Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
NASA Technical Reports Server (NTRS)
Nordstrom, Jan; Carpenter, Mark H.
1998-01-01
Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.
Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course
ERIC Educational Resources Information Center
Kull, Trent C.
2011-01-01
A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…
Finite difference and Runge-Kutta methods for solving vibration problems
NASA Astrophysics Data System (ADS)
Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi
2017-11-01
The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.
On the statistical mechanics of the 2D stochastic Euler equation
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg
2011-12-01
The dynamics of vortices and large scale structures is qualitatively very different in two dimensional flows compared to its three dimensional counterparts, due to the presence of multiple integrals of motion. These are believed to be responsible for a variety of phenomena observed in Euler flow such as the formation of large scale coherent structures, the existence of meta-stable states and random abrupt changes in the topology of the flow. In this paper we study stochastic dynamics of the finite dimensional approximation of the 2D Euler flow based on Lie algebra su(N) which preserves all integrals of motion. In particular, we exploit rich algebraic structure responsible for the existence of Euler's conservation laws to calculate the invariant measures and explore their properties and also study the approach to equilibrium. Unexpectedly, we find deep connections between equilibrium measures of finite dimensional su(N) truncations of the stochastic Euler equations and random matrix models. Our work can be regarded as a preparation for addressing the questions of large scale structures, meta-stability and the dynamics of random transitions between different flow topologies in stochastic 2D Euler flows.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.
1989-01-01
A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.
The P1-RKDG method for two-dimensional Euler equations of gas dynamics
NASA Technical Reports Server (NTRS)
Cockburn, Bernardo; Shu, Chi-Wang
1991-01-01
A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.
A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations
NASA Technical Reports Server (NTRS)
Gerritsen, Margot; Olsson, Pelle
1996-01-01
We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.
Computational methods for vortex dominated compressible flows
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Euler equation computations for the flow over a hovering helicopter rotor
NASA Technical Reports Server (NTRS)
Roberts, Thomas Wesley
1988-01-01
A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-06-01
The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.
A note on singularities of the 3-D Euler equation
NASA Technical Reports Server (NTRS)
Tanveer, S.
1994-01-01
In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.
Stability analysis of internally damped rotating composite shafts using a finite element formulation
NASA Astrophysics Data System (ADS)
Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed
2018-04-01
This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.
NASA Astrophysics Data System (ADS)
Brauer, Uwe; Karp, Lavi
2018-01-01
Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.
An explicit predictor-corrector solver with applications to Burgers' equation
NASA Technical Reports Server (NTRS)
Dey, S. K.; Dey, C.
1983-01-01
Forward Euler's explicit, finite-difference formula of extrapolation, is used as a predictor and a convex formula as a corrector to integrate differential equations numerically. An application has been made to Burger's equation.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1985-01-01
A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.
Perturbational blowup solutions to the compressible Euler equations with damping.
Cheung, Ka Luen
2016-01-01
The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.
A rotationally biased upwind difference scheme for the Euler equations
NASA Technical Reports Server (NTRS)
Davis, S. F.
1983-01-01
The upwind difference schemes of Godunov, Osher, Roe and van Leer are able to resolve one dimensional steady shocks for the Euler equations within one or two mesh intervals. Unfortunately, this resolution is lost in two dimensions when the shock crosses the computing grid at an oblique angle. To correct this problem, a numerical scheme was developed which automatically locates the angle at which a shock might be expected to cross the computing grid and then constructs separate finite difference formulas for the flux components normal and tangential to this direction. Numerical results which illustrate the ability of this method to resolve steady oblique shocks are presented.
High order finite volume WENO schemes for the Euler equations under gravitational fields
NASA Astrophysics Data System (ADS)
Li, Gang; Xing, Yulong
2016-07-01
Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1995-01-01
A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.
The general solution to the classical problem of finite Euler Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1977-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
Given a one-step numerical scheme, on which ordinary differential equations is it exact?
NASA Astrophysics Data System (ADS)
Villatoro, Francisco R.
2009-01-01
A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.
Convergence of finite difference transient response computations for thin shells.
NASA Technical Reports Server (NTRS)
Sobel, L. H.; Geers, T. L.
1973-01-01
Numerical studies pertaining to the limits of applicability of the finite difference method in the solution of linear transient shell response problems are performed, and a computational procedure for the use of the method is recommended. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. This is not a serious limitation in view of natural constraints imposed by the extension of Saint Venant's principle to transient response problems. It is also found that the short wavelength limitations of thin shell (Bernoulli-Euler) theory create significant convergence difficulties in computed response to certain types of transverse excitations. These difficulties may be overcome, however, through proper selection of finite difference mesh dimensions and temporal smoothing of the excitation.
Concepts for radically increasing the numerical convergence rate of the Euler equations
NASA Technical Reports Server (NTRS)
Nixon, David; Tzuoo, Keh-Lih; Caruso, Steven C.; Farshchi, Mohammad; Klopfer, Goetz H.; Ayoub, Alfred
1987-01-01
Integral equation and finite difference methods have been developed for solving transonic flow problems using linearized forms of the transonic small disturbance and Euler equations. A key element is the use of a strained coordinate system in which the shock remains fixed. Additional criteria are developed to determine the free parameters in the coordinate straining; these free parameters are functions of the shock location. An integral equation analysis showed that the shock is located by ensuring that no expansion shocks exist in the solution. The expansion shock appears as oscillations in the solution near the sonic line, and the correct shock location is determined by removing these oscillations. A second objective was to study the ability of the Euler equation to model separated flow.
Numerical simulation of vortical ideal fluid flow through curved channel
NASA Astrophysics Data System (ADS)
Moshkin, N. P.; Mounnamprang, P.
2003-04-01
A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1993-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.
Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.
2010-01-01
The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
Transonic flow analysis for rotors. Part 3: Three-dimensional, quasi-steady, Euler calculation
NASA Technical Reports Server (NTRS)
Chang, I-Chung
1990-01-01
A new method is presented for calculating the quasi-steady transonic flow over a lifting or non-lifting rotor blade in both hover and forward flight by using Euler equations. The approach is to solve Euler equations in a rotor-fixed frame of reference using a finite volume method. A computer program was developed and was then verified by comparison with wind-tunnel data. In all cases considered, good agreement was found with published experimental data.
Remarks on Heisenberg-Euler-type electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2017-05-01
We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.
Monotonic Derivative Correction for Calculation of Supersonic Flows
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
Aim of the study: This study examines numerical methods for solving the problems in gas dynamics, which are based on an exact or approximate solution to the problem of breakdown of an arbitrary discontinuity (the Riemann problem). Results: Comparative analysis of finite difference schemes for the Euler equations integration is conducted on the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Constantinescu, Emil M.
The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essentialmore » because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.« less
The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*
NASA Astrophysics Data System (ADS)
Chen, Zhenxing; Hou, Kepeng; Chen, Longwei
2018-03-01
For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.
An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.
Larios, Adam; Petersen, Mark R.; Titi, Edriss S.; ...
2017-04-29
We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larios, Adam; Petersen, Mark R.; Titi, Edriss S.
We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.
Application of Artificial Intelligence For Euler Solutions Clustering
NASA Astrophysics Data System (ADS)
Mikhailov, V.; Galdeano, A.; Diament, M.; Gvishiani, A.; Agayan, S.; Bogoutdinov, Sh.; Graeva, E.; Sailhac, P.
Results of Euler deconvolution strongly depend on the selection of viable solutions. Synthetic calculations using multiple causative sources show that Euler solutions clus- ter in the vicinity of causative bodies even when they do not group densely about perimeter of the bodies. We have developed a clustering technique to serve as a tool for selecting appropriate solutions. The method RODIN, employed in this study, is based on artificial intelligence and was originally designed for problems of classification of large data sets. It is based on a geometrical approach to study object concentration in a finite metric space of any dimension. The method uses a formal definition of cluster and includes free parameters that facilitate the search for clusters of given proper- ties. Test on synthetic and real data showed that the clustering technique successfully outlines causative bodies more accurate than other methods of discriminating Euler solutions. In complicated field cases such as the magnetic field in the Gulf of Saint Malo region (Brittany, France), the method provides geologically insightful solutions. Other advantages of the clustering method application are: - Clusters provide solutions associated with particular bodies or parts of bodies permitting the analysis of different clusters of Euler solutions separately. This may allow computation of average param- eters for individual causative bodies. - Those measurements of the anomalous field that yield clusters also form dense clusters themselves. The application of cluster- ing technique thus outlines areas where the influence of different causative sources is more prominent. This allows one to focus on areas for reinterpretation, using different window sizes, structural indices and so on.
Parallel aeroelastic computations for wing and wing-body configurations
NASA Technical Reports Server (NTRS)
Byun, Chansup
1994-01-01
The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring
NASA Technical Reports Server (NTRS)
Buratynski, E. K.; Caughey, D. A.
1984-01-01
An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.
Numerical solution of Euler's equation by perturbed functionals
NASA Technical Reports Server (NTRS)
Dey, S. K.
1985-01-01
A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.
The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1992-01-01
A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.
NASA Technical Reports Server (NTRS)
Osher, S.
1984-01-01
The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.
Unstructured Euler flow solutions using hexahedral cell refinement
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1991-01-01
An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
On reinitializing level set functions
NASA Astrophysics Data System (ADS)
Min, Chohong
2010-04-01
In this paper, we consider reinitializing level functions through equation ϕt+sgn(ϕ0)(‖∇ϕ‖-1)=0[16]. The method of Russo and Smereka [11] is taken in the spatial discretization of the equation. The spatial discretization is, simply speaking, the second order ENO finite difference with subcell resolution near the interface. Our main interest is on the temporal discretization of the equation. We compare the three temporal discretizations: the second order Runge-Kutta method, the forward Euler method, and a Gauss-Seidel iteration of the forward Euler method. The fact that the time in the equation is fictitious makes a hypothesis that all the temporal discretizations result in the same result in their stationary states. The fact that the absolute stability region of the forward Euler method is not wide enough to include all the eigenvalues of the linearized semi-discrete system of the second order ENO spatial discretization makes another hypothesis that the forward Euler temporal discretization should invoke numerical instability. Our results in this paper contradict both the hypotheses. The Runge-Kutta and Gauss-Seidel methods obtain the second order accuracy, and the forward Euler method converges with order between one and two. Examining all their properties, we conclude that the Gauss-Seidel method is the best among the three. Compared to the Runge-Kutta, it is twice faster and requires memory two times less with the same accuracy.
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
1996-08-01
A sufficient condition is obtained for the development of a finite-time singularity in a highly symmetric Euler flow, first proposed by Kida [J. Phys. Soc. Jpn. 54, 2132 (1995)] and recently simulated by Boratav and Pelz [Phys. Fluids 6, 2757 (1994)]. It is shown that if the second-order spatial derivative of the pressure (pxx) is positive following a Lagrangian element (on the x axis), then a finite-time singularity must occur. Under some assumptions, this Lagrangian sufficient condition can be reduced to an Eulerian sufficient condition which requires that the fourth-order spatial derivative of the pressure (pxxxx) at the origin be positive for all times leading up to the singularity. Analytical as well as direct numerical evaluation over a large ensemble of initial conditions demonstrate that for fixed total energy, pxxxx is predominantly positive with the average value growing with the numbers of modes.
Simplified modelling and analysis of a rotating Euler-Bernoulli beam with a single cracked edge
NASA Astrophysics Data System (ADS)
Yashar, Ahmed; Ferguson, Neil; Ghandchi-Tehrani, Maryam
2018-04-01
The natural frequencies and mode shapes of the flapwise and chordwise vibrations of a rotating cracked Euler-Bernoulli beam are investigated using a simplified method. This approach is based on obtaining the lateral deflection of the cracked rotating beam by subtracting the potential energy of a rotating massless spring, which represents the crack, from the total potential energy of the intact rotating beam. With this new method, it is assumed that the admissible function which satisfies the geometric boundary conditions of an intact beam is valid even in the presence of a crack. Furthermore, the centrifugal stiffness due to rotation is considered as an additional stiffness, which is obtained from the rotational speed and the geometry of the beam. Finally, the Rayleigh-Ritz method is utilised to solve the eigenvalue problem. The validity of the results is confirmed at different rotational speeds, crack depth and location by comparison with solid and beam finite element model simulations. Furthermore, the mode shapes are compared with those obtained from finite element models using a Modal Assurance Criterion (MAC).
Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar Z.
1998-01-01
A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.
One-dimensional high-order compact method for solving Euler's equations
NASA Astrophysics Data System (ADS)
Mohamad, M. A. H.; Basri, S.; Basuno, B.
2012-06-01
In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.
Functional equations for orbifold wreath products
NASA Astrophysics Data System (ADS)
Farsi, Carla; Seaton, Christopher
2017-10-01
We present generating functions for extensions of multiplicative invariants of wreath symmetric products of orbifolds presented as the quotient by the locally free action of a compact, connected Lie group in terms of orbifold sector decompositions. Particularly interesting instances of these product formulas occur for the Euler and Euler-Satake characteristics, which we compute for a class of weighted projective spaces. This generalizes results known for global quotients by finite groups to all closed, effective orbifolds. We also describe a combinatorial approach to extensions of multiplicative invariants using decomposable functors that recovers the formula for the Euler-Satake characteristic of a wreath product of a global quotient orbifold.
Numerical Simulation of the Detonation of Condensed Explosives
NASA Astrophysics Data System (ADS)
Wang, Cheng; Ye, Ting; Ning, Jianguo
Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.
A finite difference solution for the propagation of sound in near sonic flows
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Lester, H. C.
1983-01-01
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.
A finite element approach for solution of the 3D Euler equations
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.
1986-01-01
Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.
Chaotic dynamics of flexible Euler-Bernoulli beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl; Krysko, A. V., E-mail: anton.krysko@gmail.com; Kutepov, I. E., E-mail: iekutepov@gmail.com
2013-12-15
Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions ismore » carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.« less
An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium
NASA Technical Reports Server (NTRS)
Eppard, W. M.; Grossman, B.
1993-01-01
We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,
1984-01-12
Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density
Constructing space difference schemes which satisfy a cell entropy inequality
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1989-01-01
A numerical methodology for solving convection problems is presented, using finite difference schemes which satisfy the second law of thermodynamics on a cell-by-cell basis in addition to the usual conservation laws. It is shown that satisfaction of a cell entropy inequality is sufficient, in some cases, to guarantee nonlinear stability. Some details are given for several one-dimensional problems, including the quasi-one-dimensional Euler equations applied to flow in a nozzle.
Wang, X; Hopkins, C
2016-10-01
Advanced Statistical Energy Analysis (ASEA) is used to predict vibration transmission across coupled beams which support multiple wave types up to high frequencies where Timoshenko theory is valid. Bending-longitudinal and bending-torsional models are considered for an L-junction and rectangular beam frame. Comparisons are made with measurements, Finite Element Methods (FEM) and Statistical Energy Analysis (SEA). When beams support at least two local modes for each wave type in a frequency band and the modal overlap factor is at least 0.1, measurements and FEM have relatively smooth curves. Agreement between measurements, FEM, and ASEA demonstrates that ASEA is able to predict high propagation losses which are not accounted for with SEA. These propagation losses tend to become more important at high frequencies with relatively high internal loss factors and can occur when there is more than one wave type. At such high frequencies, Timoshenko theory, rather than Euler-Bernoulli theory, is often required. Timoshenko theory is incorporated in ASEA and SEA using wave theory transmission coefficients derived assuming Euler-Bernoulli theory, but using Timoshenko group velocity when calculating coupling loss factors. The changeover between theories is appropriate above the frequency where there is a 26% difference between Euler-Bernoulli and Timoshenko group velocities.
A fast efficient implicit scheme for the gasdynamic equations using a matrix reduction technique
NASA Technical Reports Server (NTRS)
Barth, T. J.; Steger, J. L.
1985-01-01
An efficient implicit finite-difference algorithm for the gasdynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved without loss of the stability characteristics generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows and used to show that the method offers computational advantages over the conventional Beam and Warming scheme. Existing Beam and Warming codes can be retrofit with minimal effort. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations.
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
NASA Technical Reports Server (NTRS)
Kleb, W. L.
1994-01-01
Steady flow over the leading portion of a multicomponent airfoil section is studied using computational fluid dynamics (CFD) employing an unstructured grid. To simplify the problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes equations - leaving the Euler equations. The algorithm is derived using the finite-volume approach, incorporating explicit time-marching of the unsteady Euler equations to a time-asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector splitting. Results are presented which contrast the solutions given by the two flux functions as a function of Mach number and grid resolution. Additional information is presented concerning code verification techniques, flow recirculation regions, convergence histories, and computational resources.
Stability of Blowup for a 1D Model of Axisymmetric 3D Euler Equation
NASA Astrophysics Data System (ADS)
Do, Tam; Kiselev, Alexander; Xu, Xiaoqian
2016-10-01
The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722-1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou-Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou-Luo model, in the sense that it contains relevant lower-order terms in the Biot-Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou-Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.
Internal hypersonic flow. [in thin shock layer
NASA Technical Reports Server (NTRS)
Lin, T. C.; Rubin, S. G.
1974-01-01
An approach for studying hypersonic internal flow with the aid of a thin-shock-layer approximation is discussed, giving attention to a comparison of thin-shock-layer results with the data obtained on the basis of the imposition theory or a finite-difference integration of the Euler equations. Relations in the case of strong interaction are considered together with questions of pressure distribution and aspects of the boundary-layer solution.
NASA Astrophysics Data System (ADS)
Fernandez, L.; Toffoli, A.; Monbaliu, J.
2012-04-01
In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.
NASA Astrophysics Data System (ADS)
Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.
2017-11-01
Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.
A globally well-posed finite element algorithm for aerodynamics applications
NASA Technical Reports Server (NTRS)
Iannelli, G. S.; Baker, A. J.
1991-01-01
A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For the linear basis, the resultant approximation is at least second-order-accurate in time and space for synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second-order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and two-dimensional Euler and Navier-Stokes benchmark test problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Petersson, N. A.; Rodgers, A.
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less
Predict the fatigue life of crack based on extended finite element method and SVR
NASA Astrophysics Data System (ADS)
Song, Weizhen; Jiang, Zhansi; Jiang, Hui
2018-05-01
Using extended finite element method (XFEM) and support vector regression (SVR) to predict the fatigue life of plate crack. Firstly, the XFEM is employed to calculate the stress intensity factors (SIFs) with given crack sizes. Then predicetion model can be built based on the function relationship of the SIFs with the fatigue life or crack length. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Because of the accuracy of the forward Euler method only ensured by the small step size, a new prediction method is presented to resolve the issue. The numerical examples were studied to demonstrate the proposed method allow a larger step size and have a high accuracy.
NASA Technical Reports Server (NTRS)
Desideri, J. A.; Steger, J. L.; Tannehill, J. C.
1978-01-01
The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1986-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1989-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Fouxon, Itzhak; Oz, Yaron
2008-12-31
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.
A note on blowup of smooth solutions for relativistic Euler equations with infinite initial energy
NASA Astrophysics Data System (ADS)
Dong, Jianwei; Zhu, Junhui
2018-04-01
We study the singularity formation of smooth solutions of the relativistic Euler equations in (3+1)-dimensional spacetime for infinite initial energy. We prove that the smooth solution blows up in finite time provided that the radial component of the initial generalized momentum is sufficiently large without the conditions M(0)>0 and s2<1/3c2 , which were two key constraints stated in Pan and Smoller (Commun Math Phys 262:729-755, 2006).
Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Frederickson, Paul O.
1990-01-01
High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.
NASA Astrophysics Data System (ADS)
Daiguji, Hisaaki; Yamamoto, Satoru
1988-12-01
The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.
Three-dimensional unsteady Euler equations solutions on dynamic grids
NASA Technical Reports Server (NTRS)
Belk, D. M.; Janus, J. M.; Whitfield, D. L.
1985-01-01
A method is presented for solving the three-dimensional unsteady Euler equations on dynamic grids based on flux vector splitting. The equations are cast in curvilinear coordinates and a finite volume discretization is used for handling arbitrary geometries. The discretized equations are solved using an explicit upwind second-order predictor corrector scheme that is stable for a CFL of 2. Characteristic variable boundary conditions are developed and used for unsteady impermeable surfaces and for the far-field boundary. Dynamic-grid results are presented for an oscillating air-foil and for a store separating from a reflection plate. For the cases considered of stores separating from a reflection plate, the unsteady aerodynamic forces on the store are significantly different from forces obtained by steady-state aerodynamics with the body inclination angle changed to account for plunge velocity.
Prediction and control of slender-wing rock
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Salman, Ahmed A.
1992-01-01
The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.
Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve
1987-01-01
Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.
Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics
NASA Technical Reports Server (NTRS)
Wood, William A.
1997-01-01
The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang G.; Schrecker, Matthew R. I.
2018-04-01
We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2014-07-01
This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study.
A multiblock multigrid three-dimensional Euler equation solver
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.
1990-01-01
Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.
Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.
Dapelo, Davide; Alberini, Federico; Bridgeman, John
2015-11-15
A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-11-01
The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.
NASA Astrophysics Data System (ADS)
Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier
2017-11-01
Particle-laden turbulent flows are important features of many environmental and industrial processes. Euler-Euler (EE) simulations of these flows are more computationally efficient than Euler-Lagrange (EL) simulations. However, traditional EE methods, such as the two-fluid model, cannot faithfully capture dilute regions of flow with finite Stokes number particles. For this purpose, the multi-valued nature of the particle velocity field must be treated with a polykinetic description. Various quadrature-based moment methods (QBMM) can be used to approximate the full kinetic description by solving for a set of moments of the particle velocity distribution function (VDF) and providing closures for the higher-order moments. Early QBMM fail to maintain the strict hyperbolicity of the kinetic equations, producing unphysical delta shocks (i.e., mass accumulation at a point). In previous work, a 2-D conditional hyperbolic quadrature method of moments (CHyQMOM) was proposed as a fourth-order QBMM closure that maintains strict hyperbolicity. Here, we present the 3-D extension of CHyQMOM. We compare results from CHyQMOM to other QBMM and EL in the context of particle trajectory crossing, cluster-induced turbulence, and particle-laden channel flow. NSF CBET-1437903.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen
1994-01-01
A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.
Dynamic modelling and control of a rotating Euler-Bernoulli beam
NASA Astrophysics Data System (ADS)
Yang, J. B.; Jiang, L. J.; Chen, D. CH.
2004-07-01
Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.
NASA Technical Reports Server (NTRS)
Reed, K. W.; Stonesifer, R. B.; Atluri, S. N.
1983-01-01
A new hybrid-stress finite element algorith, suitable for analyses of large quasi-static deformations of inelastic solids, is presented. Principal variables in the formulation are the nominal stress-rate and spin. A such, a consistent reformulation of the constitutive equation is necessary, and is discussed. The finite element equations give rise to an initial value problem. Time integration has been accomplished by Euler and Runge-Kutta schemes and the superior accuracy of the higher order schemes is noted. In the course of integration of stress in time, it has been demonstrated that classical schemes such as Euler's and Runge-Kutta may lead to strong frame-dependence. As a remedy, modified integration schemes are proposed and the potential of the new schemes for suppressing frame dependence of numerically integrated stress is demonstrated. The topic of the development of valid creep fracture criteria is also addressed.
2014-04-01
hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid sigma...hydrostatic pressure vertical coordinate, which are the 33 same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid 34 sigma...Weather Research and Forecasting 79 ( WRF ) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 coordinate. In
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
NASA Astrophysics Data System (ADS)
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
Numerical calculations of two dimensional, unsteady transonic flows with circulation
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1974-01-01
The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Ni, Zhi-Qiang; Jiang, Lin-Hua; Han, Lin; Kang, Xue-Wei
2015-07-01
Vibration problems wildly exist in beam-foundation structures. In this paper, finite periodic composites inspired by the concept of ideal phononic crystals (PCs), as well as Timoshenko beam theory (TBT), are proposed to the beam anchored on Winkler foundation. The bending vibration band structure of the PCs Timoshenko beam-foundation structure is derived from the modified transfer matrix method (MTMM) and Bloch's theorem. Then, the frequency response of the finite periodic composite Timoshenko beam-foundation structure by the finite element method (FEM) is performed to verify the above theoretical deduction. Study shows that the Timoshenko beam-foundation structure with periodic composites has wider attenuation zones compared with homogeneous ones. It is concluded that TBT is more available than Euler beam theory (EBT) in the study of the bending vibration characteristic of PCs beam-foundation structures with different length-to-height ratios.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Fang, Jun; Kurbatskii, Konstantin A.
1996-01-01
A set of nonhomogeneous radiation and outflow conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as nondispersive ans nondissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is necessary The proposed nonhomogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes.
Stability of the Euler resting N-body relative equilibria
NASA Astrophysics Data System (ADS)
Scheeres, D. J.
2018-03-01
The stability of a system of N equal-sized mutually gravitating spheres resting on each other in a straight line and rotating in inertial space is considered. This is a generalization of the "Euler Resting" configurations previously analyzed in the finite density 3 and 4 body problems. Specific questions for the general case are how rapidly the system must spin for the configuration to stabilize, how rapidly it can spin before the components separate from each other, and how these results change as a function of N. This paper shows that the Euler Resting configuration can only be stable for up to 5 bodies and that for 6 or more bodies the configuration can never be stable. This places an ideal limit of 5:1 on the aspect ratio of a rubble pile body's shape.
Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids
NASA Astrophysics Data System (ADS)
Ma, Xinrong; Duan, Zhijian
2018-04-01
High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.
FEM/BEM impedance and power analysis for measured LGS SH-SAW devices.
Kenny, Thomas D; Pollard, Thomas B; Berkenpas, Eric; da Cunha, Mauricio Pereira
2006-02-01
Pure shear horizontal piezoelectrically active surface and bulk acoustic waves (SH-SAW and SH-BAW) exist along rotated Y-cuts, Euler angles (0 degrees, theta, 90 degrees), of trigonal class 32 group crystals, which include the LGX family of crystals (langasite, langatate, and langanite). In this paper both SH-SAW and SH-BAW generated by finite-length, interdigital transducers (IDTs) on langasite, Euler angles (0 degrees, 22 degrees, 90 degrees), are simulated using combined finite- and boundary-element methods (FEM/BEM). Aluminum and gold IDT electrodes ranging in thickness from 600 A to 2000 A have been simulated, fabricated, and tested, with both free and metalized surfaces outside the IDT regions considered. Around the device's operating frequency, the percent difference between the calculated IDT impedance magnitude using the FEM/BEM model and the measurements is better than 5% for the different metal layers and thicknesses considered. The proportioning of SH-SAW and SH-BAW power is analyzed as a function of the number of IDT electrodes; type of electrode metal; and relative thickness of the electrode film, h/wavelength, where wavelength is the SH-SAW wavelength. Simulation results show that moderate mechanical loading by gold electrodes increases the proportion of input power converted to SH-SAW. For example, with a split-electrode IDT, comprising 238 electrodes with a relative thickness h/wavelength = 0.63% and surrounded by an infinitesimally thin conducting film, nearly 9% more input power is radiated as SH-SAW when gold instead of aluminum electrodes are used.
Sufficient Condition for Finite-Time Singularity in a High-Symmetry Euler Flow
NASA Astrophysics Data System (ADS)
Bhattacharjee, A.; Ng, C. S.
1997-11-01
The possibility of a finite-time singularity (FTS) with a smooth initial condition is considered in a high-symmetry Euler flow (the Kida flow). It has been shown recently [C. S. Ng and A. Bhattacharjee, Phys. Rev. E 54 1530, 1996] that there must be a FTS if the fourth order pressure derivative (p_xxxx) is always positive within a finite range X on the x-axis around the origin. This sufficient condition is now extended to the case when the range X is itself time-dependent. It is shown that a FTS must still exist even when X arrow 0 if the p_xxxx value at the origin is growing faster than X-2. It is tested statistically that p_xxxx at the origin is most probably positive for a Kida flow with random Fourier amplitudes and that it is generally growing as energy cascades to Fourier modes with higher wavenumbers k. The condition that p_xxxx grows faster than X-2 is found to be satisfied when the spectral index ν of the energy spectrum E(k) ∝ k^-ν of the random flow is less than 3.
Strictly stable high order difference approximations for computational aeroacoustics
NASA Astrophysics Data System (ADS)
Müller, Bernhard; Johansson, Stefan
2005-09-01
High order finite difference approximations with improved accuracy and stability properties have been developed for computational aeroacoustics (CAA). One of our new difference operators corresponds to Tam and Webb's DRP scheme in the interior, but is modified near the boundaries to be strictly stable. A unified formulation of the nonlinear and linearized Euler equations is used, which can be extended to the Navier-Stokes equations. The approach has been verified for 1D, 2D and axisymmetric test problems. We have simulated the sound propagation from a rocket launch before lift-off. To cite this article: B. Müller, S. Johansson, C. R. Mecanique 333 (2005).
Control theory based airfoil design using the Euler equations
NASA Technical Reports Server (NTRS)
Jameson, Antony; Reuther, James
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.
Boundary states at reflective moving boundaries
NASA Astrophysics Data System (ADS)
Acosta Minoli, Cesar A.; Kopriva, David A.
2012-06-01
We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo; Fox, Rodney O.; Feng, Heng
An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less
Kong, Bo; Fox, Rodney O.; Feng, Heng; ...
2017-02-16
An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less
Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion
NASA Technical Reports Server (NTRS)
Lee, Elizabeth M.; Batina, John T.
1990-01-01
Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
Discretizing singular point sources in hyperbolic wave propagation problems
Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...
2016-06-01
Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems
NASA Technical Reports Server (NTRS)
Tzes, Anthony P.; Yurkovich, Stephen; Langer, F. Dieter
1989-01-01
An efficient numerical method for solving the partial differential equation (PDE) governing the flexible manipulator control dynamics is presented. A finite-dimensional model of the equation is obtained through discretization in both time and space coordinates by using finite-difference approximations to the PDE. An expert program written in the Macsyma symbolic language is utilized in order to embed the boundary conditions into the program, accounting for a mass carried at the tip of the manipulator. The advantages of the proposed algorithm are many, including the ability to (1) include any distributed actuation term in the partial differential equation, (2) provide distributed sensing of the beam displacement, (3) easily modify the boundary conditions through an expert program, and (4) modify the structure for running under a multiprocessor environment.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
NASA Astrophysics Data System (ADS)
Ivanov, M.; Zeitoun, D.; Vuillon, J.; Gimelshein, S.; Markelov, G.
1996-05-01
The problem of transition of planar shock waves over straight wedges in steady flows from regular to Mach reflection and back was numerically studied by the DSMC method for solving the Boltzmann equation and finite difference method with FCT algorithm for solving the Euler equations. It is shown that the transition from regular to Mach reflection takes place in accordance with detachment criterion while the opposite transition occurs at smaller angles. The hysteresis effect was observed at increasing and decreasing shock wave angle.
Divergences and boundary modes in $$ \\mathcal{N}=8 $$ supergravity
Larsen, Finn; Lisbao, Pedro
2016-01-07
We reconsider the one loop divergence ofmore » $$ \\mathcal{N}=8 $$ supergravity in four dimensions. We compute the finite effective potential of $$ \\mathcal{N}=8 $$ anti-deSitter supergravity and interpret it as logarithmic running of the cosmological constant. We show that quantum inequivalence between fields that are classically dual is due to boundary modes in AdS 4. In conclusion, the boundary modes are important in global AdS 4 but not in thermal AdS 4 since these geometries have different Euler characteristic.« less
High-order ENO schemes applied to two- and three-dimensional compressible flow
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley
1991-01-01
High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.
Singular flow dynamics in three space dimensions driven by advection
NASA Astrophysics Data System (ADS)
Karimov, A. R.; Schamel, H.
2002-03-01
The initial value problem of an ideal, compressible fluid is investigated in three space dimensions (3D). Starting from a situation where the inertia terms dominate over the force terms in Euler's equation we explore by means of the Lagrangian flow description the basic flow properties. Special attention is drawn to the appearance of singularities in the flow pattern at finite time. Classes of initial velocity profiles giving rise to collapses of density and vorticity are found. This paper, hence, furnishes evidence of focused singularities for coherent structures obeying the 3D Euler equation and applies to potential as well as vortex flows.
NASA Technical Reports Server (NTRS)
Kinard, Tim A.; Harris, Brenda W.; Raj, Pradeep
1995-01-01
Vortex flows on a twin-tail and a single-tail modular transonic vortex interaction (MTVI) model, representative of a generic fighter configuration, are computationally simulated in this study using the Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM). The primary objective is to provide an assessment of viscous effects on benign (10 deg angle of attack) and burst (35 deg angle of attack) vortex flow solutions. This study was conducted in support of a NASA project aimed at assessing the viability of using Euler technology to predict aerodynamic characteristics of aircraft configurations at moderate-to-high angles of attack in a preliminary design environment. The TEAM code solves the Euler and Reynolds-average Navier-Stokes equations on patched multiblock structured grids. Its algorithm is based on a cell-centered finite-volume formulation with multistage time-stepping scheme. Viscous effects are assessed by comparing the computed inviscid and viscous solutions with each other and experimental data. Also, results of Euler solution sensitivity to grid density and numerical dissipation are presented for the twin-tail model. The results show that proper accounting of viscous effects is necessary for detailed design and optimization but Euler solutions can provide meaningful guidelines for preliminary design of flight vehicles which exhibit vortex flows in parts of their flight envelope.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Bettner, James L.
1990-01-01
The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.
Numerical Simulation of a Solar Domestic Hot Water System
NASA Astrophysics Data System (ADS)
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
A general multiblock Euler code for propulsion integration. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.
NASA Astrophysics Data System (ADS)
Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.
2018-04-01
We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.
A hybridized method for computing high-Reynolds-number hypersonic flow about blunt bodies
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Hamilton, H. H., II
1979-01-01
A hybridized method for computing the flow about blunt bodies is presented. In this method the flow field is split into its viscid and inviscid parts. The forebody flow field about a parabolic body is computed. For the viscous solution, the Navier-Stokes equations are solved on orthogonal parabolic coordinates using explicit finite differencing. The inviscid flow is determined by using a Moretti type scheme in which the Euler equations are solved, using explicit finite differences, on a nonorthogonal coordinate system which uses the bow shock as an outer boundary. The two solutions are coupled along a common data line and are marched together in time until a converged solution is obtained. Computed results, when compared with experimental and analytical results, indicate the method works well over a wide range of Reynolds numbers and Mach numbers.
A Robust Absorbing Boundary Condition for Compressible Flows
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; orgenson, Philip C. E.
2005-01-01
An absorbing non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented with theoretical proof. This paper is a continuation and improvement of a previous paper by the author. The absorbing NRBC technique is based on a first principle of non reflecting, which contains the essential physics that a plane wave solution of the Euler equations remains intact across the boundary. The technique is theoretically shown to work for a large class of finite volume approaches. When combined with the hyperbolic conservation laws, the NRBC is simple, robust and truly multi-dimensional; no additional implementation is needed except the prescribed physical boundary conditions. Several numerical examples in multi-dimensional spaces using two different finite volume schemes are illustrated to demonstrate its robustness in practical computations. Limitations and remedies of the technique are also discussed.
Aeroelasticity of wing and wing-body configurations on parallel computers
NASA Technical Reports Server (NTRS)
Byun, Chansup
1995-01-01
The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
Geometric constraints on potentially singular solutions for the 3-D Euler equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, P.; Fefferman, C.; Majda, A.J.
1996-12-31
We discuss necessary and sufficient conditions for the formation of finite time singularities (blow up) in the incompressible three dimensional Euler equations. The well-known result of Beale, Kato and Majda states that these equations have smooth solutions on the time interval (0,t) if, and only if lim/t{r_arrow}T {integral}{sup t}{sub 0} {parallel}{Omega}({center_dot},s){parallel}{sub L}{sup {infinity}} (dx)dx < {infinity} where {Omega} = {triangledown} X u is the vorticity of the fluid and u is its divergence=free velocity. In this paper we prove criteria in which the direction of vorticity {xi} = {Omega}/{vert_bar}{Omega}{vert_bar} plays an important role.
Development of advanced Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan
1994-01-01
The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.
2014-06-15
We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less
A note on powers in finite fields
NASA Astrophysics Data System (ADS)
Aabrandt, Andreas; Lundsgaard Hansen, Vagn
2016-08-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In this connection, it is of interest to know criteria for the existence of squares and other powers in arbitrary finite fields. Making good use of polynomial division in polynomial rings over finite fields, we have examined a classical criterion of Euler for squares in odd prime fields, giving it a formulation that is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom.
Positivity-preserving High Order Finite Difference WENO Schemes for Compressible Euler Equations
2011-07-15
the WENO reconstruction. We assume that there is a polynomial vector qi(x) = (ρi(x), mi(x), Ei(x)) T with degree k which are (k + 1)-th order accurate...i+ 1 2 = qi(xi+ 1 2 ). The existence of such polynomials can be established by interpolation for WENO schemes. For example, for the fifth or- der...WENO scheme, there is a unique vector of polynomials of degree four qi(x) satisfying qi(xi− 1 2 ) = w+ i− 1 2 , qi(xi+ 1 2 ) = w− i+ 1 2 and 1 ∆x ∫ Ij qi
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
Radiation of sound from unflanged cylindrical ducts
NASA Technical Reports Server (NTRS)
Hartharan, S. L.; Bayliss, A.
1983-01-01
Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.
On the stiffness matrix of the intervertebral joint: application to total disk replacement.
O'Reilly, Oliver M; Metzger, Melodie F; Buckley, Jenni M; Moody, David A; Lotz, Jeffrey C
2009-08-01
The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.
A NURBS-enhanced finite volume solver for steady Euler equations
NASA Astrophysics Data System (ADS)
Meng, Xucheng; Hu, Guanghui
2018-04-01
In Hu and Yi (2016) [20], a non-oscillatory k-exact reconstruction method was proposed towards the high-order finite volume methods for steady Euler equations, which successfully demonstrated the high-order behavior in the simulations. However, the degeneracy of the numerical accuracy of the approximate solutions to problems with curved boundary can be observed obviously. In this paper, the issue is resolved by introducing the Non-Uniform Rational B-splines (NURBS) method, i.e., with given discrete description of the computational domain, an approximate NURBS curve is reconstructed to provide quality quadrature information along the curved boundary. The advantages of using NURBS include i). both the numerical accuracy of the approximate solutions and convergence rate of the numerical methods are improved simultaneously, and ii). the NURBS curve generation is independent of other modules of the numerical framework, which makes its application very flexible. It is also shown in the paper that by introducing more elements along the normal direction for the reconstruction patch of the boundary element, significant improvement in the convergence to steady state can be achieved. The numerical examples confirm the above features very well.
NASA Astrophysics Data System (ADS)
Barranco, Joseph
2006-03-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.
A 3D spectral anelastic hydrodynamic code for shearing, stratified flows
NASA Astrophysics Data System (ADS)
Barranco, Joseph A.; Marcus, Philip S.
2006-11-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.
QED multi-dimensional vacuum polarization finite-difference solver
NASA Astrophysics Data System (ADS)
Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo
2015-11-01
The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes
NASA Astrophysics Data System (ADS)
Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.
2018-06-01
A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.
Compressible cavitation with stochastic field method
NASA Astrophysics Data System (ADS)
Class, Andreas; Dumond, Julien
2012-11-01
Non-linear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrange particles or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic field method solving pdf transport based on Euler fields has been proposed which eliminates the necessity to mix Euler and Lagrange techniques or prescribed pdf assumptions. In the present work, part of the PhD Design and analysis of a Passive Outflow Reducer relying on cavitation, a first application of the stochastic field method to multi-phase flow and in particular to cavitating flow is presented. The application considered is a nozzle subjected to high velocity flow so that sheet cavitation is observed near the nozzle surface in the divergent section. It is demonstrated that the stochastic field formulation captures the wide range of pdf shapes present at different locations. The method is compatible with finite-volume codes where all existing physical models available for Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic field formulation.
Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.
Ehrhardt, Loïc; Cheinet, Sylvain; Juvé, Daniel; Blanc-Benon, Philippe
2013-04-01
Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly perturbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior, e.g., the intensity variance progressively saturates. The present study evaluates the ability of a numerical propagation model based on the finite-difference time-domain solving of the linearized Euler equations in quantitatively reproducing the wave statistics under strong and saturated intensity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were considered. The numerical propagation model is presented and tested with two-dimensional harmonic sound propagation over long paths and strong atmospheric perturbations. The results are compared to quantitative theoretical or numerical predictions available on the wave statistics, including the log-amplitude variance and the probability density functions of the complex acoustic pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects on sound propagation. Finally, the model results for the intensity probability density function are compared with a standard fit by a generalized gamma function.
A Computational Study of Shear Layer Receptivity
NASA Astrophysics Data System (ADS)
Barone, Matthew; Lele, Sanjiva
2002-11-01
The receptivity of two-dimensional, compressible shear layers to local and external excitation sources is examined using a computational approach. The family of base flows considered consists of a laminar supersonic stream separated from nearly quiescent fluid by a thin, rigid splitter plate with a rounded trailing edge. The linearized Euler and linearized Navier-Stokes equations are solved numerically in the frequency domain. The flow solver is based on a high order finite difference scheme, coupled with an overset mesh technique developed for computational aeroacoustics applications. Solutions are obtained for acoustic plane wave forcing near the most unstable shear layer frequency, and are compared to the existing low frequency theory. An adjoint formulation to the present problem is developed, and adjoint equation calculations are performed using the same numerical methods as for the regular equation sets. Solutions to the adjoint equations are used to shed light on the mechanisms which control the receptivity of finite-width compressible shear layers.
NASA Astrophysics Data System (ADS)
Recent advances in computational fluid dynamics are discussed in reviews and reports. Topics addressed include large-scale LESs for turbulent pipe and channel flows, numerical solutions of the Euler and Navier-Stokes equations on parallel computers, multigrid methods for steady high-Reynolds-number flow past sudden expansions, finite-volume methods on unstructured grids, supersonic wake flow on a blunt body, a grid-characteristic method for multidimensional gas dynamics, and CIC numerical simulation of a wave boundary layer. Consideration is given to vortex simulations of confined two-dimensional jets, supersonic viscous shear layers, spectral methods for compressible flows, shock-wave refraction at air/water interfaces, oscillatory flow in a two-dimensional collapsible channel, the growth of randomness in a spatially developing wake, and an efficient simplex algorithm for the finite-difference and dynamic linear-programming method in optimal potential control.
Flow solution on a dual-block grid around an airplane
NASA Technical Reports Server (NTRS)
Eriksson, Lars-Erik
1987-01-01
The compressible flow around a complex fighter-aircraft configuration (fuselage, cranked delta wing, canard, and inlet) is simulated numerically using a novel grid scheme and a finite-volume Euler solver. The patched dual-block grid is generated by an algebraic procedure based on transfinite interpolation, and the explicit Runge-Kutta time-stepping Euler solver is implemented with a high degree of vectorization on a Cyber 205 processor. Results are presented in extensive graphs and diagrams and characterized in detail. The concentration of grid points near the wing apex in the present scheme is shown to facilitate capture of the vortex generated by the leading edge at high angles of attack and modeling of its interaction with the canard wake.
NASA Technical Reports Server (NTRS)
Coirier, William John
1994-01-01
A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.
Ames Optimized TCA Configuration
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.
1999-01-01
Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the CPU time limit available on the Cray machines. A typical optimization run using finite difference gradients can use only 30 to 40 design variables and one optimization iteration within the 8 hour queue limit for the chosen grid size and convergence level. The efficiency afforded by the adjoint method allowed for 50-120 design variables and 5-10 optimization iterations in the 8 hour queue. Geometric perturbations to the wing and fuselage were made using the Hicks/Henne (HH) shape functions. The HH functions were distributed uniformly along the chords of the wing defining sections and lofted linearly. During single-surface design, constraints on thickness and volume at selected wing stations were imposed. Both fuselage camber and cross-sectional area distributions were permitted to change during design. The major disadvantage to the use of these functions is the inherent surface waviness produced by repeated use of such functions. Many smoothing operations were required following optimization runs to produce a configuration with reasonable smoothness. Wagner functions were also used on the wing sections but were never used on the fuselage. The Wagner functions are a family of increasingly oscillatory functions that have also been used extensively in airfoil design. The leading and trailing edge regions of the wing were designed by use of polynomial and monomial functions respectively. Twist was attempted but was abandoned because of little performance improvement available from changing the baseline twist.
NASA Astrophysics Data System (ADS)
Mingari Scarpello, Giovanni; Ritelli, Daniele
2018-06-01
The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange-Poisson case, we compute the second (precession, ψ ) and third (spin, φ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle ψ completing the treatment of the Euler-Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order - 1/2.
First Instances of Generalized Expo-Rational Finite Elements on Triangulations
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre
2011-12-01
In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.
Aerothermodynamic shape optimization of hypersonic blunt bodies
NASA Astrophysics Data System (ADS)
Eyi, Sinan; Yumuşak, Mine
2015-07-01
The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a hypersonic blunt geometry that produces the minimum drag with low aerodynamic heating. Bezier curves are used for geometry parameterization. The performances of the design optimization method are demonstrated for different hypersonic flow conditions.
Comparison of Several Dissipation Algorithms for Central Difference Schemes
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Radespiel, R.; Turkel, E.
1997-01-01
Several algorithms for introducing artificial dissipation into a central difference approximation to the Euler and Navier Stokes equations are considered. The focus of the paper is on the convective upwind and split pressure (CUSP) scheme, which is designed to support single interior point discrete shock waves. This scheme is analyzed and compared in detail with scalar and matrix dissipation (MATD) schemes. Resolution capability is determined by solving subsonic, transonic, and hypersonic flow problems. A finite-volume discretization and a multistage time-stepping scheme with multigrid are used to compute solutions to the flow equations. Numerical results are also compared with either theoretical solutions or experimental data. For transonic airfoil flows the best accuracy on coarse meshes for aerodynamic coefficients is obtained with a simple MATD scheme.
Dewey, John F
2015-04-13
In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Dewey, John F.
2015-01-01
In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142
Static and dynamic response of a sandwich structure under axial compression
NASA Astrophysics Data System (ADS)
Ji, Wooseok
This thesis is concerned with a combined experimental and theoretical investigation of the static and dynamic response of an axially compressed sandwich structure. For the static response problem of sandwich structures, a two-dimensional mechanical model is developed to predict the global and local buckling of a sandwich beam, using classical elasticity. The face sheet and the core are assumed as linear elastic orthotropic continua in a state of planar deformation. General buckling deformation modes (periodic and non-periodic) of the sandwich beam are considered. On the basis of the model developed here, validation and accuracy of several previous theories are discussed for different geometric and material properties of a sandwich beam. The appropriate incremental stress and conjugate incremental finite strain measure for the instability problem of the sandwich beam, and the corresponding constitutive model are addressed. The formulation used in the commercial finite element package is discussed in relation to the formulation adopted in the theoretical derivation. The Dynamic response problem of a sandwich structure subjected to axial impact by a falling mass is also investigated. The dynamic counterpart of the celebrated Euler buckling problem is formulated first and solved by considering the case of a slender column that is impacted by a falling mass. A new notion, that of the time to buckle, "t*" is introduced, which is the corresponding critical quantity analogous to the critical load in static Euler buckling. The dynamic bifurcation buckling analysis is extended to thick sandwich structures using an elastic foundation model. A comprehensive set of impact test results of sandwich columns with various configurations are presented. Failure mechanisms and the temporal history of how a sandwich column responds to axial impact are discussed through the experimental results. The experimental results are compared against analytical dynamic buckling studies and finite element based simulation of the impact event.
High resolution solutions of the Euler equations for vortex flows
NASA Technical Reports Server (NTRS)
Murman, E. M.; Powell, K. G.; Rizzi, A.
1985-01-01
Solutions of the Euler equations are presented for M = 1.5 flow past a 70-degree-swept delta wing. At an angle of attack of 10 degrees, strong leading-edge vortices are produced. Two computational approaches are taken, based upon fully three-dimensional and conical flow theory. Both methods utilize a finite-volume discretization solved by a pseudounsteady multistage scheme. Results from the two approaches are in good agreement. Computations have been done on a 16-million-word CYBER 205 using 196 x 56 x 96 and 128 x 128 cells for the two methods. A sizable data base is generated, and some of the practical aspects of manipulating it are mentioned. The results reveal many interesting physical features of the compressible vortical flow field and also suggest new areas needing research.
Global Regularity for the Fractional Euler Alignment System
NASA Astrophysics Data System (ADS)
Do, Tam; Kiselev, Alexander; Ryzhik, Lenya; Tan, Changhui
2018-04-01
We study a pressureless Euler system with a non-linear density-dependent alignment term, originating in the Cucker-Smale swarming models. The alignment term is dissipative in the sense that it tends to equilibrate the velocities. Its density dependence is natural: the alignment rate increases in the areas of high density due to species discomfort. The diffusive term has the order of a fractional Laplacian {(-partial _{xx})^{α/2}, α \\in (0, 1)}. The corresponding Burgers equation with a linear dissipation of this type develops shocks in a finite time. We show that the alignment nonlinearity enhances the dissipation, and the solutions are globally regular for all {α \\in (0, 1)}. To the best of our knowledge, this is the first example of such regularization due to the non-local nonlinear modulation of dissipation.
Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system
NASA Astrophysics Data System (ADS)
Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping
2017-12-01
This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.
Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids
NASA Technical Reports Server (NTRS)
Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)
1994-01-01
A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.
An interactive adaptive remeshing algorithm for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Slack, David C.; Walters, Robert W.; Lohner, R.
1990-01-01
An interactive adaptive remeshing algorithm utilizing a frontal grid generator and a variety of time integration schemes for the two-dimensional Euler equations on unstructured meshes is presented. Several device dependent interactive graphics interfaces have been developed along with a device independent DI-3000 interface which can be employed on any computer that has the supporting software including the Cray-2 supercomputers Voyager and Navier. The time integration methods available include: an explicit four stage Runge-Kutta and a fully implicit LU decomposition. A cell-centered finite volume upwind scheme utilizing Roe's approximate Riemann solver is developed. To obtain higher order accurate results a monotone linear reconstruction procedure proposed by Barth is utilized. Results for flow over a transonic circular arc and flow through a supersonic nozzle are examined.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
A survey of parametrized variational principles and applications to computational mechanics
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1993-01-01
This survey paper describes recent developments in the area of parametrized variational principles (PVP's) and selected applications to finite-element computational mechanics. A PVP is a variational principle containing free parameters that have no effect on the Euler-Lagrange equations. The theory of single-field PVP's based on gauge functions (also known as null Lagrangians) is a subset of the inverse problem of variational calculus that has limited value. On the other hand, multifield PVP's are more interesting from theoretical and practical standpoints. Following a tutorial introduction, the paper describes the recent construction of multifield PVP's in several areas of elasticity and electromagnetics. It then discusses three applications to finite-element computational mechanics: the derivation of high-performance finite elements, the development of element-level error indicators, and the constructions of finite element templates. The paper concludes with an overview of open research areas.
Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1984-01-01
Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.
Computational investigation of large-scale vortex interaction with flexible bodies
NASA Astrophysics Data System (ADS)
Connell, Benjamin; Yue, Dick K. P.
2003-11-01
The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersson, N. Anders; Sjogreen, Bjorn
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Petersson, N. Anders; Sjogreen, Bjorn
2017-04-18
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Finite element structural redesign by large admissible perturbations
NASA Technical Reports Server (NTRS)
Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.
1991-01-01
In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.
Weak Galerkin method for the Biot’s consolidation model
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
2017-08-23
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
Weak Galerkin method for the Biot’s consolidation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
Survey of the status of finite element methods for partial differential equations
NASA Technical Reports Server (NTRS)
Temam, Roger
1986-01-01
The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.
Three-dimensional multigrid algorithms for the flux-split Euler equations
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.
1988-01-01
The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.
Hybrid control of the Neimark-Sacker bifurcation in a delayed Nicholson's blowflies equation.
Wang, Yuanyuan; Wang, Lisha
In this article, for delayed Nicholson's blowflies equation, we propose a hybrid control nonstandard finite-difference (NSFD) scheme in which state feedback and parameter perturbation are used to control the Neimark-Sacker bifurcation. Firstly, the local stability of the positive equilibria for hybrid control delay differential equation is discussed according to Hopf bifurcation theory. Then, for any step-size, a hybrid control numerical algorithm is introduced to generate the Neimark-Sacker bifurcation at a desired point. Finally, numerical simulation results confirm that the control strategy is efficient in controlling the Neimark-Sacker bifurcation. At the same time, the results show that the NSFD control scheme is better than the Euler control method.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.
2015-05-01
The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.
2015-08-01
The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.
Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
Bin, Jonghoon; Yousuff Hussaini, M; Lee, Soogab
2009-02-01
An accurate and practical surface impedance boundary condition in the time domain has been developed for application to broadband-frequency simulation in aeroacoustic problems. To show the capability of this method, two kinds of numerical simulations are performed and compared with the analytical/experimental results: one is acoustic wave reflection by a monopole source over an impedance surface and the other is acoustic wave propagation in a duct with a finite impedance wall. Both single-frequency and broadband-frequency simulations are performed within the framework of linearized Euler equations. A high-order dispersion-relation-preserving finite-difference method and a low-dissipation, low-dispersion Runge-Kutta method are used for spatial discretization and time integration, respectively. The results show excellent agreement with the analytical/experimental results at various frequencies. The method accurately predicts both the amplitude and the phase of acoustic pressure and ensures the well-posedness of the broadband time-domain impedance boundary condition.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1994-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.
Two-dimensional Euler and Navier-Stokes Time accurate simulations of fan rotor flows
NASA Technical Reports Server (NTRS)
Boretti, A. A.
1990-01-01
Two numerical methods are presented which describe the unsteady flow field in the blade-to-blade plane of an axial fan rotor. These methods solve the compressible, time-dependent, Euler and the compressible, turbulent, time-dependent, Navier-Stokes conservation equations for mass, momentum, and energy. The Navier-Stokes equations are written in Favre-averaged form and are closed with an approximate two-equation turbulence model with low Reynolds number and compressibility effects included. The unsteady aerodynamic component is obtained by superposing inflow or outflow unsteadiness to the steady conditions through time-dependent boundary conditions. The integration in space is performed by using a finite volume scheme, and the integration in time is performed by using k-stage Runge-Kutta schemes, k = 2,5. The numerical integration algorithm allows the reduction of the computational cost of an unsteady simulation involving high frequency disturbances in both CPU time and memory requirements. Less than 200 sec of CPU time are required to advance the Euler equations in a computational grid made up of about 2000 grid during 10,000 time steps on a CRAY Y-MP computer, with a required memory of less than 0.3 megawords.
NASA Technical Reports Server (NTRS)
Day, Brad A.; Meade, Andrew J., Jr.
1993-01-01
A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.
Evidence of singularities for a family of contour dynamics equations
Córdoba, Diego; Fontelos, Marco A.; Mancho, Ana M.; Rodrigo, Jose L.
2005-01-01
In this work, we show evidence of the existence of singularities developing in finite time for a class of contour dynamics equations depending on a parameter 0 < α ≤ 1. The limiting case α → 0 corresponds to 2D Euler equations, and α = 1 corresponds to the surface quasi-geostrophic equation. The singularity is point-like, and it is approached in a self-similar manner. PMID:15837929
Computational Methods for Design, Control and Optimization
2007-10-01
Krueger Eugene M. Cliff Hoan Nguyen Traian Iliescu John Singler James Vance Eric Vugrin Adam Childers Dan Sutton References [11 J. T. Borggaard, S...Control, 45th IEEE Conference on Decision and Control, accepted. [11] L. C. Berselli, T. Iliescu and W. J. Layton , Mathematics of Large Eddy...Daniel Inman, Eric Ruggiero and John Singler, Finite Element For- mulation for Static Control of a Thin Euler-Bernoulli Beam Using Piezoelectric
NASA Astrophysics Data System (ADS)
Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.
2018-03-01
The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.
Progress in multi-dimensional upwind differencing
NASA Technical Reports Server (NTRS)
Vanleer, Bram
1992-01-01
Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.
Local Self-Similarity and Finite-Time Singularity in a High-Symmetry Euler Flow
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
1997-11-01
The dynamical consequence of a positive fourth-order pressure derivative (p_xxxx) at the origin [C. S. Ng and A. Bhattacharjee, Phys. Rev. E 54 1530, 1996] in a high-symmetry Euler flow (the Kida flow) is considered. It is shown that the third order spatial derivative u_xxx of the x component of the velocity u at the origin is always decreasing in this situation. By assuming that u_xxx always attains a minimum possible value consistent with a given spectral profile, it is found that the flow is locally self-similar near the origin and collapses as energy cascades to Fourier modes with higher wavenumbers k. Moreover, it is found that the self-similar p(x) and u(x) profiles (as well as their derivatives) near the origin are very similar in shape to what were found in numerical simulations [O. N. Boratav and R. B. Pelz, Phys. Fluids 6 2757, 1994]. It is shown that a finite-time singularity (FTS) must appear in this case if the spectral index ν of the energy spectrum E(k) ∝ k^-ν of the locally self-similar flow is less than 6. A self-similar solution satisfying the Kelvin's theorem of circulation trivially has ν = 2 with vortex filaments and a FTS.
NASA Astrophysics Data System (ADS)
Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael
2018-06-01
In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
Finite area method for nonlinear conical flows
NASA Technical Reports Server (NTRS)
Sritharan, S. S.; Seebass, A. R.
1982-01-01
A fully conservative finite area method for the computation of steady inviscid flow about general conical bodies at incidence is described. The procedure utilizes the potential approximation and implements a body conforming mesh generator. The conical potential is assumed to have its best linear variation inside each mesh cell and a secondary interlocking cell system is used to establish the flux balance required to conserve mass. In the supersonic regions the scheme is desymmetrized by adding appropriate artificial viscosity in conservation form. The algorithm is nearly an order of a magnitude faster than present Euler methods and predicts known results accurately and qualitative features such as nodal point lift off correctly. Results are compared with those of other investigations.
Minimal measures for Euler-Lagrange flows on finite covering spaces
NASA Astrophysics Data System (ADS)
Wang, Fang; Xia, Zhihong
2016-12-01
In this paper we study the minimal measures for positive definite Lagrangian systems on compact manifolds. We are particularly interested in manifolds with more complicated fundamental groups. Mather’s theory classifies the minimal or action-minimizing measures according to the first (co-)homology group of a given manifold. We extend Mather’s notion of minimal measures to a larger class for compact manifolds with non-commutative fundamental groups, and use finite coverings to study the structure of these extended minimal measures. We also define action-minimizers and minimal measures in the homotopical sense. Our program is to study the structure of homotopical minimal measures by considering Mather’s minimal measures on finite covering spaces. Our goal is to show that, in general, manifolds with a non-commutative fundamental group have a richer set of minimal measures, hence a richer dynamical structure. As an example, we study the geodesic flow on surfaces of higher genus. Indeed, by going to the finite covering spaces, the set of minimal measures is much larger and more interesting.
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.
Mathematics and Physics Studies - Multi-Project Support
1989-09-02
measurements). A quaternion form is used to represent any finite rotation of a rigid body as a rotation through some angle about a fixed axis (Euler’s...many - contractual issues. Drs. Edmond Murad (GL/PHK) and Roger Van Tassel (GL/OPB) provided important suggestions and feedback on the data processing...Orbital Maneuvering System (OMS) and the Reaction Control System (RCS) resemble plumes produced by targets/events of interest. Measurements from the IBSS
An Astronomical Test of CCD Photometric Precision
NASA Technical Reports Server (NTRS)
Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)
1998-01-01
This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.
A Universal Formula for Extracting the Euler Angles
NASA Technical Reports Server (NTRS)
Shuster, Malcolm D.; Markley, F. Landis
2004-01-01
Recently, the authors completed a study of the Davenport angles, which are a generalization of the Euler angles for which the initial and final Euler axes need not be either mutually parallel or mutually perpendicular or even along the coordinate axes. During the conduct of that study, those authors discovered a relationship which can be used to compute straightforwardly the Euler angles characterizing a proper-orthogonal direction-cosine matrix for an arbitrary Euler-axis set satisfying n(sub 1) x n(sub 2) = 0 and n(sub 3) x n(sub 1) = 0, which is also satisfied by the more usual Euler angles we encounter commonly in the practice of Astronautics. Rather than leave that relationship hidden in an article with very different focus from the present Engineering note, we present it and the universal algorithm derived from it for extracting the Euler angles from the direction-cosine matrix here. We also offer literal "code" for performing the operations, numerical examples, and general considerations about the extraction of Euler angles which are not universally known, particularly, the treatment of statistical error.
NASA Technical Reports Server (NTRS)
Marconi, F.; Salas, M.; Yaeger, L.
1976-01-01
A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
NASA Technical Reports Server (NTRS)
Marconi, F.; Yaeger, L.
1976-01-01
A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
Dragna, Didier; Blanc-Benon, Philippe; Poisson, Franck
2014-03-01
Results from outdoor acoustic measurements performed in a railway site near Reims in France in May 2010 are compared to those obtained from a finite-difference time-domain solver of the linearized Euler equations. During the experiments, the ground profile and the different ground surface impedances were determined. Meteorological measurements were also performed to deduce mean vertical profiles of wind and temperature. An alarm pistol was used as a source of impulse signals and three microphones were located along a propagation path. The various measured parameters are introduced as input data into the numerical solver. In the frequency domain, the numerical results are in good accordance with the measurements up to a frequency of 2 kHz. In the time domain, except a time shift, the predicted waveforms match the measured waveforms with a close agreement.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1982-01-01
A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.
NASA Technical Reports Server (NTRS)
Homicz, G. F.; Moselle, J. R.
1985-01-01
A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.
NASA Astrophysics Data System (ADS)
Abdi, Daniel S.; Giraldo, Francis X.
2016-09-01
A unified approach for the numerical solution of the 3D hyperbolic Euler equations using high order methods, namely continuous Galerkin (CG) and discontinuous Galerkin (DG) methods, is presented. First, we examine how classical CG that uses a global storage scheme can be constructed within the DG framework using constraint imposition techniques commonly used in the finite element literature. Then, we implement and test a simplified version in the Non-hydrostatic Unified Model of the Atmosphere (NUMA) for the case of explicit time integration and a diagonal mass matrix. Constructing CG within the DG framework allows CG to benefit from the desirable properties of DG such as, easier hp-refinement, better stability etc. Moreover, this representation allows for regional mixing of CG and DG depending on the flow regime in an area. The different flavors of CG and DG in the unified implementation are then tested for accuracy and performance using a suite of benchmark problems representative of cloud-resolving scale, meso-scale and global-scale atmospheric dynamics. The value of our unified approach is that we are able to show how to carry both CG and DG methods within the same code and also offer a simple recipe for modifying an existing CG code to DG and vice versa.
NASA Astrophysics Data System (ADS)
Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan
2018-06-01
Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.
Block modeling of crustal deformation in Tierra del Fuego from GNSS velocities
NASA Astrophysics Data System (ADS)
Mendoza, L.; Richter, A.; Fritsche, M.; Hormaechea, J. L.; Perdomo, R.; Dietrich, R.
2015-05-01
The Tierra del Fuego (TDF) main island is divided by a major transform boundary between the South America and Scotia tectonic plates. Using a block model, we infer slip rates, locking depths and inclinations of active faults in TDF from inversion of site velocities derived from Global Navigation Satellite System observations. We use interseismic velocities from 48 sites, obtained from field measurements spanning 20 years. Euler vectors consistent with a simple seismic cycle are estimated for each block. In addition, we introduce far-field information into the modeling by applying constraints on Euler vectors of major tectonic plates. The difference between model and observed surface deformation near the Magallanes Fagnano Fault System (MFS) is reduced by considering finite dip in the forward model. For this tectonic boundary global plate circuits models predict relative movements between 7 and 9 mm yr- 1, while our regional model indicates that a strike-slip rate of 5.9 ± 0.2 mm yr- 1 is accommodated across the MFS. Our results indicate faults dipping 66- 4+ 6° southward, locked to a depth of 11- 5+ 5 km, which are consistent with geological models for the MFS. However, normal slip also dominates the fault perpendicular motion throughout the eastern MFS, with a maximum rate along the Fagnano Lake.
Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.
New fundamental parameters for attitude representation
NASA Astrophysics Data System (ADS)
Patera, Russell P.
2017-08-01
A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.
NASA Astrophysics Data System (ADS)
Childress, Stephen; Gilbert, Andrew D.
2018-02-01
A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as realized in the eroding hairpin excludes a finite time blowup for the corresponding Navier-Stokes model.
Wong, J.; Göktepe, S.; Kuhl, E.
2014-01-01
Summary Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, while the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of four days on a standard desktop computer. PMID:23798328
An h-p Taylor-Galerkin finite element method for compressible Euler equations
NASA Technical Reports Server (NTRS)
Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.
1991-01-01
An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.
A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Larson, Mats G.; Barth, Timothy J.
1999-01-01
This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Jorgenson, Philip C. E.
2007-01-01
A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.
Computational methods for the identification of spatially varying stiffness and damping in beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rosen, I. G.
1986-01-01
A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.
Adaptive computational methods for aerothermal heating analysis
NASA Technical Reports Server (NTRS)
Price, John M.; Oden, J. Tinsley
1988-01-01
The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.
Extended bounds limiter for high-order finite-volume schemes on unstructured meshes
NASA Astrophysics Data System (ADS)
Tsoutsanis, Panagiotis
2018-06-01
This paper explores the impact of the definition of the bounds of the limiter proposed by Michalak and Ollivier-Gooch in [56] (2009), for higher-order Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) numerical schemes on unstructured meshes in the finite-volume (FV) framework. A new modification of the limiter is proposed where the bounds are redefined by utilising all the spatial information provided by all the elements in the reconstruction stencil. Numerical results obtained on smooth and discontinuous test problems of the Euler equations on unstructured meshes, highlight that the newly proposed extended bounds limiter exhibits superior performance in terms of accuracy and mesh sensitivity compared to the cell-based or vertex-based bounds implementations.
Bandgaps and directional properties of two-dimensional square beam-like zigzag lattices
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2014-12-01
In this paper we propose four kinds of two-dimensional square beam-like zigzag lattice structures and study their bandgaps and directional propagation of elastic waves. The band structures are calculated by using the finite element method. Both the in-plane and out-of-plane waves are investigated simultaneously via the three-dimensional Euler beam elements. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. The effects of the geometry parameters of the xy- and z-zigzag lattices on the bandgaps are investigated and discussed. Multiple complete bandgaps are found owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the periodic systems. The deformed displacement fields of the harmonic responses of a finite lattice structure subjected to harmonic loads at different positions are illustrated to show the directional wave propagation. An extension of the proposed concept to the hexagonal lattices is also presented. The research work in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.
Faddeev-Jackiw quantization of topological invariants: Euler and Pontryagin classes
NASA Astrophysics Data System (ADS)
Escalante, Alberto; Medel-Portugal, C.
2018-04-01
The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pontryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.
Conical Euler simulation and active suppression of delta wing rocking motion
NASA Technical Reports Server (NTRS)
Lee, Elizabeth M.; Batina, John T.
1990-01-01
A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics
NASA Astrophysics Data System (ADS)
Nestler, M.; Nitschke, I.; Praetorius, S.; Voigt, A.
2018-02-01
We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.
Non-linear interaction of a detonation/vorticity wave
NASA Technical Reports Server (NTRS)
Lasseigne, D. G.; Jackson, T. L.; Hussaini, M. Y.
1991-01-01
The interaction of an oblique, overdriven detonation wave with a vorticity disturbance is investigated by a direct two-dimensional numerical simulation using a multi-domain, finite-difference solution of the compressible Euler equations. The results are compared to those of linear theory, which predict that the effect of exothermicity on the interaction is relatively small except possibly near a critical angle where linear theory no longer holds. It is found that the steady-state computational results agree with the results of linear theory. However, for cases with incident angle near the critical angle, moderate disturbance amplitudes, and/or sudden transient encounter with a disturbance, the effects of exothermicity are more pronounced than predicted by linear theory. Finally, it is found that linear theory correctly determines the critical angle.
A computational study on the interaction between a vortex and a shock wave
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.
1989-01-01
A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.
Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model
2014-09-19
the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to
Multiscale techniques for parabolic equations.
Målqvist, Axel; Persson, Anna
2018-01-01
We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the [Formula: see text]-norm. We present numerical examples, which confirm our theoretical findings.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
2012-06-09
employed theories are the Euler-Bernoulli beam theory (EBT) and the Timoshenko beam theory ( TBT ). The major deficiency associated with the EBT is failure to...account for defor- mations associated with shearing. The TBT relaxes the normality assumption of the EBT and admits a constant state of shear strain...on a given cross-section. As a result, the TBT necessitates the use of shear correction coefficients in order to accurately predict transverse
Interactive real time flow simulations
NASA Technical Reports Server (NTRS)
Sadrehaghighi, I.; Tiwari, S. N.
1990-01-01
An interactive real time flow simulation technique is developed for an unsteady channel flow. A finite-volume algorithm in conjunction with a Runge-Kutta time stepping scheme was developed for two-dimensional Euler equations. A global time step was used to accelerate convergence of steady-state calculations. A raster image generation routine was developed for high speed image transmission which allows the user to have direct interaction with the solution development. In addition to theory and results, the hardware and software requirements are discussed.
Determination of regional Euler pole parameters for Eastern Austria
NASA Astrophysics Data System (ADS)
Umnig, Elke; Weber, Robert; Schartner, Matthias; Brueckl, Ewald
2017-04-01
The horizontal motion of lithospheric plates can be described as rotations around a rotation axes through the Earth's center. The two possible points where this axes intersects the surface of the Earth are called Euler poles. The rotation is expressed by the Euler parameters in terms of angular velocities together with the latitude and longitude of the Euler pole. Euler parameters were calculated from GPS data for a study area in Eastern Austria. The observation network is located along the Mur-Mürz Valley and the Vienna Basin. This zone is part of the Vienna Transfer Fault, which is the major fault system between the Eastern Alps and the Carpathians. The project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) investigated intra plate tectonic movements within the Austrian part in order to estimate the seismic hazard. Precise site coordinate time series established from processing 5 years of GPS observations are available for the regional network spanning the years from 2010.0 to 2015.0. Station velocities with respect to the global reference frame ITRF2008 have been computed for 23 sites. The common Euler vector was estimated on base of a subset of reliable site velocities, for stations directly located within the area of interest. In a further step a geokinematic interpretation shall be carried out. Therefore site motions with respect to the Eurasian Plate are requested. To obtain this motion field different variants are conceivable. In a simple approach the mean ITRF2008 velocity of IGS site GRAZ can be adopted as Eurasian rotational velocity. An improved alternative is to calculate site-specific velocity differences between the Euler rotation and the individual site velocities. In this poster presentation the Euler parameters, the residual motion field as well as first geokinematic interpretation results are presented.
Higher-order jump conditions for conservation laws
NASA Astrophysics Data System (ADS)
Oksuzoglu, Hakan
2018-04-01
The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.
Three dimensional unstructured multigrid for the Euler equations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1991-01-01
The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.
Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations
NASA Astrophysics Data System (ADS)
Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Rieben, R.; Tomov, V.
2018-03-01
We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation laws, we constrain the density, momentum, and total energy in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum gradients are adjusted to incorporate the irreversible effect of density changes. Antidiffusive corrections to bounds-compatible low-order approximations are limited to satisfy inequality constraints for the specific total and kinetic energy. An accuracy-preserving smoothness indicator is introduced to gradually adjust lower bounds for the element-based correction factors. The employed smoothness criterion is based on a Hessian determinant test for the density. A numerical study is performed for test problems with smooth and discontinuous solutions.
NASA Astrophysics Data System (ADS)
Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.
2007-04-01
In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-09-29
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
NASA Technical Reports Server (NTRS)
Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)
2001-01-01
In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.
NASA Astrophysics Data System (ADS)
Oskouie, M. Faraji; Ansari, R.; Rouhi, H.
2018-04-01
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
Some Aspects of Essentially Nonoscillatory (ENO) Formulations for the Euler Equations, Part 3
NASA Technical Reports Server (NTRS)
Chakravarthy, Sukumar R.
1990-01-01
An essentially nonoscillatory (ENO) formulation is described for hyperbolic systems of conservation laws. ENO approaches are based on smart interpolation to avoid spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent past, TVD formulations were used to construct shock capturing finite difference methods. At extremum points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations locally, while away from extrema they can be constructed to be of higher order accuracy. The new framework helps construct essentially non-oscillatory finite difference methods without recourse to local reductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of the new approach can be specialized in several ways and one specific implementation is described based on: (1) the integral form of the conservation laws; (2) reconstruction based on the primitive functions; (3) extension to multiple dimensions in a tensor product fashion; and (4) Runge-Kutta time integration. The resulting method is fourth-order accurate in time and space and is applicable to uniform Cartesian grids. The construction of such schemes for scalar equations and systems in one and two space dimensions is described along with several examples which illustrate interesting aspects of the new approach.
CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anninos, Peter; Lau, Cheuk; Bryant, Colton
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less
Stress analysis of rotating propellers subject to forced excitations
NASA Astrophysics Data System (ADS)
Akgun, Ulas
Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.
CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
NASA Astrophysics Data System (ADS)
Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel
2017-08-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
NASA Astrophysics Data System (ADS)
Xu, G. D.; Xu, B. Q.; Xu, C. G.; Luo, Y.
2017-05-01
A spectral finite element method (SFEM) is developed to analyze guided ultrasonic waves in a delaminated composite beam excited and received by a pair of surface-bonded piezoelectric wafers. The displacements of the composite beam and the piezoelectric wafer are represented by Timoshenko beam and Euler Bernoulli theory respectively. The linear piezoelectricity is used to model the electrical-mechanical coupling between the piezoelectric wafer and the beam. The coupled governing equations and the boundary conditions in time domain are obtained by using the Hamilton's principle, and then the SFEM are formulated by transforming the coupled governing equations into frequency domain via the discrete Fourier transform. The guided waves are analyzed while the interaction of waves with delamination is also discussed. The elements needed in SFEM is far fewer than those for finite element method (FEM), which result in a much faster solution speed in this study. The high accuracy of the present SFEM is verified by comparing with the finite element results.
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Batina, John T.
1993-01-01
A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced motions and free-to-roll motions, including the active suppression of the wing-rock type phenomenon. The conical Euler methodology developed is directly extend able to three-dimensional calculations.
Effects of surface anchoring on the electric Frederiks transition in ferronematic systems
NASA Astrophysics Data System (ADS)
Farrokhbin, Mojtaba; Kadivar, Erfan
2016-11-01
The effects of anchoring phenomenon on the electric Frederiks transition threshold field in a nematic liquid crystal doped with ferroelectric nanoparticles are discussed. The polarizability of these nanoparticles in combination with confinement effects cause the drastic effects on the ferronematic systems. This study is based on Frank free energy and Rapini-Papoular surface energy for ferronematic liquid crystal having finite anchoring condition. In the case of different anchoring boundary conditions, the Euler-Lagrange equation of the total free energy is numerically solved by using the finite difference method together with the relaxation method and Maxwell construction to select the physical solutions and therefore investigate the effects of different anchoring strengths on the Frederiks transition threshold field. Maxwell construction method is employed to select three periodic solutions for nematic liquid crystal director at the interfaces of a slab. In the interval from zero to half- π, there is only one solution for the director orientation. In this way, NLC director rotates toward the normal to the surface as the applied electric field increases at the walls. Our numerical results illustrate that above Frederiks transition and in the intermediate anchoring strength, nematic molecules illustrate the different orientation at slab boundaries. We also study the effects of different anchoring strengths, nanoparticle volume fractions and polarizations on the Frederiks transition threshold field. We report that decreasing in the nanoparticle polarization results in the saturation Frederiks threshold. However, this situation does not happen for the nanoparticles volume fraction.
NASA Technical Reports Server (NTRS)
Engquist, B. E. (Editor); Osher, S. (Editor); Somerville, R. C. J. (Editor)
1985-01-01
Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere.
Vacuum energy in Einstein-Gauss-Bonnet anti-de Sitter gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofinas, Georgios; Olea, Rodrigo
2006-10-15
A finite action principle for Einstein-Gauss-Bonnet anti-de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, andmore » to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti-de Sitter spacetime in all odd dimensions.« less
Coupling between fluid dynamics and energy addition in arcjet and microwave thrusters
NASA Technical Reports Server (NTRS)
Micci, M. M.
1986-01-01
A new approach to numerically solving the problem of the constricted electric arcjet is presented. An Euler Implicit finite difference scheme is used to solve the full compressible Navier Stokes equations in two dimensions. The boundary and initial conditions represent the constrictor section of the arcjet, and hydrogen is used as a propellant. The arc is modeled as a Gaussian distribution across the centerline of the constrictor. Temperature, pressure and velocity profiles for steady state converged solutions show both axial and radial changes in distributions resulting from their interaction with the arc energy source for specific input conditions. The temperature rise is largest at the centerline where there is a the greatest concentration arc energy. The solution does not converge for all initial inputs and the limitations in the range of obtainable solutions are discussed.
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
NASA Technical Reports Server (NTRS)
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
NASA Astrophysics Data System (ADS)
Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.
2017-09-01
The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.
Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
Guerra, Jorge E.; Ullrich, Paul A.
2016-06-01
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerra, Jorge E.; Ullrich, Paul A.
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
NASA Technical Reports Server (NTRS)
Barth, Timothy; Charrier, Pierre; Mansour, Nagi N. (Technical Monitor)
2001-01-01
We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.
Numerical simulation of the transonic flow past the blunted wedge in the diverging channel
NASA Astrophysics Data System (ADS)
Ryabinin, Anatoly
2018-05-01
Positions of shock waves in the 2D channel with a blunted wedge are studied numerically. Solutions of the Euler equations are obtained with finite-volume solver SU2 for 15 variants of channel geometry. Numerical simulations reveal a considerable hysteresis in the shock wave position versus the supersonic Mach number given at the inlet. In the certain range of inlet Mach number, there are asymmetrical solutions of the equations. Small change in the geometry of the channel leads to shift of boundaries of the hysteresis range.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.
2011-01-01
Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.
Implementation of a 3D mixing layer code on parallel computers
NASA Technical Reports Server (NTRS)
Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.
1995-01-01
This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.
Advances in the computation of transonic separated flows over finite wings
NASA Technical Reports Server (NTRS)
Kaynak, Unver; Flores, Jolen
1989-01-01
Problems encountered in numerical simulations of transonic wind-tunnel experiments with low-aspect-ratio wings are surveyed and illustrated. The focus is on the zonal Euler/Navier-Stokes program developed by Holst et al. (1985) and its application to shock-induced separation. The physical basis and numerical implementation of the method are reviewed, and results are presented from studies of the effects of artificial dissipation, boundary conditions, grid refinement, the turbulence model, and geometry representation on the simulation accuracy. Extensive graphs and diagrams and typical flow visualizations are provided.
Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1992-01-01
Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.
NASA Astrophysics Data System (ADS)
Daude, F.; Galon, P.
2018-06-01
A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.
Three Dimensional Aerodynamic Analysis of a High-Lift Transport Configuration
NASA Technical Reports Server (NTRS)
Dodbele, Simha S.
1993-01-01
Two computational methods, a surface panel method and an Euler method employing unstructured grid methodology, were used to analyze a subsonic transport aircraft in cruise and high-lift conditions. The computational results were compared with two separate sets of flight data obtained for the cruise and high-lift configurations. For the cruise configuration, the surface pressures obtained by the panel method and the Euler method agreed fairly well with results from flight test. However, for the high-lift configuration considerable differences were observed when the computational surface pressures were compared with the results from high-lift flight test. On the lower surface of all the elements with the exception of the slat, both the panel and Euler methods predicted pressures which were in good agreement with flight data. On the upper surface of all the elements the panel method predicted slightly higher suction compared to the Euler method. On the upper surface of the slat, pressure coefficients obtained by both the Euler and panel methods did not agree with the results of the flight tests. A sensitivity study of the upward deflection of the slat from the 40 deg. flap setting suggested that the differences in the slat deflection between the computational model and the flight configuration could be one of the sources of this discrepancy. The computation time for the implicit version of the Euler code was about 1/3 the time taken by the explicit version though the implicit code required 3 times the memory taken by the explicit version.
NASA Technical Reports Server (NTRS)
Kathong, Monchai; Tiwari, Surendra N.
1988-01-01
In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.
Modelling and simulation of wood chip combustion in a hot air generator system.
Rajika, J K A T; Narayana, Mahinsasa
2016-01-01
This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.
Agglomeration Multigrid for an Unstructured-Grid Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal; Pandya, Mohagna J.
2004-01-01
An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.
Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain
NASA Astrophysics Data System (ADS)
Kunishima, Y.; Onishi, R.
2017-12-01
Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column domain. The centre of the discussion will be the Lagrangian statistics which is collected from the individual behaviour of the tracked particles.
Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES
NASA Astrophysics Data System (ADS)
Marras, Simone; Nazarov, Murtazo; Giraldo, Francis X.
2015-11-01
The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this work is twofold: stabilization and large eddy simulation are achieved via one scheme only. Because the diffusion coefficients of the regularization stresses obtained via Dyn-SGS are residual-based, the effect of the artificial diffusion is minimal in the regions where the solution is smooth. The direct consequence is that the nominal convergence rate of the high-order solution of smooth problems is not degraded. To our knowledge, this is the first application in atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that, by construction, may fulfill stabilization requirements, can model turbulence via LES, and is completely free of a user-tunable parameter. From its derivation, it will be immediately clear that Dyn-SGS is independent of the numerical method; it could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. Preliminary discontinuous Galerkin results are reported as well. The straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D, and 3D test cases is used to assess the method, with some comparison against the results obtained with the most known Lilly-Smagorinsky SGS model.
NASA Technical Reports Server (NTRS)
Kumar, A.
1984-01-01
A computer program NASCRIN has been developed for analyzing two-dimensional flow fields in high-speed inlets. It solves the two-dimensional Euler or Navier-Stokes equations in conservation form by an explicit, two-step finite-difference method. An explicit-implicit method can also be used at the user's discretion for viscous flow calculations. For turbulent flow, an algebraic, two-layer eddy-viscosity model is used. The code is operational on the CDC CYBER 203 computer system and is highly vectorized to take full advantage of the vector-processing capability of the system. It is highly user oriented and is structured in such a way that for most supersonic flow problems, the user has to make only a few changes. Although the code is primarily written for supersonic internal flow, it can be used with suitable changes in the boundary conditions for a variety of other problems.
NASA Technical Reports Server (NTRS)
Ibrahim, A. H.; Tiwari, S. N.; Smith, R. E.
1997-01-01
Variational methods (VM) sensitivity analysis employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.
NASA Technical Reports Server (NTRS)
Grossman, B.; Cinella, P.
1988-01-01
A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.
Regularization destriping of remote sensing imagery
NASA Astrophysics Data System (ADS)
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes
(strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
NASA Astrophysics Data System (ADS)
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.
2017-12-01
The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.
Finite element formulation of viscoelastic sandwich beams using fractional derivative operators
NASA Astrophysics Data System (ADS)
Galucio, A. C.; Deü, J.-F.; Ohayon, R.
This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.
On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Ibraheem, S. O.; Demuren, A. O.
1994-01-01
A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.
Finite element computation of compressible flows with the SUPG formulation
NASA Technical Reports Server (NTRS)
Le Beau, G. J.; Tezduyar, T. E.
1991-01-01
Finite element computation of compressible Euler equations is presented in the context of the streamline-upwind/Petrov-Galerkin (SUPG) formulation. The SUPG formulation, which is based on adding stabilizing terms to the Galerkin formulation, is further supplemented with a shock capturing operator which addresses the difficulty in maintaining a satisfactory solution near discontinuities in the solution field. The shock capturing operator, which has been derived from work done in entropy variables for a similar operator, is shown to lead to an appropriate level of additional stabilization near shocks, without resulting in excessive numerical diffusion. An implicit treatment of the impermeable wall boundary condition is also presented. This treatment of the no-penetration condition offers increased stability for large Courant numbers, and accelerated convergence of the computations for both implicit and explicit applications. Several examples are presented to demonstrate the ability of this method to solve the equations governing compressible fluid flow.
NASA Technical Reports Server (NTRS)
Bart, Timothy J.; Kutler, Paul (Technical Monitor)
1998-01-01
Chapter 1 briefly reviews several related topics associated with the symmetrization of systems of conservation laws and quasi-conservation laws: (1) Basic Entropy Symmetrization Theory; (2) Symmetrization and eigenvector scaling; (3) Symmetrization of the compressible Navier-Stokes equations; and (4) Symmetrization of the quasi-conservative form of the magnetohydrodynamic (MHD) equations. Chapter 2 describes one of the best known tools employed in the study of differential equations, the maximum principle: any function f(x) which satisfies the inequality f(double prime)>0 on the interval [a,b] attains its maximum value at one of the endpoints on the interval. Chapter three examines the upwind finite volume schemes for scalar and system conservation laws. The basic tasks in the upwind finite volume approach have already been presented: reconstruction, flux evaluation, and evolution. By far, the most difficult task in this process is the reconstruction step.
The solution of non-linear hyperbolic equation systems by the finite element method
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Zienkiewicz, O. C.
1984-01-01
A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kühnlein, Christian, E-mail: christian.kuehnlein@ecmwf.int; Smolarkiewicz, Piotr K., E-mail: piotr.smolarkiewicz@ecmwf.int
An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity—the latter being essential for flux-formmore » schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.« less
The stochastic energy-Casimir method
NASA Astrophysics Data System (ADS)
Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.
2018-04-01
In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"
Multi-Hamiltonian structure of equations of hydrodynamic type
NASA Astrophysics Data System (ADS)
Gümral, H.; Nutku, Y.
1990-11-01
The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.
NASA Technical Reports Server (NTRS)
Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard
1988-01-01
A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
A New Modular Approach for Tightly Coupled Fluid/Structure Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru
2003-01-01
Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
NASA Astrophysics Data System (ADS)
Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro
2014-05-01
This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if kh<1.36. In this regard, the aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.
Poly-Frobenius-Euler polynomials
NASA Astrophysics Data System (ADS)
Kurt, Burak
2017-07-01
Hamahata [3] defined poly-Euler polynomials and the generalized poly-Euler polynomials. He proved some relations and closed formulas for the poly-Euler polynomials. By this motivation, we define poly-Frobenius-Euler polynomials. We give some relations for this polynomials. Also, we prove the relationships between poly-Frobenius-Euler polynomials and Stirling numbers of the second kind.
Newton's Laws, Euler's Laws and the Speed of Light
ERIC Educational Resources Information Center
Whitaker, Stephen
2009-01-01
Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…
On the Application of Euler Deconvolution to the Analytic Signal
NASA Astrophysics Data System (ADS)
Fedi, M.; Florio, G.; Pasteka, R.
2005-05-01
In the last years papers on Euler deconvolution (ED) used formulations that accounted for the unknown background field, allowing to consider the structural index (N) an unknown to be solved for, together with the source coordinates. Among them, Hsu (2002) and Fedi and Florio (2002) independently pointed out that the use of an adequate m-order derivative of the field, instead than the field itself, allowed solving for both N and source position. For the same reason, Keating and Pilkington (2004) proposed the ED of the analytic signal. A function being analyzed by ED must be homogeneous but also harmonic, because it must be possible to compute its vertical derivative, as well known from potential field theory. Huang et al. (1995), demonstrated that analytic signal is a homogeneous function, but, for instance, it is rather obvious that the magnetic field modulus (corresponding to the analytic signal of a gravity field) is not a harmonic function (e.g.: Grant & West, 1965). Thus, it appears that a straightforward application of ED to the analytic signal is not possible because a vertical derivation of this function is not correct by using standard potential fields analysis tools. In this note we want to theoretically and empirically check what kind of error are caused in the ED by such wrong assumption about analytic signal harmonicity. We will discuss results on profile and map synthetic data, and use a simple method to compute the vertical derivative of non-harmonic functions measured on a horizontal plane. Our main conclusions are: 1. To approximate a correct evaluation of the vertical derivative of a non-harmonic function it is useful to compute it with finite-difference, by using upward continuation. 2. We found that the errors on the vertical derivative computed as if the analytic signal was harmonic reflects mainly on the structural index estimate; these errors can mislead an interpretation even though the depth estimates are almost correct. 3. Consistent estimates of depth and S.I. are instead obtained by using a finite-difference vertical derivative of the analytic signal. 4. Analysis of a case history confirms the strong error in the estimation of structural index if the analytic signal is treated as an harmonic function.
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Das, Raja; Saltz, Joel; Vermeland, R. E.
1992-01-01
An efficient three dimensional unstructured Euler solver is parallelized on a Cray Y-MP C90 shared memory computer and on an Intel Touchstone Delta distributed memory computer. This paper relates the experiences gained and describes the software tools and hardware used in this study. Performance comparisons between two differing architectures are made.
On the estimation variance for the specific Euler-Poincaré characteristic of random networks.
Tscheschel, A; Stoyan, D
2003-07-01
The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1996-01-01
A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in two dimensions is presented. Grids about geometrically complicated bodies are generated automatically, by the recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal cut cells are created using modified polygon-clipping algorithms. The grid is stored in a binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are shown using the more robust of these gradient reconstruction procedures, where the results computed by the Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Astrophysics Data System (ADS)
Käppeli, R.; Mishra, S.
2016-03-01
Context. Many problems in astrophysics feature flows which are close to hydrostatic equilibrium. However, standard numerical schemes for compressible hydrodynamics may be deficient in approximating this stationary state, where the pressure gradient is nearly balanced by gravitational forces. Aims: We aim to develop a second-order well-balanced scheme for the Euler equations. The scheme is designed to mimic a discrete version of the hydrostatic balance. It therefore can resolve a discrete hydrostatic equilibrium exactly (up to machine precision) and propagate perturbations, on top of this equilibrium, very accurately. Methods: A local second-order hydrostatic equilibrium preserving pressure reconstruction is developed. Combined with a standard central gravitational source term discretization and numerical fluxes that resolve stationary contact discontinuities exactly, the well-balanced property is achieved. Results: The resulting well-balanced scheme is robust and simple enough to be very easily implemented within any existing computer code that solves time explicitly or implicitly the compressible hydrodynamics equations. We demonstrate the performance of the well-balanced scheme for several astrophysically relevant applications: wave propagation in stellar atmospheres, a toy model for core-collapse supernovae, convection in carbon shell burning, and a realistic proto-neutron star.
An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.
Jamshidi, Rashid; Brenner, Gunther
2014-01-01
Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.
Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations
NASA Technical Reports Server (NTRS)
Shiuhong, Lui; Xu, Jun
1999-01-01
Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.
A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Jameson, Antony
1986-01-01
A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brizard, Alain J.; Tronci, Cesare
The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.
Definition, transformation-formulae and measurements of tipvane angles
NASA Astrophysics Data System (ADS)
Bruining, A.
1987-10-01
The theoretical background of different angle systems used to define tipvane attitude in 3-D space is outlined. Different Euler equations are used for the various, wind tunnel, towing tank, and full scale tipvane models. The influence of rotor blade flapping angle on tipvane angles is described. The tipvane attitude measuring method is outlined in relationship to the Euler angle system. Side effects on the angle of attack of the tipvane due to rotation, translation, and curving of the tipvane are described.
NASA Technical Reports Server (NTRS)
Downer, Janice Diane
1990-01-01
The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.
NASA Technical Reports Server (NTRS)
Chulya, Abhisak; Walker, Kevin P.
1991-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
Stability of numerical integration techniques for transient rotor dynamics
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1977-01-01
A finite element model of a rotor bearing system was analyzed to determine the stability limits of the forward, backward, and centered Euler; Runge-Kutta; Milne; and Adams numerical integration techniques. The analysis concludes that the highest frequency mode determines the maximum time step for a stable solution. Thus, the number of mass elements should be minimized. Increasing the damping can sometimes cause numerical instability. For a uniform shaft, with 10 mass elements, operating at approximately the first critical speed, the maximum time step for the Runge-Kutta, Milne, and Adams methods is that which corresponds to approximately 1 degree of shaft movement. This is independent of rotor dimensions.
Parallel computing using a Lagrangian formulation
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Loh, Ching Yuen
1991-01-01
A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, a better than six times speed-up was achieved on a 8192-processor CM-2 over a single processor of a CRAY-2.
Parallel computing using a Lagrangian formulation
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Loh, Ching-Yuen
1992-01-01
This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of two dimensional supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-processor CM-2 over a single processor of a CRAY-2.
Euler Flow Computations on Non-Matching Unstructured Meshes
NASA Technical Reports Server (NTRS)
Gumaste, Udayan
1999-01-01
Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.
Implicit schemes and parallel computing in unstructured grid CFD
NASA Technical Reports Server (NTRS)
Venkatakrishnam, V.
1995-01-01
The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.
NASA Technical Reports Server (NTRS)
Chulya, A.; Walker, K. P.
1989-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
Cubic polynomial maps with periodic critical orbit, Part II
NASA Astrophysics Data System (ADS)
Bonifant, Araceli; Kiwi, Jan; Milnor, John
The parameter space S_p for monic centered cubic polynomial maps with a marked critical point of period p is a smooth affine algebraic curve whose genus increases rapidly with p . Each S_p consists of a compact connectedness locus together with finitely many escape regions, each of which is biholomorphic to a punctured disk and is characterized by an essentially unique Puiseux series. This note will describe the topology of S_p , and of its smooth compactification, in terms of these escape regions. In particular, it computes the Euler characteristic. It concludes with a discussion of the real sub-locus of S_p .
NASA Astrophysics Data System (ADS)
Pacheco, Luz; Smith, Katherine; Hamlington, Peter; Niemeyer, Kyle
2017-11-01
Vertical transport flux in the ocean upper mixed layer has recently been attributed to submesoscale currents, which occur at scales on the order of kilometers in the horizontal direction. These phenomena, which include fronts and mixed-layer instabilities, have been of particular interest due to the effect of turbulent mixing on nutrient transport, facilitating phytoplankton blooms. We study these phenomena using a non-hydrostatic, large eddy simulation for submesoscale currents in the ocean, developed using the extensible, open-source finite element platform FEniCs. Our model solves the standard Boussinesq Euler equations in variational form using the finite element method. FEniCs enables the use of parallel computing on modern systems for efficient computing time, and is suitable for unstructured grids where irregular topography can be considered in the future. The solver will be verified against the well-established NCAR-LES model and validated against observational data. For the verification with NCAR-LES, the velocity, pressure, and buoyancy fields are compared through a surface-wind-driven, open-ocean case. We use this model to study the impacts of uncertainties in the model parameters, such as near-surface buoyancy flux and secondary circulation, and discuss implications.
NASA Astrophysics Data System (ADS)
Ishkhanyan, M. V.; Karapetyan, A. V.
2010-04-01
We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.
Local invariants in non-ideal flows of neutral fluids and two-fluid plasmas
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The main objective is the locally invariant geometric object of any (magneto-)fluid dynamics with forcing and damping (nonideal), while more attention is paid to the untouched dynamical properties of two-fluid fashion. Specifically, local structures, beyond the well-known "frozen-in" to the barotropic flows of the generalized vorticities, of the two-fluid model of plasma flows are presented. More general non-barotropic situations are also considered. A modified Euler equation [T. Tao, "Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation," Ann. PDE 2, 9 (2016)] is also accordingly analyzed and remarked from the angle of view of the two-fluid model, with emphasis on the local structures. The local constraints of high-order differential forms such as helicity, among others, find simple formulation for possible practices in modeling the dynamics. Thus, the Cauchy invariants equation [N. Besse and U. Frisch, "Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces," J. Fluid Mech. 825, 412 (2017)] may be enabled to find applications in non-ideal flows. Some formal examples are offered to demonstrate the calculations, and particularly interestingly the two-dimensional-three-component (2D3C) or the 2D passive scalar problem presents that a locally invariant Θ = 2θζ, with θ and ζ being, respectively, the scalar value of the "vertical velocity" (or the passive scalar) and the "vertical vorticity," may be used as if it were the spatial density of the globally invariant helicity, providing a Lagrangian prescription to control the latter in some situations of studying its physical effects in rapidly rotating flows (ubiquitous in atmosphere of astrophysical objects) with marked 2D3C vortical modes or in purely 2D passive scalars.
Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations
NASA Astrophysics Data System (ADS)
Loseille, A.; Dervieux, A.; Alauzet, F.
2010-04-01
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.
Compatible diagonal-norm staggered and upwind SBP operators
NASA Astrophysics Data System (ADS)
Mattsson, Ken; O'Reilly, Ossian
2018-01-01
The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.
Mode Identification of High-Amplitude Pressure Waves in Liquid Rocket Engines
NASA Astrophysics Data System (ADS)
EBRAHIMI, R.; MAZAHERI, K.; GHAFOURIAN, A.
2000-01-01
Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure amplitude histories and phase diagrams along the tube are computed. To determine the validity of the presented method for steep non-linear waves, the Euler equations are numerically solved for non-linear waves, and negligible interactions between these waves are observed. To show the applicability of this method, other's experimental results in which modes were identified are used. Results indicate that this simple method can be used in analyzing complicated pressure signal measurements.
Regularized estimation of Euler pole parameters
NASA Astrophysics Data System (ADS)
Aktuğ, Bahadir; Yildirim, Ömer
2013-07-01
Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.
Discontinuous Galerkin Methods for NonLinear Differential Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy; Mansour, Nagi (Technical Monitor)
2001-01-01
This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the PDE (partial differential equation) system. Central to the development of the simplified DG methods is the Eigenvalue Scaling Theorem which characterizes right symmetrizers of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobian matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler equations of gas dynamics and extended conservation law systems derivable as moments of the Boltzmann equation. Using results from kinetic Boltzmann moment closure theory, we then derive and prove energy stability for several approximate DG fluxes which have practical and theoretical merit.
NASA Astrophysics Data System (ADS)
Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie
2016-06-01
In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.
1994-01-01
Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.
Finite-Size Effects in Non-neutral Two-Dimensional Coulomb Fluids
NASA Astrophysics Data System (ADS)
Šamaj, Ladislav
2017-07-01
Thermodynamic potential of a neutral two-dimensional (2D) Coulomb fluid, confined to a large domain with a smooth boundary, exhibits at any (inverse) temperature β a logarithmic finite-size correction term whose universal prefactor depends only on the Euler number of the domain and the conformal anomaly number c=-1. A minimal free boson conformal field theory, which is equivalent to the 2D symmetric two-component plasma of elementary ± e charges at coupling constant Γ =β e^2, was studied in the past. It was shown that creating a non-neutrality by spreading out a charge Qe at infinity modifies the anomaly number to c(Q,Γ ) = - 1 + 3Γ Q^2. Here, we study the effect of non-neutrality on the finite-size expansion of the free energy for another Coulomb fluid, namely the 2D one-component plasma (jellium) composed of identical pointlike e-charges in a homogeneous background surface charge density. For the disk geometry of the confining domain we find that the non-neutrality induces the same change of the anomaly number in the finite-size expansion. We derive this result first at the free-fermion coupling Γ ≡ β e^2=2 and then, by using a mapping of the 2D one-component plasma onto an anticommuting field theory formulated on a chain, for an arbitrary even coupling constant.
Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows
NASA Astrophysics Data System (ADS)
Ohkitani, Koji
2002-04-01
The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear stretching process of passive vectors (PVs). In particular, we pay special attention to the difference of these processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial conditions with the same energy spectra. The above difference can be explained qualitatively by examining the Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above difference, we examine the probability density functions (PDFs) of the stretching rates of the passive vectors in the vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity gradients and that of passive scalar gradients and a physical interpretation is given to it.
Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field
NASA Astrophysics Data System (ADS)
Takahashi, Masayuki
2017-10-01
A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.
An approximate method for calculating three-dimensional inviscid hypersonic flow fields
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Dejarnette, Fred R.
1990-01-01
An approximate solution technique was developed for 3-D inviscid, hypersonic flows. The method employs Maslen's explicit pressure equation in addition to the assumption of approximate stream surfaces in the shock layer. This approximation represents a simplification to Maslen's asymmetric method. The present method presents a tractable procedure for computing the inviscid flow over 3-D surfaces at angle of attack. The solution procedure involves iteratively changing the shock shape in the subsonic-transonic region until the correct body shape is obtained. Beyond this region, the shock surface is determined using a marching procedure. Results are presented for a spherically blunted cone, paraboloid, and elliptic cone at angle of attack. The calculated surface pressures are compared with experimental data and finite difference solutions of the Euler equations. Shock shapes and profiles of pressure are also examined. Comparisons indicate the method adequately predicts shock layer properties on blunt bodies in hypersonic flow. The speed of the calculations makes the procedure attractive for engineering design applications.
Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; Plascencia-Mora, Hector; Rodríguez-Morales, Ángel L.; Lu, Jian
2011-01-01
Multilayered microresonators commonly use sensitive coating or piezoelectric layers for detection of mass and gas. Most of these microresonators have a variable cross-section that complicates the prediction of their fundamental resonant frequency (generally of the bending mode) through conventional analytical models. In this paper, we present an analytical model to estimate the first resonant frequency and deflection curve of single-clamped multilayered microresonators with variable cross-section. The analytical model is obtained using the Rayleigh and Macaulay methods, as well as the Euler-Bernoulli beam theory. Our model is applied to two multilayered microresonators with piezoelectric excitation reported in the literature. Both microresonators are composed by layers of seven different materials. The results of our analytical model agree very well with those obtained from finite element models (FEMs) and experimental data. Our analytical model can be used to determine the suitable dimensions of the microresonator’s layers in order to obtain a microresonator that operates at a resonant frequency necessary for a particular application. PMID:22164071
Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method
NASA Technical Reports Server (NTRS)
Whitaker, David L.
1993-01-01
A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.
Simulating hydrodynamics and ice cover in Lake Erie using an unstructured grid model
NASA Astrophysics Data System (ADS)
Fujisaki-Manome, A.; Wang, J.
2016-02-01
An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal ice cover. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea Ice Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the ice model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed ice extent, water surface temperature, ice thickness, currents, and water temperature profiles. Seasonal and interannual variation of ice extent and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled ice thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.
A finite-volume module for all-scale Earth-system modelling at ECMWF
NASA Astrophysics Data System (ADS)
Kühnlein, Christian; Malardel, Sylvie; Smolarkiewicz, Piotr
2017-04-01
We highlight recent advancements in the development of the finite-volume module (FVM) (Smolarkiewicz et al., 2016) for the IFS at ECMWF. FVM represents an alternative dynamical core that complements the operational spectral dynamical core of the IFS with new capabilities. Most notably, these include a compact-stencil finite-volume discretisation, flexible meshes, conservative non-oscillatory transport and all-scale governing equations. As a default, FVM solves the compressible Euler equations in a geospherical framework (Szmelter and Smolarkiewicz, 2010). The formulation incorporates a generalised terrain-following vertical coordinate. A hybrid computational mesh, fully unstructured in the horizontal and structured in the vertical, enables efficient global atmospheric modelling. Moreover, a centred two-time-level semi-implicit integration scheme is employed with 3D implicit treatment of acoustic, buoyant, and rotational modes. The associated 3D elliptic Helmholtz problem is solved using a preconditioned Generalised Conjugate Residual approach. The solution procedure employs the non-oscillatory finite-volume MPDATA advection scheme that is bespoke for the compressible dynamics on the hybrid mesh (Kühnlein and Smolarkiewicz, 2017). The recent progress of FVM is illustrated with results of benchmark simulations of intermediate complexity, and comparison to the operational spectral dynamical core of the IFS. C. Kühnlein, P.K. Smolarkiewicz: An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics, J. Comput. Phys. (2017), in press. P.K. Smolarkiewicz, W. Deconinck, M. Hamrud, C. Kühnlein, G. Mozdzynski, J. Szmelter, N.P. Wedi: A finite-volume module for simulating global all-scale atmospheric flows, J. Comput. Phys. 314 (2016) 287-304. J. Szmelter, P.K. Smolarkiewicz: An edge-based unstructured mesh discretisation in geospherical framework, J. Comput. Phys. 229 (2010) 4980-4995.
Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew
1999-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-01-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1993-01-01
The convergence characteristics of various approximate factorizations for the 3D Euler and Navier-Stokes equations are examined using the von-Neumann stability analysis method. Three upwind-difference based factorizations and several central-difference based factorizations are considered for the Euler equations. In the upwind factorizations both the flux-vector splitting methods of Steger and Warming and van Leer are considered. Analysis of the Navier-Stokes equations is performed only on the Beam and Warming central-difference scheme. The range of CFL numbers over which each factorization is stable is presented for one-, two-, and three-dimensional flow. Also presented for each factorization is the CFL number at which the maximum eigenvalue is minimized, for all Fourier components, as well as for the high frequency range only. The latter is useful for predicting the effectiveness of multigrid procedures with these schemes as smoothers. Further, local mode analysis is performed to test the suitability of using a uniform flow field in the stability analysis. Some inconsistencies in the results from previous analyses are resolved.
Inverse problems in the modeling of vibrations of flexible beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Powers, R. K.; Rosen, I. G.
1987-01-01
The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.
Finite area method for nonlinear supersonic conical flows
NASA Technical Reports Server (NTRS)
Sritharan, S. S.; Seebass, A. R.
1983-01-01
A fully conservative numerical method for the computation of steady inviscid supersonic flow about general conical bodies at incidence is described. The procedure utilizes the potential approximation and implements a body conforming mesh generator. The conical potential is assumed to have its best linear variation inside each mesh cell; a secondary interlocking cell system is used to establish the flux balance required to conserve mass. In the supersonic regions the scheme is symmetrized by adding artificial viscosity in conservation form. The algorithm is nearly an order of a magnitude faster than present Euler methods and predicts known results accurately and qualitative features such as nodal point lift off correctly. Results are compared with those of other investigators.
Development of Euler's ideas at the Moscow State Regional University
NASA Astrophysics Data System (ADS)
Vysikaylo, P. I.; Belyaev, V. V.
2018-03-01
In honor of the 250th anniversary of Euler's discovery of three libration points in Russia in 1767 in the area of two rotating gravitational attractors in 2017 an International Interdisciplinary Conference “Euler Readings MRSU 2017” was held in Moscow Region State University (MRSU). The Conference demonstrated that the Euler's ideas continue to remain relevant at the present time. This paper summarizes the main achievements on the basis of Leonard Euler's ideas presented at the Conference.
NASA Astrophysics Data System (ADS)
Re, B.; Dobrzynski, C.; Guardone, A.
2017-07-01
A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.
Effects of elastic bed on hydrodynamic forces for a submerged sphere in an ocean of finite depth
NASA Astrophysics Data System (ADS)
Mohapatra, Smrutiranjan
2017-08-01
In this paper, we consider a hydroelastic model to examine the radiation of waves by a submerged sphere for both heave and sway motions in a single-layer fluid flowing over an infinitely extended elastic bottom surface in an ocean of finite depth. The elastic bottom is modeled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The effect of the presence of surface tension at the free-surface is neglected. In such situation, there exist two modes of time-harmonic waves: the one with a lower wavenumber (surface mode) propagates along the free-surface and the other with higher wavenumber (flexural mode) propagates along the elastic bottom surface. Based on the small amplitude wave theory and by using the multipole expansion method, we find the particular solution for the problem of wave radiation by a submerged sphere of finite depth. Furthermore, this method eliminates the need to use large and cumbersome numerical packages for the solution of such problem and leads to an infinite system of linear algebraic equations which are easily solved numerically by any standard technique. The added-mass and damping coefficients for both heave and sway motions are derived and plotted for different submersion depths of the sphere and flexural rigidity of the elastic bottom surface. It is observed that, whenever the sphere nearer to the elastic bed, the added-mass move toward to a constant value of 1, which is approximately twice of the value of added-mass of a moving sphere in a single-layer fluid flowing over a rigid and flat bottom surface.
NASA Astrophysics Data System (ADS)
Marras, Simone; Giraldo, Frank
2015-04-01
The prediction of extreme weather sufficiently ahead of its occurrence impacts society as a whole and coastal communities specifically (e.g. Hurricane Sandy that impacted the eastern seaboard of the U.S. in the fall of 2012). With the final goal of solving hurricanes at very high resolution and numerical accuracy, we have been developing the Non-hydrostatic Unified Model of the Atmosphere (NUMA) to solve the Euler and Navier-Stokes equations by arbitrary high-order element-based Galerkin methods on massively parallel computers. NUMA is a unified model with respect to the following criteria: (a) it is based on unified numerics in that element-based Galerkin methods allow the user to choose between continuous (spectral elements, CG) or discontinuous Galerkin (DG) methods and from a large spectrum of time integrators, (b) it is unified across scales in that it can solve flow in limited-area mode (flow in a box) or in global mode (flow on the sphere). NUMA is the dynamical core that powers the U.S. Naval Research Laboratory's next-generation global weather prediction system NEPTUNE (Navy's Environmental Prediction sysTem Utilizing the NUMA corE). Because the solution of the Euler equations by high order methods is prone to instabilities that must be damped in some way, we approach the problem of stabilization via an adaptive Large Eddy Simulation (LES) scheme meant to treat such instabilities by modeling the sub-grid scale features of the flow. The novelty of our effort lies in the extension to high order spectral elements for low Mach number stratified flows of a method that was originally designed for low order, adaptive finite elements in the high Mach number regime [1]. The Euler equations are regularized by means of a dynamically adaptive stress tensor that is proportional to the residual of the unperturbed equations. Its effect is close to none where the solution is sufficiently smooth, whereas it increases elsewhere, with a direct contribution to the stabilization of the otherwise oscillatory solution. As a first step toward the Large Eddy Simulation of a hurricane, we verify the model via a high-order and high resolution idealized simulation of deep convection on the sphere. References [1] M. Nazarov and J. Hoffman (2013) Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods Int. J. Numer. Methods Fluids, 71:339-357
Volume 2: Explicit, multistage upwind schemes for Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Ash, Robert L.
1992-01-01
The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using monotonic upstream schemes for conservation laws (MUSCL)-type differencing to obtain state variables at cell interface. Variable interpolations were written in the k-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator. Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-state predictor-corrector schemes, and multistage time-stepping schemes. The coefficients of the multistage time-stepping schemes have been modified successfully to achieve better performance with upwind differencing. A technique was developed to optimize the coefficients for good high-frequency damping at relatively high CFL numbers. Local time-stepping, implicit residual smoothing, and multigrid procedure were added to the explicit time stepping scheme to accelerate convergence to steady-state. The developed algorithm was implemented successfully in a multi-block code, which provides complete topological and geometric flexibility. The only requirement is C degree continuity of the grid across the block interface. The algorithm has been validated on a diverse set of three-dimensional test cases of increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an ONERA M6 wing; and (5) unsteady flow of a compressible jet impinging on a ground plane (with and without cross flow). The emphasis of the test cases was validation of code, and assessment of performance, as well as demonstration of flexibility.
An accuracy assessment of Cartesian-mesh approaches for the Euler equations
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.
Multidisciplinary aeroelastic analysis of a generic hypersonic vehicle
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Petersen, K. L.
1993-01-01
This paper presents details of a flutter and stability analysis of aerospace structures such as hypersonic vehicles. Both structural and aerodynamic domains are discretized by the common finite element technique. A vibration analysis is first performed by the STARS code employing a block Lanczos solution scheme. This is followed by the generation of a linear aerodynamic grid for subsequent linear flutter analysis within subsonic and supersonic regimes of the flight envelope; the doublet lattice and constant pressure techniques are employed to generate the unsteady aerodynamic forces. Flutter analysis is then performed for several representative flight points. The nonlinear flutter solution is effected by first implementing a CFD solution of the entire vehicle. Thus, a 3-D unstructured grid for the entire flow domain is generated by a moving front technique. A finite element Euler solution is then implemented employing a quasi-implicit as well as an explicit solution scheme. A novel multidisciplinary analysis is next effected that employs modal and aerodynamic data to yield aerodynamic damping characteristics. Such analyses are performed for a number of flight points to yield a large set of pertinent data that define flight flutter characteristics of the vehicle. This paper outlines the finite-element-based integrated analysis procedures in detail, which is followed by the results of numerical analyses of flight flutter simulation.
Revised Thomas-Fermi approximation for singular potentials
NASA Astrophysics Data System (ADS)
Dufty, James W.; Trickey, S. B.
2016-08-01
Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.
Solution algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Whitaker, D. L.; Slack, David C.; Walters, Robert W.
1990-01-01
The objective of the study was to analyze implicit techniques employed in structured grid algorithms for solving two-dimensional Euler equations and extend them to unstructured solvers in order to accelerate convergence rates. A comparison is made between nine different algorithms for both first-order and second-order accurate solutions. Higher-order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The discussion is illustrated by results for flow over a transonic circular arc.
NASA Astrophysics Data System (ADS)
Kenway, Gaetan K. W.
This thesis presents new tools and techniques developed to address the challenging problem of high-fidelity aerostructural optimization with respect to large numbers of design variables. A new mesh-movement scheme is developed that is both computationally efficient and sufficiently robust to accommodate large geometric design changes and aerostructural deformations. A fully coupled Newton-Krylov method is presented that accelerates the convergence of aerostructural systems and provides a 20% performance improvement over the traditional nonlinear block Gauss-Seidel approach and can handle more exible structures. A coupled adjoint method is used that efficiently computes derivatives for a gradient-based optimization algorithm. The implementation uses only machine accurate derivative techniques and is verified to yield fully consistent derivatives by comparing against the complex step method. The fully-coupled large-scale coupled adjoint solution method is shown to have 30% better performance than the segregated approach. The parallel scalability of the coupled adjoint technique is demonstrated on an Euler Computational Fluid Dynamics (CFD) model with more than 80 million state variables coupled to a detailed structural finite-element model of the wing with more than 1 million degrees of freedom. Multi-point high-fidelity aerostructural optimizations of a long-range wide-body, transonic transport aircraft configuration are performed using the developed techniques. The aerostructural analysis employs Euler CFD with a 2 million cell mesh and a structural finite element model with 300 000 DOF. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multi-point formulation with 5 cruise conditions and 2 maneuver conditions. The optimization problems have 476 design variables are optimal results are obtained within 36 hours of wall time using 435 processors. The TOGW minimization results in a 4.2% reduction in TOGW with a 6.6% fuel burn reduction, while the fuel burn optimization resulted in a 11.2% fuel burn reduction with no change to the takeoff gross weight.
p-Euler equations and p-Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Jian-Guo
2018-04-01
We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.
Sonic Boom Prediction and Minimization of the Douglas Reference OPT5 Configuration
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1999-01-01
Conventional CFD methods and grids do not yield adequate resolution of the complex shock flow pattern generated by a real aircraft geometry. As a result, a unique grid topology and supersonic flow solver was developed at Northrop Grumman based on the characteristic behavior of supersonic wave patterns emanating from the aircraft. Using this approach, it was possible to compute flow fields with adequate resolution several body lengths below the aircraft. In this region, three-dimensional effects are diminished and conventional two-dimensional modified linear theory (MLT) can be applied to estimate ground pressure signatures or sonic booms. To accommodate real aircraft geometries and alleviate the burdensome grid generation task, an implicit marching multi-block, multi-grid finite-volume Euler code was developed as the basis for the sonic boom prediction methodology. The Thomas two-dimensional extrapolation method is built into the Euler code so that ground signatures can be obtained quickly and efficiently with minimum computational effort suitable to the aircraft design environment. The loudness levels of these signatures can then be determined using a NASA generated noise code. Since the Euler code is a three-dimensional flow field solver, the complete circumferential region below the aircraft is computed. The extrapolation of all this field data from a cylinder of constant radius leads to the definition of the entire boom corridor occurring directly below and off to the side of the aircraft's flight path yielding an estimate for the entire noise "annoyance" corridor in miles as well as its magnitude. An automated multidisciplinary sonic boom design optimization software system was developed during the latter part of HSR Phase 1. Using this system, it was found that sonic boom signatures could be reduced through optimization of a variety of geometric aircraft parameters. This system uses a gradient based nonlinear optimizer as the driver in conjunction with a computationally efficient Euler CFD solver (NIIM3DSB) for computing the three-dimensional near-field characteristics of the aircraft. The intent of the design system is to identify and optimize geometric design variables that have a beneficial impact on the ground sonic boom. The system uses a simple wave drag data format to specify the aircraft geometry. The geometry is internally enhanced and analytic methods are used to generate marching grids suitable for the multi-block Euler solver. The Thomas extrapolation method is integrated into this system, and hence, the aircraft's centerline ground sonic boom signature is also automatically computed for a specified cruise altitude and yields the parameters necessary to evaluate the design function. The entire design system has been automated since the gradient based optimization software requires many flow analyses in order to obtain the required sensitivity derivatives for each design variable in order to converge on an optimal solution. Hence, once the problem is defined which includes defining the objective function and geometric and aerodynamic constraints, the system will automatically regenerate the perturbed geometry, the necessary grids, the Euler solution, and finally the ground sonic boom signature at the request of the optimizer.
NASA Technical Reports Server (NTRS)
Atkins, Harold
1991-01-01
A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.
Ying, Wenjun; Henriquez, Craig S
2007-04-01
A novel hybrid finite element method (FEM) for modeling the response of passive and active biological membranes to external stimuli is presented. The method is based on the differential equations that describe the conservation of electric flux and membrane currents. By introducing the electric flux through the cell membrane as an additional variable, the algorithm decouples the linear partial differential equation part from the nonlinear ordinary differential equation part that defines the membrane dynamics of interest. This conveniently results in two subproblems: a linear interface problem and a nonlinear initial value problem. The linear interface problem is solved with a hybrid FEM. The initial value problem is integrated by a standard ordinary differential equation solver such as the Euler and Runge-Kutta methods. During time integration, these two subproblems are solved alternatively. The algorithm can be used to model the interaction of stimuli with multiple cells of almost arbitrary geometries and complex ion-channel gating at the plasma membrane. Numerical experiments are presented demonstrating the uses of the method for modeling field stimulation and action potential propagation.
High-speed reacting flow simulation using USA-series codes
NASA Astrophysics Data System (ADS)
Chakravarthy, S. R.; Palaniswamy, S.
In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.
eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses
Micallef, Luana; Rodgers, Peter
2014-01-01
Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data. PMID:25032825
eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.
Micallef, Luana; Rodgers, Peter
2014-01-01
Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.
Stable boundary conditions and difference schemes for Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Dutt, P.
1985-01-01
The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.
Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.
2016-01-01
Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.
NASA Astrophysics Data System (ADS)
Ravindran, Prashaanth
The unstable nature of detonation waves is a result of the critical relationship between the hydrodynamic shock and the chemical reactions sustaining the shock. A perturbative analysis of the critical point is quite challenging due to the multiple spatio-temporal scales involved along with the non-linear nature of the shock-reaction mechanism. The author's research attempts to provide detailed resolution of the instabilities at the shock front. Another key aspect of the present research is to develop an understanding of the causality between the non-linear dynamics of the front and the eventual breakdown of the sub-structures. An accurate numerical simulation of detonation waves requires a very efficient solution of the Euler equations in conservation form with detailed, non-equilibrium chemistry. The difference in the flow and reaction length scales results in very stiff source terms, requiring the problem to be solved with adaptive mesh refinement. For this purpose, Berger-Colella's block-structured adaptive mesh refinement (AMR) strategy has been developed and applied to time-explicit finite volume methods. The block-structured technique uses a hierarchy of parent-child sub-grids, integrated recursively over time. One novel approach to partition the problem within a large supercomputer was the use of modified Peano-Hilbert space filling curves. The AMR framework was merged with CLAWPACK, a package providing finite volume numerical methods tailored for wave-propagation problems. The stiffness problem is bypassed by using a 1st order Godunov or a 2nd order Strang splitting technique, where the flow variables and source terms are integrated independently. A linearly explicit fourth-order Runge-Kutta integrator is used for the flow, and an ODE solver was used to overcome the numerical stiffness. Second-order spatial resolution is obtained by using a second-order Roe-HLL scheme with the inclusion of numerical viscosity to stabilize the solution near the discontinuity. The scheme is made monotonic by coupling the van Albada limiter with the higher order MUSCL-Hancock extrapolation to the primitive variables of the Euler equations. Simulations using simplified single-step and detailed chemical kinetics have been provided. In detonations with simplified chemistry, the one-dimensional longitudinal instabilities have been simulated, and a mechanism forcing the collapse of the period-doubling modes was identified. The transverse instabilities were simulated for a 2D detonation, and the corresponding transverse wave was shown to be unstable with a periodic normal mode. Also, a Floquet analysis was carried out with the three-dimensional inviscid Euler equations for a longitudinally stable case. Using domain decomposition to identify the global eigenfunctions corresponding to the two least stable eigenvalues, it was found that the bifurcation of limit cycles in three dimensions follows a period doubling process similar to that proven to occur in one dimension and it is because of transverse instabilities. For detonations with detailed chemistry, the one dimensional simulations for two cases were presented and validated with experimental results. The 2D simulation shows the re-initiation of the triple point leading to the formation of cellular structure of the detonation wave. Some of the important features in the front were identified and explained.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2017-10-01
We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
A description of rotations for DEM models of particle systems
NASA Astrophysics Data System (ADS)
Campello, Eduardo M. B.
2015-06-01
In this work, we show how a vector parameterization of rotations can be adopted to describe the rotational motion of particles within the framework of the discrete element method (DEM). It is based on the use of a special rotation vector, called Rodrigues rotation vector, and accounts for finite rotations in a fully exact manner. The use of fictitious entities such as quaternions or complicated structures such as Euler angles is thereby circumvented. As an additional advantage, stick-slip friction models with inter-particle rolling motion are made possible in a consistent and elegant way. A few examples are provided to illustrate the applicability of the scheme. We believe that simple vector descriptions of rotations are very useful for DEM models of particle systems.
A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.
1993-01-01
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
Use of High Fidelity Methods in Multidisciplinary Optimization-A Preliminary Survey
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
Multidisciplinary optimization is a key element of design process. To date multidiscipline optimization methods that use low fidelity methods are well advanced. Optimization methods based on simple linear aerodynamic equations and plate structural equations have been applied to complex aerospace configurations. However, use of high fidelity methods such as the Euler/ Navier-Stokes for fluids and 3-D (three dimensional) finite elements for structures has begun recently. As an activity of Multidiscipline Design Optimization Technical Committee (MDO TC) of AIAA (American Institute of Aeronautics and Astronautics), an effort was initiated to assess the status of the use of high fidelity methods in multidisciplinary optimization. Contributions were solicited through the members MDO TC committee. This paper provides a summary of that survey.
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
NASA Technical Reports Server (NTRS)
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
Nonlinear Aeroacoustics Computations by the Space-Time CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
The Space-Time Conservation Element and Solution Element Method, or CE/SE Method for short, is a recently developed numerical method for conservation laws. Despite its second order accuracy in space and time, it possesses low dispersion errors and low dissipation. The method is robust enough to cover a wide range of compressible flows: from weak linear acoustic waves to strong discontinuous waves (shocks). An outstanding feature of the CE/SE scheme is its truly multi-dimensional, simple but effective non-reflecting boundary condition (NRBC), which is particularly valuable for computational aeroacoustics (CAA). In nature, the method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its careful treatment of the surface fluxes and geometry, it is different from the existing schemes. Currently, the CE/SE scheme has been developed to a matured stage that a 3-D unstructured CE/SE Navier-Stokes solver is already available. However, in the present review paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen and sketched in section 2. Then applications of the 2-D and 3-D CE/SE schemes to linear, and in particular, nonlinear aeroacoustics are depicted in sections 3, 4, and 5 to demonstrate its robustness and capability.
Prototypical model for tensional wrinkling in thin sheets
Davidovitch, Benny; Schroll, Robert D.; Vella, Dominic; Adda-Bedia, Mokhtar; Cerda, Enrique A.
2011-01-01
The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length—a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications. PMID:22042841
Panas, Robert M.
2016-06-23
This paper presents a new analytical method for predicting the large displacement behavior of flexural double parallelogram (DP) bearings with underconstraint eliminator (UE) linkages. This closed-form perturbative Euler analysis method is able to – for the first time – directly incorporate the elastomechanics of a discrete UE linkage, which is a hybrid flexure element that is linked to ground as well as both stages on the bearing. The models are used to understand a nested linkage UE design, however the method is extensible to other UE linkages. Design rules and figures-of-merit are extracted from the analysis models, which provide powerfulmore » tools for accelerating the design process. The models, rules and figures-of-merit enable the rapid design of a UE for a desired large displacement behavior, as well as providing a means for determining the limits of UE and DP structures. This will aid in the adoption of UE linkages into DP bearings for precision mechanisms. Models are generated for a nested linkage UE design, and the performance of this DP with UE structure is compared to a DP-only bearing. As a result, the perturbative Euler analysis is shown to match existing theories for DP-only bearings with distributed compliance within ≈2%, and Finite Element Analysis for the DP with UE bearings within an average 10%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panas, Robert M.
This paper presents a new analytical method for predicting the large displacement behavior of flexural double parallelogram (DP) bearings with underconstraint eliminator (UE) linkages. This closed-form perturbative Euler analysis method is able to – for the first time – directly incorporate the elastomechanics of a discrete UE linkage, which is a hybrid flexure element that is linked to ground as well as both stages on the bearing. The models are used to understand a nested linkage UE design, however the method is extensible to other UE linkages. Design rules and figures-of-merit are extracted from the analysis models, which provide powerfulmore » tools for accelerating the design process. The models, rules and figures-of-merit enable the rapid design of a UE for a desired large displacement behavior, as well as providing a means for determining the limits of UE and DP structures. This will aid in the adoption of UE linkages into DP bearings for precision mechanisms. Models are generated for a nested linkage UE design, and the performance of this DP with UE structure is compared to a DP-only bearing. As a result, the perturbative Euler analysis is shown to match existing theories for DP-only bearings with distributed compliance within ≈2%, and Finite Element Analysis for the DP with UE bearings within an average 10%.« less
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1996-01-01
An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.
NASA Technical Reports Server (NTRS)
Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.
1994-01-01
An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.
Large calculation of the flow over a hypersonic vehicle using a GPU
NASA Astrophysics Data System (ADS)
Elsen, Erich; LeGresley, Patrick; Darve, Eric
2008-12-01
Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.
NASCRIN - NUMERICAL ANALYSIS OF SCRAMJET INLET
NASA Technical Reports Server (NTRS)
Kumar, A.
1994-01-01
The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.
Coughtrie, A R; Borman, D J; Sleigh, P A
2013-06-01
Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong
1989-01-01
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.
Artificial dissipation and central difference schemes for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli
1987-01-01
An artificial dissipation model, including boundary treatment, that is employed in many central difference schemes for solving the Euler and Navier-Stokes equations is discussed. Modifications of this model such as the eigenvalue scaling suggested by upwind differencing are examined. Multistage time stepping schemes with and without a multigrid method are used to investigate the effects of changes in the dissipation model on accuracy and convergence. Improved accuracy for inviscid and viscous airfoil flow is obtained with the modified eigenvalue scaling. Slower convergence rates are experienced with the multigrid method using such scaling. The rate of convergence is improved by applying a dissipation scaling function that depends on mesh cell aspect ratio.
A Non-Linear Simulation for an Autonomous Unmanned Air Vehicle
1993-09-01
4D cos T cos 4D cos T r These equations can now be integrated to find the time history of the Euler angles . 2. Quaternions Another choice for the...is associated with the Euler angles . Quaternions haxe been in 15 use for quite some time. having been discovered by Euler in a search for complex... quaternions has the following advantages over Euler angles in repre- senting spatial orientation of a rigid body: "* Four states required to express the
Embedding methods for the steady Euler equations
NASA Technical Reports Server (NTRS)
Chang, S. H.; Johnson, G. M.
1983-01-01
An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.
On Euler's Theorem for Homogeneous Functions and Proofs Thereof.
ERIC Educational Resources Information Center
Tykodi, R. J.
1982-01-01
Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)
Comparison of a Convected Helmholtz and Euler Model for Impedance Eduction in Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2006-01-01
Impedances educed from a well-tested convected Helmholtz model are compared to that of a recently developed linearized Euler model using two ceramic test liners under the assumed conditions or uniform flow and a plane wave source. The convected Helmholtz model is restricted to uniform mean flow whereas the linearized Euler model can account for the effect or the shear layer. Test data to educe the impedance is acquired from measurements obtained in the NASA Langley Research Center Grazing Incidence Tube for mean flow Mach numbers ranging from 0.0 to 0.5 and source frequencies ranging from 0.5 kHz to 3.0 kHz. The unknown impedance of the liner b educed by judiciously chooingth e impedance via an optimization method to match the measured acoustic pressure on the wall opposite the test liner. Results are presented on four spatial grids using three different optimization methods (contour deformation, Davidon-Fletcher Powell, and the Genetic Algorithm). All three optimization methods converge to the same impedance when used with the same model and to nearly identical impedances when used on different models. h anomaly was observed only at 0.5 kHz for high mean flow speeds. The anomaly is likely due to the use of measured data in a flow regime where shear layer effects are important but are neglected in the math models. Consistency between the impedances educed using the two models provides confidence that the linearized Euler model is ready For application to more realistic flows, such as those containing shear layers.
Nonideal Rayleigh–Taylor mixing
Lim, Hyunkyung; Iwerks, Justin; Glimm, James; Sharp, David H.
2010-01-01
Rayleigh–Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh–Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. PMID:20615983
Leonhard Euler and his contributions to fluid mechanics
NASA Technical Reports Server (NTRS)
Salas, M. D.
1988-01-01
The career of Leonhard Euler, one of the world's most gifted scientists, is reviewed. The paper focuses on Euler's contributions to fluid mechanics and gives a perspective of how this science was born. A bibliography is included to provide the history enthusiast with a starting point for further study.
On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids
NASA Astrophysics Data System (ADS)
Kaus, B.; Pusok, A. E.; Popov, A.
2015-12-01
The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation reduces the dispersion or clustering of markers and that the density of markers remains steady over time without the need of additional marker control. Jenny et al. (2001, J Comp Phys, 166, 218-252 Meyer and Jenny (2004), Proc Appl Math Mech, 4, 466-467 Wang et al. (2015), G3, Vol.16 Funding was provided by the ERC Starting Grant #258830.
NASA Astrophysics Data System (ADS)
Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah
2017-10-01
There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.
Earth-moon system: Dynamics and parameter estimation
NASA Technical Reports Server (NTRS)
Breedlove, W. J., Jr.
1975-01-01
A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.
APPLE - An aeroelastic analysis system for turbomachines and propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral
1992-01-01
This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).
NASA Astrophysics Data System (ADS)
Bagno, A. M.
2017-03-01
The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed
Damageable contact between an elastic body and a rigid foundation
NASA Astrophysics Data System (ADS)
Campo, M.; Fernández, J. R.; Silva, A.
2009-02-01
In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.
Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
1992-01-01
One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology.
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.
2000-01-01
A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.
Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2013-03-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.
Transonic cascade flow calculations using non-periodic C-type grids
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1991-01-01
A new kind of C-type grid is proposed for turbomachinery flow calculations. This grid is nonperiodic on the wake and results in minimum skewness for cascades with high turning and large camber. Euler and Reynolds averaged Navier-Stokes equations are discretized on this type of grid using a finite volume approach. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. Jameson's explicit Runge-Kutta scheme is adopted for the integration in time, and computational efficiency is achieved through accelerating strategies such as multigriding and residual smoothing. A detailed numerical study was performed for a turbine rotor and for a vane. A grid dependence analysis is presented and the effect of artificial dissipation is also investigated. Comparison of calculations with experiments clearly demonstrates the advantage of the proposed grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.
The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The resultsmore » provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.« less
A hybrid formulation for the numerical simulation of condensed phase explosives
NASA Astrophysics Data System (ADS)
Michael, L.; Nikiforakis, N.
2016-07-01
In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.
Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan
NASA Astrophysics Data System (ADS)
Savage, J. C.
2018-02-01
I have used Euler-vector clustering to assign 469 GEONET stations in southwest Japan to k clusters (k = 2, 3,..., 9) so that, for any k, the velocities of stations within each cluster are most consistent with rigid-block motion on a sphere. That is, I attempt to explain the raw (i.e., uncorrected for strain accumulation), 1996-2006 velocities of those 469 Global Positioning System stations by rigid motion of k clusters on the surface of a spherical Earth. Because block geometry is maintained as strain accumulates, Euler-vector clustering may better approximate the block geometry than the values of the associated Euler vectors. The microplate solution for each k is constructed by merging contiguous clusters that have closely similar Euler vectors. The best solution consists of three microplates arranged along the Nankaido Trough-Ryukyu Trench between the Amurian and Philippine Sea Plates. One of these microplates, the South Kyushu Microplate (an extension of the Ryukyu forearc into the southeast corner of Kyushu), had previously been identified from paleomagnetic rotations. Relative to ITRF2000 the three microplates rotate at different rates about neighboring poles located close to the northwest corner of Shikoku. The microplate model is identical to that proposed in the block model of Wallace et al. (2009, https://doi.org/10.1130/G2522A.1) except in southernmost Kyushu. On Shikoku and Honshu, but not Kyushu, the microplate model is consistent with that proposed in the block models of Nishimura and Hashimoto (2006, https://doi.org/10.1016/j.tecto.2006.04.017) and Loveless and Meade (2010, https://doi.org/10.1029/2008JB006248) without the low-slip-rate boundaries proposed in the latter.
Bending and buckling of rolled-up SiGe /Si microtubes using nanorobotic manipulation
NASA Astrophysics Data System (ADS)
Zhang, Li; Dong, Lixin; Nelson, Bradley J.
2008-06-01
Mechanical properties of individual rolled-up SiGe /Si microtubes are investigated experimentally using nanorobotic manipulation. By applying bending loads, individual SiGe /Si microtubes demonstrate various deformation modes with increasing bending angle. Remarkably, the tested microtubes resist fracture even when bent back onto themselves (180° bending angle). Axial compression tests of microtubes with different turns are also performed. Among those tubes, 1.6-turn rolled-up SiGe /Si microtubes show typical Euler buckling behavior when the load is larger than a critical load, which can be estimated by the Euler formula for columns.
Effect of twist on transverse impact response of ballistic fiber yarns
Song, Bo; Lu, Wei -Yang
2015-06-15
A Hopkinson bar was employed to conduct transverse impact testing of twisted Kevlar KM2 fiber yarns at the same impact speed. The speed of Euler transverse wave generated by the impact was measured utilizing a high speed digital camera. The study included fiber yarns twisted by different amounts. The Euler transverse wave speed was observed to increase with increasing amount of twist of the fiber yarn, within the range of this investigation. As a result, the higher transverse wave speeds in the more twisted fiber yarns indicate better ballistic performance in soft body armors for personal protection.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-03-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.
Global Regularity for Several Incompressible Fluid Models with Partial Dissipation
NASA Astrophysics Data System (ADS)
Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan
2017-09-01
This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.
NASA Astrophysics Data System (ADS)
Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun
2017-11-01
The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.
A macroscopic plasma Lagrangian and its application to wave interactions and resonances
NASA Technical Reports Server (NTRS)
Peng, Y. K. M.
1974-01-01
The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.
NASA Astrophysics Data System (ADS)
Liu, Chun-Ho; Leung, Dennis Y. C.
2006-02-01
This study employed a direct numerical simulation (DNS) technique to contrast the plume behaviours and mixing of passive scalar emitted from line sources (aligned with the spanwise direction) in neutrally and unstably stratified open-channel flows. The DNS model was developed using the Galerkin finite element method (FEM) employing trilinear brick elements with equal-order interpolating polynomials that solved the momentum and continuity equations, together with conservation of energy and mass equations in incompressible flow. The second-order accurate fractional-step method was used to handle the implicit velocity-pressure coupling in incompressible flow. It also segregated the solution to the advection and diffusion terms, which were then integrated in time, respectively, by the explicit third-order accurate Runge-Kutta method and the implicit second-order accurate Crank-Nicolson method. The buoyancy term under unstable stratification was integrated in time explicitly by the first-order accurate Euler method. The DNS FEM model calculated the scalar-plume development and the mean plume path. In particular, it calculated the plume meandering in the wall-normal direction under unstable stratification that agreed well with the laboratory and field measurements, as well as previous modelling results available in literature.
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
A highly symmetric Euler flow, first proposed by Kida (1985), and recently simulated by Boratav and Pelz (1994) is considered. It is found that the fourth order spatial derivative of the pressure (pxxxx) at the origin is most probably positive. It is demonstrated that if pxxxx grows fast enough, there must be a finite-time singularity (FTS). For a random energy spectrum E(k) ∞ k-v, a FTS can occur if the spectral index v<3. Furthermore, a positive pxxxx has the dynamical consequence of reducing the third derivative of the velocity uxxx at the origin. Since the expectation value of uxxx is zero for a random distribution of energy, an ever decreasing uxxx means that the Kida flow has an intrinsic tendency to deviate from a random state. By assuming that uxxx reaches the minimum value for a given spectral profile, the velocity and pressure are found to have locally self-similar forms similar in shape to what are found in numerical simulations. Such a quasi self-similar solution relaxes the requirement for FTS to v<6. A special self-similar solution that satisfies Kelvin's circulation theorem and exhibits a FTS is found for v=2.
Finite element code development for modeling detonation of HMX composites
NASA Astrophysics Data System (ADS)
Duran, Adam V.; Sundararaghavan, Veera
2017-01-01
In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.
Finite-volume application of high order ENO schemes to multi-dimensional boundary-value problems
NASA Technical Reports Server (NTRS)
Casper, Jay; Dorrepaal, J. Mark
1990-01-01
The finite volume approach in developing multi-dimensional, high-order accurate essentially non-oscillatory (ENO) schemes is considered. In particular, a two dimensional extension is proposed for the Euler equation of gas dynamics. This requires a spatial reconstruction operator that attains formal high order of accuracy in two dimensions by taking account of cross gradients. Given a set of cell averages in two spatial variables, polynomial interpolation of a two dimensional primitive function is employed in order to extract high-order pointwise values on cell interfaces. These points are appropriately chosen so that correspondingly high-order flux integrals are obtained through each interface by quadrature, at each point having calculated a flux contribution in an upwind fashion. The solution-in-the-small of Riemann's initial value problem (IVP) that is required for this pointwise flux computation is achieved using Roe's approximate Riemann solver. Issues to be considered in this two dimensional extension include the implementation of boundary conditions and application to general curvilinear coordinates. Results of numerical experiments are presented for qualitative and quantitative examination. These results contain the first successful application of ENO schemes to boundary value problems with solid walls.
An experiment for determining the Euler load by direct computation
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.; Stein, Peter A.
1986-01-01
A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.
The Scaling Group of the 1-D Invisicid Euler Equations
NASA Astrophysics Data System (ADS)
Schmidt, Emma; Ramsey, Scott; Boyd, Zachary; Baty, Roy
2017-11-01
The one dimensional (1-D) compressible Euler equations in non-ideal media support scale invariant solutions under a variety of initial conditions. Famous scale invariant solutions include the Noh, Sedov, Guderley, and collapsing cavity hydrodynamic test problems. We unify many classical scale invariant solutions under a single scaling group analysis. The scaling symmetry group generator provides a framework for determining all scale invariant solutions emitted by the 1-D Euler equations for arbitrary geometry, initial conditions, and equation of state. We approach the Euler equations from a geometric standpoint, and conduct scaling analyses for a broad class of materials.
Computational Aeroacoustics by the Space-time CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2001-01-01
In recent years, a new numerical methodology for conservation laws-the Space-Time Conservation Element and Solution Element Method (CE/SE), was developed by Dr. Chang of NASA Glenn Research Center and collaborators. In nature, the new method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its rigorous treatment of the fluxes and geometry, it is different from the existing schemes. The CE/SE scheme features: (1) space and time treated on the same footing, the integral equations of conservation laws are solve( for with second order accuracy, (2) high resolution, low dispersion and low dissipation, (3) novel, truly multi-dimensional, simple but effective non-reflecting boundary condition, (4) effortless implementation of computation, no numerical fix or parameter choice is needed, an( (5) robust enough to cover a wide spectrum of compressible flow: from weak linear acoustic waves to strong, discontinuous waves (shocks) appropriate for linear and nonlinear aeroacoustics. Currently, the CE/SE scheme has been developed to such a stage that a 3-13 unstructured CE/SE Navier-Stokes solver is already available. However, in the present paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen as a prototype and is sketched in Section 2. Then applications of the CE/SE scheme to linear, nonlinear aeroacoustics and airframe noise are depicted in Sections 3, 4, and 5 respectively to demonstrate its robustness and capability.
NASA Astrophysics Data System (ADS)
Cao, Qing; Nastac, Laurentiu
2018-06-01
In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.
Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction
NASA Technical Reports Server (NTRS)
Vemuru, C. S.; Tiwari, S. N.
1988-01-01
The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
NASA Astrophysics Data System (ADS)
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
Euler and His Contribution Number Theory
ERIC Educational Resources Information Center
Len, Amy; Scott, Paul
2004-01-01
Born in 1707, Leonhard Euler was the son of a Protestant minister from the vicinity of Basel, Switzerland. With the aim of pursuing a career in theology, Euler entered the University of Basel at the age of thirteen, where he was tutored in mathematics by Johann Bernoulli (of the famous Bernoulli family of mathematicians). He developed an interest…
CFD validation needs for advanced concepts at Northrop Corporation
NASA Technical Reports Server (NTRS)
George, Michael W.
1987-01-01
Information is given in viewgraph form on the Computational Fluid Dynamics (CFD) Workshop held July 14 - 16, 1987. Topics covered include the philosophy of CFD validation, current validation efforts, the wing-body-tail Euler code, F-20 Euler simulated oil flow, and Euler Navier-Stokes code validation for 2D and 3D nozzle afterbody applications.
A brief history of partitions of numbers, partition functions and their modern applications
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2016-04-01
Leonhard Euler and the mechanics of rigid bodies
NASA Astrophysics Data System (ADS)
Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.
2017-01-01
In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).
An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
NASA Astrophysics Data System (ADS)
Drivas, Theodore D.; Eyink, Gregory L.
2017-12-01
We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.
The History of the Planar Elastica: Insights into Mechanics and Scientific Method
ERIC Educational Resources Information Center
Goss, Victor Geoffrey Alan
2009-01-01
Euler's formula for the buckling of an elastic column is widely used in engineering design. However, only a handful of engineers will be familiar with Euler's classic paper "De Curvis Elasticis" in which the formula is derived. In addition to the Euler Buckling Formula, "De Curvis Elasticis" classifies all the bent configurations of elastic rod--a…
NASA Astrophysics Data System (ADS)
Sharkov, N. A.; Sharkova, O. A.
2018-05-01
The paper identifies the importance of the Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov and for the modern knowledge in survivability and safety of ships. The works by Leonard Euler "Marine Science" and "The Moon Motion New Theory" are discussed.
3D GIS spatial operation based on extended Euler operators
NASA Astrophysics Data System (ADS)
Xu, Hongbo; Lu, Guonian; Sheng, Yehua; Zhou, Liangchen; Guo, Fei; Shang, Zuoyan; Wang, Jing
2008-10-01
The implementation of 3 dimensions spatial operations, based on certain data structure, has a lack of universality and is not able to treat with non-manifold cases, at present. ISO/DIS 19107 standard just presents the definition of Boolean operators and set operators for topological relationship query, and OGC GeoXACML gives formal definitions for several set functions without implementation detail. Aiming at these problems, based mathematical foundation on cell complex theory, supported by non-manifold data structure and using relevant research in the field of non-manifold geometry modeling for reference, firstly, this paper according to non-manifold Euler-Poincaré formula constructs 6 extended Euler operators and inverse operators to carry out creating, updating and deleting 3D spatial elements, as well as several pairs of supplementary Euler operators to convenient for implementing advanced functions. Secondly, we change topological element operation sequence of Boolean operation and set operation as well as set functions defined in GeoXACML into combination of extended Euler operators, which separates the upper functions and lower data structure. Lastly, we develop underground 3D GIS prototype system, in which practicability and credibility of extended Euler operators faced to 3D GIS presented by this paper are validated.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-01-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736
Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes
NASA Astrophysics Data System (ADS)
Don, Wai-Sun; Borges, Rafael
2013-10-01
In the reconstruction step of (2r-1) order weighted essentially non-oscillatory conservative finite difference schemes (WENO) for solving hyperbolic conservation laws, nonlinear weights αk and ωk, such as the WENO-JS weights by Jiang et al. and the WENO-Z weights by Borges et al., are designed to recover the formal (2r-1) order (optimal order) of the upwinded central finite difference scheme when the solution is sufficiently smooth. The smoothness of the solution is determined by the lower order local smoothness indicators βk in each substencil. These nonlinear weight formulations share two important free parameters in common: the power p, which controls the amount of numerical dissipation, and the sensitivity ε, which is added to βk to avoid a division by zero in the denominator of αk. However, ε also plays a role affecting the order of accuracy of WENO schemes, especially in the presence of critical points. It was recently shown that, for any design order (2r-1), ε should be of Ω(Δx2) (Ω(Δxm) means that ε⩾CΔxm for some C independent of Δx, as Δx→0) for the WENO-JS scheme to achieve the optimal order, regardless of critical points. In this paper, we derive an alternative proof of the sufficient condition using special properties of βk. Moreover, it is unknown if the WENO-Z scheme should obey the same condition on ε. Here, using same special properties of βk, we prove that in fact the optimal order of the WENO-Z scheme can be guaranteed with a much weaker condition ε=Ω(Δxm), where m(r,p)⩾2 is the optimal sensitivity order, regardless of critical points. Both theoretical results are confirmed numerically on smooth functions with arbitrary order of critical points. This is a highly desirable feature, as illustrated with the Lax problem and the Mach 3 shock-density wave interaction of one dimensional Euler equations, for a smaller ε allows a better essentially non-oscillatory shock capturing as it does not over-dominate over the size of βk. We also show that numerical oscillations can be further attenuated by increasing the power parameter 2⩽p⩽r-1, at the cost of increased numerical dissipation. Compact formulas of βk for WENO schemes are also presented.
NASA Astrophysics Data System (ADS)
Verdun, Andreas
2010-12-01
The Euler Commission of the Swiss Academy of Sciences intends to terminate the edition of Leonhard Euler's works in the next year 2011 after nearly one hundred years since the beginning of the editorial works. These works include, e.g., Volume 3 of the Series quarta A which will contain the correspondence between Leonhard Euler (1707-1783) and Daniel Bernoulli (1700-1783) and which is currently being edited by Dr. Emil A. Fellmann (Basel) and Prof. Dr. Gleb K. Mikhailov (Moscow). This correspondence contains more than hundred letters, principally from Daniel Bernoulli to Euler. Parts of this correspondence were published uncommented already in 1843. It is astonishing that, apart from mathematics and physics (mainly mechanics and hydrodynamics), many topics addressed concern astronomy. The major part of the preserved correspondence between Euler and Daniel Bernoulli, in which astronomical themes are discussed, concerns celestial mechanics as the dominant discipline of theoretical astronomy of the eighteenth century. It was triggered and coined mainly by the prize questions of the Paris Academy of Science. In more than two thirds of the letters current problems and questions concerning celestial mechanics of that time are treated, focusing on the lunar theory and the great inequality in the motions of Jupiter and Saturn as special applications of the three body problem. In the remaining letters, problems concerning spherical astronomy are solved and attempts are made to explain certain phenomena in the field of "cosmic physics" concerning astronomical observations.
Vortex methods for separated flows
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.
1988-01-01
The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.
Langasite surface acoustic wave gas sensors: modeling and verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Zheng,; Greve, D. W.; Oppenheim, I. J.
2013-03-01
We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave modemore » and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.« less
Buckling of stiff polymers: Influence of thermal fluctuations
NASA Astrophysics Data System (ADS)
Emanuel, Marc; Mohrbach, Hervé; Sayar, Mehmet; Schiessel, Helmut; Kulić, Igor M.
2007-12-01
The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite temperature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus persistence length.
Numerical simulation of electrophoresis separation processes
NASA Technical Reports Server (NTRS)
Ganjoo, D. K.; Tezduyar, T. E.
1986-01-01
A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.
A comparative study of serial and parallel aeroelastic computations of wings
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1994-01-01
A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.
Application of the Hughes-LIU algorithm to the 2-dimensional heat equation
NASA Technical Reports Server (NTRS)
Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.
1982-01-01
An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.
Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point
ERIC Educational Resources Information Center
Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf
2011-01-01
An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…
Splitting methods for low Mach number Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Dutt, Pravir; Gottlieb, David
1987-01-01
Examined are some splitting techniques for low Mach number Euler flows. Shortcomings of some of the proposed methods are pointed out and an explanation for their inadequacy suggested. A symmetric splitting for both the Euler and Navier-Stokes equations is then presented which removes the stiffness of these equations when the Mach number is small. The splitting is shown to be stable.
From wrinkling to global buckling of a ring on a curved substrate
NASA Astrophysics Data System (ADS)
Lagrange, R.; López Jiménez, F.; Terwagne, D.; Brojan, M.; Reis, P. M.
2016-04-01
We present a combined analytical approach and numerical study on the stability of a ring bound to an annular elastic substrate, which contains a circular cavity. The system is loaded by depressurizing the inner cavity. The ring is modeled as an Euler-Bernoulli beam and its equilibrium equations are derived from the mechanical energy which takes into account both stretching and bending contributions. The curvature of the substrate is considered explicitly to model the work done by its reaction force on the ring. We distinguish two different instabilities: periodic wrinkling of the ring or global buckling of the structure. Our model provides an expression for the critical pressure, as well as a phase diagram that rationalizes the transition between instability modes. Towards assessing the role of curvature, we compare our results for the critical stress and the wrinkling wavelength to their planar counterparts. We show that the critical stress is insensitive to the curvature of the substrate, while the wavelength is only affected due to the permissible discrete values of the azimuthal wavenumber imposed by the geometry of the problem. Throughout, we contrast our analytical predictions against finite element simulations.
Analysis of impact of general-purpose graphics processor units in supersonic flow modeling
NASA Astrophysics Data System (ADS)
Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.
2017-06-01
Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
Nano-composite insert in 1D waveguides for control of elastic power flow
NASA Astrophysics Data System (ADS)
Vignesh, P. S.; Mitra, Mira; Gopalakrishnan, S.
2007-01-01
In this paper, carbon nanotube embedded polymer composite/nano-composites are used to regulate power flow from its source to other parts of the structure. This is done by inserting nano-composite strips in the waveguides which are modelled here as isotropic Euler-Bernoulli beams with axial, transverse and rotational degrees of freedom. The power flow is due to wave propagation resulting from a high frequency broadband impulse load. The underlying concept is that the high stiffness of the insert reduces the wave transmission between different parts of the structures. The simulations are done using a wavelet based spectral finite element (WSFE) technique which is specially tailored for such high frequency wave propagation analysis. Numerical experiments are performed to illustrate the use of inserts in maintaining the power flow in a certain region of the structure below a given threshold value which may be specified depending on various applications. The effects of parameters such as the volume fraction of carbon nanotube (CNT) in the polymer, and the length and position of the inserts are also studied. These studies help in defining the optimal volume fraction of CNT and length of the insert for a specified structural configuration.
NASA Astrophysics Data System (ADS)
Katz, S. D.; Niedermayer, F.; Nógrádi, D.; Török, Cs.
2017-03-01
We study three possible ways to circumvent the sign problem in the O(3) nonlinear sigma model in 1 +1 dimensions. We compare the results of the worm algorithm to complex Langevin and multiparameter reweighting. Using the worm algorithm, the thermodynamics of the model is investigated, and continuum results are shown for the pressure at different μ /T values in the range 0-4. By performing T =0 simulations using the worm algorithm, the Silver Blaze phenomenon is reproduced. Regarding the complex Langevin, we test various implementations of discretizing the complex Langevin equation. We found that the exponentialized Euler discretization of the Langevin equation gives wrong results for the action and the density at low T /m . By performing a continuum extrapolation, we found that this discrepancy does not disappear and depends slightly on temperature. The discretization with spherical coordinates performs similarly at low μ /T but breaks down also at some higher temperatures at high μ /T . However, a third discretization that uses a constraining force to achieve the ϕ2=1 condition gives correct results for the action but wrong results for the density at low μ /T .
NASA Astrophysics Data System (ADS)
Soni, V.; Hadjadj, A.; Roussel, O.
2017-12-01
In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.
Numerical analysis of the three-dimensional swirling flow in centrifugal compressor volutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayder, E.; Van den Braembussche, R.
1994-07-01
The improvement of centrifugal compressor performance and the control of the radial forces acting on the impeller due to the circumferential variation of the static pressure caused by the volute require a good understanding of the flow mechanisms and an accurate prediction of the flow pattern inside the volute. A three-dimensional volute calculation method has been developed for this purpose. The volute is discretized by means of hexahedral elements. A cell vertex finite volume approach is used in combination with a time-marching procedure. The numerical procedure makes use of a central space discretization and a four-step Runge-Kutta time-stepping scheme. Themore » artificial dissipation used in the solver is based on the fourth-order differences of the conservative variables. Implicit residual smoothing improves the convergence rate. The loss model implemented in the code accounts for the losses due to internal shear and friction losses on the walls. A comparison of the calculated and measured results inside a volute with elliptical cross section reveals that the modified Euler solver accurately predicts the velocity and pressure distribution inside and upstream of the volute.« less
The effect of rotatory inertia on the natural frequencies of composite beams
NASA Astrophysics Data System (ADS)
Auclair, Samuel C.; Sorelli, Luca; Salenikovich, Alexander; Fafard, Mario
2016-03-01
This paper focuses on the dynamic behaviour of two-layer composite beams, which is an important aspect of performance of structures, such as a concrete slab on a girder in residential floors or bridges. After briefly reviewing the composite beam theory based on Euler-Bernoulli hypothesis, the dynamic formulation is extended by including the effect of the relative longitudinal motion of the layers in the rotatory inertia, which can be particularly important for timber-concrete composite beams. The governing equation and the finite element model are derived in detail and validated by comparing the natural frequency predictions against other methods. A parametric analysis shows the key factors, which affect the rotatory inertia and its influence on the frequency of a single-span composite beam with different boundary conditions. The effect of the rotatory inertia on the first natural frequency of the composite beam appears below 5 percent; however, the effect on the higher natural frequencies becomes more important and not negligible in a full dynamics analysis. Finally, a simplified equation is proposed to account for the effect of the rotatory inertia on the calculation of the frequency of a composite beam for design purpose.
Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.
1991-01-01
A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.
A Reduced-Order Model for Efficient Simulation of Synthetic Jet Actuators
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2003-01-01
A new reduced-order model of multidimensional synthetic jet actuators that combines the accuracy and conservation properties of full numerical simulation methods with the efficiency of simplified zero-order models is proposed. The multidimensional actuator is simulated by solving the time-dependent compressible quasi-1-D Euler equations, while the diaphragm is modeled as a moving boundary. The governing equations are approximated with a fourth-order finite difference scheme on a moving mesh such that one of the mesh boundaries coincides with the diaphragm. The reduced-order model of the actuator has several advantages. In contrast to the 3-D models, this approach provides conservation of mass, momentum, and energy. Furthermore, the new method is computationally much more efficient than the multidimensional Navier-Stokes simulation of the actuator cavity flow, while providing practically the same accuracy in the exterior flowfield. The most distinctive feature of the present model is its ability to predict the resonance characteristics of synthetic jet actuators; this is not practical when using the 3-D models because of the computational cost involved. Numerical results demonstrating the accuracy of the new reduced-order model and its limitations are presented.
Effective Control of Computationally Simulated Wing Rock in Subsonic Flow
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Menzies, Margaret A.
1997-01-01
The unsteady compressible, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the delta wing rock phenomenon. The NS equations are solved time accurately, using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The rigid-body dynamics equations are solved using a four-stage Runge-Kutta scheme. Once the wing reaches the limit-cycle response, an active control model using a mass injection system is applied from the wing surface to suppress the limit-cycle oscillation. The active control model is based on state feedback and the control law is established using pole placement techniques. The control law is based on the feedback of two states: the roll-angle and roll velocity. The primary model of the computational applications consists of a 80 deg swept, sharp edged, delta wing at 30 deg angle of attack in a freestream of Mach number 0.1 and Reynolds number of 0.4 x 10(exp 6). With a limit-cycle roll amplitude of 41.1 deg, the control model is applied, and the results show that within one and one half cycles of oscillation, the wing roll amplitude and velocity are brought to zero.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
2000-01-01
This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. On the analysis side, we have studied the efficient and stable discontinuous Galerkin framework for small second derivative terms, for example in Navier-Stokes equations, and also for related equations such as the Hamilton-Jacobi equations. This is a truly local discontinuous formulation where derivatives are considered as new variables. On the applied side, we have implemented and tested the efficiency of different approaches numerically. Related issues in high order ENO and WENO finite difference methods and spectral methods have also been investigated. Jointly with Hu, we have presented a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the RungeKutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method. Jointly with Hu, we have constructed third and fourth order WENO schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. The third order schemes are based on a combination of linear polynomials with nonlinear weights, and the fourth order schemes are based on combination of quadratic polynomials with nonlinear weights. We have addressed several difficult issues associated with high order WENO schemes on unstructured mesh, including the choice of linear and nonlinear weights, what to do with negative weights, etc. Numerical examples are shown to demonstrate the accuracies and robustness of the methods for shock calculations. Jointly with P. Montarnal, we have used a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition under the form epsilon = epsilon(sub 1) + epsilon(sub 2), where epsilon(sub 1) is associated with a simpler pressure law (gamma)-law in this paper) and the nonlinear deviation epsilon(sub 2) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the epsilon(sub l) gamma-law. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.
Comparison between Euler and quaternion parametrization in UAV dynamics
NASA Astrophysics Data System (ADS)
Alaimo, A.; Artale, V.; Milazzo, C.; Ricciardello, A.
2013-10-01
The main topic addressed in this paper is a comparison between Euler parametrization and Quaternion one in the description of the dynamics of a Unmanned Aerial Vehicle assumed as a rigid body. In details Newton Euler equations are re-written in terms of quaternions due to the singularities that the Euler angles lead. This formulation not only avoids the gimbal lock but also allows a better performance in numerical implementation thanks to the linearity of quaternion algebra. This kind of analysis, proved by some numerical results presented, has a great importance due to the applicability of quaternion to drone control. Indeed, this latter requires a time response as quick as possible, in order to be reliable.
Voidage correction algorithm for unresolved Euler-Lagrange simulations
NASA Astrophysics Data System (ADS)
Askarishahi, Maryam; Salehi, Mohammad-Sadegh; Radl, Stefan
2018-04-01
The effect of grid coarsening on the predicted total drag force and heat exchange rate in dense gas-particle flows is investigated using Euler-Lagrange (EL) approach. We demonstrate that grid coarsening may reduce the predicted total drag force and exchange rate. Surprisingly, exchange coefficients predicted by the EL approach deviate more significantly from the exact value compared to results of Euler-Euler (EE)-based calculations. The voidage gradient is identified as the root cause of this peculiar behavior. Consequently, we propose a correction algorithm based on a sigmoidal function to predict the voidage experienced by individual particles. Our correction algorithm can significantly improve the prediction of exchange coefficients in EL models, which is tested for simulations involving Euler grid cell sizes between 2d_p and 12d_p . It is most relevant in simulations of dense polydisperse particle suspensions featuring steep voidage profiles. For these suspensions, classical approaches may result in an error of the total exchange rate of up to 30%.
Zhang, Ling
2017-01-01
The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar; Whitfield, Dave
1989-01-01
The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.
An explicit plate kinematic model for the orogeny in the southern Uralides
NASA Astrophysics Data System (ADS)
Görz, Ines; Hielscher, Peggy
2010-10-01
The Palaeozoic Uralides formed in a three plate constellation between Europe, Siberia and Kazakhstan-Tarim. Starting from the first plate tectonic concepts, it was controversially discussed, whether the Uralide orogeny was the result of a relative plate motion between Europe and Siberia or between Europe and Kazakhstan. In this study, we use a new approach to address this problem. We perform a structural analysis on the sphere, reconstruct the positions of the Euler poles of the relative plate rotation Siberia-Europe and Tarim-Europe and describe Uralide structures by their relation to small circles about the two Euler poles. Using this method, changes in the strike of tectonic elements that are caused by the spherical geometry of the Earth's surface are eliminated and structures that are compatible with one of the relative plate motions can be identified. We show that only two Euler poles controlled the Palaeozoic tectonic evolution in the whole West Siberian region, but that they acted diachronously in different regions. We provide an explicit model describing the tectonism in West Siberia by an Euler pole, a sense of rotation and an approximate rotation angle. In the southern Uralides, Devonian structures resulted from a plate rotation of Siberia with respect to Europe, while the Permian structures were caused by a relative plate motion of Kazakhstan-Tarim with respect to Europe. The tectonic pause in the Carboniferous period correlates with a reorganization of the plate kinematics.
On the interpretations of Langevin stochastic equation in different coordinate systems
NASA Astrophysics Data System (ADS)
Martínez, E.; López-Díaz, L.; Torres, L.; Alejos, O.
2004-01-01
The stochastic Langevin Landau-Lifshitz equation is usually utilized in micromagnetics formalism to account for thermal effects. Commonly, two different interpretations of the stochastic integrals can be made: Ito and Stratonovich. In this work, the Langevin-Landau-Lifshitz (LLL) equation is written in both Cartesian and Spherical coordinates. If Spherical coordinates are employed, the noise is additive, and therefore, Ito and Stratonovich solutions are equal. This is not the case when (LLL) equation is written in Cartesian coordinates. In this case, the Langevin equation must be interpreted in the Stratonovich sense in order to reproduce correct statistical results. Nevertheless, the statistics of the numerical results obtained from Euler-Ito and Euler-Stratonovich schemes are equivalent due to the additional numerical constraint imposed in Cartesian system after each time step, which itself assures that the magnitude of the magnetization is preserved.
Euler solutions for an unbladed jet engine configuration
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1991-01-01
A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.
A minimum entropy principle in the gas dynamics equations
NASA Technical Reports Server (NTRS)
Tadmor, E.
1986-01-01
Let u(x bar,t) be a weak solution of the Euler equations, governing the inviscid polytropic gas dynamics; in addition, u(x bar, t) is assumed to respect the usual entropy conditions connected with the conservative Euler equations. We show that such entropy solutions of the gas dynamics equations satisfy a minimum entropy principle, namely, that the spatial minimum of their specific entropy, (Ess inf s(u(x,t)))/x, is an increasing function of time. This principle equally applies to discrete approximations of the Euler equations such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this minimum principle makes use of the fact that there is a family of generalized entrophy functions connected with the conservative Euler equations.
Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads
NASA Technical Reports Server (NTRS)
Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui
1997-01-01
Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Injae; Choi, Haecheon
2018-04-01
We present a weak-coupling approach for fluid-structure interaction with low density ratio (ρ) of solid to fluid. For accurate and stable solutions, we introduce predictors, an explicit two-step method and the implicit Euler method, to obtain provisional velocity and position of fluid-structure interface at each time step, respectively. The incompressible Navier-Stokes equations, together with these provisional velocity and position at the fluid-structure interface, are solved in an Eulerian coordinate using an immersed-boundary finite-volume method on a staggered mesh. The dynamic equation of an elastic solid-body motion, together with the hydrodynamic force at the provisional position of the interface, is solved in a Lagrangian coordinate using a finite element method. Each governing equation for fluid and structure is implicitly solved using second-order time integrators. The overall second-order temporal accuracy is preserved even with the use of lower-order predictors. A linear stability analysis is also conducted for an ideal case to find the optimal explicit two-step method that provides stable solutions down to the lowest density ratio. With the present weak coupling, three different fluid-structure interaction problems were simulated: flows around an elastically mounted rigid circular cylinder, an elastic beam attached to the base of a stationary circular cylinder, and a flexible plate, respectively. The lowest density ratios providing stable solutions are searched for the first two problems and they are much lower than 1 (ρmin = 0.21 and 0.31, respectively). The simulation results agree well with those from strong coupling suggested here and also from previous numerical and experimental studies, indicating the efficiency and accuracy of the present weak coupling.
NASA Technical Reports Server (NTRS)
Barth, Timothy; Saini, Subhash (Technical Monitor)
1999-01-01
This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the Galerkin least-squares (GLS) and the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the POE system. Central to the development of the simplified GLS and DG methods is the Degenerative Scaling Theorem which characterizes right symmetrizes of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobean matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler, Navier-Stokes, and magnetohydrodynamic (MHD) equations. Linear and nonlinear energy stability is proven for the simplified GLS and DG methods. Spatial convergence properties of the simplified GLS and DO methods are numerical evaluated via the computation of Ringleb flow on a sequence of successively refined triangulations. Finally, we consider a posteriori error estimates for the GLS and DG demoralization assuming error functionals related to the integrated lift and drag of a body. Sample calculations in 20 are shown to validate the theory and implementation.
NASA Technical Reports Server (NTRS)
Li, Wei; Saleeb, Atef F.
1995-01-01
This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of the report, we focus on the specific details of the numerical schemes, and associated computer algorithms, for the finite-element implementation of GVIPS and NAV models.
NASA Astrophysics Data System (ADS)
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
Euler polynomials and identities for non-commutative operators
NASA Astrophysics Data System (ADS)
De Angelis, Valerio; Vignat, Christophe
2015-12-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.
Estimating parameter of influenza transmission using regularized least square
NASA Astrophysics Data System (ADS)
Nuraini, N.; Syukriah, Y.; Indratno, S. W.
2014-02-01
Transmission process of influenza can be presented in a mathematical model as a non-linear differential equations system. In this model the transmission of influenza is determined by the parameter of contact rate of the infected host and susceptible host. This parameter will be estimated using a regularized least square method where the Finite Element Method and Euler Method are used for approximating the solution of the SIR differential equation. The new infected data of influenza from CDC is used to see the effectiveness of the method. The estimated parameter represents the contact rate proportion of transmission probability in a day which can influence the number of infected people by the influenza. Relation between the estimated parameter and the number of infected people by the influenza is measured by coefficient of correlation. The numerical results show positive correlation between the estimated parameters and the infected people.
On the buckling of elastic rings by external confinement.
Hazel, Andrew L; Mullin, Tom
2017-05-13
We report the results of an experimental and numerical investigation into the buckling of thin elastic rings confined within containers of circular or regular polygonal cross section. The rings float on the surface of water held in the container and controlled removal of the fluid increases the confinement of the ring. The increased compressive forces can cause the ring to buckle into a variety of shapes. For the circular container, finite perturbations are required to induce buckling, whereas in polygonal containers the buckling occurs through a linear instability that is closely related to the canonical Euler column buckling. A model based on Kirchhoff-Love beam theory is developed and solved numerically, showing good agreement with the experiments and revealing that in polygons increasing the number of sides means that buckling occurs at reduced levels of confinement.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.' © 2017 The Author(s).
Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.
Kolvin, Itamar; Livne, Eli; Meerson, Baruch
2010-08-01
We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.
Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Davidson, Scott; Mani, Ali
2017-11-01
Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.
Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1996-01-01
A method Is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization Is accomplished by a cell-centered finite-volume formulation using an accurate lin- ear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward- Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy In predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.
On the buckling of elastic rings by external confinement
Hazel, Andrew L.
2017-01-01
We report the results of an experimental and numerical investigation into the buckling of thin elastic rings confined within containers of circular or regular polygonal cross section. The rings float on the surface of water held in the container and controlled removal of the fluid increases the confinement of the ring. The increased compressive forces can cause the ring to buckle into a variety of shapes. For the circular container, finite perturbations are required to induce buckling, whereas in polygonal containers the buckling occurs through a linear instability that is closely related to the canonical Euler column buckling. A model based on Kirchhoff–Love beam theory is developed and solved numerically, showing good agreement with the experiments and revealing that in polygons increasing the number of sides means that buckling occurs at reduced levels of confinement. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373386
Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids
NASA Astrophysics Data System (ADS)
Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio
2012-06-01
In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.
Toward Automatic Verification of Goal-Oriented Flow Simulations
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2014-01-01
We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.
Computation of the stability derivatives via CFD and the sensitivity equations
NASA Astrophysics Data System (ADS)
Lei, Guo-Dong; Ren, Yu-Xin
2011-04-01
The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.
Computational Aeroacoustics: An Overview
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
2003-01-01
An overview of recent advances in computational aeroacoustics (CAA) is presented. CAA algorithms must not be dispersive and dissipative. It should propagate waves supported by the Euler equations with the correct group velocities. Computation domains are inevitably finite in size. To avoid the reflection of acoustic and other outgoing waves at the boundaries of the computation domain, it is required that special boundary conditions be imposed at the boundary region. These boundary conditions either absorb all the outgoing waves without reflection or allow the waves to exit smoothly. High-order schemes, invariably, supports spurious short waves. These spurious waves tend to pollute the numerical solution. They must be selectively damped or filtered out. All these issues and relevant computation methods are briefly reviewed. Jet screech tones are known to have caused structural fatigue in military combat aircrafts. Numerical simulation of the jet screech phenomenon is presented as an example of a successful application of CAA.
Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load
NASA Astrophysics Data System (ADS)
Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.
2017-03-01
The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.
Time-dependent Hartree-Fock approach to nuclear ``pasta'' at finite temperature
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2013-05-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature. In addition, we propose the variance in the cell density distribution as a measure to distinguish pasta matter from uniform matter.
Analytical Dynamics and Nonrigid Spacecraft Simulation
NASA Technical Reports Server (NTRS)
Likins, P. W.
1974-01-01
Application to the simulation of idealized spacecraft are considered both for multiple-rigid-body models and for models consisting of combination of rigid bodies and elastic bodies, with the elastic bodies being defined either as continua, as finite-element systems, or as a collection of given modal data. Several specific examples are developed in detail by alternative methods of analytical mechanics, and results are compared to a Newton-Euler formulation. The following methods are developed from d'Alembert's principle in vector form: (1) Lagrange's form of d'Alembert's principle for independent generalized coordinates; (2) Lagrange's form of d'Alembert's principle for simply constrained systems; (3) Kane's quasi-coordinate formulation of D'Alembert's principle; (4) Lagrange's equations for independent generalized coordinates; (5) Lagrange's equations for simply constrained systems; (6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations); (7) Hamilton's equations for simply constrained systems; and (8) Hamilton's equations for independent generalized coordinates.
Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1996-01-01
A method is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization is accomplished by a cell-centered finite-volume formulation using an accurate linear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy in predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.
Breakdown of the conservative potential equation
NASA Technical Reports Server (NTRS)
Salas, M. D.; Gumbert, C. R.
1986-01-01
The conservative full-potential equation is used to study transonic flow over five airfoil sections. The results of the study indicate that once shock are present in the flow, the qualitative approximation is different from that observed with the Euler equations. The difference in behavior of the potential eventually leads to multiple solutions.
Computation of transonic viscous-inviscid interacting flow
NASA Technical Reports Server (NTRS)
Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.
1983-01-01
Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829
Kalinina, Elizabeth A
2013-08-01
The explicit Euler's method is known to be very easy and effective in implementation for many applications. This article extends results previously obtained for the systems of linear differential equations with constant coefficients to arbitrary systems of ordinary differential equations. Optimal (providing minimum total error) step size is calculated at each step of Euler's method. Several examples of solving stiff systems are included. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Equations with Arithmetic Functions of Pell Numbers
2014-01-01
Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 4, 2014, 409–413 Equations with arithmetic functions of Pell numbers by 1Florian Luca...2Pantelimon Stănică Abstract Here, we prove some diophantine results about the Euler function of Pell numbers and their Pell –Lucas companion sequence. For...example, if the Euler function of the nth Pell number Pn or Pell –Lucas companion number Qn is a power of 2, then n ≤ 8. Key Words: Euler function, Pell
The impact of fluid topology on residual saturations - A pore-network model study
NASA Astrophysics Data System (ADS)
Doster, F.; Kallel, W.; van Dijke, R.
2014-12-01
In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).
Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros
NASA Astrophysics Data System (ADS)
Hassanpour, Soroosh; Heppler, G. R.
2016-01-01
This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.
Second- and third-order upwind difference schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Yang, J. Y.
1984-01-01
Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.
Hosain, M A; Sirr, A; Ju, L; Blair, D G
2012-08-01
LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope.
Constructing stage-structured matrix population models from life tables: comparison of methods
Diaz-Lopez, Jasmin
2017-01-01
A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates) of a population and can be used for calculating an asymptotic finite population growth rate (λ) and generation time. These two pieces of information can be used for determining the status of a threatened species. The use of stage-structured population models has increased in recent years, and the vital rates in such models are often estimated using a life table analysis. However, potential bias introduced when converting age-structured vital rates estimated from a life table into parameters for a stage-structured population model has not been assessed comprehensively. The objective of this study was to investigate the performance of methods for such conversions using simulated life histories of organisms. The underlying models incorporate various types of life history and true population growth rates of varying levels. The performance was measured by comparing differences in λ and the generation time calculated using the Euler-Lotka equation, age-structured population matrices, and several stage-structured population matrices that were obtained by applying different conversion methods. The results show that the discretization of age introduces only small bias in λ or generation time. Similarly, assuming a fixed age of maturation at the mean age of maturation does not introduce much bias. However, aggregating age-specific survival rates into a stage-specific survival rate and estimating a stage-transition rate can introduce substantial bias depending on the organism’s life history type and the true values of λ. In order to aggregate survival rates, the use of the weighted arithmetic mean was the most robust method for estimating λ. Here, the weights are given by survivorship curve after discounting with λ. To estimate a stage-transition rate, matching the proportion of individuals transitioning, with λ used for discounting the rate, was the best approach. However, stage-structured models performed poorly in estimating generation time, regardless of the methods used for constructing the models. Based on the results, we recommend using an age-structured matrix population model or the Euler-Lotka equation for calculating λ and generation time when life table data are available. Then, these age-structured vital rates can be converted into a stage-structured model for further analyses. PMID:29085763
Constructing stage-structured matrix population models from life tables: comparison of methods.
Fujiwara, Masami; Diaz-Lopez, Jasmin
2017-01-01
A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates) of a population and can be used for calculating an asymptotic finite population growth rate ( λ ) and generation time. These two pieces of information can be used for determining the status of a threatened species. The use of stage-structured population models has increased in recent years, and the vital rates in such models are often estimated using a life table analysis. However, potential bias introduced when converting age-structured vital rates estimated from a life table into parameters for a stage-structured population model has not been assessed comprehensively. The objective of this study was to investigate the performance of methods for such conversions using simulated life histories of organisms. The underlying models incorporate various types of life history and true population growth rates of varying levels. The performance was measured by comparing differences in λ and the generation time calculated using the Euler-Lotka equation, age-structured population matrices, and several stage-structured population matrices that were obtained by applying different conversion methods. The results show that the discretization of age introduces only small bias in λ or generation time. Similarly, assuming a fixed age of maturation at the mean age of maturation does not introduce much bias. However, aggregating age-specific survival rates into a stage-specific survival rate and estimating a stage-transition rate can introduce substantial bias depending on the organism's life history type and the true values of λ . In order to aggregate survival rates, the use of the weighted arithmetic mean was the most robust method for estimating λ . Here, the weights are given by survivorship curve after discounting with λ . To estimate a stage-transition rate, matching the proportion of individuals transitioning, with λ used for discounting the rate, was the best approach. However, stage-structured models performed poorly in estimating generation time, regardless of the methods used for constructing the models. Based on the results, we recommend using an age-structured matrix population model or the Euler-Lotka equation for calculating λ and generation time when life table data are available. Then, these age-structured vital rates can be converted into a stage-structured model for further analyses.
Measuring (subglacial) bedform orientation, length, and longitudinal asymmetry - Method assessment.
Jorge, Marco G; Brennand, Tracy A
2017-01-01
Geospatial analysis software provides a range of tools that can be used to measure landform morphometry. Often, a metric can be computed with different techniques that may give different results. This study is an assessment of 5 different methods for measuring longitudinal, or streamlined, subglacial bedform morphometry: orientation, length and longitudinal asymmetry, all of which require defining a longitudinal axis. The methods use the standard deviational ellipse (not previously applied in this context), the longest straight line fitting inside the bedform footprint (2 approaches), the minimum-size footprint-bounding rectangle, and Euler's approximation. We assess how well these methods replicate morphometric data derived from a manually mapped (visually interpreted) longitudinal axis, which, though subjective, is the most typically used reference. A dataset of 100 subglacial bedforms covering the size and shape range of those in the Puget Lowland, Washington, USA is used. For bedforms with elongation > 5, deviations from the reference values are negligible for all methods but Euler's approximation (length). For bedforms with elongation < 5, most methods had small mean absolute error (MAE) and median absolute deviation (MAD) for all morphometrics and thus can be confidently used to characterize the central tendencies of their distributions. However, some methods are better than others. The least precise methods are the ones based on the longest straight line and Euler's approximation; using these for statistical dispersion analysis is discouraged. Because the standard deviational ellipse method is relatively shape invariant and closely replicates the reference values, it is the recommended method. Speculatively, this study may also apply to negative-relief, and fluvial and aeolian bedforms.
NASA Astrophysics Data System (ADS)
Gordon, Richard G.; Cox, Allan; O'Hare, Scott
1984-10-01
The apparent polar wander path for a plate is determined from paleomagnetic data by plotting a time sequence of paleomagnetic poles, each representing the location of the earth's spin axis as seen from the plate. Apparent polar wander paths consist of long, gently curved segments termed tracks linked by short segments with sharp curvature termed cusps. The tracks correspond to time intervals when the direction of plate motion was constant, and the cusps correspond to time intervals when the direction of plate motion was changing. Apparent polar wander tracks, like hot spot tracks, tend to lie along small circles. The center of a circle is called a hot spot Euler pole in the case of hot spot tracks and a paleomagnetic Euler pole in the case of paleomagnetic apparent polar wander paths. Both types of tracks mark the motion of a plate with respect to a point, a rising mantle plume in the case of hot spot tracks and the earth's paleomagnetic axis in the case of apparent polar wander paths. Unlike approaches uced in previous studies, paleomagnetic Euler pole analysis yields all three components of motion—including the east-west motion—of a plate with respect to the paleomagnetic axis. A new method for analyzing paleomagnetic poles along a track by using a maximum likelihood criterion gives the best fit paleomagnetic Euler pole and an ellipsoid of 95% confidence about the paleomagnetic Euler pole. In analyzing synthetic and real data, we found that the ellipsoids are elongate, the long axes being aligned with a great circle drawn from the paleomagnetic Euler pole to the center of the apparent polar wander track. This elongation is caused by the azimuths of circular tracks being better defined than their radii of curvature. A Jurassic-Cretaceous paleomagnetic Euler pole for North America was determined from 13 paleomagnetic poles. This track begins with the Wingate and Kayenta formations (about 200 Ma) and ends with the Niobrara Formation (about 87 Ma). Morgan's hot spot Euler pole for 200-90 Ma lies only 15° outside the 95% confidence ellipsoid of the paleomagnetic Euler pole. The good but not perfect agreement reflects displacement between the hot spot and paleomagnetic reference frames at an average rate that is smaller by an order of magnitude than the rate at which the faster plates are moving. The angular velocity of North America about the Jurassic-Cretaceous paleomagnetic Euler pole was determined by plotting the angular positions of paleomagnetic poles along the track as a function of age. For the Cretaceous the angular velocity was too small to measure. During the Jurassic the angular velocity was high, corresponding to a root-mean-square velocity of 70 km/m.y. for the North American plate. A short time interval of even more rapid movement during the Middle and Late Jurassic, possibly corresponding to the beginning of rapid displacement between North America and Africa, is suggested by the data. The direction of absolute motion of North America during the Jurassic was toward the northwest. A Carboniferous-Permian-Triassic paleomagnetic Euler pole was determined from 26 paleomagnetic poles. The progression of poles along this track is consistent with known ages and stratigraphy, except for some systematic differences between poles from Triassic rocks on the Colorado Plateau and poles from Triassic rocks off the Colorado Plateau. These differences could be due to a small clockwise rotation of the Colorado Plateau with respect to cratonal North America, or to miscorrelations between Triassic rocks on the Colorado Plateau and off the Colorado Plateau, or to large lag times between the deposition and magnetization of some rock units, or to some combination of these possibilities. Despite these ambiguities in interpreting paleomagnetic data from Triassic rocks, the general pattern of apparent polar wander and plate motion during the Carboniferous through Triassic is clear: The root-mean-square velocity of North America was slow (about 20 km/m.y.) during the Carboniferous, probably slow (about 20 km/m.y.) during the Permian, but rapid (60-100 km/m.y.) during the Triassic. Paleomagnetic Euler pole analysis establishes that the present slow (less than 30 km/m.y.) velocity of large continental plates like North America is not an intrinsic property of the plates. Occasionally these plates have, for intervals of 50 ± 20 m.y., moved as rapidly as the oceanic plates are moving today. In our interpretation, during times of rapid motion the continents were attached along a passive margin to oceanic lithosphere that was being subducted at some distance from the continent. Rapid motion stopped when the oceanic lithosphere had been consumed by subduction. If North America, Greenland, and Eurasia were joined as a single land mass during the Jurassic, then a likely location for the subducting oceanic plate attached to this landmass is along the southern margin of the cratonal core of Asia with the oceanic plate extending into Tethys. At the cusp between the Carboniferous-Permian-Triassic track and the Jurassic-Cretaceous track, the trend of the path changes by 160°. The western point of the cusp, which is delineated by paleomagnetic poles from the Chinle, Wingate, and Kayenta formations, is 13° farther west in our analysis than it is in commonly accepted apparent polar wander paths for North America. An implication for terrane analysis is that northward displacements found by using our Late Triassic and Early Jurassic poles are up to 2000 km smaller than are those found by using previously published Late Triassic and Early Jurassic cratonal poles.
Discrete maximal regularity of time-stepping schemes for fractional evolution equations.
Jin, Bangti; Li, Buyang; Zhou, Zhi
2018-01-01
In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.
Oscillation Amplitude Growth for a Decelerating Object with Constant Pitch Damping
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.; Litton, Daniel
2006-01-01
The equations governing the deceleration and oscillation of a blunt body moving along a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic solution of this equation describes the oscillation amplitude growth and frequency dilation with time for a statically stable decelerating body with constant pitch damping. The oscillation histories for several constant pitch damping values, predicted by the solution of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) trajectory simulations. The simulations use simplified aerodynamic coefficients matching the Euler-Cauchy approximations. Agreement between the model predictions and simulation results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations and ballistic range data to identify static stability and pitch damping coefficients. The model os shown to closely fit through the data points and capture the behavior of the blunt body observed in simulation and experiment. The extracted coefficients are in reasonable agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondimensional version of the Euler-Cauchy equation is presented and shown to be a simple and effective tool for designing dynamically scaled experiments for decelerating blunt capsule flight.
Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades
NASA Technical Reports Server (NTRS)
Lorence, Christopher B.; Hall, Kenneth C.
1995-01-01
A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide vanes are redesigned for reduced downstream radiated noise. In addition, a framework detailing how the two-dimensional version of the method may be used to redesign three-dimensional geometries is presented.
Airflow structures and nano-particle deposition in a human upper airway model
NASA Astrophysics Data System (ADS)
Zhang, Z.; Kleinstreuer, C.
2004-07-01
Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle suspensions behave like certain (fuel) vapors which have the same diffusivities; and (vii) new correlations for particle deposition as a function of a diffusion parameter are most useful for global lung modeling.
NASA Technical Reports Server (NTRS)
Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.
1992-01-01
Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
Analysis of stability for stochastic delay integro-differential equations.
Zhang, Yu; Li, Longsuo
2018-01-01
In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.
On the Euler Function of the Catalan Numbers
2012-02-26
ON THE EULER FUNCTION OF THE CATALAN NUMBERS FLORIAN LUCA AND PANTELIMON STĂNICĂ Abstract. We study the solutions of the equation φ(Cm)/φ(Cn) = r...where r is a fixed rational number , Ck is the kth Catalan number and φ is the Euler function. We note that the number r = 4 is special for this...observation concerning φ(Cn+1)/φ(Cn) For a positive integer n, let (1) Cn = 1 n+ 1 ( 2n n ) be the n-th Catalan number . For a positive integer m we put φ(m) for
Multiscale functions, scale dynamics, and applications to partial differential equations
NASA Astrophysics Data System (ADS)
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
Characteristics of steady vibration in a rotating hub-beam system
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Liu, Caishan; Ma, Wei
2016-02-01
A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.
Modeling hexavalent chromium removal in a Bacillus sp. fixed-film bioreactor.
Nkhalambayausi-Chirwa, Evans M; Wang, Yi-Tin
2004-09-30
A one-dimensional diffusion-reaction model was developed to simulate Cr(VI) reduction in a Bacillus sp. pure culture biofilm reactor with glucose as a sole supplied carbon and energy source. Substrate utilization and Cr(VI) reduction in the biofilm was best represented by a system of (second-order) partial differential equations (PDEs). The PDE system was solved by the (fourth-order) Runge-Kutta method adjusted for mass transport resistance using the (second-order) Crank-Nicholson and Backward Euler finite difference methods. A heuristic procedure (genetic search algorithm) was used to find global optimum values of Cr(VI) reduction and substrate utilization rate kinetic parameters. The fixed-film bioreactor system yielded higher values of the maximum specific Cr(VI) reduction rate coefficient and Cr(VI) reduction capacity (kmc = 0.062 1/h, and Rc = 0.13 mg/mg, respectively) than previously determined in batch reactors (kmc = 0.022 1/h and Rc = 0.012 mg/mg). The model predicted effluent Cr(VI) concentration well with 98.9% confidence (sigmay2 = 2.37 mg2/L2, N = 119) and effluent glucose with 96.4 % confidence (sigmay(w)2 = 5402 mg2/L2, N = 121, w = 100) over a wide range of Cr(VI) loadings (10-498 mg Cr(VI)/L/d). Copyright 2004 Wiley Periodicals, Inc.
Low frequency acoustic waves from explosive sources in the atmosphere
NASA Astrophysics Data System (ADS)
Millet, Christophe; Robinet, Jean-Christophe; Roblin, Camille; Gloerfelt, Xavier
2006-11-01
In this study, a perturbative formulation of non linear euler equations is used to compute the pressure variation for low frequency acoustic waves from explosive sources in real atmospheres. Based on a Dispersion-Relation-Preserving (DRP) finite difference scheme, the discretization provides good properties for both sound generation and long range sound propagation over a variety of spatial atmospheric scales. It also assures that there is no wave mode coupling in the numerical simulation The background flow is obtained by matching the comprehensive empirical global model of horizontal winds HWM-93 (and MSISE-90 for the temperature profile) with meteorological reanalysis of the lower atmosphere. Benchmark calculations representing cases where there is downward and upward refraction (including shadow zones), ducted propagation, and generation of acoustic waves from low speed shear layers are considered for validation. For all cases, results show a very good agreement with analytical solutions, when available, and with other standard approaches, such as the ray tracing and the normal mode technique. Comparison of calculations and experimental data from the high explosive ``Misty Picture'' test that provided the scaled equivalent airblast of an 8 kt nuclear device (on May 14, 1987), is also considered. It is found that instability waves develop less than one hour after the wavefront generated by the detonation passes.
Micron-scale pattern formation in prestressed polygonal films
NASA Astrophysics Data System (ADS)
Annabattula, R. K.; Onck, P. R.
2011-02-01
In this paper we explore the spontaneous formation of micropatterns in thin prestressed polygonal films using finite element simulations. We study films with different size, thickness, and shape, including square, rectangular, pentagonal, and hexagonal films. Patterns form when the films release the internal eigenstrain by buckling-up, after which the films bond-back to the substrate. After an initial symmetric evolution of the buckling profile, the symmetry of the deflection pattern breaks when the wavelength of wriggles near the film edges decreases. During bond back the deflection morphology converges to a fourfold, fivefold, and sixfold ridging pattern for the square, pentagonal and hexagonal films, respectively, showing a close resemblance with experimental film systems of similar size and shape. Rectangular films of large length to width ratio go through a transition in buckling shapes from the initial Euler mode, through the varicose mode into the antisymmetric telephone-cord mode. For all the film shapes, the ratio of the film height to the effective film width scales with the square root of eigenstrain and is independent of thickness. The bond-back mechanism determines the final wrinkle morphology and is governed by the eigenstrain value at the end of the buckling-up stage and the dimensionless parameter (Γ /EWeq)(Weq/t)3, relating the interface energy to the strain energy in the film.
Backstepping boundary control: an application to the suppression of flexible beam vibration
NASA Astrophysics Data System (ADS)
Boonkumkrong, Nipon; Asadamongkon, Pichai; Chinvorarat, Sinchai
2018-01-01
This paper presents a backstepping boundary control for vibration suppression of flexible beam. The applications are such as industrial robotic arms, space structures, etc. Most slender beams can be modelled using a shear beam. The shear beam is more complex than the conventional Euler-Bernoulli beam in that a shear deformation is additionally taken into account. At present, the application of this method in industry is rather limited, because the application of controllers to the beam is difficult. In this research, we use the shear beam with moving base as a model. The beam is cantilever type. This design method allows us to deal directly with the beam’s partial differential equations (PDEs) without resorting to approximations. An observer is used to estimate the deflections along the beam. Gain kernel of the system is calculated and then used in the control law design. The control setup is anti-collocation, i.e. a sensor is placed at the beam tip and an actuator is placed at the beam moving base. Finite difference equations are used to solve the PDEs and the partial integro-differential equations (PIDEs). Control parameters are varied to see their influences that affect the control performance. The results of the control are presented via computer simulation to verify that the control scheme is effective.
Structure and Stability of One-Dimensional Detonations in Ethylene-Air Mixtures
NASA Technical Reports Server (NTRS)
Yungster, S.; Radhakrishnan, K.; Perkins, High D. (Technical Monitor)
2003-01-01
The propagation of one-dimensional detonations in ethylene-air mixtures is investigated numerically by solving the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing scheme and a point implicit, first-order-accurate, time marching algorithm. The ethylene-air combustion is modeled with a 20-species, 36-step reaction mechanism. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation. Parametric studies over an equivalence ratio range of 0.5 less than phi less than 3 for different initial pressures and degrees of detonation overdrive demonstrate that the detonation is unstable for low degrees of overdrive, but the dynamics of wave propagation varies with fuel-air equivalence ratio. For equivalence ratios less than approximately 1.2 the detonation exhibits a short-period oscillatory mode, characterized by high-frequency, low-amplitude waves. Richer mixtures (phi greater than 1.2) exhibit a low-frequency mode that includes large fluctuations in the detonation wave speed; that is, a galloping propagation mode is established. At high degrees of overdrive, stable detonation wave propagation is obtained. A modified McVey-Toong short-period wave-interaction theory is in excellent agreement with the numerical simulations.
Hamiltonian approaches to spatial and temporal discretization of fully compressible equations
NASA Astrophysics Data System (ADS)
Dubos, Thomas; Dubey, Sarvesh
2017-04-01
The fully compressible Euler (FCE) equations are the most accurate for representing atmospheric motion, compared to approximate systems like the hydrostatic, anelastic or pseudo-incompressible systems. The price to pay for this accuracy is the presence of additional degrees of freedom and high-frequency acoustic waves that must be treated implicitly. In this work we explore a Hamiltonian approach to the issue of stable spatial and temporal discretization of the FCE using a non-Eulerian vertical coordinate. For scalability, a horizontally-explicit, vertically-implicit (HEVI) time discretization is adopted. The Hamiltonian structure of the equations is used to obtain the spatial finite-difference discretization and also in order to identify those terms of the equations of motion that need to be treated implicitly. A novel treatment of the lower boundary condition in the presence of orography is introduced: rather than enforcing a no-normal-flow boundary condition, which couples the horizontal and vertical velocity components and interferes with the HEVI structure, the ground is treated as a flexible surface with arbitrarily large stiffness, resulting in a decoupling of the horizontal and vertical dynamics and yielding a simple implicit problem which can be solved efficiently. Standard test cases performed in a vertical slice configuration suggest that an effective horizontal acoustic Courant number close to 1 can be achieved.
NASA Astrophysics Data System (ADS)
Smith, Marilyn Jones
Some of the computational issues relating to the development of a three-dimensional fourth-order compact Euler/Navier-Stokes methodology for rotary wing flows and its coupling with an elastic rotor blade beam structural model have been explored. The compact Euler/NavierStokes method is used to predict the aerodynamic loads on an isolated rotor blade. Because the scheme is fourth-order, fewer grid nodes are necessary to predict loads with the same accuracy as traditional second order methodologies on finer grids. Grid and numerical parameter optimizations were performed to examine the changes in the predictive capabilities of the higher-order scheme. Comparisons were made with experimental data for a rotor using NACA 0012 airfoil sections and a rectangular planform with no twist. Simulations for both lifting and non-lifting configurations at various tip Mach numbers were performed. This Euler/Navier-Stokes methodology can be applied to rotor blades with either rigid-blade or elastic-beam-structural models to determine the steady-state response in hovering flight. The blade is represented by a geometrically nonlinear beam model which accounts for coupled flap bending, lead-lag bending and torsion. Moderately large displacements and rotations due to structural deformations can be simulated. The analysis has been performed for blade configurations having uniform mass and stiffness, no twist, and no chordwise offsets of the elastic and tension axes, as well as the center of mass. The results are compared with a panel method coupled with the same structural dynamics model. Computations have been made to predict the aerodynamic deflections for the rotor in hover. A starting solution using initial deflections predicted by aeroelastic analyses with a two-dimensional aerodynamic model was investigated. The present Euler/Navier-Stokes method using a momentum wake and a contracting vortex wake shows the impact on the aeroelastic deflections of a three-dimensional aerodynamic module which includes rotational and viscous effects, particularly at higher collective pitch angles. The differences in the aeroelastic predictions using fully coupled and loosely coupled aerodynamic analyses are examined. The induced wake plays a critical role in determining the final equilibrium tip deflections.
Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl
NASA Astrophysics Data System (ADS)
Frewer, M.; Oberlack, M.; Guenther, S.
2007-08-01
We discuss the incompressible stationary axisymmetric Euler equations with swirl, for which we derive via a scalar stream function an equivalent representation, the Bragg-Hawthorne equation [Bragg, S.L., Hawthorne, W.R., 1950. Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243]. Despite this obvious equivalence, we will show that under a local Lie point symmetry analysis the Bragg-Hawthorne equation exposes itself as not being fully equivalent to the original Euler equations. This is reflected in the way that it possesses additional symmetries not being admitted by its counterpart. In other words, a symmetry of the Bragg-Hawthorne equation is in general not a symmetry of the Euler equations. Not the differential Euler equations but rather a set of integro-differential equations attains full equivalence to the Bragg-Hawthorne equation. For these intermediate Euler equations, it is interesting to note that local symmetries of the Bragg-Hawthorne equation transform to local as well as to nonlocal symmetries. This behaviour, on the one hand, is in accordance with Zawistowski's result [Zawistowski, Z.J., 2001. Symmetries of integro-differential equations. Rep. Math. Phys. 48, 269; Zawistowski, Z.J., 2004. General criterion of invariance for integro-differential equations. Rep. Math. Phys. 54, 341] that it is possible for integro-differential equations to admit local Lie point symmetries. On the other hand, with this transformation process we collect symmetries which cannot be obtained when carrying out a usual local Lie point symmetry analysis. Finally, the symmetry classification of the Bragg-Hawthorne equation is used to find analytical solutions for the phenomenon of vortex breakdown.
Summing up the Euler [phi] Function
ERIC Educational Resources Information Center
Loomis, Paul; Plytage, Michael; Polhill, John
2008-01-01
The Euler [phi] function counts the number of positive integers less than and relatively prime to a positive integer n. Here we look at perfect totient numbers, number for which [phi](n) + [phi]([phi](n)) + [phi]([phi]([phi](n))) + ... + 1 = n.
Hydrodynamic Coherence and Vortex Solutions of the Euler-Helmholtz Equation
NASA Astrophysics Data System (ADS)
Fimin, N. N.; Chechetkin, V. M.
2018-03-01
The form of the general solution of the steady-state Euler-Helmholtz equation (reducible to the Joyce-Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.
Women and Mathematics in the Time of Euler
ERIC Educational Resources Information Center
Mayfield, Betty
2013-01-01
We explore mathematics written both by and for women in eighteenth-century Europe, and some of the interesting personalities involved: Maria Agnesi, Emilie du Chatelet, Laura Bassi, Princess Charlotte Ludovica Luisa, John Colson, Francesco Algarotti, and Leonhard Euler himself.
Evaluation of the entropy consistent euler flux on 1D and 2D test problems
NASA Astrophysics Data System (ADS)
Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad
2012-06-01
Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.
Load reduction of a monopile wind turbine tower using optimal tuned mass dampers
NASA Astrophysics Data System (ADS)
Tong, Xin; Zhao, Xiaowei; Zhao, Shi
2017-07-01
We investigate to apply tuned mass dampers (TMDs) (one in the fore-aft direction, one in the side-side direction) to suppress the vibration of a monopile wind turbine tower. Using the spectral element method, we derive a finite-dimensional state-space model Σd from an infinite-dimensional model Σ of a monopile wind turbine tower stabilised by a TMD located in the nacelle. Σ and Σd can be used to represent the dynamics of the tower and TMD in either the fore-aft direction or the side-side direction. The wind turbine tower subsystem of Σ is modelled as a non-uniform SCOLE (NASA Spacecraft Control Laboratory Experiment) system consisting of an Euler-Bernoulli beam equation describing the dynamics of the flexible tower and the Newton-Euler rigid body equations describing the dynamics of the heavy rotor-nacelle assembly (RNA) by neglecting any coupling with blade motions. Σd can be used for fast and accurate simulation for the dynamics of the wind turbine tower as well as for optimal TMD designs. We show that Σd agrees very well with the FAST (fatigue, aerodynamics, structures and turbulence) simulation of the NREL 5-MW wind turbine model. We optimise the parameters of the TMD by minimising the frequency-limited ?-norm of the transfer function matrix of Σd which has input of force and torque acting on the RNA, and output of tower-top displacement. The performances of the optimal TMDs in the fore-aft and side-side directions are tested through FAST simulations, which achieve substantial fatigue load reductions. This research also demonstrates how to optimally tune TMDs to reduce vibrations of flexible structures described by partial differential equations.
Centrifuge Rotor Models: A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach
NASA Technical Reports Server (NTRS)
Granda, Jose J.; Ramakrishnan, Jayant; Nguyen, Louis H.
2006-01-01
A viewgraph presentation on centrifuge rotor models with a comparison using Euler-Lagrange and bond graph methods is shown. The topics include: 1) Objectives; 2) MOdeling Approach Comparisons; 3) Model Structures; and 4) Application.
On the commutator of C^{\\infty}} -symmetries and the reduction of Euler-Lagrange equations
NASA Astrophysics Data System (ADS)
Ruiz, A.; Muriel, C.; Olver, P. J.
2018-04-01
A novel procedure to reduce by four the order of Euler-Lagrange equations associated to nth order variational problems involving single variable integrals is presented. In preparation, a new formula for the commutator of two \
The 3D Euler solutions using automated Cartesian grid generation
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.
Singularities of the Euler equation and hydrodynamic stability
NASA Technical Reports Server (NTRS)
Tanveer, S.; Speziale, Charles G.
1993-01-01
Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.
Singularities of the Euler equation and hydrodynamic stability
NASA Technical Reports Server (NTRS)
Tanveer, S.; Speziale, Charles G.
1992-01-01
Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.
NASA Technical Reports Server (NTRS)
Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.
1992-01-01
Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.