Charring Rate for Fire Exposed X-Lam
NASA Astrophysics Data System (ADS)
Wong, Bernice VY; Fah Tee, Kong
2017-06-01
Design of timber structures has been outlined in Eurocode 5. Notional charring rate for softwood and hardwood timber is given. For the performance of X-LAM panels in fire, only little information on charring is available and whether the fire behaviour of X-LAM is similar to homogenous timber panels has not yet been systematically analysed. This paper presents an overview of fire performance of X-LAM and evaluation of its resistance to elevated temperature as an element of structure in comparison to homogeneous timber panels. Numerical study has been carried out based on available experimental results. Charring rates for X-LAM panels obtained from experimental results are compared with those obtained from Eurocode 5 and proposed simplified model.
NASA Astrophysics Data System (ADS)
Hopkin, D. J.; El-Rimawi, J.; Lennon, T.; Silberschmidt, V. V.
2011-07-01
The advent of the structural Eurocodes has allowed civil engineers to be more creative in the design of structures exposed to fire. Rather than rely upon regulatory guidance and prescriptive methods engineers are now able to use such codes to design buildings on the basis of credible design fires rather than accepted unrealistic standard-fire time-temperature curves. Through this process safer and more efficient structural designs are achievable. The key development in enabling performance-based fire design is the emergence of validated numerical models capable of predicting the mechanical response of a whole building or sub-assemblies at elevated temperature. In such a way, efficiency savings have been achieved in the design of steel, concrete and composite structures. However, at present, due to a combination of limited fundamental research and restrictions in the UK National Annex to the timber Eurocode, the design of fire-exposed timber structures using numerical modelling techniques is not generally undertaken. The 'fire design' of timber structures is covered in Eurocode 5 part 1.2 (EN 1995-1-2). In this code there is an advanced calculation annex (Annex B) intended to facilitate the implementation of numerical models in the design of fire-exposed timber structures. The properties contained in the code can, at present, only be applied to standard-fire exposure conditions. This is due to existing limitations related to the available thermal properties which are only valid for standard fire exposure. In an attempt to overcome this barrier the authors have proposed a 'modified conductivity model' (MCM) for determining the temperature of timber structural elements during the heating phase of non-standard fires. This is briefly outlined in this paper. In addition, in a further study, the MCM has been implemented in a coupled thermo-mechanical analysis of uniaxially loaded timber elements exposed to non-standard fires. The finite element package DIANA was adopted with plane-strain elements assuming two-dimensional heat flow. The resulting predictions of failure time for given levels of load are discussed and compared with the simplified 'effective cross section' method presented in EN 1995-1-2.
Solution of Fire Protection in Historic Buildings
NASA Astrophysics Data System (ADS)
Iringová, Agnes; Idunk, Róbert
2016-12-01
The paper introduces optimization of the functional use of renovated spaces in historic buildings in terms of fire risk. It brings assessment of fire protection in the folk house Habánsky Dvor, situated in the village of Veľké Leváre, whose function was changed into the museum. It goes into static analysis of existing load-bearing structures and assessment of their fire resistance according to Eurocodes.
Behaviour of Reinforced Concrete Columns of Various Cross-Sections Subjected to Fire
NASA Astrophysics Data System (ADS)
Balaji, Aneesha; Muhamed Luquman, K.; Nagarajan, Praveen; Madhavan Pillai, T. M.
2016-09-01
Fire resistance is one of the crucial design regulations which are now mandatory in most of the design codes. Therefore, a thorough knowledge of behaviour of structures exposed to fire is required in this aspect. Columns are the most vulnerable structural member to fire as it can be exposed to fire from all sides. However, the data available for fire resistant design for columns are limited. Hence the present work is focused on the effect of cross-sectional shape of column in fire resistance design. The various cross-sections considered are Square, Ell (L), Tee (T), and Plus (`+') shape. Also the effect of size and shape and distribution of steel reinforcement on fire resistance of columns is studied. As the procedure for determining fire resistance is not mentioned in Indian Standard code IS 456 (2000), the simplified method (500 °C isotherm method) recommended in EN 1992-1-2:2004 (E) (Eurocode 2) is adopted. The temperature profiles for various cross-sections are developed using finite element method and these profiles are used to predict fire resistance capability of compression members. The fire resistance based on both numerical and code based methods are evaluated and compared for various types of cross-section.
NASA Astrophysics Data System (ADS)
Kubicka, Katarzyna; Radoń, Urszula; Szaniec, Waldemar; Pawlak, Urszula
2017-10-01
The paper concerns the reliability analysis of steel structures subjected to high temperatures of fire gases. Two types of spatial structures were analysed, namely with pinned and rigid nodes. The fire analysis was carried out according to prescriptions of Eurocode. The static-strength analysis was conducted using the finite element method (FEM). The MES3D program, developed by Szaniec (Kielce University of Technology, Poland), was used for this purpose. The results received from MES3D made it possible to carry out the reliability analysis using the Numpress Explore program that was developed at the Institute of Fundamental Technological Research of the Polish Academy of Sciences [9]. The measurement of reliability of structures is the Hasofer-Lind reliability index (β). The reliability analysis was carried out according to approximation (FORM, SORM) and simulation (Importance Sampling, Monte Carlo) methods. As the fire progresses, the value of reliability index decreases. The analysis conducted for the study made it possible to evaluate the impact of node types on those changes. In real structures, it is often difficult to define correctly types of nodes, so some simplifications are made. The presented analysis contributes to the recognition of consequences of such assumptions for the safety of structures, subjected to fire.
Reserves in load capacity assessment of existing bridges
NASA Astrophysics Data System (ADS)
Žitný, Jan; Ryjáček, Pavel
2017-09-01
High percentage of all railway bridges in the Czech Republic is made of structural steel. Majority of these bridges is designed according to historical codes and according to the deterioration, they have to be assessed if they satisfy the needs of modern railway traffic. The load capacity assessment of existing bridges according to Eurocodes is however often too conservative and especially, braking and acceleration forces cause huge problems to structural elements of the bridge superstructure. The aim of this paper is to review the different approaches for the determination of braking and acceleration forces. Both, current and historical theoretical models and in-situ measurements are considered. The research of several local European state norms superior to Eurocode for assessment of existing railway bridges shows the big diversity of used local approaches and the conservativeness of Eurocode. This paper should also work as an overview for designers dealing with load capacity assessment, revealing the reserves for existing bridges. Based on these different approaches, theoretical models and data obtained from the measurements, the method for determination of braking and acceleration forces on the basis of real traffic data should be proposed.
NASA Astrophysics Data System (ADS)
Toprak, A. Emre; Gülay, F. Gülten; Ruge, Peter
2008-07-01
Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 m×7.80 m = 127.90 m2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher than the requirements of the Turkish Earthquake Code while the selected ground conditions represent the same characteristics. The main reason is that the ordinate of the horizontal elastic response spectrum for Eurocode 8 is increased by the soil factor. In TEC'07 force-based linear assessment, the seismic demands at cross-sections are to be checked with residual moment capacities; however, the chord rotations of primary ductile elements must be checked for Eurocode safety verifications. On the other hand, the demand curvatures from linear methods of analysis of Eurocode 8 together with TEC'07 are almost similar.
Dynamic analysis of the BMW tower in Munich
NASA Astrophysics Data System (ADS)
Indacochea-Beltran, Joaquin; Elgindy, Pearl; Lee, Elaine; Vignesh, Thiviya; Ansourian, Peter; Tahmasebinia, Faham; Marroquín, Fernando Alonso
2016-08-01
In the 1970s, world famous Austrian architect Karl Schwanzer designed an avant-garde suspended skyscraper for the new BMW headquarters. The BMW Tower was envisioned to resemble a four-cylinder motor and become a symbol for the recent flourishing success of BMW. Throughout its four decades, the BMW Tower has become the main architectural feature of modern Munich and a pride for one of the World leading car manufacturers. The structural design of the BMW Tower represented a major challenge to Germany's finest engineers because the suspended 99.5m-high structure had to whitstand not only static loading but large wind dynamic loading while having deflections within appropriate serviceability limits. Strand7 has been used to determine the stresses and deflections the structure is subjected to in order to analyse its behavior under static and dynamic loadings. Ultimately, this analysis helps to understand the nature of suspended structures in relation to the Eurocode building standards. Finally, thermal resistance has also been analysed using Strand7 to simulate a fire scenario and analyse the behaviour of the cable structure, which is the most critical building component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toprak, A. Emre; Guelay, F. Guelten; Ruge, Peter
2008-07-08
Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performedmore » on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 mx7.80 m = 127.90 m{sup 2} with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher than the requirements of the Turkish Earthquake Code while the selected ground conditions represent the same characteristics. The main reason is that the ordinate of the horizontal elastic response spectrum for Eurocode 8 is increased by the soil factor. In TEC'07 force-based linear assessment, the seismic demands at cross-sections are to be checked with residual moment capacities; however, the chord rotations of primary ductile elements must be checked for Eurocode safety verifications. On the other hand, the demand curvatures from linear methods of analysis of Eurocode 8 together with TEC'07 are almost similar.« less
INFLUENCE OF MATERIAL MODELS ON PREDICTING THE FIRE BEHAVIOR OF STEEL COLUMNS.
Choe, Lisa; Zhang, Chao; Luecke, William E; Gross, John L; Varma, Amit H
2017-01-01
Finite-element (FE) analysis was used to compare the high-temperature responses of steel columns with two different stress-strain models: the Eurocode 3 model and the model proposed by National Institute of Standards and Technology (NIST). The comparisons were made in three different phases. The first phase compared the critical buckling temperatures predicted using forty seven column data from five different laboratories. The slenderness ratios varied from 34 to 137, and the applied axial load was 20-60 % of the room-temperature capacity. The results showed that the NIST model predicted the buckling temperature as or more accurately than the Eurocode 3 model for four of the five data sets. In the second phase, thirty unique FE models were developed to analyze the W8×35 and W14×53 column specimens with the slenderness ratio about 70. The column specimens were tested under steady-heating conditions with a target temperature in the range of 300-600 °C. The models were developed by combining the material model, temperature distributions in the specimens, and numerical scheme for non-linear analyses. Overall, the models with the NIST material properties and the measured temperature variations showed the results comparable to the test data. The deviations in the results from two different numerical approaches (modified Newton Raphson vs. arc-length) were negligible. The Eurocode 3 model made conservative predictions on the behavior of the column specimens since its retained elastic moduli are smaller than those of the NIST model at elevated temperatures. In the third phase, the column curves calibrated using the NIST model was compared with those prescribed in the ANSI/AISC-360 Appendix 4. The calibrated curve significantly deviated from the current design equation with increasing temperature, especially for the slenderness ratio from 50 to 100.
Study of structural reliability of existing concrete structures
NASA Astrophysics Data System (ADS)
Druķis, P.; Gaile, L.; Valtere, K.; Pakrastiņš, L.; Goremikins, V.
2017-10-01
Structural reliability of buildings has become an important issue after the collapse of a shopping center in Riga 21.11.2013, caused the death of 54 people. The reliability of a building is the practice of designing, constructing, operating, maintaining and removing buildings in ways that ensure maintained health, ward suffered injuries or death due to use of the building. Evaluation and improvement of existing buildings is becoming more and more important. For a large part of existing buildings, the design life has been reached or will be reached in the near future. The structures of these buildings need to be reassessed in order to find out whether the safety requirements are met. The safety requirements provided by the Eurocodes are a starting point for the assessment of safety. However, it would be uneconomical to require all existing buildings and structures to comply fully with these new codes and corresponding safety levels, therefore the assessment of existing buildings differs with each design situation. This case study describes the simple and practical procedure of determination of minimal reliability index β of existing concrete structures designed by different codes than Eurocodes and allows to reassess the actual reliability level of different structural elements of existing buildings under design load.
Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall
NASA Astrophysics Data System (ADS)
Jiang, Yuan-Jun; Towhata, Ikuo
2013-07-01
Shallow slope failure in mountainous regions is a common and emergent hazard in terms of its damage to important traffic routes and local communities. The impact of dry granular flows consisting of rock fragments and other particles resulting from shallow slope failures on retaining structures has yet to be systematically researched and is not covered by current design codes. As a preliminary study of the impact caused by dry granular flows, a series of dry granular impact experiments were carried out for one model of a retaining wall. It was indirectly verified that the total normal force exerted on a retaining wall consists of a drag force ( F d), a gravitational and frictional force ( F gf), and a passive earth force ( F p), and that the calculation of F d can be based on the empirical formula defined in NF EN Eurocode 1990 ( Eurocode structuraux. Base de calcul des structures, AFNOR La plaine Saint Denis, 2003). It was also indirectly verified that, for flow with Froude number from 6 to 11, the drag coefficient ( C d) can be estimated using the previously proposed empirical parameters.
NASA Astrophysics Data System (ADS)
Rusek, Janusz; Kocot, Wojciech
2017-10-01
The article presents the method for assessing dynamic resistance of the existing industrial portal frame building structures subjected to mining tremors. The study was performed on two industrial halls of a reinforced concrete structure and a steel structure. In order to determine the dynamic resistances of these objects, static and dynamic numerical analysis in the FEA environment was carried out. The scope of numerical calculations was adapted to the guidelines contained in the former and current design standards. This allowed to formulate the criteria, on the basis of which the maximum permissible value of the horizontal ground acceleration was obtained, constituting resistance of the analyzed objects. The permissible range of structural behaviour was determined by comparing the effects of load combinations adopted at the design stage with a seismic combination recognized in Eurocode 8. The response spectrum method was used in the field of dynamic analysis, taking into account the guidelines contained in Eurocode 8 and the guidelines of National. Finally, in accordance with the established procedure, calculations were carried out and the results for the two model portal frame buildings of reinforced concrete and steel structures were presented. The results allowed for the comparison of the dynamic resistance of two different types of material and design, and a sensitivity analysis with respect to their constituent bearing elements. The conclusions drawn from these analyses helped to formulate the thesis for the next stage of the research, in which it is expected to analyze a greater number of objects using a parametric approach, in relation to the geometry and material properties.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk
2016-06-08
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
NASA Astrophysics Data System (ADS)
Králik, Juraj
2016-06-01
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
NASA Astrophysics Data System (ADS)
Králik, Juraj; Králik, Juraj
2017-07-01
The paper presents the results from the deterministic and probabilistic analysis of the accidental torsional effect of reinforced concrete tall buildings due to earthquake even. The core-column structural system was considered with various configurations in plane. The methodology of the seismic analysis of the building structures in Eurocode 8 and JCSS 2000 is discussed. The possibilities of the utilization the LHS method to analyze the extensive and robust tasks in FEM is presented. The influence of the various input parameters (material, geometry, soil, masses and others) is considered. The deterministic and probability analysis of the seismic resistance of the structure was calculated in the ANSYS program.
Safety assessment of a shallow foundation using the random finite element method
NASA Astrophysics Data System (ADS)
Zaskórski, Łukasz; Puła, Wojciech
2015-04-01
A complex structure of soil and its random character are reasons why soil modeling is a cumbersome task. Heterogeneity of soil has to be considered even within a homogenous layer of soil. Therefore an estimation of shear strength parameters of soil for the purposes of a geotechnical analysis causes many problems. In applicable standards (Eurocode 7) there is not presented any explicit method of an evaluation of characteristic values of soil parameters. Only general guidelines can be found how these values should be estimated. Hence many approaches of an assessment of characteristic values of soil parameters are presented in literature and can be applied in practice. In this paper, the reliability assessment of a shallow strip footing was conducted using a reliability index β. Therefore some approaches of an estimation of characteristic values of soil properties were compared by evaluating values of reliability index β which can be achieved by applying each of them. Method of Orr and Breysse, Duncan's method, Schneider's method, Schneider's method concerning influence of fluctuation scales and method included in Eurocode 7 were examined. Design values of the bearing capacity based on these approaches were referred to the stochastic bearing capacity estimated by the random finite element method (RFEM). Design values of the bearing capacity were conducted for various widths and depths of a foundation in conjunction with design approaches DA defined in Eurocode. RFEM was presented by Griffiths and Fenton (1993). It combines deterministic finite element method, random field theory and Monte Carlo simulations. Random field theory allows to consider a random character of soil parameters within a homogenous layer of soil. For this purpose a soil property is considered as a separate random variable in every element of a mesh in the finite element method with proper correlation structure between points of given area. RFEM was applied to estimate which theoretical probability distribution fits the empirical probability distribution of bearing capacity basing on 3000 realizations. Assessed probability distribution was applied to compute design values of the bearing capacity and related reliability indices β. Conducted analysis were carried out for a cohesion soil. Hence a friction angle and a cohesion were defined as a random parameters and characterized by two dimensional random fields. A friction angle was described by a bounded distribution as it differs within limited range. While a lognormal distribution was applied in case of a cohesion. Other properties - Young's modulus, Poisson's ratio and unit weight were assumed as deterministic values because they have negligible influence on the stochastic bearing capacity. Griffiths D. V., & Fenton G. A. (1993). Seepage beneath water retaining structures founded on spatially random soil. Géotechnique, 43(6), 577-587.
Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure
NASA Astrophysics Data System (ADS)
Szafran, J.; Juszczyk, K.; Kamiński, M.
2017-12-01
The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.
Experimental study on lateral strength of wall-slab joint subjected to lateral cyclic load
NASA Astrophysics Data System (ADS)
Masrom, Mohd Asha'ari; Mohamad, Mohd Elfie; Hamid, Nor Hayati Abdul; Yusuff, Amer
2017-10-01
Tunnel form building has been utilised in building construction since 1960 in Malaysia. This method of construction has been applied extensively in the construction of high rise residential house (multistory building) such as condominium and apartment. Most of the tunnel form buildings have been designed according to British standard (BS) whereby there is no provision for seismic loading. The high-rise tunnel form buildings are vulnerable to seismic loading. The connections between slab and shear walls in the tunnel-form building constitute an essential link in the lateral load resisting mechanism. Malaysia is undergoing a shifting process from BS code to Eurocode (EC) for building construction since the country has realised the safety threats of earthquake. Hence, this study is intended to compare the performance of the interior wall slab joint for a tunnel form structure designed based on Euro and British codes. The experiment included a full scale test of the wall slab joint sub-assemblages under reversible lateral cyclic loading. Two sub-assemblage specimens of the wall slab joint were designed and constructed based on both codes. Each specimen was tested using lateral displacement control (drift control). The specimen designed by using Eurocode was found could survive up to 3.0% drift while BS specimen could last to 1.5% drift. The analysis results indicated that the BS specimen was governed by brittle failure modes with Ductility Class Low (DCL) while the EC specimen behaved in a ductile manner with Ductility Class Medium (DCM). The low ductility recorded in BS specimen was resulted from insufficient reinforcement provided in the BS code specimen. Consequently, the BS specimen could not absorb energy efficiently (low energy dissipation) and further sustain under inelastic deformation.
Evaluation of Behaviours of Laminated Glass
NASA Astrophysics Data System (ADS)
Sable, L.; Japins, G.; Kalnins, K.
2015-11-01
Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.
Incorporation of Dynamic SSI Effects in the Design Response Spectra
NASA Astrophysics Data System (ADS)
Manjula, N. K.; Pillai, T. M. Madhavan; Nagarajan, Praveen; Reshma, K. K.
2018-05-01
Many studies in the past on dynamic soil-structure interactions have revealed the detrimental and advantageous effects of soil flexibility. Based on such studies, the design response spectra of international seismic codes are being improved worldwide. The improvements required for the short period range of the design response spectra in the Indian seismic code (IS 1893:2002) are presented in this paper. As the recent code revisions has not incorporated the short period amplifications, proposals given in this paper are equally applicable for the latest code also (IS 1893:2016). Analyses of single degree of freedom systems are performed to predict the required improvements. The proposed modifications to the constant acceleration portion of the spectra are evaluated with respect to the current design spectra in Eurocode 8.
Load Carrying Capacity of Metal Dowel Type Connections of Timber Structures
NASA Astrophysics Data System (ADS)
Gocál, Jozef
2014-12-01
This paper deals with the load-carrying capacity calculation of laterally loaded metal dowel type connections according to Eurocode 5. It is based on analytically derived, relatively complicated mathematical relationships, and thus it can be quite laborious for practical use. The aim is to propose a possible simplification of the calculation. Due to quite a great variability of fasteners' types and the connection arrangements, the attention is paid to the most commonly used nailed connections. There was performed quite an extensive parametric study focused on the calculation of load-carrying capacity of the simple shear and double shear plane nail connections, joining two or three timber parts of softwood or hardwood. Based on the study results, in conclusion there are presented simplifying recommendations for practical design.
Dynamic response of underpasses for high-speed train lines
NASA Astrophysics Data System (ADS)
Vega, J.; Fraile, A.; Alarcon, E.; Hermanns, L.
2012-11-01
Underpasses are common in modern railway lines. Wildlife corridors and drainage conduits often fall into this category of partially buried structures. Their dynamic behavior has received far less attention than that of other structures such as bridges, but their large number makes their study an interesting challenge from the viewpoint of safety and cost savings. Here, we present a complete study of a culvert, including on-site measurements and numerical modeling. The studied structure belongs to the high-speed railway line linking Segovia and Valladolid in Spain. The line was opened to traffic in 2004. On-site measurements were performed for the structure by recording the dynamic response at selected points of the structure during the passage of high-speed trains at speeds ranging between 200 and 300 km/h. The measurements provide not only reference values suitable for model fitting, but also a good insight into the main features of the dynamic behavior of this structure. Finite element techniques were used to model the dynamic behavior of the structure and its key features. Special attention is paid to vertical accelerations, the values of which should be limited to avoid track instability according to Eurocode. This study furthers our understanding of the dynamic response of railway underpasses to train loads.
NASA Astrophysics Data System (ADS)
Giaralis, Agathoklis; Marian, Laurentiu
2016-04-01
This paper explores the practical benefits of the recently proposed by the authors tuned mass-damper-inerter (TMDI) visà- vis the classical tuned mass-damper (TMD) for the passive vibration control of seismically excited linearly building structures assumed to respond linearly. Special attention is focused on showcasing that the TMDI requires considerably reduced attached mass/weight to achieve the same vibration suppression level as the classical TMD by exploiting the mass amplification effect of the ideal inerter device. The latter allows for increasing the inertial property of the TMDI without a significant increase to its physical weight. To this end, novel numerical results pertaining to a seismically excited 3-storey frame building equipped with optimally designed TMDIs for various values of attached mass and inertance (i.e., constant of proportionality of the inerter resisting force in mass units) are furnished. The seismic action is modelled by a non-stationary stochastic process compatible with the elastic acceleration response spectrum of the European seismic code (Eurocode 8), while the TMDIs are tuned to minimize the mean square top floor displacement. It is shown that the TMDI achieves the same level of performance as an unconventional "large mass" TMD for seismic protection (i.e., more than 10% of attached mass of the total building mass), by incorporating attached masses similar to the ones used for controlling wind-induced vibrations via TMDs (i.e., 1%-5% of the total building mass). Moreover, numerical data from response history analyses for a suite of Eurocode 8 compatible recorded ground motions further demonstrate that optimally tuned TMDIs for top floor displacement minimization achieve considerable reductions in terms of top floor acceleration and attached mass displacement (stroke) compared to the classical TMD with the same attached mass.
Time-Dependent Topology of Railway Prestressed Concrete Sleepers
NASA Astrophysics Data System (ADS)
Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2017-10-01
The railway sleepers are very important component of railway track structure. The sleepers can be manufactured by using timber, concrete, steel or other engineered materials. Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete sleepers. They are expected to withstand high dynamic loads and harsh environments. However, durability and long-term performance of prestressed concrete sleepers are largely dependent on creep and shrinkage responses. This study investigates the long-term behaviours of prestressed concrete sleepers and proposes the shortening and deflection diagrams. Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into the time-dependent performance of prestressed concrete sleepers. The outcome of this paper will improve the rail maintenance and inspection criteria in order to establish appropriate sensible remote track condition monitor network in practice.
Advanced structural optimization of a heliostat with cantilever arms
NASA Astrophysics Data System (ADS)
Bogdanov, Dimitar; Zlatanov, Hristo
2016-05-01
The weight of the support structure of heliostats, CPV and PV trackers is important cost element of a solar plant and reducing it will improve the economic viability of a solar project. Heliostats with rectangular area (1 to 5 in 1 m² steps; 5 to 150 in 5 m² steps) and aspect ratios (0.5, 1.0, 1.2, 1.5, 2.0) were investigated under various winds speeds (0, 5 to 100 in 5 m/s steps), wind direction (0 to 180° in 15° steps) and elevation positions (0 to 90° in 10° steps). Each load case was run with three different cantilever arms. The inclination angle of the chords and bracings was chosen so as to fulfill the geometrical boundary condition. Stress and buckling validations were performed according to Eurocode. The results of research carried out can be used to determine the specific weight of a heliostat in kg/m² as a function of the wind speed, tracker area and tracker aspect ratio. Future work should investigate the impact of using cold formed structural hollow sections and cross sections with thinner wall thickness which is not part of EN 10210.
NASA Astrophysics Data System (ADS)
Trapani, Davide; Zonta, Daniele; Molinari, Marco; Amditis, Angelos; Bimpas, Matthaios; Bertsch, Nicolas; Spiering, Vincent; Santana, Juan; Sterken, Tom; Torfs, Tom; Bairaktaris, Dimitris; Bairaktaris, Manos; Camarinopulos, Stefanos; Frondistou-Yannas, Mata; Ulieru, Dumitru
2012-04-01
This paper illustrates an experimental campaign conducted under laboratory conditions on a full-scale reinforced concrete three-dimensional frame instrumented with wireless sensors developed within the Memscon project. In particular it describes the assumptions which the experimental campaign was based on, the design of the structure, the laboratory setup and the results of the tests. The aim of the campaign was to validate the performance of Memscon sensing systems, consisting of wireless accelerometers and strain sensors, on a real concrete structure during construction and under an actual earthquake. Another aspect of interest was to assess the effectiveness of the full damage recognition procedure based on the data recorded by the sensors and the reliability of the Decision Support System (DSS) developed in order to provide the stakeholders recommendations for building rehabilitation and the costs of this. With these ends, a Eurocode 8 spectrum-compatible accelerogram with increasing amplitude was applied at the top of an instrumented concrete frame built in the laboratory. MEMSCON sensors were directly compared with wired instruments, based on devices available on the market and taken as references, during both construction and seismic simulation.
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2016-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379
Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?
Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan
2016-12-01
Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.
Chapter 6: Fire damage of wood structures
B. Kukay; R.H. White; F. Woeste
2012-01-01
Depending on the severity, fire damage can compromise the structural integrity of wood structures such as buildings or residences. Fire damage of wood structures can incorporate several models that address (1) the type, cause, and spread of the fire, (2) the thermal gradients and fire-resistance ratings, and (3) the residual load capacity (Figure 6.1). If there is a...
Ultimate strength capacity of a square hollow section filled with fibrous foamed concrete
NASA Astrophysics Data System (ADS)
Amirah Azra Khairuddin, Siti; Rahman, Norashidah Abd; Jamaluddin, Norwati; Jaini, Zainorizuan Mohd; Ali, Noorwirdawati
2017-11-01
Concrete-filled sections used as building columns have become popular due to their architectural and structural elements. In recent years, there has been a renewed call for the improvement of materials used as concrete to fill the composite columns. Among these materials, foamed concrete has received great attention due to its structural characteristics and its potential as a construction material used in hollow sections. However, its behaviors as infill material in a hollow section, such as its strength and failure mode, should be investigated. In this study, experimental research was conducted to compare the experimental and theoretical values of its ultimate strength capacity. Eight specimens of hollow steel sections with two different thicknesses were filled with fibrous foamed concrete and then subjected to compression load. The obtained results were compared with those obtained from a hollow section with the same thicknesses, but were filled with normal foamed concrete. Results show that the ultimate strength capacity of the experimental value is the same as that of the theoretical value based on Eurocode 4. The largest percentage values between theoretical and experimental results for thicknesses of 2 and 4 mm are 58% and 55%, respectively.
Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.
Levick, Shaun R; Asner, Gregory P; Smit, Izak P J
2012-12-01
Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.
Hodous, T; Pizatella, T; Braddee, R; Castillo, D
2004-01-01
Objective: To review the causes of all fire fighter line-of-duty-deaths from 1998 through 2001, and present recommendations for preventing fatalities within the specific subgroup of structure related events. Methods: Fire fighter fatality data from the United States Fire Administration were reviewed and classified into three main categories of injury. Investigations conducted through the National Institute for Occupational Safety and Health (NIOSH) Fire Fighter Fatality Investigation and Prevention Program provided the basis for the recommendations presented in this paper. Results: During the time period from 1998–2001, there were 410 line-of-duty deaths among fire fighters in the United States, excluding the 343 fire fighters who died at the World Trade Center on 11 September 2001. The 410 fatalities included 191 medical (non-traumatic) deaths (47%), 75 motor vehicle related fatalities (18%), and 144 other traumatic fatalities (35%). The latter group included 68 fatalities that were associated with structures which commonly involved structural collapse, rapid fire progression, and trapped fire fighters. Conclusions: Structural fires pose particular hazards to fire fighters. Additional efforts must be directed to more effectively use what we have learned through the NIOSH investigations and recommendations from published experts in the safety community, consensus standards, and national fire safety organizations to reduce fire fighter fatalities during structural fire fighting. PMID:15314049
Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.
2013-01-01
While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.
Design of structures against fire. Civil engineering/buildings, architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anchor, R.D.; Malhotra, H.L.; Purkiss, J.A.
1986-01-01
The book covers structural design criteria, along with background theory on fire protection methods for structures from a variety of materials, including timber, steel, and concrete. Research on the behavior of structural materials in the presence of fire is highlighted, and the need for fire-resistant materials is addressed.
46 CFR 72.05-40 - Insulation, other than for structural fire protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than for structural fire protection. (a) Any insulation installed for heat and comfort, refrigeration (including air... 46 Shipping 3 2012-10-01 2012-10-01 false Insulation, other than for structural fire protection...
46 CFR 72.05-40 - Insulation, other than for structural fire protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than for structural fire protection. (a) Any insulation installed for heat and comfort, refrigeration (including air... 46 Shipping 3 2010-10-01 2010-10-01 false Insulation, other than for structural fire protection...
46 CFR 72.05-40 - Insulation, other than for structural fire protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than for structural fire protection. (a) Any insulation installed for heat and comfort, refrigeration (including air... 46 Shipping 3 2014-10-01 2014-10-01 false Insulation, other than for structural fire protection...
46 CFR 72.05-40 - Insulation, other than for structural fire protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than for structural fire protection. (a) Any insulation installed for heat and comfort, refrigeration (including air... 46 Shipping 3 2011-10-01 2011-10-01 false Insulation, other than for structural fire protection...
46 CFR 72.05-40 - Insulation, other than for structural fire protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than for structural fire protection. (a) Any insulation installed for heat and comfort, refrigeration (including air... 46 Shipping 3 2013-10-01 2013-10-01 false Insulation, other than for structural fire protection...
Fire resistance of structural composite lumber products
Robert H. White
2006-01-01
Use of structural composite lumber products is increasing. In applications requiring a fire resistance rating, calculation procedures are used to obtain the fire resistance rating of exposed structural wood products. A critical factor in the calculation procedures is char rate for ASTM E 119 fire exposure. In this study, we tested 14 structural composite lumber...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What are the structural fire...: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.641 What are the structural fire protection requirements for accommodation spaces and modules? (a) Accommodation...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What are the structural fire...: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.641 What are the structural fire protection requirements for accommodation spaces and modules? (a) Accommodation...
van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... national consensus standard, as that term is defined in 29 CFR 1910.2, for the structural fire protection... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What are the structural fire...: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.641 What are...
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure
Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.
Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.
Effects of a large wildfire on vegetation structure in a variable fire mosaic.
Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B
2017-12-01
Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (<10 yr post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even after a large, severe wildfire, underlying fire histories can contribute substantially to variation in vegetation structure. This highlights the importance of ensuring that efforts to reinstate variation in vegetation fire age after large wildfires do not inadvertently reduce variation in vegetation structure generated by the underlying invisible mosaic. © 2017 by the Ecological Society of America.
Designing of Timber Bolt Connection Subjected To Double Unequal Shears
NASA Astrophysics Data System (ADS)
Musilek, Josef; Plachy, Jan
2017-10-01
The paper deals with load-carrying capacity of bolted connections subjected to unequal double shear with thin plates as outer members and inner timber member. This type of connection is usually widespread and in building support structures made of wood is commonly used. This may occur for example in skeletal structures which contain structural elements based on wood, but also for smaller wooden buildings. Specifically, this type of connection can be found in ceiling structures in the joint joists and beams. If one joist greater margin than the second, bringing the load on the side of the joists of a larger span greater loads than on the side with a smaller span joist. Structure engineer, who is designing such a connection, must use for the design of the connection design procedures and formulas from which he or she calculates the design resistance in order to carry out further assessment of the reliability of the connection in the ultimate limit state. The load-carrying capacity of this connections type can be calculated at present according to Johansen’s equations, which are also contained in present European standard for the design timber structures -Eurocode 5. These Johansen’s equations assume that the loads which act on the outer plates are equal. For this reason, the structure engineer is often forced to use formulas intended for the timber bolt connection subjected to double equal shear and he or she must find ways how to use them although the formulas are not suitable. This paper deals with the case, when the loads acting on the outer plates are unequal.
Disturbance and productivity interactions mediate stability of forest composition and structure
Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam; Craig P. Wilcox
2017-01-01
Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...
46 CFR 28.380 - General structural fire protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accommodation space must be separated from machinery and fuel tank spaces by a fire resistant boundary which... 46 Shipping 1 2010-10-01 2010-10-01 false General structural fire protection. 28.380 Section 28..., 1991, and That Operate With More Than 16 Individuals on Board § 28.380 General structural fire...
Ronny J. Coleman
1995-01-01
Because many major population centers are located in wildland areas, many structures have been destroyed by increasingly more costly wildland fires. The structure and jurisdiction of the fire service in California are complex, and a uniform approach to fire prevention is lacking. A description of many of the fire issues in the wildland-urban intermix is provided. The...
The stability of cassette walls in compression
NASA Astrophysics Data System (ADS)
Voutay, Pierre-Arnaud
Much research into the behaviour of cold formed steel columns in the last decade has focused on channel sections undergoing local, distortional and overall buckling. Light gauge steel cassette sections are a particular form of channel section which offers an alternative form of load-bearing wall assembly for use in low-rise steel framed construction. Cassette wall sections possess wide and slender flanges so that, by including intermediate stiffeners in these wide flanges, a significant increase in the ultimate load capacity may be achieved. However, the introduction of intermediate stiffeners also increases the number of buckling modes (stiffener buckling) and, therefore complicates the behaviour and increases the risk of interactive buckling between these modes. The work undertaken in this thesis aims to clarify the behaviour of wide flanges in compression with and without intermediate stiffeners. In this research, the distortional mode of web and narrow flange buckling was inhibited by connecting the narrow flanges of the cassettes together at suitable intervals. "Generalised Beam Theory" (GBT), which allows the individual buckling modes to be considered individually and in predetermined combinations, provides a particularly good tool with which to analyse and understand the buckling behaviour of cassette sections with and without intermediate stiffeners. "Generalised Beam Theory" (GBT) is used throughout this work to determine the elastic buckling stress of the sections studied (simply supported stiffened plates, as well as cassette sections). Since the economic design of cold-formed steel sections requires the consideration of post- buckling behaviour, elastic buckling values are not directly comparable with design code values which are usually based on the concept of effective width. Therefore, finite element analysis with both material and geometric nonlinearity has also been carried out in order to obtain the ultimate strength in the critical mode or mode combination. Firstly the results of experimental test are analysed and their behaviour reproduced numerically. This serves to explain the test results and verify the numerical model. Confidence in modelling non-linear instability phenomena with the finite element method is acquired. Secondly, an initial parametric study was undertaken on the behaviour of cassette sections with and without intermediate stiffeners. This study considers the effect of the length and overall buckling on the behaviour of cassette sections, the effect of load eccentricity and the effect of the rotational restraint given by the web to the stiffened wide flange. A second parametric study including 96 specimens was undertaken next. This study considered the effect of the number (up to three intermediate stiffeners) and sizes of intermediate stiffeners on slender flanges with a slenderness ratio between 150 ≤ w/t ≤ 600. A wide range of geometries was studied covering single and interactive buckling modes. Comparison of the ultimate strength obtained from finite element analysis with the ultimate strength obtained using the effective width approach of modem design codes such as Eurocode 3 part 1.3 (1996) and NAS (North American specification (2001)) was then possible. By integrating the stress distribution over the length of the specimen, the stiffened wide flange can be isolated from the rest of the section (webs and narrow flanges). Design procedures tor plate elements incorporating one or two intermediate stiffeners under compressive load are given in Eurocode 3; Part 1.3. However, cassette sections, which have wider and more slender flanges than typical sheeting and decking, are increasingly being used in practical construction. For such cases, the design procedures in Eurocode 3 are less well founded. An improvement of the Eurocode 3 procedure dealing with intermediate stiffeners is proposed and validated for one, two or three stiffeners. Throughout the work, simple expressions suitable for design calculations are presented. Modern design codes as well as Direct Strength Method are evaluated in the light of findings of this work and wherever possible suggestions for improvements are made.
Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests
Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens
2006-01-01
Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...
Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest
Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.
2014-01-01
Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas of high severity for post-fire invasive control may be the most efficient means for reducing the chances of post-fire invasive plant outbreaks when conducting prescribed fires in this region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, Jeremy P., E-mail: inghamjp@halcrow.com
The number of building fires has doubled over the last 50 years. There has never been a greater need for structures to be assessed for fire damage to ensure safety and enable appropriate repairs to be planned. Fortunately, even after a severe fire, concrete and masonry structures are generally capable of being repaired rather than demolished. By allowing direct examination of microcracking and mineralogical changes, petrographic examination has become widely used to determine the depth of fire damage for reinforced concrete elements. Petrographic examination can also be applied to fire-damaged masonry structures built of materials such as stone, brick andmore » mortar. Petrography can ensure accurate detection of damaged geomaterials, which provides cost savings during building repair and increased safety reassurance. This paper comprises a review of the role of petrography in fire damage assessments, drawing on a range of actual fire damage investigations.« less
Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures
NASA Astrophysics Data System (ADS)
Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.
2018-03-01
Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.
Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels
Christopher R. Keyes; J. Morgan Varner
2007-01-01
There is little question that forest stand structure is directly related to fire behavior, and that canopy fuel structure may be altered using silvicultural methods to successfully modify forest fire behavior and reduce susceptibility to crown fire initiation and spread. Silvicultural treatments can remediate hazardous stand structures that have developed as a result...
Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)
NASA Astrophysics Data System (ADS)
Woessner, Jochen; Giardini, Domenico; SHARE Consortium
2010-05-01
Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the Maghreb countries in the Southern Mediterranean and Turkey in the Eastern Mediterranean. By strongly including the seismic engineering community, the project maintains a direct connection to the Eurocode 8 applications and the definition of the Nationally Determined Parameters, through the participation of the CEN/TC250/SC8 committee in the definition of the output specification requirements and in the hazard validation. SHARE will thus produce direct outputs for risk assessment. With this contribution, we focus on providing an overview of the goals and current achievement of the project.
Alan H. Taylor; Carl N. Skinner
2003-01-01
Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...
Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA
Jessica L. Hudec; David L. Peterson
2012-01-01
Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...
Disturbance and productivity interactions mediate stability of forest composition and structure.
O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P
2017-04-01
Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... NIOSH 141-A] Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at Structure Fires AGENCY: National Institute for Occupational Safety and Health (NIOSH) of the Centers for... publication entitled ``Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at...
Lozano, Miguel; Serrano, Miguel A; López-Colina, Carlos; Gayarre, Fernando L; Suárez, Jesús
2018-02-09
Eurocode 3 establishes the component method to analytically characterize the structural joints between beam and columns. When one of the members involved in the joint is a hollow section (i.e., a tube) there is a lack of information for the specific components present in the joint. There are two different ways to bridge the gap: experimental testing on the actual beam column joints involving tubular sections; or numerical modelization, typically by means of finite element analysis. For this second option, it is necessary to know the actual mechanical properties of the material. As long as the joint implies a welding process, there is a concern related to how the mechanical properties in the heat-affected zone (HAZ) influence the behavior of the joint. In this work, some coupons were extracted from the HAZ of the beam-column joint. The coupons were tested and the results were implemented in the numerical model of the joint, in an attempt to bring it closer to the experimental results of the tested joints.
NASA Astrophysics Data System (ADS)
Oddi, Facundo; Ghermandi, Luciana; Lasaponara, Rosa
2014-05-01
Fire recurrently affects many of the terrestrial ecosystems causing major implications on the structure and dynamics of vegetation. In fire prone, it is particularly important to know the fire regime for which precise fire records are needed. Dendroecology offers the possibility of obtaining fire occurrence data from woody species and has been widely used in forest ecosystems for fire research. Grasslands are regions with no trees but shrubs could be used to acquire dendroecological information in order to reconstructing fire history at landscape scale. We studied the dendroecological potential of shrub F. imbricata to reconstruct fire history at landscape scale in a fire prone grassland of northwestern Patagonia. To do this, we combined spatio-temporal information of recorded fires within the study area with the age structure of F. imbricata shrublands derived by dendroecology. Sampling sites were located over 2500 ha in San Ramón ranch, 30 km east from Bariloche, Río Negro province, Argentina (latitude -41° 04'; longitude -70° 51'). Shrubland age structure correctly described how fires occurred in the past. Pulses of individuals' recruitment were associated with fire in time and space. A bi-variate analysis showed that F. imbricata recruits individuals during the two years after fire and spatial distribution of pulses coincided with the fire map. In sites without fire data, the age structure allowed the identification of two additional fires. Our results show that shrub F. imbricata can be employed with other data sources such as remote sensing and operational databases to improve knowledge on fire regime in northwestern Patagonia grasslands. In conclusion, we raise the possibility of utilizing shrubs as a dendroecological data source to study fire history in grasslands where tree cover is absent.
NASA Astrophysics Data System (ADS)
Doležel, Jiří; Novák, Drahomír; Petrů, Jan
2017-09-01
Transportation routes of oversize and excessive loads are currently planned in relation to ensure the transit of a vehicle through critical points on the road. Critical points are level-intersection of roads, bridges etc. This article presents a comprehensive procedure to determine a reliability and a load-bearing capacity level of the existing bridges on highways and roads using the advanced methods of reliability analysis based on simulation techniques of Monte Carlo type in combination with nonlinear finite element method analysis. The safety index is considered as a main criterion of the reliability level of the existing construction structures and the index is described in current structural design standards, e.g. ISO and Eurocode. An example of a single-span slab bridge made of precast prestressed concrete girders of the 60 year current time and its load bearing capacity is set for the ultimate limit state and serviceability limit state. The structure’s design load capacity was estimated by the full probability nonlinear MKP analysis using a simulation technique Latin Hypercube Sampling (LHS). Load-bearing capacity values based on a fully probabilistic analysis are compared with the load-bearing capacity levels which were estimated by deterministic methods of a critical section of the most loaded girders.
Thomas A. Waldrop; Daniel A. Yaussy; Ross J. Phillips; Todd A. Hutchinson; Lucy Brudnak; Ralph E.J. Boerner
2008-01-01
Prescribed fire and mechanical treatments were tested at the two hardwood sites of the National Fire and Fire Surrogate Study (southern and central Appalachian regions) for impacts to stand structure. After two fires and one mechanical treatment, no treatment or treatment combination restored stand structure to historical levels. Burning alone had little impact on...
Reference conditions for giant sequoia forest restoration: structure, process, and precision
Stephenson, Nathan L.
1999-01-01
National Park Service policy directs that more natural conditions be restored to giant sequoia groves, which have been altered by a century of fire exclusion. Efforts to find a reasonable and practical definition of “natural” have helped drive scientists and land managers to use past grove conditions as reference conditions for restoration. Extensive research aimed at determining reference conditions has demonstrated that past fire regimes can be characterized with greater precision than past grove structures. Difficulty and imprecision in determining past grove structure has helped fuel a debate between “structural restorationists,” who believe that forest structure should be restored mechanically before fire is reintroduced, and “process restorationists,” who believe that simple reintroduction of fire is appropriate. I evaluate old and new studies from sequoia groves to show that some of the arguments of both groups have been flawed. Importantly, it appears that restoration of fire without a preceding mechanical restoration may restore the pre-Euro-American structure of sequoia groves, at least within the bounds of our imprecise knowledge of past grove structure. However, the same may not be true for all forest types that have experienced lengthy fire exclusion. Our ability to draw robust generalizations about fire's role in forest restoration will depend heavily on a thorough understanding of past and present interactions among climate, fire, and forest structure. Use of reference conditions will be central to developing this understanding.
Recommendations for the establishment of the seismic code of Haiti
NASA Astrophysics Data System (ADS)
Pierristal, G.; Benito, B.; Cervera, J.; Belizaire, D.
2013-05-01
Haiti, because of his seismicity associated with plate boundary and several faults that cross the island of Hispaniola (Haiti-Dominican Republic), has been affected in the past by major earthquakes, which have caused loss of life and damage or considerable structural collapses (ex. 1771, 1842), sometimes the destruction of the cities. The recent earthquake of January 12, 2010, was the most destructive earthquake that any country has experienced in modern times, when we measure the number of people killed with respect to the population of a country (Cavallo et al. 2010). It's obvious that the major causes of theses losses are the lack of awareness of the population about the earthquakes, the absence of seismic code and quality control of the building. In this paper, we propose some recommendations for the establishment of the seismic code of Haiti in order to decrease physical and social impacts of earthquakes in the future. First of all, we present a theoretical part of concepts and fundamental elements to establish a seismic code, such as: description of the methodology for seismic hazard's assessment, presentation of the results in terms of acceleration maps for the whole country (in rock sites) and Uniform Hazard Spectrum (UHS) in the cities, and the criteria for soil classification and amplification factors for including site's effects, equivalent forces, etc. Then, we include a practical part where calculations and comparisons of five seismic codes of different countries (Eurocode 8, Spain, Canada, United States and Dominican Republic) are included, in order to have criteria for making the proposals for Haiti. Using the results of Benito et al (presented in this session S10) we compare the UHS in different cities of Haiti with the response spectrum derived from the application of the spectral shapes given by the aforementioned codes. Furthermore, the classification of soils and buildings have been also analyzed and contrasted with local data in order to propose the more suitable classification for Haiti. Finally, we have proposed a methodology for the forces estimation providing the values of the relevant coefficients. References: EN 1998-1:2004 (E): Eurocode 8, Design of structures for earthquake resistance, Part 1(General Rules, seismic actions and rules for buildings), 2004. -MTPTC, (2011). Règles de calcul intérimaires pour les bâtiments en Haïti, Ministère des Travaux Publics, Transports et Communications, Février 2011, Haïti. -NBCC 2005: National Building Code of Canada, vol1, National Research Council of Canada 2005. -NCSE-02: Norma de construcción sismorresistente de España. BOE num.244, Viernes 11 Octubre 2002. -NEHRP, 2009. Recommended Provisions for Seismic Regulations for new Buildings and Other Structures, FEMA P-750, February, Part 1 (Provisions) and Part 2 (Commentary). -R-001 (2011): Reglamento para el análisis y diseño sísmico de estructuras de República Dominicana. Decreto No. 201-11. Ministerio de Obras Públicas y Comunicaciones.
Fire development and wall endurance in sandwich and wood-frame structures
Carlton A. Holmes; Herbert W. Eickner; John J. Brenden; Curtis C. Peters; Robert H. White
1980-01-01
Large-scale fire tests were conducted on seven 16- by 24-foot structures. Four of these structures were of sandwich construction with cores of plastic or paper honeycomb and three were of wood-frame construction. The wasss were loaded to a computer design loading, and the fire endurance determined under a fire exposure from a typical building contents loading of 4-1/2...
EcoSmart Fire as structure ignition model in wildland urban interface: predictions and validations
Mark A. Dietenberger; Charles R. Boardman
2016-01-01
EcoSmartFire is a Windows program that models heat damage and piloted ignition of structures from radiant exposure to discrete landscaped tree fires. It calculates the radiant heat transfer from cylindrical shaped fires to the walls and roof of the structure while accounting for radiation shadowing, attenuation, and ground reflections. Tests of litter burn, a 0.6 m...
14 CFR 27.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of structure, controls, and... Protection § 27.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, rotor mechanism, and other parts essential to a controlled landing that would be affected by...
14 CFR 27.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of structure, controls, and... Protection § 27.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, rotor mechanism, and other parts essential to a controlled landing that would be affected by...
14 CFR 29.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of structure, controls, and... Protection § 29.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, and the rotor mechanism, and other parts essential to controlled landing and (for category A...
14 CFR 29.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of structure, controls, and... Protection § 29.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, and the rotor mechanism, and other parts essential to controlled landing and (for category A...
Baker, William L; Williams, Mark A
2018-03-01
An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.
Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M
2012-07-01
Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Many managers and policymakers guided by the National Environmental Policy Act process want to understand the scientific principles on which they can base fuel treatments for reducing the size and severity of wildfires. These Forest Structure and Fire Hazard fact sheets discuss how to estimate fire hazard, how to visualize fuel treatments, and how the role of...
USDA-ARS?s Scientific Manuscript database
The successful management of invasive species can be particularly difficult in natural areas that depend on disturbances such as fire to maintain community structure and function. In these systems, fire-adapted invasive species may disproportionally benefit from post-fire resource availability, inc...
Chelcy R. Ford; Emily S. Minor; Gordon A. Fox
2010-01-01
We investigated the effect of fire and fire frequency on stand structure and longleaf pine (Pinus palustris P. Mill.) growth and population demography in an experimental research area in a southwest Florida sandhill community. Data were collected from replicated plots that had prescribed fire-return intervals of 1, 2, 5, or 7 years or were left...
Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry
2015-12-01
Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Leigh B. Lentile; Frederick W. Smith; Wayne D. Shepperd
2005-01-01
We compared patch structure, fire-scar formation, and seedling regeneration in patches of low, moderate, and high burn severity following the large (~34 000 ha) Jasper fire of 2000 that occurred in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the Black Hills of South Dakota, USA. This fire created a patchy mosaic of effects...
Built structure identification in wildland fire decision support
David E. Calkin; Jon D. Rieck; Kevin D. Hyde; Jeffrey D. Kaiden
2011-01-01
Recent ex-urban development within the wildland interface has significantly increased the complexity and associated cost of federal wildland fire management in the United States. Rapid identification of built structures relative to probable fire spread can help to reduce that complexity and improve the performance of incident management teams. Approximate structure...
Passive fire building protection system evaluation (case study: millennium ict centre)
NASA Astrophysics Data System (ADS)
Rahman, Vinky; Stephanie
2018-03-01
Passive fire protection system is a system that refers to the building design, both regarding of architecture and structure. This system usually consists of structural protection that protects the structure of the building and prevents the spread of fire and facilitate the evacuation process in case of fire. Millennium ICT Center is the largest electronic shopping center in Medan, Indonesia. As a public building that accommodates the crowd, this building needs a fire protection system by the standards. Therefore, the purpose of this study is to evaluate passive fire protection system of Millennium ICT Center building. The study was conducted to describe the facts of the building as well as direct observation to the research location. The collected data is then processed using the AHP (Analytical Hierarchy Process) method in its weighting process to obtain the reliability value of passive fire protection fire system. The results showed that there are some components of passive fire protection system in the building, but some are still unqualified. The first section in your paper
Probability model for analyzing fire management alternatives: theory and structure
Frederick W. Bratten
1982-01-01
A theoretical probability model has been developed for analyzing program alternatives in fire management. It includes submodels or modules for predicting probabilities of fire behavior, fire occurrence, fire suppression, effects of fire on land resources, and financial effects of fire. Generalized "fire management situations" are used to represent actual fire...
Santos, Xavier; Badiane, Arnaud; Matos, Cátia
2016-01-01
Changes in habitat structure constitute a major factor explaining responses of reptiles to fire. However, few studies have examined habitat factors that covary with fire-history variables to explain reptile responses. We hypothesise that more complex habitats should support richer reptile communities, and that species-specific relative abundance should be related to particular habitat features. From spring 2012-2014, twenty-five transects were surveyed in the Albera Region (north-east Iberia). The vegetation structure was measured and the extent of habitat types in a 1000-m buffer around each transect calculated. Reptile-community metrics (species richness and reptile abundance) were related to fire history, vegetation structure, and habitat types, using generalized additive models. These metrics correlated with habitat-structure variables but not with fire history. The number of species increased with more complex habitats but decreased with pine-plantation abundance in the 1000-m buffer. We found contrasting responses among reptiles in terms of time since fire and those responses differed according to vegetation variables and habitat types. An unplanned fire in August 2012 provided the opportunity to compare reptile abundance values between pre-fire and the short term (1-2 years) after the fire. Most species exhibited a negative short-term response to the 2012 fire except Tarentola mauritanica, a gecko that inhabits large rocks, as opposed to other ground-dwelling species. In the reptiles studied, contrasting responses to time since fire are consistent with the habitat-accommodation model of succession. These differences are linked to specific microhabitat preferences and suggest that functional traits can be used to predict species-specific responses to fire.
NASA Astrophysics Data System (ADS)
Kiefer, Michael T.; Zhong, Shiyuan; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi
2018-03-01
An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized in a series of idealized numerical experiments to investigate the influence of vertical canopy structure on the atmospheric response to a stationary sensible heat flux at the ground ("fire heat flux"), broadly consistent in magnitude with the sensible heat flux from a low-intensity surface fire. Five vertical canopy structures are combined with five fire heat flux magnitudes to yield a matrix of 25 simulations. Analyses of the fire-heat-flux-perturbed u component of the wind, vertical velocity, kinetic energy, and temperature show that the spatial pattern and magnitude of the perturbations are sensitive to vertical canopy structure. Both vertical velocity and kinetic energy exhibit an increasing trend with increasing fire heat flux that is stronger for cases with some amount of overstory vegetation than cases with exclusively understory vegetation. A weaker trend in cases with exclusively understory vegetation indicates a damping of the atmospheric response to the sensible heat from a surface fire when vegetation is most concentrated near the surface. More generally, the results presented in this study suggest that canopy morphology should be considered when applying the results of a fire-atmosphere interaction study conducted in one type of forest to other forests with different canopy structures.
Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell
2017-01-01
Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...
Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...
Fire and forest history at Mount Rushmore.
Brown, Peter M; Wienk, Cody L; Symstad, Amy J
2008-12-01
Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.
Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.
2018-01-01
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
FIRE INSURANCE AND WOOD SCHOOL BUILDINGS.
ERIC Educational Resources Information Center
PURCELL, FRANK X.
A COMPARISON OF FIRE INSURANCE COSTS OF WOOD, MASONRY, STEEL AND CONCRETE STRUCTURES SHOWS FIRE INSURANCE PREMIMUMS ON WOOD STRUCTURES TEND TO BE HIGHER THAN PREMIUMS ON MASONRY, STEEL AND CONCRETE BUILDINGS, HOWEVER, THE INITIAL COST OF THE WOOD BUILDINGS IS LOWER. DATA SHOW THAT THE SAVINGS ACHIEVED IN THE INITIAL COST OF WOOD STRUCTURES OFFSET…
Crandall, David L [Idaho Falls, ID; Watson, Richard W [Blackfoot, ID
2008-03-04
A firearm frame which is adapted to be disposed in operative relationship as a component part of a firearm, the firearm having disposed in operative relationships each with one or more of the others, a barrel, a receiver, and at least one firing mechanism; wherein the barrel and receiver form operative parts of a movable assembly and the at least one firing mechanism is disposed in a substantially stationary operative relationship therewith; the firearm frame including at least one elongated support structure discrete from the barrel and receiver, the elongated support structure being adapted to directly support the movable assembly in an operative movable relationship therewith; whereby at least one of the barrel and receiver is in direct contact with and movable on the elongated support structure; and, a firing mechanism support structure connected to the at least one elongated support structure, the firing mechanism support structure being adapted to have the firing mechanism connected thereto; the firearm frame also directly supporting the movable assembly and the firing mechanism in corresponding movable and stationary operative relationships each with the other.
Fire resistance of wood members with directly applied protection
Robert H. White
2009-01-01
Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...
Fire and the Design of Educational Buildings. Building Bulletin 7. Sixth Edition.
ERIC Educational Resources Information Center
Department of Education and Science, London (England).
This bulletin offers guidance on English school premises regulations applying to safety protection against fires in the following general areas: means of escape in case of fire; precautionary measures to prevent fire; fire warning systems and fire fighting; fire spreading speed; structures and materials resistant to fires; and damage control. It…
Performance of Koyna dam based on static and dynamic analysis
NASA Astrophysics Data System (ADS)
Azizan, Nik Zainab Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar
2017-10-01
This paper discusses the performance of Koyna dam based on static pushover analysis (SPO) and incremental dynamic analysis (IDA). The SPO in this study considered two type of lateral load which is inertial load and hydrodynamic load. The structure was analyse until the damage appears on the structure body. The IDA curves were develop based on 7 ground motion, where the characteristic of the ground motions: i) the distance from the epicenter is less than 15km, (ii) the magnitude is equal to or greater than 5.5 and (iii) the PGA is equal to or greater than 0.15g. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. Elastic respond spectrum developed based on soil type B by using Eurocode 8. By using SPO and IDA method are able to determine the limit states of the dam. The limit state proposed in this study are yielding and ultimate state which is identified base on crack pattern perform on the structure model. The comparison of maximum crest displacement for both methods is analysed to define the limit state of the dam. The displacement of yielding state for Koyna dam is 23.84mm and 44.91mm for the ultimate state. The results are able to be used as a guideline to monitor Koyna dam under seismic loadings which are considering static and dynamic.
2015-07-01
annex. iii Self-defense testing was limited to structural test firing from each machine gun mount and an ammunition resupply drill. Robust self...provided in the classified annex. Self- 8 defense testing was limited to structural test firing from each machine gun mount and a single...Caliber Machine Gun Mount Structural Test Fire November 2014 San Diego, Offshore Ship Weapons Range Operating Independently 9 Section Three
Fire Incident Reporting Manual
1984-02-01
Purpose 1-1 B. Scope 1-1 C. Procedures 1-1 D. Exclusions 1-3 E . Preparation 1-3 F. Information Requirements 1-4 CHAPTER 2 - INSTRUCTIONS FOR PREPARING DoD...Structure and Fire Data 2-16 4. Section D - Fire Protection Facilities (In Structures Only) 2-28 5. Section E - Losses 2-30 6. Section F - Times (24...Activities Program," February 21, 1976 ( e ) National Fire Protection Association (NFPA) Standard 901, "Uniform Coding for Fire Protection," 1976 (f) NFPA
Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y
2006-06-01
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.
Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell
2016-01-01
Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...
Alan H. Taylor; Carl N. Skinner
1998-01-01
The frequency, extent, and severity of fires strongly influence development patterns of forests dominated by Douglas-fir in the Pacific Northwest. Limited data on fire history and stand structure suggest that there is geographical variation in fire regimes and that this variation contributes to regional differences in stand and landscape structure. Managers need region...
D. Craig Rudolph; Charles A. Ely
2000-01-01
Transect surveys were used to examine the influence of fire on lepidopteran communities (Papilionoidea and Hesperioidea) in forested habitats in eastern Texas. Lepidopteran abundance was greater in pine forests where prescribed fire maintained an open mid- and understory compared to forests where fire had less impact on forest structure. Ahundance of nectar sources...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the structural fire protection requirements for accommodation spaces and modules? 149.641 Section 149.641 Navigation and... national consensus standard, as that term is defined in 29 CFR 1910.2, for the structural fire protection...
Jack D. Cohen; Bret W. Butler
1998-01-01
Residential losses associated with wildland fires have become a serious international fire protection problem. The radiant heat flux from burning vegetation adjacent to a structure is a principal ignition factor. A thermal radiation and ignition model estimated structure ignition potential using designated flame characteristics (inferred from various types and...
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Gollner, Michael J.; Xiao, Huahua
2018-01-01
Fire whirls present a powerful intensification of combustion, long studied in the fire research community because of the dangers they present during large urban and wildland fires. However, their destructive power has hidden many features of their formation, growth, and propagation. Therefore, most of what is known about fire whirls comes from scale modeling experiments in the laboratory. Both the methods of formation, which are dominated by wind and geometry, and the inner structure of the whirl, including velocity and temperature fields, have been studied at this scale. Quasi-steady fire whirls directly over a fuel source form the bulk of current experimental knowledge, although many other cases exist in nature. The structure of fire whirls has yet to be reliably measured at large scales; however, scaling laws have been relatively successful in modeling the conditions for formation from small to large scales. This review surveys the state of knowledge concerning the fluid dynamics of fire whirls, including the conditions for their formation, their structure, and the mechanisms that control their unique state. We highlight recent discoveries and survey potential avenues for future research, including using the properties of fire whirls for efficient remediation and energy generation.
NASA Astrophysics Data System (ADS)
Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.
2009-04-01
Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency not shorter than every 6-7 years, or 1-2 fires per decade, to maintain ecosystem structure and function. Variation in time and space in this way, the biodiversity of the landscape may be maintained for the long-term. Keywords: Prescribed burning, burning history, burning frequency, plant species, vegetation structure, dry dipterocarp forest, Huay Kha Khaeng wildlife Sanctuary
Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.
Harvey, Jill E; Smith, Dan J; Veblen, Thomas T
2017-09-01
This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.
2016-12-01
Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.
ERIC Educational Resources Information Center
Kravis, Miles
2009-01-01
From 2003 to 2005, fires on school properties cost about $85 million a year. An estimated 14,700 fires required a fire department response: 36 percent were trash fires, 19 percent were fires in open fields, and 43 percent were structural fires. Sometimes, the needs of school security seem to conflict with the requirements of fire safety. In this…
Experimental Study on the Fire Properties of Nitrocellulose with Different Structures
Wei, Ruichao; He, Yaping; Liu, Jiahao; He, Yu; Mi, Wenzhong; Yuen, Richard; Wang, Jian
2017-01-01
In order to ensure the safety of inflammable and explosive chemical substance such as nitrocellulose (NC) mixtures in the process of handing, storage, and usage, it is necessary to obtain the fire properties of NC with different exterior structures. In present study, fire properties of two commonly used nitrocelluloses with soft fiber structure and white chip structure were investigated by scanning electron microscope (SEM) and the ISO 5660 cone calorimeter. Experimental findings revealed that the most important fire properties such as ignition time, mass loss rate and ash content exhibited significant differences between the two structures of NC. Compared with the soft fiber NC, chip NC possesses a lower fire hazard, and its heat release rate intensity (HRRI) is mainly affected by the sample mass. In addition, oxygen consumption (OC) calorimetry method was compared with thermal chemistry (TC) method based on stoichiometry for HRRI calculation. HRRI results of NC with two structures obtained by these two methods showed a good consistency. PMID:28772675
Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez
2017-01-01
Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...
Rotation Capacity of Bolted Flush End-Plate Stiffened Beam-to-Column Connection
NASA Astrophysics Data System (ADS)
Ostrowski, Krzysztof; Kozłowski, Aleksander
2017-06-01
One of the flexibility parameters of semi-rigid joints is rotation capacity. Plastic rotation capacity is especially important in plastic design of framed structures. Current design codes, including Eurocode 3, do not posses procedures enabling designers to obtain value of rotation capacity. In the paper the calculation procedure of the rotation capacity for stiffened bolted flush end-plate beam-to-column connections has been proposed. Theory of experiment design was applied with the use of Hartley's PS/DS-P:Ha3 plan. The analysis was performed with the use of finite element method (ANSYS), based on the numerical experiment plan. The determination of maximal rotation angle was carried out with the use of regression analysis. The main variables analyzed in parametric study were: pitch of the bolt "w" (120-180 mm), the distance between the bolt axis and the beam upper edge cg1 (50-90 mm) and the thickness of the end-plate tp (10-20 mm). Power function was proposed to describe available rotation capacity of the joint. Influence of the particular components on the rotation capacity was also investigated. In the paper a general procedure for determination of rotation capacity was proposed.
Behaviour of reinforced concrete slabs with steel fibers
NASA Astrophysics Data System (ADS)
Baarimah, A. O.; Syed Mohsin, S. M.
2017-11-01
This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.
Diana Yemilet Avila Flores; Marco Aurelio González Tagle; Javier Jiménez Pérez; Oscar Aguirre Calderón; Eduardo Treviño Garza
2013-01-01
The objective of this research was to characterize the spatial structure patterns of a Pinus hartwegii forest in the Sierra Madre Oriental, affected by a fire in 1998. Sampling was stratified by fire severity. A total of three fire severity classes (low, medium and high) were defined. Three sample plots of 40m x 40m were established for each...
Laurie S. Huckaby; Merrill R. Kaufmann; Jason M. Stoker; Paula J. Fornwalt
2001-01-01
Lack of Euro-American disturbance, except fire suppression, has preserved the patterns of forest structure that resulted from the presettlement disturbance regime in a ponderosa pine/Douglas-fir landscape at Cheesman Lake in the Colorado Front Range. A mixed-severity fire regime and variable timing of tree recruitment created a heterogeneous forest age structure with...
Foam composite structures. [for fire retardant airframe materials
NASA Technical Reports Server (NTRS)
Delano, C. B.; Milligan, R. J.
1976-01-01
The need to include fire resistant foams into state of the art aircraft interior paneling to increase passenger safety in aircraft fires was studied. Present efforts were directed toward mechanical and fire testing of panels with foam inclusions. Skinned foam filled honeycomb and PBI structural foams were the two constructions investigated with attention being directed toward weight/performance/cost trade-off. All of the new panels demonstrated improved performance in fire and some were lighter weight but not as strong as the presently used paneling. Continued efforts should result in improved paneling for passenger safety. In particular the simple partial filling (fire side) of state-of-the-art honeycomb with fire resistant foams with little sacrifice in weight would result in panels with increased fire resistance. More important may be the retarded rate of toxic gas evolution in the fire due to the protection of the honeycomb by the foam.
Torres, Iván; Parra, Antonio; Moreno, José M; Durka, Walter
2018-01-01
In Mediterranean ecosystems, climate change is projected to increase fire danger and summer drought, thus reducing post-fire recruitment of obligate seeder species, and possibly affecting the population genetic structure. We performed a genome-wide genetic marker study, using AFLP markers, on individuals from one Central Spain population of the obligate post-fire seeder Cistus ladanifer L. that established after experimental fire and survived during four subsequent years under simulated drought implemented with a rainout shelter system. We explored the effects of the treatments on marker diversity, spatial genetic structure and presence of outlier loci suggestive of selection. We found no effect of fire or drought on any of the genetic diversity metrics. Analysis of Molecular Variance showed very low genetic differentiation among treatments. Neither fire nor drought altered the small-scale spatial genetic structure of the population. Only one locus was significantly associated with the fire treatment, but inconsistently across outlier detection methods. Neither fire nor drought are likely to affect the genetic makeup of emerging C. ladanifer, despite reduced recruitment caused by drought. The lack of genetic change suggests that reduced recruitment is a random, non-selective process with no genome-wide consequences on this keystone, drought- and fire tolerant Mediterranean species.
Fire and fire surrogate study: annotated highlights from oak-dominated sites
Daniel A. Yaussy; Thomas A. Waldrop
2009-01-01
The National Fire and Fire Surrogate (FFS) study was implemented to investigate the ecological impacts of prescribed fire and mechanical operations to mimic fire in restoring the structure and function of forests typically maintained by frequent, low-intensity fires. Two of the 12 sites were located in oak-dominated forests, one in Ohio and another in North Carolina....
Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski
2016-01-01
Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...
Soil responses to the fire and fire surrogate study in the Sierra Nevada
Emily E.Y. Moghaddas; Scott L. Stephens
2007-01-01
The Fire and Fire Surrogate Study utilizes forest thinning and prescribed burning in attempt to create forest stand structures that reduce the risk of catastrophic wildfire. Replicated treatments consisting of mechanical tree harvest (commercial harvest plus mastication of submerchantable material), mechanical harvest followed by prescribed fire, prescribed fire alone...
Fire history from three species on a central Appalachian ridgetop
Amy E. Hessl; Tom Saladyga; Thomas Schuler; Peter Clark; Joshua Wixom
2011-01-01
The impact of settlement era fires on Appalachian forests was substantial, but whether these fires affected the extent of fire-adapted ridgetop plant communities is poorly understood. Here we present fire history and stand structure of an Appalachian ridgetop (Pike Knob, West Virginia) based on fire scars from three species (Pinus pungens Lamb.,
Chapter 5. Borderlands fire regimes
Margot Wilkinson-Kaye; Thomas Swetnam; Christopher R. Baisan
2006-01-01
Fire is a keystone process in most natural, terrestrial ecosystems. The vital role that fire plays in controlling the structure of an ecosystem underscores the need for us to increase our knowledge of past and current fire regimes (Morgan and others 1994). Dendrochronological reconstructions of fire histories provide descriptions of past fire regimes across a range of...
ERIC Educational Resources Information Center
Edmunds, Jane
1972-01-01
Reviews attack on fire safety in high rise buildings made by a group of experts representing the iron and steel industry at a recent conference. According to one expert, fire problems are people oriented, which calls for emphasis on fire prevention rather than reliance on fire suppression and for fire pretection to be built into a structure.…
Modeling the effects of vegetation heterogeneity on wildland fire behavior
NASA Astrophysics Data System (ADS)
Atchley, A. L.; Linn, R.; Sieg, C.; Middleton, R. S.
2017-12-01
Vegetation structure and densities are known to drive fire-spread rate and burn severity. Many fire-spread models incorporate an average, homogenous fuel density in the model domain to drive fire behavior. However, vegetation communities are rarely homogenous and instead present significant heterogeneous structure and fuel densities in the fires path. This results in observed patches of varied burn severities and mosaics of disturbed conditions that affect ecological recovery and hydrologic response. Consequently, to understand the interactions of fire and ecosystem functions, representations of spatially heterogeneous conditions need to be incorporated into fire models. Mechanistic models of fire disturbance offer insight into how fuel load characterization and distribution result in varied fire behavior. Here we use a physically-based 3D combustion model—FIRETEC—that solves conservation of mass, momentum, energy, and chemical species to compare fire behavior on homogenous representations to a heterogeneous vegetation distribution. Results demonstrate the impact vegetation heterogeneity has on the spread rate, intensity, and extent of simulated wildfires thus providing valuable insight in predicted wildland fire evolution and enhanced ability to estimate wildland fire inputs into regional and global climate models.
Soil shapes community structure through fire.
Ojeda, Fernando; Pausas, Juli G; Verdú, Miguel
2010-07-01
Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.
2016-12-01
As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.
Scholl, Andrew E; Taylor, Alan H
2010-03-01
Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.
Jason J. Moghaddas; Scott L. Stephens
2007-01-01
Mixed conifer forests cover 7.9 million acres of Californiaâs total land base. Forest structure in these forests has been influenced by harvest practices and silvicultural systems implemented since the beginning of the California Gold Rush in 1849. Today, the role of fire in coniferous forests, both in shaping past stand structure and its ability to shape future...
MaryBeth Keifer; Nathan L. Stephenson; Jeff Manley
2000-01-01
Changes in forest structure were monitored in areas treated with prescribed fire in Sequoia and Kings Canyon National Parks. Five years after the initial prescribed fires, tree density was reduced by 61% in the giant sequoia-mixed conifer forest, with the greatest reduction in the smaller trees. This post-burn forest structure falls within the range that may have been...
Van R. Kane; Malcolm P. North; James A. Lutz; Derek J. Churchill; Susan L. Roberts; Douglas F. Smith; Robert J. McGaughey; Jonathan T. Kane; Matthew L. Brooks
2014-01-01
Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low-and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We...
Theresa Benavidez Jain; Russell T. Graham
2004-01-01
Wildfires in 2000 burned over 500,000 forested ha in the Northern Rocky Mountains. In 2001, National Fire Plan funding became available to evaluate the influence of pre-wildfire forest structure on post wildfire fire severity. Results from this study will provide information on forest structures that are resilient to wildfire. Three years of data (558 plots) have been...
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II
Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard
2009-01-01
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...
Small mammal abundance in Mediterranean post-fire habitats: a role for predators?
NASA Astrophysics Data System (ADS)
Torre, I.; Díaz, M.
2004-05-01
We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m 2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently-burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.
Native herbivore exerts contrasting effects on fire regime and vegetation structure
Jose L. Hierro; Kenneth L. Clark; Lyn C. Branch; Diego Villarreal
2011-01-01
Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus...
Fire, Habitat structure and herpetofauna in the Southeast
Cathryn H. Greenberg
2002-01-01
In this paper I review studies of herpetofauna in two fire-maintained, xeric pineland southeastern U.S. ecosystems, longleaf pine-turkey oak sandhills and Florida sand pine scrub. I address evolutionary adaptations of herpetofauna to these xeric environments, and how fire disturbance influences herpetofaunal community composition by structuring habitat. Where data are...
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...
W. J. Bond; Robert Keane
2017-01-01
Fire is both a natural and anthropogenic disturbance influencing the distribution, structure, and functioning of terrestrial ecosystems around the world. Many plants and animals depend on fire for their continued existence. Others species, such as rainforest plants species, are extremely intolerant of burning and need protection from fire. The properties of a fire...
Code of Federal Regulations, 2012 CFR
2012-07-01
... administrative site shall comply with applicable standards prescribed by the National Fire Codes, Federal OSHA... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Fires. 34.6 Section 34.6... ADMINISTRATIVE SITE REGULATIONS § 34.6 Fires. (a) All wildland, vehicular or structural fires shall be reported...
Code of Federal Regulations, 2011 CFR
2011-07-01
... administrative site shall comply with applicable standards prescribed by the National Fire Codes, Federal OSHA... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Fires. 34.6 Section 34.6... ADMINISTRATIVE SITE REGULATIONS § 34.6 Fires. (a) All wildland, vehicular or structural fires shall be reported...
Code of Federal Regulations, 2013 CFR
2013-07-01
... administrative site shall comply with applicable standards prescribed by the National Fire Codes, Federal OSHA... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Fires. 34.6 Section 34.6... ADMINISTRATIVE SITE REGULATIONS § 34.6 Fires. (a) All wildland, vehicular or structural fires shall be reported...
Code of Federal Regulations, 2010 CFR
2010-07-01
... administrative site shall comply with applicable standards prescribed by the National Fire Codes, Federal OSHA... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Fires. 34.6 Section 34.6... ADMINISTRATIVE SITE REGULATIONS § 34.6 Fires. (a) All wildland, vehicular or structural fires shall be reported...
Code of Federal Regulations, 2014 CFR
2014-07-01
... administrative site shall comply with applicable standards prescribed by the National Fire Codes, Federal OSHA... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Fires. 34.6 Section 34.6... ADMINISTRATIVE SITE REGULATIONS § 34.6 Fires. (a) All wildland, vehicular or structural fires shall be reported...
Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; Mciver, J.D.; Metlen, K.; Skinner, C.N.; Youngblood, A.
2009-01-01
Abstract. Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical-only treatments using whole-tree harvest systems were all effective at reducing potential fire severity under severe fire weather conditions. Retaining the largest trees within stands also increased fire resistance. ?? 2009 by the Ecological Society of America.
Uncertainty in Wildfire Behavior
NASA Astrophysics Data System (ADS)
Finney, M.; Cohen, J. D.
2013-12-01
The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.
NASA Astrophysics Data System (ADS)
Kisała, Dawid; Tekieli, Marcin
2017-10-01
Steel plate-concrete composite structures are a new innovative design concept in which a thin steel plate is attached to the reinforced concrete beam by means of welded headed studs. The comparison between experimental studies and theoretical analysis of this type of structures shows that their behaviour is dependent on the load-slip relationship of the shear connectors used to ensure sufficient bond between the concrete and steel parts of the structure. The aim of this paper is to describe an experimental study on headed studs used in steel plate-concrete composite structures. Push-out tests were carried out to investigate the behaviour of shear connectors. The test specimens were prepared according to standard push-out tests, however, instead of I-beam, a steel plate 16 mm thick was used to better reflect the conditions in the real structure. The test specimens were produced in two batches using concrete with significantly different compressive strength. The experimental study was carried out on twelve specimens. Besides the traditional measurements based on LVDT sensors, optical measurements based on the digital image correlation method (DIC) and pattern tracking methods were used. DIC is a full-field contactless optical method for measuring displacements in experimental testing, based on the correlation of the digital images taken during test execution. With respect to conventional methods, optical measurements offer a wider scope of results and can give more information about the material or construction behaviour during the test. The ultimate load capacity and load-slip curves obtained from the experiments were compared with the values calculated based on Eurocodes, American and Chinese design specifications. It was observed that the use of the relationships developed for the traditional steel-concrete composite structures is justified in the case of ultimate load capacity of shear connectors in steel plate-concrete composite structures.
Sean A. Parks; Carol Miller; Cara R. Nelson; Zachary A. Holden
2014-01-01
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological...
Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile
2011-01-01
Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...
González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.
2017-01-01
Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. PMID:28159988
Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.
2017-01-01
Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p < 0.0001) was observed between the ratio of shortwave infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.
Fire and fire surrogate treatments in mixed-oak forests: Effects on herbaceous layer vegetation
Ross Phillips; Todd Hutchinson; Lucy Brudnak; Thomas Waldrop
2007-01-01
Herbaceous layer vegetation responses to prescribed fire and fire surrogate treatments (thinning and understory removal) were examined. Results from 3 to 4 years following treatment are presented for the Ohio Hills Country and the Southern Appalachian Mountain sites of the National Fire and Fire Surrogate Study. At the Ohio Hills site, changes in forest structure were...
Krawchuk, Meg A; Cumming, Steve G
2011-01-01
Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.
Effectiveness of damped braces to mitigate seismic torsional response of unsymmetric-plan buildings
NASA Astrophysics Data System (ADS)
Mazza, Fabio; Pedace, Emilia; Favero, Francesco Del
2017-02-01
The seismic retrofitting of unsymmetric-plan reinforced concrete (r.c.) framed buildings can be carried out by the incorporation of damped braces (DBs). Yet most of the proposals to mitigate the seismic response of asymmetric framed buildings by DBs rest on the hypothesis of elastic (linear) structural response. The aim of the present work is to evaluate the effectiveness and reliability of a Displacement-Based Design procedure of hysteretic damped braces (HYDBs) based on the nonlinear behavior of the frame members, which adopts the extended N2 method considered by Eurocode 8 to evaluate the higher mode torsional effects. The Town Hall of Spilinga (Italy), a framed structure with an L-shaped plan built at the beginning of the 1960s, is supposed to be retrofitted with HYDBs to attain performance levels imposed by the Italian seismic code (NTC08) in a high-risk zone. Ten structural solutions are compared by considering two in-plan distributions of the HYDBs, to eliminate (elastic) torsional effects, and different design values of the frame ductility combined with a constant design value of the damper ductility. A computer code for the nonlinear dynamic analysis of r.c. spatial framed structures is adopted to evaluate the critical incident angle of bidirectional earthquakes. Beams and columns are simulated with a lumped plasticity model, including flat surface modeling of the axial load-biaxial bending moment elastic domain at the end sections, while a bilinear law is used to idealize the behavior of the HYDBs. Damage index domains are adopted to estimate the directions of least seismic capacity, considering artificial earthquakes whose response spectra match those adopted by NTC08 at serviceability and ultimate limit states.
VIEW OF EMERGENCY RESPONSE VEHICLES PARKED OUTSIDE BUILDING 331, THE ...
VIEW OF EMERGENCY RESPONSE VEHICLES PARKED OUTSIDE BUILDING 331, THE VEHICLE MAINTENANCE GARAGE AND FIRE STATION. THE BUILDING, ORIGINALLY CONSTRUCTED IN 1953, WAS DESIGNED AND UTILIZED AS A WAREHOUSE. ADDITIONS TO THE STRUCTURE, INCLUDING THE FIRE DEPARTMENT STRUCTURE, WERE COMPLETED IN 1967. (4/7/87) - Rocky Flats Plant, Vehicle Maintenance Garage & Fire Station, Golden, Jefferson County, CO
Effects of multiple fires on the structure of southwestern Washington forests
Andrew N. Gray; Jerry F. Franklin
1997-01-01
Fire frequcncy, intensity, and size can influence the nature of forest development, with potentially profound effects on ecosystem processes and the abundance of native species. The effect of an intense wildfire and subsequent severe fires within a short period (reburns) on forest establishment, composition, and structure was examined in the 16,000 ha Siouxon Creek...
Restoring forest health: fire and thinning effects on mixed-conifer forests
Malcolm P. North
2006-01-01
Even after 140 years without a fire, mixed-conifer forest such as Teakettle's Experimental Forest has a distinct patch pattern and complex structure. Researcher Malcolm North and colleagues examined the structure and function of these ecosystems and their response to widely used restoration treatments. Collectively the studies found fire was essential to restoring...
Ignition and flame travel on realistic building and landscape objects in changing environments
Mark A. Dietenberger
2007-01-01
Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures from close proximity of burning vegetations and (2) stopping flame travel from firebrands landing on combustible building objects. In using bench-scale and mid-scale fire tests to obtain fire growth...
C.J. Fettig; S.R. McKelvey
2010-01-01
Highly effective fire suppression and selective harvesting of large-diameter, fire-tolerant tree species, such as ponderosa pine (Pinus ponderosa C. Lawson) and Jeffrey pine (P. jeffreyi Balf.), have resulted in substantial changes to the structure and composition of interior ponderosa pine forests. Mechanical thinning and the...
Forest structure and fire hazard in dry forests of the Western United States
David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt
2005-01-01
Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land...
Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity
Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon
2011-01-01
Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800
Linking complex forest fuel structure and fire behavior at fine scales
EL Loudermilk; Joseph O' Brien; RJ Mitchell; JK Hiers; WP Cropper; S Grunwald; J Grego; J Fernandez
2012-01-01
Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest...
Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)
Stanley G. Kitchen
2012-01-01
Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...
Benefits of hindsight: reestablishing fire on the landscape.
Sally Duncan
2001-01-01
Well-intentioned fire suppression efforts during the last 80 to 100 years have altered the structure of low-elevation forests in the interior Northwest. Historically, nondestructive, frequent, low-intensity fires have given way to larger, infrequent, severe, high-intensity fires. Because of altered fire behavior, forests now have increased fuel, and consequently, are...
A method for determining fire history in coniferous forests in the Mountain West
Stephen F. Arno; Kathy M. Sneck
1977-01-01
Describes a method for determining historic fire frequency, intensity, and size from cross sections collected from fire-scarred trees and tree age classes determined through increment borings. Tells how to interpret the influence of fire in stand composition and structure and how to identify effects of modern fire suppression.
Short- and long-term effects of fire on carbon in US dry temperate forest systems
Hurteau, Matthew D.; Brooks, Matthew L.
2011-01-01
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.
NASA Astrophysics Data System (ADS)
Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin
2018-03-01
Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.
Spinoff from a Mooncraft Technology
NASA Technical Reports Server (NTRS)
1988-01-01
Avco Specialty Materials' Chartek III fireproofing provides longterm fire protection for structural steel in high risk industrial applications such as structural conduits, pipes and valves of offshore platforms, and storage tanks used in hydrocarbon processing industry. In the presence of fire, Chartek III fire-proofing provides two kinds of protection. One of them is ablation, technique used on Apollo involving dissipation of heat by burnoff. The other is called intumescence or swelling. Heat causes the Chartek coating to swell to a thickness six times greater than when it was applied forming a protective blanket of char that retards transfer of heat to the steel structure. Mesh reinforcement keeps the char intact and reduces metal fatigue. Chartek provides fire protection for as much as two or three hours depending on the type of fire and the thickness of the coating applied.
Dylan W. Schwilk; Jon E. Keeley; Eric E. Knapp; James Mciver; John D. Bailey; Christopher J. Fettig; Carl E. Fiedler; Richy J. Harrod; Jason J. Moghaddas; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop; Daniel A. Yaussy; Andrew Youngblood
2009-01-01
Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction...
2017-10-31
The October fires in Northern California were some of the most destructive in the state's history. The burned area on the right side of the image is the ATLAS fire, that burned east of Napa; the fire consumed 51,000 acres and destroyed almost 500 structures. The burned area on the left is part of the Nuns fire that burned between Sonoma and Napa; it consumed 110,000 acres, and destroyed almost 7,000 structures. The images were acquired September 7, 2016 and October 28, 2017, cover an area of 34.5 by 39 kilometers, and are located near 38.3 degrees north, 122.3 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22019
Deconstructing the King Megafire.
Coen, Janice L; Stavros, E Natasha; Fites-Kaufman, Josephine A
2018-05-24
Hypotheses that megafires - very large, high impact fires - are caused by either climate effects such as drought or fuel accumulation due to fire exclusion with accompanying changes to forest structure have long been alleged and guided policy but their physical basis remains untested. Here, unique airborne observations and microscale simulations using a coupled weather - wildland fire behavior model allowed a recent megafire, the King Fire, to be deconstructed and the relative impacts of forest structure, fuel load, weather, and drought on fire size, behavior, and duration to be separated. Simulations reproduced observed details including the arrival at an inclined canyon, a 25-km run, and later slower growth and features. Analysis revealed that fire-induced winds that equaled or exceeded ambient winds and fine-scale airflow undetected by surface weather networks were primarily responsible for the fire's rapid growth and size. Sensitivity tests varied fuel moisture and amount across wide ranges and showed that both drought and fuel accumulation effects were secondary, limited to sloped terrain where they compounded each other, and, in this case, unable to significantly impact the final extent. Compared to standard data, fuel models derived solely from remote sensing of vegetation type and forest structure improved simulated fire progression, notably in disturbed areas, and the distribution of burn severity. These results point to self-reinforcing internal dynamics rather than external forces as a means of generating this and possibly other outlier fire events. Hence, extreme fires need not arise from extreme fire environment conditions. Kinematic models used in operations do not capture fire-induced winds and dynamic feedbacks so can underestimate megafire events. The outcomes provided a nuanced view of weather, forest structure, fuel accumulation, and drought impacts on landscape-scale fire behavior - roles that can be misconstrued using correlational analyses between area burned and macroscale climate data or other exogenous factors. A practical outcome is that fuel treatments should be focused on sloped terrain, where factors multiply, for highest impact. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Health Impacts of Climate Change-Induced Subzero Temperature Fires.
Metallinou, Maria-Monika; Log, Torgrim
2017-07-20
General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.
Health Impacts of Climate Change-Induced Subzero Temperature Fires
Metallinou, Maria-Monika; Log, Torgrim
2017-01-01
General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km2 of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires. PMID:28726752
Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.
Earles, J Mason; North, Malcolm P; Hurteau, Matthew D
2014-06-01
Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.
Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H
2010-10-01
Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar
NASA Technical Reports Server (NTRS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-01-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar
NASA Astrophysics Data System (ADS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-05-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
Scott L. Stephens; Jason J. Moghaddas; Carl Edminster; Carl E. Fiedler; Sally Haase; Michael Harrington; Jon E. Keeley; Eric E. Knapp; James D. McIver; Kerry Metlen; Carl N. Skinner; Andrew Youngblood
2009-01-01
Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to...
Wildlife adaptations and management in eastside interior forests with mixed severity fire regimes.
John F. Lehmkuhl
2004-01-01
Little is known about the effects of mixed severity fire on wildlife, but a population viability analysis framework that considers habitat quantity and quality, species life history, and species population structure can be used to analyze management options. Landscape-scale habitat patterns under a mixed severity fire regime are a mosaic of compositional and structural...
Science basis for changing forest structure to modify wildfire behavior and severity
Russell T. Graham; Sarah McCaffrey; Theresa B. Jain
2004-01-01
Fire, other disturbances, physical setting, weather, and climate shape the structure and function of forests throughout the Western United States. More than 80 years of fire research have shown that physical setting, fuels, and weather combine to determine wildfire intensity (the rate at which it consumes fuel) and severity (the effect fire has on vegetation, soils,...
NASA Technical Reports Server (NTRS)
Kaszubowski, M.; Raney, J. P.
1986-01-01
A study was conducted to determine the dynamic effects of firing the orbiter primary reaction control jets during assembly of protoflight space station structure. Maximum longeron compressive load was calculated as a function of jet pulse time length, number of jet pulses, and total torque imposed by the reaction control jets. The study shows that it is possible to fire selected jets to achieve a pitch maneuver without causing failure of the attached structure.
Fire in Eastern Hardwood Forests through 14,000 Years
Martin A. Spetich; Roger W. Perry; Craig A. Harper; Stacy L. Clark
2011-01-01
Fire helped shape the structure and species composition of hardwood forests of the eastern United States over the past 14,000 years. Periodic fires were common in much of this area prior to European settlement, and fire-resilient species proliferated. Early European settlers commonly adopted Native American techniques of applying fire to the landscape. As the demand...
Fire on the mountain: birds and burns in the Rocky Mountains
Natasha B. Kotliar; Victoria A. Saab; Richard L. Hutto
2005-01-01
The diversity of climate and topography across the Rocky Mountains has resulted in a broad spectrum of fire regimes ranging from frequent, low-severity fires to infrequent stand-replacement events. Such variation in fire history contributes to landscape structure and dynamics, and in turn can influence subsequent fire behavior (Allen et al. 2002). In essence,...
Madrean pine-oak forest in Arizona: altered fire regimes, altered communities
Andrew M. Barton
2005-01-01
In Madrean pine-oak forests in the Chiricahua Mountains, surface fire favors pines, which exhibit high top-survival, but resprouting allows oaks to rebound during inter-fire periods. These patterns plus age structure and radial growth data suggest that frequent presettlement surface fire maintained open stands, promoted a high pine:oak ratio, and excluded less fire...
Wildland fire in ecosystems: effects of fire on fauna
Jane Kapler Smith
2000-01-01
VOLUME 1: Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals' ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal...
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Reintroducing fire in regenerated dry forests following stand-replacing wildfire.
David W. Peterson; Paul F. Hessburg; Brion Salter; Kevin M. James; Matthew C. Dahlgreen; John A. Barnes
2007-01-01
Prescribed fire use may be effective for increasing fire resilience in young coniferous forests by reducing surface fuels, modifying overstory stand structure, and promoting development of large trees of fire resistant species. Questions remain, however, about when and how to reintroduce fire in regenerated forests, and to what end. We studied the effects of spring...
Two centuries of fire in a southwestern Virginia Pinus pungens community
E. K. Sutherland; H. Grissino-Mayer; C. A. Woodhouse; W. W. Covington; S. Horn; L. Huckaby; R. Kerr; J. Kush; M. Moore; T. Plumb
1995-01-01
Fire exclusion in fire-dependent forest communities can alter stand structure and composition. The objective was to construct a fire history of two Pinus pungens Lamb. communities growing in southwestern Virgina. Treering analysis of fire-scarred P. pungens specimens and a tree survey were used to determine species composition and age distributions. From 1798-1944,...
Keeley, J.E.; McGinnis, T.W.
2007-01-01
Following the reintroduction of fire Bromus tectorum has invaded the low elevation ponderosa pine forests in parts of Kings Canyon National Park, California. We used prescribed burns, other field manipulations, germination studies, and structural equation modelling, to investigate how fire and other factors affect the persistence of cheatgrass in these forests. Our studies show that altering burning season to coincide with seed maturation is not likely to control cheatgrass because sparse fuel loads generate low fire intensity. Increasing time between prescribed fires may inhibit cheatgrass by increasing surface fuels (both herbaceous and litter), which directly inhibit cheatgrass establishment, and by creating higher intensity fires capable of killing a much greater fraction of the seed bank. Using structural equation modelling, postfire cheatgrass dominance was shown to be most strongly controlled by the prefire cheatgrass seedbank; other factors include soil moisture, fire intensity, soil N, and duration of direct sunlight. Current fire management goals in western conifer forests are focused on restoring historical fire regimes; however, these frequent fire regimes may enhance alien plant invasion in some forest types. Where feasible, fire managers should consider the option of an appropriate compromise between reducing serious fire hazards and exacerbating alien plant invasions. ?? IAWF 2007.
Impacts: NIST Building and Fire Research Laboratory (technical and societal)
NASA Astrophysics Data System (ADS)
Raufaste, N. J.
1993-08-01
The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.
Xue, Gang; Song, Wen-qi; Li, Shu-chao
2015-01-01
In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.
Why were California's wine country fires so destructive?
Keeley, Jon E.
2017-01-01
As of late October more than a dozen wildfires north of San Francisco had killed more than 40 people, burned approximately 160,000 acres and destroyed more than 7,000 structures.This tragic loss of life and property is unprecedented in California. However, the fires are not anomalous events in terms of their size, intensity or the speed with which they spread. Indeed, the path of the destructive Tubbs fire in Napa and Sonoma counties mirrors that of the Hanley fire of 1964. This extreme wind-driven fire burned under similar conditions, across much of the same landscape and covered an area substantially greater than the recent Tubbs fire.Strikingly, though, no lives were lost during the Hanley fire and only 29 structures were destroyed. Why did these two fires, 50 years apart, burn on the same general landscape, under similar extreme winds, with such different human impacts? Fire scientists will study these events intensively to parse out the relative importance of various factors. But it is clear that two factors probably were major contributors: wind and population growth.
Yew, M C; Ramli Sulong, N H; Yew, M K; Amalina, M A; Johan, M R
2014-01-01
This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.
Abrupt climate-independent fire regime changes
Pausas, Juli G.; Keeley, Jon E.
2014-01-01
Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.
Yew, M. C.; Ramli Sulong, N. H.; Yew, M. K.; Amalina, M. A.; Johan, M. R.
2014-01-01
This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength. PMID:25136687
Fire structures pine serotiny at different scales.
Hernández-Serrano, Ana; Verdú, Miguel; González-Martínez, Santiago C; Pausas, Juli G
2013-12-01
Serotiny (delayed seed release with the consequent accumulation of a canopy seedbank) confers fitness benefits in environments with crown-fire regimes. Thus, we predicted that serotiny level should be higher in populations recurrently subjected to crown-fires than in populations where crown-fires are rare. In addition, under a high frequency of fires, space and resources are recurrently available, permitting recruitment around each mother to follow the seed rain shadow. Thus, we also predicted spatial aggregation of serotiny within populations. We compared serotiny, considering both the proportion and the age of serotinous cones, in populations living in contrasting fire regimes for two iconic Mediterranean pine species (Pinus halepensis, P. pinaster). We framed our results by quantitatively comparing the strength of the fire-serotiny relationship with previous studies worldwide. For the two species, populations living under high crown-fire recurrence regimes had a higher serotiny level than those populations where the recurrence of crown-fires was low. For P. halepensis (the species with higher serotiny), populations in high fire recurrence regimes had higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. The strength of the observed fire-serotiny relationship in P. halepensis is among the highest in published literature. Fire regime shapes serotiny level among populations, and in populations with high serotiny, recurrent fires maintain a significant spatial structure for this trait. Consequently, fire has long-term evolutionary implications at different scales, emphasizing its prominent role in shaping the ecology of pines.
Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.
2014-01-01
Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
Effects of fire on major forest ecosystem processes: an overview.
Chen, Zhong
2006-09-01
Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.
Michael A. Jenkins; Robert N. Klein; Virginia L. McDaniel
2011-01-01
We used pre- and post-burn fire effects data from six prescribed burns to examine post-burn threshold effects of stand structure (understory density, overstory density, shrub cover, duff depth, and total fuel load) on the regeneration of yellow pine (Pinus subgenus Diploxylon) seedlings and cover of herbaceous vegetation in six prescribed-fire management units located...
Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam
2017-04-01
The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.
Hall, S A; Burke, I C; Hobbs, N T
2006-12-01
Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.
Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...
Developmental metaplasticity in neural circuit codes of firing and structure.
Baram, Yoram
2017-01-01
Firing-rate dynamics have been hypothesized to mediate inter-neural information transfer in the brain. While the Hebbian paradigm, relating learning and memory to firing activity, has put synaptic efficacy variation at the center of cortical plasticity, we suggest that the external expression of plasticity by changes in the firing-rate dynamics represents a more general notion of plasticity. Hypothesizing that time constants of plasticity and firing dynamics increase with age, and employing the filtering property of the neuron, we obtain the elementary code of global attractors associated with the firing-rate dynamics in each developmental stage. We define a neural circuit connectivity code as an indivisible set of circuit structures generated by membrane and synapse activation and silencing. Synchronous firing patterns under parameter uniformity, and asynchronous circuit firing are shown to be driven, respectively, by membrane and synapse silencing and reactivation, and maintained by the neuronal filtering property. Analytic, graphical and simulation representation of the discrete iteration maps and of the global attractor codes of neural firing rate are found to be consistent with previous empirical neurobiological findings, which have lacked, however, a specific correspondence between firing modes, time constants, circuit connectivity and cortical developmental stages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fire tolerance of a resprouting Artemisia (Asteraceae) shrub
Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.
2011-01-01
In North America, most Artemisia (Asteraceae) shrub species lack the ability to resprout after disturbances that remove aboveground biomass. We studied the response of one of the few resprouting Artemisia shrubs, Artemisia filifolia (sand sagebrush), to the effects of prescribed fires. We collected data on A. filifolia density and structural characteristics (height, canopy area, and canopy volume) in an A. filifolia shrubland in the southern Great Plains of North America. Our study sites included areas that had not been treated with prescribed fire, areas that had been treated with only one prescribed fire within the previous 5 years, and areas that had been treated with two prescribed fires within the previous 10 years. Our data were collected at time periods ranging from 1/2 to 5 years after the prescribed fires. Density of A. filifolia was not affected by one or two fires. Structural characteristics, although initially altered by prescribed fire, recovered to levels characteristic of unburned areas in 3-4 years after those fires. In contrast to most non-sprouting North American Artemisia shrub species, our research suggested that the resprouting A. filifolia is highly tolerant to the effects of fire. ?? 2011 Springer Science+Business Media B.V.
... the home and from other things that can burn. f fEleven percent of home grill structure fires ... 200 or 49%) of the injuries were thermal burns, including burns both from fire and from contact ...
The role of fire in deep time ecosystems
NASA Astrophysics Data System (ADS)
Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.
2010-05-01
Fires are very widespread in the world today and fire has also been common in the deep past. Fire is important in structuring contemporary World vegetation maintaining extensive open vegetation where the climate has the potential to support closed forests. The influence of fire on the structure of vegetation and plant traits present in a community vary depending on the fire regime. The fire regime is the characteristic pattern of fire frequency, severity (amount of biomass removed) and spatial extent. Fire regimes depend on the synergy between external physical factors and the properties of vegetation. Changes in the fire regime can be brought about by changes in external conditions such as climate, but also by changes in vegetation such as changes in flammability or productivity that influence the amount of fuel. For example, invasion of grasses into closed wooded habitats has initiated a ‘grass fire cycle' in many parts of the world triggering cascading changes in vegetation structure and composition from forest to open grassland or savanna woodland. The spread of flammable invasive species, especially grasses, has even altered fire regimes of fire-dependent flammable communities causing catastrophic ecosystem changes. We suggest that the spread of angiosperms in the Cretaceous was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. Within the limits of physical constraints on fire occurrence, Cretaceous angiosperms would have initiated a positive feedback analogous to the grass-fire cycle rapidly accumulating fuel that promoted more frequent fires, which maintained open habitats in which rapid growth-traits of angiosperms would be most favoured promoting rapid fuel accumulation etc. Frequent fires would have altered vegetation structure and composition both by increasing mortality rates of fire-damaged trees and reducing recruitment rates of seedlings and saplings where fires recurred before juveniles had reached "fire-proof" sizes. The effect would be to create more open conditions favouring plants with the angiosperm innovations of high photosynthetic rates, rapid maturation and rapid reproduction relative to gymnosperms. Fire has some analogies to large vertebrate herbivory, particularly in the potential to open forests and create habitat for low-growing sun-loving plants over extensive areas. The role of fire in favouring low-growing ‘ruderal', plants of open habitats is similar to that proposed for dinosaurs. A switch from high-browsing dinosaurs in the Jurassic to low-browsing dinosaurs in the Cretaceous has been noted and it has been argued that the switch in browse height would favour fast-growing angiosperms. The dinosaur hypothesis has recently been tested and found wanting, for example in the timing and coincidence of angiosperm abundance and low vs. high-browsing dinosaurs. Our research of the co-occurrence of dinosaur remains and charcoal assemblages in Dinosaur Provincial Park, Alberta, has suggested that it was a dominance of gymnospermous, woody vegetation that was ravaged by fire. In addition, the co-occurrence of dinosaur remains and charcoal is significant in demonstrating that the some dinosaur bone beds may have formed as a result of extensive post-fire erosion/rapid deposition cycles. In this paper we consider the evidence for and against fire as a major factor promoting vegetation change and angiosperm spread in the Cretaceous.
Test stand for Titan 34D SRM static firing
NASA Technical Reports Server (NTRS)
Glozman, Vladimir; Shipway, George
1988-01-01
An existing liquid engine test stand at the AF Astronautics Laboratory was refurbished and extensively modified to accommodate the static firing of the Titan 34D solid rocket motor (SRM) in the vertical nozzle down orientation. The main load restraint structure was designed and built to secure the SRM from lifting off during the firing. In addition, the structure provided weather protection, temperature conditioning of the SRM, and positioning of the measurement and recording equipment. The structure was also used for stacking/de-stacking of SRM segments and other technological processes. The existing stand, its foundation and anchorage were thoroughly examined and reanalyzed. Necessary stand modifications were carried out to comply with the requirements of the Titan 34D SRM static firing.
Fire Alters Emergence of Invasive Plant Species from Soil Surface-Deposited Seeds
USDA-ARS?s Scientific Manuscript database
1. Fire is recognized as an important process controlling ecosystem structure and function. Restoration of fire regimes is complicated by global concerns about exotic plants invasions, yet little is known of how the two may interact. Characterizing relationships between fire conditions and the vi...
The Wildland/Urban Interface in 2025
Gary O. Tokle
1987-01-01
In the year 2025, wildland fire fighting practices have improved significantly over the method employed during the late1900's. Improved methods for predicting severe fire weather conditions, the establishment of the North American Fire Coordination Center, and the utilization of foam products for both wildfire and structural fire control have significantly changed...
Hayman Fire case study: Summary [RMRS-GTR-114
Russell T. Graham
2003-01-01
Historically, wildfires burned Western forests creating and maintaining a variety of forest compositions and structures (Agee 1993). Prior to European settlement lightning along with Native Americans ignited fires routinely across many forested landscapes. After Euro-American settlement, fires continued to be quite common with fires ignited by settlers, railroads, and...
Effects of fire damage on the structural properties of steel bridge elements.
DOT National Transportation Integrated Search
2011-04-30
It is well known that fire can cause severe damage to steel bridges. There are documented cases where fire has directly led to the collapse or significant sagging of a steel bridge. However, when the damage is less severe, the effects of the fire, if...
The role of defensible space for residential structure protection during wildfires
Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.
2014-01-01
With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and 1000 surviving structures for all fires where homes burned from 2001 to 2010 in San Diego County, CA, USA. Structures were more likely to survive a fire with defensible space immediately adjacent to them. The most effective treatment distance varied between 5 and 20 m (16–58 ft) from the structure, but distances larger than 30 m (100 ft) did not provide additional protection, even for structures located on steep slopes. The most effective actions were reducing woody cover up to 40% immediately adjacent to structures and ensuring that vegetation does not overhang or touch the structure. Multiple-regression models showed landscape-scale factors, including low housing density and distances to major roads, were more important in explaining structure destruction. The best long-term solution will involve a suite of prevention measures that include defensible space as well as building design approach, community education and proactive land use planning that limits exposure to fire.
Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472
Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.
2003-01-01
Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.
Urban fire risk control: House design, upgrading and replanning
Mbuya, Elinorata Celestine
2018-01-01
Urbanisation leads to house densification, a phenomenon experienced in both planned and unplanned settlements in cities in developing countries. Such densification limits fire brigade access into settlements, thereby aggravating fire disaster risks. In this article, we assess the fire exposure and risks in residences in informal areas of Mchikichini ward, in Dar es Salaam City, Tanzania. We rely on interviews of residents and government officials to obtain background on the occurrence and causes of fire accidents, policy provisions and regulations, and experiences with fire outbreaks and coping strategies, as well as on observations and measurements of house transformations, spatial quality and indoor real life. Our findings suggest that fire risks arise from both inappropriate structural characteristics and unsound behavioural practices. This includes unsafe electric practices by residents, poor capacity of residents to fight fires once started, limited access to structures by firefighting equipment because of flouting of planning regulations and inadequate awareness of local government leaders of the magnitude of fire risks. Potential changes to reduce fire risks in the settlement include the installation of firefighting systems, restriction of cooking to designated spaces, use of safer cooking energy sources and lighting means, improvements of vehicle access routes to neighbourhoods, capacity building at the grass root level and the establishment of community-based fire risk management.
Margolis, Ellis; Malevich, Steven B.
2016-01-01
Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.
Restoration of the fire-grazing interaction in Artemisia filifolia shrubland
Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.
2012-01-01
Patterns of landscape heterogeneity are crucial to the maintenance of biodiversity in shrublands and grasslands, yet management practices in these ecosystems typically seek to homogenize landscapes. Furthermore, there is limited understanding of how the interaction of ecological processes, such as fire and grazing, affects patterns of heterogeneity at different spatial scales. We conducted research in Artemisia filifolia (Asteraceae) shrublands located in the southern Great Plains of North America to determine the effect of restoring the fire-grazing interaction on vegetation structure. Data were collected for 3years in replicated pastures grazed by cattle Bos taurus where the fire-grazing interaction had been restored (fire and grazing=treatment pastures) and in pastures that were grazed but remained unburned (grazing only, no fire=control pastures). The effect of the fire-grazing interaction on heterogeneity (variance) of vegetation structure was assessed at scales from 12??5m 2 to 609ha. Most measurements of vegetation structure within treatment pastures differed from control pastures for 1-3years after being burned but were thereafter similar to the values found in unburned control pastures. Treatment pastures were characterized by a lower amount of total heterogeneity and a lower amount of heterogeneity through time. Heterogeneity of vegetation structure tended to decrease as the scale of measurement increased in both treatment and control pastures. There was deviation from this trend, however, in the treatment pastures that exhibited much higher heterogeneity at the patch scale (mean patch size=202ha) of measurement, the scale at which patch fires were conducted. Synthesis and applications.Vegetation structure in A. filifolia shrublands of our study was readily altered by the fire-grazing interaction but also demonstrated substantial resilience to these effects. The fire-grazing interaction also changed the total amount of heterogeneity characterizing this system, the scale at which heterogeneity in this system was expressed and the amount of heterogeneity expressed through time. Land managers seeking to impose a shifting mosaic of heterogeneity on this vegetation type can do so by restoring the fire-grazing interaction with potential conservation benefits similar to what has been achieved in other ecosystems where historic cycles of disturbance and rest have been restored. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.
NASA Astrophysics Data System (ADS)
Huang, Ying; Bevans, W. J.; Xiao, Hai; Zhou, Zhi; Chen, Genda
2012-04-01
During or after an earthquake event, building system often experiences large strains due to shaking effects as observed during recent earthquakes, causing permanent inelastic deformation. In addition to the inelastic deformation induced by the earthquake effect, the post-earthquake fires associated with short fuse of electrical systems and leakage of gas devices can further strain the already damaged structures during the earthquakes, potentially leading to a progressive collapse of buildings. Under these harsh environments, measurements on the involved building by various sensors could only provide limited structural health information. Finite element model analysis, on the other hand, if validated by predesigned experiments, can provide detail structural behavior information of the entire structures. In this paper, a temperature dependent nonlinear 3-D finite element model (FEM) of a one-story steel frame is set up by ABAQUS based on the cited material property of steel from EN 1993-1.2 and AISC manuals. The FEM is validated by testing the modeled steel frame in simulated post-earthquake environments. Comparisons between the FEM analysis and the experimental results show that the FEM predicts the structural behavior of the steel frame in post-earthquake fire conditions reasonably. With experimental validations, the FEM analysis of critical structures could be continuously predicted for structures in these harsh environments for a better assistant to fire fighters in their rescue efforts and save fire victims.
Reis, Matheus G; Fieker, Carolline Z; Dias, Manoel M
2016-05-13
Grasslands are the most threatened physiognomies of the Cerrado biome (Brazilian savanna), a biodiversity hotspot with conservation as a priority. The Serra da Canastra National Park protects the most important remnants of the Cerrado's southern grasslands, which are under strong anthropogenic pressure. The present study describes the structure of bird assemblages that directly use food resources in burned areas, comparing areas affected by natural fire to the areas where controlled fires were set (a management strategy to combat arson). The tested null hypothesis was that different bird assemblages are structured in a similar manner, regardless of the post-fire period or assessed area. Between December/2012 and January/2015, 92 species were recorded foraging in the study areas. The results indicate that both types of burnings triggered profound and immediate changes in bird assemblages, increasing the number of species and individuals. Natural fires exhibited a more significant influence on the structure (diversity and dominance) than prescribed burnings. Nevertheless, all the differences were no longer noticeable after a relatively short time interval of 2-3 months after prescribed burnings and 3-4 after natural fires. The findings may help the understanding of prescribed burnings as a management strategy for bird conservation in grasslands.
Analytical modeling of fire growth on fire-resistive wood-based materials with changing conditions
Mark A. Dietenberger
2006-01-01
Our analytical model of fire growth for the ASTM E 84 tunnel, which simultaneously predicts heat release rate, flame-over area, and pyrolysis area as functions of time for constant conditions, was documented in the 2001 BCC Symposium for different treated wood materials. The model was extended to predict ignition and fire growth on exterior fire-resistive structures...
Anne E. Black; Peter Landres
2012-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA Forest Service and U.S. Department of the Interior 2000). Yet some fire management (such as building fire line, spike camps, or helispots) potentially causes both short- and longterm...
Eric E. Knapp; Scott L. Stephens; James D. McIver; Jason J. Moghaddas; Jon E. Keeley
2004-01-01
Management practices have altered both the structure and function of forests throughout the United States. Some of the most dramatic changes have resulted from fire exclusion, especially in forests that historically experienced relatively frequent, low- to moderate-intensity fire regimes. In the Sierra Nevada, fire exclusion is believed to have resulted in widespread...
Relating fire-caused change in forest structure to remotely sensed estimates of fire severity
Jamie M. Lydersen; Brandon M. Collins; Jay D. Miller; Danny L. Fry; Scott L. Stephens
2016-01-01
Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is often calculated twice--from images collected the year of the fire (initial...
Coupled numerical simulation of fire in tunnel
NASA Astrophysics Data System (ADS)
Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.
2018-01-01
In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is considered sufficiently accurate in this first phase of the research.
Fire Resistance of Large-Scale Cross-Laminated Timber Panels
NASA Astrophysics Data System (ADS)
Henek, Vladan; Venkrbec, Václav; Novotný, Miloslav
2017-12-01
Wooden structures are increasingly being used in the construction of residential buildings. A common and often published reason to avoid wooden structures is their insufficient fire resistance, which reduces bearing capacity. For this reason, composite sandwich structures began to be designed to eliminate this drawback, as well as others. Recently, however, the trend is for a return to the original, wood-only variant and a search is underway for new technical means of improving the properties of such structures. Many timber structure technologies are known, but structures made from cross-laminated timber (CLT) panels have been used very often in recent years. CLT panels, also known as X-LAM, are currently gaining popularity in Europe. In the case of CLT panels composed of several layers of boards, they can be said to offer a certain advantage in that after the surface layer of a board has burnt and the subsurface layer has dried, oxygen is not drawn to the unburned wood for further combustion and thus the burning process ceases. CLT panels do not need to be specially modified or coated with fire resistant materials, although they are usually lined with gypsum-fibre fire resistant boards due to guidelines set out in the relevant standards. This paper presents a new method for the assessment of load-bearing perimeter walls fabricated from CLT panels without the use of an inner fire-retardant lining to ensure fire resistance at the level required by European standards (i.e. those harmonized for the Czech construction industry). The calculations were verified through laboratory tests which show that better parameters can be achieved during the classification of structures from the fire resistance point of view. The aim of the article is to utilize the results of assessment and testing by an accredited laboratory in order to demonstrate the possibilities of using CLT panels for the construction of multistorey as well as multi-purpose buildings in the Czech Republic.
Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J
2009-04-24
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen
2009-01-01
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.
2014-01-01
Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.
Wildland fire management futures: insights from a foresight panel
Robert L. Olson; David N. Bengston; Leif A. DeVaney; Trevor A.C. Thompson
2015-01-01
Wildland fire management faces unprecedented challenges in the 21st century: the increasingly apparent effects of climate change, more people and structures in the wildland-urban interface, growing costs associated with wildfire management, and the rise of high-impact fires, to name a few. Given these significant and growing challenges, conventional fire management...
24 CFR 234.270 - Condition of the multifamily structure.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (b) If the property has been damaged by fire and such property was not covered by fire insurance at... Commissioner without deduction from the insurance benefits for any loss occasioned by such fire if the following conditions are met: (1) The property shall have been covered by fire insurance at the time the...
Fire regimes and approaches for determining fire history
James K. Agee
1996-01-01
Fire has been an important evolutionary influence in forests, affecting species composition, structure, and functional aspects of forest biology. Restoration of wildland forests of the future will depend in part on restoring fire to an appropriate role in forest ecosystems. This may include the "range of natural variability" or other concepts associated with...
Chapter 1: Fire and nonnative invasive plants-introduction
Jane Kapler Smith; Kristin Zouhar; Steve Sutherland; Matthew L. Brooks
2008-01-01
Fire is a process integral to the functioning of most temperate wildland ecosystems. Lightning-caused and anthropogenic fires have influenced the vegetation of North America profoundly for millennia (Brown and Smith 2000; Pyne 1982b). In some cases, fire has been used to manipulate the species composition and structure of ecosystems to meet management objectives,...
Assessing wildland fire risk transmission to communities in northern Spain
Fermín J. Alcasena; Michele Salis; Alan A. Ager; Rafael Castell; Cristina Vega-García
2017-01-01
We assessed potential economic losses and transmission to residential houses from wildland fires in a rural area of central Navarra (Spain). Expected losses were quantified at the individual structure level (n = 306) in 14 rural communities by combining fire model predictions of burn probability and fire intensity with susceptibility functions derived from expert...
Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.
2012-01-01
Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.
On the temperature prediction in a fire escape passage
NASA Astrophysics Data System (ADS)
Casano, G.; Piva, S.
2017-11-01
Fire safety engineering requires a detailed understanding of fire behaviour and of its effects on structures and people. Many factors may condition the fire scenario, as for example, heat transfer between the flame and the boundary structures. Currently advanced numerical codes for the prediction of the fire behaviour are available. However, these solutions often require heavy calculations and long times. In this context analytical solutions can be useful for a fast analysis of simplified schematizations. After that, it is more effective the final utilization of the advanced fire codes. In this contribution, the temperature in a fire escape passage, separated with a thermally resistant wall from a fire room, is analysed. The escape space is included in a building where the neighbouring rooms are at a constant undisturbed temperature. The presence of the neighbouring rooms is considered with an equivalent heat transfer coefficient, in a boundary condition of the third type. An analytical solution is used to predict the temperature distribution during the fire. It allows to obtain useful information on the temperature reached in the escape area in contact with a burning room; it is useful also for a fast choice of the thermal characteristics of a firewall.
Highly Flexible Superhydrophobic and Fire-Resistant Layered Inorganic Paper.
Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin
2016-12-21
Traditional paper made from plant cellulose fibers is easily destroyed by either liquid or fire. In addition, the paper making industry consumes a large amount of natural trees and thus causes serious environmental problems including excessive deforestation and pollution. In consideration of the intrinsic flammability of organics and minimizing the effects on the environment and creatures, biocompatible ultralong hydroxyapatite nanowires are an ideal building material for inorganic fire-resistant paper. Herein, a new kind of free-standing, highly flexible, superhydrophobic, and fire-resistant layered inorganic paper has been successfully prepared using ultralong hydroxyapatite nanowires as building blocks after the surface modification with sodium oleate. During the vacuum filtration, ultralong hydroxyapatite nanowires assemble into self-roughened setalike microfibers, avoiding the tedious fabrication process to construct the hierarchical structure; the self-roughened microfibers further form the inorganic paper with a nacrelike layered structure. We have demonstrated that the layered structure can significantly improve the resistance to mechanical destruction of the as-prepared superhydrophobic paper. The as-prepared superhydrophobic and fire-resistant inorganic paper shows excellent nonflammability, liquid repellency to various commercial drinks, high thermal stability, and self-cleaning property. Moreover, we have explored the potential applications of the superhydrophobic and fire-resistant inorganic paper as a highly effective adsorbent for oil/water separation, fire-shielding protector, and writing paper.
Local Planning Considerations for the Wildland-Structural Intermix in the Year 2000
Robert L. Irwin
1987-01-01
California's foothill counties are the scene of rapid development. All types of construction in former wildlands is creating an intermix of wildland-structures-wildland that is different from the traditional "urban-wildland interface." The fire and structural environment for seven counties is described. Fire statistics are compared with growth patterns...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
Heat resistant soy adhesives for structural wood products
Christopher G. Hunt; Charles Frihart; Jane O' Dell
2009-01-01
Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening and depolymerization of biobased polymers at elevated temperatures should be an advantage of biobased adhesives compared to fossil fuel-based adhesives. Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening...
Costs of landscape silviculture for fire and habitat management.
S. Hummel; D.E. Calkin
2005-01-01
In forest reserves of the U.S. Pacific Northwest, management objectives include protecting late-semi habitat structure by reducing the threat of large-scale disturbances like wildfire. We simulated how altering within- and among-stand structure with silvicultural treatments of differing intensity affected late-seral forest (LSF) structure and fire threat (FT) reduction...
Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North
2015-01-01
Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...
Rocky Mountain Research Station USDA Forest Service
2005-01-01
The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...
Matthew Reilly; Kenneth Outcalt; Joseph O’Brien; Dale Wade
2016-01-01
We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pineâhardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density...
Fire-mediated dieback and compositional cascade in an Amazonian forest.
Barlow, Jos; Peres, Carlos A
2008-05-27
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.
Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests.
Brown, Peter M
2006-10-01
Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Niñas, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Niño, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.
Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine.
Rincón, A; Santamaría, B P; Ocaña, L; Verdú, M
2014-02-01
Environmental disturbances define the diversity and assemblage of species, affecting the functioning of ecosystems. Fire is a major disturbance of Mediterranean pine forests. Pines are highly dependent on the ectomycorrhizal (EM) fungal symbiosis, which is critical for tree recruitment under primary succession. To determine the effects of time since fire on the structure and recovery of EM fungal communities, we surveyed the young Pinus pinaster regenerate in three sites differing in the elapsed time after the last fire event. Pine roots were collected, and EM fungi characterized by sequencing the internal transcribed spacer (ITS) and the large subunit (LSU) regions of the nuclear ribosomal (nr)-DNA. The effects of the elapsed time after fire on the EM community structure (richness, presence/absence of fungi, phylogenetic diversity) and on soil properties were analysed.Fungal richness decreased with the elapsed time since the fire; although, the phylogenetic diversity of the EM community increased. Soil properties were different depending on the elapsed time after fire and particularly, the organic matter, carbon-to-nitrogen (C/N) ratio, nitrogen and iron significantly correlated with the assemblage of fungal species. Ascomycetes, particularly Tuberaceae and Pezizales, were significantly over-represented on saplings in the burned site. On seedlings, a significant over-representation of Rhizopogonaceae and Atheliaceae was observed in the most recently burned site, while other fungi (i.e. Cortinariaceae) were significantly under-represented. Our results are consistent with the hypothesis that fire can act as a selective agent by printing a phylogenetic signal on the EM fungal communities associated with naturally regenerated pines, pointing out to some groups as potential fire-adapted fungi.
Bowles, Marlin L; Jones, Michael D
2013-03-01
Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.
Effects of fire season on vegetation in longleaf pine (Pinus palustris) forests
Bryan T. Mudder; G. Geoff Wang; Joan L. Walker; J. Drew Lanham; Ralph Costa
2010-01-01
Forest managers in the Southeastern United States are interested in the restoration of not only longleaf pine (Pinus palustris) trees, but also the characteristic forest structure and ground-layer vegetation of the longleaf pine ecosystem. Season of burn, fire intensity, and fire frequency are critical components of a fire regime that supports...
Nicole M. Vaillant; Erin K. Noonan-Wright; Alicia L. Reiner; Carol M. Ewell; Benjamin M. Rau; Josephine A. Fites-Kaufman; Scott N. Dailey
2015-01-01
Altered fuel conditions coupled with changing climate have disrupted fire regimes of forests historically characterised by high-frequency and low-to-moderate-severity fire. Managers use fuel treatments to abate undesirable fire behaviour and effects. Short-term effectiveness of fuel treatments to alter fire behaviour and effects is well documented; however, long-term...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Criteria for Structural Firefighter's Helmets” (1977) U.S. Fire Administration, National Fire Safety and... Section 1910.156 Fire Brigades D Appendix D to Subpart L of Part 1910 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH...
Restoring fire suppressed Texas pak woodlands to historic conditions using prescribed fire
Jeff C. Sparks; Michael C. Stambaugh; Eric L. Keith
2012-01-01
Comparable to many oak ecosystems across the eastern United States, oak woodlands in Texas display characteristics of changing composition and structure due to altered fire regimes. Information describing historic fire regimes suggests woodlands underwent relatively frequent and repeated burning prior to major Euro-American influence in the early 19th century. Oak...
Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests
J. Mason Earles; Malcolm P. North; Matthew D. Hurteau
2014-01-01
Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible...
Rocky Mountain Research Station USDA Forest Service
2004-01-01
The principal goals of fuel treatments are to reduce fireline intensities, reduce the potential for crown fires, improve opportunities for successful fire suppression, and improve forest resilience to forest fires. This fact sheet discusses thinning, and surface fuel treatments, as well as challenges associated with those treatments.
24 CFR 221.305 - Condition of the multifamily structure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... has been damaged by fire and such property was not covered by fire insurance at the time of the damage... from the insurance benefits for any loss occasioned by such fire if the following conditions are met: (1) The property shall have been covered by fire insurance at the time the mortgage was insured. (2...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...
Jens T. Stevens; Brandon M. Collins; Jonathan W. Long; Malcolm P. North; Susan J. Prichard; Leland W. Tarnay; Angela M. White
2016-01-01
Fuel treatments in fire-suppressed mixed-conifer forests are designed to moderate potential wildfire behavior and effects. However, the objectives for modifying potential fire effects can vary widely, from improving fire suppression efforts and protecting infrastructure, to reintroducing low-severity fire, to restoring and maintaining variable forest structure and...
Varied ecosystems need different fire protection
Gutsell, Sheri L.; Johnson, Edward A.; Miyanishi, Kiyoko; Keeley, Jon E.; Dickinson, Matthew; Bridge, Simon R. J.
2001-01-01
Covington states in his Commentary1 that the open ponderosa pine forests of the western United States are "in widespread collapse" because fire suppression by humans has eliminated the low-intensity surface fire regime that maintained the open, park-like structure of these forests. He fears this will lead to an "unprecedented" crown fire regime that will eliminate forests.
Avoidance of fire by Louisiana pine snakes, Pituophis melanoleucus ruthveni
D. Craig Rudolph; Shirley J. Burgdorf; John C. Tull; Marc Ealy; Richard N. Conner; Richard R. Schaefer; Robert R. Fleet
1998-01-01
Wildfire and prescribed fire are important influences on pine ecosystems in the southeastern United States (Komarek 1968, 1974; Platt et al. 1988). Although considerable research on the impact of fire on vertebrates due to changes in vegetation structure has been reported, the direct impact of fire on vertebrates is not well known (Means and Campbell 1981). The...
Decision modeling for fire incident analysis
Donald G. MacGregor; Armando González-Cabán
2009-01-01
This paper reports on methods for representing and modeling fire incidents based on concepts and models from the decision and risk sciences. A set of modeling techniques are used to characterize key fire management decision processes and provide a basis for incident analysis. The results of these methods can be used to provide insights into the structure of fire...
Resource values in analyzing fire management programs for economic efficiency
Irene A. Althaus; Thomas J. Mills
1982-01-01
In analyzing fire management programs for their economic efficiency, it is necessary to assign monetary values to the changes in resource outputs caused by, fire. The derivation of resource values is complicated by imperfect or nonexistent commercial market structures. The valuation concept recommended for fire program analyses is willingness-to-pay because it permits...
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.
2009-01-01
The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.
Grau-Andrés, Roger; Davies, G Matt; Waldron, Susan; Scott, E Marian; Gray, Alan
2017-12-15
Variation in the structure of ground fuels, i.e. the moss and litter (M/L) layer, may be an important control on fire severity in heather moorlands and thus influence vegetation regeneration and soil carbon dynamics. We completed experimental fires in a Calluna vulgaris-dominated heathland to study the role of the M/L layer in determining (i) fire-induced temperature pulses into the soil and (ii) post-fire soil thermal dynamics. Manually removing the M/L layer before burning increased fire-induced soil heating, both at the soil surface and 2 cm below. Burnt plots where the M/L layer was removed simulated the fuel structure after high severity fires where ground fuels are consumed but the soil does not ignite. Where the M/L layer was manually removed, either before or after the fire, post-fire soil thermal dynamics showed larger diurnal and seasonal variation, as well as similar patterns to those observed after wildfires, compared to burnt plots where the M/L layer was not manipulated. We used soil temperatures to explore potential changes in post-fire soil respiration. Simulated high fire severity (where the M/L layer was manually removed) increased estimates of soil respiration in warm months. With projected fire regimes shifting towards higher severity fires, our results can help land managers develop strategies to balance ecosystem services in Calluna-dominated habitats. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems
NASA Astrophysics Data System (ADS)
Morillo, Robin; Manz, Niklas
We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.
Study of aircraft crashworthiness for fire protection
NASA Technical Reports Server (NTRS)
Cominsky, A.
1981-01-01
Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.
Anne E. Black; Peter Landres
2011-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA and USDOI 2000). Yet some fire management (such as building fire line, spike camps, or heli-spots) potentially causes both short- and long-term impacts to forest health. In the short run,...
Jamie Lydersen; Malcolm North; Brandon M. Collins
2014-01-01
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ã2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...
Brandon M. Collins; Richard G. Everett; Scott L. Stephens
2011-01-01
We re-sampled areas included in an unbiased 1911 timber inventory conducted by the U.S. Forest Service over a 4000 ha study area. Over half of the re-sampled area burned in relatively recent management- and lightning-ignited fires. This allowed for comparisons of both areas that have experienced recent fire and areas with no recent fire, to the same areas historically...
Series of Wildfires in Northern California Continue Blazing
2015-08-06
California has been hit hard the past few weeks with storms. Storms bring lightning and lightning strikes cause wildfires. Currently there are at least five fire complexes in the area including River, Fork, South, Route and Mad River. The Mad River complex is a series of seven lightning fires that started on July 30th, 2015 after a lightning storm moved through Northern California. After initial firefighters responded, 25 fires were reported and most of the fires were contained. Some additional fires might be detected from the original lightning storms in the upcoming days and will be attacked once they are found. Damage assessment is ongoing and crews will determine the extent of structures and equipment damaged or destroyed. The River Complex is managing a total of 5 fires due to fires merging together on the Shasta-Trinity and the Six Rivers National Forests. Winds from the west are expected to lift the inversion today resulting in active fire behavior. The Fork Complex consists of over 40 fires, all of which were ignited by lightning between July 29 and 31, 2015. These fires are still being identified, assessed, and prioritized. Updated acreage and information about specific fires will be published as it is known. Fire activity moderated throughout last night (8/4) with the smoke inversion layer remaining in place today. Hopefully this will create favorable conditions for fire crews to take direct fire attack on the fires edge, construct dozer line and scout for best firefighting locations on all fires in the complex. The South Complex consists of approximately nine known fires, five of which are currently over 100 acres. The fires are active and defense of structures and point protection are in progress. The weather is trapping smoke in the valley causing very poor air quality. As the smoke lifts the fire activity increases. Firefighters will continue to provide point protection on structures and to look for opportunities to build direct and indirect containment lines. The Route Complex currently stands at 12,164 acres from seven separate fires and is at 2% containment. The overall acreage has been reduced because the South Fire on the nearby South Complex is merging with the Johnson Fire in the Route Complex resulting in decreased and revised fire perimeter acreage. This natural-color satellite image collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows smoke rising and drifting northwest from the various fire complexes. It was captured on August 04, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Four millennia of woodland structure and dynamics at the Arctic treeline of eastern Canada.
Auger, Sarah; Payette, Serge
2010-05-01
Paleoecological analysis using complementary indicators of vegetation and soil can provide spatially explicit information on ecological processes influencing trajectories of long-term ecosystem change. Here we document the structure and dynamics of an old-growth woodland before and after its inception 1000 years ago. We infer vegetation and soil characteristics from size and age distributions of black spruce (Picea mariana (Mill.) B.S.P.), soil properties, plant fossils, and paleosols. Radiocarbon ages of charcoal on the ground and in the soil indicate that the fire return interval was approximately 300 years between 2750 and 1000 cal. yr BP. No fire evidence was found before and after this period despite the presence of spruce since 4200 cal. yr BP. The size structures of living and dead spruce suggest that the woodland is in equilibrium with present climate in absence of fire. Tree establishment and mortality occurred regularly since the last fire event around 950 cal. yr BP. Both layering and occasional seeding have contributed to stabilize the spatial distribution of spruce over the past 1000 years. Since initial afforestation, soil development has been homogenized by the changing spatial distribution of spruce following each fire. We conclude that the history of the woodland is characterized by vegetation shifts associated with fire and soil disturbances and by millennial-scale maintenance of the woodland's structure despite changing climatic conditions.
Post-fire assessment of structural wood members
Robert J. Ross; Brian K. Brashaw; Xiping Wang; Robert H. White; Roy F. Pellerin
2005-01-01
Since the interior of a charred wood member normally retains its structural integrity, large structural wood members often do not need to be replaced after a fire. Engineering judgement is required to determine which members can remain and which members need to be replaced or repaired. Due to the lack of established methods to directly determine the residual capacity...
Automated integration of lidar into the LANDFIRE product suite
Peterson, Birgit; Nelson, Kurtis; Seielstad, Carl; Stoker, Jason M.; Jolly, W. Matt; Parsons, Russell
2015-01-01
Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although lidar data are increasingly available, they have rarely been applied to wildland fuels mapping efforts, mostly due to two issues. First, the Landscape Fire and Resource Planning Tools (LANDFIRE) program, which has become the default source of large-scale fire behaviour modelling inputs for the US, does not currently incorporate lidar data into the vegetation and fuel mapping process because spatially continuous lidar data are not available at the national scale. Second, while lidar data are available for many land management units across the US, these data are underutilized for fire behaviour applications. This is partly due to a lack of local personnel trained to process and analyse lidar data. This investigation addresses these issues by developing the Creating Hybrid Structure from LANDFIRE/lidar Combinations (CHISLIC) tool. CHISLIC allows individuals to automatically generate a suite of vegetation structure and wildland fuel parameters from lidar data and infuse them into existing LANDFIRE data sets. CHISLIC will become available for wider distribution to the public through a partnership with the U.S. Forest Service’s Wildland Fire Assessment System (WFAS) and may be incorporated into the Wildland Fire Decision Support System (WFDSS) with additional design and testing. WFAS and WFDSS are the primary systems used to support tactical and strategic wildland fire management decisions.
NASA Astrophysics Data System (ADS)
Alonzo, M.; Morton, D. C.; Cook, B.; Andersen, H. E.; Mack, M. C.
2017-12-01
The growing frequency and severity of boreal forest fires has important consequences for fire carbon emissions and ecosystem composition. Severe fires are typically associated with high degrees of both canopy and soil organic layer (SOL) consumption, particularly in black spruce stands. Complete canopy consumption can decrease the likelihood of spruce regeneration due to reduced viability of the aerial seedbank. Deeper burning of the SOL increases fire emissions and can expose mineral soil that promotes colonization by broadleaf species. There is mounting evidence that a disturbance-driven shift from spruce to broadleaf forests may indicate an ecological state change with feedbacks to regional and global climate. If post-fire successional dynamics can be characterized at an ecosystem scale using remote sensing data, we will be better equipped to constrain carbon and energy fluxes from SOL losses and albedo changes. In this study, we used Landsat time series, very high-resolution structure-from-motion (SFM) drone imagery, and field measurements to investigate post-fire regrowth 13 years after the 2004 Taylor Complex (TC) fires in interior Alaska. Twenty-seven TC plots span a gradient of moisture conditions and burn severity as estimated by loss of SOL. A range of variables potentially governing seedling species dominance (e.g., moisture status, distance to seed sources) have been collected systematically over the years following fire. In July 2017, we additionally collected < 2 cm resolution drone imagery over 25 of the TC plots. We processed these highly overlapped, nadir-view and oblique angle photos into extremely dense (>700 pts/m2) RGB-colored point clouds using SFM techniques. With these point clouds and high resolution orthomosaics, we estimated: 1) snag heights and biomass, 2) remnant snag fine branching, and 3) species and structure of shrubs and groundcover that have regrown since fire. We additionally assembled a dense Landsat time series arranged by day-of-year to monitor pre-fire and post-fire phenology. Our preliminary results illustrate how ultra-fine and moderate-scale remote sensing can be used to better understand the processes of ecosystem regeneration following fire.
Wirth, C; Schulze, E-D; Schulze, W; von Stünzner-Karbe, D; Ziegler, W; Miljukova, I M; Sogatchev, A; Varlagin, A B; Panvyorov, M; Grigoriev, S; Kusnetzova, W; Siry, M; Hardes, G; Zimmermann, R; Vygodskaya, N N
1999-10-01
The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kg dw m -2 after 200 years depending on stand density and fire history compared to 20 kg dw m -2 in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
NASA Astrophysics Data System (ADS)
Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.
2016-12-01
Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.
NASA Astrophysics Data System (ADS)
Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Tague, N.
2015-12-01
A century of fire suppression in the Western United States has drastically altered the historically fire-adapated ecology in California's Sierra Nevada Mountains. Fire suppression is understood to have increased the forest cover, as well as the stem density, canopy cover and water demand of montane forests, reducing resilience of the forests to drought, and increasing the risk of catastrophic fire by drying the landscape and increasing fuel loads. The potential to reverse these trends by re-introducing fire into the Sierra Nevada is highly promising, but the likely effects on vegetation structure and water balance are poorly quantified. The Illilouette Creek Basin in Yosemite National Park represents a unique experiment in the Sierra Nevada, in which managers have moved from fire suppression to allowing a near-natural fire regime to prevail since 1972. Changes in vegetation structure in the Illilouette since the restoration of natural burning provides a unique opportunity to examine how frequent, mixed severity fires can reshape the Sierra Nevada landscape. We characterize these changes from 1969 to the present using a combination of Landsat products and high-resolution aerial imagery. We describe how the landscape structure has changed in terms of vegetation composition and its spatial organization, and explore the drivers of different post-fire vegetation type transitions (e.g. forest to shrubland vs. forest to meadow). By upscaling field data using vegetation maps and Landsat wetness indices, we explore how these vegetation transitions have impacted the water balance of the Illilouette Creek Basin, potentially increasing its resilience in the face of drought, climate change, and catastrophic fire. In a region that is adapted to frequent disturbance from fire, this work helps us understand how allowing such natural disturbances to take place can increase the sustainability of diverse landscapes in the long term.
Synergistic effects of fire and elephants on arboreal animals in an African savanna.
Pringle, Robert M; Kimuyu, Duncan M; Sensenig, Ryan L; Palmer, Todd M; Riginos, Corinna; Veblen, Kari E; Young, Truman P
2015-11-01
Disturbance is a crucial determinant of animal abundance, distribution and community structure in many ecosystems, but the ways in which multiple disturbance types interact remain poorly understood. The effects of multiple-disturbance interactions can be additive, subadditive or super-additive (synergistic). Synergistic effects in particular can accelerate ecological change; thus, characterizing such synergies, the conditions under which they arise, and how long they persist has been identified as a major goal of ecology. We factorially manipulated two principal sources of disturbance in African savannas, fire and elephants, and measured their independent and interactive effects on the numerically dominant vertebrate (the arboreal gekkonid lizard Lygodactylus keniensis) and invertebrate (a guild of symbiotic Acacia ants) animal species in a semi-arid Kenyan savanna. Elephant exclusion alone (minus fire) had negligible effects on gecko density. Fire alone (minus elephants) had negligible effects on gecko density after 4 months, but increased gecko density twofold after 16 months, likely because the decay of fire-damaged woody biomass created refuges and nest sites for geckos. In the presence of elephants, fire increased gecko density nearly threefold within 4 months of the experimental burn; this occurred because fire increased the incidence of elephant damage to trees, which in turn improved microhabitat quality for geckos. However, this synergistic positive effect of fire and elephants attenuated over the ensuing year, such that only the main effect of fire was evident after 16 months. Fire also altered the structure of symbiotic plant-ant assemblages occupying the dominant tree species (Acacia drepanolobium); this influenced gecko habitat selection but did not explain the synergistic effect of fire and elephants. However, fire-driven shifts in plant-ant occupancy may have indirectly mediated this effect by increasing trees' susceptibility to elephant damage. Our findings confirm the importance of fire × elephant interactions in structuring arboreal wildlife populations. Where habitat modification by megaherbivores facilitates co-occurring species, fire may amplify these effects in the short term by increasing the frequency or intensity of herbivory, leading to synergy. In the longer term, tree mortality due to both top kill by fire and toppling by large herbivores may reduce overall microhabitat availability, eliminating the synergy. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Long, Xi-En; Chen, Chengrong; Xu, Zhihong; He, Ji-Zheng
2014-02-01
Fire shapes global biome distribution and promotes the terrestrial biogeochemical cycles. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in the biogeochemical cycling of nitrogen (N). However, behaviors of AOB and AOA under long-term prescribed burning remain unclear. This study was to examine how fire affected the abundances and communities of soil AOB and AOA. A long-term repeated forest fire experiment with three burning treatments (never burnt, B0; biennially burnt, B2; and quadrennially burnt, B4) was used in this study. The abundances and community structure of soil AOB and AOA were determined using quantitative PCR, restriction fragment length polymorphism and clone library. More frequent fires (B2) increased the abundance of bacterium amoA gene, but tended to decrease archaeal amoA genes. Fire also modified the composition of AOA and AOB communities. Canonical correspondence analysis showed soil pH and dissolved organic C (DOC) strongly affected AOB genotypes, while nitrate-N and DOC shaped the AOA distribution. The increased abundance of bacterium amoA gene by fires may imply an important role of AOB in nitrification in fire-affected soils. The fire-induced shift in the community composition of AOB and AOA demonstrates that fire can disturb nutrient cycles. © 2013.
Fire patterns of South Eastern Queensland in a global context: A review
Philip Le C. F. Stewart; Patrick T. Moss
2015-01-01
Fire is an important driver in ecosystem evolution, composition, structure and distribution, and is vital for maintaining ecosystems of the Great Sandy Region (GSR). Charcoal records for the area dating back over 40, 000 years provide evidence of the great changes in vegetation composition, distribution and abundance in the region over time as a result of fire. Fires...
Predicting post-fire change in West Virginia, USA from remotely-sensed data
Michael P. Strager; Melissa Thomas-Van Gundy; Aaron E. Maxwell
2016-01-01
Prescribed burning is used in West Virginia, USA to return the important disturbance process of fire to oak and oak-pine forests. Species composition and structure are often the main goals for re-establishing fire with less emphasis on fuel reduction or reducing catastrophic wildfire. In planning prescribed fires land managers could benefit from the ability to predict...
Burning rates of wood cribs with implications for wildland fires
Sara McAllister; Mark Finney
2016-01-01
Wood cribs are often used as ignition sources for room fire tests and the well characterized burning rates may also have applications to wildland fires. The burning rate of wildland fuel structures, whether the needle layer on the ground or trees and shrubs themselves, is not addressed in any operational fire model and no simple model exists. Several relations...
Malcolm North; Pete Stine; William Zielinski; Kevin O’Hara; Scott Stephens
2010-01-01
On a dry afternoon in September of 2007 the âMoonlight Fireâ started in a northeastern California mixed-conifer forest that had been accumulating fuels for over a century. Twelve days later the fire was contained after burning 65,000 acres, destroying seven structures, injuring 34 firefighters, and costing $32 million. Much of the forest within the fire perimeter had...
History of fire in a southern Ohio second-growth mixed-oak forest
Elaine Kennedy Sutherland
1997-01-01
The role of fire in shaping the composition and structure of Quercus (oak)-dominated communities in the deciduous forests of eastern North America is becoming clearer but fire regimes are less well known. I analyzed the fire-scar patterns in 14 oak cross sections from a mixed-oak stand in Vinton County, southeastern Ohio, to determine the frequency...
Christina M. Andruk; Norma L. Fowler
2015-01-01
Decades of fire suppression have significantly altered the vegetation structure and composition of savannas, woodlands, and forests. The presence of endangered species and other species of conservation concern in these fire-suppressed systems makes re-introducing fire more challenging. In oak-juniper woodlands of central Texas, we are presented with the challenge of re...
Large-scale patterns of forest fire occurrence in the Conterminous United States and Alaska, 2001-08
Kevin M. Potter
2012-01-01
Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...
Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2009
Kevin M. Potter
2013-01-01
Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...
Tested by fire: the cone fire and the lessons of an accidental experiment
Sussanne Maleki; Carl Featured: Skinner; Martin Ritchie
2007-01-01
Catastrophic wildfires burn every year in the forests of the Western United States. In the past, low-intensity wildfires were common and played an important ecological role that benefited these forests. But fire suppression policies over the last century have interrupted natural fire regimes. As a result, forests that were once characterized by an open structure and...
Fuels planning: Managing forest structure to reduce fire hazard
David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt
2003-01-01
Prior to the 20th century, low intensity fires burned regularly in most arid to semiarid forest ecosystems, with ignitions caused by lightning and humans (e.g., Baisan and Swetnam 1997, Allen et al. 2002, Hessl et al. 2004). Low intensity fires controlled regeneration of fire sensitive (e.g., grand fir [Abies grandis]) species (Arno and Allison-Bunnell 2002), promoted...
Effects of a prescribed fire on oak woodland stand structure
Danny L. Fry
2002-01-01
Fire damage and tree characteristics of mixed deciduous oak woodlands were recorded after a prescription burn in the summer of 1999 on Mt. Hamilton Range, Santa Clara County, California. Trees were tagged and monitored to determine the effects of fire intensity on damage, recovery and survivorship. Fire-caused mortality was low; 2-year post-burn survey indicates that...
Evidence of fuels management and fire weather influencing fire severity in an extreme fire event
Jamie M. Lydersen; Brandon M. Collins; Matthew L. Brooks; John R. Matchett; Kristen L. Shive; Nicholas A. Povak; Van R. Kane; Douglas F. Smith
2017-01-01
Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels...
Linda Tedrow; Wendel J. Hann
2015-01-01
The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...
Fire in Australian savannas: from leaf to landscape
Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri
2015-01-01
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767
Keeley, Jon E; Zedler, Paul H
2009-01-01
We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10,000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (> or = 50,000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating.
Keeley, J.E.; Zedler, P.H.
2009-01-01
We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating. ?? 2009 by the Ecological Society of America.
Pervasive effects of wildfire on foliar endophyte communities in montane forest trees
Huang, Yu-Ling; Devan, MM Nandi; U'Ren, Jana M.; Furr, Susan H.; Arnold, A. Elizabeth
2015-01-01
Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes. PMID:26370111
Pervasive Effects of Wildfire on Foliar Endophyte Communities in Montane Forest Trees.
Huang, Yu-Ling; Devan, M M Nandi; U'Ren, Jana M; Furr, Susan H; Arnold, A Elizabeth
2016-02-01
Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together, these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes.
Richard D. Reitz
2003-01-01
The old model of individual homeowners and neighborhoods depending solely on government provided fire fighting resources is gone. Recent wildland fires have demonstrated that community firefighting resources are easily outpaced when multiple structures are burning simultaneously. The cure is to move most structure protection responsibility to the homeowner and...
Formation of thin walled ceramic solid oxide fuel cells
Claar, Terry D.; Busch, Donald E.; Picciolo, John J.
1989-01-01
To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.
10 CFR 50.48 - Fire protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... suppression systems; and (iii) The means to limit fire damage to structures, systems, or components important...) Standard 805, “Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating... pressurized-water reactors (PWRs) is not permitted. (iv) Uncertainty analysis. An uncertainty analysis...
10 CFR 50.48 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... suppression systems; and (iii) The means to limit fire damage to structures, systems, or components important...) Standard 805, “Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating... pressurized-water reactors (PWRs) is not permitted. (iv) Uncertainty analysis. An uncertainty analysis...
Fire and shade effects on ground cover structure in Kirtland's warbler habitat
John R. Probst; Deahn DonnerWright
2003-01-01
Researchers and managers have suggested that a narrow range of ground-cover structure resulting from fire might be necessary for suitable Kirtland`s warbler nesting conditions. Yet, Kirtland`s warblers have bred successfully in numerous unburned stands and there is little direct evidence to indicate that ground cover structure is a limiting factor for nest sites or...
Fabian C. C. Uzoh; Carl N. Skinner
2009-01-01
Little is known about the dynamics of coarse woody debris (CWD) in forests that were originally characterized by frequent, low-moderate intensity fires. We investigated effects of prescribed burning at the Blacks Mountain Experimental Forest in northeastern California following creation of two stand structure conditions: 1) high structural diversity (HiD) that included...
NASA Astrophysics Data System (ADS)
Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice
2016-06-01
A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.
Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.
2008-01-01
We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.
NASA Astrophysics Data System (ADS)
Niedośpiał, Marcin; Knauff, Michał; Barcewicz, Wioleta
2015-03-01
In this paper results of the experimental tests of four full-scale composite steel-concrete elements are reported. In the steel-concrete composite elements, a steel beam was connected with a slab cast on profiled sheeting, by shear studs. The end-plates were (the thickness of 8 mm, 10 mm and 12 mm) thinner than in ordinary design. Joints between the column and the beams have been designed as semi-rigid, i.e. the deformations of endplates affect the distribution of forces in the adjacent parts of the slab. The paper presents the theory of cracking in reinforced concrete and steel-concrete composite members (according to the codes), view of crack pattern on the surface of the slabs and a comparison of the tests results and the code calculations. It was observed, that some factors influencing on crack widths are not taken in Eurocode 4 (which is based on Eurocode 2 with taking into account the phenomenon called "tension stiffening"). W artykule przedstawiono wyniki badań czterech elementów zespolonych. Kształtownik stalowy połączony był z betonowym stropem wykonanym na blasze fałdowej. W modelu zastosowano cienkie blachy czołowe (o grubości 8 mm, 10 mm i 12 mm), cieńsze niż zwykle przyjmowane w praktyce projektowej. Połączenie to zaprojektowano jako podatne tzn. takie, w którym odkształcenia blach czołowych mają istotny wpływ na rozkład sił w połączeniu. Przedstawiono normową teorię dotyczącą zarysowania elementów żelbetowych i zespolonych, obraz zarysowania stropu oraz porównano otrzymane wyniki z obliczeniami wykonanymi wg aktualnych norm. Zauważono, iż nie wszystkie czynniki obliczania szerokości rys w konstrukcjach zespolonych są zdefiniowane w normie projektowania konstrukcji zespolonych (która w tej kwestii odwołuje się do normy projektowania konstrukcji żelbetowych z uwzględnieniem zjawiska "tension stiffening").
Determination of the Characteristic Values and Variation Ratio for Sensitive Soils
NASA Astrophysics Data System (ADS)
Milutinovici, Emilia; Mihailescu, Daniel
2017-12-01
In 2008, Romania adopted Eurocode 7, part II, regarding the geotechnical investigations - called SR EN1997-2/2008. However a previous standard already existed in Romania, by using the mathematical statistics in determination of the calculation values, the requirements of Eurocode can be taken into consideration. The setting of characteristics and calculations values of the geotechnical parameters was finally issued in Romania at the end of 2010 at standard NP122-2010 - “Norm regarding determination of the characteristic and calculation values of the geotechnical parameters”. This standard allows using of data already known from analysed area and setting the calculation values of geotechnical parameters. However, this possibility exist, it is not performed easy in Romania, considering that there isn’t any centralized system of information coming from the geotechnical studies performed for various objectives of private or national interests. Every company performing geotechnical studies tries to organize its own data base, but unfortunately none of them use existing centralized data. When determining the values of calculation, an important role is played by the variation ratio of the characteristic values of a geotechnical parameter. There are recommendations in the mentioned Norm, that could be taken into account, regarding the limits of the variation ratio, but these values are mentioned for Quaternary age soils only, normally consolidated, with a content of organic material < 5%. All of the difficult soils are excluded from the Norm even if they exist and affect the construction foundations on more than a half of the Romania’s surface. A type of difficult soil, extremely widespread on the Romania’s territory, is the contractile soil (with high swelling and contractions, very sensitive to the seasonal moisture variations). This type of material covers and influences the construction foundations in one over third of Romania’s territory. This work is proposing to be a step in determination of limits of the variation ratios for the contractile soils category, for the most used geotechnical parameters in the Romanian engineering practice, namely: the index of consistency and the cohesion.
Bartlein, P.J.; Hostetler, S.W.; Shafer, S.L.; Holman, J.O.; Solomon, A.M.
2008-01-01
The temporal and spatial structure of 332 404 daily fire-start records from the western United States for the period 1986 through 1996 is illustrated using several complimentary visualisation techniques. We supplement maps and time series plots with Hovmo??ller diagrams that reduce the spatial dimensionality of the daily data in order to reveal the underlying space?time structure. The mapped distributions of all lightning- and human-started fires during the 11-year interval show similar first-order patterns that reflect the broad-scale distribution of vegetation across the West and the annual cycle of climate. Lightning-started fires are concentrated in the summer half-year and occur in widespread outbreaks that last a few days and reflect coherent weather-related controls. In contrast, fires started by humans occur throughout the year and tend to be concentrated in regions surrounding large-population centres or intensive-agricultural areas. Although the primary controls of human-started fires are their location relative to burnable fuel and the level of human activity, spatially coherent, weather-related variations in their incidence can also be noted. ?? IAWF 2008.
Creek and Rye Fires, Southern California
2017-12-18
While the Thomas fire in Ventura County, CA is the largest and most destructive, several other smaller fires burned in the Los Angeles area. The Creek fire destroyed 123 buildings and consumed over 15,000 acres. The smaller Rye fire burned 6,000 acres and destroyed 9 structures. The image was acquired December 17, 2017, covers an area of 9.7 by 13.5 kilometers, and is located at 34.4 degrees north, 118.5 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22149
Kip Van de Water; Malcolm North
2011-01-01
Fire plays an important role in shaping many Sierran coniferous forests, but longer fire return intervals and reductions in area burned have altered forest conditions. Productive, mesic riparian forests can accumulate high stem densities and fuel loads, making them susceptible to high-severity fire. Fuels treatments applied to upland forests, however, are...
Culture of fire and environmental education in wildfire-prone areas: current situation in Spain
Clara Quesada-Fernández; Daniel Quesada-Fernández
2013-01-01
The culture of fire in the context of climate change has become a complicated relationship between people and natural areas. The interaction between people and fire is not a new issue. The use of fire by humans in most aspects of life, especially in rural areas, together with rapid and haphazard growth of structures in wildfire-prone areas, has led...
Increasing elevation of fire in the Sierra Nevada and implications for forest change
Mark W. Schwartz; Nathalie Butt; Christopher R. Dolanc; Andrew Holguin; Max A. Moritz; Malcolm P. North; Hugh D. Safford; Nathan L. Stephenson; James H. Thorne; Phillip J. van Mantgem
2015-01-01
Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we...
Paul F. Hessburg; James K. Agee; Jerry F. Franklin
2005-01-01
Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...
Laughlin, D.C.; Grace, J.B.
2006-01-01
Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty-two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time-since-fire or are there unique influences associated with long-term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post-fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time-since-fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old-growth montane forests. These results show how multivariate models of herbaceous richness can be expanded to apply to forested systems. Copyright ?? Oikos 2006.
Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance
Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.
2012-01-01
Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwager, K.; Green, T. M.
The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened,more » and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.« less
Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.
2005-01-01
The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
Evaluating Fire Doors with Hose Ports.
1987-06-01
cm) of approved mineral wool structural insulation was applied to the fire side of the steel bulkhead. Steel pins were welded to the bulkhead and the...steel bulkheads, by continuously welding the frame Cl]nce to the bulkhead, USCG approved mineral wool structural insulation was applied on one side of
E. L. Schaffer
Analytical procedures to predict the fire endurance of structural wood members have been developed worldwide. This research is reviewed for capability to predict the results of tests in North America and what considerations are necessary to apply the information here. Critical research needs suggested include: (1) Investigation of load levels used in reported tests,...
Code of Federal Regulations, 2011 CFR
2011-07-01
... protection requirements for accommodation spaces and modules? 149.641 Section 149.641 Navigation and... the structural fire protection requirements for accommodation spaces and modules? (a) Accommodation spaces and modules must be designed, located, and constructed so as to minimize the effects of flame...
Estimating forest canopy fuel parameters using LIDAR data.
Hans-Erik Andersen; Robert J. McGaughey; Stephen E. Reutebuch
2005-01-01
Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to...
Geographic variation in mixed-conifer forest fire regimes in California
Beaty R. Matthew; Taylor Alan H.
2008-01-01
This paper reviews recent research from California on geographic variability in mixed conifer(MC) forest fire regimes. MC forests are typically described as having experienced primarilyfrequent, low to moderate severity burns prior to fire suppression that created a mosaic ofvegetation patches with variable structure. Research...
Shinneman, Douglas J.; Baker, William L.
2009-01-01
Fire is known to structure tree populations, but the role of broad-scale climate variability is less clear. For example, the influence of climatic “teleconnections” (the relationship between oceanic–atmospheric fluctuations and anomalous weather patterns across broad scales) on forest age structure is relatively unexplored. We sampled semiarid piñon–juniper (Pinus edulis–Juniperus osteosperma) woodlands in western Colorado, USA, to test the hypothesis that woodland age structures are shaped by climate, including links to oceanic–atmospheric fluctuations, and by past fires and livestock grazing. Low-severity surface fire was lacking, as fire scars were absent, and did not influence woodland densities, but stand-replacing fires served as long-rotation (>400–600 years), stand-initiating events. Old-growth stands (>300 years old) were found in 75% of plots, consistent with a long fire rotation. Juniper and piñon age structures suggest contrasting responses during the past several centuries to dry and wet episodes linked to the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). Juniper density increased slightly during periods of drought, positive (warm) AMO (after ∼10-year lag), and negative (cool) PDO. In contrast, piñon populations may still be recovering from a long, drought-filled period (AD 1620–1820), with pulses of recovery favored during cool AMO, warm PDO, and above-average moisture periods. Analysis of 20th-century tree establishment and instrumental climate data corroborate the long-term relationships between age structure and climate. After Euro–American settlement (AD 1881), livestock grazing reduced understory grasses and forbs, reducing competition with tree seedlings and facilitating climate-induced increases in piñons. Thus tree populations in these woodlands are in flux, affected by drought and wet periods linked to oceanic–atmospheric variability, Euro–American livestock grazing, and long-rotation, high-severity fires. Reductions in livestock grazing levels may aid ecological restoration efforts. However, given long-term fluctuations in tree density and composition, and expected further drought, thinning or burning to reduce tree populations may be misdirected.
Alien plant dynamics following fire in mediterranean-climate California shrublands
Keeley, J.E.; Baer-Keeley, M.; Fotheringham, C.J.
2005-01-01
Over 75 species of alien plants were recorded during the first five years after fire in southern California shrublands, most of which were European annuals. Both cover and richness of aliens varied between years and plant association. Alien cover was lowest in the first postfire year in all plant associations and remained low during succession in chaparral but increased in sage scrub. Alien cover and richness were significantly correlated with year (time since disturbance) and with precipitation in both coastal and interior sage scrub associations. Hypothesized factors determining alien dominance were tested with structural equation modeling. Models that included nitrogen deposition and distance from the coast were not significant, but with those variables removed we obtained a significant model that gave an R2 = 0.60 for the response variable of fifth year alien dominance. Factors directly affecting alien dominance were (1) woody canopy closure and (2) alien seed banks. Significant indirect effects were (3) fire intensity, (4) fire history, (5) prefire stand structure, (6) aridity, and (7) community type. According to this model the most critical factor influencing aliens is the rapid return of the shrub and subshrub canopy. Thus, in these communities a single functional type (woody plants) appears to the most critical element controlling alien invasion and persistence. Fire history is an important indirect factor because it affects both prefire stand structure and postfire alien seed banks. Despite being fire-prone ecosystems, these shrublands are not adapted to fire per se, but rather to a particular fire regime. Alterations in the fire regime produce a very different selective environment, and high fire frequency changes the selective regime to favor aliens. This study does not support the widely held belief that prescription burning is a viable management practice for controlling alien species on semiarid landscapes. ?? 2005 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.
2014-10-01
Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.
Airborne contaminants during controlled residential fires.
Fent, Kenneth W; Evans, Douglas E; Babik, Kelsey; Striley, Cynthia; Bertke, Stephen; Kerber, Steve; Smith, Denise; Horn, Gavin P
2018-05-01
In this study, we characterize the area and personal air concentrations of combustion byproducts produced during controlled residential fires with furnishings common in 21 st century single family structures. Area air measurements were collected from the structure during active fire and overhaul (post suppression) and on the fireground where personnel were operating without any respiratory protection. Personal air measurements were collected from firefighters assigned to fire attack, victim search, overhaul, outside ventilation, and command/pump operator positions. Two different fire attack tactics were conducted for the fires (6 interior and 6 transitional) and exposures were compared between the tactics. For each of the 12 fires, firefighters were paired up to conduct each job assignment, except for overhaul that was conducted by 4 firefighters. Sampled compounds included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, e.g., benzene), hydrogen cyanide (HCN), and particulate (area air sampling only). Median personal air concentrations for the attack and search firefighters were generally well above applicable short-term occupational exposure limits, with the exception of HCN measured from search firefighters. Area air concentrations of all measured compounds decreased after suppression. Personal air concentrations of total PAHs and benzene measured from some overhaul firefighters exceeded exposure limits. Median personal air concentrations of HCN (16,300 ppb) exceeded the exposure limit for outside vent firefighters, with maximum levels (72,900 ppb) higher than the immediately dangerous to life and health (IDLH) level. Median air concentrations on the fireground (including particle count) were above background levels and highest when collected downwind of the structure and when ground-level smoke was the heaviest. No statistically significant differences in personal air concentrations were found between the 2 attack tactics. The results underscore the importance of wearing self-contained breathing apparatus when conducting overhaul or outside ventilation activities. Firefighters should also try to establish command upwind of the structure fire, and if this cannot be done, respiratory protection should be considered.
Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan
2016-01-01
Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control are enhanced in more recently burnt vegetation. We suggest that patchy prescribed fire sustains functional diversity, and that controlled use of patchy fire to break up large expanses of mature vegetation will enhance ecosystem function.
Rickbeil, Gregory J M; Hermosilla, Txomin; Coops, Nicholas C; White, Joanne C; Wulder, Michael A
2017-03-01
Fire regimes are changing throughout the North American boreal forest in complex ways. Fire is also a major factor governing access to high-quality forage such as terricholous lichens for barren-ground caribou (Rangifer tarandus groenlandicus). Additionally, fire alters forest structure which can affect barren-ground caribou's ability to navigate in a landscape. Here, we characterize how the size and severity of fires are changing across five barren-ground caribou herd ranges in the Northwest Territories and Nunavut, Canada. Additionally, we demonstrate how time since fire, fire severity, and season result in complex changes in caribou behavioural metrics estimated using telemetry data. Fire disturbances were identified using novel gap-free Landsat surface reflectance composites from 1985 to 2011 across all herd ranges. Burn severity was estimated using the differenced normalized burn ratio. Annual area burned and burn severity were assessed through time for each herd and related to two behavioural metrics: velocity and relative turning angle. Neither annual area burned nor burn severity displayed any temporal trend within the study period. However, certain herds, such as the Ahiak/Beverly, have more exposure to fire than other herds (i.e. Cape Bathurst had a maximum forested area burned of less than 4 km 2 ). Time since fire and burn severity both significantly affected velocity and relative turning angles. During fall, winter, and spring, fire virtually eliminated foraging-focused behaviour for all 26 years of analysis while more severe fires resulted in a marked increase in movement-focused behaviour compared to unburnt patches. Between seasons, caribou used burned areas as early as 1-year postfire, demonstrating complex, nonlinear reactions to time since fire, fire severity, and season. In all cases, increases in movement-focused behaviour were detected postfire. We conclude that changes in caribou behaviour immediately postfire are primarily driven by changes in forest structure rather than changes in terricholous lichen availability. © 2016 John Wiley & Sons Ltd.
Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing
2018-01-23
Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.
Fluid dynamics structures in a fire environment observed in laboratory-scale experiments
J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac
2010-01-01
Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...
Wood products : thermal degradation and fire
R.H. White; M.A. Dietenberger
2001-01-01
Wood is a thermally degradable and combustible material. Applications range from a biomass providing useful energy to a building material with unique properties. Wood products can contribute to unwanted fires and be destroyed as well. Minor amounts of thermal degradation adversely affect structural properties. Therefore, knowledge of the thermal degradation and fire...
Chaparral & Fire Ecology: Role of Fire in Seed Germination.
ERIC Educational Resources Information Center
Steele, Nancy L. C.; Keeley, Jon E.
1991-01-01
An activity that incorporates the concepts of plant structure and function and ecology is described. Students investigate the reasons why some California chaparral seeds germinate only after a fire has burned the surrounding chaparral. The procedure, discussion and analysis questions, expected results, potential problems, and additional activities…
Prescribed fire, soil nitrogen dynamics, and plant responses in a semiarid grassland
USDA-ARS?s Scientific Manuscript database
Fire is a key driver of the structure and function of grassland ecosystems. In arid and semiarid ecosystems, where moisture limits plant production more than light, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through ...
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
Prescribed fire in upland harwood forests
T.L. Keyser; C.H. Greenberg; H. McNab
2014-01-01
In upland hardwood forests of the Southeastern U.S.,prescribed fire is increasingly used by land managers citing objectives that include hazardous fuels reduction, wildlife habitat improvement, promoting oak regeneration, or restoring forest composition or structure to an historic condition. Research suggests that prescribed fire effects on hardwood forests and...
Michael T. Kiefer; Shiyuan Zhong; Warren E. Heilman; Joseph J. Charney; Xindi Bian
2018-01-01
An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is...
Cathryn H. Greenberg; David L. Otis; Thomas A. Waldrop
2006-01-01
An experiment conducted as part of the multidisciplinary National Fire and Fire Surrogate Study was designed to determine effects of three fuel reduction techniques on small mammals and habitat structure in the southern Appalachian mountains. Four experimental units, each >14-ha were contained within each of three replicate blocks at the Green River Game Land,...
Fire As A Weapon: High Rise Structures
2017-12-01
Trade Center, Happyland fire, Taj Mahal Fire, fire bombing , inferno terror, terrorist arsonists, counter-terrorism, arson attacks 15. NUMBER OF PAGES...kill civilians throughout the building without the attackers setting bombs throughout. However, the literature does not reflect the emerging threat...requiring the expertise to build bombs or anything of that nature; in other words, everyone can burn a house down, but it takes time and skill to blow it up
Dylan W. Schwilk; Eric E. Knapp; Scott M. Ferrenberg; Jon E. Keeley; Anthony. Caprio
2006-01-01
Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used...
Influence of fire and El Niño on tree recruitment by Sierran mixed conifer
Malcolm North; Matthew Hurteau; Robert Fiegener; Michael Barbour
2005-01-01
The influence of fire and climate events on age structure of different species was examined in old-growth mixed conifer in the southern Sierra Nevada. Within a 48-ha stem-mapped sample area, after a mechanical thinning, all stumps were examined for fire scars and 526 stumps were cut to ground level and aged. Before 1865, which was the last widespread fire event, the...
Fire in Australian savannas: from leaf to landscape.
Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri
2015-01-01
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Barlow, Jos; Peres, Carlos A
2004-01-01
Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process. PMID:15212091
On the key role of droughts in the dynamics of summer fires in Mediterranean Europe.
Turco, Marco; von Hardenberg, Jost; AghaKouchak, Amir; Llasat, Maria Carmen; Provenzale, Antonello; Trigo, Ricardo M
2017-03-06
Summer fires frequently rage across Mediterranean Europe, often intensified by high temperatures and droughts. According to the state-of-the-art regional fire risk projections, in forthcoming decades climate effects are expected to become stronger and possibly overcome fire prevention efforts. However, significant uncertainties exist and the direct effect of climate change in regulating fuel moisture (e.g. warmer conditions increasing fuel dryness) could be counterbalanced by the indirect effects on fuel structure (e.g. warmer conditions limiting fuel amount), affecting the transition between climate-driven and fuel-limited fire regimes as temperatures increase. Here we analyse and model the impact of coincident drought and antecedent wet conditions (proxy for the climatic factor influencing total fuel and fine fuel structure) on the summer Burned Area (BA) across all eco-regions in Mediterranean Europe. This approach allows BA to be linked to the key drivers of fire in the region. We show a statistically significant relationship between fire and same-summer droughts in most regions, while antecedent climate conditions play a relatively minor role, except in few specific eco-regions. The presented models for individual eco-regions provide insights on the impacts of climate variability on BA, and appear to be promising for developing a seasonal forecast system supporting fire management strategies.
Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi
2016-10-01
Tropical peat swamp forests in Southeast Asia account for approximately 72% of global peatland. However, extensive forest exploitation following peat drainage for agricultural expansion has been leading to catastrophic peat fires. In this study, we compared the termite assemblage in burnt and unburnt peats in Sumatra, Indonesia. We also identified which taxonomic group is particularly resistant to fire disturbance and the traits that correlate with its persistence in fire-impacted peatlands. Overall, the termite species richness in fire-impacted peats was up to 40% lower than that of the total species found in peat swamp forests. Although the estimated species richness values in fire-impacted peats and peat swamp forests were not significantly different, fire changed termite community structure significantly. Only termites of the family Rhinotermitidae survived in the fire event, whereas members of the Termitidae that were reportedly resilient to fire and open habitats elsewhere disappeared during the fire events. The rhinotermitids found in the burnt sites were exclusively wood nesters. This suggests that the desiccation tolerance of termites in open habitat is not the simple underlying survival strategy, but tree branches and barks might have provided a refuge from heat during fire. The result also suggests that the high similarity in species composition in recently burnt peats and long burnt peats implies low species turnover. Thus, regardless of how much time had passed since the fire-impacted peats were abandoned or cultivated, the increase in habitat complexity did not favor colonization by the forest-dependent group. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of assembly techniques for fire resistant aircraft interior panels
NASA Technical Reports Server (NTRS)
Lee, S. C. S.
1978-01-01
Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.
Giant self-biased magnetoelectric coupling in co-fired textured layered composites
NASA Astrophysics Data System (ADS)
Yan, Yongke; Zhou, Yuan; Priya, Shashank
2013-02-01
Co-fired magnetostrictive/piezoelectric/magnetostrictive laminate structure with silver inner electrode was synthesized and characterized. We demonstrate integration of textured piezoelectric microstructure with the cost-effective low-temperature co-fired layered structure to achieve strong magnetoelectric coupling. Using the co-fired composite, a strategy was developed based upon the hysteretic response of nickel-copper-zinc ferrite magnetostrictive materials to achieve peak magnetoelectric response at zero DC bias, referred as self-biased magnetoelectric response. Fundamental understanding of self-bias phenomenon in composites with single phase magnetic material was investigated by quantifying the magnetization and piezomagnetic changes with applied DC field. We delineate the contribution arising from the interfacial strain and inherent magnetic hysteretic behavior of copper modified nickel-zinc ferrite towards self-bias response.
NASA Astrophysics Data System (ADS)
Pawlak, Urszula; Pawlak, Marcin
2017-10-01
The article presents the material type from which the conductors of the overhead power lines are produced influences on the size of the overhang and the tension. The aim of the calculations was to present the benefits of the mechanics of the cable resulting from the type of cable used. The analysis was performed for two types of cables: aluminium with steel core and aluminium with composite core, twice span power line section. 10 different conductor-to-strand coil, wind, icing, and temperature variations were included in the calculations. The string description was made by means of a chain curve, while the horizontal component H of the tension force was determined using the bisection method. The loads were collected in accordance with applicable Eurocode.
Brockway, Dale G; Gatewood, Richard G; Paris, Randi B
2002-06-01
Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method for restoring fire in shortgrass prairie ecosystems where fire has been excluded for a prolonged time period.
Optimizing prescribed fire allocation for managing fire risk in central Catalonia.
Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina
2018-04-15
We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Keyser, Alisa; Westerling, Anthony LeRoy
2017-05-01
A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.
Structure ignition assessment model (SIAM)\\t
Jack D. Cohen
1995-01-01
Major wildland/urban interface fire losses, principally residences, continue to occur. Although the problem is not new, the specific mechanisms are not well known on how structures ignite in association with wildland fires. In response to the need for a better understanding of wildland/urban interface ignition mechanisms and a method of assessing the ignition risk,...
White, Angela M.; Manley, Patricia N.; Tarbill, Gina; Richardson, T.L.; Russell, Robin E.; Safford, Hugh D.; Dobrowski, Solomon Z.
2015-01-01
Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire burned 1243 hectares of mixed conifer forest in South Lake Tahoe, California. We conducted avian point counts for the first 3 years following the fire in burned and unburned areas to investigate which habitat characteristics are most important for re-establishing or maintaining the native avian community in post-fire landscapes. We used a multi-species occurrence model to estimate how avian species are influenced by the density of live and dead trees and shrub cover. While accounting for variations in the detectability of species, our approach estimated the occurrence probabilities of all species detected including those that were rare or observed infrequently. Although all species encountered in this study were detected in burned areas, species-specific modeling results predicted that some species were strongly associated with specific post-fire conditions, such as a high density of dead trees, open-canopy conditions or high levels of shrub cover that occur at particular burn severities or at a particular time following fire. These results indicate that prescribed fire or managed wildfire which burns at low to moderate severity without at least some high-severity effects is both unlikely to result in the species assemblages that are unique to post-fire areas or to provide habitat for burn specialists. Additionally, the probability of occurrence for many species was associated with high levels of standing dead trees indicating that intensive post-fire harvest of these structures could negatively impact habitat of a considerable proportion of the avian community.
Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks.
Pérez-Valera, Eduardo; Goberna, Marta; Faust, Karoline; Raes, Jeroen; García, Carlos; Verdú, Miguel
2017-01-01
Fire alters ecosystems by changing the composition and community structure of soil microbes. The phylogenetic structure of a community provides clues about its main assembling mechanisms. While environmental filtering tends to reduce the community phylogenetic diversity by selecting for functionally (and hence phylogenetically) similar species, processes like competitive exclusion by limiting similarity tend to increase it by preventing the coexistence of functionally (and phylogenetically) similar species. We used co-occurrence networks to detect co-presence (bacteria that co-occur) or exclusion (bacteria that do not co-occur) links indicative of the ecological interactions structuring the community. We propose that inspecting the phylogenetic structure of co-presence or exclusion links allows to detect the main processes simultaneously assembling the community. We monitored a soil bacterial community after an experimental fire and found that fire altered its composition, richness and phylogenetic diversity. Both co-presence and exclusion links were more phylogenetically related than expected by chance. We interpret such a phylogenetic clustering in co-presence links as a result of environmental filtering, while that in exclusion links reflects competitive exclusion by limiting similarity. This suggests that environmental filtering and limiting similarity operate simultaneously to assemble soil bacterial communities, widening the traditional view that only environmental filtering structures bacterial communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fischer, A.
2012-12-01
Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.
Fire retardant polyisocyanurate foam
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Parker, J. A.
1972-01-01
Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.
Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula
Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.
2008-01-01
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.
Comparing the performance of residential fire sprinklers with other life-safety technologies.
Butry, David T
2012-09-01
Residential fire sprinklers have long proven themselves as life-safety technologies to the fire service community. Yet, about 1% of all one- and two-family dwelling fires occur in homes protected by sprinklers. It has been argued that measured sprinkler performance has ignored factors confounding the relationship between sprinkler use and performance. In this analysis, sprinkler performance is measured by comparing 'like' structure fires, while conditioning on smoke detection technology and neighborhood housing and socioeconomic conditions, using propensity score matching. Results show that residential fire sprinklers protect occupant and firefighter health and safety, and are comparable to other life-safety technologies. Published by Elsevier Ltd.
Fire ecology in the southeastern United States
,
2000-01-01
Fire has played an important role in the structure of natural ecosystems throughout North America. As a natural process, fire helps clear away dead and dying plant matter and increases the production of native species that occur in fire prone habitats. It also reduces the invasion of exotic species and the succession to woody species in pitcher plant bogs, pine savannas, coastal prairies, marshes, and other natural plant communities of the southeastern United States.
Guy R. McPherson
2006-01-01
Many ecologists have indicated that fire is as important as wind or precipitation in shaping North American ecosystems. There is little question that fire is prevalent in grasslands and that it contributes to the structure and function of such systems in the Southwest. In this paper I outline pre-settlement fire regimes, then describe post-settlement regimes and...
Mortality trends and traits of hardwood advance regeneration following seasonal prescribed fires
Patrick Brose; David Van Lear
2003-01-01
Fire ecology studies in eastern hardwood forests generally use traditional, plot-based inventory methods and focus on sprouting stems to detect changes in vegetative composition and structure. Fire intensity often is not quantified or even subjectively classified and, if quantified, is not used in subsequent analysis. Consequently, reported responses of hardwood...
Fire and riparian ecosystems in landscapes of the western USA
Kathleen A. Dwire; J. Boone Kauffman
2003-01-01
Despite the numerous values of riparian areas and the recognition of fire as a critical natural disturbance, few studies have investigated the behavior, properties, and influence of natural fire in riparian areas of the western USA. Riparian areas frequently differ from adjacent uplands in vegetative composition and structure, geomorphology, hydrology, microclimate,...
A computer-based tutorial structure for teaching and applying a complex process
Daniel L. Schmoldt; William G Bradshaw
1991-01-01
Economic accountability concerns for wildfire prevention planning have led to the development of an ignition management approach to fire problems. The Fire Loss Prevention Planning Process (FLPPP) systematizes fire problem analyses and concomitantly establishes a means for evaluating prescribed prevention programs. However, new users of the FLPPP have experienced...
Compartmentalization of pathogens in fire-injured trees
Kevin T. Smith
2013-01-01
Wildland fire is an episodic process that greatly influences the composition, structure, and developmental sequence of forests. Most news reports of wildland fire involves blazes fueled by slash, standing dead stems, and snags that reach into tree crowns and burn deeply into the forest floor, causing extensive tree mortality and the eventual replacement of the standing...
78 FR 2947 - Manti-La Sal National Forest, Utah; Maverick Point Forest Health Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... class structure via use of timber harvesting and prescribed fire. Project activities also seek to.... Over the last 20 years drought conditions have increased; fire size, severity, and total acres burned... fire regimes have been significantly altered from their historical range. The risk of losing key...
A real-time risk assessment tool supporting wildland fire decisionmaking
David E. Calkin; Matthew P. Thompson; Mark A. Finney; Kevin D. Hyde
2011-01-01
Development of appropriate management strategies for escaped wildland fires is complex. Fire managers need the ability to identify, in real time, the likelihood that wildfire will affect valuable developed and natural resources (e.g., private structures, public infrastructure, and natural and cultural resources). These determinations help guide where and when...
Weimin Xi; Szu-Hung Chen; Andrew G. Birt; John D. Waldron; Charles W. Lafon; David M. Cairns; Maria D. Tchakerian; Kier D. Klepzig; Robert N. Coulson
2011-01-01
Southern Appalachian forests face multiple environmental threats, including periodic fires, insect outbreaks, and more recently, exotic invasive plants. Past studies suggest these multiple disturbances interact to shape species-rich forest landscape, and they hypothesize that changes in fire regimes and increasing landscape fragmentation may influence invasive...
24 CFR 235.230 - Condition of multifamily structure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... was not covered by fire insurance at the time of the damage, the mortgagee may convey the property or... insurance at the time the mortgage was insured. (2) The fire insurance company shall have later canceled or... such further time as the Secretary may approve) of the cancellation of the fire insurance or of the...
Carl E. Fiedler; Charles E. Keegan; Christopher W. Woodall; Todd A. Morgan
2004-01-01
Estimates of crown fire hazard are presented for existing forest conditions in Montana by density class, structural class, forest type, and landownership. Three hazard reduction treatments were evaluated for their effectiveness in treating historically fire-adapted forests (ponderosa pine (Pinus ponderosa Dougl. ex Laws.), Douglas-fir (...
The Effects of Humans and Topography on Wildland Fire, Forests, and Species Abundance
Richard P. Guyette; Daniel Dey
2004-01-01
Ignitions, fuels, topography, and climate interact through time to create temporal and spatial differences in the frequency of fire, which, in turn, affects ecosystem structure and function. In many ecosystems non-human ignitions are overwhelmed by anthropogenic ignitions. Human population density, culture, and topographic factors are quantitatively related to fire...
Effects of topologies on signal propagation in feedforward networks
NASA Astrophysics Data System (ADS)
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
From open to closed canopy: A century of change in Douglas-fir forest, Orcas Island, Washington
Peterson, D.L.; Hammer, R.D.
2001-01-01
During the past century, forest structure on south-facing slopes of Mount Constitution, Orcas Island, Washington, has changed from open-grown Douglas-fir (Pseudotsuga menziesii) mixed with prairie to primarily closed canopy forest. Density of open-grown Douglas-fir was approximately 7 stems/ha in the 19th century, while current density of trees in closed-canopy mature forest is 426 stems/ha. Trees occur at intermediate densities in areas of transition from savanna-like stands to closed canopy. Analysis of fire scars indicates that at least seven fires have occurred on Mount Constitution since 1736, but only one fire has occurred since 1893, which suggests that the recent increase in stem density has been caused primarily by fire exclusion. The high stem densities currently found in this landscape put the relict (120-350+ years old) Douglas-fir at risk from contemporary fires, which would likely be high-intensity crown fires. Given the transition of forests on Orcas Island during the 20th century to closed canopy structure, undisturbed open-grown coniferous forest is now extremely rare in the San Juan Islands.
Effects of topologies on signal propagation in feedforward networks.
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
Callister, Kate E.; Griffioen, Peter A.; Avitabile, Sarah C.; Haslem, Angie; Kelly, Luke T.; Kenny, Sally A.; Nimmo, Dale G.; Farnsworth, Lisa M.; Taylor, Rick S.; Watson, Simon J.; Bennett, Andrew F.; Clarke, Michael F.
2016-01-01
Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km2 study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. PMID:27029046
NASA Astrophysics Data System (ADS)
Longo, M.; Keller, M.; Scaranello, M. A., Sr.; dos-Santos, M. N.; Xu, Y.; Huang, M.; Morton, D. C.
2017-12-01
Logging and understory fires are major drivers of tropical forest degradation, reducing carbon stocks and changing forest structure, composition, and dynamics. In contrast to deforested areas, sites that are disturbed by logging and fires retain some, albeit severely altered, forest structure and function. In this study we simulated selective logging using the Ecosystem Demography Model (ED-2) to investigate the impact of a broad range of logging techniques, harvest intensities, and recurrence cycles on the long-term dynamics of Amazon forests, including the magnitude and duration of changes in forest flammability following timber extraction. Model results were evaluated using eddy covariance towers at logged sites at the Tapajos National Forest in Brazil and data on long-term dynamics reported in the literature. ED-2 is able to reproduce both the fast (< 5yr) recovery of water, energy fluxes compared to flux tower, and the typical, field-observed, decadal time scales for biomass recovery when no additional logging occurs. Preliminary results using the original ED-2 fire model show that canopy cover loss of forests under high-intensity, conventional logging cause sufficient drying to support more intense fires. These results indicate that under intense degradation, forests may shift to novel disturbance regimes, severely reducing carbon stocks, and inducing long-term changes in forest structure and composition from recurrent fires.
Forest fire spatial pattern analysis in Galicia (NW Spain).
Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W
2013-10-15
Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.
Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition
NASA Astrophysics Data System (ADS)
Chowdhury, Ershad Ullah
In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over the FRP strengthening system.
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-01-01
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-10-15
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m³; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.
Caviedes, Julián; Ibarra, José Tomás
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests.
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349
NASA Astrophysics Data System (ADS)
Flanagan, N. E.; Wang, H.; Hodgkins, S. B.; Richardson, C. J.
2017-12-01
Many global peatlands are dominated by fire-adapted plant communities and are subject to frequent wildfires with return intervals ranging between 3 to 100 years. Wildfires in peatlands are typically low-severity events that occur in winter and spring when vegetation is desiccated and soil moisture content is high. As a result, most wildfires consume aboveground fuels in a matter of minutes without igniting the nearly saturated peat. In such fires, surface soil layers are subjected to flash heating with a rapid loss of soil moisture but little loss of soil organic matter (SOM). Such fires have the potential to alter the chemical structure of SOM, even in the absence of combustion, through Maillard's Reaction and similar chemical processes, and through structural changes that protect SOM from decomposition. This study examines the effects of low-intensity surface fires on the recalcitrance of SOM from fire-adapted communities located in subtropical, temperate and sub-boreal peatlands. In addition, soil from a non-fire-adapted Peruvian palm peatland was examined for response to thermal alteration. The timing and temperatures of low-intensity fires were measured in the field during prescribed burns and replicated in simulated fires. The effects of fire on the chemical structure of SOM were examined with FTIR, SEM and XPS. Burned and unburned peat replicates were incubated at three temperatures (5oC, 15oC, 25oC) in controlled chambers for more than six months. Burned replicates initially showed higher CO2, CH4 and NO2 emissions. Yet, within four weeks emissions from the burned replicates dropped below those of unburned replicates and remained significantly lower (10-50%) for the duration of the experiment. In addition, thermal alteration significantly reduced the temperature sensitivity (Q10) of thermally altered peat. After accounting for small initial losses of organic matter (<10 %) during the fire simulations, thermal alteration of SOM resulted in a net long-term reduction in carbon losses to microbial respiration. Such thermal alteration of SOM might be an underestimated factor influencing carbon accretion in frequently burned peatlands and could be globally relevant if climate change increases fire frequency in boreal peatlands.
Responses in bird communities to wildland fires in southern California
Mendelsohn, Mark B.; Brehme, Cheryl S.; Rochester, Carlton J.; Stokes, Drew C.; Hathaway, Stacie A.; Fisher, Robert N.
2008-01-01
There is a growing body of literature covering the responses of bird species to wildland fire events. Our study was unique among these because we investigated the effects of large-scale wildland fires on entire bird communities across multiple vegetation types. We conducted avian point counts during the breeding seasons for two years before and two years after the Cedar and Otay Fires in 2003 in southern California. Our balanced sampling effort took place at two sites, one low-elevation and one high-elevation, each containing replicate stations (burned and unburned) within five vegetation types: chaparral, coastal sage scrub, grassland, oak woodland, and riparian. Although fire caused some degree of change in the vegetation structure at all of our impacted survey points, we found that the post-fire shrub and tree cover was significantly lower in only two of the vegetation types within the low-elevation site, coastal sage scrub and chaparral. We found no significant changes in cover at the high-elevation site. Using univariate and multivariate analyses, we tested whether the fires were associated with a change in bird species diversity, community structure, and the relative abundance of individuals within a species. We found that species diversity changed in only one circumstance: it increased in coastal sage scrub at the low-elevation site. Multivariate analyses revealed significant differences in the post-fire bird community structure in the low-elevation chaparral, low-elevation coastal sage scrub, and the high-elevation grassland communities. Vegetation characteristics altered by fire, such as decreases in shrub and tree cover, influenced the changes we observed in the bird communities. The relative abundance of some species (lazuli bunting [Passerina amoena] and horned lark [Eremophila alpestris]) significantly increased after the fires, while other species declined significantly (Anna's hummingbird [Calypte anna], wrentit [Chamaea fasciata], and bushtit [Psaltriparus minimus]). We detected mixed results for the spotted towhee (Pipilo maculatus), which increased in burned chaparral and declined in burned coastal sage scrub within the low-elevation site. We suggest that the observed responses of birds to these fires may be attributed to: (1) the availability of nearby unburned refugia, (2) the continued suitability of post-fire vegetation at the study sites, and (3) the generally high mobility of this taxon.
Long, Clive G; Banyard, Ellen; Fulton, Barbara; Hollin, Clive R
2014-09-01
Arson and fire-setting are highly prevalent among patients in secure psychiatric settings but there is an absence of valid and reliable assessment instruments and no evidence of a significant approach to intervention. To develop a semi-structured interview assessment specifically for fire-setting to augment structured assessments of risk and need. The extant literature was used to frame interview questions relating to the antecedents, behaviour and consequences necessary to formulate a functional analysis. Questions also covered readiness to change, fire-setting self-efficacy, the probability of future fire-setting, barriers to change, and understanding of fire-setting behaviour. The assessment concludes with indications for assessment and a treatment action plan. The inventory was piloted with a sample of women in secure care and was assessed for comprehensibility, reliability and validity. Staff rated the St Andrews Fire and Risk Instrument (SAFARI) as acceptable to patients and easy to administer. SAFARI was found to be comprehensible by over 95% of the general population, to have good acceptance, high internal reliability, substantial test-retest reliability and validity. SAFARI helps to provide a clear explanation of fire-setting in terms of the complex interplay of antecedents and consequences and facilitates the design of an individually tailored treatment programme in sympathy with a cognitive-behavioural approach. Further studies are needed to verify the reliability and validity of SAFARI with male populations and across settings.
Polymer of phosphonylmethyl-2,4- and -2,6-diamino benzene and polyfunctional monomer
NASA Technical Reports Server (NTRS)
Mikroyannidis, J. A. (Inventor); Kourtides, D. A. (Inventor)
1986-01-01
A phosphonyl methyl benzene is prepared by nitration to produce a 2,4-dinitro phosphonyl methyl benzene, which is then reduced to a diamino compound. The diamino compound is then used to cure a polymerizable monomer. The diamino compound may be polymerized with polyfunctional epoxides to produce heat and fire resistant polymer structures for making flame and fire resistant polymer structures such as for aircraft secondary structures.
NASA Astrophysics Data System (ADS)
Bahrani, Babak
The objective of this study was to investigate the effects of weathering on the performance of intumescent fire-retardant coatings on wooden products. The weathering effects included primary (solar irradiation, moisture, and temperature) and secondary (environmental contaminants) parameters at various time intervals. Wildland urban interface (WUI) fires have been an increasing threat to lives and properties. Existing solutions to mitigate the damages caused by WUI fires include protecting the structures from ignition and minimizing the fire spread from one structure to another. These solutions can be divided into two general categories: active fire protection systems and passive fire protection systems. Passive systems are either using pre-applied wetting agents (water, gel, or foam) or adding an extra layer (composite wraps or coatings). Fire-retardant coating treatment methods can be divided into impregnated (penetrant) and intumescent categories. Intumescent coatings are easy to apply, economical, and have a better appearance in comparison to other passive fire protection methods, and are the main focus of this study. There have been limited studies conducted on the application of intumescent coatings on wooden structures and their performance after long-term weathering exposure. The main concerns of weathering effects are: 1) the reduction of ignition resistance of the coating layer after weathering; and 2) the fire properties of coatings after weathering since coatings might contribute as a combustible fuel and assist the fire growth after ignition. Three intumescent coatings were selected and exposed to natural weathering conditions in three different time intervals. Two types of tests were performed on the specimens: a combustibility test consisted of a bench-scale performance evaluation using a Cone Calorimeter, and a thermal decomposition test using Simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) method (also known as SDT). For each coating type and weathering period, three different radiative heat flux levels were used in the combustibility tests. Data obtained from the tests, including flammability and thermal properties, were gathered, analyzed, and compared to non-weathered specimens. The results revealed visible effects of weathering on pre (and up to)-ignition flammability and intumescent properties, especially decreases in Time-to-Ignition (TTI), Time-to-Intumescence (tintu.), and (maximum) Intumescence Height (Hintu.) values in weathered specimens. These results showed that the ignition resistance of the coating layers decreased after weathering exposure. On the other hand, the obtained results from weathered specimens for the post-ignition flammability properties, especially Peak Heat Release Rate (PHRR) and Effective Heat of Combustion (EHC) did not show a significant difference in comparison to the non-weathered samples. These results demonstrated that the weathered coating layer would not likely to act as an additional combustible fuel to increase fire spread.
Andrew Youngblood
2010-01-01
Western United States land managers are conducting fuel reduction and forest restoration treatments in forests with altered structural conditions. As part of the National Fire and Fire Surrogate (FFS) study, thinning and burning treatments were evaluated for changing forest structure. Shifts between pretreatment and posttreatment diameter distributions at seven western...
Mark A. Dietenberger
2010-01-01
Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...
Wildfires and Forest Development in Tropical and Subtropical Asia: Outlook for the Year 2000
Johann G. Goldammer
1987-01-01
California's foothill counties are the scene of rapid development. All types of construction in former wildlands is creating an intermix of wildland-structures-wildland that is different from the traditional "urban-wildland interface." The fire and structural environment for seven counties is described. Fire statistics are compared with growth patterns...
Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires
Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn
2005-01-01
The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....
The performance of lightweight plastic foams developed for fire safety
NASA Technical Reports Server (NTRS)
Fish, R. H.
1971-01-01
The use of a low density, polyurethane based foam to suppress a fire and to provide protection for the structure of an aircraft or spacecraft is discussed. The mechanism by which foams provide protection from heat and create a nonflammable surface is described. Various materials and their application to specific types of structures are examined.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This military-developed text contains the fourth and fifth blocks of a five-block course for use in training fire protection specialists. Covered in the individual volumes are the following topics: structural firefighting (operation and maintenance of hydrants, emergency response activities, structural pumpers, vehicle positioning and relay, hose…
Contemporary patterns of burn severity heterogeneity from fires in the Northwestern U.S.
R. Travis Belote
2015-01-01
Historically, frequent, low-severity fires maintained opengrown structure of dry ponderosa pine forests (Hessburg and Agee 2003). Thus, an open forest structure may be a reasonable template for ecological restoration in those particular forest types (Allen and others 2002). In contrast, setting goals for ecosystem management and restoration targets in the vast majority...
Jyh-Min Chiang; Ryan W. McEwan; Daniel A. Yaussy; Kim J. Brown
2008-01-01
More than 70 years of fire suppression has influenced forest dynamics and led to the accumulation of fuels in many forests of the United States. To address these changes, forest managers increasingly seek to restore historical ecosystem structure and function through the reintroduction of fire and disturbance processes that mimic fire such as silvicultural thinning. In...
Noise exposure assessment and abatement strategies at an indoor firing range.
Kardous, Chucri A; Willson, Robert D; Hayden, Charles S; Szlapa, Piotr; Murphy, William J; Reeves, Efrem R
2003-08-01
Exposure to hazardous impulse noise is common during the firing of weapons at indoor firing ranges. The aims of this study were to characterize the impulse noise environment at a law enforcement firing range; document the insufficiencies found at the range from a health and safety standpoint; and provide noise abatement recommendations to reduce the overall health hazard to the auditory system. Ten shooters conducted a typical live-fire exercise using three different weapons--the Beretta.40 caliber pistol, the Remington.308 caliber shotgun, and the M4.223 caliber assault rifle. Measurements were obtained at 12 different positions throughout the firing range and adjacent areas using dosimeters and sound level meters. Personal and area measurements were recorded to a digital audio tape (DAT) recorder for further spectral analysis. Peak pressure levels inside the firing range reached 163 decibels (dB) in peak pressure. Equivalent sound levels (Leq) ranged from 78 decibels, A-weighted (dBA), in office area adjacent to the range to 122 dBA inside the range. Noise reductions from wall structures ranged from 29-44 dB. Noise abatement strategies ranged from simple noise control measures (such as sealing construction joints and leaks) to elaborate design modifications to eliminate structural-borne sounds using acoustical treatments. Further studies are needed to better characterize the effects of firing weapons in enclosed spaces on hearing and health in general.
Wildfire spread, hazard and exposure metric raster grids for central Catalonia.
Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina
2018-04-01
We provide 40 m resolution wildfire spread, hazard and exposure metric raster grids for the 0.13 million ha fire-prone Bages County in central Catalonia (northeastern Spain) corresponding to node influence grid (NIG), crown fraction burned (CFB) and fire transmission to residential houses (TR). Fire spread and behavior data (NIG, CFB and fire perimeters) were generated with fire simulation modeling considering wildfire season extreme fire weather conditions (97 th percentile). Moreover, CFB was also generated for prescribed fire (Rx) mild weather conditions. The TR smoothed grid was obtained with a geospatial analysis considering large fire perimeters and individual residential structures located within the study area. We made these raster grids available to assist in the optimization of wildfire risk management plans within the study area and to help mitigate potential losses from catastrophic events.
Structural vulnerability assessment using reliability of slabs in avalanche area
NASA Astrophysics Data System (ADS)
Favier, Philomène; Bertrand, David; Eckert, Nicolas; Naaim, Mohamed
2013-04-01
Improvement of risk assessment or hazard zoning requires a better understanding of the physical vulnerability of structures. To consider natural hazard issue such as snow avalanches, once the flow is characterized, highlight on the mechanical behaviour of the structure is a decisive step. A challenging approach is to quantify the physical vulnerability of impacted structures according to various avalanche loadings. The main objective of this presentation is to introduce methodology and outcomes regarding the assessment of vulnerability of reinforced concrete buildings using reliability methods. Reinforced concrete has been chosen as it is one of the usual material used to build structures exposed to potential avalanche loadings. In avalanche blue zones, structures have to resist to a pressure up to 30kPa. Thus, by providing systematic fragility relations linked to the global failure of the structure, this method may serve the avalanche risk assessment. To do so, a slab was numerically designed. It represented the avalanche facing wall of a house. Different configuration cases of the element in stake have been treated to quantify numerical aspects of the problem, such as the boundary conditions or the mechanical behaviour of the structure. The structure is analysed according to four different limit states, semi-local and global failures are considered to describe the slab behaviour. The first state is attained when cracks appear in the tensile zone, then the two next states are described consistent with the Eurocode, the final state is the total collapse of the structure characterized by the yield line theory. Failure probability is estimated in accordance to the reliability framework. Monte Carlo simulations were conducted to quantify the fragility to different loadings. Sensitivity of models in terms of input distributions were defined with statistical tools such as confidence intervals and Sobol's indexes. Conclusion and discussion of this work are established to well determine contributions, limits and future needs or developments of the research. First of all, this study provides spectrum of fragility curves of reinforced concrete structures which could be used to improve risk assessment. Second, the influence of the failure criterion picked up in this survey are discussed. Then, the weight of the statistical distribution choice is analysed. Finally, the limit between vulnerability and fragility relations is set up to establish the boundary use of our approach.
Structural fire risk of Portugal
NASA Astrophysics Data System (ADS)
Parente, Joana; Pereira, Mário
2017-04-01
Portugal is on the top of the European countries most affected by vegetation fires which underlines the importance of the existence of an updated and coherent fire risk map. This map represent a valuable supporting tool for forest and fire management decisions, focus prevention activities, improve the efficiency of fire detection systems, manage resources and actions of fire fighting with greater effectiveness. Therefore this study proposed a structural fire risk map of the vegetated area of Portugal using a deterministic approach based on the concept of fire risk currently accepted by the scientific community which consists in the combination of the fire hazard and the potential economic damage. The existing fire susceptibility map for Portugal based on the slope, land cover and fire probability, was adopted and updated by the use of a higher resolution digital terrain model, longer burnt area perimeter dataset (1975 - 2013) and the entire set of Corine land cover inventories. Five susceptibility classes were mapped to be in accordance with the Portuguese law and the results confirms the good performance of this model not only in terms of the favourability scores but also in the predictive values. Considering three different scenarios of (maximum, mean, and minimum annual) burnt area, fire hazard were estimate. The vulnerability scores and monetary values of species defined in the literature and by law were used to calculate the potential economic damage. The result was a fire risk map that identifies the areas more prone to be affected by fires in the future and provides an estimate of the economic damage of the fire which will be a valuable tool for forest and fire managers and to minimize the economic and environmental consequences of vegetation fires in Portugal. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF and ISA for providing the fire data.
Don Helmbrecht; Julie Gilbertson-Day; Joe H. Scott; LaWen Hollingsworth
2016-01-01
The Island Park Sustainable Fire Community (IPSFC) Project is a collaborative working group of citizens, businesses, non-profit organizations, and local, state, and federal government agencies (www.islandparkfirecommunity.com) working to create fire-resilient ecosystems in and around the human communities of West Yellowstone, Montana and Island Park, Idaho....
Civic Ecology Education and Resilient Societies: A Survey of Forest Fires in Greece
ERIC Educational Resources Information Center
Papaspiliou, Konstantina; Skanavis, Constantina; Giannoulis, Christos
2014-01-01
Forest fires, as all natural disasters, have the potential to seriously affect both the environment and the social structure of a local community. Unlike some of the natural disasters, such as hurricanes, tornados and tsunamis which are unpredictable, the phenomenon of forest fires could be easily predicted and controlled, since the causes are…
Fire resistant polyamide based on 1-(diorganooxyphosphonyl)methyl-2,4- and -2,6diamino benzene
NASA Technical Reports Server (NTRS)
Mikroyannidis, J. A. (Inventor); Kourtides, D. A. (Inventor)
1986-01-01
1-(Diorganooxyphosphonyl)methyl2,4- and-2,6diamino benzenes are reacted with polyacylhalides and optionally comonomers to produce polyamides which have desirable heat and fire resistance properties. These polymers are used to form fibers and fabrics where fire resistance properties are important, e.g., aircraft equipment and structures.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., etc.) shall be designed against acting as passageways for fire and smoke and representative... structural flooring assembly to perform as a barrier against under-vehicle fires. The fire resistance period... Flammability and Smoke Emission Characteristics of Materials Used in Passenger Cars and Locomotive Cabs B...
David W. Peterson; Peter B. Reich
2008-01-01
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...
Defining old growth for fire-adapted forests of the Western United States
Merrill R. Kaufmann; Daniel Binkley; Peter Z. Fule; Johnson Marlin; Scott L. Stephens; Thomas W. Swetnam
2007-01-01
There are varying definitions of old-growth forests because of differences in environment and differing fire influence across the Intermountain West. Two general types of forests reflect the role of fire: 1) forests shaped by natural changes in structure and species makeup-plant succession-that are driven by competitive differences among species and individual trees...
Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
T. Ryan McCarley; Crystal A. Kolden; Nicole M. Vaillant; Andrew T. Hudak; Alistair M. S. Smith; Brian M. Wing; Bryce S. Kellogg; Jason Kreitler
2017-01-01
Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots.While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often...
Integrating fuel and forest management: developing prescriptions for the Central Hardwood Region
Edward F. Loewenstein; Keith W. Grabner; George W. Hartman; Erin R. McMurry
2003-01-01
The oak dominated forests in the Ozarks of southern Missouri evolved under the influence of fire for thousands of years. However, fire exclusion and timber harvests have changed historical fuel loads and modified vegetative structure. The resurgent interest in restoration of fire dependent ecosystems in conjunction with the needs of resource managers to control fuel...
Invasive grasses change landscape structure and fire behavior in Hawaii
Lisa M. Ellsworth; Creighton M. Litton; Alexander P. Dale; Tomoaki Miura
2014-01-01
How does potential fire behavior differ in grass-invaded non-native forests vs open grasslands? How has land cover changed from 1950â2011 along two grassland/forest ecotones in Hawaii with repeated fires? A study on non-native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA was...
Developing a multiscale fire treatment strategy for species habitat management
Steven P. Norman; Danny C. Lee; David A. Tallmon
2008-01-01
Reintroducing fire to manage vegetation and fuel may have poorly understood consequences for wildlife. Prescribed burning can reduce down wood and snags that provide critical habitat and mechanical thinning designed to reduce fire hazards may alter forest structures that are preferred by some species. Moreover, fine scale fuel treatments may alter wildlife and habitat...
Modeling flame structure in wildland fires using the one-dimensional turbulence model
David O. Lignell; Elizabeth I. Monson; Mark A. Finney
2010-01-01
The mechanism of flame propagation in wildland fire fuel beds is of critical importance for understanding and quantifying fire spread rates. Recent observations and experiments have indicated the dominance of flame propagation by direct contact between flames and unburnt fuel, as opposed to propagation via radiative heating alone. It is postulated that effects of...
Brian R Sturtevant; Brian R Miranda; Douglas J Shinneman; Eric J Gustafson; Peter T. Wolter
2012-01-01
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... Unit 1 structure. However, neither the diesel generator fire zone nor any OMAs related to the Unit 2 station blackout diesel generator were included in the licensee's request for exemptions. As a result, the... ``However, neither the diesel generator fire [DELETED (area)] zone * * *'' Response Fire zones are subsets...
Fire metrology: Current and future directions in physics-based measurements
Robert L. Kremens; Alistair M.S. Smith; Matthew B. Dickinson
2010-01-01
The robust evaluation of fire impacts on the biota, soil, and atmosphere requires measurement and analysis methods that can characterize combustion processes across a range of temporal and spatial scales. Numerous challenges are apparent in the literature. These challenges have led to novel research to quantify the 1) structure and heterogeneity of the pre-fire...
Short-term effects of fire on Sky Island ant communities
Elliot B. Wilkinson; Edward G. Lebrun; Mary Lou Spencer; Caroline Whitby; Chris Kleine
2005-01-01
Few studies investigating effects of fire on ant communities have been conducted worldwide, and none in the biologically diverse and fire prone region of the Sky Islands. Ant genera richness and total abundance are significantly higher in burned areas. Ant community structure changes between unburned and burned sites, implying that disturbance may influence the role of...
Evaluating fire-damaged components of historic covered bridges
Brian Kukay; Charles Todd; Tyler Jahn; Jenson Sannon; Logan Dunlap; Robert White; Mark Dietenberger
2016-01-01
Arson continues to claim many historic covered bridges. Site-specific, post-fire evaluations of the structural integrity of a bridge are often necessary in a fireâs aftermath. Decisions on whether individual wood components can be rehabilitated, reconstructed, or replaced must be made. This report includes coverage of existing approaches and exploratory approaches that...
Fuel treatment longevity in a Sierra Nevada mixed conifer forest
Scott. L. Stephens; Brandon M. Collins; Gary. Roller
2012-01-01
Understanding the longevity of fuel treatments in terms of their ability to maintain fire behavior and effects within a desired range is an important question. The objective of this study was to determine how fuels, forest structure, and predicted fire behavior changed 7-years after initial treatments. Three different treatments: mechanical only, mechanical plus fire,...
Synchronization of two coupled turbulent fires
NASA Astrophysics Data System (ADS)
Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.
2018-04-01
We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.
ClassyFire: automated chemical classification with a comprehensive, computable taxonomy.
Djoumbou Feunang, Yannick; Eisner, Roman; Knox, Craig; Chepelev, Leonid; Hastings, Janna; Owen, Gareth; Fahy, Eoin; Steinbeck, Christoph; Subramanian, Shankar; Bolton, Evan; Greiner, Russell; Wishart, David S
2016-01-01
Scientists have long been driven by the desire to describe, organize, classify, and compare objects using taxonomies and/or ontologies. In contrast to biology, geology, and many other scientific disciplines, the world of chemistry still lacks a standardized chemical ontology or taxonomy. Several attempts at chemical classification have been made; but they have mostly been limited to either manual, or semi-automated proof-of-principle applications. This is regrettable as comprehensive chemical classification and description tools could not only improve our understanding of chemistry but also improve the linkage between chemistry and many other fields. For instance, the chemical classification of a compound could help predict its metabolic fate in humans, its druggability or potential hazards associated with it, among others. However, the sheer number (tens of millions of compounds) and complexity of chemical structures is such that any manual classification effort would prove to be near impossible. We have developed a comprehensive, flexible, and computable, purely structure-based chemical taxonomy (ChemOnt), along with a computer program (ClassyFire) that uses only chemical structures and structural features to automatically assign all known chemical compounds to a taxonomy consisting of >4800 different categories. This new chemical taxonomy consists of up to 11 different levels (Kingdom, SuperClass, Class, SubClass, etc.) with each of the categories defined by unambiguous, computable structural rules. Furthermore each category is named using a consensus-based nomenclature and described (in English) based on the characteristic common structural properties of the compounds it contains. The ClassyFire webserver is freely accessible at http://classyfire.wishartlab.com/. Moreover, a Ruby API version is available at https://bitbucket.org/wishartlab/classyfire_api, which provides programmatic access to the ClassyFire server and database. ClassyFire has been used to annotate over 77 million compounds and has already been integrated into other software packages to automatically generate textual descriptions for, and/or infer biological properties of over 100,000 compounds. Additional examples and applications are provided in this paper. ClassyFire, in combination with ChemOnt (ClassyFire's comprehensive chemical taxonomy), now allows chemists and cheminformaticians to perform large-scale, rapid and automated chemical classification. Moreover, a freely accessible API allows easy access to more than 77 million "ClassyFire" classified compounds. The results can be used to help annotate well studied, as well as lesser-known compounds. In addition, these chemical classifications can be used as input for data integration, and many other cheminformatics-related tasks.
NASA Astrophysics Data System (ADS)
Ellis, Devon S.
Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when similar bars were tested while hot. The residual bond strength was also found to decrease with increase in exposure temperature. Residual bond mechanism and flexural behavior were found to be influenced, in complex ways, by the exposure to elevated temperatures. Additionally, an apparent "yielding plateau" and an apparent increase in bar ductility was observed in the post-heat behavior of some of the tensile specimens. This points to a potential for heat treatment of FRP bars to achieve higher ductility.
Analysis of weather condition influencing fire regime in Italy
NASA Astrophysics Data System (ADS)
Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella
2014-05-01
Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the influence of weather variables on fire activity across a range of time- and spatial-scales. The analysis revealed a general decrease of both number of fires and burned area, although not everywhere with the same magnitude. Overall, regression models where highly significant (p<0.001), and the explained variance ranged from 36% to 80% for fire number and from 37% to 76% for burned area, depending on pyro-climatic area. Moreover, our results contributed in determining the relative importance of climate variables acting at different timescales as control on intrinsic (i.e. flammability and moisture) and extrinsic (i.e. fuel amount and structure) characteristics of vegetation, thus strongly influencing fire occurrence. The good performance of our models, especially in the most fire affected pyro-climatic areas of Italy, and the better understanding of the main driver of fire variability gained through this work could be of great help for fire management among the different pyro-climatic areas.
Fires in storages of LFO: Analysis of hazard of structural collapse of steel-aluminium containers.
Rebec, A; Kolšek, J; Plešec, P
2016-04-05
Pool fires of light fuel oil (LFO) in above-ground storages with steel-aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium. Copyright © 2015 Elsevier B.V. All rights reserved.
Post-Fire Recovery in Coastal Sage Scrub: Seed Rain and Community Trajectory.
Conlisk, Erin; Swab, Rebecca; Martínez-Berdeja, Alejandra; Daugherty, Matthew P
2016-01-01
Disturbance is a primary mechanism structuring ecological communities. However, human activity has the potential to alter the frequency and intensity of natural disturbance regimes, with subsequent effects on ecosystem processes. In Southern California, human development has led to increased fire frequency close to urban areas that can form a positive feedback with invasive plant spread. Understanding how abiotic and biotic factors structure post-fire plant communities is a critical component of post-fire management and restoration. In this study we considered a variety of mechanisms affecting post-fire vegetation recovery in Riversidean sage scrub. Comparing recently burned plots to unburned plots, we found that burning significantly reduced species richness and percent cover of exotic vegetation the first two years following a 100-hectare wildfire. Seed rain was higher in burned plots, with more native forb seeds, while unburned plots had more exotic grass seeds. Moreover, there were significant correlations between seed rain composition and plant cover composition the year prior and the year after. Collectively, this case study suggests that fire can alter community composition, but there was not compelling evidence of a vegetation-type conversion. Instead, the changes in the community composition were temporary and convergence in community composition was apparent within two years post-fire.
Technology Development for Fire Safety in Exploration Spacecraft and Habitats
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2007-01-01
Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.
Technology Development for Fire Safety in Exploration Spacecraft and Habitats
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2006-01-01
Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.
NASA Astrophysics Data System (ADS)
Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr
2018-01-01
Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.
Rare, Intense, Big fires dominate the global tropics under drier conditions.
Hantson, Stijn; Scheffer, Marten; Pueyo, Salvador; Xu, Chi; Lasslop, Gitta; van Nes, Egbert H; Holmgren, Milena; Mendelsohn, John
2017-10-30
Wildfires burn large parts of the tropics every year, shaping ecosystem structure and functioning. Yet the complex interplay between climate, vegetation and human factors that drives fire dynamics is still poorly understood. Here we show that on all continents, except Australia, tropical fire regimes change drastically as mean annual precipitation falls below 550 mm. While the frequency of fires decreases below this threshold, the size and intensity of wildfires rise sharply. This transition to a regime of Rare-Intense-Big fires (RIB-fires) corresponds to the relative disappearance of trees from the landscape. Most dry regions on the globe are projected to become substantially drier under global warming. Our findings suggest a global zone where this drying may have important implications for fire risks to society and ecosystem functioning.
Preparation for foam composites. [using polybenzimidazole for fireproofing panels
NASA Technical Reports Server (NTRS)
Maximovich, M. G.
1974-01-01
Methods were developed for the fabrication of fire resistant panels utilizing polybenzimidazole (PBI) and Kerimid 601 resins along with glass, quartz, and Kevlar reinforcements. Stitched truss structure, both unfilled and filled with PBI foam, were successfully fabricated and tested. Second generation structures were then selected, fabricated, and tested, with a PBI/glass skin/PBI foam sandwich structure emerging as the optimum panel concept. Mechanical properties, smoke generation, and fire resistance were determined for the candidate panels.
Elephants, fire, and frost can determine community structure and composition in Kalahari Woodlands.
Holdo, Ricardo M
2007-03-01
Fire, elephants, and frost are important disturbance factors in many African savannas, but the relative magnitude of their effects on vegetation and their interactions have not been quantified. Understanding how disturbance shapes savanna structure and composition is critical for predicting changes in tree cover and for formulating management and conservation policy. A simulation model was used to investigate how the disturbance regime determines vegetation structure and composition in a mixed Kalahari sand woodland savanna in western Zimbabwe. The model consisted of submodels for tree growth, tree damage caused by disturbance, mortality, and recruitment that were parameterized from field data collected over a two-year period. The model predicts that, under the current disturbance regime, tree basal area in the study area will decline by two-thirds over the next two decades and become dominated by species unpalatable to elephants. Changes in the disturbance regime are predicted to greatly modify vegetation structure and community composition. Elephants are the primary drivers of woodland change in this community at present-day population densities, and their impacts are exacerbated by the effects of fire and frost. Frost, in particular, does not play an important role when acting independently but appears to be a key secondary factor in the presence of elephants and/or fire. Unlike fire and frost, which cannot suppress the woodland phase on their own in this ecosystem, elephants can independently drive the vegetation to the scrub phase. The results suggest that elephant and fire management may be critical for the persistence of certain woodland communities within dry-season elephant habitats in the eastern Kalahari, particularly those dominated by Brachystegia spiciformis and other palatable species.
Modelling leaf, plant and stand flammability for ecological and operational decision making
NASA Astrophysics Data System (ADS)
Zylstra, Philip
2014-05-01
Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however examination of historical fire sizes confirmed the positive feedback (Zylstra, 2013). The capacity to model even counter-intuitive trends in flammability represents a fundamental advance in the management of fire risk, underpinning the importance of work on those fields that compose the sub-models. Ongoing validation work has focused on accuracy in flame height and fire severity prediction, with excellent results to date. Further studies will examine quantitative estimates of fire risk parameters and the reliability of rate of spread predictions. By accurately modelling the relationship between seemingly disparate studies of leaf flammability, moisture, physiology and forest structure, the Forest Flammability Model has the potential to resolve some long-standing questions (Yebra et al., 2013) as well as to provide insight into the effect of climate or management-induced ecosystem changes on fire behaviour and risk. References Yebra, M., Dennison, P. E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt, E. R., … Jurdao, S. (2013). A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment, 136, 455-468. doi:10.1016/j.rse.2013.05.029 Zylstra, P. (2011). Forest Flammability: Modelling and Managing a Complex System. PhD Thesis, University of NSW @ ADFA. Retrieved from http://handle.unsw.edu.au/1959.4/51656 Zylstra, P. (2013). The historical influence of fire on the flammability of subalpine Snowgum forest and woodland. Victorian Naturalist, 130(6), 232-239.
Light weight fire resistant graphite composites
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hsu, M. T. S.
1986-01-01
Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft.
Effects of fire frequency on long-term development of an oak-hickory forest in Missouri, U.S.A.
Benjamin O. Knapp; Michael A. Hullinger; John M. Kabrick
2017-01-01
Repeated prescribed burning over long timescales has some predictable effects on forest structure and composition, but multi-decadal patterns of stand dynamics and successional change with different fire frequencies have rarely been described. We used longitudinal data from a prescribed burning study conducted over a 63-year period to quantify stand structure (stem...
Nancy E. Gillette; Richard S. Vetter; Sylvia R. Mori; Carline R. Rudolph; Dessa R. Welty
2008-01-01
We assessed spider (Arachnida: Araneae) responses to prescribed fire following stand s tructure treatments in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) stands in the Cascade Range of California. Stands were logged or left untreated to create three levels of structural diversity. We logged one treatment to minimize old-growth...
A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.
Zhang, J W; Rangan, A V
2015-04-01
In this paper we provide a general methodology for systematically reducing the dynamics of a class of integrate-and-fire networks down to an augmented 4-dimensional system of ordinary-differential-equations. The class of integrate-and-fire networks we focus on are homogeneously-structured, strongly coupled, and fluctuation-driven. Our reduction succeeds where most current firing-rate and population-dynamics models fail because we account for the emergence of 'multiple-firing-events' involving the semi-synchronous firing of many neurons. These multiple-firing-events are largely responsible for the fluctuations generated by the network and, as a result, our reduction faithfully describes many dynamic regimes ranging from homogeneous to synchronous. Our reduction is based on first principles, and provides an analyzable link between the integrate-and-fire network parameters and the relatively low-dimensional dynamics underlying the 4-dimensional augmented ODE.
Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems
Bond, William J.; Keeley, Jon E.
2005-01-01
It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of years, helping to shape global biome distribution and to maintain the structure and function of fire-prone communities. Fire is also a significant evolutionary force, and is one of the first tools that humans used to re-shape their world. Here, we review the recent literature, drawing parallels between fire and herbivores as alternative consumers of vegetation. We point to the common questions, and some surprisingly different answers, that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.
A population model of chaparral vegetation response to frequent wildfires.
Lucas, Timothy A; Johns, Garrett; Jiang, Wancen; Yang, Lucie
2013-12-01
The recent increase in wildfire frequency in the Santa Monica Mountains (SMM) may substantially impact plant community structure. Species of Chaparral shrubs represent the dominant vegetation type in the SMM. These species can be divided into three life history types according to their response to wildfires. Nonsprouting species are completely killed by fire and reproduce by seeds that germinate in response to a fire cue, obligate sprouting species survive by resprouting from dormant buds in a root crown because their seeds are destroyed by fire, and facultative sprouting species recover after fire both by seeds and resprouts. Based on these assumptions, we developed a set of nonlinear difference equations to model each life history type. These models can be used to predict species survivorship under varying fire return intervals. For example, frequent fires can lead to localized extinction of nonsprouting species such as Ceanothus megacarpus while several facultative sprouting species such as Ceanothus spinosus and Malosma (Rhus) laurina will persist as documented by a longitudinal study in a biological preserve in the SMM. We estimated appropriate parameter values for several chaparral species using 25 years of data and explored parameter relationships that lead to equilibrium populations. We conclude by looking at the survival strategies of these three species of chaparral shrubs under varying fire return intervals and predict changes in plant community structure under fire intervals of short return. In particular, our model predicts that an average fire return interval of greater than 12 years is required for 50 % of the initial Ceanothus megacarpus population and 25 % of the initial Ceanothus spinosus population to survive. In contrast, we predict that the Malosma laurina population will have 90 % survivorship for an average fire return interval of at least 6 years.
Simulating the influences of various fire regimes on caribou winter habitat
Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.
2006-01-01
Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.
Yılmaz, Kerem; Ozturk, Caner
2014-01-01
PURPOSE Surface color is one of the main criteria to obtain an ideal esthetic. Many factors such as the type of the material, surface specifications, number of firings, firing temperature and thickness of the porcelain are all important to provide an unchanged surface color in dental ceramics. The aim of this study was to evaluate the color changes in dental ceramics according to the material type and glazing methods, during the multiple firings. MATERIALS AND METHODS Three different types of dental ceramics (IPS Classical metal ceramic, Empress Esthetic and Empress 2 ceramics) were used in the study. Porcelains were evaluated under five main groups according to glaze and natural glaze methods. Color changes (ΔE) and changes in color parameters (ΔL, Δa, Δb) were determined using colorimeter during the control, the first, third, fifth, and seventh firings. The statistical analysis of the results was performed using ANOVA and Tukey test. RESULTS The color changes which occurred upon material-method-firing interaction were statistically significant (P<.05). ΔE, ΔL, Δa and Δb values also demonstrated a negative trend. The MC-G group was less affected in terms of color changes compared to other groups. In all-ceramic specimens, the surface color was significantly affected by multiple firings. CONCLUSION Firing detrimentally affected the structure of the porcelain surface and hence caused fading of the color and prominence of yellow and red characters. Compressible all-ceramics were remarkably affected by repeated firings due to their crystalline structure. PMID:25551001
Coexistence of Trees and Grass: Importance of climate and fire within the tropics
NASA Astrophysics Data System (ADS)
Shuman, J. K.; Fisher, R.; Koven, C.; Knox, R. G.; Andre, B.; Kluzek, E. B.
2017-12-01
Tropical forests are characterized by transition zones where dominance shifts between trees and grasses with some areas exhibiting bistability of the two. The cause of this transition and bistability has been linked to the interacting effects of climate, vegetation structure and fire behavior. Utilizing the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model, and the CESM ESM, we explore the coexistence of trees and grass across the tropics with an active fire regime. FATES has been updated to use a fire module based on Spitfire. FATES-Spitfire tracks fire ignition, spread and impact based on fuel state and combustion. Fire occurs within the model with variable intensity that kills trees according to the combined effects of cambial damage and crown scorch due to flame height and fire intensity. As a size-structured model, FATES allows for variable mortality based on the size of tree cohorts, where larger trees experience lower morality compared to small trees. Results for simulation scenarios where vegetation is represented by all trees, all grass, or a combination of competing trees and grass are compared to assess changes in biomass, fire regime and tree-grass coexistence. Within the forest-grass transition area there is a critical time during which grass fuels fire spread and prevents the establishment of trees. If trees are able to escape mortality a tree-grass bistable area is successful. The ability to simulate the bistability and transition of trees and grass throughout the tropics is critical to representing vegetation dynamics in response to changing climate and CO2.
Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.
Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A
2012-01-01
Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.
Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity
Barlow, Jos; Silveira, Juliana M.; Mestre, Luiz A. M.; Andrade, Rafael B.; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z.; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A.
2012-01-01
Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035
NASA Technical Reports Server (NTRS)
1980-01-01
Avco has drawn upon its heat shield experience to develop a number of widely-accepted commercial fire protection materials. Originating from NASA's space shuttle thermal protection system, one such material is Chartek 59 fireproofing, an intumescent epoxy coating specifically designed for outdoor use by industrial facilities dealing with highly flammable products such as oil refineries and chemical plants. The coating is applied usually by spray gun to exterior structural steel conduits, pipes and valves, offshore platforms and liquefied petroleum gas tanks. Fireproofing provides two types of protection: ablation or dissipation of heat by burn-off and "intumescence" or swelling; the coating swells to about five times its original size, forming a protective blanket of char which retards transfer of heat to the metal structure preventing loss of structural strength and possible collapse which would compound the fire fighting problem.
Managing forest structure and fire hazard--a tool for planners.
M.C. Johnson; D.L. Peterson; C.L. Raymond
2006-01-01
Fire planners and other resource managers need to examine a range of potential fuel and vegetation treatments to select options that will lead to desired outcomes for fire hazard and natural resource conditions. A new approach to this issue integrates concepts and tools from silviculture and fuel science to quantify outcomes for a large number of treatment options in...
Large-Scale Patterns of Forest Fire Occurrence in the Conterminous United States and Alaska, 2010
Kevin M. Potter
2013-01-01
Free-burning fire has been a constant ecological presence on the American landscape, the expression of which has changed as new climates, peoples and land uses have become predominant (Pyne 2010). It is an important ecological mechanism that shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant...
Vegetation-site relationships and fire history of a savanna-glade-woodland mosaic in the Ozarks
Sean E. Jenkins; Richard Guyette; Alan J. Rebertus
1997-01-01
There is a growing interest in reconstructing past disturbance regimes and how they influenced plant composition, structure and landscape pattern. Such information is useful to resource managers for determining the effects of fire suppression on vegetation or tailoring prescribed fires to restore community and landscape diversity. In the spring of 1995, the National...
Kevin C. Ryan; Eric Rigolot; Francisco C. Rego; Herminio Botelho; Jose A. Vega; Paulo M. Fernandes; Tatiana M. Sofronova
2010-01-01
Globally prescribed burning is widely used for agro-forestry, restoration, and conservation to modify species composition and stand structure. Commonly stated goals of prescribed burns include to reduce hazardous fuels, improve speciesâ habitat, reduce the potential for severe fires in the wildland urban interface or protect municipal watersheds. Treatments may focus...
Silvicultural tools applicable in forests burned by a mixed severity fire regime
Russell T. Graham; Theresa B. Jain
2005-01-01
The silvicultural tools applicable for use in forests burned by mixed severity fire regimes are as highly variable as the structures and compositions the fires have historically created. Singly or in combination chunking, chipping, slashing, and piling can alter the character of surface fuels (e.g., small trees, shrubs, branches, and stems). These treatments can be...
Fire containment in wood construction doesn’t just happen
Robert H. White; Kuma Sumathipala
2007-01-01
Regardless of the type of construction, structures capable of containing a fully developed fire do not just happen. Fire walls or area separation walls play an important role in the building codes in that they allow each portion of a building separated by such walls to be treated as a separate building. Attention to construction details is critical to maximizing the...
Forest service large fire area burned and suppression expenditure trends, 1970-2002.
David E. Calkin; Krista M. Gebert; J. Greg Jones; Ronald P. Neilson
2005-01-01
Extreme fire seasons in recent years and associated high suppression expenditures have brought about a chorus of calls for reform of federal firefighting structure and policy. Given the political nature of the topic, a critical review of past trends in area burned, size of fires, and suppression expenditures is warranted. We examined data relating to emergency wildland...
Structure Ignition Assessment can help reduce fire damages in the W-UI
Jack Cohen; Jim Saveland
1997-01-01
The wildland-urban interface (W-UI) refers to residential areas surrounded by or adjacent to wildland areas. In recent years, significant W-UI residential fire losses have occurred nationwide in the United States that have focused attention on the principal W-UI problem - losses of life and property to fire. To assess potential ignitions, SIAM uses an analytical...
The concept: Restoring ecological structure and process in ponderosa pine forests
Stephen F. Arno
1996-01-01
Elimination of the historic pattern of frequent low-intensity fires in ponderosa pine and pine-mixed conifer forests has resulted in major ecological disruptions. Prior to 1900, open stands of large, long-lived, fire-resistant ponderosa pine were typical. These were accompanied in some areas by other fire-dependent species such as western larch. Today, as a result of...
Colin C. Hardy; Elizabeth D. Reinhardt
1998-01-01
The essential role of fire in sustaining ecosystems has recently been formally recognized. It is specifically addressed in several new national policy documents. In the Federal Wildland Fire Policy and Program Review's Implementation Action Plan (US Department of Interior and U.S. Department of Agriculture 1996). federal land managers expect to implement a several...
Fire, Fuel, and Smoke Science Program: 2012 Research Accomplishments
Diane M. Smith; Colin C. Hardy
2012-01-01
In 2012, the nation experienced one of the largest wildland fire seasons in US history. More than 9 million acres burned, overwhelming fire-suppression budgets, burning homes and other structures, and taking the lives of both firefighters and civilians around the country. In Montana alone, 1.1 million acres burned, resulting in the largest wildfire year since 1910. As...
Jeanne C. Chambers; E. Durant McArthur; Steven B. Monson; Susan E. Meyer; Nancy L. Shaw; Robin J. Tausch; Robert R. Blank; Steve Bunting; Richard R. Miller; Mike Pellant; Bruce A. Roundy; Scott C. Walker; Alison Whittaker
2005-01-01
Pinyon-juniper woodlands and Wyoming big sagebrush ecosystems have undergone major changes in vegetation structure and composition since settlement by European Americans. These changes are resulting in dramatic shifts in fire frequency, size and severity. Effective management of these systems has been hindered by lack of information on: (1) presettlement fire regimes...
Richy J. Harrod; Nicholas A. Povak; David W. Peterson
2007-01-01
Forest thinning and prescribed fires are the main practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests of the Western United States. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. This study assesses the...
Brian M. Steele; Swarna K. Reddy; Robert E. Keane
2006-01-01
Fire frequency and severity, and vegetation composition and structure have been altered across much of North America during the past century because of fire exclusion and other land management practices. The cumulative results are now recognized to be partly responsible for dramatic increases in wildland fire severity and declines in ecosystem health. In response, the...
Daniel Kashian; Gregory Corace; Lindsey Shartell; Deahn M. Donner; Philip Huber
2011-01-01
Stand-replacing wildfires have historically shaped the forest structure of dry, sandy jack pine-dominated ecosystems at stand and landscape scales in northern Lower Michigan. Unique fire behavior during large wildfire events often preserves long strips of unburned trees arranged perpendicular to the direction of fire spread. These biological legacies create...
Soil properties in fire-consumed log burnout openings in a Missouri oak savanna
Charles C. Rhoades; A. J. Meier; A. J. Rebertus
2004-01-01
Downed logs are known to increase species diversity in many forest ecosystems by increasing resource and structural complexity and by altering fire behavior in fire-prone ecosystems. In a frequently burned oak savanna in central Missouri, combustion of downed logs formed patches that have remained free of herbaceous vegetation for more than 3 years. To assess the...
Long-term effects of fire severity on oak–conifer dynamics in the southern Cascades
Matthew I. Cocking; J. Morgan Varner; Eric E. Knapp
2014-01-01
We studied vegetation composition and structure in a mixed coniferâoak ecosystem across a range of fire severity 10 years following wildfire. Sample plots centered on focal California black oaks (Quercus kelloggii) were established to evaluate oak and neighboring tree and shrub recovery across a gradient of fire severity in the southern Cascade...
Prescribed fire effects in a longleaf pine ecosystem--are winter fires working?
Rebecca J. Barlow; John S. Kush; John C. Gilbert; Sharon M. Hermann
2015-01-01
Longleaf pine (Pinus palustris Mill.) ecosystems once dominated 60 to 90 million acres and supported one of the most diverse floras in North America. It is well-known that longleaf pine ecosystems must burn frequently to maintain natural structure and function. This vegetation type ranks as one of the most fire-dependent in the country and must...
Response of reptile and amphibian communities to the reintroduction of fire in an oak/hickory forest
Steven J. Hromada; Christopher A.F. Howey; Matthew B. Dickinson; Roger W. Perry; Willem M. Roosenburg; C.M. Gienger
2018-01-01
Fire can have diverse effects on ecosystems, including direct effects through injury and mortality and indirect effects through changes to available resources within the environment. Changes in vegetation structure such as a decrease in canopy cover or an increase in herbaceous cover from prescribed fire can increase availability of preferred microhabitats for some...
Sarah Pratt; Lisa Holsinger; Robert E. Keane
2006-01-01
A critical component of the Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, was the development of a nationally consistent method for estimating historical reference conditions for vegetation composition and structure and wildland fire regimes. These estimates of past vegetation composition and condition are used...
G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien
2015-01-01
Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...
Management adaptation to fires in the wildland-urban risk areas in Spain
Gema Herrero-Corral
2013-01-01
Forest fires not only cause damage to ecosystems but also result in major socio-economic losses and in the worst cases loss of human life. Specifically, the incidence of fires in the overlapping areas between building structures and forest vegetation (wildland-urban interface, WUI) generates highly-complex emergencies due to the presence of people and goods....
Post-Wildfire Peak Discharge Prediction Methods in Northern New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronstadt, Jackie A.
Recent changes in climate have resulted in a decrease in precipitation and snowpack amounts and increased temperatures in the western United States. As the climate warms, there are also changes to runoff amounts and water availability. Drier and warmer conditions coupled with forest management practices have led to an increase in the frequency and size of forest fires. The 2000 Cerro Grande fire in Los Alamos, New Mexico burned over 43,000 acres and 200 structures. Eleven years later, the Las Conchas fire burned over 156,000 acres and 100 structures, including areas previously burned in 2000, and was considered the largestmore » fire in New Mexico’s history. Both fires burned ponderosa, juniper, piñon and mixed conifer forests, resulting in dramatic decreases in vegetation, changes to surface soils, and alterations to the hydrologic cycle (decreased evapotranspiration, decreased infiltration, increased runoff volume and peak discharge, and decreased time to peak discharge) in surrounding watersheds. The frequency of large, intense “mega-fires” are predicted to increase, thus there is a potential for more post-fire flood damage and more surface water resources to be altered due to water quality issues.« less
Laser-induced incandescence measurements of soot in turbulent pool fires.
Frederickson, Kraig; Kearney, Sean P; Grasser, Thomas W
2011-02-01
We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2 m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10(-5) cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities.
Montygierd-Loyba, T. M.; Keeley, J.E.; DeVries, J.J.
1986-01-01
Wildfires have had a major influence on the structural and functional adaptations that have evolved in Mediterranean-type ecosystems. Some chaparral shrubs sprout after fires while others produce serotinous cones or seeds refractory to germination until they are cued by a fire. Ceanothus megacarpus is a sclerophylous shrub commonly found in California in either pure of mixed stands which does not survive fires but whose seeds germinate following a fire. Because in recent decades man-made fires have become frequent, few older stands remain, and they have been described as "decadent" or "senescent." Since data on older chaparral stands are scarce, a stand of chaparral in the Santa Monica Mountains of southern California, which last burned in 1929 was studied in an effort to elucidate the survivorship patterns and community structure of Ceanothus megacarpus as it ages. Ceanothus is responsible for 68 percent of the basal coverage at this mixed stand, and one-eighth of the Ceanothus were found to be dead. Over 130 such dead individuals were cut at ground level and aged by ring counts to establish the survivorship curve for this species in this chaparral community in the absence of fires.
On Some Methods in Safety Evaluation in Geotechnics
NASA Astrophysics Data System (ADS)
Puła, Wojciech; Zaskórski, Łukasz
2015-06-01
The paper demonstrates how the reliability methods can be utilised in order to evaluate safety in geotechnics. Special attention is paid to the so-called reliability based design that can play a useful and complementary role to Eurocode 7. In the first part, a brief review of first- and second-order reliability methods is given. Next, two examples of reliability-based design are demonstrated. The first one is focussed on bearing capacity calculation and is dedicated to comparison with EC7 requirements. The second one analyses a rigid pile subjected to lateral load and is oriented towards working stress design method. In the second part, applications of random field to safety evaluations in geotechnics are addressed. After a short review of the theory a Random Finite Element algorithm to reliability based design of shallow strip foundation is given. Finally, two illustrative examples for cohesive and cohesionless soils are demonstrated.
Effect of corrosion on the buckling capacity of tubular members
NASA Astrophysics Data System (ADS)
Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.
2017-12-01
Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.
Use of intumescent compounds in fire curtains
NASA Astrophysics Data System (ADS)
Nedryshkin, Oleg; Gravit, Marina; Mukhamedzhanova, Olga
2017-10-01
Automatic fire curtains are designed to divide sections of premises and structures into fire compartments for the purpose of localizing a fire, as well as filling openings in fire barriers. If a fire occurs due to a signal from a fire alarm sensor or a signal from a fire station, the blind automatically falls and locates the source of ignition. The paper presents the results of testing nine samples of fire curtains with an applied intumescent composition. Tests were conducted for 60 minutes before loss of sample integrity. The average temperature from the heated side of the sample reached 800 ∼ 1000 ° C. Depending on the sample, the temperature from the unheated side ranged from 70 ° C to 294 ° C. The best result was shown by a sample from a layer of needle-punched heat-insulating material with a thermal conductivity of 0.036 W/(m×K) placed between layers of foil and treated with water-based intumescent composition of silica material.
Pellegrini, Adam F A; Anderegg, William R L; Paine, C E Timothy; Hoffmann, William A; Kartzinel, Tyler; Rabin, Sam S; Sheil, Douglas; Franco, Augusto C; Pacala, Stephen W
2017-03-01
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models. © 2017 John Wiley & Sons Ltd/CNRS.
Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spickermann, Thomas
2012-08-01
In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergencymore » situations; and (3) Plan recovery and keep squirrels out.« less
Prevention and suppression of metal packing fires.
Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W
2003-11-14
Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.
NASA Astrophysics Data System (ADS)
Li, Bo; Shu, Wenhua; Zuo, Yantian
2017-04-01
The austenitic stainless steels are widely applied to pressure vessel manufacturing. The fire accident risk exists in almost all the industrial chemical plants. It is necessary to make safety evaluation on the chemical equipment including pressure vessels after fire. Therefore, the present research was conducted on the influences of fire exposure testing under different thermal conditions on the mechanical performance evolution of S30408 austenitic stainless steel for pressure vessel equipment. The metallurgical analysis described typical appearances in micro-structure observed in the material suffered by fire exposure. Moreover, the quantitative degradation of mechanical properties was investigated. The material thermal degradation mechanism and fitness-for-service assessment process of fire damage were further discussed.
Rodeo and Chediski Fires in Arizona
NASA Technical Reports Server (NTRS)
2002-01-01
Over the weekend, the Rodeo and Chediski Fires in Arizona grew explosively, and the two large fires are now beginning to merge. Smoke from the fires is stretching hundreds of kilometers northeast, where it may be mingling with smoke from the Missionary Ridge Fire in Colorado. The Rodeo Fire is now 205,000 acres, and the Chediski is over 100,000. More than 200 structures have been lost in the two blazes, but many more hundreds have been saved by firefighters. This Moderate Resolution Imaging Spectroradiometer (MODIS) image was acquired Sunday, June 23, 2002. The data were collected via MODIS? Direct Broadcast capability, in which real time data are continuously broadcast, and can be received by ground stations directly in the path of the Terra satellite.
Hot fire fatigue testing results for the compliant combustion chamber
NASA Technical Reports Server (NTRS)
Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.
1992-01-01
A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.
The Science of Firescapes: Achieving Fire-Resilient Communities.
Smith, Alistair M S; Kolden, Crystal A; Paveglio, Travis B; Cochrane, Mark A; Bowman, David Mjs; Moritz, Max A; Kliskey, Andrew D; Alessa, Lilian; Hudak, Andrew T; Hoffman, Chad M; Lutz, James A; Queen, Lloyd P; Goetz, Scott J; Higuera, Philip E; Boschetti, Luigi; Flannigan, Mike; Yedinak, Kara M; Watts, Adam C; Strand, Eva K; van Wagtendonk, Jan W; Anderson, John W; Stocks, Brian J; Abatzoglou, John T
2016-02-01
Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the "wicked" wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities.
24 CFR 201.20 - Property improvement loan eligibility.
Code of Federal Regulations, 2012 CFR
2012-04-01
... preservation of historic structures. (2) Where the proceeds are to be used for a fire safety equipment loan... jurisdiction over the fire safety requirements of health care facilities prior to making application for a loan...
24 CFR 201.20 - Property improvement loan eligibility.
Code of Federal Regulations, 2011 CFR
2011-04-01
... preservation of historic structures. (2) Where the proceeds are to be used for a fire safety equipment loan... jurisdiction over the fire safety requirements of health care facilities prior to making application for a loan...
24 CFR 201.20 - Property improvement loan eligibility.
Code of Federal Regulations, 2014 CFR
2014-04-01
... preservation of historic structures. (2) Where the proceeds are to be used for a fire safety equipment loan... jurisdiction over the fire safety requirements of health care facilities prior to making application for a loan...
24 CFR 201.20 - Property improvement loan eligibility.
Code of Federal Regulations, 2013 CFR
2013-04-01
... preservation of historic structures. (2) Where the proceeds are to be used for a fire safety equipment loan... jurisdiction over the fire safety requirements of health care facilities prior to making application for a loan...
Julie N. Symons; Dean H. K. Fairbanks; Carl N. Skinner
2008-01-01
This study utilizes forest stand structures and fuel profiles to evaluate the influence of different types of silvicultural treatments on fire severity in the Blacks Mountain Experimental Forest (BMEF), located within Lassen National Forest of northeastern California. We compare the severity of fire, assessed based on tree crown and bole scorch on 100 ha experimental...
Colin C. Hardy; Helen Y. Smith; Ward McCaughey
2006-01-01
This paper presents several components of a multi-disciplinary project designed to evaluate the ecological and biological effects of two innovative silvicultural treatments coupled with prescribed fire in an attempt to both manage fuel profiles and create two-aged stand structures in lodgepole pine. Two shelterwood silvicultural treatments were designed to replicate as...
Camille Stevens-Rumann; Kristen Shive; Peter Fule; Carolyn H. Sieg
2013-01-01
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo-Chediski Fire area. Data from 140 plots on seven paired treated-untreated sites...
Hangar Fire Suppression Utilizing Novec 1230
2018-01-01
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...fuel fires in aircraft hangars. A 30×30×8-ft concrete-and-steel test structure was constructed for this test series . Four discharge assemblies...structure. System discharge parameters---discharge time , discharge rate, and quantity of agent discharged---were adjusted to produce the desired Novec 1230
Andrew Youngblood; Clinton S. Wright; Roger D. Ottmar; James D. McIver
2007-01-01
In many fire-prone forests in the United States, changes occurring in the last century have resulted in overstory structures, conifer densities, down woody structure, and fuel loads that deviate from those described historically. With these changes, forests are presumed to be unsustainable. Broad-scale treatments are proposed to reduce fuels and promote stand...
Fire characteristics associated with firefighter injury on large federal wildland fires.
Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne
2013-02-01
Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.
Hossack, B.R.; Corn, P.S.; Fagre, D.B.
2006-01-01
Wildfire is a potential threat to many species with narrow environmental tolerances like the Rocky Mountain tailed frog (Ascaphus montanus Mittleman and Myers, 1949), which inhabits a region where the frequency and intensity of wildfires are expected to increase. We compared pre- and post-fire counts of tadpoles in eight streams in northwestern Montana to determine the effects of wildfire on A. montanus. All streams were initially sampled in 2001, 2 years before four of them burned in a large wildfire, and were resampled during the 2 years following the fire. Counts of tadpoles were similar in the two groups of streams before the fire. After the fire, tadpoles were almost twice as abundant in unburned streams than in burned streams. The fire seemed to have the greatest negative effect on abundance of age-1 tadpoles, which was reflected in the greater variation in same-stream age-class structure compared with those in unburned streams. Despite the apparent effect on tadpoles, we do not expect the wildfire to be an extirpation threat to populations in the streams that we sampled. Studies spanning a chronosequence of fires, as well as in other areas, are needed to assess the effects of fires on streams with A. montanus and to determine the severity and persistence of these effects.
Shen, Ju-pei; Chen, C R; Lewis, Tom
2016-01-20
Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0-10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4(+), TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.
Shen, Ju-pei; Chen, C. R.; Lewis, Tom
2016-01-01
Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0–10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4+, TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire. PMID:26787458
Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence
Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O.; Heinonsalo, Jussi
2015-01-01
Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics. PMID:26341215
Clare, Joseph; Garis, Len; Plecas, Darryl; Jennings, Charles
2012-04-01
In 2008, Surrey Fire Services, British Columbia, commenced a firefighter-delivered, door-to-door fire-prevention education and smoke alarm examination/installation initiative with the intention of reducing the frequency and severity of residential structure fires in the City of Surrey. High-risk zones within the city were identified and 18,473 home visits were undertaken across seven temporal delivery cohorts (13.8% of non-apartment dwellings in the city). The frequency and severity of fires pre- and post- the home visit intervention was examined in comparison to randomized high-risk cluster controls. Overall, the frequency of fires was found to have reduced in the city overall, however, the reduction in the intervention cohorts was significantly larger than for controls. Furthermore, when fires did occur within the intervention cohorts, smoke detectors were activated more frequently and the fires were confined to the object of origin more often post-home visits. No equivalent pattern was observed for the cluster control. On-duty fire fighters can reduce the frequency and severity of residential fires through targeted, door-to-door distribution of fire prevention education in high-risk areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Prescribed fire and its impacts on ecosystem services in the UK.
Harper, Ashleigh R; Doerr, Stefan H; Santin, Cristina; Froyd, Cynthia A; Sinnadurai, Paul
2018-05-15
The impacts of vegetation fires on ecosystems are complex and varied affecting a range of important ecosystem services. Fire has the potential to affect the physicochemical and ecological status of water systems, alter several aspects of the carbon cycle (e.g. above- and below-ground carbon storage) and trigger changes in vegetation type and structure. Globally, fire is an essential part of land management in fire-prone regions in, e.g. Australia, the USA and some Mediterranean countries to mitigate the likelihood of catastrophic wildfires and sustain healthy ecosystems. In the less-fire prone UK, fire has a long history of usage in management for enhancing the productivity of heather, red grouse and sheep. This distinctly different socioeconomic tradition of burning underlies some of the controversy in recent decades in the UK around the use of fire. Negative public opinion and opposition from popular media have highlighted concerns around the detrimental impacts burning can have on the health and diversity of upland habitats. It is evident there are many gaps in the current knowledge around the environmental impacts of prescribed burning in less fire-prone regions (e.g. UK). Land owners and managers require a greater level of certainty on the advantages and disadvantages of prescribed burning in comparison to other techniques to better inform management practices. This paper addresses this gap by providing a critical review of published work and future research directions related to the impacts of prescribed fire on three key aspects of ecosystem services: (i) water quality, (ii) carbon dynamics and (iii) habitat composition and structure (biodiversity). Its overall aims are to provide guidance based on the current state-of-the-art for researchers, land owners, managers and policy makers on the potential effects of the use of burning and to inform the wider debate about the place of fire in modern conservation and land management in humid temperate ecosystems. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.