Sample records for euler coordinate system

  1. Error Propagation in the four terrestrial reference frames of the 2022 Modernized National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Smith, D. A.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames with four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on three main areas of error propagation when defining coordinates in these four frames. Those areas are (1) use of the small angle approximation to relate true rotation about an Euler Pole to small rotations about three Cartesian axes (2) The current state of the art in determining the Euler Poles of these four plates and (3) the combination of both IGS Cartesian coordinate uncertainties and EPP uncertainties into coordinate uncertainties in the four new frames. Discussion will also include recent efforts at improving the Euler Poles for these frames and expected dates when errors in the EPPs will cause an unacceptable level of uncertainty in the four new terrestrial reference frames.

  2. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2017-03-14

    In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H 2 O-Cl - . When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H 2 O-Cl - , there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.

  3. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2017-03-01

    In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H2O-Cl-. When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H2O-Cl-, there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.

  4. Flight Performance of a Man Portable Guided Projectile Concept

    DTIC Science & Technology

    2014-02-01

    include precision guided technologies. The focus of this study is maneuvering projectiles launched from man portable weapon systems . A novel guided...5 Figure 5. Body-fixed coordinate system and aerodynamic angles...20 Figure 20. Earth and body-fixed coordinate systems and Euler angles. ........................................24

  5. On the interpretations of Langevin stochastic equation in different coordinate systems

    NASA Astrophysics Data System (ADS)

    Martínez, E.; López-Díaz, L.; Torres, L.; Alejos, O.

    2004-01-01

    The stochastic Langevin Landau-Lifshitz equation is usually utilized in micromagnetics formalism to account for thermal effects. Commonly, two different interpretations of the stochastic integrals can be made: Ito and Stratonovich. In this work, the Langevin-Landau-Lifshitz (LLL) equation is written in both Cartesian and Spherical coordinates. If Spherical coordinates are employed, the noise is additive, and therefore, Ito and Stratonovich solutions are equal. This is not the case when (LLL) equation is written in Cartesian coordinates. In this case, the Langevin equation must be interpreted in the Stratonovich sense in order to reproduce correct statistical results. Nevertheless, the statistics of the numerical results obtained from Euler-Ito and Euler-Stratonovich schemes are equivalent due to the additional numerical constraint imposed in Cartesian system after each time step, which itself assures that the magnitude of the magnetization is preserved.

  6. Concepts for radically increasing the numerical convergence rate of the Euler equations

    NASA Technical Reports Server (NTRS)

    Nixon, David; Tzuoo, Keh-Lih; Caruso, Steven C.; Farshchi, Mohammad; Klopfer, Goetz H.; Ayoub, Alfred

    1987-01-01

    Integral equation and finite difference methods have been developed for solving transonic flow problems using linearized forms of the transonic small disturbance and Euler equations. A key element is the use of a strained coordinate system in which the shock remains fixed. Additional criteria are developed to determine the free parameters in the coordinate straining; these free parameters are functions of the shock location. An integral equation analysis showed that the shock is located by ensuring that no expansion shocks exist in the solution. The expansion shock appears as oscillations in the solution near the sonic line, and the correct shock location is determined by removing these oscillations. A second objective was to study the ability of the Euler equation to model separated flow.

  7. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar

    2015-01-01

    Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results demonstrated that a spherical coordinate system is helpful in describing and visualizing the motion of a space suit. The system is particularly useful in describing the motion of the shoulder, where multiple degrees of freedom can lead to very complex motion paths.

  8. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (Inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  9. Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems.

    PubMed

    Kuppermann, Aron

    2011-05-14

    The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.

  10. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew S.; Harvill. Lauren; Rajulu, Sudhakar

    2014-01-01

    When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. One of our key functions is to help design engineers understand how a human will perform with new designs and all too often traditional use of Euler rotations becomes as much of a hindrance as a help. It is believed that using a spherical coordinate system will allow ABF personnel to more quickly and easily transmit important mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project is to establish new analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify the method before it was implemented in the ABF's data analysis practices. The first stage was a proof of concept, where a mechanical test rig was built and instrumented with an inclinometer, so that its angle from horizontal was known. The test rig was tracked in 3D using an optical motion capture system, and its position and orientation were reported in both Euler and spherical reference systems. The rig was meant to simulate flexion/extension, transverse rotation and abduction/adduction of the human shoulder, but without the variability inherent in human motion. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder, to include the torso, knees, ankle, elbows, wrists and neck. Part of this update included adding a representation of 'roll' about an axis, for upper arm and lower leg rotations. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. This visualization method will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development.

  11. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    NASA Astrophysics Data System (ADS)

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for the two magnetometers. Once the angle of rotation and the direction of the rotation axis for each couple of CYG and no. 1 and of CYG and no. 2 estimated, we rotated the measured time series of vectors using quaternion rotation to get 3 time series of magnetic fields all on geographical coordinate system, which were used for tracing the moving magnetic bodies along time in that area.

  12. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  13. Analytical Dynamics and Nonrigid Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1974-01-01

    Application to the simulation of idealized spacecraft are considered both for multiple-rigid-body models and for models consisting of combination of rigid bodies and elastic bodies, with the elastic bodies being defined either as continua, as finite-element systems, or as a collection of given modal data. Several specific examples are developed in detail by alternative methods of analytical mechanics, and results are compared to a Newton-Euler formulation. The following methods are developed from d'Alembert's principle in vector form: (1) Lagrange's form of d'Alembert's principle for independent generalized coordinates; (2) Lagrange's form of d'Alembert's principle for simply constrained systems; (3) Kane's quasi-coordinate formulation of D'Alembert's principle; (4) Lagrange's equations for independent generalized coordinates; (5) Lagrange's equations for simply constrained systems; (6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations); (7) Hamilton's equations for simply constrained systems; and (8) Hamilton's equations for independent generalized coordinates.

  14. Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Juan, E-mail: cheng_juan@iapcm.ac.cn; Shu, Chi-Wang, E-mail: shu@dam.brown.edu

    In applications such as astrophysics and inertial confinement fusion, there are many three-dimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, a critical issue for the schemes is to keep spherical symmetry in the cylindrical coordinate system if the original physical problem has this symmetry. In the past decades, several Lagrangian schemes with such symmetry property have been developed, but all of them are only first order accurate. In this paper, we develop a second order cell-centered Lagrangian scheme for solving compressible Euler equations in cylindrical coordinates, basedmore » on the control volume discretizations, which is designed to have uniformly second order accuracy and capability to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. The scheme maintains several good properties such as conservation for mass, momentum and total energy, and the geometric conservation law. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of accuracy, symmetry, non-oscillation and robustness. The advantage of higher order accuracy is demonstrated in these examples.« less

  15. Singularity-free dynamic equations of spacecraft-manipulator systems

    NASA Astrophysics Data System (ADS)

    From, Pål J.; Ytterstad Pettersen, Kristin; Gravdahl, Jan T.

    2011-12-01

    In this paper we derive the singularity-free dynamic equations of spacecraft-manipulator systems using a minimal representation. Spacecraft are normally modeled using Euler angles, which leads to singularities, or Euler parameters, which is not a minimal representation and thus not suited for Lagrange's equations. We circumvent these issues by introducing quasi-coordinates which allows us to derive the dynamics using minimal and globally valid non-Euclidean configuration coordinates. This is a great advantage as the configuration space of a spacecraft is non-Euclidean. We thus obtain a computationally efficient and singularity-free formulation of the dynamic equations with the same complexity as the conventional Lagrangian approach. The closed form formulation makes the proposed approach well suited for system analysis and model-based control. This paper focuses on the dynamic properties of free-floating and free-flying spacecraft-manipulator systems and we show how to calculate the inertia and Coriolis matrices in such a way that this can be implemented for simulation and control purposes without extensive knowledge of the mathematical background. This paper represents the first detailed study of modeling of spacecraft-manipulator systems with a focus on a singularity free formulation using the proposed framework.

  16. Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Dariusz; Rapiński, Jacek; Pelc-Mieczkowska, Renata

    2017-12-01

    Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.

  17. Control theory based airfoil design using the Euler equations

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Reuther, James

    1994-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.

  18. Determination of regional Euler pole parameters for Eastern Austria

    NASA Astrophysics Data System (ADS)

    Umnig, Elke; Weber, Robert; Schartner, Matthias; Brueckl, Ewald

    2017-04-01

    The horizontal motion of lithospheric plates can be described as rotations around a rotation axes through the Earth's center. The two possible points where this axes intersects the surface of the Earth are called Euler poles. The rotation is expressed by the Euler parameters in terms of angular velocities together with the latitude and longitude of the Euler pole. Euler parameters were calculated from GPS data for a study area in Eastern Austria. The observation network is located along the Mur-Mürz Valley and the Vienna Basin. This zone is part of the Vienna Transfer Fault, which is the major fault system between the Eastern Alps and the Carpathians. The project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) investigated intra plate tectonic movements within the Austrian part in order to estimate the seismic hazard. Precise site coordinate time series established from processing 5 years of GPS observations are available for the regional network spanning the years from 2010.0 to 2015.0. Station velocities with respect to the global reference frame ITRF2008 have been computed for 23 sites. The common Euler vector was estimated on base of a subset of reliable site velocities, for stations directly located within the area of interest. In a further step a geokinematic interpretation shall be carried out. Therefore site motions with respect to the Eurasian Plate are requested. To obtain this motion field different variants are conceivable. In a simple approach the mean ITRF2008 velocity of IGS site GRAZ can be adopted as Eurasian rotational velocity. An improved alternative is to calculate site-specific velocity differences between the Euler rotation and the individual site velocities. In this poster presentation the Euler parameters, the residual motion field as well as first geokinematic interpretation results are presented.

  19. A Universal Formula for Extracting the Euler Angles

    NASA Technical Reports Server (NTRS)

    Shuster, Malcolm D.; Markley, F. Landis

    2004-01-01

    Recently, the authors completed a study of the Davenport angles, which are a generalization of the Euler angles for which the initial and final Euler axes need not be either mutually parallel or mutually perpendicular or even along the coordinate axes. During the conduct of that study, those authors discovered a relationship which can be used to compute straightforwardly the Euler angles characterizing a proper-orthogonal direction-cosine matrix for an arbitrary Euler-axis set satisfying n(sub 1) x n(sub 2) = 0 and n(sub 3) x n(sub 1) = 0, which is also satisfied by the more usual Euler angles we encounter commonly in the practice of Astronautics. Rather than leave that relationship hidden in an article with very different focus from the present Engineering note, we present it and the universal algorithm derived from it for extracting the Euler angles from the direction-cosine matrix here. We also offer literal "code" for performing the operations, numerical examples, and general considerations about the extraction of Euler angles which are not universally known, particularly, the treatment of statistical error.

  20. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  1. Numerical simulation of vortical ideal fluid flow through curved channel

    NASA Astrophysics Data System (ADS)

    Moshkin, N. P.; Mounnamprang, P.

    2003-04-01

    A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.

  2. Nonlocal theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-09-01

    New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.

  3. Three-dimensional multigrid algorithms for the flux-split Euler equations

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.

    1988-01-01

    The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.

  4. Micropolar curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-01-01

    New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.

  5. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  6. Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher Lockwood

    1991-01-01

    A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.

  7. An Application of the A* Search to Trajectory Optimization

    DTIC Science & Technology

    1990-05-11

    linearized model of orbital motion called the Clohessy - Wiltshire Equations and a node search technique called A*. The planner discussed in this thesis starts...states while transfer time is left unspecified. 13 Chapter 2. Background HILL’S ( CLOHESSY - WILTSHIRE ) EQUATIONS The Euler-Hill equations describe... Clohessy - Wiltshire equations. The coordinate system used in this thesis is commonly referred to as Local Vertical, Local Horizontal or LVLH reference frame

  8. Couple stress theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-01-01

    New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

  9. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  10. Multiscale turbulence models based on convected fluid microstructure

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.; Tronci, Cesare

    2012-11-01

    The Euler-Poincaré approach to complex fluids is used to derive multiscale equations for computationally modeling Euler flows as a basis for modeling turbulence. The model is based on a kinematic sweeping ansatz (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest two-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modeling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.

  11. A novel body frame based approach to aerospacecraft attitude tracking.

    PubMed

    Ma, Carlos; Chen, Michael Z Q; Lam, James; Cheung, Kie Chung

    2017-09-01

    In the common practice of designing an attitude tracker for an aerospacecraft, one transforms the Newton-Euler rotation equations to obtain the dynamic equations of some chosen inertial frame based attitude metrics, such as Euler angles and unit quaternions. A Lyapunov approach is then used to design a controller which ensures asymptotic convergence of the attitude to the desired orientation. Although this design methodology is pretty standard, it usually involves singularity-prone coordinate transformations which complicates the analysis process and controller design. A new, singularity free error feedback method is proposed in the paper to provide simple and intuitive stability analysis and controller synthesis. This new body frame based method utilizes the concept of Euleraxis and angles to generate the smallest error angles from a body frame perspective, without coordinate transformations. Global tracking convergence is illustrated with the use of a feedback linearizing PD tracker, a sliding mode controller, and a model reference adaptive controller. Experimental results are also obtained on a quadrotor platform with unknown system parameters and disturbances, using a boundary layer approximated sliding mode controller, a PIDD controller, and a unit sliding mode controller. Significant tracking quality is attained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A fast efficient implicit scheme for the gasdynamic equations using a matrix reduction technique

    NASA Technical Reports Server (NTRS)

    Barth, T. J.; Steger, J. L.

    1985-01-01

    An efficient implicit finite-difference algorithm for the gasdynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved without loss of the stability characteristics generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows and used to show that the method offers computational advantages over the conventional Beam and Warming scheme. Existing Beam and Warming codes can be retrofit with minimal effort. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations.

  13. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    NASA Astrophysics Data System (ADS)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  14. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  15. Quantum mechanics on space with SU(2) fuzziness

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad

    2009-04-01

    Quantum mechanics of models is considered which are constructed in spaces with Lie algebra type commutation relations between spatial coordinates. The case is specialized to that of the group SU(2), for which the formulation of the problem via the Euler parameterization is also presented. SU(2)-invariant systems are discussed, and the corresponding eigenvalue problem for the Hamiltonian is reduced to an ordinary differential equation, as is the case with such models on commutative spaces.

  16. Development of upwind schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, Sukumar R.

    1987-01-01

    Described are many algorithmic and computational aspects of upwind schemes and their second-order accurate formulations based on Total-Variation-Diminishing (TVD) approaches. An operational unification of the underlying first-order scheme is first presented encompassing Godunov's, Roe's, Osher's, and Split-Flux methods. For higher order versions, the preprocessing and postprocessing approaches to constructing TVD discretizations are considered. TVD formulations can be used to construct relaxation methods for unfactored implicit upwind schemes, which in turn can be exploited to construct space-marching procedures for even the unsteady Euler equations. A major part of the report describes time- and space-marching procedures for solving the Euler equations in 2-D, 3-D, Cartesian, and curvilinear coordinates. Along with many illustrative examples, several results of efficient computations on 3-D supersonic flows with subsonic pockets are presented.

  17. Vibrations of an Euler-Bernoulli beam with hysteretic damping arising from dispersed frictional microcracks

    NASA Astrophysics Data System (ADS)

    Maiti, Soumyabrata; Bandyopadhyay, Ritwik; Chatterjee, Anindya

    2018-01-01

    We study free and harmonically forced vibrations of an Euler-Bernoulli beam with rate-independent hysteretic dissipation. The dissipation follows a model proposed elsewhere for materials with randomly dispersed frictional microcracks. The virtual work of distributed dissipative moments is approximated using Gaussian quadrature, yielding a few discrete internal hysteretic states. Lagrange's equations are obtained for the modal coordinates. Differential equations for the modal coordinates and internal states are integrated together. Free vibrations decay exponentially when a single mode dominates. With multiple modes active, higher modes initially decay rapidly while lower modes decay relatively slowly. Subsequently, lower modes show their own characteristic modal damping, while small amplitude higher modes show more erratic decay. Large dissipation, for the adopted model, leads mathematically to fast and damped oscillations in the limit, unlike viscously overdamped systems. Next, harmonically forced, lightly damped responses of the beam are studied using both a slow frequency sweep and a shooting-method based search for periodic solutions along with numerical continuation. Shooting method and frequency sweep results match for large ranges of frequency. The shooting method struggles near resonances, where internal states collapse into lower dimensional behavior and Newton-Raphson iterations fail. Near the primary resonances, simple numerically-aided harmonic balance gives excellent results. Insights are also obtained into the harmonic content of secondary resonances.

  18. Separation dynamics of the COMET FreeFlyer and an upper stage STAR-48V motor

    NASA Technical Reports Server (NTRS)

    Fuller, Kevin M.; Myers, Carter H.

    1993-01-01

    In this report, the orbital separation between a STAR-48V upperstage motor and the COMET FreeFlyer is investigated. The time from nominal STAR-48 engine burnout is to be determined such that the STAR-48 will not collide with the FreeFlyer once the separation process has been initiated. To analyze this separation, the forces acting upon both the FreeFlyer and the STAR-48 are described in a body fixed coordinate system. These coordinates are then transformed into an Euler coordinate system and then further transformed into a relative inertial coordinate system. From this analysis and some basic assumptions about the Star-48/FreeFlyer vehicle, it can be concluded that the STAR-48 will not collide with the Free Flyer if the separation occurs at 120 seconds after nominal burnout of the STAR-48. In fact, the separation delay could be a shorter period of time, but it is recommended that this separation delay be as long as possible for risk mitigation. This delay is currently designed to be 120 seconds and the analysis presented in this report shows that this time is acceptable.

  19. Verification of a Non-Hydrostatic Dynamical Core Using Horizontally Spectral Element Vertically Finite Difference Method: 2D Aspects

    DTIC Science & Technology

    2014-04-01

    hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid sigma...hydrostatic pressure vertical coordinate, which are the 33 same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid 34 sigma...Weather Research and Forecasting 79 ( WRF ) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 coordinate. In

  20. Stability of the line preserving flows

    NASA Astrophysics Data System (ADS)

    Figura, Przemysław

    2017-11-01

    We examine the equations that are used to describe flows which preserve field lines. We study what happens if we introduce perturbations to the governing equations. The stability of the line preserving flows in the case of the magneto-fluids permeated by magnetic fields is strictly connected to the non-null magnetic reconnection processes. In most of our study we use the Euler potential representation of the external magnetic field. We provide general expressions for the perturbations of the Euler potentials that describe the magnetic field. Similarly, we provide expressions for the case of steady flow as well as we obtain certain conditions required for the stability of the flow. In addition, for steady flows we formulate conditions under which the perturbations of the external field are negligible and the field may be described by its initial unperturbed form. Then we consider the flow equation that transforms quantities from the laboratory coordinate system to the related external field coordinate system. We introduce perturbations to the equation and obtain its simplified versions for the case of a steady flow. For a given system, use of this method allows us to simplify the considerations provided that some part of the system may be described as a perturbation. Next, to study regions favourable for the magnetic reconnection to occur we introduce a deviation vector to the basic line preserving flows condition equation. We provide expressions of the vector for some simplifying cases. This method allows us to examine if given perturbations either stabilise the system or induce magnetic reconnection. To illustrate some of our results we study two examples, namely a simple laboratory plasma flow and a simple planetary magnetosphere model.

  1. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  2. A simple orbit-attitude coupled modelling method for large solar power satellites

    NASA Astrophysics Data System (ADS)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  3. AXAF Coordinate Transformation at XRCF

    NASA Technical Reports Server (NTRS)

    He, Helen; McDowell, Jonathan; Conroy, Maureen

    1997-01-01

    Coordinate transformation between focal plane and detector pixel systems must be handled carefully at the X-ray Calibration Facility (XRCF) as it will be during flight. The High Resolution Mirror Assembly (HRMA) X-ray Detection System (HXDS) stage dithers, and the five-axis mount (FAM) attachment points underwent various types of motion during testing. At the XRCF when the FAM moved, the Science Instrument Module (SIM) travel direction was not necessarily aligned with the mirror axis motion, and, in addition, an arbitrary position offset had to be calibrated. Misalignment from the mirror axis was assessed by measuring its displacement from the boresight configuration of the default FAM frame, and the HXDS stage was monitored for motion from the default FAM reference point. Mirror position, prescribed in a mirror modal coordinate system, was measured in HRMA pitch and yaw axes. Prior to corrections for dithering and FAM movement, the coordinate data at XRCF also had to be corrected for possible misalignments of the mirror mount relative to XRCF and the default FAM axes due to the movement of the FAM feet. Those misalignments were processed in terms of yaw-pitch-roll Euler angles in the mirror nodal coordinate, and in the default FAM frame, respectively. An AXAF Science Center (ASC) coordinate library, pixlib, has been built to support these coordinate transformations and was used during x-ray calibration at the George C. Marshall Space Flight Center, Huntsville, AL. The design and implementation of this library will be discussed.

  4. Instantaneous relationship between solar inertial and local vertical local horizontal attitudes

    NASA Technical Reports Server (NTRS)

    Vickery, S. A.

    1977-01-01

    The instantaneous relationship between the Solar Inertial (SI) and Local Vertical Local Horizontal (LVLH) coordinate systems is derived. A method is presented for computation of the LVLH to SI rotational transformation matrix as a function of an input LVLH attitude and the corresponding look angles to the sun. Logic is provided for conversion between LVLH and SI attitudes expressed in terms of a pitch, yaw, roll Euler sequence. Documentation is included for a program which implements the logic on the Hewlett-Packard 97 programmable calculator.

  5. Numerical Simulation of Subsonic and Transonic Propeller Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron

    1988-01-01

    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code.

  6. Embedding methods for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, S. H.; Johnson, G. M.

    1983-01-01

    An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.

  7. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-07-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  8. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-03-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  9. Towards Perfectly Absorbing Boundary Conditions for Euler Equations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff

    1997-01-01

    In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.

  10. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  11. Staggered solution procedures for multibody dynamics simulation

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-01-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange multipliers, are brought together in a staggered manner, they constitute a staggered explicit-implicit procedure which is summarized in Section 5. Section 6 presents some example problems and discussions concerning several salient features of the staggered MBD solution procedure are offered in Section 7.

  12. Inter-joint coordination between hips and trunk during downswings: Effects on the clubhead speed.

    PubMed

    Choi, Ahnryul; Lee, In-Kwang; Choi, Mun-Taek; Mun, Joung Hwan

    2016-10-01

    Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and trunk during golf downswings. Twenty-one right-handed male professional golfers were recruited for this study. Infrared cameras were installed to capture the swing motion. The axial rotation angle, angular velocity and inter-joint coordination were calculated by the Euler angle, numerical difference method and continuous relative phase, respectively. A more typical inter-joint coordination demonstrated in the leading hip/trunk than trailing hip/trunk. Three coordination characteristics of the leading hip/trunk reported a significant relationship with clubhead speed at impact (r < -0.5) in male professional golfers. The increased rotation difference between the leading hip and trunk in the overall downswing phase as well as the faster rotation of the leading hip compared to that of the trunk in the early downswing play important roles in increasing clubhead speed. These novel inter-joint coordination strategies have the great potential to use a biomechanical guideline to improve the golf swing performance of unskilled golfers.

  13. Inertial Pointing and Positioning System

    NASA Technical Reports Server (NTRS)

    Yee, Robert (Inventor); Robbins, Fred (Inventor)

    1998-01-01

    An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.

  14. Algorithm For Hypersonic Flow In Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  15. A hybridized method for computing high-Reynolds-number hypersonic flow about blunt bodies

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Hamilton, H. H., II

    1979-01-01

    A hybridized method for computing the flow about blunt bodies is presented. In this method the flow field is split into its viscid and inviscid parts. The forebody flow field about a parabolic body is computed. For the viscous solution, the Navier-Stokes equations are solved on orthogonal parabolic coordinates using explicit finite differencing. The inviscid flow is determined by using a Moretti type scheme in which the Euler equations are solved, using explicit finite differences, on a nonorthogonal coordinate system which uses the bow shock as an outer boundary. The two solutions are coupled along a common data line and are marched together in time until a converged solution is obtained. Computed results, when compared with experimental and analytical results, indicate the method works well over a wide range of Reynolds numbers and Mach numbers.

  16. An entropy correction method for unsteady full potential flows with strong shocks

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.

    1986-01-01

    An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.

  17. The most precise computations using Euler's method in standard floating-point arithmetic applied to modelling of biological systems.

    PubMed

    Kalinina, Elizabeth A

    2013-08-01

    The explicit Euler's method is known to be very easy and effective in implementation for many applications. This article extends results previously obtained for the systems of linear differential equations with constant coefficients to arbitrary systems of ordinary differential equations. Optimal (providing minimum total error) step size is calculated at each step of Euler's method. Several examples of solving stiff systems are included. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. New mathematical definition and calculation of axial rotation of anatomical joints.

    PubMed

    Miyazaki, S; Ishida, A

    1991-08-01

    In the field of joint kinematics, clinical terms such as internal-external, or medical-lateral, rotations are commonly used to express the rotation of a body segment about its own long axis. However, these terms are not defined in a strict mathematical sense. In this paper, a new mathematical definition of axial rotation is proposed and methods to calculate it from the measured Euler angles are given. The definition and methods to calculate it from the measured Euler angles are given. The definition is based on the integration of the component of the angular velocity vector projected onto the long axis of the body segment. First, the absolute axial rotation of a body segment with respect to the stationary coordinate system is defined. This definition is then generalized to give the relative axial rotation of one body segment with respect to the other body segment where the two segments are moving in the three-dimensional space. The well-known Codman's paradox is cited as an example to make clear the difference between the definition so far proposed by other researchers and the new one.

  19. DCOMP Award Lecture (Metropolis): A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph

    2006-03-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.

  20. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  1. Quantitative Analysis of Transnasal Anterior Skull Base Approach: Report of Technology for Intraoperative Assessment of Instrument Motion.

    PubMed

    Berens, Angelique M; Harbison, Richard Alex; Li, Yangming; Bly, Randall A; Aghdasi, Nava; Ferreira, Manuel; Hannaford, Blake; Moe, Kris S

    2017-08-01

    To develop a method to measure intraoperative surgical instrument motion. This model will be applicable to the study of surgical instrument kinematics including surgical training, skill verification, and the development of surgical warning systems that detect aberrant instrument motion that may result in patient injury. We developed an algorithm to automate derivation of surgical instrument kinematics in an endoscopic endonasal skull base surgery model. Surgical instrument motion was recorded during a cadaveric endoscopic transnasal approach to the pituitary using a navigation system modified to record intraoperative time-stamped Euclidian coordinates and Euler angles. Microdebrider tip coordinates and angles were referenced to the cadaver's preoperative computed tomography scan allowing us to assess surgical instrument kinematics over time. A representative cadaveric endoscopic endonasal approach to the pituitary was performed to demonstrate feasibility of our algorithm for deriving surgical instrument kinematics. Technical feasibility of automatically measuring intraoperative surgical instrument motion and deriving kinematics measurements was demonstrated using standard navigation equipment.

  2. A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaenko, S S

    2014-02-28

    The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body withmore » fixed point. Bibliography: 23 titles.« less

  3. Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates

    NASA Astrophysics Data System (ADS)

    Constantin, A.; Johnson, R. S.

    2017-04-01

    Starting from the Euler equation expressed in a rotating frame in spherical coordinates, coupled with the equation of mass conservation and the appropriate boundary conditions, a thin-layer (i.e. shallow water) asymptotic approximation is developed. The analysis is driven by a single, overarching assumption based on the smallness of one parameter: the ratio of the average depth of the oceans to the radius of the Earth. Consistent with this, the magnitude of the vertical velocity component through the layer is necessarily much smaller than the horizontal components along the layer. A choice of the size of this speed ratio is made, which corresponds, roughly, to the observational data for gyres; thus the problem is characterized by, and reduced to an analysis based on, a single small parameter. The nonlinear leading-order problem retains all the rotational contributions of the moving frame, describing motion in a thin spherical shell. There are many solutions of this system, corresponding to different vorticities, all described by a novel vorticity equation: this couples the vorticity generated by the spin of the Earth with the underlying vorticity due to the movement of the oceans. Some explicit solutions are obtained, which exhibit gyre-like flows of any size; indeed, the technique developed here allows for many different choices of the flow field and of any suitable free-surface profile. We comment briefly on the next order problem, which provides the structure through the layer. Some observations about the new vorticity equation are given, and a brief indication of how these results can be extended is offered.

  4. p-Euler equations and p-Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  5. On a modified streamline curvature method for the Euler equations

    NASA Technical Reports Server (NTRS)

    Cordova, Jeffrey Q.; Pearson, Carl E.

    1988-01-01

    A modification of the streamline curvature method leads to a quasilinear second-order partial differential equation for the streamline coordinate function. The existence of a stream function is not required. The method is applied to subsonic and supersonic nozzle flow, and to axially symmetric flow with swirl. For many situations, the associated numerical method is both fast and accurate.

  6. An unstructured-grid software system for solving complex aerodynamic problems

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar; Parikh, Paresh

    1995-01-01

    A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.

  7. Poisson structure on a space with linear SU(2) fuzziness

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad; Fatollahi, Amir H.; Shariati, Ahmad

    2009-07-01

    The Poisson structure is constructed for a model in which spatial coordinates of configuration space are noncommutative and satisfy the commutation relations of a Lie algebra. The case is specialized to that of the group SU(2), for which the counterpart of the angular momentum as well as the Euler parametrization of the phase space are introduced. SU(2)-invariant classical systems are discussed, and it is observed that the path of particle can be obtained by the solution of a first-order equation, as the case with such models on commutative spaces. The examples of free particle, rotationally invariant potentials, and specially the isotropic harmonic oscillator are investigated in more detail.

  8. Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography.

    PubMed

    Johnson, R S

    2018-01-28

    This review makes a case for describing many of the flows observed in our oceans, simply based on the Euler equation, with (piecewise) constant density and with suitable boundary conditions. The analyses start from the Euler and mass conservation equations, expressed in a rotating, spherical coordinate system (but the f -plane and β -plane approximations are also mentioned); five examples are discussed. For three of them, a suitable non-dimensionalization is introduced, and a single small parameter is identified in each case. These three examples lead straightforwardly and directly to new results for: waves on the Pacific Equatorial Undercurrent (EUC) with a thermocline (in the f -plane); a nonlinear, three-dimensional model for EUC-type flows (in the β -plane); and a detailed model for large gyres. The other two examples are exact solutions of the complete system: a flow which corresponds to the underlying structure of the Pacific EUC; and a flow based on the necessary requirement to use a non-conservative body force, which produces the type of flow observed in the Antarctic Circumpolar Current. (All these examples have been discussed in detail in the references cited.) This review concludes with a few comments on how these solutions can be extended and expanded.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  9. Measure-valued solutions to the complete Euler system revisited

    NASA Astrophysics Data System (ADS)

    Březina, Jan; Feireisl, Eduard

    2018-06-01

    We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier-Stokes-Fourier system. Our main result states that any sequence of weak solutions to the Navier-Stokes-Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.

  10. Three-dimensional unsteady Euler equations solutions on dynamic grids

    NASA Technical Reports Server (NTRS)

    Belk, D. M.; Janus, J. M.; Whitfield, D. L.

    1985-01-01

    A method is presented for solving the three-dimensional unsteady Euler equations on dynamic grids based on flux vector splitting. The equations are cast in curvilinear coordinates and a finite volume discretization is used for handling arbitrary geometries. The discretized equations are solved using an explicit upwind second-order predictor corrector scheme that is stable for a CFL of 2. Characteristic variable boundary conditions are developed and used for unsteady impermeable surfaces and for the far-field boundary. Dynamic-grid results are presented for an oscillating air-foil and for a store separating from a reflection plate. For the cases considered of stores separating from a reflection plate, the unsteady aerodynamic forces on the store are significantly different from forces obtained by steady-state aerodynamics with the body inclination angle changed to account for plunge velocity.

  11. Equations of motion of slung-load systems, including multilift systems

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Kanning, Gerd

    1992-01-01

    General simulation equations are derived for the rigid body motion of slung-load systems. This work is motivated by an interest in trajectory control for slung loads carried by two or more helicopters. An approximation of these systems consists of several rigid bodies connected by straight-line cables or links. The suspension can be assumed elastic or inelastic. Equations for the general system are obtained from the Newton-Euler rigid-body equations with the introduction of generalized velocity coordinates. Three forms are obtained: two generalize previous case-specific results for single-helicopter systems with elastic and inelastic suspensions, respectively; and the third is a new formulation for inelastic suspensions. The latter is derived from the elastic suspension equations by choosing the generalized coordinates so that motion induced by cable stretching is separated from motion with invariant cable lengths, and by then nulling the stretching coordinates to get a relation for the suspension forces. The result is computationally more efficient than the conventional formulation, is readily integrated with the elastic suspension formulation, and is easily applied to the complex dual-lift and multilift systems. Results are given for two-helicopter systems; three configurations are included and these can be integrated in a single simulation. Equations are also given for some single-helicopter systems, for comparison with the previous literature, and for a multilift system. Equations for degenerate-body approximations (point masses, rigid rods) are also formulated and results are given for dual-lift and multilift systems. Finally, linearlized equations of motion are given for general slung-load systems are presented along with results for the two-helicopter system with a spreader bar.

  12. Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.

    PubMed

    Hosain, M A; Sirr, A; Ju, L; Blair, D G

    2012-08-01

    LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope.

  13. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems, task 1: Ducted propfan analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

    1990-01-01

    The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.

  14. Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson.

    PubMed

    Miller, Michael I; Trouvé, Alain; Younes, Laurent

    2015-01-01

    The Computational Anatomy project is the morphome-scale study of shape and form, which we model as an orbit under diffeomorphic group action. Metric comparison calculates the geodesic length of the diffeomorphic flow connecting one form to another. Geodesic connection provides a positioning system for coordinatizing the forms and positioning their associated functional information. This article reviews progress since the Euler-Lagrange characterization of the geodesics a decade ago. Geodesic positioning is posed as a series of problems in Hamiltonian control, which emphasize the key reduction from the Eulerian momentum with dimension of the flow of the group, to the parametric coordinates appropriate to the dimension of the submanifolds being positioned. The Hamiltonian viewpoint provides important extensions of the core setting to new, object-informed positioning systems. Several submanifold mapping problems are discussed as they apply to metamorphosis, multiple shape spaces, and longitudinal time series studies of growth and atrophy via shape splines.

  15. A Direct and Non-Singular UKF Approach Using Euler Angle Kinematics for Integrated Navigation Systems

    PubMed Central

    Ran, Changyan; Cheng, Xianghong

    2016-01-01

    This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method. PMID:27598169

  16. A comparison of design variables for control theory based airfoil optimization

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work in the area it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler equations with either a conformal mapping or a general coordinate system. We have also explored three-dimensional extensions of these formulations recently. The goal of our present work is to demonstrate the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-spline control points as design variables. The research also demonstrates that the parameterization of the design space is an open question in aerodynamic design.

  17. Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve

    1996-01-01

    A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.

  18. Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.

    2018-01-01

    This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.

  19. Implicit flux-split schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Walters, R. W.; Van Leer, B.

    1985-01-01

    Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.

  20. Leonhard Euler and the mechanics of rigid bodies

    NASA Astrophysics Data System (ADS)

    Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.

    2017-01-01

    In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).

  1. Numerical simulation of solitary waves on deep water with constant vorticity

    NASA Astrophysics Data System (ADS)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  2. New approach to isometric transformations in oblique local coordinate systems of reference

    NASA Astrophysics Data System (ADS)

    Stępień, Grzegorz; Zalas, Ewa; Ziębka, Tomasz

    2017-12-01

    The research article describes a method of isometric transformation and determining an exterior orientation of a measurement instrument. The method is based on a designation of a "virtual" translation of two relative oblique orthogonal systems to a common, known in the both systems, point. The relative angle orientation of the systems does not change as each of the systems is moved along its axis. The next step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles), transformation of the system convoluted at the calculated angles and moving the system to the initial position where the primary coordinate system was. This way eliminates movements of the systems from the calculations and makes it possible to calculate angles of mutual rotation angles of two orthogonal systems primarily involved in the movement. The research article covers laboratory calculations for simulated data. The accuracy of the results is 10-6 m (10-3 regarding the accuracy of the input data). This confi rmed the correctness of the assumed calculation method. In the following step the method was verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The proposed method enabled to make the measurements with the oblique and uncentered instrument, e.g. total station instrument set over an unknown point. This is the reason why the method was named by the authors as Total Free Station - TFS. The method may be also used for isometric transformations for photogrammetric purposes.

  3. Three dimensional steady subsonic Euler flows in bounded nozzles

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  4. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  5. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  6. 3D GIS spatial operation based on extended Euler operators

    NASA Astrophysics Data System (ADS)

    Xu, Hongbo; Lu, Guonian; Sheng, Yehua; Zhou, Liangchen; Guo, Fei; Shang, Zuoyan; Wang, Jing

    2008-10-01

    The implementation of 3 dimensions spatial operations, based on certain data structure, has a lack of universality and is not able to treat with non-manifold cases, at present. ISO/DIS 19107 standard just presents the definition of Boolean operators and set operators for topological relationship query, and OGC GeoXACML gives formal definitions for several set functions without implementation detail. Aiming at these problems, based mathematical foundation on cell complex theory, supported by non-manifold data structure and using relevant research in the field of non-manifold geometry modeling for reference, firstly, this paper according to non-manifold Euler-Poincaré formula constructs 6 extended Euler operators and inverse operators to carry out creating, updating and deleting 3D spatial elements, as well as several pairs of supplementary Euler operators to convenient for implementing advanced functions. Secondly, we change topological element operation sequence of Boolean operation and set operation as well as set functions defined in GeoXACML into combination of extended Euler operators, which separates the upper functions and lower data structure. Lastly, we develop underground 3D GIS prototype system, in which practicability and credibility of extended Euler operators faced to 3D GIS presented by this paper are validated.

  7. New method for blowup of the Euler-Poisson system

    NASA Astrophysics Data System (ADS)

    Kwong, Man Kam; Yuen, Manwai

    2016-08-01

    In this paper, we provide a new method for establishing the blowup of C2 solutions for the pressureless Euler-Poisson system with attractive forces for RN (N ≥ 2) with ρ(0, x0) > 0 and Ω 0 i j ( x 0 ) = /1 2 [" separators=" ∂ i u j ( 0 , x 0 ) - ∂ j u i ( 0 , x 0 ) ] = 0 at some point x0 ∈ RN. By applying the generalized Hubble transformation div u ( t , x 0 ( t ) ) = /N a ˙ ( t ) a ( t ) to a reduced Riccati differential inequality derived from the system, we simplify the inequality into the Emden equation a ̈ ( t ) = - /λ a ( t ) N - 1 , a ( 0 ) = 1 , a ˙ ( 0 ) = /div u ( 0 , x 0 ) N . Known results on its blowup set allow us to easily obtain the blowup conditions of the Euler-Poisson system.

  8. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    NASA Astrophysics Data System (ADS)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  9. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  10. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the 2-D or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3 is the Programmer's Reference, and describes the program structure, the FORTRAN variables stored in common blocks, and the details of each subprogram.

  11. A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems

    NASA Technical Reports Server (NTRS)

    Tzes, Anthony P.; Yurkovich, Stephen; Langer, F. Dieter

    1989-01-01

    An efficient numerical method for solving the partial differential equation (PDE) governing the flexible manipulator control dynamics is presented. A finite-dimensional model of the equation is obtained through discretization in both time and space coordinates by using finite-difference approximations to the PDE. An expert program written in the Macsyma symbolic language is utilized in order to embed the boundary conditions into the program, accounting for a mass carried at the tip of the manipulator. The advantages of the proposed algorithm are many, including the ability to (1) include any distributed actuation term in the partial differential equation, (2) provide distributed sensing of the beam displacement, (3) easily modify the boundary conditions through an expert program, and (4) modify the structure for running under a multiprocessor environment.

  12. Euler polynomials and identities for non-commutative operators

    NASA Astrophysics Data System (ADS)

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  13. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  14. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review

    PubMed Central

    Chirikjian, G. S.

    2016-01-01

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed. PMID:27030786

  15. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review.

    PubMed

    Chirikjian, G S

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed.

  16. Planar incompressible Navier-Stokes and Euler equations: A geometric formulation

    NASA Astrophysics Data System (ADS)

    Dimitriou, Ioannis

    2017-11-01

    In this paper, a novel geometric approach for studying steady, two-dimensional, incompressible flows has been thoroughly developed. The continuity and momentum equations were expressed in the flow's intrinsic coordinate system in order to "accommodate" the geometric parameters characterizing it, namely, the local curvatures of the streamlines and their orthogonal trajectories. As a result, a new description of the governing equations was obtained, in which the concerned variables are the velocity magnitude v and a new quantity which was named geometric vorticity, Γ. The latter is defined by the curl of the global curvature vector KG and can be interpreted as the geometric signature of the known vorticity Ω. This approach leads to a new formulation of the Navier-Stokes and Euler equations, the so-called "velocity-curvature" formulation. In this framework, an expression for the flow velocity as a function of geometric parameters only was developed. This reveals that the physical information of a steady incompressible flow is imprinted in its geometry. It is this insight that makes the aforementioned formulation not only conceptually different to the existing classical descriptions, traditionally employed in both analytical and numerical applications, but also attractive, due to the advantages that it could provide at a theoretical and an experimental level. Finally, the derived results are briefly discussed, while emphasizing the implications that the identified geometry-physics interface might have in the future for planar flow analysis.

  17. Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of the Euler Equations

    DTIC Science & Technology

    2015-07-01

    modes [1]. Barone et al [15, 16] proposed to stabilize the reduced system by symmetrizing the higher-order PDE with a preconditioning matrix. Rowley et...advection scalar equation. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower- order ODE system by means of POD...high-order PDEs to a lower-order ODE system by means of POD eigen-bases. For purposes of this study, a linearized version of the Euler equations is

  18. Intrinsic dynamics and total energy-shaping control of the ballbot system

    NASA Astrophysics Data System (ADS)

    Satici, A. C.; Donaire, A.; Siciliano, B.

    2017-12-01

    Research on bipedal locomotion has shown that a dynamic walking gait is energetically more efficient than a statically stable one. Analogously, even though statically stable multi-wheeled robots are easier to control, they are energetically less efficient and have low accelerations to avoid tipping over. In contrast, the ballbot is an underactuated, nonholonomically constrained mobile robot, whose upward equilibrium point has to be stabilised by active control. In this work, we derive coordinate-invariant, reduced, Euler-Poincaré equations of motion for the ballbot. By means of partial feedback linearisation, we obtain two independent passive outputs with corresponding storage functions and utilise these to come up with energy-shaping control laws which move the system along the trajectories of a new Lagrangian system whose desired equilibrium point is asymptotically stable by construction. The basin of attraction of this controller is shown to be almost global under certain conditions on the design of the mechanism which are reflected directly in the mass matrix of the unforced equations of motion.

  19. Path following control of planar snake robots using virtual holonomic constraints: theory and experiments.

    PubMed

    Rezapour, Ehsan; Pettersen, Kristin Y; Liljebäck, Pål; Gravdahl, Jan T; Kelasidi, Eleni

    This paper considers path following control of planar snake robots using virtual holonomic constraints. In order to present a model-based path following control design for the snake robot, we first derive the Euler-Lagrange equations of motion of the system. Subsequently, we define geometric relations among the generalized coordinates of the system, using the method of virtual holonomic constraints. These appropriately defined constraints shape the geometry of a constraint manifold for the system, which is a submanifold of the configuration space of the robot. Furthermore, we show that the constraint manifold can be made invariant by a suitable choice of feedback. In particular, we analytically design a smooth feedback control law to exponentially stabilize the constraint manifold. We show that enforcing the appropriately defined virtual holonomic constraints for the configuration variables implies that the robot converges to and follows a desired geometric path. Numerical simulations and experimental results are presented to validate the theoretical approach.

  20. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  1. Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system

    NASA Astrophysics Data System (ADS)

    Chen, Shuxing; Li, Dening

    2014-09-01

    We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.

  2. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  3. Impacts of Sigma Coordinates on the Euler and Navier-Stokes Equations using Continuous Galerkin Methods

    DTIC Science & Technology

    2009-03-01

    the 1- D local basis functions. The 1-D Lagrange polynomial local basis function, using Legendre -Gauss-Lobatto interpolation points, was defined by...cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K with an interval of 0.025 K...after 700 s for reso- lutions: (a) 20, (b) 10, and (c) 5 m. All cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K

  4. Computer-Assisted Instruction in Engineering Dynamics. CAI-Systems Memo Number 18.

    ERIC Educational Resources Information Center

    Sheldon, John W.

    A 90-minute computer-assisted instruction (CAI) unit course supplemented by a 1-hour lecture on the dynamic nature of three-dimensional rotations and Euler angles was given to 29 undergraduate engineering students. The area of Euler angles was selected because it is essential to problem-working in three-dimensional rotations of a rigid body, yet…

  5. Airplane stability calculations with a card programmable pocket calculator

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1978-01-01

    Programs are presented for calculating airplane stability characteristics with a card programmable pocket calculator. These calculations include eigenvalues of the characteristic equations of lateral and longitudinal motion as well as stability parameters such as the time to damp to one-half amplitude or the damping ratio. The effects of wind shear are included. Background information and the equations programmed are given. The programs are written for the International System of Units, the dimensional form of the stability derivatives, and stability axes. In addition to programs for stability calculations, an unusual and short program is included for the Euler transformation of coordinates used in airplane motions. The programs have been written for a Hewlett Packard HP-67 calculator. However, the use of this calculator does not constitute an endorsement of the product by the National Aeronautics and Space Administration.

  6. A 3D generic inverse dynamic method using wrench notation and quaternion algebra.

    PubMed

    Dumas, R; Aissaoui, R; de Guise, J A

    2004-06-01

    In the literature, conventional 3D inverse dynamic models are limited in three aspects related to inverse dynamic notation, body segment parameters and kinematic formalism. First, conventional notation yields separate computations of the forces and moments with successive coordinate system transformations. Secondly, the way conventional body segment parameters are defined is based on the assumption that the inertia tensor is principal and the centre of mass is located between the proximal and distal ends. Thirdly, the conventional kinematic formalism uses Euler or Cardanic angles that are sequence-dependent and suffer from singularities. In order to overcome these limitations, this paper presents a new generic method for inverse dynamics. This generic method is based on wrench notation for inverse dynamics, a general definition of body segment parameters and quaternion algebra for the kinematic formalism.

  7. Poly-Frobenius-Euler polynomials

    NASA Astrophysics Data System (ADS)

    Kurt, Burak

    2017-07-01

    Hamahata [3] defined poly-Euler polynomials and the generalized poly-Euler polynomials. He proved some relations and closed formulas for the poly-Euler polynomials. By this motivation, we define poly-Frobenius-Euler polynomials. We give some relations for this polynomials. Also, we prove the relationships between poly-Frobenius-Euler polynomials and Stirling numbers of the second kind.

  8. Stability of the Euler resting N-body relative equilibria

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.

    2018-03-01

    The stability of a system of N equal-sized mutually gravitating spheres resting on each other in a straight line and rotating in inertial space is considered. This is a generalization of the "Euler Resting" configurations previously analyzed in the finite density 3 and 4 body problems. Specific questions for the general case are how rapidly the system must spin for the configuration to stabilize, how rapidly it can spin before the components separate from each other, and how these results change as a function of N. This paper shows that the Euler Resting configuration can only be stable for up to 5 bodies and that for 6 or more bodies the configuration can never be stable. This places an ideal limit of 5:1 on the aspect ratio of a rubble pile body's shape.

  9. Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation

    NASA Astrophysics Data System (ADS)

    Gallagher, Isabelle

    1998-12-01

    Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.

  10. Definition, transformation-formulae and measurements of tipvane angles

    NASA Astrophysics Data System (ADS)

    Bruining, A.

    1987-10-01

    The theoretical background of different angle systems used to define tipvane attitude in 3-D space is outlined. Different Euler equations are used for the various, wind tunnel, towing tank, and full scale tipvane models. The influence of rotor blade flapping angle on tipvane angles is described. The tipvane attitude measuring method is outlined in relationship to the Euler angle system. Side effects on the angle of attack of the tipvane due to rotation, translation, and curving of the tipvane are described.

  11. A formulation for studying dynamics of N connected flexible deployable members

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. M.; Modi, V. J.

    A relatively general formulation for studying dynamics of a system, consisting of N connected flexible deployable members (beams, plates, shells, membranes, strings) forming a topological tree or a closed configuration, is presented. The mathematical description of the system can be, in general, a combination of discrete and distributed coordinates. Joints, elastic and dissipative, permit relative rotation and translation between bodies. The elastic deformations (lateral, axial, and torsional) can be discretized using admissible functions, finite elements or lumped mass method. Rotations of the members, as well as of the entire system, can be described using a set of orientation angles, Euler parameters or Rodrigues vectors. The formulation accounts for: the presence of momentum or reaction wheels (gimballed or fixed); thrusters distributed over the flexible and rigid portions; and any prescribed forms of energy dissipation mechanisms. Of course, the generalized forces can simulate desired environmental effects. The formulation is valid for orbiting as well as ground based and marine systems. Application of the formulation is illustrated through several examples, in spacecraft dynamics, which are of contemporary interest.

  12. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  13. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 2 is the User's Guide, and describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.

  14. Factors determining the spin axis of a pitched fastball in baseball.

    PubMed

    Jinji, Tsutomu; Sakurai, Shinji; Hirano, Yuichi

    2011-04-01

    In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000 Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.

  15. Comparison of two- and three-dimensional flow computations with laser anemometer measurements in a transonic compressor rotor

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Strazisar, A. J.

    1982-01-01

    Two and three dimensional inviscid solutions for the flow in a transonic axial compressor rotor at design speed are compared with probe and laser anemometers measurements at near-stall and maximum-flow operating points. Experimental details of the laser anemometer system and computational details of the two dimensional axisymmetric code and three dimensional Euler code are described. Comparisons are made between relative Mach number and flow angle contours, shock location, and shock strength. A procedure for using an efficient axisymmetric code to generate downstream pressure input for computationally expensive Euler codes is discussed. A film supplement shows the calculations of the two operating points with the time-marching Euler code.

  16. The analytical solution of the problem of a shock focusing in a gas for one-dimensional case

    NASA Astrophysics Data System (ADS)

    Shestakovskaya, E. S.; Magazov, F. G.

    2018-03-01

    The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.

  17. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102 (2006) J. Rheinecker and J. M. Bowman, J. Chem. Phys. 125 133206 (2006)} S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson J. Phys. Chem. A 114 1556 (2010)

  18. Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen

    1997-01-01

    The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.

  19. On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem

    NASA Technical Reports Server (NTRS)

    Lim, Sang G.; Brewe, David E.; Prahl, Joseph M.

    1990-01-01

    The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution.

  20. User's manual for three dimensional boundary layer (BL3-D) code

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Caplin, B.

    1985-01-01

    An assessment has been made of the applicability of a 3-D boundary layer analysis to the calculation of heat transfer, total pressure losses, and streamline flow patterns on the surface of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary 3-D surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental data to calibrate the method, calculations are presented for the pressure endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the 3-D boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.

  1. Miniature Rotorcraft Flight Control Stabilization System

    DTIC Science & Technology

    2008-05-30

    The first algorithm is based on the well known QUEST algorithm used for spacecraft and satellites. Due to large vibration in sensors a pseudo...for spacecraft and satellites. Due to large vibration in sensors a pseudo-measurement is developed from gyroscope measurements and rotational...using any valid set of orientation map. Note, in Eq. (6) Euler angles were used to describe . A common alternative to Euler angles is a quaternion

  2. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  3. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  4. Regularized estimation of Euler pole parameters

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadir; Yildirim, Ömer

    2013-07-01

    Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.

  5. Restricted Euler dynamics along trajectories of small inertial particles in turbulence

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Meneveau, Charles

    2016-11-01

    The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of severely reduced self-stretching of strain-rate. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825 and by a Grant from The Gulf of Mexico Research Initiative.

  6. Modeling and Control of Intelligent Flexible Structures

    DTIC Science & Technology

    1994-03-26

    can be approximated as a simply supported beam in transverse vibration. Assuming that the Euler- Bernoulli beam assumptions hold, linear equations of...The assumptions made during the derivation are that the element can be modeled as an Euler- Bernoulli beam, that the cross-section is symmetric, and...parametes A,. and ,%. andc input maces 3,,. The closed loop system. ecuation (7), is stable when the 3.. 8 and output gain mantices H1., H., H. for

  7. CFD research and systems in Kawasaki Heavy Industries and its future prospects

    NASA Astrophysics Data System (ADS)

    Hiraoka, Koichi

    1990-09-01

    KHI Computational Fluid Dynamics (CFD) system is composed of VP100 computer and 2-D and 3-D Euler and/or Navier-Stokes (NS) analysis softwares. For KHI, this system has become a very powerful aerodynamic tool together with the Kawasaki 1 m Transonic Wind Tunnel. The 2-D Euler/NS software, developed in-house, is fully automated, requires no special skill, and was successfully applied to the design of YXX high lift devices and SST supersonic inlet, etc. The 3-D Euler/NS software, developed under joint research with NAL, has an interactively operated Multi-Block type grid generator and can effectively generate grids around complex airplane shapes. Due to the main memory size limitation, 3-D analysis of relatively simple shape, such as SST wing-body, was computed in-house on VP100, otherwise, such as detailed 3-D analyses of ASUKA and HOPE, were computed on NAL VP400, which is 10 times more powerful than VP100, under KHI-NAL joint research. These analysis results have very good correlation with experimental results. However, the present CFD system is less productive than wind tunnel and has applicability limitations.

  8. Motion in a central field in the presence of a constant perturbing acceleration in a co-moving coordinate system

    NASA Astrophysics Data System (ADS)

    Sannikova, T. N.; Kholshevnikov, K. V.

    2015-08-01

    The motion of a point mass under the action of a gravitational force toward a central body and a perturbing acceleration P is considered. The magnitude of P is taken to be small compared to the main gravitational acceleration due to the central body, and the direction of P to be constant in a standard astronomical coordinate system with its origin at the central body and axes directed along the radius vector, the transversal, and the binormal. Consideration of a constant vector perturbing acceleration simplifies averaging of the Euler equations for the motion in osculating elements, making it straightforward to obtain evolutionary differential equations of motion in the mean elements, as was done earlier in a first small-parameter approximation. This paper is devoted to integration of the mean equations. The system is integratable by quadratures if at least one component of the perturbing acceleration is zero, and also if the orbit is initially circular. Moreover, all the quadratures can be expressed in terms of elementary functions and elliptical integrals of the first kind in Jacobi form. If all three components of P are non-zero, this problem reduces to a system of two first-order differential equations, which are apparently not integrable. Possible applications include the motion of natural and artificial satellites taking into account light pressure, the motion of a spacecraft with low thrust, and the motion of an asteroid subject to a thrust from an engine mounted on it or to a gravitational tractor designed, for example, to avoid a collision with Earth.

  9. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    NASA Astrophysics Data System (ADS)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  10. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    NASA Technical Reports Server (NTRS)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  11. On reinitializing level set functions

    NASA Astrophysics Data System (ADS)

    Min, Chohong

    2010-04-01

    In this paper, we consider reinitializing level functions through equation ϕt+sgn(ϕ0)(‖∇ϕ‖-1)=0[16]. The method of Russo and Smereka [11] is taken in the spatial discretization of the equation. The spatial discretization is, simply speaking, the second order ENO finite difference with subcell resolution near the interface. Our main interest is on the temporal discretization of the equation. We compare the three temporal discretizations: the second order Runge-Kutta method, the forward Euler method, and a Gauss-Seidel iteration of the forward Euler method. The fact that the time in the equation is fictitious makes a hypothesis that all the temporal discretizations result in the same result in their stationary states. The fact that the absolute stability region of the forward Euler method is not wide enough to include all the eigenvalues of the linearized semi-discrete system of the second order ENO spatial discretization makes another hypothesis that the forward Euler temporal discretization should invoke numerical instability. Our results in this paper contradict both the hypotheses. The Runge-Kutta and Gauss-Seidel methods obtain the second order accuracy, and the forward Euler method converges with order between one and two. Examining all their properties, we conclude that the Gauss-Seidel method is the best among the three. Compared to the Runge-Kutta, it is twice faster and requires memory two times less with the same accuracy.

  12. A numerical code for the simulation of non-equilibrium chemically reacting flows on hybrid CPU-GPU clusters

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Borisov, Semyon P.; Shershnev, Anton A.

    2017-10-01

    In the present work a computer code RCFS for numerical simulation of chemically reacting compressible flows on hybrid CPU/GPU supercomputers is developed. It solves 3D unsteady Euler equations for multispecies chemically reacting flows in general curvilinear coordinates using shock-capturing TVD schemes. Time advancement is carried out using the explicit Runge-Kutta TVD schemes. Program implementation uses CUDA application programming interface to perform GPU computations. Data between GPUs is distributed via domain decomposition technique. The developed code is verified on the number of test cases including supersonic flow over a cylinder.

  13. Algorithms for the Euler and Navier-Stokes equations for supercomputers

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1985-01-01

    The steady state Euler and Navier-Stokes equations are considered for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme-independent, this preconditioning is done at the differential equation level. Applications are presented for very slow flows and also for the incompressible equations.

  14. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  15. Development of Euler's ideas at the Moscow State Regional University

    NASA Astrophysics Data System (ADS)

    Vysikaylo, P. I.; Belyaev, V. V.

    2018-03-01

    In honor of the 250th anniversary of Euler's discovery of three libration points in Russia in 1767 in the area of two rotating gravitational attractors in 2017 an International Interdisciplinary Conference “Euler Readings MRSU 2017” was held in Moscow Region State University (MRSU). The Conference demonstrated that the Euler's ideas continue to remain relevant at the present time. This paper summarizes the main achievements on the basis of Leonard Euler's ideas presented at the Conference.

  16. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE PAGES

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.; ...

    2017-04-29

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  17. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  18. Global Resolution of the Physical Vacuum Singularity for Three-Dimensional Isentropic Inviscid Flows with Damping in Spherically Symmetric Motions

    NASA Astrophysics Data System (ADS)

    Zeng, Huihui

    2017-10-01

    For the gas-vacuum interface problem with physical singularity and the sound speed being {C^{{1}/{2}}}-Hölder continuous near vacuum boundaries of the isentropic compressible Euler equations with damping, the global existence of smooth solutions and the convergence to Barenblatt self-similar solutions of the corresponding porous media equation are proved in this paper for spherically symmetric motions in three dimensions; this is done by overcoming the analytical difficulties caused by the coordinate's singularity near the center of symmetry, and the physical vacuum singularity to which standard methods of symmetric hyperbolic systems do not apply. Various weights are identified to resolve the singularity near the vacuum boundary and the center of symmetry globally in time. The results obtained here contribute to the theory of global solutions to vacuum boundary problems of compressible inviscid fluids, for which the currently available results are mainly for the local-in-time well-posedness theory, and also to the theory of global smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.

  19. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    PubMed

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  20. Numerical solution of the two-dimensional time-dependent incompressible Euler equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Taylor, Lafayette K.

    1994-01-01

    A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.

  1. Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Ortenzi, G.

    2013-12-01

    The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.

  2. A new mosaic method for three-dimensional surface

    NASA Astrophysics Data System (ADS)

    Yuan, Yun; Zhu, Zhaokun; Ding, Yongjun

    2011-08-01

    Three-dimensional (3-D) data mosaic is a indispensable link in surface measurement and digital terrain map generation. With respect to the mosaic problem of the local unorganized cloud points with rude registration and mass mismatched points, a new mosaic method for 3-D surface based on RANSAC is proposed. Every circular of this method is processed sequentially by random sample with additional shape constraint, data normalization of cloud points, absolute orientation, data denormalization of cloud points, inlier number statistic, etc. After N random sample trials the largest consensus set is selected, and at last the model is re-estimated using all the points in the selected subset. The minimal subset is composed of three non-colinear points which form a triangle. The shape of triangle is considered in random sample selection in order to make the sample selection reasonable. A new coordinate system transformation algorithm presented in this paper is used to avoid the singularity. The whole rotation transformation between the two coordinate systems can be solved by twice rotations expressed by Euler angle vector, each rotation has explicit physical means. Both simulation and real data are used to prove the correctness and validity of this mosaic method. This method has better noise immunity due to its robust estimation property, and has high accuracy as the shape constraint is added to random sample and the data normalization added to the absolute orientation. This method is applicable for high precision measurement of three-dimensional surface and also for the 3-D terrain mosaic.

  3. Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator

    NASA Astrophysics Data System (ADS)

    Dube, Chioniso; Pedro, Jimoh O.

    2018-05-01

    This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.

  4. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.

    PubMed

    Butera, Robert J; McCarthy, Maeve L

    2004-12-01

    Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.

  5. Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Samant, S. S.; Yu, N. J.

    1986-01-01

    An Euler-based method for aerodynamic analysis of turboprop transport aircraft at transonic speeds has been developed. In this method, inviscid Euler equations are solved over surface-fitted grids constructed about aircraft configurations. Propeller effects are simulated by specifying sources of momentum and energy on an actuator disc located in place of the propeller. A stripwise boundary layer procedure is included to account for the viscous effects. A preliminary version of an approach to embed the exhaust plume within the global Euler solution has also been developed for more accurate treatment of the exhaust flow. The resulting system of programs is capable of handling wing-body-nacelle-propeller configurations. The propeller disks may be tractors or pushers and may represent single or counterrotation propellers. Results from analyses of three test cases of interest (a wing alone, a wing-body-nacelle model, and a wing-nacelle-endplate model) are presented. A user's manual for executing the system of computer programs with formats of various input files, sample job decks, and sample input files is provided in appendices.

  6. Stabilizing the long-time behavior of the forced Navier-Stokes and damped Euler systems by large mean flow

    NASA Astrophysics Data System (ADS)

    Cyranka, Jacek; Mucha, Piotr B.; Titi, Edriss S.; Zgliczyński, Piotr

    2018-04-01

    The paper studies the issue of stability of solutions to the forced Navier-Stokes and damped Euler systems in periodic boxes. It is shown that for large, but fixed, Grashoff (Reynolds) number the turbulent behavior of all Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations, in periodic box, is suppressed, when viewed in the right frame of reference, by large enough average flow of the initial data; a phenomenon that is similar in spirit to the Landau damping. Specifically, we consider an initial data which have large enough spatial average, then by means of the Galilean transformation, and thanks to the periodic boundary conditions, the large time independent forcing term changes into a highly oscillatory force; which then allows us to employ some averaging principles to establish our result. Moreover, we also show that under the action of fast oscillatory-in-time external forces all two-dimensional regular solutions of the Navier-Stokes and the damped Euler equations converge to a unique time-periodic solution.

  7. Prediction of drag at subsonic and transonic speeds using Euler methods

    NASA Technical Reports Server (NTRS)

    Nikfetrat, K.; Van Dam, C. P.; Vijgen, P. M. H. W.; Chang, I. C.

    1992-01-01

    A technique for the evaluation of aerodynamic drag from flowfield solutions based on the Euler equations is discussed. The technique is limited to steady attached flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. It allows the decomposition of the total drag into induced drag and wave drag and, consequently, it provides more information on the drag sources than the conventional surface-pressure integration technique. The induced drag is obtained from the integration of the kinetic energy (per unit distance) of the trailing vortex system on a wake plane and the wave drag is obtained from the integration of the entropy production on a plane just downstream of the shocks. The drag-evaluation technique is applied to three-dimensional flowfield solutions for the ONERA M6 wing as well as an aspect-ratio-7 wing with an elliptic spanwise chord distribution and an NACA-0012 section shape. Comparisons between the drag obtained with the present technique and the drag based on the integration of surface pressures are presented for two Euler codes.

  8. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    NASA Astrophysics Data System (ADS)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  9. Degenerate variational integrators for magnetic field line flow and guiding center trajectories

    NASA Astrophysics Data System (ADS)

    Ellison, C. L.; Finn, J. M.; Burby, J. W.; Kraus, M.; Qin, H.; Tang, W. M.

    2018-05-01

    Symplectic integrators offer many benefits for numerically approximating solutions to Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two important Hamiltonian systems encountered in plasma physics—the flow of magnetic field lines and the guiding center motion of magnetized charged particles—resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates. New algorithms were recently developed using the variational integration formalism; however, those integrators were found to admit parasitic mode instabilities due to their multistep character. This work eliminates the multistep character, and therefore the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem "degenerate variational integration." Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that the resultant Euler-Lagrange equations are systems of first-order ordinary differential equations. We show that retaining the same degree of degeneracy when constructing discrete Lagrangians yields one-step variational integrators preserving a non-canonical symplectic structure. Numerical examples demonstrate the benefits of the new algorithms, including superior stability relative to the existing variational integrators for these systems and superior qualitative behavior relative to non-conservative algorithms.

  10. Sonic Boom Prediction and Minimization of the Douglas Reference OPT5 Configuration

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1999-01-01

    Conventional CFD methods and grids do not yield adequate resolution of the complex shock flow pattern generated by a real aircraft geometry. As a result, a unique grid topology and supersonic flow solver was developed at Northrop Grumman based on the characteristic behavior of supersonic wave patterns emanating from the aircraft. Using this approach, it was possible to compute flow fields with adequate resolution several body lengths below the aircraft. In this region, three-dimensional effects are diminished and conventional two-dimensional modified linear theory (MLT) can be applied to estimate ground pressure signatures or sonic booms. To accommodate real aircraft geometries and alleviate the burdensome grid generation task, an implicit marching multi-block, multi-grid finite-volume Euler code was developed as the basis for the sonic boom prediction methodology. The Thomas two-dimensional extrapolation method is built into the Euler code so that ground signatures can be obtained quickly and efficiently with minimum computational effort suitable to the aircraft design environment. The loudness levels of these signatures can then be determined using a NASA generated noise code. Since the Euler code is a three-dimensional flow field solver, the complete circumferential region below the aircraft is computed. The extrapolation of all this field data from a cylinder of constant radius leads to the definition of the entire boom corridor occurring directly below and off to the side of the aircraft's flight path yielding an estimate for the entire noise "annoyance" corridor in miles as well as its magnitude. An automated multidisciplinary sonic boom design optimization software system was developed during the latter part of HSR Phase 1. Using this system, it was found that sonic boom signatures could be reduced through optimization of a variety of geometric aircraft parameters. This system uses a gradient based nonlinear optimizer as the driver in conjunction with a computationally efficient Euler CFD solver (NIIM3DSB) for computing the three-dimensional near-field characteristics of the aircraft. The intent of the design system is to identify and optimize geometric design variables that have a beneficial impact on the ground sonic boom. The system uses a simple wave drag data format to specify the aircraft geometry. The geometry is internally enhanced and analytic methods are used to generate marching grids suitable for the multi-block Euler solver. The Thomas extrapolation method is integrated into this system, and hence, the aircraft's centerline ground sonic boom signature is also automatically computed for a specified cruise altitude and yields the parameters necessary to evaluate the design function. The entire design system has been automated since the gradient based optimization software requires many flow analyses in order to obtain the required sensitivity derivatives for each design variable in order to converge on an optimal solution. Hence, once the problem is defined which includes defining the objective function and geometric and aerodynamic constraints, the system will automatically regenerate the perturbed geometry, the necessary grids, the Euler solution, and finally the ground sonic boom signature at the request of the optimizer.

  11. Eroding dipoles and vorticity growth for Euler flows in {{{R}}}^{3}: the hairpin geometry as a model for finite-time blowup

    NASA Astrophysics Data System (ADS)

    Childress, Stephen; Gilbert, Andrew D.

    2018-02-01

    A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as realized in the eroding hairpin excludes a finite time blowup for the corresponding Navier-Stokes model.

  12. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  13. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  14. The role of Euler buckling instability in the fabrication of nanoelectromechanical systems on the basis of GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Shevyrin, A. A.; Pogosov, A. G.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Ishutkin, S. V.; Shesterikov, E. V.; Kozhukhov, A. S.; Kosolobov, S. S.; Gavrilova, T. A.

    2012-12-01

    Mechanical stresses are investigated in suspended nanowires made on the basis of GaAs/AlGaAs heterostructures. Though there are no intentionally introduced stressor layers in the heterostructure, the nanowires are subject to Euler buckling instability. In the wide nanowires, the out-of-plane buckling is observed at length significantly smaller (3 times) than the theoretically estimated critical value, while in the narrow nanowires, the experimentally measured critical length of the in-plane buckling coincides with the theoretical estimation. The possible reasons for the obtained discrepancy are considered. The observed peculiarities should be taken into account in the fabrication of nanomechanical and nanoelectromechanical systems.

  15. Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system

    NASA Astrophysics Data System (ADS)

    Tan, Zhong; Wang, Yong; Tong, Leilei

    2017-10-01

    We consider the global existence and large time behavior of solutions near a constant equilibrium state to the bipolar non-isentropic compressible Euler-Maxwell system in {R}3 , where the background magnetic field could be non-zero. The global existence is established under the assumption that the H 3 norm of the initial data is small, but its higher order derivatives could be large. Combining the negative Sobolev (or Besov) estimates with the interpolation estimates, we prove the optimal time decay rates of the solution and its higher order spatial derivatives. In this sense, our results improve the similar ones in Wang et al (2012 SIAM J. Math. Anal. 44 3429-57).

  16. Airfoil Design Using a Coupled Euler and Integral Boundary Layer Method with Adjoint Based Sensitivities

    NASA Technical Reports Server (NTRS)

    Edwards, S.; Reuther, J.; Chattot, J. J.

    1997-01-01

    The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.

  17. Dynamic Modeling and Simulation of a Rotational Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Duart, J. L.; Montero, B.; Ospina, P. A.; González, E.

    2017-01-01

    This paper presents an alternative way to the dynamic modeling of a rotational inverted pendulum using the classic mechanics known as Euler-Lagrange allows to find motion equations that describe our model. It also has a design of the basic model of the system in SolidWorks software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the theoretical results, It was made a contrast between the solutions obtained by simulation SimMechanics-Matlab and the system of equations Euler-Lagrange, solved through ODE23tb method included in Matlab bookstores for solving equations systems of the type and order obtained. This article comprises a pendulum trajectory analysis by a phase space diagram that allows the identification of stable and unstable regions of the system.

  18. Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Ming; Lv, Yue-Yong; Li, Chuan-Jiang; Ma, Guang-Fu

    2016-12-01

    In this paper, we investigate cooperatively surrounding control (CSC) of multi-agent systems modeled by Euler-Lagrange (EL) equations under a directed graph. With the consideration of the uncertain dynamics in an EL system, a backstepping CSC algorithm combined with neural-networks is proposed first such that the agents can move cooperatively to surround the stationary target. Then, a command filtered backstepping CSC algorithm is further proposed to deal with the constraints on control input and the absence of neighbors’ velocity information. Numerical examples of eight satellites surrounding one space target illustrate the effectiveness of the theoretical results. Project supported by the National Basic Research Program of China (Grant No. 2012CB720000) and the National Natural Science Foundation of China (Grant Nos. 61304005 and 61403103).

  19. The quantum n-body problem in dimension d ⩾ n – 1: ground state

    NASA Astrophysics Data System (ADS)

    Miller, Willard, Jr.; Turbiner, Alexander V.; Escobar-Ruiz, M. A.

    2018-05-01

    We employ generalized Euler coordinates for the n body system in dimensional space, which consists of the centre-of-mass vector, relative (mutual) mass-independent distances r ij and angles as remaining coordinates. We prove that the kinetic energy of the quantum n-body problem for can be written as the sum of three terms: (i) kinetic energy of centre-of-mass, (ii) the second order differential operator which depends on relative distances alone and (iii) the differential operator which annihilates any angle-independent function. The operator has a large reflection symmetry group and in variables is an algebraic operator, which can be written in terms of generators of the hidden algebra . Thus, makes sense of the Hamiltonian of a quantum Euler–Arnold top in a constant magnetic field. It is conjectured that for any n, the similarity-transformed is the Laplace–Beltrami operator plus (effective) potential; thus, it describes a -dimensional quantum particle in curved space. This was verified for . After de-quantization the similarity-transformed becomes the Hamiltonian of the classical top with variable tensor of inertia in an external potential. This approach allows a reduction of the dn-dimensional spectral problem to a -dimensional spectral problem if the eigenfunctions depend only on relative distances. We prove that the ground state function of the n body problem depends on relative distances alone.

  20. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  1. A multivariate variational objective analysis-assimilation method. Part 1: Development of the basic model

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Ochs, Harry T., III

    1988-01-01

    The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.

  2. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem.

    PubMed

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-21

    Quantum mechanical calculations of ro-vibrational energies of CH 4 , CHD 3 , CH 3 D, and CH 3 F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH 3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH 3 . Euler angles specifying the orientation of a frame attached to CH 3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH 4 , CHD 3 , and CH 3 D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH 3 F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  3. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H.; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-01

    Quantum mechanical calculations of ro-vibrational energies of CH4, CHD3, CH3D, and CH3F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH3. Euler angles specifying the orientation of a frame attached to CH3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH4, CHD3, and CH3D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH3F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  4. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  5. An Argument Against Augmenting the Lagrangean for Nonholonomic Systems

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2009-01-01

    Although it is known that correct dynamical equations of motion for a nonholonomic system cannot be obtained from a Lagrangean that has been augmented with a sum of the nonholonomic constraint equations weighted with multipliers, previous publications suggest otherwise. An example has been proposed in support of augmentation and purportedly demonstrates that an accepted method fails to produce correct equations of motion whereas augmentation leads to correct equations; this paper shows that in fact the opposite is true. The correct equations, previously discounted on the basis of a flawed application of the Newton-Euler method, are verified by using Kane's method and a new approach to determining the directions of constraint forces. A correct application of the Newton-Euler method reproduces valid equations.

  6. A Non-Linear Simulation for an Autonomous Unmanned Air Vehicle

    DTIC Science & Technology

    1993-09-01

    4D cos T cos 4D cos T r These equations can now be integrated to find the time history of the Euler angles . 2. Quaternions Another choice for the...is associated with the Euler angles . Quaternions haxe been in 15 use for quite some time. having been discovered by Euler in a search for complex... quaternions has the following advantages over Euler angles in repre- senting spatial orientation of a rigid body: "* Four states required to express the

  7. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Ellison, Charles Leland

    Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator assumes coordinates such that one component of the magnetic field is zero; it is shown how to construct such coordinates for nested magnetic surface configurations. Additionally, collisional drag effects are incorporated in the variational guiding center algorithm for the first time, allowing simulation of energetic particle thermalization. Advantages relative to existing canonical-symplectic and non-geometric algorithms are numerically demonstrated. All algorithms have been implemented as part of a modern, parallel, ODE-solving library, suitable for use in high-performance simulations.

  8. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  9. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  10. A computational procedure for the dynamics of flexible beams within multibody systems. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Downer, Janice Diane

    1990-01-01

    The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.

  11. Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.

    1997-01-01

    The compact form of the discontinuous Galerkin method allows for a detailed local analysis of the method in the neighborhood of the shock for a non-linear model problem. Insight gained from the analysis leads to new flux formulas that are stable and that preserve the compactness of the method. Although developed for a model equation, the flux formulas are applicable to systems such as the Euler equations. This article presents the analysis for methods with a degree up to 5. The analysis is accompanied by supporting numerical experiments using Burgers' equation and the Euler equations.

  12. The block adaptive multigrid method applied to the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Pantelelis, Nikos

    1993-01-01

    In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.

  13. Stochastic Optimal Prediction with Application to Averaged Euler Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, John; Chorin, Alexandre J.; Crutchfield, William

    Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.

  14. On Euler's Theorem for Homogeneous Functions and Proofs Thereof.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1982-01-01

    Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)

  15. Experimental Comparison Between Mahoney and Complementary Sensor Fusion Algorithm for Attitude Determination by Raw Sensor Data of Xsens Imu on Buoy

    NASA Astrophysics Data System (ADS)

    Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.

    2017-09-01

    The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.

  16. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  17. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  18. Testing the equivalence principle on cosmological scales

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Fleury, Pierre

    2018-05-01

    The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler's equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler's equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler's equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

  19. Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, Gary Patrick

    1990-01-01

    A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.

  20. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2017-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  1. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  2. Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan

    NASA Astrophysics Data System (ADS)

    Savage, J. C.

    2018-02-01

    I have used Euler-vector clustering to assign 469 GEONET stations in southwest Japan to k clusters (k = 2, 3,..., 9) so that, for any k, the velocities of stations within each cluster are most consistent with rigid-block motion on a sphere. That is, I attempt to explain the raw (i.e., uncorrected for strain accumulation), 1996-2006 velocities of those 469 Global Positioning System stations by rigid motion of k clusters on the surface of a spherical Earth. Because block geometry is maintained as strain accumulates, Euler-vector clustering may better approximate the block geometry than the values of the associated Euler vectors. The microplate solution for each k is constructed by merging contiguous clusters that have closely similar Euler vectors. The best solution consists of three microplates arranged along the Nankaido Trough-Ryukyu Trench between the Amurian and Philippine Sea Plates. One of these microplates, the South Kyushu Microplate (an extension of the Ryukyu forearc into the southeast corner of Kyushu), had previously been identified from paleomagnetic rotations. Relative to ITRF2000 the three microplates rotate at different rates about neighboring poles located close to the northwest corner of Shikoku. The microplate model is identical to that proposed in the block model of Wallace et al. (2009, https://doi.org/10.1130/G2522A.1) except in southernmost Kyushu. On Shikoku and Honshu, but not Kyushu, the microplate model is consistent with that proposed in the block models of Nishimura and Hashimoto (2006, https://doi.org/10.1016/j.tecto.2006.04.017) and Loveless and Meade (2010, https://doi.org/10.1029/2008JB006248) without the low-slip-rate boundaries proposed in the latter.

  3. VizieR Online Data Catalog: Cepheid radial velocity amplitude modulations (Anderson, 2014)

    NASA Astrophysics Data System (ADS)

    Anderson, R. I.

    2014-06-01

    A total of 983 radial velocity measurements of the four Cepheids QZ Nor (125), V335 Pup (95), l Car (324), and RS Pup (439) are provided. The measurements are based on observations carried out between April 2011 and February 2014 that were obtained using the Coralie spectrograph, mounted to the Swiss 1.2m Euler telescope located at La Silla Observatory, Chile. For each Cepheid, a table with the barycentric Julian date of observation, radial velocity, and the measurement uncertainty are provided. In addition, a table containing the identifiers, coordinates, and pulsation periods used to phase-fold the data (see the figures in the article) is provided. (5 data files).

  4. Leonhard Euler and his contributions to fluid mechanics

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1988-01-01

    The career of Leonhard Euler, one of the world's most gifted scientists, is reviewed. The paper focuses on Euler's contributions to fluid mechanics and gives a perspective of how this science was born. A bibliography is included to provide the history enthusiast with a starting point for further study.

  5. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    ERIC Educational Resources Information Center

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  6. A new Euler scheme based on harmonic-polygon approach for solving first order ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah

    2017-10-01

    There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.

  7. Causal dissipation for the relativistic dynamics of ideal gases

    NASA Astrophysics Data System (ADS)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  8. Global Regularity for the Fractional Euler Alignment System

    NASA Astrophysics Data System (ADS)

    Do, Tam; Kiselev, Alexander; Ryzhik, Lenya; Tan, Changhui

    2018-04-01

    We study a pressureless Euler system with a non-linear density-dependent alignment term, originating in the Cucker-Smale swarming models. The alignment term is dissipative in the sense that it tends to equilibrate the velocities. Its density dependence is natural: the alignment rate increases in the areas of high density due to species discomfort. The diffusive term has the order of a fractional Laplacian {(-partial _{xx})^{α/2}, α \\in (0, 1)}. The corresponding Burgers equation with a linear dissipation of this type develops shocks in a finite time. We show that the alignment nonlinearity enhances the dissipation, and the solutions are globally regular for all {α \\in (0, 1)}. To the best of our knowledge, this is the first example of such regularization due to the non-local nonlinear modulation of dissipation.

  9. Causal dissipation for the relativistic dynamics of ideal gases

    PubMed Central

    2017-01-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations. PMID:28588397

  10. Causal dissipation for the relativistic dynamics of ideal gases.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  11. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.

    PubMed

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-03-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.

  12. IMEX HDG-DG: A coupled implicit hybridized discontinuous Galerkin and explicit discontinuous Galerkin approach for Euler systems on cubed sphere.

    NASA Astrophysics Data System (ADS)

    Kang, S.; Muralikrishnan, S.; Bui-Thanh, T.

    2017-12-01

    We propose IMEX HDG-DG schemes for Euler systems on cubed sphere. Of interest is subsonic flow, where the speed of the acoustic wave is faster than that of the nonlinear advection. In order to simulate these flows efficiently, we split the governing system into stiff part describing the fast waves and non-stiff part associated with nonlinear advection. The former is discretized implicitly with HDG method while explicit Runge-Kutta DG discretization is employed for the latter. The proposed IMEX HDG-DG framework: 1) facilitates high-order solution both in time and space; 2) avoids overly small time stepsizes; 3) requires only one linear system solve per time step; and 4) relatively to DG generates smaller and sparser linear system while promoting further parallelism owing to HDG discretization. Numerical results for various test cases demonstrate that our methods are comparable to explicit Runge-Kutta DG schemes in terms of accuracy, while allowing for much larger time stepsizes.

  13. The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes

    NASA Astrophysics Data System (ADS)

    Barnes, A. P.; Lefloch, P. G.; Schmidt, B. G.; Stewart, J. M.

    2004-11-01

    We propose a new, augmented formulation of the coupled Euler Einstein equations for perfect fluids on plane-symmetric Gowdy spacetimes. The unknowns of the augmented system are the density and velocity of the fluid and the first- and second-order spacetime derivatives of the metric. We solve the Riemann problem for the augmented system, allowing propagating discontinuities in both the fluid variables and the first- and second-order derivatives of the geometry coefficients. Our main result, based on Glimm's random choice scheme, is the existence of solutions with bounded total variation of the Euler Einstein equations, up to the first time where a blow-up singularity (unbounded first-order derivatives of the geometry coefficients) occurs. We demonstrate the relevance of the augmented system for numerical relativity. We also consider general vacuum spacetimes and solve a Riemann problem, by relying on a theorem by Rendall on the characteristic value problem for the Einstein equations.

  14. An experiment for determining the Euler load by direct computation

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.; Stein, Peter A.

    1986-01-01

    A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.

  15. The Scaling Group of the 1-D Invisicid Euler Equations

    NASA Astrophysics Data System (ADS)

    Schmidt, Emma; Ramsey, Scott; Boyd, Zachary; Baty, Roy

    2017-11-01

    The one dimensional (1-D) compressible Euler equations in non-ideal media support scale invariant solutions under a variety of initial conditions. Famous scale invariant solutions include the Noh, Sedov, Guderley, and collapsing cavity hydrodynamic test problems. We unify many classical scale invariant solutions under a single scaling group analysis. The scaling symmetry group generator provides a framework for determining all scale invariant solutions emitted by the 1-D Euler equations for arbitrary geometry, initial conditions, and equation of state. We approach the Euler equations from a geometric standpoint, and conduct scaling analyses for a broad class of materials.

  16. Perturbational blowup solutions to the compressible Euler equations with damping.

    PubMed

    Cheung, Ka Luen

    2016-01-01

    The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.

  17. System Lifetimes, The Memoryless Property, Euler's Constant, and Pi

    ERIC Educational Resources Information Center

    Agarwal, Anurag; Marengo, James E.; Romero, Likin Simon

    2013-01-01

    A "k"-out-of-"n" system functions as long as at least "k" of its "n" components remain operational. Assuming that component failure times are independent and identically distributed exponential random variables, we find the distribution of system failure time. After some examples, we find the limiting…

  18. A robotized six degree of freedom stage for optical microscopy

    NASA Astrophysics Data System (ADS)

    Avramov, M. Z.; Ivanov, I.; Pavlov, V.; Zaharieva, K.

    2013-04-01

    This work represents an investigation of the possibility to use a hexapod system for optical microscopy investigation and measurements. An appropriate hexapod stage has been developed. The stage has been calibrated and used for several different optical microscopy applications. The construction of the stage is based on the classic Stewart platform and thus represents a parallel robot with 6 degree of freedom. Appropriate software is controlling the transformation of the 3 position coordinates of the moving plate and the 3 Euler angles in position velocities and accelerations of the plate motion. An embedded microcontroller is implementing the motion plan and the PID controller regulating the kinematics. By difference to the available in the market hexapods the proposed solution is with lower precision but is significantly cheaper and simple to maintain. The repeatability obtained with current implementation is 0,05 mm and 0,001 rad. A specialized DSP based video processing engine is used for both feedback computation and application specific image processing in real-time. To verify the concept some applications has been developed for specific tasks and has been used for specific measurements.

  19. Euler and His Contribution Number Theory

    ERIC Educational Resources Information Center

    Len, Amy; Scott, Paul

    2004-01-01

    Born in 1707, Leonhard Euler was the son of a Protestant minister from the vicinity of Basel, Switzerland. With the aim of pursuing a career in theology, Euler entered the University of Basel at the age of thirteen, where he was tutored in mathematics by Johann Bernoulli (of the famous Bernoulli family of mathematicians). He developed an interest…

  20. CFD validation needs for advanced concepts at Northrop Corporation

    NASA Technical Reports Server (NTRS)

    George, Michael W.

    1987-01-01

    Information is given in viewgraph form on the Computational Fluid Dynamics (CFD) Workshop held July 14 - 16, 1987. Topics covered include the philosophy of CFD validation, current validation efforts, the wing-body-tail Euler code, F-20 Euler simulated oil flow, and Euler Navier-Stokes code validation for 2D and 3D nozzle afterbody applications.

  1. An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore D.; Eyink, Gregory L.

    2017-12-01

    We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.

  2. Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1981-01-01

    The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates.

  3. GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package

    PubMed Central

    Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-01-01

    The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538

  4. GneimoSim: a modular internal coordinates molecular dynamics simulation package.

    PubMed

    Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-12-05

    The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.

  5. Control aspects of the human cardiovascular-respiratory system under a nonconstant workload.

    PubMed

    Calderon, Pio Gabrielle B; Habib, Mustafa; Kappel, Franz; de Los Reyes, Aurelio A

    2017-07-01

    The human cardiovascular system (CVS) and respiratory system (RS) work together in order to supply oxygen (O 2 ) and other substrates needed for metabolism and to remove carbon dioxide (CO 2 ). Global and local control mechanisms act on the CVS in order to adjust blood flow to the different parts of the body. This, in turn, affects the RS since the amount of O 2 and CO 2 transported, respectively to and away from the tissues depends on the cardiac output and blood flow in both the systemic and pulmonary circuits of the CVS. Local metabolic control is influenced by local concentrations of blood gases affecting systemic resistance, resulting to vasoconstriction/vasodilation. Thus, the exchange of blood gases demands a tight coordination between blood flow and ventilation of the lungs. In this work, a model of the cardiovascular-respiratory system (CVRS) is considered to obtain an optimal control for time-dependent ergometric workloads by using the Euler-Lagrange formulation of the optimal control problem. The essential controls in the CVRS model are variations in the heart rate and alveolar ventilation through which the central nervous system restricts the arterial partial pressure of CO 2 ( [Formula: see text] ) close to 40  mmHg. Further, penalization terms in the cost functional are included to match the metabolic need for O 2 and the metabolic production of CO 2 with O 2 - and CO 2 -transport by blood. Copyright © 2017. Published by Elsevier Inc.

  6. The History of the Planar Elastica: Insights into Mechanics and Scientific Method

    ERIC Educational Resources Information Center

    Goss, Victor Geoffrey Alan

    2009-01-01

    Euler's formula for the buckling of an elastic column is widely used in engineering design. However, only a handful of engineers will be familiar with Euler's classic paper "De Curvis Elasticis" in which the formula is derived. In addition to the Euler Buckling Formula, "De Curvis Elasticis" classifies all the bent configurations of elastic rod--a…

  7. The importance of Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov

    NASA Astrophysics Data System (ADS)

    Sharkov, N. A.; Sharkova, O. A.

    2018-05-01

    The paper identifies the importance of the Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov and for the modern knowledge in survivability and safety of ships. The works by Leonard Euler "Marine Science" and "The Moon Motion New Theory" are discussed.

  8. On the statistical mechanics of the 2D stochastic Euler equation

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg

    2011-12-01

    The dynamics of vortices and large scale structures is qualitatively very different in two dimensional flows compared to its three dimensional counterparts, due to the presence of multiple integrals of motion. These are believed to be responsible for a variety of phenomena observed in Euler flow such as the formation of large scale coherent structures, the existence of meta-stable states and random abrupt changes in the topology of the flow. In this paper we study stochastic dynamics of the finite dimensional approximation of the 2D Euler flow based on Lie algebra su(N) which preserves all integrals of motion. In particular, we exploit rich algebraic structure responsible for the existence of Euler's conservation laws to calculate the invariant measures and explore their properties and also study the approach to equilibrium. Unexpectedly, we find deep connections between equilibrium measures of finite dimensional su(N) truncations of the stochastic Euler equations and random matrix models. Our work can be regarded as a preparation for addressing the questions of large scale structures, meta-stability and the dynamics of random transitions between different flow topologies in stochastic 2D Euler flows.

  9. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips

    PubMed Central

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-01-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736

  10. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  11. Euler Technology Assessment for Preliminary Aircraft Design: Compressibility Predictions by Employing the Cartesian Unstructured Grid SPLITFLOW Code

    NASA Technical Reports Server (NTRS)

    Finley, Dennis B.; Karman, Steve L., Jr.

    1996-01-01

    The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  12. "Astronomica" in the Correspondence between Leonhard Euler and Daniel Bernoull (German Title: "Astronomica" im Briefwechsel zwischen Leonhard Euler und Daniel Bernoulli)

    NASA Astrophysics Data System (ADS)

    Verdun, Andreas

    2010-12-01

    The Euler Commission of the Swiss Academy of Sciences intends to terminate the edition of Leonhard Euler's works in the next year 2011 after nearly one hundred years since the beginning of the editorial works. These works include, e.g., Volume 3 of the Series quarta A which will contain the correspondence between Leonhard Euler (1707-1783) and Daniel Bernoulli (1700-1783) and which is currently being edited by Dr. Emil A. Fellmann (Basel) and Prof. Dr. Gleb K. Mikhailov (Moscow). This correspondence contains more than hundred letters, principally from Daniel Bernoulli to Euler. Parts of this correspondence were published uncommented already in 1843. It is astonishing that, apart from mathematics and physics (mainly mechanics and hydrodynamics), many topics addressed concern astronomy. The major part of the preserved correspondence between Euler and Daniel Bernoulli, in which astronomical themes are discussed, concerns celestial mechanics as the dominant discipline of theoretical astronomy of the eighteenth century. It was triggered and coined mainly by the prize questions of the Paris Academy of Science. In more than two thirds of the letters current problems and questions concerning celestial mechanics of that time are treated, focusing on the lunar theory and the great inequality in the motions of Jupiter and Saturn as special applications of the three body problem. In the remaining letters, problems concerning spherical astronomy are solved and attempts are made to explain certain phenomena in the field of "cosmic physics" concerning astronomical observations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Petersson, N. A.; Rodgers, A.

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less

  14. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  15. Splitting methods for low Mach number Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Dutt, Pravir; Gottlieb, David

    1987-01-01

    Examined are some splitting techniques for low Mach number Euler flows. Shortcomings of some of the proposed methods are pointed out and an explanation for their inadequacy suggested. A symmetric splitting for both the Euler and Navier-Stokes equations is then presented which removes the stiffness of these equations when the Mach number is small. The splitting is shown to be stable.

  16. Application of TVD schemes for the Euler equations of gas dynamics. [total variation diminishing for nonlinear hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    First-order, second-order, and implicit total variation diminishing (TVD) schemes are reviewed using the modified flux approach. Some transient and steady-state calculations are then carried out to illustrate the applicability of these schemes to the Euler equations. It is shown that the second-order explicit TVD schemes generate good shock resolution for both transient and steady-state one-dimensional and two-dimensional problems. Numerical experiments for a quasi-one-dimensional nozzle problem show that the second-order implicit TVD scheme produces a fairly rapid convergence rate and remains stable even when running with a Courant number of 10 to the 6th.

  17. An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring

    NASA Technical Reports Server (NTRS)

    Buratynski, E. K.; Caughey, D. A.

    1984-01-01

    An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.

  18. Recursive Newton-Euler formulation of manipulator dynamics

    NASA Technical Reports Server (NTRS)

    Nasser, M. G.

    1989-01-01

    A recursive Newton-Euler procedure is presented for the formulation and solution of manipulator dynamical equations. The procedure includes rotational and translational joints and a topological tree. This model was verified analytically using a planar two-link manipulator. Also, the model was tested numerically against the Walker-Orin model using the Shuttle Remote Manipulator System data. The hinge accelerations obtained from both models were identical. The computational requirements of the model vary linearly with the number of joints. The computational efficiency of this method exceeds that of Walker-Orin methods. This procedure may be viewed as a considerable generalization of Armstrong's method. A six-by-six formulation is adopted which enhances both the computational efficiency and simplicity of the model.

  19. Numerical solution of Euler's equation by perturbed functionals

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1985-01-01

    A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.

  20. Comparison between Euler and quaternion parametrization in UAV dynamics

    NASA Astrophysics Data System (ADS)

    Alaimo, A.; Artale, V.; Milazzo, C.; Ricciardello, A.

    2013-10-01

    The main topic addressed in this paper is a comparison between Euler parametrization and Quaternion one in the description of the dynamics of a Unmanned Aerial Vehicle assumed as a rigid body. In details Newton Euler equations are re-written in terms of quaternions due to the singularities that the Euler angles lead. This formulation not only avoids the gimbal lock but also allows a better performance in numerical implementation thanks to the linearity of quaternion algebra. This kind of analysis, proved by some numerical results presented, has a great importance due to the applicability of quaternion to drone control. Indeed, this latter requires a time response as quick as possible, in order to be reliable.

  1. Voidage correction algorithm for unresolved Euler-Lagrange simulations

    NASA Astrophysics Data System (ADS)

    Askarishahi, Maryam; Salehi, Mohammad-Sadegh; Radl, Stefan

    2018-04-01

    The effect of grid coarsening on the predicted total drag force and heat exchange rate in dense gas-particle flows is investigated using Euler-Lagrange (EL) approach. We demonstrate that grid coarsening may reduce the predicted total drag force and exchange rate. Surprisingly, exchange coefficients predicted by the EL approach deviate more significantly from the exact value compared to results of Euler-Euler (EE)-based calculations. The voidage gradient is identified as the root cause of this peculiar behavior. Consequently, we propose a correction algorithm based on a sigmoidal function to predict the voidage experienced by individual particles. Our correction algorithm can significantly improve the prediction of exchange coefficients in EL models, which is tested for simulations involving Euler grid cell sizes between 2d_p and 12d_p . It is most relevant in simulations of dense polydisperse particle suspensions featuring steep voidage profiles. For these suspensions, classical approaches may result in an error of the total exchange rate of up to 30%.

  2. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    PubMed

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  3. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  4. A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2010-09-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.

  5. Touchless attitude correction for satellite with constant magnetic moment

    NASA Astrophysics Data System (ADS)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  6. Comment on "Symplectic integration of magnetic systems" by Stephen D. Webb [J. Comput. Phys. 270 (2014) 570-576

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangxi; Jia, Yuesong; Sun, Qizhi

    2015-02-01

    Webb [1] proposed a method to get symplectic integrators of magnetic systems by Taylor expanding the discrete Euler-Lagrangian equations (DEL) which resulted from variational symplectic method by making the variation of the discrete action [2], and approximating the results to the order of O (h2), where h is the time step. And in that paper, Webb thought that the integrators obtained by that method are symplectic ones, especially, he treated Boris integrator (BI) as the symplectic one. However, we have questions about Webb's results. Theoretically the transformation of phase-space coordinates between two adjacent points induced by symplectic algorithm should conserve a symplectic 2-form [2-5]. As proved in Refs. [2,3], the transformations induced by the standard symplectic integrator derived from Hamilton and the variational symplectic integrator (VSI) [2,6] from Lagrangian should conserve a symplectic 2-forms. But the approximation of VSI to O (h2) obtained by that paper is hard to conserve a symplectic 2-form, contrary to the claim of [1]. In the next section, we will use BI as an example to support our point and will prove BI not to be a symplectic one but an integrator conserving discrete phase-space volume.

  7. Hamiltonian approaches to spatial and temporal discretization of fully compressible equations

    NASA Astrophysics Data System (ADS)

    Dubos, Thomas; Dubey, Sarvesh

    2017-04-01

    The fully compressible Euler (FCE) equations are the most accurate for representing atmospheric motion, compared to approximate systems like the hydrostatic, anelastic or pseudo-incompressible systems. The price to pay for this accuracy is the presence of additional degrees of freedom and high-frequency acoustic waves that must be treated implicitly. In this work we explore a Hamiltonian approach to the issue of stable spatial and temporal discretization of the FCE using a non-Eulerian vertical coordinate. For scalability, a horizontally-explicit, vertically-implicit (HEVI) time discretization is adopted. The Hamiltonian structure of the equations is used to obtain the spatial finite-difference discretization and also in order to identify those terms of the equations of motion that need to be treated implicitly. A novel treatment of the lower boundary condition in the presence of orography is introduced: rather than enforcing a no-normal-flow boundary condition, which couples the horizontal and vertical velocity components and interferes with the HEVI structure, the ground is treated as a flexible surface with arbitrarily large stiffness, resulting in a decoupling of the horizontal and vertical dynamics and yielding a simple implicit problem which can be solved efficiently. Standard test cases performed in a vertical slice configuration suggest that an effective horizontal acoustic Courant number close to 1 can be achieved.

  8. The impact of fluid topology on residual saturations - A pore-network model study

    NASA Astrophysics Data System (ADS)

    Doster, F.; Kallel, W.; van Dijke, R.

    2014-12-01

    In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).

  9. Modelling and control of a rotor supported by magnetic bearings

    NASA Technical Reports Server (NTRS)

    Gurumoorthy, R.; Pradeep, A. K.

    1994-01-01

    In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.

  10. Second- and third-order upwind difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.

    1984-01-01

    Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.

  11. Coordinated three-dimensional motion of the head and torso by dynamic neural networks.

    PubMed

    Kim, J; Hemami, H

    1998-01-01

    The problem of trajectory tracking control of a three dimensional (3D) model of the human upper torso and head is considered. The torso and the head are modeled as two rigid bodies connected at one point, and the Newton-Euler method is used to derive the nonlinear differential equations that govern the motion of the system. The two-link system is driven by six pairs of muscle like actuators that possess physiologically inspired alpha like and gamma like inputs, and spindle like and Golgi tendon organ like outputs. These outputs are utilized as reflex feedback for stability and stiffness control, in a long loop feedback for the purpose of estimating the state of the system (somesthesis), and as part of the input to the controller. Ideal delays of different duration are included in the feedforward and feedback paths of the system to emulate such delays encountered in physiological systems. Dynamical neural networks are trained to learn effective control of the desired maneuvers of the system. The feasibility of the controller is demonstrated by computer simulation of the successful execution of the desired maneuvers. This work demonstrates the capabilities of neural circuits in controlling highly nonlinear systems with multidelays in their feedforward and feedback paths. The ultimate long range goal of this research is toward understanding the working of the central nervous system in controlling movement. It is an interdisciplinary effort relying on mechanics, biomechanics, neuroscience, system theory, physiology and anatomy, and its short range relevance to rehabilitation must be noted.

  12. Euler solutions for an unbladed jet engine configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1991-01-01

    A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.

  13. A minimum entropy principle in the gas dynamics equations

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1986-01-01

    Let u(x bar,t) be a weak solution of the Euler equations, governing the inviscid polytropic gas dynamics; in addition, u(x bar, t) is assumed to respect the usual entropy conditions connected with the conservative Euler equations. We show that such entropy solutions of the gas dynamics equations satisfy a minimum entropy principle, namely, that the spatial minimum of their specific entropy, (Ess inf s(u(x,t)))/x, is an increasing function of time. This principle equally applies to discrete approximations of the Euler equations such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this minimum principle makes use of the fact that there is a family of generalized entrophy functions connected with the conservative Euler equations.

  14. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations.

    PubMed

    Zajac, Felix E; Neptune, Richard R; Kautz, Steven A

    2002-12-01

    Current understanding of how muscles coordinate walking in humans is derived from analyses of body motion, ground reaction force and EMG measurements. This is Part I of a two-part review that emphasizes how muscle-driven dynamics-based simulations assist in the understanding of individual muscle function in walking, especially the causal relationships between muscle force generation and walking kinematics and kinetics. Part I reviews the strengths and limitations of Newton-Euler inverse dynamics and dynamical simulations, including the ability of each to find the contributions of individual muscles to the acceleration/deceleration of the body segments. We caution against using the concept of biarticular muscles transferring power from one joint to another to infer muscle coordination principles because energy flow among segments, even the adjacent segments associated with the joints, cannot be inferred from computation of joint powers and segmental angular velocities alone. Rather, we encourage the use of dynamical simulations to perform muscle-induced segmental acceleration and power analyses. Such analyses have shown that the exchange of segmental energy caused by the forces or accelerations induced by a muscle can be fundamentally invariant to whether the muscle is shortening, lengthening, or neither. How simulation analyses lead to understanding the coordination of seated pedaling, rather than walking, is discussed in this first part because the dynamics of pedaling are much simpler, allowing important concepts to be revealed. We elucidate how energy produced by muscles is delivered to the crank through the synergistic action of other non-energy producing muscles; specifically, that a major function performed by a muscle arises from the instantaneous segmental accelerations and redistribution of segmental energy throughout the body caused by its force generation. Part II reviews how dynamical simulations provide insight into muscle coordination of walking.

  15. Domain modeling and grid generation for multi-block structured grids with application to aerodynamic and hydrodynamic configurations

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.

    1992-01-01

    About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.

  16. A design of optical measurement laboratory for space-based illumination condition emulation

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Zhao, Fei; Yang, Xin

    2015-10-01

    Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions and sensor selections are provided. Comparing to current methods, this design shows better effects on device simplication, automatic control and high-precision measurement.

  17. Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state

    NASA Astrophysics Data System (ADS)

    Lee, Bok Jik; Toro, Eleuterio F.; Castro, Cristóbal E.; Nikiforakis, Nikolaos

    2013-08-01

    For the numerical simulation of detonation of condensed phase explosives, a complex equation of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Cochran-Chan (C-C) EOS, are widely used. However, when a conservative scheme is used for solving the Euler equations with such equations of state, a spurious solution across the contact discontinuity, a well known phenomenon in multi-fluid systems, arises even for single materials. In this work, we develop a generalised Osher-type scheme in an adaptive primitive-conservative framework to overcome the aforementioned difficulties. Resulting numerical solutions are compared with the exact solutions and with the numerical solutions from the Godunov method in conjunction with the exact Riemann solver for the Euler equations with Mie-Grüneisen form of equations of state, such as the JWL and the C-C equations of state. The adaptive scheme is extended to second order and its empirical convergence rates are presented, verifying second order accuracy for smooth solutions. Through a suite of several tests problems in one and two space dimensions we illustrate the failure of conservative schemes and the capability of the methods of this paper to overcome the difficulties.

  18. Algorithmic Extensions of Low-Dispersion Scheme and Modeling Effects for Acoustic Wave Simulation. Revised

    NASA Technical Reports Server (NTRS)

    Kaushik, Dinesh K.; Baysal, Oktay

    1997-01-01

    Accurate computation of acoustic wave propagation may be more efficiently performed when their dispersion relations are considered. Consequently, computational algorithms which attempt to preserve these relations have been gaining popularity in recent years. In the present paper, the extensions to one such scheme are discussed. By solving the linearized, 2-D Euler and Navier-Stokes equations with such a method for the acoustic wave propagation, several issues were investigated. Among them were higher-order accuracy, choice of boundary conditions and differencing stencils, effects of viscosity, low-storage time integration, generalized curvilinear coordinates, periodic series, their reflections and interference patterns from a flat wall and scattering from a circular cylinder. The results were found to be promising en route to the aeroacoustic simulations of realistic engineering problems.

  19. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr; Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr

    2015-03-10

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap schememore » is introduced to numerically approximate the model’s flow equations.« less

  20. A Shock-Adaptive Godunov Scheme Based on the Generalised Lagrangian Formulation

    NASA Astrophysics Data System (ADS)

    Lepage, C. Y.; Hui, W. H.

    1995-12-01

    Application of the Godunov scheme to the Euler equations of gas dynamics based on the Eulerian formulation of flow smears discontinuities, sliplines especially, over several computational cells, while the accuracy in the smooth flow region is of the order O( h), where h is the cell width. Based on the generalised Lagrangian formulation (GLF) of Hui et al., the Godunov scheme yields superior accuracy. By the use of coordinate streamlines in the GLF, the slipline—itself a streamline—is resolved crisply. Infinite shock resolution is achieved through the splitting of shock-cells. An improved entropy-conservation formulation of the governing equations is also proposed for computations in smooth flow regions. Finally, the use of the GLF substantially simplifies the programming logic resulting in a very robust, accurate, and efficient scheme.

  1. CFD analysis of multiphase blood flow within aorta and its thoracic branches of patient with coarctation of aorta using multiphase Euler - Euler approach

    NASA Astrophysics Data System (ADS)

    Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.

    2016-09-01

    In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).

  2. Transonic flow analysis for rotors. Part 3: Three-dimensional, quasi-steady, Euler calculation

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung

    1990-01-01

    A new method is presented for calculating the quasi-steady transonic flow over a lifting or non-lifting rotor blade in both hover and forward flight by using Euler equations. The approach is to solve Euler equations in a rotor-fixed frame of reference using a finite volume method. A computer program was developed and was then verified by comparison with wind-tunnel data. In all cases considered, good agreement was found with published experimental data.

  3. Computation of transonic viscous-inviscid interacting flow

    NASA Technical Reports Server (NTRS)

    Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.

    1983-01-01

    Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829

  4. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  5. Equations with Arithmetic Functions of Pell Numbers

    DTIC Science & Technology

    2014-01-01

    Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 4, 2014, 409–413 Equations with arithmetic functions of Pell numbers by 1Florian Luca...2Pantelimon Stănică Abstract Here, we prove some diophantine results about the Euler function of Pell numbers and their Pell –Lucas companion sequence. For...example, if the Euler function of the nth Pell number Pn or Pell –Lucas companion number Qn is a power of 2, then n ≤ 8. Key Words: Euler function, Pell

  6. Remarks on Heisenberg-Euler-type electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-05-01

    We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.

  7. Shell-crossing in quasi-one-dimensional flow

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Frisch, Uriel

    2017-10-01

    Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the density singular. Shell-crossing is well understood in one dimension (1D), but not in higher dimensions. This paper is about quasi-one-dimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shell-crossing using the Euler-Poisson equations written in Lagrangian coordinates. The signature of shell-crossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence, the problem of the first shell-crossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Here, all-order recursion relations are obtained for the time-Taylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shell-crossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time τ ˜ t2/3. For simplicity, calculations are restricted to an Einstein-de Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorin Zaharia; C.Z. Cheng

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot bemore » in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.« less

  9. An unconditionally stable Runge-Kutta method for unsteady flows

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Chima, Rodrick V.

    1988-01-01

    A quasi-three dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme.

  10. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  11. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Jorge E.; Ullrich, Paul A.

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  12. Elliptical Chandler pole motions of the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Barkin, Yury; Ferrandiz, Jose

    2010-05-01

    In the work the values of the period and eccentricity of Chandler motion of poles of axes of rotation of the Earth and Mars have been determined. The research has been carried out on the basis of developed earlier by authors an intermediate rotary Chandler-Euler motion of the weakly deformable celestial bodies (Barkin, Ferrandiz and Getino, 1996; Barkin, 1998). An influence of a liquid core on Chandler motion of a pole in the given work has not considered. The periods of the specified pole motions make 447.1 d for the Earth and 218.1 d for Mars. In comparison with Euler motions of poles because of elastic properties of planets the Chandler periods are increased accordingly on 142.8 d (about 46.9 %) for the Earth and on 26.2 d (on 13.7 %) for Mars. Values of eccentricities of specified Chandler motions of pole e = √b2 --a2- b (here a both b are smaller and big semi-axes of Chandler ellipse) make 0.09884 for the Earth and 0.3688 for Mars (accordingly, on 21.1 % and 6.2 % more than the appropriate values of eccentricities for models of planets as rigid non-spherical bodies). Axes of an ellipse a also b correspond to the principal equatorial axes of inertia of a planet Ox and Oyfor which the moments of inertia have the smallest valueA and middle value B. The pole of the principal axis of inertia Ox for the Earth is displaced to the west on the angle 14°9285, and the pole of the principal axis of inertia Ox for Mars is displaced to the west on the angle 105°0178 (in the appropriate basic geographical systems of coordinates of the given planets). For ellipticties of Chandler trajectories ɛ = (b- a)-b the values 0.004897 (for the Earth) and 0.07048 (for Mars) have been obtained. The specified values surpass by Euler values of appropriate ellipticties on 46.8 % (in case of the Earth) and on 13.3 % (in the case of Mars). Love number k2describing the elastic properties of planets, were accepted equal 0.30 for the Earth and 0.153 for Mars. Estimations of Chandler periods will well be coordinated to similar estimations of other authors for models of elastic planet in 200-212 d (Konopliv et al., 2006; Zharkov, Gudkova, 2009). The values of eccentricity and ellipticity of Chandler pole motion of the Earth will be coordinated to earlier estimations e=0.096-0.098 and ɛ=0.0046-0.0048 (Barkin, 1998; Barkin, Ferrandiz, 2004), and for Mars have been obtained for the first time. The account of influence of a liquid core on considered parameters of motion of poles of planet with elastic mantle also is discussed in report on the base of author's approach developed in the paper (Ferrandiz, Barkin, 2001). The Barkin's work partially was finacially accepted by Spanish grants, Japanise-Russian grant N-09-02-92113-JF and by RFBR grant N 08-02-00367. References Barkin Yu.V., Ferrandiz J.M., J. Getino (1996) About Applications Angle-Action Variables in Rotation Dynamics of the Deformable Celestial Bodies. (Eds. S. Ferraz-Mello, B. Morrando, J.-E. Arlot) Dynamics, ephemerides and astrometry of the solar system. Proceedings. 172 nd Symposium of the International Astronomical Union, Paris ( France), 3-8 Jul. 1995. 1996, pp. 243-244. Barkin Yu.V. (1998) Unperturbed Chandler's Motion and Perturbation Theory of the Rotational Motion of the Deformable Celestial Bodies. Astronomical and Astrophysical Transactions, v. 17, N3, pp. 431-475. Barkin Yu.V., Ferrandiz J.M. (2004) Some dynamical effects in unperturbed and perturbed Earth rotation caused by elastic properties of the mantle. Journees 2004 'Systems de reference spatio temporals' (20-22 September, 2004, Paris, France). Fundamental Astronomy: New concepts and models for high accuracy observations. Book of abstracts, Observatoire de Paris, pp. 15-16. Ferrandiz, J.M. and Barkin, Yu.V. (2001) Dynamics of the rotational motion of the planet with the elastic mantle, liquid core and with the changeable external shell. Proceedings of International Conference «AstroKazan-2001». Astronomy and geodesy in new millennium (24-29 September 2001), Kazan State University: Publisher «DAS», pp. 123-129. Konopliv A.S., Yoder C.F., Standish E.M., Yuan D.-N. and Sjogren W.L. (2006) A global solution for Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus, V. 182, pp. 23-50. Zarkov V.N., Gudkova T.V. (2009) The period and Q of the Chandler wobble of Mars. Planetary and Space Science (in press).

  13. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  14. Euler equation computations for the flow over a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas Wesley

    1988-01-01

    A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.

  15. Three Dimensional Aerodynamic Analysis of a High-Lift Transport Configuration

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1993-01-01

    Two computational methods, a surface panel method and an Euler method employing unstructured grid methodology, were used to analyze a subsonic transport aircraft in cruise and high-lift conditions. The computational results were compared with two separate sets of flight data obtained for the cruise and high-lift configurations. For the cruise configuration, the surface pressures obtained by the panel method and the Euler method agreed fairly well with results from flight test. However, for the high-lift configuration considerable differences were observed when the computational surface pressures were compared with the results from high-lift flight test. On the lower surface of all the elements with the exception of the slat, both the panel and Euler methods predicted pressures which were in good agreement with flight data. On the upper surface of all the elements the panel method predicted slightly higher suction compared to the Euler method. On the upper surface of the slat, pressure coefficients obtained by both the Euler and panel methods did not agree with the results of the flight tests. A sensitivity study of the upward deflection of the slat from the 40 deg. flap setting suggested that the differences in the slat deflection between the computational model and the flight configuration could be one of the sources of this discrepancy. The computation time for the implicit version of the Euler code was about 1/3 the time taken by the explicit version though the implicit code required 3 times the memory taken by the explicit version.

  16. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.

  17. 3-D conditional hyperbolic method of moments for high-fidelity Euler-Euler simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    Particle-laden turbulent flows are important features of many environmental and industrial processes. Euler-Euler (EE) simulations of these flows are more computationally efficient than Euler-Lagrange (EL) simulations. However, traditional EE methods, such as the two-fluid model, cannot faithfully capture dilute regions of flow with finite Stokes number particles. For this purpose, the multi-valued nature of the particle velocity field must be treated with a polykinetic description. Various quadrature-based moment methods (QBMM) can be used to approximate the full kinetic description by solving for a set of moments of the particle velocity distribution function (VDF) and providing closures for the higher-order moments. Early QBMM fail to maintain the strict hyperbolicity of the kinetic equations, producing unphysical delta shocks (i.e., mass accumulation at a point). In previous work, a 2-D conditional hyperbolic quadrature method of moments (CHyQMOM) was proposed as a fourth-order QBMM closure that maintains strict hyperbolicity. Here, we present the 3-D extension of CHyQMOM. We compare results from CHyQMOM to other QBMM and EL in the context of particle trajectory crossing, cluster-induced turbulence, and particle-laden channel flow. NSF CBET-1437903.

  18. Oscillation Amplitude Growth for a Decelerating Object with Constant Pitch Damping

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Litton, Daniel

    2006-01-01

    The equations governing the deceleration and oscillation of a blunt body moving along a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic solution of this equation describes the oscillation amplitude growth and frequency dilation with time for a statically stable decelerating body with constant pitch damping. The oscillation histories for several constant pitch damping values, predicted by the solution of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) trajectory simulations. The simulations use simplified aerodynamic coefficients matching the Euler-Cauchy approximations. Agreement between the model predictions and simulation results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations and ballistic range data to identify static stability and pitch damping coefficients. The model os shown to closely fit through the data points and capture the behavior of the blunt body observed in simulation and experiment. The extracted coefficients are in reasonable agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondimensional version of the Euler-Cauchy equation is presented and shown to be a simple and effective tool for designing dynamically scaled experiments for decelerating blunt capsule flight.

  19. Adapting the Euler-Lagrange equation to study one-dimensional motions under the action of a constant force

    NASA Astrophysics Data System (ADS)

    Dias, Clenilda F.; Araújo, Maria A. S.; Carvalho-Santos, Vagson L.

    2018-01-01

    The Euler-Lagrange equations (ELE) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of ELE to study one-dimensional motions under the action of a constant force. From the use of the definition of partial derivative, we have proposed two operators, here called mean delta operators, which may be used to solve the ELE in a simplest way. We have applied this simplification to solve three simple mechanical problems in which the particle is under the action of the gravitational field: a free fall body, the Atwood’s machine and the inclined plan. The proposed simplification can be used to introduce the lagrangian formalism in teaching classical mechanics in introductory physics courses.

  20. A globally well-posed finite element algorithm for aerodynamics applications

    NASA Technical Reports Server (NTRS)

    Iannelli, G. S.; Baker, A. J.

    1991-01-01

    A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For the linear basis, the resultant approximation is at least second-order-accurate in time and space for synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second-order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and two-dimensional Euler and Navier-Stokes benchmark test problems.

  1. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M.-S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one and two-dimensional problems.

  2. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families.

    PubMed

    Reintjes, Moritz; Temple, Blake

    2015-05-08

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C 0,1 to C 1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C 1,1 , cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein-Euler equations remains open.

  3. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families

    PubMed Central

    Reintjes, Moritz; Temple, Blake

    2015-01-01

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C0,1 to C1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C1,1, cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein–Euler equations remains open. PMID:27547092

  4. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.

  5. Faddeev-Jackiw quantization of topological invariants: Euler and Pontryagin classes

    NASA Astrophysics Data System (ADS)

    Escalante, Alberto; Medel-Portugal, C.

    2018-04-01

    The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pontryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.

  6. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  7. On the Euler Function of the Catalan Numbers

    DTIC Science & Technology

    2012-02-26

    ON THE EULER FUNCTION OF THE CATALAN NUMBERS FLORIAN LUCA AND PANTELIMON STĂNICĂ Abstract. We study the solutions of the equation φ(Cm)/φ(Cn) = r...where r is a fixed rational number , Ck is the kth Catalan number and φ is the Euler function. We note that the number r = 4 is special for this...observation concerning φ(Cn+1)/φ(Cn) For a positive integer n, let (1) Cn = 1 n+ 1 ( 2n n ) be the n-th Catalan number . For a positive integer m we put φ(m) for

  8. Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Freed, A. D.

    1991-01-01

    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.

  9. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

    NASA Astrophysics Data System (ADS)

    Kifonidis, K.; Müller, E.

    2012-08-01

    Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a Courant number of nine thousand, even complete multigrid breakdown is observed. Local Fourier analysis indicates that the degradation of the convergence rate is associated with the coarse-grid correction algorithm. An implicit scheme for the Euler equations that makes use of the present method was, nevertheless, able to outperform a standard explicit scheme on a time-dependent problem with a Courant number of order 1000. Conclusions: For steady-state problems, the described approach enables the construction of parallelizable, efficient, and robust implicit hydrodynamics solvers. The applicability of the method to time-dependent problems is presently restricted to cases with moderately high Courant numbers. This is due to an insufficient coarse-grid correction of the employed multigrid algorithm for large time steps. Further research will be required to help us to understand and overcome the observed multigrid convergence difficulties for time-dependent problems.

  10. A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.

  11. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    PubMed

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  13. Newton-Euler Dynamic Equations of Motion for a Multi-body Spacecraft

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric

    2007-01-01

    The Magnetospheric MultiScale (MMS) mission employs a formation of spinning spacecraft with several flexible appendages and thruster-based control. To understand the complex dynamic interaction of thruster actuation, appendage motion, and spin dynamics, each spacecraft is modeled as a tree of rigid bodies connected by spherical or gimballed joints. The method presented facilitates assembling by inspection the exact, nonlinear dynamic equations of motion for a multibody spacecraft suitable for solution by numerical integration. The building block equations are derived by applying Newton's and Euler's equations of motion to an "element" consisting of two bodies and one joint (spherical and gimballed joints are considered separately). Patterns in the "mass" and L'force" matrices guide assembly by inspection of a general N-body tree-topology system. Straightforward linear algebra operations are employed to eliminate extraneous constraint equations, resulting in a minimum-dimension system of equations to solve. This method thus combines a straightforward, easily-extendable, easily-mechanized formulation with an efficient computer implementation.

  14. Well-posedness of the Einstein-Euler system in asymptotically flat spacetimes: The constraint equations

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    This paper deals with the construction of initial data for the coupled Einstein-Euler system. We consider the condition where the energy density might vanish or tend to zero at infinity, and where the pressure is a fractional power of the energy density. In order to achieve our goals we use a type of weighted Sobolev space of fractional order. The common Lichnerowicz-York scaling method (Choquet-Bruhat and York, 1980 [9]; Cantor, 1979 [7]) for solving the constraint equations cannot be applied here directly. The basic problem is that the matter sources are scaled conformally and the fluid variables have to be recovered from the conformally transformed matter sources. This problem has been addressed, although in a different context, by Dain and Nagy (2002) [11]. We show that if the matter variables are restricted to a certain region, then the Einstein constraint equations have a unique solution in the weighted Sobolev spaces of fractional order. The regularity depends upon the fractional power of the equation of state.

  15. Hydrodynamic Scalings: from Astrophysics to Laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Remington, B. A.

    2000-05-01

    A surprisingly general hydrodynamic similarity has been recently described in Refs. [1,2]. One can call it the Euler similarity because it works for the Euler equations (with MHD effects included). Although the dissipation processes are assumed to be negligible, the presence of shocks is allowed. For the polytropic medium (i.e., the medium where the energy density is proportional to the pressure), an evolution of an arbitrarily chosen 3D initial state can be scaled to another system, if a single dimensionless parameter (the Euler number) is the same for both initial states. The Euler similarity allows one to properly design laboratory experiments modeling astrophysical phenomena. We discuss several examples of such experiments related to the physics of supernovae [3]. For the problems with a single spatial scale, the condition of the smallness of dissipative processes can be adequately described in terms of the Reynolds, Peclet, and magnetic Reynolds numbers related to this scale (all three numbers must be large). However, if the system develops small-scale turbulence, dissipation may become important at these smaller scales, thereby affecting the gross behavior of the system. We analyze the corresponding constraints. We discuss also constraints imposed by the presence of interfaces between the substances with different polytropic index. Another set of similarities governs evolution of photoevaporation fronts in astrophysics. Convenient scaling laws exist in situations where the density of the ablated material is very low compared to the bulk density. We conclude that a number of hydrodynamical problems related to such objects as the Eagle Nebula can be adequately simulated in the laboratory. We discuss also possible scalings for radiative astrophysical jets (see Ref. [3] and references therein). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48. 1. D.D. Ryutov, R.P. Drake, J. Kane, E. Liang, B. A. Remington, and W.M. Wood-Vasey. "Similarity criteria for the laboratory simulation of supernova hydrodynamics." Astrophysical Journal, v. 518, p. 821 (1999). 2. D.D. Ryutov, R.P. Drake, B.A. Remington. "Criteria for scaled laboratory simulations of astrophysical MHD phenomena." To appear in Astrophysical Journal - Supplement, April 2000. 3. Remington, B.A., Phys. Plasmas, 7, # 5 (2000).

  16. Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl

    NASA Astrophysics Data System (ADS)

    Frewer, M.; Oberlack, M.; Guenther, S.

    2007-08-01

    We discuss the incompressible stationary axisymmetric Euler equations with swirl, for which we derive via a scalar stream function an equivalent representation, the Bragg-Hawthorne equation [Bragg, S.L., Hawthorne, W.R., 1950. Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243]. Despite this obvious equivalence, we will show that under a local Lie point symmetry analysis the Bragg-Hawthorne equation exposes itself as not being fully equivalent to the original Euler equations. This is reflected in the way that it possesses additional symmetries not being admitted by its counterpart. In other words, a symmetry of the Bragg-Hawthorne equation is in general not a symmetry of the Euler equations. Not the differential Euler equations but rather a set of integro-differential equations attains full equivalence to the Bragg-Hawthorne equation. For these intermediate Euler equations, it is interesting to note that local symmetries of the Bragg-Hawthorne equation transform to local as well as to nonlocal symmetries. This behaviour, on the one hand, is in accordance with Zawistowski's result [Zawistowski, Z.J., 2001. Symmetries of integro-differential equations. Rep. Math. Phys. 48, 269; Zawistowski, Z.J., 2004. General criterion of invariance for integro-differential equations. Rep. Math. Phys. 54, 341] that it is possible for integro-differential equations to admit local Lie point symmetries. On the other hand, with this transformation process we collect symmetries which cannot be obtained when carrying out a usual local Lie point symmetry analysis. Finally, the symmetry classification of the Bragg-Hawthorne equation is used to find analytical solutions for the phenomenon of vortex breakdown.

  17. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  18. Euler Technology Assessment for Preliminary Aircraft Design-Unstructured/Structured Grid NASTD Application for Aerodynamic Analysis of an Advanced Fighter/Tailless Configuration

    NASA Technical Reports Server (NTRS)

    Michal, Todd R.

    1998-01-01

    This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.

  19. Summing up the Euler [phi] Function

    ERIC Educational Resources Information Center

    Loomis, Paul; Plytage, Michael; Polhill, John

    2008-01-01

    The Euler [phi] function counts the number of positive integers less than and relatively prime to a positive integer n. Here we look at perfect totient numbers, number for which [phi](n) + [phi]([phi](n)) + [phi]([phi]([phi](n))) + ... + 1 = n.

  20. Hydrodynamic Coherence and Vortex Solutions of the Euler-Helmholtz Equation

    NASA Astrophysics Data System (ADS)

    Fimin, N. N.; Chechetkin, V. M.

    2018-03-01

    The form of the general solution of the steady-state Euler-Helmholtz equation (reducible to the Joyce-Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.

  1. Women and Mathematics in the Time of Euler

    ERIC Educational Resources Information Center

    Mayfield, Betty

    2013-01-01

    We explore mathematics written both by and for women in eighteenth-century Europe, and some of the interesting personalities involved: Maria Agnesi, Emilie du Chatelet, Laura Bassi, Princess Charlotte Ludovica Luisa, John Colson, Francesco Algarotti, and Leonhard Euler himself.

  2. Statistical Extremes of Turbulence and a Cascade Generalisation of Euler's Gyroscope Equation

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Scherzer, Daniel

    2016-04-01

    Turbulence refers to a rather well defined hydrodynamical phenomenon uncovered by Reynolds. Nowadays, the word turbulence is used to designate the loss of order in many different geophysical fields and the related fundamental extreme variability of environmental data over a wide range of scales. Classical statistical techniques for estimating the extremes, being largely limited to statistical distributions, do not take into account the mechanisms generating such extreme variability. An alternative approaches to nonlinear variability are based on a fundamental property of the non-linear equations: scale invariance, which means that these equations are formally invariant under given scale transforms. Its specific framework is that of multifractals. In this framework extreme variability builds up scale by scale leading to non-classical statistics. Although multifractals are increasingly understood as a basic framework for handling such variability, there is still a gap between their potential and their actual use. In this presentation we discuss how to dealt with highly theoretical problems of mathematical physics together with a wide range of geophysical applications. We use Euler's gyroscope equation as a basic element in constructing a complex deterministic system that preserves not only the scale symmetry of the Navier-Stokes equations, but some more of their symmetries. Euler's equation has been not only the object of many theoretical investigations of the gyroscope device, but also generalised enough to become the basic equation of fluid mechanics. Therefore, there is no surprise that a cascade generalisation of this equation can be used to characterise the intermittency of turbulence, to better understand the links between the multifractal exponents and the structure of a simplified, but not simplistic, version of the Navier-Stokes equations. In a given way, this approach is similar to that of Lorenz, who studied how the flap of a butterfly wing could generate a cyclone with the help of a 3D ordinary differential system. Being well supported by the extensive numerical results, the cascade generalisation of Euler's gyroscope equation opens new horizons for predictability and predictions of processes having long-range dependences.

  3. Hyperbolic conservation laws and numerical methods

    NASA Technical Reports Server (NTRS)

    Leveque, Randall J.

    1990-01-01

    The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.

  4. Newton to Einstein — dust to dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas, E-mail: michael.kopp@physik.lmu.de, E-mail: cora.uhlemann@physik.lmu.de, E-mail: thomas.haugg@physik.lmu.de

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show thatmore » this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.« less

  5. Optimized Hypernetted-Chain Solutions for Helium -4 Surfaces and Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Qian, Guo-Xin

    This thesis is a study of inhomogeneous Bose systems such as liquid ('4)He slabs and inhomogeneous Fermi systems such as the electron gas in metal films, at zero temperature. Using a Jastrow-type many-body wavefunction, the ground state energy is expressed by means of Bogoliubov-Born-Green-Kirkwood -Yvon and Hypernetted-Chain techniques. For Bose systems, Euler-Lagrange equations are derived for the one- and two -body functions and systematic approximation methods are physically motivated. It is shown that the optimized variational method includes a self-consistent summation of ladder- and ring-diagrams of conventional many-body theory. For Fermi systems, a linear potential model is adopted to generate the optimized Hartree-Fock basis. Euler-Lagrange equations are derived for the two-body correlations which serve to screen the strong bare Coulomb interaction. The optimization of the pair correlation leads to an expression of correlation energy in which the state averaged RPA part is separated. Numerical applications are presented for the density profile and pair distribution function for both ('4)He surfaces and metal surfaces. Both the bulk and surface energies are calculated in good agreement with experiments.

  6. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    NASA Astrophysics Data System (ADS)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  7. Centrifuge Rotor Models: A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Granda, Jose J.; Ramakrishnan, Jayant; Nguyen, Louis H.

    2006-01-01

    A viewgraph presentation on centrifuge rotor models with a comparison using Euler-Lagrange and bond graph methods is shown. The topics include: 1) Objectives; 2) MOdeling Approach Comparisons; 3) Model Structures; and 4) Application.

  8. On the commutator of C^{\\infty}} -symmetries and the reduction of Euler-Lagrange equations

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.; Olver, P. J.

    2018-04-01

    A novel procedure to reduce by four the order of Euler-Lagrange equations associated to nth order variational problems involving single variable integrals is presented. In preparation, a new formula for the commutator of two \

  9. The 3D Euler solutions using automated Cartesian grid generation

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.

  10. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1993-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  11. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1992-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  12. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.

    1992-01-01

    Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.

  13. On the Local Type I Conditions for the 3D Euler Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Wolf, Jörg

    2018-05-01

    We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \

  14. Unstructured Euler flow solutions using hexahedral cell refinement

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1991-01-01

    An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.

  15. Investigation of source location determination from Magsat magnetic anomalies: The Euler method approach

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay

    1996-01-01

    The applicability of the Euler method of source location determination was investigated on several model situations pertinent to satellite-data scale situations as well as Magsat data of Europe. Our investigations enabled us to understand the end-member cases for which the Euler method will work with the present satellite magnetic data and also the cases for which the assumptions implicit in the Euler method will not be met by the present satellite magnetic data. These results have been presented in one invited lecture at the Indo-US workshop on Geomagnetism in Studies of the Earth's Interior in August 1994 in Pune, India, and at one presentation at the 21st General Assembly of the IUGG in July 1995 in Boulder, CO. A new method, called Anomaly Attenuation Rate (AAR) Method (based on the Euler method), was developed during this study. This method is scale-independent and is appropriate to locate centroids of semi-compact three dimensional sources of gravity and magnetic anomalies. The method was presented during 1996 Spring AGU meeting and a manuscript describing this method is being prepared for its submission to a high-ranking journal. The grant has resulted in 3 papers and presentations at national and international meetings and one manuscript of a paper (to be submitted shortly to a reputable journal).

  16. Discretization chaos - Feedback control and transition to chaos

    NASA Technical Reports Server (NTRS)

    Grantham, Walter J.; Athalye, Amit M.

    1990-01-01

    Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.

  17. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  18. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, James E.; Berrill, Mark A.; Gray, William G.

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  19. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  20. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  1. Dynamic analysis and control PID path of a model type gantry crane

    NASA Astrophysics Data System (ADS)

    Ospina-Henao, P. A.; López-Suspes, Framsol

    2017-06-01

    This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. In order to verify the theoretical results obtained, a contrast was made between solutions obtained by simulation in SimMechanics-Matlab and Euler-Lagrange equations system, has been solved through Matlab libraries for solving equation’s systems of the type and order obtained. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of PID control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.

  2. The Legacy of Leonhard Euler--A Tricentennial Tribute

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2009-01-01

    This tricentennial tribute commemorates Euler's major contributions to mathematical and physical sciences. A brief biographical sketch is presented with his major contributions to certain selected areas of number theory, differential and integral calculus, differential equations, solid and fluid mechanics, topology and graph theory, infinite…

  3. Euler's Identity, Leibniz Tables, and the Irrationality of Pi

    ERIC Educational Resources Information Center

    Jones, Timothy W.

    2012-01-01

    Using techniques that show that e and pi are transcendental, we give a short, elementary proof that pi is irrational based on Euler's identity. The proof involves evaluations of a polynomial using repeated applications of Leibniz formula as organized in a Leibniz table.

  4. A Revelation: Quantum-Statistics and Classical-Statistics are Analytic-Geometry Conic-Sections and Numbers/Functions: Euler, Riemann, Bernoulli Generating-Functions: Conics to Numbers/Functions Deep Subtle Connections

    NASA Astrophysics Data System (ADS)

    Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!

  5. Multigrid calculation of three-dimensional turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1989-01-01

    Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.

  6. On the estimation variance for the specific Euler-Poincaré characteristic of random networks.

    PubMed

    Tscheschel, A; Stoyan, D

    2003-07-01

    The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.

  7. On the Approximation of Generalized Lipschitz Function by Euler Means of Conjugate Series of Fourier Series

    PubMed Central

    Kushwaha, Jitendra Kumar

    2013-01-01

    Approximation theory is a very important field which has various applications in pure and applied mathematics. The present study deals with a new theorem on the approximation of functions of Lipschitz class by using Euler's mean of conjugate series of Fourier series. In this paper, the degree of approximation by using Euler's means of conjugate of functions belonging to Lip (ξ(t), p) class has been obtained. Lipα and Lip (α, p) classes are the particular cases of Lip (ξ(t), p) class. The main result of this paper generalizes some well-known results in this direction. PMID:24379744

  8. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  9. Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit

    NASA Astrophysics Data System (ADS)

    Constantin, Peter; Vicol, Vlad

    2018-04-01

    We prove that any weak space-time L^2 vanishing viscosity limit of a sequence of strong solutions of Navier-Stokes equations in a bounded domain of R^2 satisfies the Euler equation if the solutions' local enstrophies are uniformly bounded. We also prove that t-a.e. weak L^2 inviscid limits of solutions of 3D Navier-Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.

  10. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  11. Functional equations for orbifold wreath products

    NASA Astrophysics Data System (ADS)

    Farsi, Carla; Seaton, Christopher

    2017-10-01

    We present generating functions for extensions of multiplicative invariants of wreath symmetric products of orbifolds presented as the quotient by the locally free action of a compact, connected Lie group in terms of orbifold sector decompositions. Particularly interesting instances of these product formulas occur for the Euler and Euler-Satake characteristics, which we compute for a class of weighted projective spaces. This generalizes results known for global quotients by finite groups to all closed, effective orbifolds. We also describe a combinatorial approach to extensions of multiplicative invariants using decomposable functors that recovers the formula for the Euler-Satake characteristic of a wreath product of a global quotient orbifold.

  12. Discretization vs. Rounding Error in Euler's Method

    ERIC Educational Resources Information Center

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  13. An assessment of viscous effects in computational simulation of benign and burst vortex flows on generic fighter wind-tunnel models using TEAM code

    NASA Technical Reports Server (NTRS)

    Kinard, Tim A.; Harris, Brenda W.; Raj, Pradeep

    1995-01-01

    Vortex flows on a twin-tail and a single-tail modular transonic vortex interaction (MTVI) model, representative of a generic fighter configuration, are computationally simulated in this study using the Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM). The primary objective is to provide an assessment of viscous effects on benign (10 deg angle of attack) and burst (35 deg angle of attack) vortex flow solutions. This study was conducted in support of a NASA project aimed at assessing the viability of using Euler technology to predict aerodynamic characteristics of aircraft configurations at moderate-to-high angles of attack in a preliminary design environment. The TEAM code solves the Euler and Reynolds-average Navier-Stokes equations on patched multiblock structured grids. Its algorithm is based on a cell-centered finite-volume formulation with multistage time-stepping scheme. Viscous effects are assessed by comparing the computed inviscid and viscous solutions with each other and experimental data. Also, results of Euler solution sensitivity to grid density and numerical dissipation are presented for the twin-tail model. The results show that proper accounting of viscous effects is necessary for detailed design and optimization but Euler solutions can provide meaningful guidelines for preliminary design of flight vehicles which exhibit vortex flows in parts of their flight envelope.

  14. Dynamic Forms. Part 1: Functions

    NASA Technical Reports Server (NTRS)

    Meyer, George; Smith, G. Allan

    1993-01-01

    The formalism of dynamic forms is developed as a means for organizing and systematizing the design control systems. The formalism allows the designer to easily compute derivatives to various orders of large composite functions that occur in flight-control design. Such functions involve many function-of-a-function calls that may be nested to many levels. The component functions may be multiaxis, nonlinear, and they may include rotation transformations. A dynamic form is defined as a variable together with its time derivatives up to some fixed but arbitrary order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler angles, or Euler parameters. Algorithms for standard elementary functions and operations of scalar dynamic forms are developed first. Then vector and matrix operations and transformations between parameterization of rotations are developed in the next level in the hierarchy. Commonly occurring algorithms in control-system design, including inversion of pure feedback systems, are developed in the third level. A large-angle, three-axis attitude servo and other examples are included to illustrate the effectiveness of the developed formalism. All algorithms were implemented in FORTRAN code. Practical experience shows that the proposed formalism may significantly improve the productivity of the design and coding process.

  15. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    NASA Astrophysics Data System (ADS)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  16. Physiological motion modeling for organ-mounted robots.

    PubMed

    Wood, Nathan A; Schwartzman, David; Zenati, Marco A; Riviere, Cameron N

    2017-12-01

    Organ-mounted robots passively compensate heartbeat and respiratory motion. In model-guided procedures, this motion can be a significant source of information that can be used to aid in localization or to add dynamic information to static preoperative maps. Models for estimating periodic motion are proposed for both position and orientation. These models are then tested on animal data and optimal orders are identified. Finally, methods for online identification are demonstrated. Models using exponential coordinates and Euler-angle parameterizations are as accurate as models using quaternion representations, yet require a quarter fewer parameters. Models which incorporate more than four cardiac or three respiration harmonics are no more accurate. Finally, online methods estimate model parameters as accurately as offline methods within three respiration cycles. These methods provide a complete framework for accurately modelling the periodic deformation of points anywhere on the surface of the heart in a closed chest. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Application of nonlocal models to nano beams. Part II: Thickness length scale effect.

    PubMed

    Kim, Jun-Sik

    2014-10-01

    Applicability of nonlocal models to nano-beams is discussed in terms of the Eringen's nonlocal Euler-Bernoulli (EB) beam model. In literature, most work has taken the axial coordinate derivative in the Laplacian operator presented in nonlocal elasticity. This causes that the non-locality always makes the beam soften as compared to the local counterpart. In this paper, the thickness scale effect is solely considered to investigate if the nonlocal model can simulate stiffening effect. Taking the thickness derivative in the Laplacian operator leads to the presence of a surface stress state. The governing equation derived is compared to that of the EB model with the surface stress. The results obtained reveal that the nonlocality tends to decrease the bending moment stiffness whereas to increase the bending rigidity in the governing equation. This tendency also depends on the surface conditions.

  18. Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.

    1997-01-01

    An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.

  19. Baseline Experiments on Coulomb Damping due to Rotational Slip

    DTIC Science & Technology

    1992-12-01

    by Griffe121 . As expected Equation (2-39) matches the result given by Griffel . 2.2.2. Euler-Bernoulli Beam versus Timeshenko Beam. Omitted from Euler...McGraw-Hill, Inc., 1983. 20. Clark, S. K., Dynamics of Continuous Elements, New Jersey, Prentice-Hall, Inc., 1972. 21. Griffel , W., Beam Formulas

  20. Euler Teaches a Class in Structural Steel Design

    ERIC Educational Resources Information Center

    Boyajian, David M.

    2009-01-01

    Even before steel was a topic of formal study for structural engineers, the brilliant eighteenth century Swiss mathematician and physicist, Leonhard Euler (1707-1783), investigated the theory governing the elastic behaviour of columns, the results of which are incorporated into the American Institute of Steel Construction's (AISC's) Bible: the…

  1. Geomagnetic main field modeling with DMSP

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Lühr, H.; Redmon, R. J.; Rich, F.; Bowman, B.; O'Malley, S. M.

    2014-05-01

    The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has been a multiyear gap in satellite-based vector magnetic field measurements available for main field modeling. In this study, we calibrate the special sensor magnetometer instrument on board DMSP to create a data set suitable for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and nonorthogonality angles of the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 15 main field model to the data set and compare with the World Magnetic Model and Ørsted scalar measurements. We call this model DMSP-MAG-1, and its coefficients and software are available for download at http://geomag.org/models/dmsp.html. Our results indicate that the DMSP data set will be a valuable source for main field modeling for the years between CHAMP and the recently launched Swarm mission.

  2. Recursive linearization of multibody dynamics equations of motion

    NASA Technical Reports Server (NTRS)

    Lin, Tsung-Chieh; Yae, K. Harold

    1989-01-01

    The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.

  3. Helicopter noise in hover: Computational modelling and experimental validation

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.

    2017-11-01

    The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.

  4. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  5. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    NASA Astrophysics Data System (ADS)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  6. Large time behavior of entropy solutions to one-dimensional unipolar hydrodynamic model for semiconductor devices

    NASA Astrophysics Data System (ADS)

    Huang, Feimin; Li, Tianhong; Yu, Huimin; Yuan, Difan

    2018-06-01

    We are concerned with the global existence and large time behavior of entropy solutions to the one-dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations in a bounded interval. In this paper, we first prove the global existence of entropy solution by vanishing viscosity and compensated compactness framework. In particular, the solutions are uniformly bounded with respect to space and time variables by introducing modified Riemann invariants and the theory of invariant region. Based on the uniform estimates of density, we further show that the entropy solution converges to the corresponding unique stationary solution exponentially in time. No any smallness condition is assumed on the initial data and doping profile. Moreover, the novelty in this paper is about the unform bound with respect to time for the weak solutions of the isentropic Euler-Poisson system.

  7. Aerodynamics of Engine-Airframe Interaction

    NASA Technical Reports Server (NTRS)

    Caughey, D. A.

    1986-01-01

    The report describes progress in research directed towards the efficient solution of the inviscid Euler and Reynolds-averaged Navier-Stokes equations for transonic flows through engine inlets, and past complete aircraft configurations, with emphasis on the flowfields in the vicinity of engine inlets. The research focusses upon the development of solution-adaptive grid procedures for these problems, and the development of multi-grid algorithms in conjunction with both, implicit and explicit time-stepping schemes for the solution of three-dimensional problems. The work includes further development of mesh systems suitable for inlet and wing-fuselage-inlet geometries using a variational approach. Work during this reporting period concentrated upon two-dimensional problems, and has been in two general areas: (1) the development of solution-adaptive procedures to cluster the grid cells in regions of high (truncation) error;and (2) the development of a multigrid scheme for solution of the two-dimensional Euler equations using a diagonalized alternating direction implicit (ADI) smoothing algorithm.

  8. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    NASA Astrophysics Data System (ADS)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  9. Computational Investigation of the NASA Cascade Cyclonic Separation Device

    NASA Technical Reports Server (NTRS)

    Hoyt, Nathaniel C.; Kamotani, Yasuhiro; Kadambi, Jaikrishnan; McQuillen, John B.; Sankovic, John M.

    2008-01-01

    Devices designed to replace the absent buoyancy separation mechanism within a microgravity environment are of considerable interest to NASA as the functionality of many spacecraft systems are dependent on the proper sequestration of interpenetrating gas and liquid phases. Inasmuch, a full multifluid Euler-Euler computational fluid dynamics investigation has been undertaken to evaluate the performance characteristics of one such device, the Cascade Cyclonic Separator, across a full range of inlet volumetric quality with combined volumetric injection rates varying from 1 L/min to 20 L/min. These simulations have delimited the general modes of operation of this class of devices and have proven able to describe the complicated vortex structure and induced pressure gradients that arise. The computational work has furthermore been utilized to analyze design modifications that enhance the overall performance of these devices. The promising results indicate that proper CFD modeling may be successfully used as a tool for microgravity separator design.

  10. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  11. Parallel computational fluid dynamics '91; Conference Proceedings, Stuttgart, Germany, Jun. 10-12, 1991

    NASA Technical Reports Server (NTRS)

    Reinsch, K. G. (Editor); Schmidt, W. (Editor); Ecer, A. (Editor); Haeuser, Jochem (Editor); Periaux, J. (Editor)

    1992-01-01

    A conference was held on parallel computational fluid dynamics and produced related papers. Topics discussed in these papers include: parallel implicit and explicit solvers for compressible flow, parallel computational techniques for Euler and Navier-Stokes equations, grid generation techniques for parallel computers, and aerodynamic simulation om massively parallel systems.

  12. Comparison of measurement data at the impeller exit of a centrifugal compressor measured with both pneumatic and fast-response probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roduner, C.; Koeppel, P.; Kupferschmied, P.

    1999-07-01

    The main goal of these investigations was the refined measurement of unsteady high speed flow in a centrifugal compressor using the advanced FRAP{reg_sign} fast-response aerodynamic probe system. The present contribution focuses on the impeller exit region and shows critical comparisons between fast-response (time-resolving) and conventional pneumatic probe measurement results. Three probes of identical geometry (one fast and two pneumatic) were used to perform wall-to-wall traverses close to impeller exit. The data shown refer to a single running condition near the best point of the stage. The mass flow obtained from different probe measurements and from the standard orifice measurement weremore » compared. Stage work obtained from temperature rise measured with a FRAP{reg_sign} probe and from impeller outlet velocity vectors fields by using Euler`s turbine equation are presented. The comparison in terms of velocity magnitude and angle distribution is quite satisfactory, indicating the superior DC measurement capabilities of the fast-response probe system.« less

  13. Modelling and simulation of wood chip combustion in a hot air generator system.

    PubMed

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  14. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  15. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  16. Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems

    NASA Technical Reports Server (NTRS)

    Reifler, Frank; Morris, Randall

    1994-01-01

    Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.

  17. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.

  18. Generalization of the Euler-type solution to the wave equation

    NASA Astrophysics Data System (ADS)

    Borisov, Victor V.

    2001-08-01

    Generalization of the Euler-type solution to the wave equation is given. Peculiarities of the space-time structure of obtained waves are considered. For some particular cases interpretation of these waves as `subliminal' and `superluminal' is discussed. The possibility of description of electromagnetic waves by means of the scalar solutions is shown.

  19. Discovering Euler Circuits and Paths through a Culturally Relevant Lesson

    ERIC Educational Resources Information Center

    Robichaux, Rebecca R.; Rodrigue, Paulette R.

    2006-01-01

    This article describes a middle school discrete mathematics lesson that uses the context of catching crawfish to provide students with a hands-on experience related to Euler circuits and paths. The lesson promotes mathematical communication through the use of cooperative learning as well as connections between mathematics and the real world…

  20. Two Identities for the Bernoulli-Euler Numbers

    ERIC Educational Resources Information Center

    Gauthier, N.

    2008-01-01

    Two identities for the Bernoulli and for the Euler numbers are derived. These identities involve two special cases of central combinatorial numbers. The approach is based on a set of differential identities for the powers of the secant. Generalizations of the Mittag-Leffler series for the secant are introduced and used to obtain closed-form…

  1. Newton's Laws, Euler's Laws and the Speed of Light

    ERIC Educational Resources Information Center

    Whitaker, Stephen

    2009-01-01

    Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…

  2. Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field

    DTIC Science & Technology

    1994-01-07

    Secondary 60D05, 52A22. Key words and phrases. Euler characteristic, integral geometry, image analysis , Gaussian fields, volume of tubes. SUMMARY We...words and phrases. Euler characteristic, integral geometry. image analysis . Gaussian fields. volume of tubes. 20. AMST RACT (Coith..o an revmreo ef* It

  3. Generation of unstructured grids and Euler solutions for complex geometries

    NASA Technical Reports Server (NTRS)

    Loehner, Rainald; Parikh, Paresh; Salas, Manuel D.

    1989-01-01

    Algorithms are described for the generation and adaptation of unstructured grids in two and three dimensions, as well as Euler solvers for unstructured grids. The main purpose is to demonstrate how unstructured grids may be employed advantageously for the economic simulation of both geometrically as well as physically complex flow fields.

  4. An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1992-01-01

    An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.

  5. eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses

    PubMed Central

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data. PMID:25032825

  6. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.

    PubMed

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.

  7. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  8. Higher-order time integration of Coulomb collisions in a plasma using Langevin equations

    DOE PAGES

    Dimits, A. M.; Cohen, B. I.; Caflisch, R. E.; ...

    2013-02-08

    The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the two fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt 1/2)] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering ifmore » and only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. Lastly, this method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.« less

  9. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.

  10. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  11. An Analysis of Elliptic Grid Generation Techniques Using an Implicit Euler Solver.

    DTIC Science & Technology

    1986-06-09

    automatic determination of the control fu.nction, . elements of covariant metric tensor in the elliptic grid generation system , from the Cm = 1,2,3...computational fluid d’nan1-cs code. Tne code Inclues a tnree-dimensional current research is aimed primaril: at algebraic generation system based on transfinite...start the iterative solution of the f. ow, nea, transfer, and combustion proble:s. elliptic generation system . Tn13 feature also .:ven-.ts :.t be made

  12. Mathematics and Physics Studies - Multi-Project Support

    DTIC Science & Technology

    1989-09-02

    measurements). A quaternion form is used to represent any finite rotation of a rigid body as a rotation through some angle about a fixed axis (Euler’s...many - contractual issues. Drs. Edmond Murad (GL/PHK) and Roger Van Tassel (GL/OPB) provided important suggestions and feedback on the data processing...Orbital Maneuvering System (OMS) and the Reaction Control System (RCS) resemble plumes produced by targets/events of interest. Measurements from the IBSS

  13. Multiscale Analysis in the Compressible Rotating and Heat Conducting Fluids

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Maltese, David; Novotný, Antonín

    2017-06-01

    We consider the full Navier-Stokes-Fourier system under rotation in the singular regime of small Mach and Rossby, and large Reynolds and Péclet numbers, with ill prepared initial data on an infinite straight 3-D layer rotating with respect to the axis orthogonal to the layer. We perform the singular limit in the framework of weak solutions and identify the 2-D Euler-Boussinesq system as the target problem.

  14. A Brief Historical Introduction to Euler's Formula for Polyhedra, Topology, Graph Theory and Networks

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2010-01-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Konigsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real…

  15. Implementation of a parallel unstructured Euler solver on shared and distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Das, Raja; Saltz, Joel; Vermeland, R. E.

    1992-01-01

    An efficient three dimensional unstructured Euler solver is parallelized on a Cray Y-MP C90 shared memory computer and on an Intel Touchstone Delta distributed memory computer. This paper relates the experiences gained and describes the software tools and hardware used in this study. Performance comparisons between two differing architectures are made.

  16. A new stream function formulation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Hassan, H. A.

    1983-01-01

    A new stream function formulation is developed for the solution of Euler's equations in the transonic flow region. The stream function and the density are the dependent variables in this method, while the governing equations for adiabatic flow are the momentum equations which are solved in the strong conservation law form. The application of this method does not require a knowledge of the vorticity. The algorithm is combined with the automatic grid solver (GRAPE) of Steger and Sorenson (1979) in order to study arbitrary geometries. Results of the application of this method are presented for the NACA 0012 airfoil at various Mach numbers and angles of attack, and cylinders. In addition, detailed comparisons are made with other solutions of the Euler equations.

  17. An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1992-01-01

    This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.

  18. Use of a residual distribution Euler solver to study the occurrence of transonic flow in Wells turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Henriques, J. C. C.; Gato, L. M. C.

    The aim of the present study is to investigate the occurrence of transonic flow in several cascade geometries and blade sections that have been considered in the design of Wells turbine rotor blades. The calculations were performed using an implicit Euler solver for two-dimensional flow. The numerical method uses a multi-dimensional upwind matrix residual distribution scheme formulated on a new symmetrized form of the Euler equations, both in time and in space, that decouples the entropy and the enthalpy equations. Second-order accurate steady-state solutions where obtained using a compact three-point stencil. The results show that unwanted transonic flow may occur in the turbine rotor at relatively low mean-flow Mach numbers.

  19. Nonlinear truncation error analysis of finite difference schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1983-01-01

    It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.

  20. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  1. Textbook Multigrid Efficiency for the Steady Euler Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.

  2. Highly Portable, Sensor-Based System for Human Fall Monitoring.

    PubMed

    Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie

    2017-09-13

    Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user's body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system.

  3. Highly Portable, Sensor-Based System for Human Fall Monitoring

    PubMed Central

    Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie

    2017-01-01

    Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user’s body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system. PMID:28902149

  4. Unified formalism for higher order non-autonomous dynamical systems

    NASA Astrophysics Data System (ADS)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2012-03-01

    This work is devoted to giving a geometric framework for describing higher order non-autonomous mechanical systems. The starting point is to extend the Lagrangian-Hamiltonian unified formalism of Skinner and Rusk for these kinds of systems, generalizing previous developments for higher order autonomous mechanical systems and first-order non-autonomous mechanical systems. Then, we use this unified formulation to derive the standard Lagrangian and Hamiltonian formalisms, including the Legendre-Ostrogradsky map and the Euler-Lagrange and the Hamilton equations, both for regular and singular systems. As applications of our model, two examples of regular and singular physical systems are studied.

  5. A Hierarchical Learning Control Framework for an Aerial Manipulation System

    NASA Astrophysics Data System (ADS)

    Ma, Le; Chi, yanxun; Li, Jiapeng; Li, Zhongsheng; Ding, Yalei; Liu, Lixing

    2017-07-01

    A hierarchical learning control framework for an aerial manipulation system is proposed. Firstly, the mechanical design of aerial manipulation system is introduced and analyzed, and the kinematics and the dynamics based on Newton-Euler equation are modeled. Secondly, the framework of hierarchical learning for this system is presented, in which flight platform and manipulator are controlled by different controller respectively. The RBF (Radial Basis Function) neural networks are employed to estimate parameters and control. The Simulation and experiment demonstrate that the methods proposed effective and advanced.

  6. Chaotic dynamics of flexible Euler-Bernoulli beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl; Krysko, A. V., E-mail: anton.krysko@gmail.com; Kutepov, I. E., E-mail: iekutepov@gmail.com

    2013-12-15

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions ismore » carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.« less

  7. Parallel computing techniques for rotorcraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Ekici, Kivanc

    The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).

  8. Application of Artificial Intelligence For Euler Solutions Clustering

    NASA Astrophysics Data System (ADS)

    Mikhailov, V.; Galdeano, A.; Diament, M.; Gvishiani, A.; Agayan, S.; Bogoutdinov, Sh.; Graeva, E.; Sailhac, P.

    Results of Euler deconvolution strongly depend on the selection of viable solutions. Synthetic calculations using multiple causative sources show that Euler solutions clus- ter in the vicinity of causative bodies even when they do not group densely about perimeter of the bodies. We have developed a clustering technique to serve as a tool for selecting appropriate solutions. The method RODIN, employed in this study, is based on artificial intelligence and was originally designed for problems of classification of large data sets. It is based on a geometrical approach to study object concentration in a finite metric space of any dimension. The method uses a formal definition of cluster and includes free parameters that facilitate the search for clusters of given proper- ties. Test on synthetic and real data showed that the clustering technique successfully outlines causative bodies more accurate than other methods of discriminating Euler solutions. In complicated field cases such as the magnetic field in the Gulf of Saint Malo region (Brittany, France), the method provides geologically insightful solutions. Other advantages of the clustering method application are: - Clusters provide solutions associated with particular bodies or parts of bodies permitting the analysis of different clusters of Euler solutions separately. This may allow computation of average param- eters for individual causative bodies. - Those measurements of the anomalous field that yield clusters also form dense clusters themselves. The application of cluster- ing technique thus outlines areas where the influence of different causative sources is more prominent. This allows one to focus on areas for reinterpretation, using different window sizes, structural indices and so on.

  9. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  10. On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Fathizadeh, Farzad; Gabriel, Olivier

    2016-02-01

    The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.

  11. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  12. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  13. Euler potentials of current-free fields expressed in spherical harmonics

    NASA Technical Reports Server (NTRS)

    Stern, David P.

    1994-01-01

    Given a magnetic field B = -del(vector differential operator)(sub gamma) with gamma expanded in spherical harmonics, it is shown that analytic Euler potentials may be derived for B if gamma is asymmetrical but contains only the contribution of a single index n. This work generalizes a result for sectorial harmonics with n = m, derived by Willis and Gardiner (1988).

  14. Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations

    NASA Technical Reports Server (NTRS)

    Shiuhong, Lui; Xu, Jun

    1999-01-01

    Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.

  15. Lagrangians and Euler morphisms from connections on the frame bundle

    NASA Astrophysics Data System (ADS)

    Kurek, J.; Mikulski, W. M.

    2011-07-01

    We classify all natural operators transforming torsion free classical linear connections ∇ on m-dimensional manifolds M into r-th order Lagrangians λ(∇) and Euler morphisms E(∇) on the linear frame bundle P1M. We also briefly write how this classification result can be generalized on higher order frame bundles PkM instead of P1M.

  16. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jameson, Antony

    1986-01-01

    A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J.; Tronci, Cesare

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  18. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

  19. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.

  20. Modelling gas dynamics in 1D ducts with abrupt area change

    NASA Astrophysics Data System (ADS)

    Menina, R.; Saurel, R.; Zereg, M.; Houas, L.

    2011-09-01

    Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow-area change interaction is determined by a specific estimate of the surface pressure integral. Model's predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.

  1. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams

    NASA Astrophysics Data System (ADS)

    Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.

    2018-04-01

    We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.

  2. A hybrid approach for nonlinear computational aeroacoustics predictions

    NASA Astrophysics Data System (ADS)

    Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.

    2017-01-01

    In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.

  3. On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ibraheem, S. O.; Demuren, A. O.

    1994-01-01

    A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.

  4. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  5. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  6. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  7. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  8. High-Order Non-Reflecting Boundary Conditions for the Linearized Euler Equations

    DTIC Science & Technology

    2008-09-01

    rotational effect. Now this rotational effect can be simplified. The atmosphere is thin compared to the radius of the Earth . Furthermore, atmospheric flows...error norm of the discrete solution. Blayo and Debreu [13] considered a characteristic variable ap- proach to NRBCs in first-order systems for ocean and...Third Edition, John Wiley and Sons, New York, 1995. [77] Jensen, T., “Open Boundary Conditions in Stratified Ocean Models,” Journal of Marine Systems

  9. Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Neback, H. E.; Kao, T. J.; Yu, N. Y.; Kusunose, K.

    1991-01-01

    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment.

  10. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  11. Approximated analytical solution to an Ebola optimal control problem

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.

    2016-11-01

    An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.

  12. Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.

  13. Progressive wave expansions and open boundary problems

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1995-01-01

    In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.

  14. Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations

    NASA Astrophysics Data System (ADS)

    Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Rieben, R.; Tomov, V.

    2018-03-01

    We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation laws, we constrain the density, momentum, and total energy in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum gradients are adjusted to incorporate the irreversible effect of density changes. Antidiffusive corrections to bounds-compatible low-order approximations are limited to satisfy inequality constraints for the specific total and kinetic energy. An accuracy-preserving smoothness indicator is introduced to gradually adjust lower bounds for the element-based correction factors. The employed smoothness criterion is based on a Hessian determinant test for the density. A numerical study is performed for test problems with smooth and discontinuous solutions.

  15. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  16. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  17. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  18. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  19. One-dimensional high-order compact method for solving Euler's equations

    NASA Astrophysics Data System (ADS)

    Mohamad, M. A. H.; Basri, S.; Basuno, B.

    2012-06-01

    In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.

  20. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  1. A multiple-block multigrid method for the solution of the three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold

    1991-01-01

    A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.

  2. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    NASA Astrophysics Data System (ADS)

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  3. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  4. CFD Approaches for Simulation of Wing-Body Stage Separation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Gomez, Reynaldo J.; Scallion, William I.

    2004-01-01

    A collection of computational fluid dynamics tools and techniques are being developed and tested for application to stage separation and abort simulation for next-generation launch vehicles. In this work, an overset grid Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of a belly-to-belly wing-body configuration. Steady cases show excellent agreement between Navier-Stokes results, Cartesian grid Euler solutions, and wind tunnel data at Mach 3. Good agreement has been obtained between Navier-Stokes, Euler, and wind tunnel results at Mach 6. An analysis of a dynamic separation at Mach 3 demonstrates that unsteady aerodynamic effects are not important for this scenario. Results provide an illustration of the relative applicability of Euler and Navier-Stokes methods to these types of problems.

  5. Necessary and sufficient conditions for the stability of a sleeping top described by three forms of dynamic equations

    NASA Astrophysics Data System (ADS)

    Ge, Zheng-Ming

    2008-04-01

    Necessary and sufficient conditions for the stability of a sleeping top described by dynamic equations of six state variables, Euler equations, and Poisson equations, by a two-degree-of-freedom system, Krylov equations, and by a one-degree-of-freedom system, nutation angle equation, is obtained by the Lyapunov direct method, Ge-Liu second instability theorem, an instability theorem, and a Ge-Yao-Chen partial region stability theorem without using the first approximation theory altogether.

  6. Modeling of Pedestrian Flows Using Hybrid Models of Euler Equations and Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Bärwolff, Günter; Slawig, Thomas; Schwandt, Hartmut

    2007-09-01

    In the last years various systems have been developed for controlling, planning and predicting the traffic of persons and vehicles, in particular under security aspects. Going beyond pure counting and statistical models, approaches were found to be very adequate and accurate which are based on well-known concepts originally developed in very different research areas, namely continuum mechanics and computer science. In the present paper, we outline a continuum mechanical approach for the description of pedestrain flow.

  7. Solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations

    NASA Technical Reports Server (NTRS)

    Koenig, Keith

    1986-01-01

    The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.

  8. Multiplicative Quaternion Extended Kalman Filtering for Nonspinning Guided Projectiles

    DTIC Science & Technology

    2013-07-01

    tactical applications are inertial. The advantages of using quaternions rather than Euler angles to represent projectile attitude are discussed, and...projectiles generally don’t experience a wide range of heading angles , this has not a primary concern. The other major advantage of quaternions (or...DCMs) over Euler angles is their propagation equations are linear with respect to the quaternion and only depend on the IMU’s angular velocity. This

  9. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  10. On the Use of Linearized Euler Equations in the Prediction of Jet Noise

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.

    1995-01-01

    Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.

  11. Euler equation existence, non-uniqueness and mesh converged statistics

    PubMed Central

    Glimm, James; Sharp, David H.; Lim, Hyunkyung; Kaufman, Ryan; Hu, Wenlin

    2015-01-01

    We review existence and non-uniqueness results for the Euler equation of fluid flow. These results are placed in the context of physical models and their solutions. Non-uniqueness is in direct conflict with the purpose of practical simulations, so that a mitigating strategy, outlined here, is important. We illustrate these issues in an examination of mesh converged turbulent statistics, with comparison to laboratory experiments. PMID:26261361

  12. Convergence of the flow of a chemically reacting gaseous mixture to incompressible Euler equations in a unbounded domain

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam

    2017-12-01

    The flow of chemically reacting gaseous mixture is associated with a variety of phenomena and processes. We study the combined quasineutral and inviscid limit from the flow of chemically reacting gaseous mixture governed by Poisson equation to incompressible Euler equations with the ill-prepared initial data in the unbounded domain R^2× T. Furthermore, the convergence rates are obtained.

  13. L{sup {infinity}} Variational Problems with Running Costs and Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronsson, G., E-mail: gunnar.aronsson@liu.se; Barron, E. N., E-mail: enbarron@math.luc.edu

    2012-02-15

    Various approaches are used to derive the Aronsson-Euler equations for L{sup {infinity}} calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson-Euler equation for the basic L{sup {infinity}} problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.

  14. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  15. Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses.

    PubMed

    Wang, X; Hopkins, C

    2016-10-01

    Advanced Statistical Energy Analysis (ASEA) is used to predict vibration transmission across coupled beams which support multiple wave types up to high frequencies where Timoshenko theory is valid. Bending-longitudinal and bending-torsional models are considered for an L-junction and rectangular beam frame. Comparisons are made with measurements, Finite Element Methods (FEM) and Statistical Energy Analysis (SEA). When beams support at least two local modes for each wave type in a frequency band and the modal overlap factor is at least 0.1, measurements and FEM have relatively smooth curves. Agreement between measurements, FEM, and ASEA demonstrates that ASEA is able to predict high propagation losses which are not accounted for with SEA. These propagation losses tend to become more important at high frequencies with relatively high internal loss factors and can occur when there is more than one wave type. At such high frequencies, Timoshenko theory, rather than Euler-Bernoulli theory, is often required. Timoshenko theory is incorporated in ASEA and SEA using wave theory transmission coefficients derived assuming Euler-Bernoulli theory, but using Timoshenko group velocity when calculating coupling loss factors. The changeover between theories is appropriate above the frequency where there is a 26% difference between Euler-Bernoulli and Timoshenko group velocities.

  16. Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.

  17. A second-order shock-adaptive Godunov scheme based on the generalized Lagrangian formulation

    NASA Astrophysics Data System (ADS)

    Lepage, Claude

    Application of the Godunov scheme to the Euler equations of gas dynamics, based on the Eulerian formulation of flow, smears discontinuities (especially sliplines) over several computational cells, while the accuracy in the smooth flow regions is of the order of a function of the cell width. Based on the generalized Lagrangian formulation (GLF), the Godunov scheme yields far superior results. By the use of coordinate streamlines in the GLF, the slipline (itself a streamline) is resolved crisply. Infinite shock resolution is achieved through the splitting of shock cells, while the accuracy in the smooth flow regions is improved using a nonconservative formulation of the governing equations coupled to a second order extension of the Godunov scheme. Furthermore, GLF requires no grid generation for boundary value problems and the simple structure of the solution to the Riemann problem in the GLF is exploited in the numerical implementation of the shock adaptive scheme. Numerical experiments reveal high efficiency and unprecedented resolution of shock and slipline discontinuities.

  18. Effect of nose shape on three-dimensional stagnation region streamlines and heating rates

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Dejarnette, Fred R.; Zoby, E. V.

    1991-01-01

    A new method for calculating the three-dimensional inviscid surface streamlines and streamline metrics using Cartesian coordinates and time as the independent variable of integration has been developed. The technique calculates the streamline from a specified point on the body to a point near the stagnation point by using a prescribed pressure distribution in the Euler equations. The differential equations, which are singular at the stagnation point, are of the two point boundary value problem type. Laminar heating rates are calculated using the axisymmetric analog concept for three-dimensional boundary layers and approximate solutions to the axisymmetric boundary layer equations. Results for elliptic conic forebody geometries show that location of the point of maximum heating depends on the type of conic in the plane of symmetry and the angle of attack, and that this location is in general different from the stagnation point. The new method was found to give smooth predictions of heat transfer in the nose region where previous methods gave oscillatory results.

  19. The stochastic energy-Casimir method

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.

    2018-04-01

    In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"

  20. A method for exponential propagation of large systems of stiff nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Friesner, Richard A.; Tuckerman, Laurette S.; Dornblaser, Bright C.; Russo, Thomas V.

    1989-01-01

    A new time integrator for large, stiff systems of linear and nonlinear coupled differential equations is described. For linear systems, the method consists of forming a small (5-15-term) Krylov space using the Jacobian of the system and carrying out exact exponential propagation within this space. Nonlinear corrections are incorporated via a convolution integral formalism; the integral is evaluated via approximate Krylov methods as well. Gains in efficiency ranging from factors of 2 to 30 are demonstrated for several test problems as compared to a forward Euler scheme and to the integration package LSODE.

  1. The scattering variety

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Matti, Cyril; Sun, Chuang

    2014-10-01

    The so-called Scattering Equations which govern the kinematics of the scattering of massless particles in arbitrary dimensions have recently been cast into a system of homogeneous polynomials. We study these as affine and projective geometries which we call Scattering Varieties by analyzing such properties as Hilbert series, Euler characteristic and singularities. Interestingly, we find structures such as affine Calabi-Yau threefolds as well as singular K3 and Fano varieties.

  2. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    NASA Technical Reports Server (NTRS)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS configuration; 6) integrating the RANS solver with the FEAP code for coupled fluid-structure-thermal capability; and 7) integrating the existing NASA SRGULL propulsion flow path prediction software with the FEFLO software for quasi-3D propulsion flow path predictions, 8) improving and integrating into the network, an existing adjoint-based design optimization code.

  3. Kinetics of pattern formation in symmetric diblock copolymer melts

    NASA Astrophysics Data System (ADS)

    Ren, Yongzhi; Müller, Marcus

    2018-05-01

    In equilibrium, copolymers self-assemble into spatially modulated phases with long-range order. When the system is quenched far below the order-disorder transition temperature, however, such an idealized, defect-free structure is difficult to obtain in experiments and simulations, instead a fingerprint-like structure forms. The relaxation toward long-range order is very protracted because it involves numerous thermally activated processes, and the rugged free-energy landscape has been likened to that of glass-forming systems. Using large-scale particle-based simulations of high-aspect-ratio, quasi-two-dimensional systems with periodic boundary condition, we study the kinetics of structure formation in symmetric, lamella-forming diblock copolymers after a quench from the disordered state. We characterize the ordering process by the correlation length of the lamellar structure and its Euler characteristic and observe that the growth of the correlation length and the rate of change of the Euler characteristic significantly slow down in the range of incompatibilities, 15 ≤ χN ≤ 20, studied. The increase of the time scale of ordering is, however, gradual. The density fields of snapshots of the particle-based simulations are used as starting values for self-consistent field theory (SCFT) calculations. The latter converge to the local, metastable minimum of the free-energy basin. This combination of particle-based simulations and SCFT calculations allows us to relate an instantaneous configuration of the particle-based model to a corresponding metastable free-energy minimum of SCFT—the inherent morphology—and we typically observe that a change of a free-energy basin is associated with a change of the Euler characteristic of the particle-based morphology, i.e., changes of free-energy basins are correlated to changes of the domain topology. Subsequently, we employ the string method in conjunction with SCFT to study the minimum free-energy paths (MFEPs) of changes of the domain topology. Since the time scales of relaxing toward the inherent morphology within a free-energy basin and jumps between free-energy basins are not well separated, the MFEP may overestimate the barriers encountered in the course of ordering.

  4. High-Speed Rotor Analytical Dynamics on Flexible Foundation Subjected to Internal and External Excitation

    NASA Astrophysics Data System (ADS)

    Jivkov, Venelin S.; Zahariev, Evtim V.

    2016-12-01

    The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.

  5. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method David L. Bilyeu ∗1,2...Similarly, the fluxes, f x,y,z i , and their derivatives inside a SE are also discretized by the Taylor series expansion: ∂ Cfx ,y,zi ∂xI∂yJ∂zK∂tL = A

  6. Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited

    NASA Astrophysics Data System (ADS)

    Cortissoz, Jean C.; Montero, Julio A.

    2018-03-01

    In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/25/2.

  7. Factorials of real negative and imaginary numbers - A new perspective.

    PubMed

    Thukral, Ashwani K

    2014-01-01

    Presently, factorials of real negative numbers and imaginary numbers, except for zero and negative integers are interpolated using the Euler's gamma function. In the present paper, the concept of factorials has been generalised as applicable to real and imaginary numbers, and multifactorials. New functions based on Euler's factorial function have been proposed for the factorials of real negative and imaginary numbers. As per the present concept, the factorials of real negative numbers, are complex numbers. The factorials of real negative integers have their imaginary part equal to zero, thus are real numbers. Similarly, the factorials of imaginary numbers are complex numbers. The moduli of the complex factorials of real negative numbers, and imaginary numbers are equal to their respective real positive number factorials. Fractional factorials and multifactorials have been defined in a new perspective. The proposed concept has also been extended to Euler's gamma function for real negative numbers and imaginary numbers, and beta function.

  8. On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    The Euler equations of gas dynamics have some very interesting properties in that the flux vector is a homogeneous function of the unknowns and the equations can be cast in symmetric hyperbolic form and satisfy the entropy conservation. The Euler equations are the moments of the Boltzmann equation of the kinetic theory of gases when the velocity distribution function is a Maxwellian. The present paper shows the relationship between the symmetrizability and the Maxwellian velocity distribution. The entropy conservation is in terms of the H-function, which is a slight modification of the H-function first introduced by Boltzmann in his famous H-theorem. In view of the H-theorem, it is suggested that the development of total H-diminishing (THD) numerical methods may be more profitable than the usual total variation diminishing (TVD) methods for obtaining wiggle-free solutions.

  9. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  10. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Fox, Rodney O.; Feng, Heng

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  11. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE PAGES

    Kong, Bo; Fox, Rodney O.; Feng, Heng; ...

    2017-02-16

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  12. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  13. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu

    2018-05-01

    A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.

  14. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    Biyabani, S. R.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.

  15. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (CRAY VERSION)

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.

  16. Experimental and analytical investigations of longitudinal combustion instability in a continuously variable resonance combustor (CVRC)

    NASA Astrophysics Data System (ADS)

    Yu, Yen Ching

    An analytical model based on linearized Euler equations (LEE) is developed and used in conjunction with a validating experiment to study combustion instability. The LEE model features mean flow effects, entropy waves, adaptability for more physically-realistic boundary conditions, and is generalized for multiple-domain conditions. The model calculates spatial modes, resonant frequencies and linear growth rates of the overall system. The predicted resonant frequencies and spatially-resolved mode shapes agree with the experimental data from a longitudinally-unstable model rocket combustor to within 7%. Different gaseous fuels (methane, ethylene, and hydrogen) were tested under fixed geometry. Tests with hydrogen were stable, whereas ethylene, methane, and JP-8 were increasingly unstable. A novel method for obtaining large amounts of stability data under variable resonance conditions in a single test was demonstrated. The continuously variable resonance combustor (CVRC) incorporates a traversing choked axial oxidizer inlet to vary the overall combustion system resonance. The CVRC experiment successfully demonstrates different level of instability, transitions between stability levels, and identifies the most stable and unstable geometric combination. Pressure oscillation amplitudes ranged from less than 10% of mean pressure to greater than 60%. At low amplitudes, measured resonant frequency changed with inlet location but at high amplitude the measured resonance frequency matched the frequency of the combustion chamber. As the system transitions from linear to non-linear instability, the higher harmonics of the fundamental resonant mode appear nearly simultaneously. Transient, high-amplitude, broadband noise, at lower frequencies (on the order of 200 Hz) are also observed. Conversely, as the system transitions back to a more linear stability regime, the higher harmonics disappear sequentially, led by the highest order. Good agreements between analytical and experimental results are attained by treating the experiment as quasi-stationary. The stability characteristics from the high frequency measurements are further analyzed using filtered pressure traces, spectrograms, power spectral density plots, and oscillation decrements. Future works recommended include: direct measurements, such as chemiluminescence or high-speed imaging to examine the unsteady combustion processes; three-way comparisons between the acoustic-based, linear Euler-based, and non-linear Euler/RANS model; use the high fidelity computation to investigate the forcing terms modeled in the acoustic-based model.

  17. Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1984-01-01

    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented.

  18. Towards a rational theory for CFD global stability

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Iannelli, G. S.

    1989-01-01

    The fundamental notion of the consistent stability of semidiscrete analogues of evolution PDEs is explored. Lyapunov's direct method is used to develop CFD semidiscrete algorithms which yield the TVD constraint as a special case. A general formula for supplying dissipation parameters for arbitrary multidimensional conservation law systems is proposed. The reliability of the method is demonstrated by the results of two numerical tests for representative Euler shocked flows.

  19. A three-dimensional application with the numerical grid generation code: EAGLE (utilizing an externally generated surface)

    NASA Technical Reports Server (NTRS)

    Houston, Johnny L.

    1990-01-01

    Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.

  20. Effect of helicity on the correlation time of large scales in turbulent flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2017-11-01

    Solutions of the forced Navier-Stokes equation have been conjectured to thermalize at scales larger than the forcing scale, similar to an absolute equilibrium obtained for the spectrally truncated Euler equation. Using direct numeric simulations of Taylor-Green flows and general-periodic helical flows, we present results on the probability density function, energy spectrum, autocorrelation function, and correlation time that compare the two systems. In the case of highly helical flows, we derive an analytic expression describing the correlation time for the absolute equilibrium of helical flows that is different from the E-1 /2k-1 scaling law of weakly helical flows. This model predicts a new helicity-based scaling law for the correlation time as τ (k ) ˜H-1 /2k-1 /2 . This scaling law is verified in simulations of the truncated Euler equation. In simulations of the Navier-Stokes equations the large-scale modes of forced Taylor-Green symmetric flows (with zero total helicity and large separation of scales) follow the same properties as absolute equilibrium including a τ (k ) ˜E-1 /2k-1 scaling for the correlation time. General-periodic helical flows also show similarities between the two systems; however, the largest scales of the forced flows deviate from the absolute equilibrium solutions.

  1. Block modeling of crustal deformation in Tierra del Fuego from GNSS velocities

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Richter, A.; Fritsche, M.; Hormaechea, J. L.; Perdomo, R.; Dietrich, R.

    2015-05-01

    The Tierra del Fuego (TDF) main island is divided by a major transform boundary between the South America and Scotia tectonic plates. Using a block model, we infer slip rates, locking depths and inclinations of active faults in TDF from inversion of site velocities derived from Global Navigation Satellite System observations. We use interseismic velocities from 48 sites, obtained from field measurements spanning 20 years. Euler vectors consistent with a simple seismic cycle are estimated for each block. In addition, we introduce far-field information into the modeling by applying constraints on Euler vectors of major tectonic plates. The difference between model and observed surface deformation near the Magallanes Fagnano Fault System (MFS) is reduced by considering finite dip in the forward model. For this tectonic boundary global plate circuits models predict relative movements between 7 and 9 mm yr- 1, while our regional model indicates that a strike-slip rate of 5.9 ± 0.2 mm yr- 1 is accommodated across the MFS. Our results indicate faults dipping 66- 4+ 6° southward, locked to a depth of 11- 5+ 5 km, which are consistent with geological models for the MFS. However, normal slip also dominates the fault perpendicular motion throughout the eastern MFS, with a maximum rate along the Fagnano Lake.

  2. The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations

    NASA Astrophysics Data System (ADS)

    Wei, Changhua

    2017-10-01

    This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.

  3. A Polynomial-Based Nonlinear Least Squares Optimized Preconditioner for Continuous and Discontinuous Element-Based Discretizations of the Euler Equations

    DTIC Science & Technology

    2014-01-01

    system (here using left- preconditioning ) (KÃ)x = Kb̃, (3.1) where K is a low-order polynomial in à given by K = s(Ã) = m∑ i=0 kià i, (3.2) and has a... system with a complex spectrum, region E in the complex plane must be some convex form (e.g., an ellipse or polygon) that approximately encloses the...preconditioners with p = 2 and p = 20 on the spectrum of the preconditioned system matrices Kà and KH̃ for both CG Schur-complement form and DG form cases

  4. An unconstrained Lagrangian formulation and conservation laws for the Schrödinger map system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul, E-mail: smith@math.berkeley.edu

    2014-05-15

    We consider energy-critical Schrödinger maps from R{sup 2} into S{sup 2} and H{sup 2}. Viewing such maps with respect to orthonormal frames on the pullback bundle provides a gauge field formulation of the evolution. We show that this gauge field system is the set of Euler-Lagrange equations corresponding to an action that includes a Chern-Simons term. We also introduce the stress-energy tensor and derive conservation laws. In conclusion we offer comparisons between Schrödinger maps and the closely related Chern-Simons-Schrödinger system.

  5. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  6. Development of a Chemically Reacting Flow Solver on the Graphic Processing Units

    DTIC Science & Technology

    2011-05-10

    been implemented on the GPU by Schive et al. (2010). The outcome of their work is the GAMER code for astrophysical simulation. Thibault and...Euler equations at each cell. For simplification, consider the Euler equations in one dimension with no source terms; the discretized form of the...is known to be more diffusive than the other fluxes due to the large bound of the numerical signal velocities: b+, b-. 3.4 Time Marching Methods

  7. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  8. The general solution to the classical problem of finite Euler Bernoulli beam

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Amba-Rao, C. L.

    1977-01-01

    An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.

  9. Solution algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Whitaker, D. L.; Slack, David C.; Walters, Robert W.

    1990-01-01

    The objective of the study was to analyze implicit techniques employed in structured grid algorithms for solving two-dimensional Euler equations and extend them to unstructured solvers in order to accelerate convergence rates. A comparison is made between nine different algorithms for both first-order and second-order accurate solutions. Higher-order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The discussion is illustrated by results for flow over a transonic circular arc.

  10. The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view

    NASA Astrophysics Data System (ADS)

    Gallouët, Thomas; Vialard, François-Xavier

    2018-04-01

    The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.

  11. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  12. Navier-Stokes and Euler solutions for lee-side flows over supersonic delta wings. A correlation with experiment

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Thomas, James L.; Murman, Earll M.

    1990-01-01

    An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.

  13. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  14. Energy Stable Flux Formulas For The Discontinuous Galerkin Discretization Of First Order Nonlinear Conservation Laws

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Charrier, Pierre; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.

  15. Quasi-neutral limit of Euler–Poisson system of compressible fluids coupled to a magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Jianwei

    2018-06-01

    In this paper, we consider the quasi-neutral limit of a three-dimensional Euler-Poisson system of compressible fluids coupled to a magnetic field. We prove that, as Debye length tends to zero, periodic initial-value problems of the model have unique smooth solutions existing in the time interval where the ideal incompressible magnetohydrodynamic equations has smooth solution. Meanwhile, it is proved that smooth solutions converge to solutions of incompressible magnetohydrodynamic equations with a sharp convergence rate in the process of quasi-neutral limit.

  16. Existence and Non-uniqueness of Global Weak Solutions to Inviscid Primitive and Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chiodaroli, Elisabetta; Michálek, Martin

    2017-08-01

    We consider the initial value problem for the inviscid Primitive and Boussinesq equations in three spatial dimensions. We recast both systems as an abstract Euler-type system and apply the methods of convex integration of De Lellis and Székelyhidi to show the existence of infinitely many global weak solutions of the studied equations for general initial data. We also introduce an appropriate notion of dissipative solutions and show the existence of suitable initial data which generate infinitely many dissipative solutions.

  17. Multigrid Methods: Proceedings of the Copper Mountain Conference on Multigrid Methods (3rd) Held in Copper Mountain, Colorado on April 5-10, 1987

    DTIC Science & Technology

    1988-08-01

    Time Series 53. J. Barros-Neto and R. A. Artino, Hypoelliptic Boundary-Value Problems 54. R. L. Sternberg, A. J. Kalinowski, and J. S. Papadakis... Systems 95. C E. AuL Rings of Continuous Functions 96. R. Chuaqui, Analysis , Geometry, and Probability 97. L. Fuchs and L. Sace, Modules Over...Local Refinements for a Class of Nonshared Memory Systems 449 Hermann Mierendorif Analysis of a Multigrid Method for the Euler Equations of Gas Dynamics

  18. [Arthroscopically Assisted Minimally Invasive Fixation of a Type D2c Scapular Fracture].

    PubMed

    Kornherr, Patrick; Konerding, Christiane; Kovacevic, Mark; Wenda, Klaus

    2018-06-12

    Fractures of the scapula are rare and have an incidence of 1% of all fractures. Publications highlight glenoid rim fractures. Classification by Ideberg and Euler and Rüdi are accepted. Euler and Rüdi describe three extra-articular and two intra-articular fracture patterns. The indications for surgery are displaced glenoid fractures, scapula tilt of more than 40° and injuries to the superior shoulder suspensory complex. We describe a case of a 22 year old man, who while cycling collided with a moving car due to wet roads. After his admission to hospital as a polytraumatised patient, the trauma CT-Scan showed haemothorax with several associated rip fractures, displaced humeral shaft fracture and fractures of the acromion and glenoid, classified as type D2c according to Euler and Rüdi. Following damage control principles, drainage of the haemothorax was already performed in the ER and surgical treatment of the displaced humeral shaft fracture was performed on the day of admission. No peripheral neurological deficits were evident. After pulmonary stabilisation, surgery was performed 6 days later on the glenoid and acromion fracture, which in conjunction may be regarded as an injury to the superior shoulder suspensory complex. We performed an arthroscopically-assisted screw fixation of the glenoid fracture (type D2c according to Euler and Rüdi) and an ORIF procedure at the acromion. Postoperative rehabilitation was performed with passive abduction and elevation up to 90° for the first two weeks and active abduction an elevation up to 90° for weeks 3 to 6. Full ROM was allowed at week 7. Articular fractures of the glenoid are rare and mainly seen as rim fractures. The indications for surgery are displaced articular fractures and injury to the superior shoulder suspensory complex. As demonstrated by this article, type D2c fractures according to Euler and Rüdi can be treated effectively as an arthroscopically-assisted screw fixation procedure. Georg Thieme Verlag KG Stuttgart · New York.

  19. Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun Tolutope

    2017-12-01

    Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

  20. Defining Geodetic Reference Frame using Matlab®: PlatEMotion 2.0

    NASA Astrophysics Data System (ADS)

    Cannavò, Flavio; Palano, Mimmo

    2016-03-01

    We describe the main features of the developed software tool, namely PlatE-Motion 2.0 (PEM2), which allows inferring the Euler pole parameters by inverting the observed velocities at a set of sites located on a rigid block (inverse problem). PEM2 allows also calculating the expected velocity value for any point located on the Earth providing an Euler pole (direct problem). PEM2 is the updated version of a previous software tool initially developed for easy-to-use file exchange with the GAMIT/GLOBK software package. The software tool is developed in Matlab® framework and, as the previous version, includes a set of MATLAB functions (m-files), GUIs (fig-files), map data files (mat-files) and user's manual as well as some example input files. New changes in PEM2 include (1) some bugs fixed, (2) improvements in the code, (3) improvements in statistical analysis, (4) new input/output file formats. In addition, PEM2 can be now run under the majority of operating systems. The tool is open source and freely available for the scientific community.

  1. On the stiffness matrix of the intervertebral joint: application to total disk replacement.

    PubMed

    O'Reilly, Oliver M; Metzger, Melodie F; Buckley, Jenni M; Moody, David A; Lotz, Jeffrey C

    2009-08-01

    The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.

  2. Global geometry of non-planar 3-body motions

    NASA Astrophysics Data System (ADS)

    Salehani, Mahdi Khajeh

    2011-12-01

    The aim of this paper is to study the global geometry of non-planar 3-body motions in the realms of equivariant Differential Geometry and Geometric Mechanics. This work was intended as an attempt at bringing together these two areas, in which geometric methods play the major role, in the study of the 3-body problem. It is shown that the Euler equations of a three-body system with non-planar motion introduce non-holonomic constraints into the Lagrangian formulation of mechanics. Applying the method of undetermined Lagrange multipliers to study the dynamics of three-body motions reduced to the level of moduli space {bar{M}} subject to the non-holonomic constraints yields the generalized Euler-Lagrange equations of non-planar three-body motions in {bar{M}} . As an application of the derived dynamical equations in the level of {bar{M}} , we completely settle the question posed by A. Wintner in his book [The analytical foundations of Celestial Mechanics, Sections 394-396, 435 and 436. Princeton University Press (1941)] on classifying the constant inclination solutions of the three-body problem.

  3. Rotations in the actively colliding Finisterre Arc Terrane: paleomagnetic constraints on Plio-Pleistocene evolution of the South Bismarck microplate, northeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, P. D.; Coe, R. S.

    2000-01-01

    We report paleomagnetic results from 12 Plio-Pleistocene localities in the actively colliding Finisterre Arc Terrane of northeastern Papua New Guinea (PNG). Calcareous, hemipelagic cover rocks possess a stable, syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. A decrease in paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Arc Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8° Ma -1, in good agreement with the instantaneous rate from global positioning system geodesy. Thus, we propose that this rotation results from a coherent, rigid-body rotation of the Finisterre Terrane rather than from sequential docking of independently colliding blocks of the terrane. Moreover, we conclude that these paleomagnetic declinations result mainly from South Bismarck Plate motion, and not decoupled rotation of the crustal terrane independent of the underlying lithosphere. We examine models of a syn-collisional remagnetization with both fixed and migrating Euler poles of South Bismarck/Australia plate relative motion, and suggest that the Euler pole describing South Bismarck Plate motion has migrated southwestward to its present location on the collision suture in response to the propagating collision. This plate kinematic model agrees with the variability in depth of the seismogenic slab beneath the collision zone. Our best-fit model of pole migration describes South Bismarck/Australia relative motion producing a highly oblique collision in its early stages, with the Finisterre Arc Terrane converging along a left-lateral Ramu-Markham suture, gradually changing to the nearly orthogonal convergence observed today.

  4. Anders Johan Lexell's Role in the Determination of the Solar Parallax

    NASA Astrophysics Data System (ADS)

    Sten, Johan Carl-Erik; Aspaas, Per Pippin

    2013-05-01

    Anders Johan Lexell (1740-1784) was a mathematician who gained considerable recognition for his scientific achievements during the century of Enlightenment. Born and educated in Abo/Turku in the Finnish part of the Swedish Realm, he was invited as an assistant and collaborator of Leonhard Euler at the Imperial Academy of Sciences in Saint Petersburg in 1768. After Euler's death in 1783 he inherited his mentor's chair and became professor of mathematics at the Petersburg Academy of Sciences, but survived only a year in this office. One of Lexell's first tasks in Saint Petersburg was to assist in the calculations involved in the Venus transit project of 1769. Under Euler's supervision, Lexell formulated a system of modeling equations involving the whole bulk of observation data obtained from all over the world. Thus, by searching (manually) the best estimate of the parallax with respect to all available measurements made of the Venus transit simultaneously, he anticipated later statistical modeling methods. The usual method at the time consisted of juxtaposing a pair of measurements at a time and taking a mean value of all the parallax values obtained in this way. What had started as an innocent, purely academic attempt to establish the solar parallax, soon escalated into a heated controversy of international dimensions. The roles played by Jerome de Lalande in Paris and Maximilian Hell in Vienna in this controversy are well known; Lexell's role less so. Our analysis has two aims. First, we elucidate Lexell's place in the international solar parallax controversy by making use of his published works as well as surviving parts of his correspondence. Second, we present the method used by Lexell and analyze his way of calculating the solar parallax.

  5. Dynamics of a homogeneous ball on a horizontal plane with sliding, spinning, and rolling friction taken into account

    NASA Astrophysics Data System (ADS)

    Ishkhanyan, M. V.; Karapetyan, A. V.

    2010-04-01

    We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.

  6. Variational Ridging in Sea Ice Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  7. Paleomagnetic Euler Poles and the Apparent Polar Wander and Absolute Motion of North America Since the Carboniferous

    NASA Astrophysics Data System (ADS)

    Gordon, Richard G.; Cox, Allan; O'Hare, Scott

    1984-10-01

    The apparent polar wander path for a plate is determined from paleomagnetic data by plotting a time sequence of paleomagnetic poles, each representing the location of the earth's spin axis as seen from the plate. Apparent polar wander paths consist of long, gently curved segments termed tracks linked by short segments with sharp curvature termed cusps. The tracks correspond to time intervals when the direction of plate motion was constant, and the cusps correspond to time intervals when the direction of plate motion was changing. Apparent polar wander tracks, like hot spot tracks, tend to lie along small circles. The center of a circle is called a hot spot Euler pole in the case of hot spot tracks and a paleomagnetic Euler pole in the case of paleomagnetic apparent polar wander paths. Both types of tracks mark the motion of a plate with respect to a point, a rising mantle plume in the case of hot spot tracks and the earth's paleomagnetic axis in the case of apparent polar wander paths. Unlike approaches uced in previous studies, paleomagnetic Euler pole analysis yields all three components of motion—including the east-west motion—of a plate with respect to the paleomagnetic axis. A new method for analyzing paleomagnetic poles along a track by using a maximum likelihood criterion gives the best fit paleomagnetic Euler pole and an ellipsoid of 95% confidence about the paleomagnetic Euler pole. In analyzing synthetic and real data, we found that the ellipsoids are elongate, the long axes being aligned with a great circle drawn from the paleomagnetic Euler pole to the center of the apparent polar wander track. This elongation is caused by the azimuths of circular tracks being better defined than their radii of curvature. A Jurassic-Cretaceous paleomagnetic Euler pole for North America was determined from 13 paleomagnetic poles. This track begins with the Wingate and Kayenta formations (about 200 Ma) and ends with the Niobrara Formation (about 87 Ma). Morgan's hot spot Euler pole for 200-90 Ma lies only 15° outside the 95% confidence ellipsoid of the paleomagnetic Euler pole. The good but not perfect agreement reflects displacement between the hot spot and paleomagnetic reference frames at an average rate that is smaller by an order of magnitude than the rate at which the faster plates are moving. The angular velocity of North America about the Jurassic-Cretaceous paleomagnetic Euler pole was determined by plotting the angular positions of paleomagnetic poles along the track as a function of age. For the Cretaceous the angular velocity was too small to measure. During the Jurassic the angular velocity was high, corresponding to a root-mean-square velocity of 70 km/m.y. for the North American plate. A short time interval of even more rapid movement during the Middle and Late Jurassic, possibly corresponding to the beginning of rapid displacement between North America and Africa, is suggested by the data. The direction of absolute motion of North America during the Jurassic was toward the northwest. A Carboniferous-Permian-Triassic paleomagnetic Euler pole was determined from 26 paleomagnetic poles. The progression of poles along this track is consistent with known ages and stratigraphy, except for some systematic differences between poles from Triassic rocks on the Colorado Plateau and poles from Triassic rocks off the Colorado Plateau. These differences could be due to a small clockwise rotation of the Colorado Plateau with respect to cratonal North America, or to miscorrelations between Triassic rocks on the Colorado Plateau and off the Colorado Plateau, or to large lag times between the deposition and magnetization of some rock units, or to some combination of these possibilities. Despite these ambiguities in interpreting paleomagnetic data from Triassic rocks, the general pattern of apparent polar wander and plate motion during the Carboniferous through Triassic is clear: The root-mean-square velocity of North America was slow (about 20 km/m.y.) during the Carboniferous, probably slow (about 20 km/m.y.) during the Permian, but rapid (60-100 km/m.y.) during the Triassic. Paleomagnetic Euler pole analysis establishes that the present slow (less than 30 km/m.y.) velocity of large continental plates like North America is not an intrinsic property of the plates. Occasionally these plates have, for intervals of 50 ± 20 m.y., moved as rapidly as the oceanic plates are moving today. In our interpretation, during times of rapid motion the continents were attached along a passive margin to oceanic lithosphere that was being subducted at some distance from the continent. Rapid motion stopped when the oceanic lithosphere had been consumed by subduction. If North America, Greenland, and Eurasia were joined as a single land mass during the Jurassic, then a likely location for the subducting oceanic plate attached to this landmass is along the southern margin of the cratonal core of Asia with the oceanic plate extending into Tethys. At the cusp between the Carboniferous-Permian-Triassic track and the Jurassic-Cretaceous track, the trend of the path changes by 160°. The western point of the cusp, which is delineated by paleomagnetic poles from the Chinle, Wingate, and Kayenta formations, is 13° farther west in our analysis than it is in commonly accepted apparent polar wander paths for North America. An implication for terrane analysis is that northward displacements found by using our Late Triassic and Early Jurassic poles are up to 2000 km smaller than are those found by using previously published Late Triassic and Early Jurassic cratonal poles.

  8. Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.

  9. a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment

    NASA Astrophysics Data System (ADS)

    Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita

    A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.

  10. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    PubMed

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  11. Remembrances of Ulf Svante von Euler.

    PubMed

    Igić, Rajko

    2018-05-21

    I first met Ulf Svante von Euler when he came to Belgrade, in 1968, to attend an international symposium on the occasion of the 50 th anniversary of the Medical Faculty. I was at that time a graduate student at the Medical Faculty in Sarajevo, and a new researcher. I had finished medical school in Belgrade and had worked for two years as a physician in the northern part of Serbia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Estimating locations and total magnetization vectors of compact magnetic sources from scalar, vector, or tensor magnetic measurements through combined Helbig and Euler analysis

    USGS Publications Warehouse

    Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.

    2007-01-01

    The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brezov, D. S.; Mladenova, C. D.; Mladenov, I. M., E-mail: mladenov@bio21.bas.bg

    In this paper we obtain the Lie derivatives of the scalar parameters in the generalized Euler decomposition with respect to arbitrary axes under left and right deck transformations. This problem can be directly related to the representation of the angular momentum in quantum mechanics. As a particular example, we calculate the angular momentum and the corresponding quantum hamiltonian in the standard Euler and Bryan representations. Similarly, in the hyperbolic case, the Laplace-Beltrami operator is retrieved for the Iwasawa decomposition. The case of two axes is considered as well.

  14. Wind tunnel pressure study and Euler code validation of a missile configuration with 77 deg swept delta wings at supersonic speeds. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Fulton, Patsy S.

    1988-01-01

    A wind-tunnel pressure study was conducted on an axisymmetric missile configuration in the Unitary Plan Wind Tunnel at NASA Langley Research Center. The Mach numbers ranged from 1.70 to 2.86 and the angles of attack ranged from minus 4 degrees to plus 24 degrees. The computational accuracy for limited conditions of a space-marching Euler code was assessed.

  15. A note on blowup of smooth solutions for relativistic Euler equations with infinite initial energy

    NASA Astrophysics Data System (ADS)

    Dong, Jianwei; Zhu, Junhui

    2018-04-01

    We study the singularity formation of smooth solutions of the relativistic Euler equations in (3+1)-dimensional spacetime for infinite initial energy. We prove that the smooth solution blows up in finite time provided that the radial component of the initial generalized momentum is sufficiently large without the conditions M(0)>0 and s2<1/3c2 , which were two key constraints stated in Pan and Smoller (Commun Math Phys 262:729-755, 2006).

  16. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Frederickson, Paul O.

    1990-01-01

    High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.

  17. Lagrangian averaging with geodesic mean

    NASA Astrophysics Data System (ADS)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  18. Lagrangian averaging with geodesic mean.

    PubMed

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  19. Computational Aerodynamics Based on the Euler Equations (L’aerodynamique Numerique a Partir des Equations d’Euler)

    DTIC Science & Technology

    1994-01-01

    0 The Mission of AGARD 0 According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the...advances in the aerospace sciences relevant to strengthening the common defence posture; • - Improving the co-operation among member nations in aerospace...for the physical principles. To construct the relevant equations for fluid gas consisting of pseudo particles, 10 is the internal energy due motion it

  20. Feasibility study of a single, elliptical heliocentric Earth-Mars trajectory

    NASA Technical Reports Server (NTRS)

    Blake, M.; Fulgham, K.; Westrup, S.

    1989-01-01

    The initial intent of this design project was to evaluate the existence and feasibility of a single elliptical heliocentric Earth/Mars trajectory. This trajectory was constrained to encounter Mars twice in its orbit, within a time interval of 15 to 180 Earth days between encounters. The single ellipse restriction was soon found to be prohibitive for reasons shown later. Therefore, the approach taken in the design of the round-trip mission to Mars was to construct single-leg trajectories which connected two planets on two prescribed dates. Three methods of trajectory design were developed. Method 1 is an eclectic approach and employs Gaussian Orbit Determination (Method 1A) and Lambert-Euler Preliminary Orbit Determination (Method 1B) in conjunction with each other. Method 2 is an additional version of Lambert's Solution to orbit determination, and both a coplanar and a noncoplanar solution were developed within Method 2. In each of these methods, the fundamental variables are two position vectors and the time between the position vectors. In all methods, the motion was considered Keplerian motion and the reference frame origin was located at the sun. Perturbative effects were not considered in Method 1. The feasibility study of round-trip Earth/Mars trajectories maintains generality by considering only heliocentric trajectory parameters and planetary approach conditions. The coordinates and velocity components of the planets, for the standard epoch J2000, were computed from an approximate set of osculating elements by the procedure outlined in an ephemeris of coordinates.

  1. The Neural Network In Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Urusan, Ahmet Yucel

    2011-12-01

    In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.

  2. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  3. An algorithm for solving the perturbed gas dynamic equations

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    The present application of a compact, higher-order central-difference approximation to the linearized Euler equations illustrates the multimodal character of these equations by means of computations for acoustic, vortical, and entropy waves. Such dissipationless central-difference methods are shown to propagate waves exhibiting excellent phase and amplitude resolution on the basis of relatively large time-steps; they can be applied to wave problems governed by systems of first-order partial differential equations.

  4. Dynamic response of a viscoelastic Timoshenko beam

    NASA Technical Reports Server (NTRS)

    Kalyanasundaram, S.; Allen, D. H.; Schapery, R. A.

    1987-01-01

    The analysis presented in this study deals with the vibratory response of viscoelastic Timoshenko (1955) beams under the assumption of small material loss tangents. The appropriate method of analysis employed here may be applied to more complex structures. This study compares the damping ratios obtained from the Timoshenko and Euler-Bernoulli theories for a given viscoelastic material system. From this study the effect of shear deformation and rotary inertia on damping ratios can be identified.

  5. Development of advanced Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1994-01-01

    The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.

  6. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.

    2014-06-15

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less

  7. Euler technology assessment for preliminary aircraft design employing OVERFLOW code with multiblock structured-grid method

    NASA Technical Reports Server (NTRS)

    Treiber, David A.; Muilenburg, Dennis A.

    1995-01-01

    The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.

  8. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  9. Evaluation of Linear, Inviscid, Viscous, and Reduced-Order Modeling Aeroelastic Solutions of the AGARD 445.6 Wing Using Root Locus Analysis

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel

    2014-01-01

    Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  10. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams

    NASA Astrophysics Data System (ADS)

    Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun

    2017-11-01

    The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.

  11. Modeling of Cluster-Induced Turbulence in Particle-Laden Channel Flow

    NASA Astrophysics Data System (ADS)

    Baker, Michael; Capecelatro, Jesse; Kong, Bo; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    A phenomenon often observed in gas-solid flows is the formation of mesoscale clusters of particles due to the relative motion between the solid and fluid phases that is sustained through the dampening of collisional particle motion from interphase momentum coupling inside these clusters. The formation of such sustained clusters, leading to cluster-induced turbulence (CIT), can have a significant impact in industrial processes, particularly in regards to mixing, reaction progress, and heat transfer. Both Euler-Lagrange (EL) and Euler-Euler anisotropic Gaussian (EE-AG) approaches are used in this work to perform mesoscale simulations of CIT in fully developed gas-particle channel flow. The results from these simulations are applied in the development of a two-phase Reynolds-Averaged Navier-Stokes (RANS) model to capture the wall-normal flow characteristics in a less computationally expensive manner. Parameters such as mass loading, particle size, and gas velocity are varied to examine their respective impact on cluster formation and turbulence statistics. Acknowledging support from the NSF (AN:1437865).

  12. Evolution of an electron plasma vortex in a strain flow

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2016-10-01

    Coherent vortex structures are ubiquitous in fluids and plasmas and are examples of self-organized structures in nonlinear dynamical systems. The fate of these structures in strain and shear flows is an important issue in many physical systems, including geophysical fluids and shear suppression of turbulence in plasmas. In two-dimensions, an inviscid, incompressible, ideal fluid can be modeled with the Euler equations, which is perhaps the simplest system that supports vortices. The Drift-Poisson equations for pure electron plasmas in a strong, uniform magnetic field are isomorphic to the Euler equations, and so electron plasmas are an excellent test bed for the study of 2D vortex dynamics. This talk will describe results from a new experiment using pure electron plasmas in a specially designed Penning-Malmberg (PM) trap to study the evolution of an initially axisymmetric 2D vortex subject to externally imposed strains. Complementary vortex-in-cell simulations are conducted to validate the 2D nature of the experimental results and to extend the parameter range of these studies. Data for vortex destruction using both instantaneously applied and time dependent strains with flat (constant vorticity) and extended radial profiles will be presented. The role of vortex self-organization will be discussed. A simple 2D model works well for flat vorticity profiles. However, extended profiles exhibit more complicated behavior, such as filamentation and stripping; and these effects and their consequences will be discussed. Work done in collaboration with N. C. Hurst, D. H. E. Dubin, and C. M. Surko.

  13. Cavitation Modeling in Euler and Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.

  14. An explicit plate kinematic model for the orogeny in the southern Uralides

    NASA Astrophysics Data System (ADS)

    Görz, Ines; Hielscher, Peggy

    2010-10-01

    The Palaeozoic Uralides formed in a three plate constellation between Europe, Siberia and Kazakhstan-Tarim. Starting from the first plate tectonic concepts, it was controversially discussed, whether the Uralide orogeny was the result of a relative plate motion between Europe and Siberia or between Europe and Kazakhstan. In this study, we use a new approach to address this problem. We perform a structural analysis on the sphere, reconstruct the positions of the Euler poles of the relative plate rotation Siberia-Europe and Tarim-Europe and describe Uralide structures by their relation to small circles about the two Euler poles. Using this method, changes in the strike of tectonic elements that are caused by the spherical geometry of the Earth's surface are eliminated and structures that are compatible with one of the relative plate motions can be identified. We show that only two Euler poles controlled the Palaeozoic tectonic evolution in the whole West Siberian region, but that they acted diachronously in different regions. We provide an explicit model describing the tectonism in West Siberia by an Euler pole, a sense of rotation and an approximate rotation angle. In the southern Uralides, Devonian structures resulted from a plate rotation of Siberia with respect to Europe, while the Permian structures were caused by a relative plate motion of Kazakhstan-Tarim with respect to Europe. The tectonic pause in the Carboniferous period correlates with a reorganization of the plate kinematics.

  15. Secular changes in Earth's shape and surface mass loading derived from combinations of reprocessed global GPS networks

    NASA Astrophysics Data System (ADS)

    Booker, David; Clarke, Peter J.; Lavallée, David A.

    2014-09-01

    The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.

  16. Overview of Transonic to Hypersonic Stage Separation Tool Development for Multi-Stage-to-Orbit Concepts

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bunning, Pieter G.; Pamadi, Bandu N.; Scallion, William I.; Jones, Kenneth M.

    2004-01-01

    An overview of research efforts at NASA in support of the stage separation and ascent aerothermodynamics research program is presented. The objective of this work is to develop a synergistic suite of experimental, computational, and engineering tools and methods to apply to vehicle separation across the transonic to hypersonic speed regimes. Proximity testing of a generic bimese wing-body configuration is on-going in the transonic (Mach numbers 0.6, 1.05, and 1.1), supersonic (Mach numbers 2.3, 3.0, and 4.5) and hypersonic (Mach numbers 6 and 10) speed regimes in four wind tunnel facilities at the NASA Langley Research Center. An overset grid, Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of the bimese configuration. Steady-state predictions with this solver were in excellent agreement with wind tunnel data at Mach 3 as were predictions via a Cartesian-grid Euler solver. Experimental and computational data have been used to evaluate multi-body enhancements to the widely-used Aerodynamic Preliminary Analysis System, an engineering methodology, and to develop a new software package, SepSim, for the simulation and visualization of vehicle motions in a stage separation scenario. Web-based software will be used for archiving information generated from this research program into a database accessible to the user community. Thus, a framework has been established to study stage separation problems using coordinated experimental, computational, and engineering tools.

  17. High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2017-11-01

    In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler-Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.

  18. Real-time, interactive animation of deformable two- and three-dimensional objects

    DOEpatents

    Desbrun, Mathieu; Schroeder, Peter; Meyer, Mark; Barr, Alan H.

    2003-06-03

    A method of updating in real-time the locations and velocities of mass points of a two- or three-dimensional object represented by a mass-spring system. A modified implicit Euler integration scheme is employed to determine the updated locations and velocities. In an optional post-integration step, the updated locations are corrected to preserve angular momentum. A processor readable medium and a network server each tangibly embodying the method are also provided. A system comprising a processor in combination with the medium, and a system comprising the server in combination with a client for accessing the server over a computer network, are also provided.

  19. Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler equations)

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Dutykh, Denys

    2018-02-01

    A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.

  20. Detailed interpretation of aeromagnetic data from the Patagonia Mountains area, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    2015-01-01

    Euler deconvolution depth estimates derived from aeromagnetic data with a structural index of 0 show that mapped faults on the northern margin of the Patagonia Mountains generally agree with the depth estimates in the new geologic model. The deconvolution depth estimates also show that the concealed Patagonia Fault southwest of the Patagonia Mountains is more complex than recent geologic mapping represents. Additionally, Euler deconvolution depth estimates with a structural index of 2 locate many potential intrusive bodies that might be associated with known and unknown mineralization.

Top