Su, Xiao-Dong

    2016-01-01

    In this work, we developed a method to systematically study the sequence preference of mRNAs during translation initiation. Traditionally, the dynamic process of translation initiation has been studied at the single molecule level with limited sequencing possibility. Using deep sequencing techniques, we identified the sequence preference at different stages of the initiation complexes. Our results provide a comprehensive and dynamic view of the initiation elements in the translation initiation region (TIR), including the S1 binding sequence, the Shine-Dalgarno (SD)/anti-SD interaction and the second codon, at the equilibrium of different initiation complexes. Moreover, our experiments reveal the conformational changes and regional dynamics throughout the dynamic process of mRNA recruitment. PMID:27460773

  14. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity.

    PubMed

    Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark

    2015-12-15

    Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity.

  15. The DHX33 RNA Helicase Promotes mRNA Translation Initiation

    PubMed Central

    You, Jin; Wang, Xingshun

    2015-01-01

    DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation. PMID:26100019

  16. Unr Is Required In Vivo for Efficient Initiation of Translation from the Internal Ribosome Entry Sites of both Rhinovirus and Poliovirus

    PubMed Central

    Boussadia, Oréda; Niepmann, Michael; Créancier, Laurent; Prats, Anne-Catherine; Dautry, François; Jacquemin-Sablon, Hélène

    2003-01-01

    Translation of picornavirus RNAs is mediated by internal ribosomal entry site (IRES) elements and requires both standard eukaryotic translation initiation factors (eIFs) and IRES-specific cellular trans-acting factors (ITAFs). Unr, a cytoplasmic RNA-binding protein that contains five cold-shock domains and is encoded by the gene upstream of N-ras, stimulates translation directed by the human rhinovirus (HRV) IRES in vitro. To examine the role of Unr in translation of picornavirus RNAs in vivo, we derived murine embryonic stem (ES) cells in which either one (−/+) or both (−/−) copies of the unr gene were disrupted by homologous recombination. The activity of picornaviral IRES elements was analyzed in unr+/+, unr+/−, and unr−/− cell lines. Translation directed by the HRV IRES was severely impaired in unr−/− cells, as was that directed by the poliovirus IRES, revealing a requirement for Unr not previously observed in vitro. Transient expression of Unr in unr−/− cells efficiently restored the HRV and poliovirus IRES activities. In contrast, the IRES elements of encephalomyocarditis virus and foot-and-mouth-disease virus are not Unr dependent. Thus, Unr is a specific regulator of HRV and poliovirus translation in vivo and may represent a cell-specific determinant limiting replication of these viruses. PMID:12610110

  17. Noise in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Blake, William J.; KÆrn, Mads; Cantor, Charles R.; Collins, J. J.

    2003-04-01

    Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

  18. Viral and chloroplastic signals essential for initiation and efficiency of translation in Agrobacterium tumefaciens.

    PubMed

    Ahmad, Tauqeer; Venkataraman, Srividhya; Hefferon, Kathleen; AbouHaidar, Mounir G

    2014-09-12

    The construction of high-level protein expression vectors using the CaMV 35S promoter in concert with highly efficient translation initiation signals for Agrobacterium tumefaciens is a relatively less explored field compared to that of Escherichia coli. In the current study, we experimentally investigated the capacity of the CaMV 35S promoter to direct GFP gene expression in A. tumefaciens in the context of different viral and chloroplastic translation initiation signals. GFP expression and concomitant translational efficiency was monitored by confocal microscopy and Western blot analysis. Among all of the constructs, the highest level of translation was observed for the construct containing the phage T7 translation initiation region followed by the chloroplastic Rubisco Large Subunit (rbcL) 58-nucleotide 5' leader region including its SD-like sequence (GGGAGGG). Replacing the SD-like (GGGAGGG) with non SD-like (TTTATTT) or replacing the remaining 52 nucleotides of rbcL with nonspecific sequence completely abolished translation. In addition, this 58 nucleotide region of rbcL serves as a translational enhancer in plants when located within the 5' UTR of mRNA corresponding to GFP. Other constructs, including those containing sequences upstream of the coat proteins of Alfalfa Mosaic Virus, or the GAGG sequence of T4 phage or the chloroplastic atpI and/or PsbA 5' UTR sequence, supported low levels of GFP expression or none at all. From these studies, we propose that we have created high expression vectors in A. tumefaciens and/or plants which contain the CaMV 35S promoter, followed by the translationally strong T7 SD plus RBS translation initiation region or the rbcL 58-nucleotide 5' leader region upstream of the gene of interest.

  19. The Dynamics of Eukaryotic Replication Initiation: Origin Specificity, Licensing, and Firing at the Single-molecule Level

    PubMed Central

    Duzdevich, Daniel; Warner, Megan D.; Ticau, Simina; Ivica, Nikola A.; Bell, Stephen P.; Greene, Eric C.

    2015-01-01

    SUMMARY Eukaryotic replication initiation is highly regulated and dynamic. It begins with the Origin Recognition Complex (ORC) binding DNA sites called origins of replication. ORC, together with Cdc6 and Cdt1, mediate pre-Replicative Complex (pre-RC) assembly by loading a double hexamer of Mcm2-7: the core of the replicative helicase. Here, we use single-molecule imaging to directly visualize Saccharomyces cerevisiae pre-RC assembly and replisome firing in real time. We show that ORC can locate and stably bind origins within large tracts of non-origin DNA, and that Cdc6 drives ordered pre-RC assembly. We further show that the dynamics of the ORC-Cdc6 interaction dictate Mcm2-7 loading specificity and that Mcm2-7 double hexamers form preferentially at a native origin sequence. Finally, we demonstrate that single Mcm2-7 hexamers propagate bidirectionally, monotonically, and processively as constituents of active replisomes. PMID:25921072

  20. Expression of Eukaryotic Initiation Factor 5A and Hypusine Forming Enzymes in Glioblastoma Patient Samples: Implications for New Targeted Therapies

    PubMed Central

    Preukschas, Michael; Hagel, Christian; Schulte, Alexander; Weber, Kristoffer; Lamszus, Katrin; Sievert, Henning; Pällmann, Nora; Bokemeyer, Carsten; Hauber, Joachim; Braig, Melanie; Balabanov, Stefan

    2012-01-01

    Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA) could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity. PMID:22927971

  1. The haem-regulated eukaryotic initiation factor 2alpha kinase: a molecular indicator of lead-toxicity anaemia in rabbits.

    PubMed

    Anand, Sanjay; Pal, Jayanta K

    2002-08-01

    The haem-regulated eukaryotic initiation factor 2alpha kinase, also called the haem-regulated inhibitor (HRI), has been shown to increase in the peripheral blood cells as a function of drug-induced anaemia in rabbits, suggesting that it could be a molecular indicator of drug-induced anaemia [Anand and Pal (1997) J. Biosci. 22, 287-298]. In the present investigation, we have determined the expression of HRI during lead-induced anaemia in rabbits. The level of anaemia has been determined by routine procedures such as reticulocyte count, haemoglobin content and packed cell volume. These values were compared with the results obtained for a quantitative Western blot of HRI in the blood cell lysates of drug- and lead-induced anaemic rabbits. These results indicate that HRI could be used as a molecular marker for lead-induced anaemia since a progressive increase in HRI levels could be detected as a function of the time of lead exposure. In order to understand the role of stress proteins, heat-shock protein (Hsp) 70 and Hsp90, in inducing anaemia during lead exposure, levels of Hsp70 and Hsp90, and their interaction with HRI, have been determined. Increased levels of these proteins and their intermolecular complexes with HRI suggest their role in regulating protein synthesis during lead-induced anaemia. These observations further reiterate the use of HRI as a potential indicator for drug- and heavy-metal-induced anaemia in humans.

  2. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level.

    PubMed

    Duzdevich, Daniel; Warner, Megan D; Ticau, Simina; Ivica, Nikola A; Bell, Stephen P; Greene, Eric C

    2015-05-07

    Eukaryotic replication initiation is highly regulated and dynamic. It begins with the origin recognition complex (ORC) binding DNA sites called origins of replication. ORC, together with Cdc6 and Cdt1, mediate pre-replicative complex (pre-RC) assembly by loading a double hexamer of Mcm2-7: the core of the replicative helicase. Here, we use single-molecule imaging to directly visualize Saccharomyces cerevisiae pre-RC assembly and replisome firing in real time. We show that ORC can locate and stably bind origins within large tracts of non-origin DNA and that Cdc6 drives ordered pre-RC assembly. We further show that the dynamics of the ORC-Cdc6 interaction dictate Mcm2-7 loading specificity and that Mcm2-7 double hexamers form preferentially at a native origin sequence. Finally, we demonstrate that single Mcm2-7 hexamers propagate bidirectionally, monotonically, and processively as constituents of active replisomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.

    PubMed

    Jacobson, Blake A; Thumma, Saritha C; Jay-Dixon, Joseph; Patel, Manish R; Dubear Kroening, K; Kratzke, Marian G; Etchison, Ryan G; Konicek, Bruce W; Graff, Jeremy R; Kratzke, Robert A

    2013-01-01

    Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma. Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

  4. NMR analysis of the interaction of picornaviral proteinases Lb and 2A with their substrate eukaryotic initiation factor 4GII.

    PubMed

    Aumayr, Martina; Fedosyuk, Sofiya; Ruzicska, Katharina; Sousa-Blin, Carla; Kontaxis, Georg; Skern, Tim

    2015-12-01

    Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap-binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut-off host-cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot-and-mouth disease virus (FMDV) leader proteinase (Lb(pro)), human rhinovirus 2 (HRV2) 2A proteinase (2A(pro)) and coxsackievirus B4 (CVB4) 2A(pro) with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed (13)C/(15) N sequential backbone assignment of human eIF4GII residues 551-745 and examined their binding to murine eIF4E. eIF4GII551-745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain-like Lb(pro) only forms a stable complex with eIF4GII(551-745) in the presence of eIF4E, with KD values in the low nanomolar range; Lb(pro) contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin-like 2A(pro) from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with K(D) values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut-off. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  5. Downregulated Translation Initiation Signaling Predisposes Low-Birth-Weight Neonatal Pigs to Slower Rates of Muscle Protein Synthesis.

    PubMed

    Chen, Ying; McCauley, Sydney R; Johnson, Sally E; Rhoads, Robert P; El-Kadi, Samer W

    2017-01-01

    Low-birth-weight (LBWT) neonates experience restricted muscle growth in their perinatal life. Our aim was to investigate the mechanisms that contribute to slower skeletal muscle growth of LBWT neonatal pigs. Twenty-four 1-day old male LBWT (816 ± 55 g) and normal-birth-weight (NBWT; 1,642 ± 55 g) littermates (n = 12) were euthanized to collect blood and longissimus dorsi (LD) muscle subsamples. Plasma glucose, insulin, and insulin-like growth factor-I (IGF-I) were lower in LBWT compared with NBWT pigs. Muscle IGF-I mRNA expression were lower in LBWT than NBWT pigs. However, IGF-I receptor mRNA and protein abundance was greater in LD of LBWT pigs. Abundance of myostatin and its receptors, and abundance and phosphorylation of smad3 were lower in LBWT LD by comparison with NBWT LD. Abundance of eukaryotic initiation factor (eIF) 4E binding protein 1 and mitogen-activated protein kinase-interacting kinases was lower in muscle of LBWT pigs compared with NBWT siblings, while eIF4E abundance and phosphorylation did not differ between the two groups. Furthermore, phosphorylation of ribosomal protein S6 kinase 1 (S6K1) was less in LBWT muscle, possibly due to lower eIF3e abundance. In addition, abundance and phosphorylation of eIF4G was reduced in LBWT pigs by comparison with NBWT littermates, suggesting translation initiation complex formation is compromised in muscle of LBWT pigs. In conclusion, diminished S6K1 activation and translation initiation signaling are likely the major contributors to impaired muscle growth in LBWT neonatal pigs. The upregulated IGF-I R expression and downregulated myostatin signaling seem to be compensatory responses for the reduction in protein synthesis signaling.

  6. Autophosphorylation in the Activation Loop Is Required for Full Kinase Activity In Vivo of Human and Yeast Eukaryotic Initiation Factor 2α Kinases PKR and GCN2

    PubMed Central

    Romano, Patrick R.; Garcia-Barrio, Minerva T.; Zhang, Xiaolong; Wang, Qizhi; Taylor, Deborah R.; Zhang, Fan; Herring, Christopher; Mathews, Michael B.; Qin, Jun; Hinnebusch, Alan G.

    1998-01-01

    The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between kinase subdomains VII and VIII, referred to as the activation loop. We show that Thr-446 and Thr-451 in the PKR activation loop are required in vivo and in vitro for high-level kinase activity. Mutation of either residue to Ala impaired translational control by PKR in yeast cells and COS1 cells and led to tumor formation in mice. These mutations also impaired autophosphorylation and eukaryotic initiation factor 2 subunit α (eIF2α) phosphorylation by PKR in vitro. Whereas the Ala-446 substitution substantially reduced PKR function, the mutant kinase containing Ala-451 was completely inactive. PKR specifically phosphorylated Thr-446 and Thr-451 in synthetic peptides in vitro, and mass spectrometry analysis of PKR phosphopeptides confirmed that Thr-446 is an autophosphorylation site in vivo. Substitution of Glu-490 in subdomain X of PKR partially restored kinase activity when combined with the Ala-451 mutation. This finding suggests that the interaction between subdomain X and the activation loop, described previously for MAP kinase, is a regulatory feature conserved in PKR. We found that the yeast eIF2α kinase GCN2 autophosphorylates at Thr-882 and Thr-887, located in the activation loop at exactly the same positions as Thr-446 and Thr-451 in PKR. Thr-887 was more critically required than was Thr-882 for GCN2 kinase activity, paralleling the relative importance of Thr-446 and Thr-451 in PKR. These results indicate striking similarities between GCN2 and PKR in the importance of autophosphorylation and the conserved Thr residues in the activation loop. PMID:9528799

  7. Phosphoinositide 3-Kinases Upregulate System xc− via Eukaryotic Initiation Factor 2α and Activating Transcription Factor 4 – A Pathway Active in Glioblastomas and Epilepsy

    PubMed Central

    Baxter, Paul; Kassubek, Rebecca; Albrecht, Philipp; Van Liefferinge, Joeri; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Karpel-Massler, Georg; Meakin, Paul J.; Hayes, John D.; Aronica, Eleonora; Smolders, Ilse; Ludolph, Albert C.; Methner, Axel; Conrad, Marcus; Massie, Ann; Hardingham, Giles E.

    2014-01-01

    Abstract Aims: Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc− imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc− and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. Results: PI3Ks induce system xc− through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. Innovation: Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc−. Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. Conclusion: PI3K-regulated system xc− activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate. Antioxid. Redox Signal. 20: 2907–2922. PMID:24219064

  8. Insertion domain within mammalian mitochondrial translation initiation factor 2 serves the role of eubacterial initiation factor 1

    PubMed Central

    Yassin, Aymen S.; Haque, Md. Emdadul; Datta, Partha P.; Elmore, Kevin; Banavali, Nilesh K.; Spremulli, Linda L.; Agrawal, Rajendra K.

    2011-01-01

    Mitochondria have their own translational machineries for the synthesis of thirteen polypeptide chains that are components of the complexes that participate in the process of oxidative phosphorylation (or ATP generation). Translation initiation in mammalian mitochondria requires two initiation factors, IF2mt and IF3mt, instead of the three that are present in eubacteria. The mammalian IF2mt possesses a unique 37 amino acid insertion domain, which is known to be important for the formation of the translation initiation complex. We have obtained a three-dimensional cryoelectron microscopic map of the mammalian IF2mt in complex with initiator and the eubacterial ribosome. We find that the 37 amino acid insertion domain interacts with the same binding site on the ribosome that would be occupied by the eubacterial initiation factor IF1, which is absent in mitochondria. Our finding suggests that the insertion domain of IF2mt mimics the function of eubacterial IF1, by blocking the ribosomal aminoacyl-tRNA binding site (A site) at the initiation step. PMID:21368145

  9. Initiation of translation at AUC, AUA and AUU codons in Escherichia coli.

    PubMed

    Romero, A; García, P

    1991-12-01

    A truncated form of the HBL murein hydrolase, encoded by the temperate bacteriophage HB-3, was cloned in a pUC-derivative and translated in Escherichia coli using AUC as start codon, as confirmed by biochemical, immunological, and N-terminal analyses. Using site-directed mutagenesis, we have changed this AUC codon into AUA, AUU and AUG codons. The relative translation efficiencies for these triplets were about 5% for AUC and AUU and 7.5% for AUA compared to that of AUG codon. In the same gene arrangement E. coli beta-galactosidase was also translated at moderate efficiency using AUC as initiator.

  10. Yeast 18 S rRNA Is Directly Involved in the Ribosomal Response to Stringent AUG Selection during Translation Initiation*

    PubMed Central

    Nemoto, Naoki; Singh, Chingakham Ranjit; Udagawa, Tsuyoshi; Wang, Suzhi; Thorson, Elizabeth; Winter, Zachery; Ohira, Takahiro; Ii, Miki; Valášek, Leoš; Brown, Susan J.; Asano, Katsura

    2010-01-01

    In eukaryotes, the 40 S ribosomal subunit serves as the platform of initiation factor assembly, to place itself precisely on the AUG start codon. Structural arrangement of the 18 S rRNA determines the overall shape of the 40 S subunit. Here, we present genetic evaluation of yeast 18 S rRNA function using 10 point mutations altering the polysome profile. All the mutants reduce the abundance of the mutant 40 S, making it limiting for translation initiation. Two of the isolated mutations, G875A, altering the core of the platform domain that binds eIF1 and eIF2, and A1193U, changing the h31 loop located below the P-site tRNAiMet, show phenotypes indicating defective regulation of AUG selection. Evidence is provided that these mutations reduce the interaction with the components of the preinitiation complex, thereby inhibiting its function at different steps. These results indicate that the 18 S rRNA mutations impair the integrity of scanning-competent preinitiation complex, thereby altering the 40 S subunit response to stringent AUG selection. Interestingly, nine of the mutations alter the body/platform domains of 18 S rRNA, potentially affecting the bridges to the 60 S subunit, but they do not change the level of 18 S rRNA intermediates. Based on these results, we also discuss the mechanism of the selective degradation of the mutant 40 S subunits. PMID:20699223

  11. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation

    PubMed Central

    Georgescu, Roxana; Yuan, Zuanning; Bai, Lin; de Luna Almeida Santos, Ruda; Sun, Jingchuan; Zhang, Dan; Yurieva, Olga; Li, Huilin; O’Donnell, Michael E.

    2017-01-01

    The eukaryotic CMG (Cdc45, Mcm2–7, GINS) helicase consists of the Mcm2–7 hexameric ring along with five accessory factors. The Mcm2–7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5′-3′ through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin. PMID:28096349

  12. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation.

    PubMed

    Georgescu, Roxana; Yuan, Zuanning; Bai, Lin; de Luna Almeida Santos, Ruda; Sun, Jingchuan; Zhang, Dan; Yurieva, Olga; Li, Huilin; O'Donnell, Michael E

    2017-01-31

    The eukaryotic CMG (Cdc45, Mcm2-7, GINS) helicase consists of the Mcm2-7 hexameric ring along with five accessory factors. The Mcm2-7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5'-3' through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin.

  13. Quantitative analysis of mammalian translation initiation sites by FACS-seq.

    PubMed

    Noderer, William L; Flockhart, Ross J; Bhaduri, Aparna; Diaz de Arce, Alexander J; Zhang, Jiajing; Khavari, Paul A; Wang, Clifford L

    2014-08-28

    An approach combining fluorescence-activated cell sorting and high-throughput DNA sequencing (FACS-seq) was employed to determine the efficiency of start codon recognition for all possible translation initiation sites (TIS) utilizing AUG start codons. Using FACS-seq, we measured translation from a genetic reporter library representing all 65,536 possible TIS sequences spanning the -6 to +5 positions. We found that the motif RYMRMVAUGGC enhanced start codon recognition and translation efficiency. However, dinucleotide interactions, which cannot be conveyed by a single motif, were also important for modeling TIS efficiency. Our dataset combined with modeling allowed us to predict genome-wide translation initiation efficiency for all mRNA transcripts. Additionally, we screened somatic TIS mutations associated with tumorigenesis to identify candidate driver mutations consistent with known tumor expression patterns. Finally, we implemented a quantitative leaky scanning model to predict alternative initiation sites that produce truncated protein isoforms and compared predictions with ribosome footprint profiling data. The comprehensive analysis of the TIS sequence space enables quantitative predictions of translation initiation based on genome sequence. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Quantitative analysis of mammalian translation initiation sites by FACS-seq

    PubMed Central

    Noderer, William L; Flockhart, Ross J; Bhaduri, Aparna; Diaz de Arce, Alexander J; Zhang, Jiajing; Khavari, Paul A; Wang, Clifford L

    2014-01-01

    An approach combining fluorescence-activated cell sorting and high-throughput DNA sequencing (FACS-seq) was employed to determine the efficiency of start codon recognition for all possible translation initiation sites (TIS) utilizing AUG start codons. Using FACS-seq, we measured translation from a genetic reporter library representing all 65,536 possible TIS sequences spanning the −6 to +5 positions. We found that the motif RYMRMVAUGGC enhanced start codon recognition and translation efficiency. However, dinucleotide interactions, which cannot be conveyed by a single motif, were also important for modeling TIS efficiency. Our dataset combined with modeling allowed us to predict genome-wide translation initiation efficiency for all mRNA transcripts. Additionally, we screened somatic TIS mutations associated with tumorigenesis to identify candidate driver mutations consistent with known tumor expression patterns. Finally, we implemented a quantitative leaky scanning model to predict alternative initiation sites that produce truncated protein isoforms and compared predictions with ribosome footprint profiling data. The comprehensive analysis of the TIS sequence space enables quantitative predictions of translation initiation based on genome sequence. PMID:25170020

  15. Cloning and Constructing a Plasmid Encoding Leishmania Eukaryotic Initiation Factor Gene of Leishmania major Fused with Green Fluorescent Protein Gene as a Vaccine Candidate.

    PubMed

    Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A

    2015-05-12

    Leishmaniasis is usually treated with chemotherapy; however, toxicity, resistance and high-cost limit use of the chemical drugs. Leishmania eukaryotic initiation factor (LeIF) protein acts the same as interleukin (IL)-12 and reduces the secretion of IL-4 in lymph node cells of mice infected with Leishmania major. The aim of this study was cloning of the gene encoding LeIF antigen into eukaryotic expression plasmid pEGFP-N1. DNA was extracted from Iranian strain of the L major (MRHO/IR/75/ER) promastigotes. The full-length sequence of LeIF was amplified with Pfu DNA polymerase using a specific primer. The amplified LeIF was cloned into a pJET1.2/blunt vector. Then this fragment was digested with HindIII and EcoRI and was subcloned into the pEGFP-N1 vector. Confirmation of the cloning was done by colony polymerase chain reaction (PCR). Leishmania eukaryotic initiation factor gene was successfully cloned and subcloned into pJET1.2 and pEGFP-N1 plasmids, respectively. The results of colony PCR, restriction analysis and sequencing confirmed them. We cloned LeIF gene which could be expressed in eukaryotic cells in vivo and could be used as a vaccine candidate against leishmaniasis in future studies.

  16. Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron.

    PubMed Central

    Grant, C M; Miller, P F; Hinnebusch, A G

    1994-01-01

    Translational control of the GCN4 gene in response to amino acid availability is mediated by four short open reading frames in the GCN4 mRNA leader (uORFs) and by phosphorylation of eukaryotic initiation factor 2 (eIF-2). We have proposed that reducing eIF-2 activity by phosphorylation of its alpha subunit or by a mutation in the eIF-2 recycling factor eIF-2B allows ribosomes which have translated the 5'-proximal uORF1 to bypass uORF2 to uORF4 and reinitiate at GCN4 instead. In this report, we present two lines of evidence that all ribosomes which synthesize GCN4 have previously translated uORF1, resumed scanning, and reinitiated at the GCN4 start site. First, GCN4 expression was abolished when uORF1 was elongated to make it overlap the beginning of the GCN4 coding region. Second, GCN4 expression was reduced as uORF1 was moved progressively closer to GCN4, decreasing to only 5% of the level seen in the absence of all uORFs when only 32 nucleotides separated uORF1 from GCN4. We additionally found that inserting small synthetic uORFs between uORF4 and GCN4 inhibited GCN4 expression under derepressing conditions, confirming the idea that reinitiation at GCN4 under conditions of diminished eIF-2 activity is proportional to the distance of the reinitiation site downstream from uORF1. While uORF4 and GCN4 appear to be equally effective at capturing ribosomes scanning downstream from the 5' cap of mRNA, these two ORFs differ greatly in their ability to capture reinitiating ribosomes scanning from uORF1. When the active form of eIF-2 is present at high levels, reinitiation appears to be much more efficient at uORF4 than at GCN4 when each is located very close to uORF1. Under conditions of reduced recycling of eIF-2, reinitiation at uORF4 is substantially suppressed, which allows ribosomes to reach the GCN4 start site; in contrast, reinitiation at GCN4 in constructs lacking uORF4 is unaffected by decreasing the level of eIF-2 activity. This last finding raises the

  17. A New Database (GCD) on Genome Composition for Eukaryote and Prokaryote Genome Sequences and Their Initial Analyses

    PubMed Central

    Kryukov, Kirill; Sumiyama, Kenta; Ikeo, Kazuho; Gojobori, Takashi; Saitou, Naruya

    2012-01-01

    Eukaryote genomes contain many noncoding regions, and they are quite complex. To understand these complexities, we constructed a database, Genome Composition Database, for the whole genome composition statistics for 101 eukaryote genome data, as well as more than 1,000 prokaryote genomes. Frequencies of all possible one to ten oligonucleotides were counted for each genome, and these observed values were compared with expected values computed under observed oligonucleotide frequencies of length 1–4. Deviations from expected values were much larger for eukaryotes than prokaryotes, except for fungal genomes. Mammalian genomes showed the largest deviation among animals. The results of comparison are available online at http://esper.lab.nig.ac.jp/genome-composition-database/. PMID:22417913

  18. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding.

    PubMed

    Smith, Richard W P; Anderson, Ross C; Larralde, Osmany; Smith, Joel W S; Gorgoni, Barbara; Richardson, William A; Malik, Poonam; Graham, Sheila V; Gray, Nicola K

    2017-06-13

    Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP-eIF4G-eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27-PABP-eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP-eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non-poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP-eIF4G complex in translation initiation.

  19. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding

    PubMed Central

    Smith, Richard W. P.; Anderson, Ross C.; Larralde, Osmany; Smith, Joel W. S.; Gorgoni, Barbara; Richardson, William A.; Malik, Poonam; Graham, Sheila V.; Gray, Nicola K.

    2017-01-01

    Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP–eIF4G–eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27–PABP–eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP–eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non–poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP–eIF4G complex in translation initiation. PMID:28559344

  20. A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation

    PubMed Central

    Lu, Junyan; Jiang, Chenxiao; Li, Xiaojing; Jiang, Lizhi; Li, Zengxia; Schneider-Poetsch, Tilman; Liu, Jianwei; Yu, Kunqian; Liu, Jun O.; Jiang, Hualiang; Luo, Cheng; Dang, Yongjun

    2015-01-01

    Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases. PMID:26464436

  1. A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation.

    PubMed

    Lu, Junyan; Jiang, Chenxiao; Li, Xiaojing; Jiang, Lizhi; Li, Zengxia; Schneider-Poetsch, Tilman; Liu, Jianwei; Yu, Kunqian; Liu, Jun O; Jiang, Hualiang; Luo, Cheng; Dang, Yongjun

    2015-12-02

    Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases.

  2. The 5′ Untranslated Region of the Human T-Cell Lymphotropic Virus Type 1 mRNA Enables Cap-Independent Translation Initiation

    PubMed Central

    Olivares, Eduardo; Landry, Dori M.; Cáceres, C. Joaquín; Pino, Karla; Rossi, Federico; Navarrete, Camilo; Huidobro-Toro, Juan Pablo; Thompson, Sunnie R.

    2014-01-01

    ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) is a complex human retrovirus that causes adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis. The mRNA of some complex retroviruses, including the human and simian immunodeficiency viruses (HIV and SIV), can initiate translation using a canonical cap-dependent mechanism or through an internal ribosome entry site (IRES). In this study, we present strong evidence showing that like HIV-1 and SIV, the 5′-untranslated region (5′UTR) of the HTLV-1 full-length mRNA harbors an IRES. Cap-independent translational activity was evaluated and demonstrated using dual luciferase bicistronic mRNAs in rabbit reticulocyte lysate, in mammalian cell culture, and in Xenopus laevis oocytes. Characterization of the HTLV-1 IRES shows that its activity is dependent on the ribosomal protein S25 (RPS25) and that its function is highly sensitive to the drug edeine. Together, these findings suggest that the 5′UTR of the HTLV-1 full-length mRNA enables internal recruitment of the eukaryotic translation initiation complex. However, the recognition of the initiation codon requires ribosome scanning. These results suggest that, after internal recruitment by the HTLV-1 IRES, a scanning step takes place for the 40S ribosomal subunit to be positioned at the translation initiation codon. IMPORTANCE The mechanism by which retroviral mRNAs recruit the 40S ribosomal subunit internally is not understood. This study provides new insights into the mechanism of translation initiation used by the human T-cell lymphotropic virus type 1 (HTLV-1). The results show that the HTLV-1 mRNA can initiate translation via a noncanonical mechanism mediated by an internal ribosome entry site (IRES). This study also provides evidence showing the involvement of cellular proteins in HTLV-1 IRES-mediated translation initiation. Together, the data presented in this report significantly contribute to the understanding of HTLV-1 gene

  3. Real-time assembly landscape of bacterial 30S translation initiation complex.

    PubMed

    Milón, Pohl; Maracci, Cristina; Filonava, Liudmila; Gualerzi, Claudio O; Rodnina, Marina V

    2012-05-06

    Initiation factors guide the ribosome in the selection of mRNA and translational reading frame. We determined the kinetically favored assembly pathway of the 30S preinitiation complex (30S PIC), an early intermediate in 30S initiation complex formation in Escherichia coli. IF3 and IF2 are the first factors to arrive, forming an unstable 30S-IF2-IF3 complex. Subsequently, IF1 joins and locks the factors in a kinetically stable 30S PIC to which fMet-tRNA(fMet) is recruited. Binding of mRNA is independent of initiation factors and can take place at any time during 30S PIC assembly, depending on the cellular concentration of the mRNA and the structural determinants at the ribosome-binding site. The kinetic analysis shows both specific and cumulative effects of initiation factors as well as kinetic checkpoints of mRNA selection at the entry into translation.

  4. Feeding rapidly stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing translation initiation

    USDA-ARS?s Scientific Manuscript database

    Food consumption increases protein synthesis in most tissues by promoting translation initiation, and in the neonate, this increase is greatest in skeletal muscle. In this study, we aimed to identify the currently unknown time course of changes in the rate of protein synthesis and the activation of ...

  5. Rewarding Excellent Teaching: The Translation of a Policy Initiative in the United Kingdom

    ERIC Educational Resources Information Center

    Turner, Rebecca; Gosling, David

    2012-01-01

    The need to provide more significant rewards for "teaching excellence" in order to provide parity of status with research in higher education has often been asserted. This paper examines ways in which the idea of rewarding excellent teaching has been understood and translated within a large teaching and learning initiative that was…

  6. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  10. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  11. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  12. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  13. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T Ashton; Anderson, J Christopher; Schultz, Peter G

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  14. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice.

    PubMed

    Pettit, Ashley P; Jonsson, William O; Bargoud, Albert R; Mirek, Emily T; Peelor, Frederick F; Wang, Yongping; Gettys, Thomas W; Kimball, Scot R; Miller, Benjamin F; Hamilton, Karyn L; Wek, Ronald C; Anthony, Tracy G

    2017-06-01

    Background: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2(-/-) mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2(-/-) mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2(-/-) mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status

  16. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum.

    PubMed

    Bruun-Rasmussen, M; Møller, I S; Tulinius, G; Hansen, J K R; Lund, O S; Johansen, I E

    2007-09-01

    Pathogenicity of two sequenced isolates of Bean yellow mosaic virus (BYMV) was established on genotypes of Pisum sativum L. reported to carry resistance genes to BYMV and other potyviruses. Resistance to the white lupin strain of BYMV (BYMV-W) is inherited as a recessive gene named wlv that maps to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV-W-susceptible and -resistant P. sativum genotypes revealed a polymorphism correlating with the resistance profile. Expression of eIF4E from susceptible plants in resistant plants facilitated BYMV-W infection in inoculated leaves. When cDNA of BYMV-W was agroinoculated, resistance mediated by the wlv gene frequently was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116 of the VPg coding region. These results suggested that VPg determined pathogenicity on plants carrying the wlv resistance gene and that wlv corresponded to the sbm1 allele of eIF4E.

  17. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity

    PubMed Central

    Graff, Jeremy R.; Konicek, Bruce W.; Vincent, Thomas M.; Lynch, Rebecca L.; Monteith, David; Weir, Spring N.; Schwier, Phil; Capen, Andrew; Goode, Robin L.; Dowless, Michele S.; Chen, Yuefeng; Zhang, Hong; Sissons, Sean; Cox, Karen; McNulty, Ann M.; Parsons, Stephen H.; Wang, Tao; Sams, Lillian; Geeganage, Sandaruwan; Douglass, Larry E.; Neubauer, Blake Lee; Dean, Nicholas M.; Blanchard, Kerry; Shou, Jianyong; Stancato, Louis F.; Carter, Julia H.; Marcusson, Eric G.

    2007-01-01

    Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers. PMID:17786246

  18. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo

    PubMed Central

    Matsuda, Daiki; Mauro, Vincent P.

    2014-01-01

    Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example—translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson–Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA–rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine–Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction. PMID:25313046

  19. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo.

    PubMed

    Matsuda, Daiki; Mauro, Vincent P

    2014-10-28

    Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example--translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson-Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA-rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine-Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction.

  20. Mutually exclusive RNA secondary structures regulate translation initiation of DinQ in Escherichia coli.

    PubMed

    Kristiansen, Knut I; Weel-Sneve, Ragnhild; Booth, James A; Bjørås, Magnar

    2016-11-01

    Protein translation can be affected by changes in the secondary structure of mRNA. The dinQ gene in Escherichia coli encodes a primary transcript (+1) that is inert to translation. Ribonucleolytic removal of the 44 first nucleotides converts the +1 transcript into a translationally active form, but the mechanism behind this structural change is unknown. Here we present experimental evidence for a mechanism where alternative RNA secondary structures in the two dinQ mRNA variants affect translation initiation by mediating opening or closing of the ribosome binding sequence. This structural switch is determined by alternative interactions of four sequence elements within the dinQ mRNA and also by the agrB antisense RNA. Additionally, the structural conformation of +1 dinQ suggests a locking mechanism comprised of an RNA stem that both stabilizes and prevents translation initiation from the full-length dinQ transcript. BLAST search and multiple sequence alignments define a new family of dinQ-like genes widespread in Enterobacteriaceae with close RNA sequence similarities in their 5' untranslated regions. Thus, it appears that a whole new family of genes is regulated by the same mechanism of alternative secondary RNA structures. © 2016 Kristiansen et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Molecular genetic structure-function analysis of translation initiation factor eIF5B.

    PubMed

    Shin, Byung-Sik; Dever, Thomas E

    2007-01-01

    Recently, significant progress has been made in obtaining three-dimensional (3-D) structures of the factors that promote translation initiation, elongation, and termination. These structures, when interpreted in light of previous biochemical characterizations of the factors, provide significant insight into the function of the factors and the molecular mechanism of specific steps in the translation process. In addition, genetic analyses in yeast have helped elucidate the in vivo roles of the factors in various steps of the translation pathway. We have combined these two approaches and use molecular genetic studies to define the structure-function properties of translation initiation factors in the yeast Saccharomyces cerevisiae. In this chapter, we describe our multistep approach in which we first characterize a site-directed mutant of the factor of interest using in vivo and in vitro assays of protein synthesis. Next, we subject the mutant gene to random mutagenesis and screen for second-site mutations that restore the factor's function in vivo. Following biochemical and in vivo characterization of the suppressor mutant, we interpret the results in light of the 3-D structure of the factor to define the structure-function properties of the factor and to provide new molecular insights into the mechanism of translation.

  2. Comparative analysis of contextual bias around the translation initiation sites in plant genomes.

    PubMed

    Gupta, Paras; Rangan, Latha; Ramesh, T Venkata; Gupta, Mudit

    2016-09-07

    Nucleotide distribution around translation initiation site (TIS) is thought to play an important role in determining translation efficiency. Kozak in vertebrates and later Joshi et al. in plants identified context sequence having a key role in translation efficiency, but a great variation regarding this context sequence has been observed among different taxa. The present study aims to refine the context sequence around initiation codon in plants and addresses the sampling error problem by using complete genomes of 7 monocots and 7 dicots separately. Besides positions -3 and +4, significant conservation at -2 and +5 positions was also found and nucleotide bias at the latter two positions was shown to directly influence translation efficiency in the taxon studied. About 1.8% (monocots) and 2.4% (dicots) of the total sequences fit the context sequence from positions -3 to +5, which might be indicative of lower number of housekeeping genes in the transcriptome. A three base periodicity was observed in 5' UTR and CDS of monocots and only in CDS of dicots as confirmed against random occurrence and annotation errors. Deterministic enrichment of GCNAUGGC in monocots, AANAUGGC in dicots and GCNAUGGC in plants around TIS was also established (where AUG denotes the start codon), which can serve as an arbiter of putative TIS with efficient translation in plants.

  3. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2

    PubMed Central

    Liu, Yulan; Cheng, Hao; Wang, Jing; Zhang, Yue; Rui, Yaocheng; Li, Tiejun

    2016-01-01

    Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury. PMID:26918757

  4. Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity

    PubMed Central

    Friday, Andrew J.; Keiper, Brett D.

    2015-01-01

    Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis. PMID:26357652

  5. Translation initiation with GUC codon in the archaeon Halobacterium salinarum: implications for translation of leaderless mRNA and strict correlation between translation initiation and presence of mRNA.

    PubMed

    Srinivasan, Gayathri; Krebs, Mark P; RajBhandary, Uttam L

    2006-02-01

    We have investigated whether anticodon sequence mutant of an archaeal initiator tRNA can initiate protein synthesis using reporter genes carrying mutations in the initiation codon. Halobacterium salinarum was used as the model organism and the bacterio-opsin gene (bop), which encodes the precursor of the protein component of the purple membrane protein bacterio-opsin (Bop), was chosen as the reporter. We demonstrate that a CAU to GAC anticodon sequence mutant of Haloferax volcanii initiator tRNA can initiate Bop protein synthesis using GUC as the initiation codon in H. salinarum. We generated four mutant bop genes, each carrying the AUG to GUC initiation codon mutation, with or without a compensatory mutation to maintain a predicted stem-loop structure at the 5'-end of the bop mRNA, and with or without mutations to test translation initiation at a site corresponding to the amino terminus of mature bacterio-opsin. H. salinarum chromosomal recombinants containing these mutant genes were phenotypically Pum- (purple membrane negative). Upon transformation with a plasmid carrying the mutant initiator tRNA gene, only strains designed to maintain the bop mRNA stem-loop structure produced Bop and were phenotypically Pum+ as indicated by purple colony colour, and immunoblotting and spectral analysis of cell extracts. Thus GUC can serve as an initiation codon in archaea and the stem-loop structure in the bop mRNA is important for translation. Interestingly, for the same mutant mRNA, only transformants that produce Bop protein contain bop mRNA. These results suggest either a strong coupling between translation and mRNA stability or strong transcriptional polarity in H. salinarum.

  6. A guide to the translation of the Global Initiative for Asthma (GINA) strategy into improved care.

    PubMed

    Boulet, Louis-Philippe; FitzGerald, J Mark; Levy, Mark L; Cruz, Alvaro A; Pedersen, Soren; Haahtela, Tari; Bateman, Eric D

    2012-05-01

    In 1995, the Global Initiative for Asthma (GINA) published an evidence-based workshop report as a guide to clinicians managing asthma patients, and has updated it annually to ensure that recommendations remain current. Although the report has been widely disseminated and influenced clinical practice and research, its major objective, of forming the basis for local and national initiatives to improve services for asthma patients, remains to be achieved. Over recent years, the science of guideline implementation has progressed, and encouraging examples of successful asthma programmes have been published. This report is intended to draw on this experience and assist with the translation of asthma guideline recommendations into quality programmes for patients with asthma using current knowledge translation principles. It also provides examples of successful initiatives in various socioeconomic settings.

  7. The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants.

    PubMed

    Rausell, Antonio; Kanhonou, Rodolphe; Yenush, Lynne; Serrano, Ramon; Ros, Roc

    2003-05-01

    Protein synthesis is very sensitive to NaCl. However, the molecular targets responsible for this sensitivity have not been described. A cDNA library of the halotolerant plant sugar beet was functionally screened in a sodium-sensitive yeast strain. We obtained a cDNA clone (BveIF1A) encoding the eukaryotic translation initiation factor eIF1A. BveIF1A was able to partially complement the yeast eIF1A-deficient strain. Overexpression of the sugar beet eIF1A specifically increased the sodium and lithium salt tolerance of yeast. This phenotype was not accompanied by changes in sodium or potassium homeostasis. Under salt stress conditions, yeast cells expressing BveIF1A presented a higher rate of amino acid incorporation into proteins than control cells. In an in vitro protein synthesis system from wheat germ, the BveIF1A recombinant protein improved translation in the presence of NaCl. Finally, transgenic Arabidopsis plants expressing BveIF1A exhibited increased tolerance to NaCl. These results suggest that the translation initiation factor eIF1A is an important determinant of sodium tolerance in yeast and plants.

  8. Mechanism and regulation of eukaryotic protein synthesis.

    PubMed Central

    Merrick, W C

    1992-01-01

    This review presents a description of the numerous eukaryotic protein synthesis factors and their apparent sequential utilization in the processes of initiation, elongation, and termination. Additionally, the rare use of reinitiation and internal initiation is discussed, although little is known biochemically about these processes. Subsequently, control of translation is addressed in two different settings. The first is the global control of translation, which is effected by protein phosphorylation. The second is a series of specific mRNAs for which there is a direct and unique regulation of the synthesis of the gene product under study. Other examples of translational control are cited but not discussed, because the general mechanism for the regulation is unknown. Finally, as is often seen in an active area of investigation, there are several observations that cannot be readily accommodated by the general model presented in the first part of the review. Alternate explanations and various lines of experimentation are proposed to resolve these apparent contradictions. PMID:1620067

  9. Comparison of mRNA features affecting translation initiation and reinitiation

    PubMed Central

    Osterman, Ilya A.; Evfratov, Sergey A.; Sergiev, Petr V.; Dontsova, Olga A.

    2013-01-01

    Regulation of gene expression at the level of translation accounts for up to three orders of magnitude in its efficiency. We systematically compared the impact of several mRNA features on translation initiation at the first gene in an operon with those for the second gene. Experiments were done in a system with internal control based on dual cerulean and red (CER/RFP) fluorescent proteins. We demonstrated significant differences in the efficiency of Shine Dalgarno sequences acting at the leading gene and at the following genes in an operon. The majority of frequent intercistronic arrangements possess medium SD dependence, medium dependence on the preceding cistron translation and efficient stimulation by A/U-rich sequences. The second cistron starting immediately after preceding cistron stop codon displays unusually high dependence on the SD sequence. PMID:23093605

  10. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  11. RoXaN, a Novel Cellular Protein Containing TPR, LD, and Zinc Finger Motifs, Forms a Ternary Complex with Eukaryotic Initiation Factor 4G and Rotavirus NSP3

    PubMed Central

    Vitour, Damien; Lindenbaum, Pierre; Vende, Patrice; Becker, Michelle M.; Poncet, Didier

    2004-01-01

    Rotavirus mRNAs are capped but not polyadenylated, and viral proteins are translated by the cellular translation machinery. This is accomplished through the action of the viral nonstructural protein NSP3, which specifically binds the 3′ consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G I. To further our understanding of the role of NSP3 in rotavirus replication, we looked for other cellular proteins capable of interacting with this viral protein. Using the yeast two-hybrid assay, we identified a novel cellular protein-binding partner for rotavirus NSP3. This 110-kDa cellular protein, named RoXaN (rotavirus X protein associated with NSP3), contains a minimum of three regions predicted to be involved in protein-protein or nucleic acid-protein interactions. A tetratricopeptide repeat region, a protein-protein interaction domain most often found in multiprotein complexes, is present in the amino-terminal region. In the carboxy terminus, at least five zinc finger motifs are observed, further suggesting the capacity of RoXaN to bind other proteins or nucleic acids. Between these two regions exists a paxillin leucine-aspartate repeat (LD) motif which is involved in protein-protein interactions. RoXaN is capable of interacting with NSP3 in vivo and during rotavirus infection. Domains of interaction were mapped and correspond to the dimerization domain of NSP3 (amino acids 163 to 237) and the LD domain of RoXaN (amino acids 244 to 341). The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4G I, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation. PMID:15047801

  12. Calicivirus translation initiation requires an interaction between VPg and eIF4E

    PubMed Central

    Goodfellow, Ian; Chaudhry, Yasmin; Gioldasi, Ioanna; Gerondopoulos, Andreas; Natoni, Alessandro; Labrie, Louisette; Laliberté, Jean-François; Roberts, Lisa

    2005-01-01

    Unlike other positive-stranded RNA viruses that use either a 5′-cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 5′ end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap-binding protein eIF4E. This interaction is required for calicivirus mRNA translation, as sequestration of eIF4E by 4E-BP1 inhibits translation. Functional analysis has shown that VPg does not interfere with the interaction between eIF4E and the cap structure or 4E-BP1, suggesting that VPg binds to eIF4E at a different site from both cap and 4E-BP1. This work lends support to the idea that calicivirus VPg acts as a novel ‘cap substitute' during initiation of translation on virus mRNA. PMID:16142217

  13. Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet.

    PubMed

    Deng, Dun; Yao, Kang; Chu, Wuying; Li, Tiejun; Huang, Ruiling; Yin, Yulong; Liu, Zhiqiang; Zhang, Jianshe; Wu, Guoyao

    2009-07-01

    Weanling mammals (including infants) often experience intestinal dysfunction when fed a high-protein diet. Recent work with the piglet (an animal model for studying human infant nutrition) shows that reducing protein intake can improve gut function during weaning but compromises the provision of essential amino acids (EAA) for muscle growth. The present study was conducted with weaned pigs to test the hypothesis that supplementing deficient EAA (Lys, Met, Thr, Trp, Leu, Ile and Val) to a low-protein diet may maintain the activation of translation initiation factors and adequate protein synthesis in tissues. Pigs were weaned at 21 days of age and fed diets containing 20.7, 16.7 or 12.7% crude protein (CP), with the low-CP diets supplemented with EAA to achieve the levels in the high-CP diet. On Day 14 of the trial, tissue protein synthesis was determined using the phenylalanine flooding dose method. Reducing dietary CP levels decreased protein synthesis in pancreas, liver, kidney and longissimus muscle. A low-CP diet reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) in skeletal muscle and liver while increasing the formation of an inactive eIF4E.4E-BP1 complex in muscle. Dietary protein deficiency also decreased the phosphorylation of mammalian target of rapamycin (mTOR) and the formation of an active eIF4E.eIF4G complex in liver. These results demonstrate for the first time that chronic feeding of a low-CP diet suppresses protein synthesis in animals partly by inhibiting mTOR signaling. Additionally, our findings indicate that supplementing deficient EAA to low-protein diets is not highly effective in restoring protein synthesis or whole-body growth in piglets. We suggest that conditionally essential amino acids (e.g., glutamine and arginine) may be required to maintain the activation of translation initiation factors and optimal protein synthesis in neonates.

  14. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus.

    PubMed Central

    Kühn, R; Luz, N; Beck, E

    1990-01-01

    Mutagenesis of the large untranslated sequence at the 5' end of the genome of foot-and-mouth disease virus revealed that a region of approximately 450 nucleotides preceding the open reading frame of the viral polyprotein is involved in the regulation of translation initiation at two internal start sites. Variations in two domains of this region reduced the translation efficiency up to 10-fold, whereas an intermediate segment seemed to be less essential. A pyrimidine-rich sequence preceding the start codon was most sensitive in that conversion of single pyrimidine residues to purines decreased the translation efficiency strongly. The data are in agreement with a recently proposed general structural model for the internal ribosome entry site of the cardiovirusaphthovirus subgroup of picornaviruses (E. V. Pilipenko, V. M. Blinov, B. K. Chernov, T. M. Dmitrieva, and V. I. Agol, Nucleic Acids Res. 17:5701-5711, 1989). They suggest, however, that this model represents only a core structure for the internal entry of ribosomes and that foot-and-mouth disease virus and other members of the picornaviruses need additional regulatory RNA elements for efficient translation initiation. Images PMID:2168956

  15. Single-strand DNA translation initiation step analyzed by Isothermal Titration Calorimetry

    SciTech Connect

    Damian, Luminita; Marty-Detraves, Claire; Winterhalter, Mathias; Fournier, Didier; Paquereau, Laurent

    2009-07-31

    Is single-strand DNA translatable? Since the 60s, the question still remains whether or not DNA could be directly translated into protein. Some discrepancies in the results were reported about functional translation of single-strand DNA but all results converged on a similar behavior of RNA and ssDNA in the initiation step. Isothermal Titration Calorimetry method was used to determine thermodynamic constants of interaction between single-strand DNA and S30 extract of Escherichia coli. Our results showed that the binding was not affected by the nature of the template tested and the dissociation constants were in the same range when ssDNA (K{sub d} = 3.62 {+-} 2.1 x 10{sup -8} M) or the RNA corresponding sequence (K{sub d} = 2.7 {+-} 0.82 x 10{sup -8} M) bearing SD/ATG sequences were used. The binding specificity was confirmed by antibiotic interferences which block the initiation complex formation. These results suggest that the limiting step in translation of ssDNA is the elongation process.

  16. Translation of chloroplast-encoded mRNA: potential initiation and termination signals.

    PubMed Central

    Bonham-Smith, P C; Bourque, D P

    1989-01-01

    A survey of 196 protein-coding chloroplast DNA sequences demonstrated the preference for AUG and UAA codons for initiation and termination of translation, respectively. As in prokaryotes at every nucleotide position from -25 to +25 (AUG is +1 to +3) and for 25 nucleotides 5' and 3' to the termination codon an A or U is predominant, except for C at +5 and G at +22. A Shine-Dalgarno (SD) sequence (GGAGG or tri- or tetranucleotide variant) was found within 100 bp 5' to the AUG codon in 92% of the genes. In 40% of these cases, the location of the SD sequence was similar to that of the consensus for prokaryotes (-12 to -7 5' to AUG), presumed to be optimal for translation initiation. A SD sequence could not be located in 6% of the chloroplast sequences. We propose that mRNA secondary structures may be required for the relocation of a distal SD sequences to within the optimal region (-12 to -7) for initiation of translation. We further suggest that termination at UGA codons in chloroplast genes may occur by a mechanism, involving 16S rRNA secondary structure, which has been proposed for UGA termination in E. coli. PMID:2928114

  17. Attenuation of disease phenotype through alternative translation initiation in low-penetrance retinoblastoma.

    PubMed

    Sánchez-Sánchez, Francisco; Ramírez-Castillejo, Carmen; Weekes, Daniel B; Beneyto, Magdalena; Prieto, Félix; Nájera, Carmen; Mittnacht, Sibylle

    2007-02-01

    Hereditary predisposition to retinoblastoma (RB) is caused by germline mutations in the retinoblastoma 1 (RB1) gene and transmits as an autosomal dominant trait. In the majority of cases disease develops in greater than 90% of carriers. However, reduced penetrance with a large portion of disease-free carrier is seen in some families. Unambiguous identification of the predisposing mutation in these families is important for accurate risk prediction in relatives and their genetic counseling but also provides conceptual information regarding the relationship between the RB1 genotype and the disease phenotype. In this study we report a novel mutation detected in 10 individuals of an extended family, only three of whom are affected by RB disease. The mutation comprises a 23-basepair (bp) duplication in the first exon of RB1 (c.43_65dup) producing a frameshift in exon 1 and premature chain termination in exon 2. Mutations resulting in premature chain termination classically are associated with high penetrance disease, as message translation may not generate functional product and nonsense mediated RNA decay (NMD) frequently eliminates the mutant transcript. However, appreciable NMD does not follow from the mutation described here and transcript expression in tissue culture cells and translation in vitro reveals that alternative in-frame translation start sites involving Met113 and possibly Met233 are used to generate truncated RB1 products (pRB94 and pRB80), known and suspected to exhibit tumor suppressor activity. These results strongly suggest that modulation of disease penetrance in this family is achieved by internal translation initiation. Our observations provide the first example for rescue of a chain-terminating mutation in RB1 through alternative translation initiation.

  18. The translation initiation factor 3 subunit eIF3K interacts with PML and associates with PML nuclear bodies

    SciTech Connect

    Salsman, Jayme; Pinder, Jordan; Tse, Brenda; Corkery, Dale; Dellaire, Graham

    2013-10-15

    The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein–protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoform I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs. - Highlights: • The PML-I C-terminus, encoded by exon 9, interacts with translation factor eIF3K. • We identify a novel eIF3K isoform that excludes exon 2 (eIF3K-2). • eIF3K-2 preferentially associates with PML bodies enriched in PML-I vs. PML-IV. • Alternative splicing of eIF3K regulates association with PML bodies.

  19. eIF4EBP3L Acts as a Gatekeeper of TORC1 In Activity-Dependent Muscle Growth by Specifically Regulating Mef2ca Translational Initiation

    PubMed Central

    Yogev, Orli; Williams, Victoria C.; Hinits, Yaniv; Hughes, Simon M.

    2013-01-01

    Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins), regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3) and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively inhibiting translational

  20. Divergent LIN28-mRNA associations result in translational suppression upon the initiation of differentiation.

    PubMed

    Tan, Shen Mynn; Altschuler, Gabriel; Zhao, Tian Yun; Ang, Haw Siang; Yang, Henry; Lim, Bing; Vardy, Leah; Hide, Winston; Thomson, Andrew M; Lareu, Ricky R

    2014-07-01

    LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Divergent LIN28-mRNA associations result in translational suppression upon the initiation of differentiation

    PubMed Central

    Tan, Shen Mynn; Altschuler, Gabriel; Zhao, Tian Yun; Ang, Haw Siang; Yang, Henry; Lim, Bing; Vardy, Leah; Hide, Winston; Thomson, Andrew M.; Lareu, Ricky R.

    2014-01-01

    LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications. PMID:24860167

  2. Coding theory based models for protein translation initiation in prokaryotic organisms.

    PubMed

    May, Elebeoba E; Vouk, Mladen A; Bitzer, Donald L; Rosnick, David I

    2004-01-01

    Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5' untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5' untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine-Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.

  3. Coding theory based models for protein translation initiation in prokaryotic organisms.

    SciTech Connect

    May, Elebeoba Eni; Bitzer, Donald L. (North Carolina State University, Raleigh, NC); Rosnick, David I. (North Carolina State University, Raleigh, NC); Vouk, Mladen A.

    2003-03-01

    Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5' untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5' untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine-Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.

  4. Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma.

    PubMed

    Demosthenous, Christos; Han, Jing Jing; Stenson, Mary J; Maurer, Matthew J; Wellik, Linda E; Link, Brian; Hege, Kristen; Dogan, Ahmet; Sotomayor, Eduardo; Witzig, Thomas; Gupta, Mamta

    2015-04-20

    Deregulated mRNA translation has been implicated in disease development and in part is controlled by a eukaryotic initiation complex eIF4F (composed of eIF4E, eIF4G and eIF4A). We demonstrate here that the cap bound fraction from lymphoma cells was enriched with eIF4G and eIF4E indicating that lymphoma cells exist in an activated translational state. Moreover, 77% (110/142) of diffuse large B cell lymphoma tumors expressed eIF4E and this was associated with an inferior event free survival. Over-expression of wild-type eIF4E (eIF4E(WT)) but not cap-mutant eIF4E (eIF4E(cap mutant)) increased the activation of the eIF4F complex. Treatment with the active-site dual mTOR inhibitor CC214-1 reduced the level of the eIF4F complex by decreasing the cap bound fraction of eIF4G and increasing the levels of 4E-BP1. CC214-1 inhibited both the cap dependent and global protein translation. CC214-1 inhibited c-Myc, and cyclin D3 translation by decreasing polysomal fractions from lymphoma cells. Inhibition of eIF4E with shRNA further decreased the CC214-1 induced inhibition of the eIF4F complex, c-Myc, cyclin D3 translation, and colony formation. These studies demonstrate that the eIF4F complex is deregulated in aggressive lymphoma and that dual mTOR therapy has therapeutic potential in these patients.

  5. Inhibition of Influenza Virus Replication by DNA Aptamers Targeting a Cellular Component of Translation Initiation

    PubMed Central

    Rodriguez, Paloma; Pérez-Morgado, M Isabel; Gonzalez, Víctor M; Martín, M Elena; Nieto, Amelia

    2016-01-01

    The genetic diversity of the influenza virus hinders the use of broad spectrum antiviral drugs and favors the appearance of resistant strains. Single-stranded DNA aptamers represent an innovative approach with potential application as antiviral compounds. The mRNAs of influenza virus possess a 5′cap structure and a 3′poly(A) tail that makes them structurally indistinguishable from cellular mRNAs. However, selective translation of viral mRNAs occurs in infected cells through a discriminatory mechanism, whereby viral polymerase and NS1 interact with components of the translation initiation complex, such as the eIF4GI and PABP1 proteins. We have studied the potential of two specific aptamers that recognize PABP1 (ApPABP7 and ApPABP11) to act as anti-influenza drugs. Both aptamers reduce viral genome expression and the production of infective influenza virus particles. The interaction of viral polymerase with the eIF4GI translation initiation factor is hindered by transfection of infected cells with both PABP1 aptamers, and ApPABP11 also inhibits the association of NS1 with PABP1 and eIF4GI. These results indicate that aptamers targeting the host factors that interact with viral proteins may potentially have a broad therapeutic spectrum, reducing the appearance of escape mutants and resistant subtypes. PMID:27070300

  6. Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site.

    PubMed Central

    Kaminski, A; Belsham, G J; Jackson, R J

    1994-01-01

    The initiation of encephalomyocarditis virus RNA translation is by internal ribosome entry almost exclusively at the 11th AUG codon from the 5'-end, which is the central of the three AUG codons in the sequence..[sequence: see text].., and is located some 25 nt downstream from an oligopyrimidine tract conserved amongst related viruses. As the sequences between the oligopyrimidine tract and AUG-10/11 are poorly conserved and thus possibly serve only as a spacer, the influence of this spacer length on initiation frequency at the three AUG codons was examined in vitro and in vivo. Deletion of 11 residues resulted in initiation almost exclusively at AUG-12 but at significantly reduced overall efficiency. Insertion of eight residues caused a 15-fold increase in initiation frequency at AUG-10 and a decrease at AUG-11. Longer insertions reduced overall efficiency without changing the initiation site preferences. With the wild-type spacing, complete substitution of the oligopyrimidine tract by purines caused a 30-35% decrease in initiation efficiency, and partial substitution only a 10-15% decrease. Thus the internal initiation mechanism selects the initiation site partly on the basis of its distance from upstream elements, of which the oligopyrimidine tract is not the most critical, but for reasons not yet understood a preference for AUG-11 is superimposed on this selection. Images PMID:8157006

  7. Heat induction of a novel Rad9 variant from a cryptic translation initiation site reduces mitotic commitment.

    PubMed

    Janes, Simon; Schmidt, Ulrike; Ashour Garrido, Karim; Ney, Nadja; Concilio, Susanna; Zekri, Mohamed; Caspari, Thomas

    2012-10-01

    Exposure of human cells to heat switches the activating signal of the DNA damage checkpoint from genotoxic to temperature stress. This change reduces mitotic commitment at the expense of DNA break repair. The thermal alterations behind this switch remain elusive despite the successful use of heat to sensitise cancer cells to DNA breaks. Rad9 is a highly conserved subunit of the Rad9-Rad1-Hus1 (9-1-1) checkpoint-clamp that is loaded by Rad17 onto damaged chromatin. At the DNA, Rad9 activates the checkpoint kinases Rad3(ATR) and Chk1 to arrest cells in G2. Using Schizosaccharomyces pombe as a model eukaryote, we discovered a new variant of Rad9, Rad9-M50, whose expression is specifically induced by heat. High temperatures promote alternative translation from a cryptic initiation codon at methionine-50. This process is restricted to cycling cells and is independent of the temperature-sensing mitogen-activated protein kinase (MAPK) pathway. While full-length Rad9 delays mitosis in the presence of DNA lesions, Rad9-M50 functions in a remodelled checkpoint pathway to reduce mitotic commitment at elevated temperatures. This remodelled pathway still relies on Rad1 and Hus1, but acts independently of Rad17. Heat-induction of Rad9-M50 ensures that the kinase Chk1 remains in a hypo-phosphorylated state. Elevated temperatures specifically reverse the DNA-damage-induced modification of Chk1 in a manner dependent on Rad9-M50. Taken together, heat reprogrammes the DNA damage checkpoint at the level of Chk1 by inducing a Rad9 variant that can act outside of the canonical 9-1-1 complex.

  8. Control of Gene Expression by RNA Binding Protein Action on Alternative Translation Initiation Sites

    PubMed Central

    Re, Angela; Waldron, Levi; Quattrone, Alessandro

    2016-01-01

    Transcript levels do not faithfully predict protein levels, due to post-transcriptional regulation of gene expression mediated by RNA binding proteins (RBPs) and non-coding RNAs. We developed a multivariate linear regression model integrating RBP levels and predicted RBP-mRNA regulatory interactions from matched transcript and protein datasets. RBPs significantly improved the accuracy in predicting protein abundance of a portion of the total modeled mRNAs in three panels of tissues and cells and for different methods employed in the detection of mRNA and protein. The presence of upstream translation initiation sites (uTISs) at the mRNA 5’ untranslated regions was strongly associated with improvement in predictive accuracy. On the basis of these observations, we propose that the recently discovered widespread uTISs in the human genome can be a previously unappreciated substrate of translational control mediated by RBPs. PMID:27923063

  9. Stabilization of HIF-2α through redox regulation of mTORC2 activation and initiation of mRNA translation.

    PubMed

    Nayak, B K; Feliers, D; Sudarshan, S; Friedrichs, W E; Day, R T; New, D D; Fitzgerald, J P; Eid, A; Denapoli, T; Parekh, D J; Gorin, Y; Block, K

    2013-06-27

    Hypoxia inducible factor-2α (HIF-2α) has a critical role in renal tumorigenesis. HIF-2α is stabilized in von Hippel-Lindau (VHL)-deficient renal cell carcinoma through mechanisms that require ongoing mRNA translation. Mammalian target of rapamycin (mTOR) functions in two distinct complexes: Raptor-associated mTORC1 and Rictor-associated mTORC2. Rictor-associated mTORC2 complex has been linked to maintaining HIF-2α protein in the absence of VHL; however, the mechanisms remain to be elucidated. Although Raptor-associated mTORC1 is a known key upstream regulator of mRNA translation, initiation and elongation, the role of mTORC2 in regulating mRNA translation is not clear. Complex assembly of the mRNA cap protein, eukaryotic translation initiation factor 4 (eIF4)E, with activators (eIF4 gamma (eIF4G)) and inhibitors (eIF4E-binding protein 1 (4E-BP1)) are rate-limiting determinants of mRNA translation. Our laboratory has previously demonstrated that reactive oxygen species, mediated by p22(phox)-based Nox oxidases, are enhanced in VHL-deficient cells and have a role in the activation of Akt on S473, a site phosphorylated by the mTORC2 complex. In this study, we examined the role of Rictor-dependent regulation of HIF-2α through eIF4E-dependent mRNA translation and examined the effects of p22(phox)-based Nox oxidases on TORC2 regulation. We demonstrate for the first time that mTORC2 complex stability and activation is redox sensitive, and further defined a novel role for p22(phox)-based Nox oxidases in eIF4E-dependent mRNA translation through mTORC2. Furthermore, we provide the first evidence that silencing of p22(phox) reduces HIF-2α-dependent gene targeting in vitro and tumor formation in vivo. The clinical relevance of these studies is demonstrated.

  10. The 3' untranslated region of the Andes hantavirus small mRNA functionally replaces the poly(A) tail and stimulates cap-dependent translation initiation from the viral mRNA.

    PubMed

    Vera-Otarola, Jorge; Soto-Rifo, Ricardo; Ricci, Emiliano P; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2010-10-01

    In the process of translation of eukaryotic mRNAs, the 5' cap and the 3' poly(A) tail interact synergistically to stimulate protein synthesis. Unlike its cellular counterparts, the small mRNA (SmRNA) of Andes hantavirus (ANDV), a member of the Bunyaviridae, lacks a 3' poly(A) tail. Here we report that the 3' untranslated region (3'UTR) of the ANDV SmRNA functionally replaces a poly(A) tail and synergistically stimulates cap-dependent translation initiation from the viral mRNA. Stimulation of translation by the 3'UTR of the ANDV SmRNA was found to be independent of viral proteins and of host poly(A)-binding protein.

  11. The 3′ Untranslated Region of the Andes Hantavirus Small mRNA Functionally Replaces the Poly(A) Tail and Stimulates Cap-Dependent Translation Initiation from the Viral mRNA ▿

    PubMed Central

    Vera-Otarola, Jorge; Soto-Rifo, Ricardo; Ricci, Emiliano P.; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2010-01-01

    In the process of translation of eukaryotic mRNAs, the 5′ cap and the 3′ poly(A) tail interact synergistically to stimulate protein synthesis. Unlike its cellular counterparts, the small mRNA (SmRNA) of Andes hantavirus (ANDV), a member of the Bunyaviridae, lacks a 3′ poly(A) tail. Here we report that the 3′ untranslated region (3′UTR) of the ANDV SmRNA functionally replaces a poly(A) tail and synergistically stimulates cap-dependent translation initiation from the viral mRNA. Stimulation of translation by the 3′UTR of the ANDV SmRNA was found to be independent of viral proteins and of host poly(A)-binding protein. PMID:20660206

  12. Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1

    PubMed Central

    Tellier, Géraldine; Lenne, Astrid; Cailliau-Maggio, Katia; Cabezas-Cruz, Alejandro; Valdés, James J.; Martoriati, Alain; Aliouat, El M.; Gosset, Pierre; Delaire, Baptiste; Fréville, Aline; Pierrot, Christine; Khalife, Jamal

    2016-01-01

    Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2β of Plasmodium falciparum (PfeIF2β) is an interactor of PfPP1c. Sequence analysis of PfeIF2β revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 (29FGEKKK34, 103KVAW106). As expected, we showed that PfeIF2β binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2β-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2β revealed that both binding motifs are critical. We next showed that PfeIF2β is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2β seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2β in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2β in the nucleus. Hence, the role played by PfeIF2β in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1. PMID:27303372

  13. Eukaryotic origins

    PubMed Central

    Lake, James A.

    2015-01-01

    The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endoplasmic reticula, and other organelles all of which may hint at their origins. It is the evolutionary history of the nucleus and their other organelles that have intrigued molecular evolutionists, myself included, for the past 30 years and which continues to hold our interest as increasingly compelling evidence favours the eocyte tree. As with any orthodoxy, it takes time to embrace new concepts and techniques. PMID:26323753

  14. ABCD1 translation-initiator mutation demonstrates genotype-phenotype correlation for AMN.

    PubMed

    O'Neill, G N; Aoki, M; Brown, R H

    2001-12-11

    Inherited mutations of the X-linked adrenoleukodystrophy (X-ALD) gene (ABCD1) cause two neuropathologically distinct disorders: cerebral adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). The biochemical hallmark of these disorders is a reduction of very long chain fatty acid (VLCFA) beta-oxidation with accumulation of VLCFA esters in neural white matter. More than 300 mutations of the ABCD1 gene have been described. Genotype-phenotype correlation in X-ALD has not been demonstrated; indeed, the two disorders coexist in individual pedigrees and in homozygotic twin pairs. The authors have identified one large kindred with a highly concordant AMN phenotype resembling an X-linked dominant hereditary spastic paraparesis. All obligate female carriers are clinically affected. The ABCD1 gene was examined by direct sequencing of genomic DNA and full-length cDNA. Mutant gene transcription was analyzed by reverse transcriptase PCR. ALD protein (ALDP) expression was tested by Western blotting and indirect immunofluorescence. VLCFA beta-oxidation was examined by in vitro assay. The authors have identified a novel deletion of the ABCD1 gene ATG translation initiation codon. The authors have demonstrated that an N-terminal truncated ALDP, missing the first 65 amino acids, is expressed by internal initiation of translation and is correctly trafficked to peroxisomes. They have documented complete penetrance of this mutant in all female carriers. They have also shown that VLCFA beta-oxidation is reduced to 20% of normal in association with this mutant ALDP. It appears that initiation of translation at an internal AUG codon generates a truncated ALDP that uniformly leads to an AMN phenotype in this family. Possible models for action of this truncated ALDP and full disease penetrance in heterozygotes are reviewed.

  15. Dynamic and static tibial translation in patients with anterior cruciate ligament deficiency initially treated with a structured rehabilitation protocol.

    PubMed

    Sonesson, Sofi; Kvist, Joanna

    2017-08-01

    To compare dynamic and static tibial translation, in patients with anterior cruciate ligament deficiency, at 2- to 5-year follow-up, with the tibial translation after 4 months of rehabilitation initiated early after the injury. Secondarily, to compare tibial translation in the injured knee and non-injured knee and explore correlations between dynamic and static tibial translation. Twelve patients with ACL rupture were assessed at 3-8 weeks after ACL injury, after 4 months of structured rehabilitation, and 2-5 years after ACL injury. Sagittal tibial translation was measured during the Lachman test (static translation) and during gait (dynamic translation) using a CA-4000 electrogoniometer. Static tibial translation was increased bilateral 2-5 years after ACL injury, whereas the dynamic tibial translation was unchanged. Tibial translation was greater in the injured knee compared with the non-injured knee (Lachman test 134 N 9.1 ± 1.0 vs. 7.0 ± 1.7 mm, P = 0.001, gait 5.6 ± 2.1 vs. 4.7 ± 1.8 mm, P = 0.011). There were no correlations between dynamic and static tibial translation. Dynamic tibial translation was unchanged in spite of increased static tibial translation in the ACL-deficient knee at 2- to 5-year follow-up compared to directly after rehabilitation. Dynamic tibial translation did not correlate with the static tibial translation. A more normal gait kinematics may be maintained from completion of a rehabilitation programme to mid-term follow-up in patients with ACL deficiency treated with rehabilitation only. IV.

  16. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination.

    PubMed

    Juszkiewicz, Szymon; Hegde, Ramanujan S

    2017-02-16

    Diverse cellular stressors have been observed to trigger site-specific ubiquitination on several ribosomal proteins. However, the ubiquitin ligases, biochemical consequences, and physiologic pathways linked to these modifications are not known. Here, we show in mammalian cells that the ubiquitin ligase ZNF598 is required for ribosomes to terminally stall during translation of poly(A) sequences. ZNF598-mediated stalling initiated the ribosome-associated quality control (RQC) pathway for degradation of nascent truncated proteins. Biochemical ubiquitination reactions identified two sites of mono-ubiquitination on the 40S protein eS10 as the primary ribosomal target of ZNF598. Cells lacking ZNF598 activity or containing ubiquitination-resistant eS10 ribosomes failed to stall efficiently on poly(A) sequences. In the absence of stalling, read-through of poly(A) produces a poly-lysine tag, which might alter the localization and solubility of the associated protein. Thus, ribosome ubiquitination can modulate translation elongation and impacts co-translational quality control to minimize production of aberrant proteins.

  17. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α.

    PubMed

    Guan, Bo-Jhih; Krokowski, Dawid; Majumder, Mithu; Schmotzer, Christine L; Kimball, Scot R; Merrick, William C; Koromilas, Antonis E; Hatzoglou, Maria

    2014-05-02

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes stress to which an unfolded protein response is activated to render cell survival or apoptosis (chronic stress). Transcriptional and translational reprogramming is tightly regulated during the unfolded protein response to ensure specific gene expression. The master regulator of this response is the PERK/eIF2α/ATF4 signaling where eIF2α is phosphorylated (eIF2α-P) by the kinase PERK. This signal leads to global translational shutdown, but it also enables translation of the transcription factor ATF4 mRNA. We showed recently that ATF4 induces an anabolic program through the up-regulation of selected amino acid transporters and aminoacyl-tRNA synthetases. Paradoxically, this anabolic program led cells to apoptosis during chronic ER stress in a manner that involved recovery from stress-induced protein synthesis inhibition. By using eIF2α-P-deficient cells as an experimental system, we identified a communicating network of signaling pathways that contribute to the inhibition of protein synthesis during chronic ER stress. This eIF2α-P-independent network includes (i) inhibition of mammalian target of rapamycin kinase protein complex 1 (mTORC1)-targeted protein phosphorylation, (ii) inhibited translation of a selective group of 5'-terminal oligopyrimidine mRNAs (encoding proteins involved in the translation machinery and translationally controlled by mTORC1 signaling), and (iii) inhibited translation of non-5'-terminal oligopyrimidine ribosomal protein mRNAs and ribosomal RNA biogenesis. We propose that the PERK/eIF2α-P/ATF4 signaling acts as a brake in the decline of protein synthesis during chronic ER stress by positively regulating signaling downstream of the mTORC1 activity. These studies advance our knowledge on the complexity of the communicating signaling pathways in controlling protein synthesis rates during chronic stress.

  18. Entrainment to Periodic Initiation and Transition Rates in a Computational Model for Gene Translation

    PubMed Central

    Margaliot, Michael; Sontag, Eduardo D.; Tuller, Tamir

    2014-01-01

    Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period . We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period . To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic systems to obtain a

  19. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.

    PubMed

    Shirokikh, Nikolay E; Archer, Stuart K; Beilharz, Traude H; Powell, David; Preiss, Thomas

    2017-04-01

    Messenger RNA (mRNA) translation is a tightly controlled process that is integral to gene expression. It features intricate and dynamic interactions of the small and large subunits of the ribosome with mRNAs, aided by multiple auxiliary factors during distinct initiation, elongation and termination phases. The recently developed ribosome profiling method can generate transcriptome-wide surveys of translation and its regulation. Ribosome profiling records the footprints of fully assembled ribosomes along mRNAs and thus primarily interrogates the elongation phase of translation. Importantly, it does not monitor multiple substeps of initiation and termination that involve complexes between the small ribosomal subunit (SSU) and mRNA. Here we describe a related method, termed 'translation complex profile sequencing' (TCP-seq), that is uniquely capable of recording positions of any type of ribosome-mRNA complex transcriptome-wide. It uses fast covalent fixation of translation complexes in live cells, followed by RNase footprinting of translation intermediates and their separation into complexes involving either the full ribosome or the SSU. The footprints derived from each type of complex are then