Science.gov

Sample records for european atlantic margin

  1. Palinspastic reconstruction of the opening of the NE Atlantic: differential sea-floor spreading and resulting deformation of the NW European Margin

    NASA Astrophysics Data System (ADS)

    Le Breton, E.; Cobbold, P. R.; Dauteuil, O.

    2012-04-01

    The NE Atlantic Ocean opened progressively between Greenland and NW Europe during the Cenozoic. Sea-floor spreading occurred along three ridge systems: the Reykjanes Ridge south of Iceland, the Mohns Ridge north of the Jan Mayen Fracture Zone (JMFZ), and the Aegir and Kolbeinsey ridges between Iceland and the JMFZ. At the same time, compressional structures developed along the continental margin of NW Europe, but apparently not on the East Greenland Margin. We therefore investigate how compressional deformation of the NW European Margin may have resulted from variations in the amount and direction of sea-floor spreading along the various ridges. One of the main assumptions of the theory of plate tectonics is that all lithospheric plates are rigid. However, reconstructions of the opening of the NE Atlantic Ocean, on the basis of two rigid plates (Eurasia and Greenland), lead to gaps and overlaps between the plates. Furthermore, the oceanic Jan Mayen Segment, between Iceland and the JMFZ, had a complex spreading history, including progressive separation of the Jan Mayen Microcontinent (JMMC) and a ridge jump from the Aegir Ridge to the Kolbeinsey Ridge. A subdivision of the NE Atlantic Ocean into micro-plates improves the fits, yet it remains difficult to reconstruct a simple spreading history for the Jan Mayen Segment using Euler rotation poles alone. In order to reconstruct the complex spreading history of the NE Atlantic and to study the evolution of the European Margin during sea-floor spreading, we have developed a method for palinspastic reconstruction of the opening of an ocean, using magnetic anomalies and fracture zones. We first subdivide the oceanic domain into a finite number of blocks, lying between magnetic anomalies and fracture zones. Our iterative least-squares method then minimizes the gaps and overlaps between the blocks. This yields the rigid translations and rotations of the blocks. Thus the method provides a full pattern of displacement for all

  2. Holocene re-colonisation, central-marginal distribution and habitat specialisation shape population genetic patterns within an Atlantic European grass species.

    PubMed

    Harter, D E V; Jentsch, A; Durka, W

    2015-05-01

    Corynephorus canescens (L.) P.Beauv. is an outbreeding, short-lived and wind-dispersed grass species, highly specialised on scattered and disturbance-dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post-glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance-driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation-by-distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re-colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re-)colonisation histories and range centre-margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre-periphery gradients.

  3. Atlantic marginal basins of Africa

    SciTech Connect

    Moore, G.T.

    1988-02-01

    The over 10,000-km long Atlantic margin of Africa is divisible into thirty basins or segments of the margin that collectively contain over 18.6 x 10/sup 6/ km/sup 3/ of syn-breakup and post-breakup sediments. Twenty of these basins contain a sufficiently thick volume of sediments to be considered prospects. These basins lie, at least partially, within the 200 m isobath. The distribution of source rocks is broad enough to give potential to each of these basins. The sedimentation patterns, tectonics, and timing of events differ from basin to basin and are related directly to the margin's complex history. Two spreading modes exist: rift and transform. Rifting dates from Late Triassic-Early Jurassic in the northwest to Early Cretaceous south of the Niger Delta. A complex transform fault system separated these two margins. Deep-water communication between the two basins became established in the middle Cretaceous. This Mesozoic-Cenozoic cycle of rifting and seafloor spreading has segmented the margin and where observable, basins tend to be bounded by these segments.

  4. Iberian Atlantic Margins Group investigates deep structure of ocean margins

    NASA Astrophysics Data System (ADS)

    The Iberian Atlantic Margins Group; Banda, Enric; Torne, Montserrat

    With recent seismic reflection data in hand, investigators for the Iberian Atlantic Margins project are preparing images of the deep continental and oceanic margins of Iberia. In 1993, the IAM group collected near vertical incidence seismic reflection data over a total distance of 3500 km along the North and Western Iberian Margins, Gorringe Bank Region and Gulf of Cadiz (Figure 1). When combined with data on the conjugate margin off Canada, details of the Iberian margin's deep structure should aid in distinguishing rift models and improve understanding of the processes governing the formation of margins.The North Iberian passive continental margin was formed during a Permian to Triassic phase of extension and matured during the early Cretaceous by rotation of the Iberian Peninsula with respect to Eurasia. From the late Cretaceous to the early Oligocene period, Iberia rotated in a counterclockwise direction around an axis located west of Lisbon. The plate boundary between Iberia and Eurasia, which lies along the Pyrenees, follows the north Spanish marginal trough, trends obliquely in the direction of the fossil Bay of Biscay triple junction, and continues along the Azores-Biscay Rise [Sibuet et al., 1994]. Following the NE-SW convergence of Iberia and Eurasia, the reactivation of the North Iberian continental margin resulted in the formation of a marginal trough and accretionary prism [Boillot et al., 1971].

  5. Constraints on the Age of Continental Rifting and NE Atlantic "Break-Up" using U-Pb Geochronology of Fault-Hosted Calcite Mineralisation: Faroe Islands, European Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Roberts, N. M. W.

    2014-12-01

    Continental basins located along the European Atlantic volcanic passive margin are an increasingly important setting for hydrocarbon exploration. Several recent offshore and onshore studies in the Faroe-Shetland Basin have shown that many faults cut part, or all of the Palaeogene lava sequences together with the rocks in the underlying sedimentary basins. These lava-hosted faults have the potential to act both as fluid traps or migration pathways for hydrocarbon accumulations originating at depth below the volcanic pile. Mapping and structural analysis of calcite-mineralized fault sets developed in the Faroe Islands Basalt Group show systematic cross-cutting relationships, which can be fit to a relative chronology of deformation events that record a multi-phase rift-reorientation through time. The geometry and kinematics of structures recorded on the Faroe Islands indicate that they are coeval with the onset of segmented oceanic-spreading on the Reykjanes, Aegir, and Mohns ridges, currently dated at about 54-51 Ma. This age is regionally poorly constrained, utilizing relative ages of oceanic magnetochrons, in a region where magnetochrons are ambiguous. We present new age constraints for initial continental separation, using U-Pb geochronology of crack-seal calcite veins in the Faroe Islands. Calcite grains were selected for each rift-fault set, and analyzed using LA-ICP-MS. Samples were screened to find closed-system material with abundant uranium, and analyzed for alteration using BSE, CL and charge-coat imaging with an SEM. Initial results reveal that although rift-fault kinematics are consistent with the onset of oceanic spreading, the U-Pb ages are much younger than magnetochron (54 Ma) break-up ages, and imply that oceanic spreading had not established in the Faroes region of the margin until at least 45 Ma. This new data is consistent with models for a remnant continental land bridge linking Greenland and Eurasia well into the Eocene.

  6. Earthquakes at North Atlantic passive margins

    SciTech Connect

    Gregersen, S. ); Basham, P.W. )

    1989-01-01

    The main focus of this volume is the earthquakes that occur at and near the continental margins on both sides of the North Atlantic. The book, which contains the proceedings of the NATO workshop on Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on Both Sides of the North Atlantic, draws together the fields of geophysics, geology and geodesy to address the stress and strain in the Earth's crust. The resulting earthquakes produced on ancient geological fault zones and the associated seismic hazards these pose to man are also addressed. Postglacial rebound in North America and Fennoscandia is a minor source of earthquakes today, during the interglacial period, but evidence is presented to suggest that the ice sheets suppressed earthquake strain while they were in place, and released this strain as a pulse of significant earthquakes after the ice melted about 9000 years ago.

  7. Vertical Movements On The Norwegian Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Hendriks, B. W. H.; Andriessen, P. A. M.

    In order to better constrain the pattern and timing of the post-Caledonian vertical movements in northern Scandinavia, the apatite fission track dataset of Hendriks and Andriessen (2002, in press) has recently been expanded with additional AFT data and a whole new set of (U-Th)/He data. Hendriks and Andriessen (2002) found an increase of AFT ages from the Norwegian Atlantic margin (mostly Cretaceous AFT ages) to the continental interior (Devonian AFT ages). Further north, along the Barents Sea margin, AFT ages were much less variable (Triassic - Carboniferous). Because of the unique low -temperature sensitivity of the (U-Th)/He technique, with ages referrering to temperatures of ~50 to ~70°C, we can now track thermal histories in northern Scandinavia into the Paleocene. The reconstuct ed denudation history in many ways is different from that of Southern Norway (Rohrman, 1995). There, rapid Triassic - Jurassic and slow Cretaceous - Paleogene exhumation were followed by domal style postrift uplift on a regional scale in the Neogene. In contrast, Mesozoic - Cenozoic exhumation of northern Scandinavia was strongly assymetric, with the most and latest denudation on the Norwegian Atlantic margin. Also, large Neogene vertical movements here are restricted to the area of the strong negative gravity anomaly in Nordland. Away from this area, the latest phase of exhumation is a late Cretaceous- Paleogene event. This is especially clear from the (U -Th)/He ages, varying between 111 +/- 16 Ma (for the same sample the AFT age is 220 +/- 25 Ma, mean track length 12.9 µm) and 57 +/- 2 Ma (AFT age 254 +/- 21 Ma, mean track length 13.9 µm) on a vertical profile in the area of maximum elevation in the Northern Scandes (~ Northern Caledonides). Jurassic - early Cretaceous denudation (applying a geotherm of ~ 30°C/km, which has been calculated directly from the vertical profile) is about 1 +/- 0.5 km. Along the Norwegian Atlantic margin (onshore), there is considerable variation in

  8. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  9. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  10. Northeast Atlantic Igneous Province volcanic margin development

    NASA Astrophysics Data System (ADS)

    Mjelde, R.; Breivik, A. J.; Faleide, J. I.

    2009-04-01

    Early Eocene continental breakup in the NE Atlantic Volcanic Province (NAIP) was associated with voluminous extrusive and intrusive magmatism, and initial seafloor spreading produced anomalously thick oceanic crust. Recent publications based on crustal-scale wide-angle seismic data show that there is a positive correlation between igneous crustal thickness (H) and average P-wave velocity (Vp) on all investigated margins in the NAIP. Vp can be used as a proxy for crustal composition, which can be related to the mode of mantle melting. A positive H-Vp correlation indicates that excessive mantle melting the first few million years after breakup was driven by an initial increased temperature that cools off as seafloor spreading develops, consistent with a mantle plume model. Variations in mantle composition can explain excess magmatism, but will generate a negative H-Vp correlation. Active mantle convection may increase the flux of mantle rocks through the melting zone above the rate of passive corner flow, which can also produce excessive magmatism. This would produce little H-Vp correlation, and place the curve lower than the passive flow melting curve in the diagram. We have compiled earlier published results with our own analyses of published and unpublished data from different groups to look for systematic variations in the mantle melting mode along the NAIP margins. Earlier studies (Holbrook et al., 2002, White et al, 2008) on the southeast Greenland conjugate system, indicate that the thick igneous crust of the southern NAIP (SE Greenland ? Hatton Bank) was dominated by increased mantle temperature only, while magmatism closer to the southern side of and including the Greenland-Iceland-Færøy Ridge (GIFR) was created by combined temperature increase and active mantle convection. Recent publications (Breivik et al., 2008, White et al, 2008) north of the GIFR for the Norway Basin segment, indicate temperature dominated magmatism between the Jan Mayen Fracture

  11. GLANAM (Glaciated North Atlantic Margins): A Marie Curie Initial Training Network between Norway, the UK & Denmark

    NASA Astrophysics Data System (ADS)

    Petter Sejrup, Hans; Oline Hjelstuen, Berit

    2015-04-01

    GLANAM (Glaciated North Atlantic Margins) is an Initial Training Network (ITN) funded under the EU Marie Curie Programme. It comprises 10 research partners from Norway, UK and Denmark, including 7 University research teams, 1 industrial full partner and 2 industrial associate partners. The GLANAM network will employ and train 15 early career researchers (Fellows). The aim of GLANAM is to improve the career prospects and development of young researchers in both the public and private sector within the field of earth science, focusing on North Atlantic glaciated margins. The young scientists will perform multi-disciplinary research and receive training in geophysics, remote sensing, GIS, sedimentology, geomorphology, stratigraphy, geochemistry and numerical modeling through three interconnected work packages that collectively address knowledge gaps related to the large, glacial age, sedimentary depocentres on the North Atlantic margin. The 15 Fellows will work on projects that geographically extend from Ireland in the south to the High Arctic. Filling these gaps will not only result in major new insights regarding glacial age processes on continental margins in general, but will also provide paleoclimate information essential for understanding the role of marine-based ice sheets in the climate system and for the testing of climate models. GLANAM brings together leading European research groups working on glaciated margins in a coordinated and collaborative research and training project. Focusing on the North Atlantic margins, this coordinated approach will lead to a major advance in the understanding of glaciated margins more widely and will fundamentally strengthen European research and build capacity in this field.

  12. On isostasy at Atlantic-type continental margins

    NASA Technical Reports Server (NTRS)

    Karner, G. D.; Watts, A. B.

    1982-01-01

    The concept of isostasy describes the manner in which topographic features on the earth's surface are compensated at depth. The present investigation is concerned with the isostatic mechanism at Atlantic-type continental margins. Particular attention is given to the question whether the flexure model of isostasy, which has successfully been used at other geological features in oceans, is applicable at margins. Cross-spectral techniques are used to analyze the relationship between free air gravity and topography at Atlantic-type continental margins. The relatively old eastern North America is found to be associated with the highest value of the effective elastic thickness in the range 10-20 km, while the relatively young Coral Sea/Lord Howe rise is associated with the lowest value of less than 5 km. The differences in estimates of effective elastic thickness between margins can be explained by a simple model in which the flexural strength of the basement increases with age.

  13. On isostasy at Atlantic-type continental margins

    NASA Technical Reports Server (NTRS)

    Karner, G. D.; Watts, A. B.

    1982-01-01

    The concept of isostasy describes the manner in which topographic features on the earth's surface are compensated at depth. The present investigation is concerned with the isostatic mechanism at Atlantic-type continental margins. Particular attention is given to the question whether the flexure model of isostasy, which has successfully been used at other geological features in oceans, is applicable at margins. Cross-spectral techniques are used to analyze the relationship between free air gravity and topography at Atlantic-type continental margins. The relatively old eastern North America is found to be associated with the highest value of the effective elastic thickness in the range 10-20 km, while the relatively young Coral Sea/Lord Howe rise is associated with the lowest value of less than 5 km. The differences in estimates of effective elastic thickness between margins can be explained by a simple model in which the flexural strength of the basement increases with age.

  14. The Continental Margins of the Western North Atlantic.

    ERIC Educational Resources Information Center

    Schlee, John S.; And Others

    1979-01-01

    Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)

  15. The Continental Margins of the Western North Atlantic.

    ERIC Educational Resources Information Center

    Schlee, John S.; And Others

    1979-01-01

    Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)

  16. Geologic evolution of the United States Atlantic Margin

    SciTech Connect

    Poag, W.C.

    1985-01-01

    This volume compiles the significant findings which began to be accumulated in 1974 during offshore petroleum explorations in the Atlantic Continental Shelf. It's the first presentation of current geological data from the U.S. Atlantic Margin from the inner edge of the coastal plain to the deep sea. A seismic grid of several thousand seismic reflection profiles is correlated with 48 deep borings and the same number of shallow core holes. These profiles are presented on 26 large displays that fold out to as large as 48 x 36''.

  17. Geomorphic characterization of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.

    2013-01-01

    The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.

  18. West European public and the Atlantic Alliance

    SciTech Connect

    Ziegler, A.H. Jr.

    1987-01-01

    Using original and previously published survey data, this study explores West European public attitudes about Atlantic cooperation in general and NATO in particular. Alternative viewpoints are categorized into a typology that is used to describe the conceptual nature of European beliefs and to measure the level of public support for the different viewpoints. Long-term trends in these attitudes and causal determinants are also examined. A distinguishing feature of this study is that it is truly comparative. The analysis relies on identical survey items administered in four European countries: Great Britain, France, West German, and Italy. The longitudinal data examined indicate that some fundamental changes have occurred in European security beliefs. Anti-Americanism has increased dramatically at the same time that attitudes toward the Soviet Union have become more favorable, and the fear of nuclear weapons and nuclear war has increased substantially. Explanations for these shifts in opinion are not found in sociological factors, such as changes in generational experiences, educational levels, or social classes; but instead, European attitudes appear to reflect broad changes in international politics, such as the Vietnam War, nuclear parity, and detente. Favorable opinion for NATO tends to be high, yet specific defense-related measures receive much less support.

  19. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    SciTech Connect

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plain were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.

  20. Atlantic Mesozoic marginal basins: an Iberian view

    SciTech Connect

    Wilson, R.C.L.

    1987-05-01

    In the light of theoretical models for crustal stretching that precedes ocean opening, it is unlikely that Iberian basins have mirror image counterparts beneath North American or other European continental shelves. However, certain Iberian sedimentary sequences are comparable to those found in other basins. Of particular note are (1) the almost identical pre-rift sequences in all these areas, (2) the development of Upper Jurassic carbonate buildups in Portugal, Morocco, and beneath the Scotian Shelf, and (3) the hydrocarbon-bearing Upper Jurassic and Lower Cretaceous synrift and postrift siliciclastics of North America, Iberia, and Aquitaine. In the prerift sequences, Triassic red beds are capped by evaporites, which subsequently influenced the structural development of basins. Intertidal and supratidal carbonates occur at the base of the Jurassic and are overlain by Lower and Middle Jurassic limestone-shale sequences, which in places contain bituminous shales. In Portugal only, resedimented carbonates of Toarcian-Aalenian age are associated with an uplifted basement horst. In Portugal, Aquitaine, and eastern Canada, Middle Jurassic high-energy carbonate platforms developed. Synrift siliciclastic sequences show spectacular evidence for deposition within fault-bounded basins. In Portugal, lower Kimmeridgian clastics are up to 3 km thick, but Upper-Lower Cretaceous sequences are relatively thin (ca. 1 km), in contrast to those of the Basco-Cantabrian region where they exceed 10 km. In the latter region occurs the fluvially dominated Wealden (Upper Jurassic-Neocomian) and Urgonian carbonate platforms and associated basinal sediments. In the Asturias basin, Kimmeridgian shales and fluvially dominated deltaic sandstones succeed conglomeratic fluvial sandstones of uncertain age.

  1. Deep Crustal Structure of S-Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Becker, K.; Schnabel, M.; Franke, D.; Heyde, I.; Schreckenberger, B.; Koopmann, H.; Krawczyk, C. M.; Trumbull, R. B.

    2013-12-01

    We investigate the crustal structure along the southern South Atlantic margins with a focus on the high velocity lower crustal bodies (HVLC). This is a distinct zone at the base of the crust, where seismic P-wave velocities exceed 7.0 km/s and locally reach values up to 7.7 km/s. The study is based on a selected set of refraction seismic lines on conjugate margin segments of Uruguay-Argentina and Namibia-South Africa, acquired during marine geophysical cruises in 2004 and 1998. We performed new P-wave tomography complemented with gravity modeling along two crustal transects, and combine these with previous seismic and gravity models. The results are used to examine the interplay of rifting and magmatism during the evolution of the South Atlantic, what activated the spreading phase and how this is reflected in the distribution of high velocity lower crust. On all sections we observe HVLC, even on a magma poor southernmost section at the western margin. The HVLC varies strongly in shape and size along the margin. From South to North the area of the HVLC on 2D velocity sections increases on both margins. However, the HVLC bodies along the South American margin are much smaller than on the South African margin, possibly indicating asymmetric break up. A striking feature is the distinct seaward shift of the HVLC relative to the seaward dipping reflectors (SDRs). While in the south, the HVLC is situated below the SDRs, towards the north the HVLC formed seaward of the SDRs. From this seaward migration we infer that the formation of HVLC in the magma-rich northern sections may have formed at least partly after rifting and break up.

  2. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which

  3. Spatiotemporal relationships between earthquakes of the mid-Atlantic Ridge and the Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    Bolarinwa, Oluwaseyi J.

    The seismicity of the mid Atlantic Ridge (MAR) was compared in space and time with the seismicity along the Atlantic continental margins of Europe, Africa, North America, the Carribean and South America in a bid to appraise the level of influence of the ridge push force at the MAR on the Atlantic coastal seismicity. By analyzing the spatial and temporal patterns of many earthquakes (along with the patterns in their stress directions) in diverse places with similar tectonic settings, it is hoped that patterns that might be found indicate some of the average properties of the forces that are causing the earthquakes. The spatial analysis of the dataset set used shows that areas with higher seismic moment release along the north MAR spatially correlate with areas with relatively lower seismic moment release along the north Atlantic continental margins (ACM) and vice versa. This inverse spatial correlation observed between MAR seismicity and ACM seismicity might be due to the time (likely a long time) it takes stress changes from segments of the MAR currently experiencing high seismic activity to propagate to the associated passive margin areas presently experiencing relatively low seismic activity. Furthermore, the number of Atlantic basin and Atlantic coast earthquakes occurring away from the MAR is observed to be independent of the proximity of earthquake's epicenters from the MAR axis. The effect of local stress as noted by Wysession et al. (1995) might have contributed to the independence of Atlantic basin and Atlantic coast earthquake proximity from the MAR. The Latchman (2011) observation of strong earthquakes on a specific section of the MAR being followed by earthquakes on Trinidad and Tobago was tested on other areas of the MAR and ACM. It was found that that the temporal delay observed by Latchman does not exist for the seismicity along other areas along the MAR and ACM. Within the time window used for this study, it appears that seismicity is occurring

  4. Tectonic structure and evolution of the Atlantic continental margin

    SciTech Connect

    Klitgord, K.D.; Schouten, H.; Hutchinson, D.R.

    1985-01-01

    The Atlantic continental margin developed across the boundary between continental and oceanic crust as rifting and then sea-floor spreading broke apart and separated the North American and African plates, forming the Atlantic Ocean Basin. Continental rifting began in Late Triassic with reactivation of Paleozoic thrust faults as normal faults and with extension across a broad zone of subparallel rift basins. Extension became localized in Early to Middle Jurassic along the zone that now underlies the large marginal basins, and other rift zones, such as the Newark, Hartford, and Fundy basins, were abandoned. Rifting and crustal stretching between the two continents gave way to sea-floor spreading Middle Jurassic and the formation of oceanic crust. This tectonic evolution resulted in formation of distinctive structural features. The marginal basins are underlain by a thinner crust and contain a variety of fault-controlled structures, including half-grabens, seaward- and landward-tilted blocks, faults that die out within the crust, and faults that penetrate the entire crust. This variable structure probably resulted from the late Triassic-Early Jurassic pattern of normal, listric, and antithetic faults that evolved from the Paleozoic thrust fault geometry. The boundary between marginal basins and oceanic crust is marked approximately by the East Coast Magnetic Anomaly (ECMA). A major basement fault is located in the Baltimore Canyon trough at the landward edge of the ECMA and a zone of seaward dipping reflectors is found just seaward of the ECMA off Georges Bank. The fracture zone pattern in Mesozoic oceanic crust can be traced landward to the ECMA.

  5. Glacial and Oceanic History of the Polar North Atlantic Margins: AN Overview

    NASA Astrophysics Data System (ADS)

    Elverhøi, Anders; Dowdeswell, Julian A.; Funder, Svend; Mangerud, Jan; Stein, Ruediger

    The five-year PONAM (Polar North Atlantic Margin: Late Cenozoic Evolution) programme was launched by the European Science Foundation in 1989. Its aim was to study the major climate-driven environmental variations in the Norwegian-Greenland (also Nordic) Sea and its continental margins over the last 5 milliion years. The programme has provided substantial new insights into the contrasting behaviour of the ice sheets covering the Svalbard-Barents Sea and East Greenland over the last glacial-interglacial cycle in particular. The highly dynamic Svalbard - Barents Sea Ice Sheet, after reaching the shelf edge during each stadial, almost vanished during subsequent interstadials. By contrast, the East Greenland Ice Sheet showed only minor advances confined to fjord basins or ending on the inner shelf. Although there is a striking correspondence in the timing and duration of the first post-Eemian ice advance in East Greenland and on Svalbard, their chronology and dynamics have been very different since about 65 ka. The Svalbard-Barents Sea Ice Sheet showed well-defined Middle and Late Weichselian ice advances, whereas the East Greenland Ice Sheet was characterised by a 55 kyr-long period with a relatively stable ice margin located in fjords or the inner shelf. The contrasting behaviour of the two ice sheets is probably linked to the palaeoceanographic circulation pattern in the Polar North Atlantic. East Greenland is under the influence of the cold East Greenland Current, whereas the development and behaviour of ice in the Barents Sea is influenced by the continuous, but highly variable. North Atlantic meridional current system that has resulted in a northward inflow of relatively warm waters of Atlantic origin on the eastern side of the Polar North Atlantic. Of particular interest are the so-called "Nordway events" in glacial stages 6 and 4 to 2. These represented periods of pronounced inflow of temperate waters from the south and an associated increase in seasonally open

  6. Lithospheric structure of the Western Iberian Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Tunini, Lavinia; Vergés, Jaume; Fernandez, Manel; Jiménez-Munt, Ivone; Torne, Montserrat

    2017-04-01

    The Western Iberia Atlantic margin has been the object of multiple geophysical surveys in the last two decades, which highlight the crustal architecture of a hyperextended, magma-poor passive margin with a wide transition zone of exhumed mantle peridotites and anomalously small magma fractions. However, studies dealing with its lithospheric structure are lacking. We present a 2D model of the present-day lithospheric structure along a 530-km transect of the Western Iberian Margin, from the Southern Iberian Abyssal Plain to the Lusitanian Basin. The model combines seismic and geological data, mantle petrology, mineral physics and geophysical observables (gravity, geoid, topography, mantle seismic velocities and heat flow) within a self-consistent thermodynamic framework. Results show that the crustal thickness decreases gradually from 30 km below the Lusitanian Basin onshore to 11 km in the Abyssal Plain, 250 km further oceanwards, while the LAB rises from 140 km to 110 km, respectively. Furthermore, our results favour a 22% degree of serpentinization of the exhumed mantle which represents a 4.4% of water content. The study is supported by project ALPIMED (PIE-CSIC-201530E082)

  7. Lower-crustal intrusion on the North Atlantic continental margin.

    PubMed

    White, R S; Smith, L K; Roberts, A W; Christie, P A F; Kusznir, N J; Roberts, A M; Healy, D; Spitzer, R; Chappell, A; Eccles, J D; Fletcher, R; Hurst, N; Lunnon, Z; Parkin, C J; Tymms, V J

    2008-03-27

    When continents break apart, the rifting is sometimes accompanied by the production of large volumes of molten rock. The total melt volume, however, is uncertain, because only part of it has erupted at the surface. Furthermore, the cause of the magmatism is still disputed-specifically, whether or not it is due to increased mantle temperatures. We recorded deep-penetration normal-incidence and wide-angle seismic profiles across the Faroe and Hatton Bank volcanic margins in the northeast Atlantic. Here we show that near the Faroe Islands, for every 1 km along strike, 360-400 km(3) of basalt is extruded, while 540-600 km(3) is intruded into the continent-ocean transition. We find that lower-crustal intrusions are focused mainly into a narrow zone approximately 50 km wide on the transition, although extruded basalts flow more than 100 km from the rift. Seismic profiles show that the melt is intruded into the lower crust as sills, which cross-cut the continental fabric, rather than as an 'underplate' of 100 per cent melt, as has often been assumed. Evidence from the measured seismic velocities and from igneous thicknesses are consistent with the dominant control on melt production being increased mantle temperatures, with no requirement for either significant active small-scale mantle convection under the rift or the presence of fertile mantle at the time of continental break-up, as has previously been suggested for the North Atlantic Ocean.

  8. The Northwestern Atlantic Moroccan Margin From Deep Multichannel Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Malod, J. A.; Réhault, J. P.; Sahabi, M.; Géli, L.; Matias, L.; Zitellini, N.; Sismar Group

    The NW Atlantic Moroccan margin, a conjugate of the Nova Scotia margin, is one of the oldest passive margins of the world. Continental break up occurred in the early Jurassic and the deep margin is characterized by a large salt basin. The SISMAR cruise (9 April to 4 May 2001) acquired 3667 km of 360 channel seismic reflection profiles. In addition, refraction data were recorded by means of 48 OBH/OBS deployments. Simultaneously, some of the marine profiles were extended onshore with 16 portable seismic land stations. WNW-ESE profiles 4 and 5 off El Jadida show a good section of the margin. The crustal thinning in this region is fairly abrupt. These profiles image the crust above a strong seismic reflector at about 12 s.twt., interpreted as the Moho. The crust exhibits several different characteristics from the continent towards the ocean.: - highly diffractive with a thickness larger than 25 km beneath the shelf. - stratified at a deep level and topped by few "tilted blocks" with a diffractive acoustic facies and for which 2 hypotheses are proposed: either continental crust tilted during the rifting or large landslides of crustal and sedimentary material slid down later. Liassic evapor- ites are present but seem less thick than to the south. - layered with seaward dipping reflectors: this type of crust correlates with the magnetic anomaly S1 and corresponds to the continent-ocean transition. - diffractive with an oceanic character. Oceanwards, the crust becomes more typically oceanic, but shows internal reflectors that may be re- lated to compressional reactivation during the Tertiary attested by large scale inverted basins. Our results allow us to discuss the nature and location of the continent-ocean transition at a regional scale and the rifting to spreading evolution of the very ma- ture continental margin off El Jadida. This provide us with some constraints for the initial reconstruction between Africa, North America and Iberia. Moreover, these re- sults help

  9. Investigations of the bottom current sculpted margin of Hatton Bank, NE Atlantic

    NASA Astrophysics Data System (ADS)

    MacLachlan, S. E.; Elliott, G. M.; Parson, L. M.

    2007-12-01

    The NW Hatton Bank in the NE Atlantic represents a unique opportunity to examine the interaction of bottom currents with complex seabed topography and to analyse the affects on the morphology and distribution of sediments along the margin. The NW Hatton Bank margin is a slope located remote from any major terrigenous sediment supply and at present is over 200 NM from the closest sediment source onshore. The data presented in this study were collected on the research vessel R.R.S. Charles Darwin in 1999, for the purpose of determining the outer limit of the legal continental shelf according to the United Nations Convention on the Law of the Sea. Swath bathymetry and high resolution acoustic data allow us to evaluate both local and regional controls on slope sedimentation and the possible mechanisms for bottom current velocity variability across a slope setting within the NW European continental margin. The slope is characterised by an intense bottom current flow related to the Deep Northern Boundary Current. Along the slope, bottom-current sedimentation is dominant, leading to the development of the Hatton drift and sediment wave fields. Non-depositional and erosional features related to bottom current activity were also identified and include moats encircling the volcanic cones and deep erosional scours. The interaction between bottom current circulation and complex margin morphology controls the distribution, geometry and scale of the sediment wave fields.

  10. Is earthquake activity along the French Atlantic margin favoured by local rheological contrasts?

    NASA Astrophysics Data System (ADS)

    Mazabraud, Yves; Béthoux, Nicole; Delouis, Bertrand

    2013-09-01

    The seismological study of recent seismic crises near Oleron Island confirms the coexistence of an extensional deformation and a transtensive regime in the Atlantic margin of France, which is different from the general western European stress field corresponding to a strike-slip regime. We argue that the switch of the principal stress axes σ1/σ2 in a NW-SE vertical plane is linked with the existence of crustal heterogeneities. Events of magnitude larger than 5 sometimes occur along the Atlantic margin of France, such as the 7 September 1972 (ML = 5.2) earthquake near Oleron island and the 30 September 2002 (ML = 5.7) Hennebont event in Brittany. To test the mechanism of local strain localization, we model the deformation of the hypocentral area of the Hennebont earthquake using a 3D thermo-mechanical finite element code. We conclude that the occurrence of moderate earthquakes located in limited parts of the Hercynian shear zones (as the often reactivated swarms near Oleron) could be due to local reactivation of pre-existing faults. These sporadic seismic ruptures are favoured by stress concentration due to rheological heterogeneities.

  11. Petroleum systems of the Brazilian South Atlantic margin

    SciTech Connect

    Mello, M.R.; Koutsoukos, E.A.M.; Mohriak, W.U.; Bacoccoli, G.

    1996-08-01

    The characterization of a major petroleum system in the Sergipe Basin, NE Brazil, was undertaken using a multidisciplinary approach. The Lura-Muriboca (!) petroleum system, taken as a representative example for the proto-marine evaporitic stage in the South Atlantic margin, comprises the Carmopolis oil field, which is the largest onshore oil field in Brazil, with about 1.2 MM bbl of oil in place. The hydrocarbons sourced by the proto-marine Aptian marls and calcareous black shales, started migration during the Paleocene, reaching the maximum at the late Oligocene continuing up to now in some parts of the basin. The hydrocarbons were mainly accumulated in Lower Cretaceous alluvial fans/fan deltas coarse clastics reservoirs, and fractured Precambrian basement. The reservoirs trapping were structured during the Cretaceous. Seals are the evaporates and marine shales deposited during the Aptian and Albian times. Mapping the geographic extent of the petroleum system emphasizes the association of the Carmopolis oil field with the proposed offshore pod of active Aptian source rocks. The integration of these data with a geochemical modelling allowed the prediction and characterization, in time and space, of the petroleum pathways from source to trap in the basin.

  12. Subsidence and stratigraphic modeling of the US Atlantic margin

    SciTech Connect

    Steckler, M.S.; Watts, A.B.; Thorne, J.A.

    1985-01-01

    The deep offshore basins of the US Atlantic margin show an exponential subsidence consistent with lithospheric extension followed by cooling. In the Baltimore Canyon Trough, extension reaches ..beta.. approx. =4. The resultant deep burial and inaccessibility of the syn-rift sediment preclude a detailed understanding of the rifting history. On the other hand, the general similarity of predicted subsidence for all rifting models during the later post-rift period allows a detailed reconstruction of the paleobathymetry and an evaluation of the nature of the control of the stratigraphic record. Layer by layer backstripping indicates that there has been no major erosional retreat of the Early Cretaceous shelf edge. The change in position of the shelf edge following the termination of the Jurassic-Early Cretaceous reef, was accomplished by a gentle sagging and sediment supply variations. Stratigraphic modeling reveals the primary factors affecting the post-rift development of the shelf. These are the presence of a broad thermal uplift during the Jurassic at the site of the present coastal plain, increasing flexural rigidity of the lithosphere creating the coastal plain wedge, and a moderate (150-200 m) sea level fall since the Late Cretaceous in order to match the observed thicknesses and coastal onlap-offlap patterns during the Cenozoic.

  13. Influence of the North Atlantic on European climate extremes

    NASA Astrophysics Data System (ADS)

    Prömmel, Kerstin; Cubasch, Ulrich

    2017-04-01

    With the help of simulations performed with the Max Plank Institute for Meteorology Earth System Model (MPI-ESM) we try to understand the processes and mechanisms leading to European climate extremes. These extremes include for example cold, warm or snowy winters. For the analysis of the underlying mechanisms we concentrate on modes like the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Variability (AMV), which are supposed to influence each other. The NAO has a strong impact especially on European winter and the changes in minimum temperature are even larger than in maximum temperature. The influence of the spatial resolution of MPI-ESM on the results is also investigated.

  14. North Atlantic Margins: Case studies of Magmatic Continental Breakup

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; White, R. S.; Christie, P. A. F.

    2012-04-01

    Continental breakup between Europe and Greenland was accompanied by the rapid eruption of the > 1 million cubic kilometres of extruded basalts forming North Atlantic Igneous Province. With episodes of extension in the region dating back to the Devonian, rifting finally proceeded to full breakup and oceanic spreading in the Paleocene. Flood basalt units flowed up to 150 km over pre-existing sedimentary basins, discrete volcanic centres formed and intrusion into the thinned continental crust occurred. Marine seismic investigations utilising industry-leading seismic reflection imaging technologies and large deployments of ocean bottom seismometers across the Faroes and Hatton Bank margins have been used to better resolve margin structure and composition, improving our understanding of breakup processes. Seismic reflection imaging reveals sub-aerial and submarine seaward-dipping reflector sequences tracking the interplay of uplift (transient and permanent), crustal loading through extrusion and ongoing extension. Lower crustal reflectors, cross-cutting the continental fabric and interpreted as intrusions, are observed within the narrow continent-ocean transition. P-wave tomography of wide-angle reflections and refractions, recorded to offsets of up to ~200 km, reveals unusually thick oceanic crust with lower crustal velocities in excess of those expected for MORB compositions. High P-wave velocities are attributed to magnesium-rich compositions which, combined with the large oceanic crustal thickness, would be consistent with an elevated mantle temperature (~150°C higher than 'normal') at the time of breakup. Vp/Vs ratios derived from tomography of converted shear wave phases also support high magnesium melt composition. P-wave velocities and Vp/Vs ratios across the continent-ocean transition show a mixing trend between magnesium-rich gabbroic compositions (100% for oceanic crust) and compositions consistent with the Lewisian gneiss basement or Early Proterozoic

  15. Analysis of the segmentation and influence of hotspots along the southern Atlantic conjugate margins

    NASA Astrophysics Data System (ADS)

    Briais, A.; Lin, J.

    2003-04-01

    The aim of our analysis is to assess the role of mantle temperature anomalies in the structure of continental margins. We analyze the longitudinal variations of the crustal structure of the southern Atlantic continental margins to investigate the segmented character of the margins and the impact of the hotspots at the time of opening. We use free-air gravity anomalies derived from satellite altimetry measurements, and bathymetry compilation to estimate mantle Bouguer anomalies in the oceanic part and isostatic gravity anomalies along the margins. The two conjugate margins display similar patterns of gravity anomalies. The structure of the South Atlantic margins is disrupted near 20°S at their intersection with the Walvis ridge on the African margin and the Rio Grande rise on the South American side, which result from the interaction of the Tristan da Cunha hotspot with the South Atlantic rift and with the Southern Mid-Atlantic Ridge. The hotspot generated huge volumes of flood basalts on the Paraná volcanic traps on the South American plate, and the Etendeka volcanic province on the African plate. At the time of breakup near 140 Ma, the hotspot was located just beneath the rift. The whole section of the South Atlantic margin south of the Walvis ridge was affected by that hotspot, representing a length of more than 1200 km. This result confirms the observation of seaward-dipping reflectors on seismic profiles in this section. Variations at intermediate wavelength of 400-600 km are also observed within this section. Farther north, the St. Helena hotspot had a much more moderate effect both on the continents and on the margins, affecting only about 200 km of the African margin. The section of margin not directly affected by hotspots displays along-margin variations at intermediate wavelengths of 200 to 500 km. The gravity study will be complemented by an analysis of the magnetic anomalies.

  16. European Swimming Pool Designs Cross the Atlantic.

    ERIC Educational Resources Information Center

    Jaskulak, Neil

    1983-01-01

    Conventional swimming pools have been built with the needs of competitive swimmers in mind. Planners in several European countries have greatly increased swimming pool attendance by designing "leisure pools," based primarily on the needs and behavior of recreationists. Design of these pools and their equipment requirements are discussed.…

  17. European Swimming Pool Designs Cross the Atlantic.

    ERIC Educational Resources Information Center

    Jaskulak, Neil

    1983-01-01

    Conventional swimming pools have been built with the needs of competitive swimmers in mind. Planners in several European countries have greatly increased swimming pool attendance by designing "leisure pools," based primarily on the needs and behavior of recreationists. Design of these pools and their equipment requirements are discussed.…

  18. Imaging the lithosphere of rifted passive margins using waveform tomography: North Atlantic, South Atlantic and beyond

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Schaeffer, Andrew; Celli, Nicolas Luca

    2016-04-01

    Lateral variations in seismic velocities in the upper mantle reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our 3D tomographic models of the upper mantle and the crust at the Atlantic and global scales are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons, including those in North America, Greenland, northern and eastern Europe, Africa and South America. The dominant, large-scale, low-velocity feature is the global system of mid-ocean ridges, with broader low-velocity regions near hotspots, including Iceland. Currently active continental rifts show highly variable expression in the upper mantle, from pronounced low velocities to weak anomalies; this correlates with the amount of magmatism within the rift zone. Rifted passive margins have typically undergone cooling since the rifting and show more subtle variations in their seismic-velocity structure. Their thermal structure and evolution, however, are also shaped by 3D geodynamic processes since their formation, including cooling by the adjacent cratonic blocks inland and heating by warm oceanic asthenosphere.

  19. Influence of Solar Variability on the North Atlantic / European Sector.

    NASA Astrophysics Data System (ADS)

    Gray, L. J.

    2016-12-01

    The 11year solar cycle signal in December-January-February averaged mean-sea-level pressure and Atlantic/European blocking frequency is examined using multilinear regression with indices to represent variability associated with the solar cycle, volcanic eruptions, the El Nino - Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO). Results from a previous 11-year solar cycle signal study of the period 1870-2010 (140 years; 13 solar cycles) that suggested a 3-4 year lagged signal in SLP over the Atlantic are confirmed by analysis of a much longer reconstructed dataset for the period 1660-2010 (350 years; 32 solar cycles). Apparent discrepancies between earlier studies are resolved and stem primarily from the lagged nature of the response and differences between early- and late-winter responses. Analysis of the separate winter months provide supporting evidence for two mechanisms of influence, one operating via the atmosphere that maximises in late winter at 0-2 year lags and one via the mixd-layer ocean that maximises in early winter at 3-4 year lags. Corresponding analysis of DJF-averaged Atlantic / European blocking frequency shows a highly statistically significant signal at 1-year lag that originates promarily from the late winter response. The 11-year solar signal in DJF blocking frequency is compared with other known influences from ENSO and the AMO and found to be as large in amplitude and have a larger region of statistical significance.

  20. Ireland's Atlantic Margin: An Investigation of the Structure of Magma-rich and Magma-poor Margins using Gravity, Magnetic and Seismic Data

    NASA Astrophysics Data System (ADS)

    Rippington, S.; Warner, J.; Rands, J.; Herbert, H.

    2014-12-01

    Ireland and its continental shelves are located in a structurally complex part of the European North Atlantic Margin. The northern part of the margin (e.g. the Rockall Basin) is considered to be magma-rich, whereas the southern part of the margin (e.g. the Porcupine Basin) is relatively magma-poor. Despite this fundamental difference, the Rockall and Porcupine regions have much in common: both have a dominant structural grain inherited from the Caledonian Orogeny, and were variably deformed by Variscan compression and multiple phases of extension and rifting. Rifting culminated in continental breakup between the North American and European plates in the Paleogene. Following continental breakup, both regions were further deformed by phases of Cenozoic compression, which have been attributed to many different causes, including the Alpine Orogeny. Hydrocarbon exploration in the region has met with limited success. This is in part due to the complex structure of the margin, and a number of persisting questions regarding the location, age, and nature of potential source and reservoir rocks, and the timing and evolution of structural traps. This study aims to re-evaluate the structural framework that underpins hydrocarbon exploration in the region. The study is based on a compilation of georeferenced maps and cross-sections, a newly merged set of marine gravity and aeromagnetic data, as well as published seismic and public domain data gravity and magnetic data, all of which are integrated in GIS. The integration of seismic and potential field data allows us to use the strengths of these different geophysical methods to investigate the crustal architecture from the seabed to the Moho. Quantitative interpretation of the crust is achieved by 2D gravity and magnetic modelling along key B.I.R.P.S seismic lines in the Rockall and Porcupine basins. These models are used to highlight similarities and differences between these areas and to suggest how the structure of the Irish

  1. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    NASA Astrophysics Data System (ADS)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The

  2. Development of passive volcanic margins of the Central Atlantic and initial opening of ocean

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2015-01-01

    Geological and geophysical data on the Central Atlantic are discussed in order to elucidate the tectonic setting of the initial magmatic activity, rifting, and breakup resulting in the origination of Mesozoic ocean. The structural, magmatic, and historical aspects of the problem are considered. It has been established that the initial dispersed rifting and low-capacity magmatism at proximal margins was followed by the migration of the process toward the central part of region with the formation of distal zones and the development of vigorous magmmatism, further breakup of the lithosphere and ocean opening. Magmatism, its sources, and the features of newly formed magmatic crust at both the rifting and breakup stages of margin development are discussed and compared with subsequent spreading magmatism. Sr, Nd, and Pb isotopic compositions show that the magmatic evolution of the Central Atlantic proximal margins bears the features of two enriched components, one of which is related to the EM-1 source, developing only at the North American margin. Another enriched component typical of the province as a whole is related to the EM-2 source. To a lesser extent, this component is expressed in igneous rocks of Guyana, which also bear the signature of the MORB-type depleted source typical of spreading tholeiites in the Atlantic Ocean. Similar conditions are assumed for subsequent magmatism at the distal margins and for the early spreading basalts in the adjacent Atlantic belt, which also contain a small admixture of enriched material. A comparison of the magmatism at the margins of Central and North Atlantic reveals their specificity distinctly expressed in isotopic compositions of igneous rocks. In contrast to the typical region of the North Atlantic, the immediate melting of the enriched lithospheric source without the participation of plume-related melts is reconstructed for the proximal margins of the Central Atlantic. At the same time, decompression and melting in the

  3. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  4. Petrophysical models of high velocity lower crust on the South Atlantic rifted margins: whence the asymmetry?

    NASA Astrophysics Data System (ADS)

    Trumbull, Robert B.; Franke, Dieter; Bauer, Klaus; Sobolev, Stephan V.

    2015-04-01

    Lower crustal bodies with high seismic velocity (Vp > 7km/s) underlie seaward-dipping reflector wedges on both margins of the South Atlantic, as on many other volcanic rifted margins worldwide. A comprehensive geophysical study of the South Atlantic margins by Becker et al. (Solid Earth, 5: 1011-1026, 2014) showed a strong asymmetry in the development of high-velocity lower crust (HVLC), with about 4 times larger volumes of HVLC on the African margin. That study also found interesting variations in the vertical position of HVLC relative to seaward-dipping reflectors which question a simple intrusive vs. extrusive relationship between these lower- and upper crustal features. The asymmetry of HVLC volumes on the conjugate margins is paradoxically exactly the opposite to that of surface lavas in the Paraná-Etendeka flood basalt province, which are much more voluminous on the South American margin. This contribution highlights the asymmetric features of magma distribution on the South Atlantic margins and explores their geodynamic significance. Petrophysical models of the HVLC are presented in the context of mantle melt generation, based on thickness-velocity (H-Vp) relations. These suggest that the greater volumes and average Vp values of HVLC on the African margin are due to active upwelling and high temperature, whereas passive upwelling under a thick lithospheric lid suppressed magma generation on the South American margin. The contrast in mantle upwelling rate and lithospheric thickness on the two margins predictably causes differential uplift, and this may help explain the greater accomodation space for surface lavas on the South American side although melt generation was strongest under the African margin.

  5. Evidence for extensive methane venting on the southeastern U.S. Atlantic margin

    USGS Publications Warehouse

    Brothers, L.L.; Van Dover, C.L.; German, C.R.; Kaiser, C.L.; Yoerger, D.R.; Ruppel, C.D.; Lobecker, E.; Skarke, A.D.; Wagner, J.K.S.

    2013-01-01

    We present the first evidence for widespread seabed methane venting along the southeastern United States Atlantic margin beyond the well-known Blake Ridge diapir seep. Recent ship- and autonomous underwater vehicle (AUV)–collected data resolve multiple water-column anomalies (>1000 m height) and extensive new chemosynthetic seep communities at the Blake Ridge and Cape Fear diapirs. These results indicate that multiple, highly localized fluid conduits punctuate the areally extensive Blake Ridge gas hydrate province, and enable the delivery of significant amounts of methane to the water column. Thus, there appears to be an abundance of seabed fluid flux not previously ascribed to the Atlantic margin of the United States.

  6. Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin

    NASA Technical Reports Server (NTRS)

    Pazzaglia, Frank J.; Gardner, Thomas, W.

    1994-01-01

    Despite the century-long recognition of regional epeirogeny along the middle Atlantic passive margin, relatively few studies have focused on understanding postrift uplift mechanisms. Here, we demonstrate that epeirogenic uplift of the central Appalachian Piedmont and subsidence of the Salisbury Embayment represent first-order, flexural isostatic processes driven by continental denudation and offshore deposition. Our results show that regional epeirogenic processes, present on all Atlantic-type passive margins, are best resolved by specific stratigraphic and geomorphic relationships, rather than topography. A simple one-dimensional geodynamic model, constrained by well-dated Baltimore Canyon trough, Coastal Plain, and lower Susquehanna River (piedmont) stratigraphy, simulates flexural deforamtion of the U.S. Atlantic margin. The model represents the passive margin lithosphree as a uniformly thick elastic plate, without horizontal compressive stresses, that deforms flexurally under the stress of strike-averaged, vertically applied line loads. Model results illustrate a complex interaction among margin stratigraphy and geomorphology, the isostatic repsonse to denudational and depositional processes, and the modulating influence of exogenic forces such as eustasy. The current elevation, with respect to modern sea level, of fluvial terraces and correlateive Coastal Plain deposits or unconformities is successfully predicted through the synthesis of paleotopography, eustatic change, and margin flexure. Results suggest that the middle U.S. Atlantic margin landward of East Coast Magnetic Anomaly is underlain by lithoshpere with an average elastic thickness of 40 km (flexural rigidity, D = 4 X 10(exp 23) N m), the margin experience an average, long-term denudation rate of approximately 10m/m.y., and the Piedmont has been flexurally upwaped between 35 and 130 meters in the last 15 m.y. Long term isostatic continental uplift resulting rom denudation and basin subsidence

  7. Structure and degree of magmatism of North and South Atlantic rifted margins

    NASA Astrophysics Data System (ADS)

    Faleide, Jan Inge; Breivik, Asbjørn J.; Blaich, Olav A.; Tsikalas, Filippos; Planke, Sverre; Mansour Abdelmalak, Mohamed; Mjelde, Rolf; Myklebust, Reidun

    2014-05-01

    The structure and evolution of conjugate rifted margins in the South and North Atlantic have been studied mainly based on seismic reflection and refraction profiles, complemented by potential field data and plate reconstructions. All margins exhibit distinct along-margin structural and magmatic changes reflecting both structural inheritance extending back to a complex pre-breakup geological history and the final breakup processes. The sedimentary basins at the conjugate margins developed as a result of multiple phases of rifting, associated with complex time-dependent thermal structure of the lithosphere. A series of conjugate crustal transects reveal tectonomagmatic asymmetry, both along-strike and across the conjugate margin systems. The continent-ocean transitional domain along the magma-dominated margin segments is characterized by a large volume of flood basalts and high-velocity/high-density lower crust emplaced during and after continental breakup. Both the volume and duration of excess magmatism varies. The extrusive and intrusive complexes make it difficult to pin down a COB to be used in plate reconstructions. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower crustal levels. The transition is further constrained by comparing the mean P-wave velocity to the thickness of the crystalline crust. By this comparison we can also address the magmatic processes associated with breakup, whether they are convection dominated or temperature dominated. In the NE Atlantic there is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. It is likely that mantle plumes (Iceland in the NE Atlantic, Tristan da Cunha in the South Atlantic) may have influenced

  8. Cenozoic unconformities and depositional supersequences of North Atlantic continental margins: Testing the Vail model

    NASA Astrophysics Data System (ADS)

    Poag, C. Wylie; Ward, Lauck W.

    1987-02-01

    Integrated outcrop, borehole, and seismic reflection stratigraphy from the U.S. and Irish margins of the North Atlantic basin reveals a framework of Cenozoic depositional supersequences and interregional unconformities that resembles the Vail depositional model. Paleo-bathymetric and paleoceanographic analyses of associated microfossil assemblages indicate a genetic link between the depositional framework and the relative position of sea level.

  9. Cenozoic unconformities and depositional supersequences of North Atlantic continental margins: testing the Vail model

    USGS Publications Warehouse

    Poag, C. Wylie; Ward, Lauck W.

    1987-01-01

    Integrated outcrop, borehole, and seismic reflection stratigraphy from the U.S. and Irish margins of the North Atlantic basin reveals a framework of Cenozoic depositional supersequences and interregional unconformities that resembles the Vail depositional model. Paleo-bathymetric and paleoceanographic analyses of associated microfossil assemblages indicate a genetic link between the depositional framework and the relative position of sea level.

  10. Cenozoic unconformities and depositional supersequences of North Atlantic continental margins: testing the Vail model

    SciTech Connect

    Poag, C.W.; Ward, L.W.

    1987-02-01

    Integrated outcrop, borehole, and seismic reflection stratigraphy from the US and Irish margins of the North Atlantic basin reveals a framework of Cenozoic depositional supersequences and interregional unconformities that resembles the Vail depositional model. Paleobathymetric and paleoceanographic analyses of associated microfossil assemblages indicate a genetic link between the depositional framework and the relative position of sea level.

  11. Atlantic Margin Coring Project 1976: preliminary report on shipboard and some laboratory geotechnical data

    USGS Publications Warehouse

    Richards, Adrian F.

    1977-01-01

    This report presents reduced shipboard geotechnical data collected during the 1976 Atlantic Margin Coring Project; results of laboratory tests of specific gravity, water content, bulk density, and Atterberg limits; and sedimentation-compression e log p curves showing consolidation. A description of the procedures used at sea and in the laboratory and a short preliminary summary of the shipboard results also is included.

  12. Post-breakup Basin Evolution along the South-Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Strozyk, Frank; Back, Stefan; Kukla, Peter

    2014-05-01

    The post-breakup tectono-stratigraphic evolution of large offshore basins along the South American and African continental margins record strongly varying post-rift sedimentary successions. The northernmost segment of the South Atlantic rift and salt basins is characterized by a pronounced asymmetry, with the Brazilian margin comprising narrower and deeper rift basins with less salt in comparison to the Congo-Gabon conjugate margin. Another important observation is that multiple phases of uplift and subsidence are recorded after the break-up of the southern South Atlantic on both sides of the Florianopolis-Walvis Ridge volcanic complex, features that are regarded as atypical when compared to published examples of other post-breakup margin successions. A regional comparison based on tectonic-stratigraphic analysis of selected seismic transects between the large basins offshore southern Brazil (Espirito Santo Basin, Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Lower Congo Basin, Kwanza Basin, Namibe Basin, Walvis Basin) provides a comprehensive basin-to-basin documentation of the key geological parameters controlling ocean and continental margin development. This comparison includes the margin configuration, subsidence development through time, sediment influx and storage patterns, type of basin fill (e.g. salt vs. non-salt systems; carbonate-rich vs. clastics-dominated systems) and finally major tectonic and magmatic events. Data from the salt basins indicate that salt-related tectonic deformation is amongst the prime controls for the non-uniform post-rift margin development. The diversity in the stratigraphic architecture of the conjugate margins offshore southern Brazil, Namibia and Angola reflects variations in the interplay of a number of controlling factors, of which the most important are (a) the structural configuration of each margin segment at the time of break-up, (b) the post break-up subsidence history of the respective margin segment

  13. Atlantic Ocean forcing of North American and European summer climate.

    PubMed

    Sutton, Rowan T; Hodson, Daniel L R

    2005-07-01

    Recent extreme events such as the devastating 2003 European summer heat wave raise important questions about the possible causes of any underlying trends, or low-frequency variations, in regional climates. Here, we present new evidence that basin-scale changes in the Atlantic Ocean, probably related to the thermohaline circulation, have been an important driver of multidecadal variations in the summertime climate of both North America and western Europe. Our findings advance understanding of past climate changes and also have implications for decadal climate predictions.

  14. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  15. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    PubMed Central

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  16. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-02-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  17. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    USGS Publications Warehouse

    van Hengstrum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  18. European Atlantic: the hottest oil spill hotspot worldwide

    NASA Astrophysics Data System (ADS)

    Vieites, David R.; Nieto-Román, Sandra; Palanca, Antonio; Ferrer, Xavier; Vences, Miguel

    2004-11-01

    Oil spills caused by maritime transport of petroleum products are still an important source of ocean pollution, especially in main production areas and along major transport routes. We here provide a historical and geographic analysis of the major oil spills (>700 t) since 1960. Spills were recorded from several key marine ecosystems and marine biodiversity hotspots. The past four decades have been characterized by an overall decrease in the number of accidents and tonnes of oil spilled in the sea, but this trend was less distinct in the European Atlantic area. Recent black tides from the Erika and Prestige vessels provided new evidence for the high risk of accidents with serious ecological impact in this area, which according to our analysis is historically the most important oil spill hotspot worldwide. The English Channel and waters around Galicia in Spain were the areas with most accidents. Maritime transport in European Atlantic waters has been predicted to continue increasing. Together with our own results this suggests that, in addition to measures for increased traffic safety, deployment of emergency capacities in the spill hotspot areas may be crucial for a sustainable conservation of sea resources and ecosystems.

  19. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    NASA Astrophysics Data System (ADS)

    Skarke, A.; Ruppel, C.; Kodis, M.; Brothers, D.; Lobecker, E.

    2014-09-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr-1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  20. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  1. Geodynamics of passive margins: insights from the DFG Schwerpunktprogramm SAMPLE for the South Atlantic and beyond

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter

    2016-04-01

    The DFG Priority Program SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution: http://www.sample-spp.de/), which is to be completed 2016, has studied the evolution of the South Atlantic from its Cretaceous inception to the present day. The program has an explicit interdisciplinary focus, drawing on constraints from deep Earth geophysics, lithosphere and basin dynamics, petrology, landscape evolution and geodesy, thus linking processes that are commonly studied in isolation. Starting from the premise that passive margins are first-order geo-archives, the program has placed the South Atlantic opening history into an observational and theoretical context that considers seismic imaging, plate motion histories, uplift and subsidence events, magmatic and surface evolution, together with models of mantle convection and lithosphere dynamics. A primary lesson is that passive margins are active, displaying a range of vertical motion (i.e. dynamic topography) events, apparently correlated with plate motion changes, that do not conform to traditional rifting models of passive margins. I will summarize some observational results of the program, and place them into a geodynamic context.

  2. Mesozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    ye, jing; Chardon, Dominique; rouby, delphine; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Huyghe, damien; Dall'Asta, Massimo; Brown, Roderick; wildman, mark; webster, david

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. We produced paleogeographic maps at the scale of West Africa spanning the continental domain and offshore basins since 200 Ma. Mapping spatial and temporal distribution of domains either in erosion (sources) or in accumulation (sinks) document the impact of the successive rifting of Central and Equatorial Atlantic on the physiography of the area. We use low temperature thermochronology dating along three transects perpendicular to the margin (Guinea, Ivory Coast and Benin) to determine periods and domains of denudation in that framework. We compare these data to the Mesozoic accumulation histories in passive margin basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in. Syn-rift architectures (Early Cretaceous) are largely impacted by transform faults that define sub-basins with contrasted width of crustal necking zone (narrower in transform segments than in oblique/normal segments). During the Late Cretaceous post-rift, sedimentary wedges record a transgression along the all margin. Proximal parts of the sedimentary wedge are preserved in basins developing on segments with wide crustal necking zone while they were eroded away in basins developing on narrow segments. As a difference, the Cenozoic wedge is everywhere preserved across the whole width of the margin.

  3. Bathymetric terrain model of the Atlantic margin for marine geological investigations

    USGS Publications Warehouse

    Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.; Lobecker, Elizabeth A.; Calder, Brian R.

    2016-01-01

    A bathymetric terrain model of the Atlantic margin covering almost 725,000 square kilometers of seafloor from the New England Seamounts in the north to the Blake Basin in the south is compiled from existing multibeam bathymetric data for marine geological investigations. Although other terrain models of the same area are extant, they are produced from either satellite-derived bathymetry at coarse resolution (ETOPO1), or use older bathymetric data collected by using a combination of single beam and multibeam sonars (Coastal Relief Model). The new multibeam data used to produce this terrain model have been edited by using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined 100-meter resolution grid. The final grid provides the largest high-resolution, seamless terrain model of the Atlantic margin..

  4. Phanerozoic burial, uplift and denudation of the Equatorial Atlantic margin of South America

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Bonow, Johan M.; Green, Paul F.; dall'Asta, Massimo; Roig, Jean-Yves; Theveniaut, Hervé

    2017-04-01

    We have initiated a study aimed at understanding the history of burial, uplift and denudation of the South American Equatorial Atlantic Margin (SAEAM Uplift) including the Guiana Shield to provide a framework for investigating the hydrocarbon prospectivity of the offshore region. We report first results including observations from fieldwork at the northern and southern flank of the Guiana Shield. The study combines apatite fission-track analysis (AFTA) and vitrinite reflectance data from samples of outcrops and drillcores, sonic velocity data from drill holes and stratigraphic landscape analysis (mapping of peneplains) - all constrained by geological evidence, following the methods of Green et al. (2013). The study will thus combine the thermal history from AFTA data with the denudation history from stratigraphic landscape analysis to provide magnitudes and timing of vertical movements (Japsen et al. 2012, 2016). Along the Atlantic margin of Suriname and French Guiana, tilted and truncated Lower Cretaceous strata rest on Precambrian basement (Sapin et al. 2016). Our AFTA data show that the basement underwent Mesozoic exhumation prior to deposition of the Lower Cretaceous cover. Sub-horizontal peneplains define the landscape of the Guiana Shield at elevations up to 500 m a.s.l. As these sub-horizontal peneplains truncate the tilted, sub-Cretaceous surface along the Atlantic margin, these peneplains were therefore formed and uplifted in post-Cretaceous time. This interpretation is in good agreement with our AFTA data that define Paleogene exhumation along the margin and with the results of Theveniaut and Freyssinet (2002) who used palaeomagnetic data to conclude that bauxitic surfaces across basement at up to 400 m a.s.l. on the Guiana Shield formed during the Palaeogene. Integration of the results from AFTA with stratigraphic landscape analysis (currently in progress) and geological evidence will provide a robust reconstruction of the tectonic development of the

  5. Coherency of European speleothem δ18O records linked to North Atlantic ocean circulation

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank

    2016-04-01

    Speleothem δ18O records can provide valuable information about past continental environmental and climatic conditions. In recent decades a European speleothem network has been assembled that allows us to reconstruct past climate variability in both space and time. In particular climate variability during the Holocene was investigated by these studies. The Holocene is thus an ideal period to apply sophisticated statistical methods to derive spatio-temporal pattern of common climate variability in the European speleothem record. Here we evaluate a compilation of 10 speleothem δ18O records covering the last 4.5 ka for their shared variability. The selected speleothem δ18O records must satisfy certain quality criteria to be included: (i) a robust age model; (ii) a temporal intra-sampling resolution of smaller than 30 years; and (iii) the record should be published. A Monte Carlo based Principal Component Analysis (MC-PCA) that accounts for uncertainties in individual speleothem age models and for the different and varying temporal resolutions of each speleothem δ18O record was used for this purpose. Our MC-PCA approach allows not only the identification of temporally coherent changes in δ18O records, but it also facilitates their depiction and evaluation spatially. The compiled speleothem δ18O records span almost the entire European continent (with the exception of the circum-Mediterranean region) ranging from the western Margin of the European continent (stalagmite CC-3, Ireland) to Northern Turkey (SO-1) and from Northern Italy (CC-26) to Norway (FM-3). For the MC-PCA analysis, the 4.5 ka period was sub-divided into eight 1 ka long time windows that overlap the subsequent time window by 500 years to allow a comparison of the temporal evolution of the common signal. In this study we only interpreted the 1st principal component (PC) that depict the spatio-temporal pattern with the highest explained variability of all speleothem δ18O records. Our MC-PCA results

  6. Cenozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Rouby, Delphine; Chardon, Dominique; Huyghe, Damien; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Ye, Jing; Dall'Asta, Massimo; Grimaud, Jean-Louis

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. Mapping and regional correlation of dated lateritic paleo-landscape remnants allows us to reconstruct two physiographic configurations of West Africa during the Cenozoic. We corrected those reconstitutions from flexural isostasy related to the subsequent erosion. These geometries show that the present-day drainage organization stabilized by at least 29 Myrs ago (probably by 34 Myr) revealing the antiquity of the Senegambia, Niger and Volta catchments toward the Atlantic as well as of the marginal upwarp currently forming a continental divide. The drainage rearrangement that lead to this drainage organization was primarily enhanced by the topographic growth of the Hoggar swell and caused a major stratigraphic turnover along the Equatorial margin of West Africa. Elevation differences between paleo-landscape remnants give access to the spatial and temporal distribution of denudation for 3 time-increments since 45 Myrs. From this, we estimate the volumes of sediments and associated lithologies exported by the West African Craton toward different segments of the margin, taking into account the type of eroded bedrock and the successive drainage reorganizations. We compare these data to Cenozoic accumulation histories in the basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in.

  7. Wavelet and multitaper coherence methods for assessing the elastic thickness of the Irish Atlantic margin

    NASA Astrophysics Data System (ADS)

    Daly, E.; Brown, C.; Stark, C. P.; Ebinger, C. J.

    2004-11-01

    There have been some inconsistencies in estimates of the effective elastic thickness of the continental lithosphere Te based upon admittance or coherence relationships between gravity and topography. This paper compares multitaper and wavelet methods to analyse the coherence between Bouguer gravity and bathymetric data over the Irish Atlantic margin. The analyses show that similar lateral Te variations can be recovered from the data, but demonstrate that the size of the data window can give rise to a significant downward bias in Te estimates. A seismically constrained 3-D gravity inversion over the Rockall basin shows the presence of surface and subsurface loads whose ratio is loosely correlated with load ratio variations generated from the wavelet coherence method. The Te and load ratio, f variations can be plausibly related to major geological structures on the margin. If the load ratio variations can be interpreted geologically, it implies that spectral based methods to estimate effective elastic thickness must incorporate subsurface loads within the underlying theoretical model. On the Irish Atlantic margin, Te is generally low (6-18 km) and is associated with a NE-SW Caledonian trend. The weakest lithosphere is in the southern Rockall basin, Porcupine bank and Porcupine basin and the strongest lithosphere is along the Rockall-Hatton region. The low Te values are consistent with results from other passive margins. The reasons for such low Te values on the Irish Atlantic margin remain unclear, but may be the consequence of Te being frozen into the lithosphere when loads were emplaced during continental breakup and temperature gradients were high. The process of sedimentation and the presence of fluids may be contributory factors. There is an indication of a geological and rheological divide between the Rockall-Hatton region and the Rockall basin, possibly associated with the Caledonian orogenic front.

  8. Predicting Rifted Continental Margin Subsidence History From Satellite Gravity Derived Crustal Thinning: Application to North Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Hurst, N. W.; Kusznir, N. J.; Roberts, A. M.; White, R. S.

    2004-05-01

    3D spectral inversion of satellite derived gravity anomaly data (Smith and Sandwell 1997) and bathymetry data (Gebco 2003) has been used to determine oceanic and continental margin crustal thickness for the North Atlantic between 50 and 70 degrees N. The inverse technique incorporates a correction for the large negative thermal gravity anomaly present in the oceanic and stretched continental lithosphere. This correction can be determined using ocean isochron data for oceanic lithosphere, and margin rift age and beta stretching estimates derived iteratively from crustal basement thickness determined from the gravity inversion for the stretched continental lithosphere. A correction for the gravity anomaly contribution from sediments may be determined using thickness estimates derived from seismic reflection MCS data. Density depth variation within sediments is predicted assuming compaction. Crustal thicknesses determined using a thermal gravity correction derived from ocean isochron data give crustal thicknesses that are consistent with seismic observations. The resulting basement thickness determined from gravity inversion for the thinned continental margin lithosphere may be used to produce estimates of crustal thinning and stretching. Flexural backstripping and reverse post-breakup thermal subsidence modelling may be used to restore present 2D (or 3D) stratigraphic cross sections to earlier post-breakup times. Thermal subsidence arises from the cooling of stretched continental lithosphere and the recently formed oceanic lithosphere, and may be predicted from beta stretching factor (McKenzie 1978) and rift age. Beta stretching factors derived from gravity anomaly inversion have been used to predict reverse thermal subsidence for N Atlantic rifted margins. The resulting palaeo-bathymetric restorations show emergence of the Hatton Bank and NE Faroes rifted margins in early post-breakup times. The predicted palaeo-bathymetries are consistent with palaeo

  9. The magmatic budget of Atlantic type rifted margins: is it related to inheritance?

    NASA Astrophysics Data System (ADS)

    Manatschal, Gianreto; Tugend, Julia; Picazo, Suzanne; Müntener, Othmar

    2016-04-01

    In the past, Atlantic type rifted margins were either classified as volcanic or non-volcanic. An increasing number of high quality reflection and refraction seismic surveys and drill hole data show a divergent style of margin architecture and an evolution in which the quantity and distribution of syn-rift magmatism is variable, independently of the amount of extension. Overgeneralized classifications and models assuming simple relations between magmatic and extensional systems are thus inappropriate to describe the formation of rifted margins. More recent studies show that the magmatic evolution of rifted margins is complex and cannot be characterized based on the volume of observed magma alone. On the one hand, so-called "non-volcanic" margins are not necessarily amagmatic, as shown by the results of ODP drilling along the Iberia-Newfoundland rifted margins. On the other hand, magma-rich margins, such as the Norwegian, NW Australian or the Namibia rifted margins show evidence for hyper-extension prior to breakup. These observations suggest that the magmatic budget does not only depend on extension rates but also on the composition and temperature of the decompressing mantle. Moreover, the fact that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far inheritance may control the magmatic budget during rifting. In our presentation we will review results from the South and North Atlantic and the Alpine Tethys domain and will discuss the structural and magmatic evolution of so-called magma-rich and magma-poor rifted margins. In particular, we will try to define when, where and how much magma forms during rifting and lithospheric breakup. The key questions that we aim to address

  10. Ocean - ice sheet interaction along the NW European margin during the last glacial phases

    NASA Astrophysics Data System (ADS)

    Becker, L. W. M.; Sejrup, H. P.; Haflidason, H.; Hjelstuen, B. O. B.

    2015-12-01

    The NW European continental margin was repeatedly covered by shelf edge glaciations during the last glacial cycles. Here, we present a compilation of new and previously published data from a SW to NE transect of 8 sediment cores raised along the upper continental slope. This study aims to investigate the interaction between sea surface conditions and the variability seen in the British Irish Ice Sheet (BIIS) and the Fennoscandian Ice Sheet (FIS) during the last 13-40 ka BP. Ice Rafted Debris (IRD) counts, IRD flux data, grain size data, the content of the polar planktonic foraminifera Neogloboquadrina pachyderma (sin) and ∂18O measurements were compiled and combined with new Bayesian age models. From 40-24.5 ka BP the build up and consecutive confluence of the BIIS and the FIS are reflected in sediment composition and flux data. Pulses of large quantities of fine material to the southern part of the transect suggest riverine BIIS related influx. The sediment composition in cores close to the Norwegian channel indicates that the Norwegian Channel Ice Stream (NCIS) was only active between 24.5-18.5 ka BP during the last glacial stage. The planktonic foraminifera data during this period strongly suggests a dependence of NCIS extent variability and pulses in warm Atlantic water entering the Nordic Seas. In the northernmost cores rapidly deposited, laminated sediments and ∂18O spikes in planktonic foraminifera dated to 18.5 ka BP were interpreted as meltwater plume deposits. This may reflect NCIS retreat allowing BIIS and FIS to unzip and route ice dammed lake- and meltwater to the margin. In conclusion, the investigation suggests a close co-variation in extent of marine based parts of the BIIS, the FIS and ocean circulation while demonstrating the strong influence of the local glacial history on standard open marine proxies. This suggests that tuning chronologies of single marine records to ice cores in some regions might be more challenging than previously

  11. Morphology of late Quaternary submarine landslides along the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Twichell, D.C.; Chaytor, J.D.; ten Brink, U.S.; Buczkowski, B.

    2009-01-01

    The nearly complete coverage of the U.S. Atlantic continental slope and rise by multibeam bathymetry and backscatter imagery provides an opportunity to reevaluate the distribution of submarine landslides along the margin and reassess the controls on their formation. Landslides can be divided into two categories based on their source areas: those sourced in submarine canyons and those sourced on the open continental slope and rise. Landslide distribution is in part controlled by the Quaternary history of the margin. They cover 33% of the continental slope and rise of the glacially influenced New England margin, 16% of the sea floor offshore of the fluvially dominated Middle Atlantic margin, and 13% of the sea floor south of Cape Hatteras. The headwall scarps of open-slope sourced landslides occur mostly on the lower slope and upper rise while they occur mostly on the upper slope in the canyon-sourced ones. The deposits from both landslide categories are generally thin (mostly 20-40??m thick) and comprised primarily of Quaternary material, but the volumes of the open-slope sourced landslide deposits can be larger (1-392??km3) than the canyon-sourced ones (1-10??km3). The largest failures are located seaward of shelf-edge deltas along the southern New England margin and near salt domes that breach the sea floor south of Cape Hatteras. The spatial distribution of landslides indicates that earthquakes associated with rebound of the glaciated part of the margin or earthquakes associated with salt domes were probably the primary triggering mechanism although other processes may have pre-conditioned sediments for failure. The largest failures and those that have the potential to generate the largest tsunamis are the open-slope sourced landslides.

  12. Seismic structure of the U.S. Mid-Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Holbrook, W. Steven; Purdy, G. M.; Sheridan, R. E.; Glover, L., III; Talwani, M.; Ewing, J.; Hutchinson, D.

    1994-09-01

    Multichannel and wide-angle seismic data collected off Virginia during the 1990 EDGE Mid-Atlantic seismic experiment provide the most detailed image to date of the continent-ocean transition on the U.S. Atlantic margin. Multichannel data were acquired using a 10,800 cu inch (177 L) airgun array and 6-km-long streamer, and coincident wide-angle data were recorded by ten ocean bottom seismic instruments. A velocity model constructed by inversion of wide-angle and vertical-incidence travel times shows strong lateral changes in deep-crustal structure across the margin. Lower-crustal velocities are 6.8 km/s in rifted continental crust, increase to 7.5 km/s beneath the outer continental shelf, and decrease to 7.0 km/s in oceanic crust. Prominent seaward- dipping reflections comprise a 100-km-wide, 25-km-thick ocean- continent transition zone that consists almost entirely of mafic igneous material accreted to the margin during continental breakup. The boundary between rifted continental crust and this thick igneous crust is abrupt, occupying only about 20 km of the margin. Appalachian intracrustal reflectivity largely disappears across this boundary as velocity increases from 5.9 km/s to greater than 7.0 km/s, implying that the reflectivity is disrupted by massive intrusion and that very little continental crust persists seaward of the reflective crust persists seaward of the reflective crust. The thick igneous crust is spatially correlated with the East Coast magnetic anomaly, implying that the basalts and underlying intrusives cause the anomaly. The details of the seismic structure and lack of independent evidence for an appropriately located hotspot in the central Atlantic imply that nonplume processes are responsible for the igneous material.

  13. Burial, Uplift and Exhumation History of the Atlantic Margin of NE Brazil

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Bonow, Johan M.; Green, Paul F.; Cobbold, Peter R.; Chiossi, Dario; Lilletveit, Ragnhild

    2010-05-01

    We have undertaken a regional study of landscape development and thermo-tectonic evo-lution of NE Brazil. Our results reveal a long history of post-Devonian burial and exhuma-tion across NE Brazil. Uplift movements just prior to and during Early Cretaceous rifting led to further regional denudation, to filling of rift basins and finally to formation of the Atlantic margin. The rifted margin was buried by a km-thick post-rift section, but exhumation began in the Late Cretaceous as a result of plate-scale forces. The Cretaceous cover probably extended over much of NE Brazil where it is still preserved over extensive areas. The Late Cretaceous exhumation event was followed by events in the Paleogene and Neogene. The results of these events of uplift and exhumation are two regional peneplains that form steps in the landscape. The plateaux in the interior highlands are defined by the Higher Surface at c. 1 km above sea level. This surface formed by fluvial erosion after the Late Cretaceous event - and most likely after the Paleogene event - and thus formed as a Paleogene pene-plain near sea level. This surface was reburied prior to the Neogene event, in the interior by continental deposits and along the Atlantic margin by marine and coastal deposits. Neo-gene uplift led to reexposure of the Palaeogene peneplain and to formation of the Lower Surface by incision along rivers below the uplifted Higher Surface that characterise the pre-sent landscape. Our results show that the elevated landscapes along the Brazilian margin formed during the Neogene, c. 100 Myr after break-up. Studies in West Greenland have demonstrated that similar landscapes formed during the late Neogene, c. 50 Myr after break-up. Many passive continental margins around the world are characterised by such elevated plateaus and it thus seems possible, even likely, that they may also post-date rifting and continental separation by many Myr.

  14. Meso-Cenozoic Source-to-Sink analysis of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Rouby, Delphine; Huyghe, Damien; Ye, Jing; Guillocheau, François; Robin, Cécile; Dall'Asta, Massimo; Brown, Roderick; Webster, David

    2015-04-01

    The Transform Source to Sink Project (TS2P) objective is to link the evolution of the offshore sedimentary basins of the African margin of the Equatorial Atlantic and their source areas on the West African Craton. The margin consists in alternating transform and oblique margin portions from Guinea, in the West, to Nigeria, in the East. Such a longitudinal structural variability is associated with variation in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns that we analyzed using offshore seismic data and onshore geology and geomorphology. We compare syn- to post rift offshore geometry and long-term stratigraphic history of each of the margin segments. Transform faults appear to play a major role in shaping Early Cretaceous syn-rift basin architectures. Immediate post-rift Late Cretaceous sedimentary wedges record a transgression and are affected by the reactivation of some of transform faults. We produced A new type of inland paleogeographic maps for key periods since the end of the Triassic, allowing delineation of intracratonic basins having accumulated material issued from erosion of the marginal upwarps that have grown since break-up along the margin. We use offshore and onshore basin analysis to estimate sediment accumulation and integrate it in a source-to-sink analysis where Mesozoic onshore denudation will be estimated by low-temperature thermochronology. Cenozoic erosion and drainage history of the continental domain have been reconstructed from the spatial analysis of dated and regionally correlated geomorphic markers. The stationary drainage configuration of the onshore domain since 30 Ma offers the opportunity to correlate the detailed onshore morphoclimatic record based on the sequence of lateritic paleolandsurfaces to offshore stratigraphy, eustasy and global climatic proxies since the Oligocene. Within this framework, we simulate quantitative solute / solid erosional fluxes based on the

  15. The structure and evolution of conjugate margins of the southern South Atlantic: a synthesis

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Koopmann, Hannes; Becker, Katharina; Schreckenberger, Bernd; Schnabel, Michael

    2014-05-01

    The southern segment of the South Atlantic is a prime example for volcanic rifting and continental break-up, reflected today in seaward dipping reflectors (SDRs) in reflection seismic data as well as high velocity lower crust in refraction seismic data. Reflection, refraction seismic and potential field data reveal an Early Cretaceous South to North progressing rift and subsequent continental breakup. This is well reflected in a time-progressive breakup unconformity along the margins, and a successive northward pinch-out of magnetic anomalies against SDR wedges. The continental margins are considerably and symmetrically segmented. This segmentation is defined by large transfer zones and corresponding horizontal offsets in the distribution of the SDRs. Distinct along-margin variations in architecture, volume, and width of the SDRs indicates a close link between segmentation and melt supply during rifting and initial seafloor-spreading. Several superimposed SDR sequences, suggesting episodicity of volcanic emplacement are distinct along southerly lines, losing prominence northwards. However, both conjugate southernmost margin segments were found to be magma-starved. While the two conjugated margins share much of their structural features such as segmentation and abundant volcanism, their architecture is by no means symmetrical. This is for example shown in strength of the magnetic anomalies, volume of high-velocity lower crustal bodies and orientation of breakup related sedimentary basins. A main outcome of our study is that the passive margins are not continuously of the volcanic type and that the change from a non-volcanic to a volcanic margin occurs abruptly. This is an argument against a deep mantle origin for the rift-related magmatism. The position of the hot-spot responsible for the Paraná-Etendeka volcanic provinces coincides with the location of maximal rift propagation delay. Well established seafloor spreading systems were at work to the south and north

  16. Rapid late pleistocene incision of Atlantic passive-margin river gorges

    USGS Publications Warehouse

    Reusser, L.J.; Bierman, P.R.; Pavich, M.J.; Zen, E.-A.; Larsen, J.; Finkel, R.

    2004-01-01

    The direct and secondary effects of rapidly changing climate caused large rivers draining the Atlantic passive margin to incise quickly into bedrock beginning about 35,000 years ago. Measured in samples from bedrock fluvial terraces, 10-beryllium shows that both the Susquehanna and Potomac Rivers incised 10- to 20-meter-deep gorges along steep, convex lower reaches during the last glacial cycle. This short-lived pulse of unusually rapid downcutting ended by 13,000 to 14,000 years ago. The timing and rate of downcutting are similar on the glaciated Susquehanna and unglaciated Potomac Rivers, indicating that regional changes, not simply glacial melt-water, initiated incision.

  17. Rapid late Pleistocene incision of Atlantic passive-margin river gorges.

    PubMed

    Reusser, Luke J; Bierman, Paul R; Pavich, Milan J; Zen, E-an; Larsen, Jennifer; Finkel, Robert

    2004-07-23

    The direct and secondary effects of rapidly changing climate caused large rivers draining the Atlantic passive margin to incise quickly into bedrock beginning about 35,000 years ago. Measured in samples from bedrock fluvial terraces, 10-beryllium shows that both the Susquehanna and Potomac Rivers incised 10- to 20-meter-deep gorges along steep, convex lower reaches during the last glacial cycle. This short-lived pulse of unusually rapid down-cutting ended by 13,000 to 14,000 years ago. The timing and rate of downcutting are similar on the glaciated Susquehanna and unglaciated Potomac Rivers, indicating that regional changes, not simply glacial meltwater, initiated incision.

  18. Rapid Late Pleistocene Incision of Atlantic Passive-Margin River Gorges

    NASA Astrophysics Data System (ADS)

    Reusser, Luke J.; Bierman, Paul R.; Pavich, Milan J.; Zen, E.-an; Larsen, Jennifer; Finkel, Robert

    2004-07-01

    The direct and secondary effects of rapidly changing climate caused large rivers draining the Atlantic passive margin to incise quickly into bedrock beginning about 35,000 years ago. Measured in samples from bedrock fluvial terraces, 10-beryllium shows that both the Susquehanna and Potomac Rivers incised 10- to 20-meter-deep gorges along steep, convex lower reaches during the last glacial cycle. This short-lived pulse of unusually rapid downcutting ended by 13,000 to 14,000 years ago. The timing and rate of downcutting are similar on the glaciated Susquehanna and unglaciated Potomac Rivers, indicating that regional changes, not simply glacial meltwater, initiated incision.

  19. Giardia and Cryptosporidium in cetaceans on the European Atlantic coast.

    PubMed

    Reboredo-Fernández, Aurora; Ares-Mazás, Elvira; Martínez-Cedeira, José A; Romero-Suances, Rafael; Cacciò, Simone M; Gómez-Couso, Hipólito

    2015-02-01

    The occurrence of Giardia and Cryptosporidium was investigated in cetacean specimens stranded on the northwestern coast of Spain (European Atlantic coast) by analysis of 65 samples of large intestine from eight species. The parasites were identified by direct immunofluorescence antibody test (IFAT) and by PCR amplification of the β-giardin gene, the ITS1-5.8S-ITS2 region and the SSU-rDNA gene of Giardia and the SSU-rDNA gene of Cryptosporidium. Giardia and Cryptosporidium were detected in 7 (10.8 %) and 9 samples (13.8 %), respectively. In two samples, co-infection with both parasites was observed. Giardia duodenalis assemblages A, C, D and F, and Cryptosporidium parvum were identified. This is the first report of G. duodenalis in Balaenoptera acutorostrata, Kogia breviceps and Stenella coeruleoalba and also the first report of Cryptosporidium sp. in B. acutorostrata and of C. parvum in S. coeruleoalba and Tursiops truncatus. These results extend the known host range of these waterborne enteroparasites.

  20. Episodes of subsidence and uplift of the conjugate margins of Greenland and Norway after opening of the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.

    2016-04-01

    We have undertaken a regional study of the thermo-tectonic development of East Greenland (68-75°N; Bonow et al. 2014; Japsen et al. 2014) and of southern Norway (58-64°N) based on integration of apatite fission-track analysis (AFTA), stratigraphic landscape analysis and the geological record onshore and offshore. Volcanic and sedimentary rocks accumulated on the subsiding, East Greenland margin during and following breakup and then began to be exhumed during late Eocene uplift that preceded a major, early Oligocene plate reorganization in the NE Atlantic. The Norwegian margin also experienced Eocene subsidence and burial; there are hemipelagic, deep-marine sediments of Eocene age along the coast of southern Norway. End-Eocene uplift of the NW European margin led to the formation of a major unconformity along the entire margin and to progradation of clastic wedges from Norway towards the south. Our AFTA data from East Greenland and southern Norway reveal a long history of Mesozoic burial and exhumation across the region, with a number of broadly synchronous events being recorded on both margins. AFTA data from East Greenland show clear evidence for uplift at the Eocene-Oligocene transition whereas the data from Norway do not resolve any effects of exhumation related to this event. AFTA data from the East Greenland margin show evidence of two Neogene events of uplift and incision of the in the late Miocene and Pliocene whereas results from southern Norway define Neogene uplift and erosion which began in the early Miocene. A Pliocene uplift phase in southern Norway is evident from the stratigraphic landscape analysis and from the sedimentary sequences offshore. In East Greenland, a late Eocene phase of uplift led to formation of a regional erosion surface near sea level (the Upper Planation Surface, UPS). Uplift of the UPS in the late Miocene led to formation of the Lower Planation Surface (LPS) by incision below the uplifted UPS, and a Pliocene phase led to

  1. The U.S. Atlantic continental margin: the best-known gas hydrate locality: Chapter 13

    USGS Publications Warehouse

    Dillon, William P.; Max, Michael D.; Max, M.D.

    2003-01-01

    One of the few attempts to date to map gas hydrate over a large area has been made on the Atlantic continental margin of the United States (Dillon et al., 1993, 1994, 1995). This work has resulted in the production of an extensive data base of seismic reflection lines including both single and multichannel lines, and complete GLORIA sidescan sonar coverage. This work was part of the assessment of the U.S. EEZ and was carried out by the U.S. Geological Survey. Earlier efforts were made by Tucholke et al. (1977) and Shipley, et al. (1979). Research along the U.S. SE continental margin of the U.S. is continuing.

  2. From rifting to passive margin: the examples of the Red Sea, Central Atlantic and Alpine Tethys

    NASA Astrophysics Data System (ADS)

    Favre, P.; Stampfli, G. M.

    1992-12-01

    Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).

  3. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Yamamoto, A.

    2016-02-01

    Multi-decadal variability in North Atlantic sea surface temperatures (SST) is a prominent component of Northern Hemisphere climate: Sahel drought, Atlantic hurricanes, large-scale atmospheric circulation, and summertime European temperature and precipitation all respond sensitively to low-frequency variability in North Atlantic SST. It is therefore surprising that an imprint of North Atlantic multidecadal variability is conspicuously absent in western European temperature in wintertime, despite the fact that Europe's maritime climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here, we trace the cause of the missing imprint of North Atlantic SST multidecadal variability on European wintertime temperature to a dynamic response of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, the pathways Lagrangian particles take to Europe are sufficiently different during anomalous SST winters to suppress the expected fluctuations in turbulent air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST is thought to be driven largely by variability in the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected 21st century AMOC decline.

  4. Assessment of tsunami hazard to the U.S. Atlantic margin

    USGS Publications Warehouse

    Ten Brink, Uri; Chaytor, Jason; Geist, Eric L.; Brothers, Daniel S.; Andrews, Brian D.

    2014-01-01

    Tsunamis caused by atmospheric disturbances and by coastal earthquakes may be more frequent than those generated by landslides, but their amplitudes are probably smaller. Among the possible far-field earthquake sources, only earthquakes located within the Gulf of Cadiz or west of the Tore-Madeira Rise are likely to affect the U.S. coast. It is questionable whether earthquakes on the Puerto Rico Trench are capable of producing a large enough tsunami that will affect the U.S. Atlantic coast. More information is needed to evaluate the seismic potential of the northern Cuba fold-and-thrust belt. The hazard from a volcano flank collapse in the Canary Islands is likely smaller than originally stated, and there is not enough information to evaluate the magnitude and frequency of flank collapse from the Azores Islands. Both deterministic and probabilistic methods to evaluate the tsunami hazard from the margin are available for application to the Atlantic margin, but their implementation requires more information than is currently available.

  5. Structure of continental margin off Mid-Atlantic states (Baltimore Canyon Trough)

    USGS Publications Warehouse

    Schlee, John Stevens; Behrendt, John Charles; Mattick, Robert E.; Taylor, P.T.

    1975-01-01

    Increasing interest in the Atlantic continental margin as a future petroleum province has resulted in several recent papers (Emmerich, 1974; Burk and Drake, 1974) that attempt to summarize the structure and stratigraphic framework of this area. Most papers tend to portray the margin as a wedge of Mesozoic and Cenozoic sediment that thins at the edge of the shelf over a "basement ridge" and then thickens again under the continental rise. Off the northeastern United States, the sediment wedge under the shelf attains a thickness of 8-11 km in the Georges Bank basin (Schultz and Glover, 1974; Mattick and others, 1974; Sheridan, 1974b; Behrendt and others, 1974) and 12 km in thickness in the Baltimore Canyon trough off the middle Atlantic states of Delaware, Maryland, Virginia and New Jersey (fig. 1). Seaward of the continental shelf and its sediment prism, Emery and Uchupi (1972, figs. 133-135) infer slump deposits (eroded in some areas) covering a buried ridge thought to extend from the Laurentian Channel to Cape Hatteras, where it splits in two. The lower slope and continental rise are inferred by Drake and later investigators to be a thick prism of deep sea sediment (turbidites, hemipelagic clays, slump deposits) overlying oceanic basement in a welt that parallels the continental edge and reaches a maximum thickness of 6 km (Emery and Uchupi, 1972, fig. 188).

  6. Cenomanian-Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin

    SciTech Connect

    Kuhnt, W.; Herbin, J.P.; Thurow, J.; Wiedmann, J.

    1988-08-01

    Pre-Cenomanian sediments of the western Mediterranean and adjacent Atlantic margin are characterized by low total organic content (TOC) with an important terrestrial component. During the Cenomanian, TOC increased and the marine component became dominant, culminating around the Cenomanian-Turonian boundary with TOC up to 40%. After the Turonian, organic-rich sediments progressively disappeared and were replaced by more oxygenated sediments. Study methods include considering data from outcrops, DSDP/ODP sites, or petroleum wells. Detailed data from onshore locations allowed the development of high-resolution stratigraphy, analysis of depositional environment, and calculation of sedimentation rates. Analysis of these data indicates Cenoamnian-Turonian organic-rich sediments can be observed in a wide range of bathymetric settings. They are widespread in the western Mediterranean and Atlantic and have been especially studied in Italy (Apennines, southern Alps), Tunisia (Bahloul), Algeria, Morocco (Rif Mountains, Atlas Mountains, Tarfaya), Gibraltar arch, Spain (Betics, Bay of Biscay, Galicia margin), Senegal (Cape Verde basin, Casamance), and Nigeria (Benue, Calabar flank).

  7. High-sensitivity aeromagnetic survey of the US Atlantic continental margin.

    USGS Publications Warehouse

    Behrendt, John C.; Klitgord, Kim D.

    1980-01-01

    The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors

  8. Seismic stratigraphy of Long Island platform, United States Atlantic Continental Margin

    SciTech Connect

    Jowett, R.A.; Hutchinson, D.R.

    1987-09-01

    Approximately 2000 km of single- and multichannel seismic reflection profiles collected over the Long Island platform on the US Atlantic continental margin show that the basement beneath the platform was rifted prior to the separation of Africa from North America and that it subsided after the separation. Postrift sediment thicknesses range from less than 1 km in the northwest part of the platform to several kilometers in the southeast, near the Atlantis and Nantucket rift basins. Flanking the platform are the Georges Bank basin to the east and Baltimore Canyon Trough to the south, where sedimentary rocks are 10-15 km thick. Nine major unconformities have been delineated in analysis of the seismic profiles. The most conspicuous unconformities are correlated with the end of rifting and the upper surfaces of the Bathonian, Tithonian, Albian, Turonian-Coniacian, Maestrichtian, upper Eocene, mid-Oligocene, and mid-Miocene sections. Ages are determined by tracing reflectors and unconformities to the COST (Continental Offshore Stratigraphic Test), AMCOR (Atlantic Margin Coring Project), and coastal wells. Several of these unconformities coincide with pronounced fluctuations in the Vail curve of relative sea level.

  9. Physical Conditions Associated with Widespread Seafloor Methane Discharge on the Northern US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.; Ruppel, C. D.; Brothers, D. S.

    2014-12-01

    Recent analysis of water column backscatter data and remotely operated vehicle (ROV) video imagery collected by NOAA Ship Okeanos Explorer between 2011 and 2013 revealed methane discharge from the seafloor at over 570 gas seep locations along the northern US Atlantic margin. To the best of our knowledge, such large-scale seepage has not previously been observed on a passive margin outside the Arctic or not spatially associated with a petroleum basin. This seepage has implications for the global carbon cycle, ocean chemistry (e.g., acidification), and in some cases, the climate system. Using data collected by Okeanos Explorer and NOAA's Deep Discoverer ROV, we combine water column backscatter data with video imagery and seafloor backscatter data to estimate gas flux and constrain the geoacoustic properties of the seabed at methane discharge sites. The total methane flux from the northern US Atlantic margin seeps is conservatively estimated at ~15-90 Mg y-1, based on observations of gas bubble volume, discharge rates, and discharge points per site. However, fewer than 1% of the identified seep sites have been inspected with a ROV, and this estimate is likely to be revised upward as the characteristics of the seeps are further constrained. Another important observation to emerge from our analysis is the lack of spatial correlation between seep sites and the ~5000 pockmarks mapped on the northern part of the US Atlantic margin. In this region, pockmarks, which are often easily identified by geophysical imaging of the seafloor, should not be considered potential target sites for finding undiscovered areas of seepage. Conversely, discrete patches of elevated relative seafloor acoustic backscatter amplitude do appear to be correlated with the spatial distribution of methane seeps, implying anomalous seafloor characteristic at seep loci. This finding is consistent with ROV video observations of authigenic carbonate outcrops and extensive chemosynthetic bivalve communities

  10. Influence of the Iceland mantle plume on North Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8

  11. Evolution of North Atlantic Passive Margins Controlled by the Iceland Mantle Plume

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; White, N. J.; Henstock, T.; Murton, B. J.; Jones, S. M.

    2015-12-01

    Evolution of North Atlantic passive margins has been profoundly influenced by the Iceland mantle plume over the past 60 Ma. Residual depth anomalies of oceanic lithosphere, long wavelength gravity anomalies and seismic tomographic models show that upwelling mantle material extends from Baffin Bay to Western Norway. At fringing passive margins such as Northwest Scotland, there is evidence for present-day dynamic support of the crust. The Iceland plume is bisected by the Reykjanes Ridge ridge, which acts as a tape-recorder of the temporal variability of the plume. We present regional seismic reflection profiles that traverse the oceanic basin between northwest Europe and Greenland. A diachronous pattern of V-shaped ridges and troughs are imaged beneath marine sediments, revealing a complete record of transient periodicity that can be traced continuously back to ~55 Myrs. This periodicity increases from ~3 to ~8 Ma with clear evidence for minor, but systematic, asymmetric crustal accretion. V-shaped ridges grow with time and reflect small (5-30°C) changes in mantle temperature, consistent with episodic generation of hot solitary waves triggered by growth of thermal boundary layer instabilities within the mantle. Our continuous record of convective activity suggests that the otherwise uniform thermal subsidence of sedimentary basins, which fringe the North Atlantic Ocean, has been punctuated by periods of variable dynamic topography. This record can explain a set of diverse observations from the geologic record. Paleogene unconformities in the Faroe-Shetland Basin, the punctuated deposition of contourite drifts and variations in deep-water current strength can all be explained by transient mantle plume behavior. These signals of convective activity should lead to improved insights into the fluid dynamics of the mantle, and into the evolution of volcanic passive margins.

  12. Paleogeographic constraints on continental-scale source-to-sink systems: Northern South America and its Atlantic margins

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Chardon, Dominique; Rouby, Delphine; Dall'Asta, Massimo; Roig, Jean-Yves; Loparev, Artiom; Coueffe, Renaud

    2017-04-01

    Our work aims at setting the evolving boundary conditions of erosion and sediments transfer, transit, and onshore-offshore accumulations on northern South America and along its Atlantic margins. Since the Early Mesozoic, the source-to-sink system evolved under the interplay of four main processes, which are (i) volcanism and arc building along the proto-Andes, (ii) long-term dynamics of the Amazon incratonic basin, (iii) rifting, relaxation and rejuvenation of the Atlantic margins and (iv) building of the Andes. We compiled information available from geological maps and the literature regarding tectonics, plate kinematics, magmatism, stratigraphy, sedimentology (including paleoenvironments and currents) and thermochronology to produce a series of paleogeographic maps showing the tectonic and kinematic framework of continental areas under erosion (sources), by-pass and accumulation (sinks) over the Amazonian craton, its adjacent regions and along its Atlantic margins. The maps also allow assessing the relative impact of (i) ongoing Pacific subduction, (ii) Atlantic rifting and its aftermath, and (iii) Atlantic slab retreat from under the Caribbean domain on the distribution and activity of onshore/offshore sedimentary basins. Stratigraphic and thermochronology data are also used to assess denudation / vertical motions due to sediment transfers and lithosphere-asthenosphere interactions. This study ultimately aims at linking the sediment routing system to long-wavelength deformation of northern South America under the influence of mountain building, intracratonic geodynamics, divergent margin systems and mantle dynamics.

  13. Variations in amount and direction of seafloor spreading along the northeast Atlantic Ocean and resulting deformation of the continental margin of northwest Europe

    NASA Astrophysics Data System (ADS)

    Le Breton, E.; Cobbold, P. R.; Dauteuil, O.; Lewis, G.

    2012-10-01

    The NE Atlantic Ocean opened progressively between Greenland and NW Europe during the Cenozoic. Seafloor spreading occurred along three ridge systems: the Reykjanes Ridge south of Iceland, the Mohns Ridge north of the Jan Mayen Fracture Zone (JMFZ), and the Aegir and Kolbeinsey Ridges between Iceland and the JMFZ. At the same time, compressional structures developed along the continental margin of NW Europe. We investigate how these compressional structures may have resulted from variations in the amount and direction of seafloor spreading along the ridge system. Assuming that Greenland is rigid and stationary, we have used a least squares method of palinspastic restoration to calculate differences in direction and rate of spreading along the Reykjanes, Kolbeinsey/Aegir and Mohns Ridges. The restoration generates relative rotations and displacements between the oceanic segments and predicts two main periods of left-lateral strike slip along the main oceanic fracture zones: (1) early Eocene to late Oligocene, along the Faeroe Fracture Zone and (2) late Eocene to early Oligocene and during the Miocene, along the JMFZ. Such left-lateral motion and relative rotation between the oceanic segments are compatible with the development of inversion structures on the Faeroe-Rockall Plateau and Norwegian Margin at those times and probably with the initiation of the Fugløy Ridge in the Faeroe-Shetland Basin during the Eocene and Oligocene. The Iceland Mantle Plume appears to have been in a position to generate differential seafloor spreading along the NE Atlantic and resulting deformation of the European margin.

  14. Magnetic Signature of a Volcanic to non-Volcanic Margin Transition off Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Dehler, S. A.; Keen, C. E.

    2001-12-01

    The volcanic rifted margin along the Atlantic coast of Eastern North America is characterized by a strong, linear magnetic anomaly from the Blake Spur fracture zone to Nova Scotia. This anomaly, the East Coast Magnetic Anomaly (ECMA), has been shown to coincide at several locations with a thick layer of igneous material emplaced at the continent-ocean transition. Off Nova Scotia, the anomaly changes character, becoming disjointed and lower in amplitude until it fades to the northeast into the regional background level. This region may mark the transition from a volcanic to a non-volcanic style of rifted margin. Seismic reflection data across this transition region off Nova Scotia show that, in the southwest, the ECMA coincides with a zone of seaward dipping reflections in igneous basement. Further to the northeast, basement is obscured by an overlying complex zone of salt diapirs. Modelling of the magnetic anomaly indicates that the highest amplitude peak coincides with the seaward edge of an igneous body near the ocean-continent boundary. Just north of the New England Seamounts, the anomaly peak is 50 km wide and of moderate amplitude (+280 nT), consistent with a wide unit of volcanic material buried at 7 km depth beneath the sediments. Further to the northeast, the anomaly becomes narrower and more subdued, reflecting a source body that is smaller and deeper. The interpreted cessation of volcanism off Nova Scotia may be linked to a change in rifting style, mantle thermal conditions, or reduction in the lateral flow of magma from a distant hot spot. Seismic transects and magnetic data for different parts of the US Atlantic margin show that crustal thinning occurred across a much broader width of continental crust in the north than elsewhere along the margin. The calculated isostatic gravity anomaly for this part of the margin should help to determine the presence of anomalous crustal structure or uncompensated loading in this region. We will evaluate possible

  15. Isostatic and dynamic support of high topography on a North Atlantic passive margin

    NASA Astrophysics Data System (ADS)

    Kathrine Pedersen, Vivi; Huismans, Ritske S.; Moucha, Robert

    2016-04-01

    Substantial controversy surrounds the origin and recent evolution of high topography along passive continental margins in the North Atlantic, with suggested age of formation ranging from early Paleozoic Caledonian orogenesis to Neogene uplift of a Mesozoic peneplain. Here we focus on the well-documented high passive margin in southwestern Scandinavia, and quantify the relative contributions of crustal isostasy and dynamic topography in controlling the present topography. We find that most topography is compensated by the crustal structure, suggesting a topographic age related to ~400 Myr old Caledonian orogenesis. In addition, we infer that dynamic uplift (~300 m) has rejuvenated existing topography locally in the coastal region within the last ~10 Myr due to mantle convection. Such uplift has, in combination with a general eustatic sea-level fall and concurrent erosion-driven isostatic rock-column uplift, the potential to increase erosion of coastal-near regions and explain observations that have traditionally been interpreted in favor of the peneplain uplift model. We conclude that high topography along the Scandinavian margin cannot represent remnants of a peneplain uplifted within the last ~20 Myr. Topography must have been high since the Caledonian orogeny.

  16. Deep Stucture of the Northwestern Atlantic Moroccan Margin Studied by OBS and Deep Multichannel Seismic Reflection.

    NASA Astrophysics Data System (ADS)

    MALOD, J. A.; Réhault, J.; Sahabi, M.; Géli, L.; Matias, L.; Diaz, J.; Zitellini, N.

    2001-12-01

    The Northwestern Atlantic Moroccan margin, a conjugate of the New Scotland margin, is one of the oldest passive margin of the world. Continental break up occurred at early Liassic time and the deep margin is characterized by a large salt basin. A good knowledge of this basin is of major interest to improve the initial reconstruction between Africa, North America and Iberia (Eurasia). It is also a good opportunity to study a mature passive margin and model its structure and evolution.Moreover, there is a need to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. These topics have been adressed during the SISMAR cruise carried out from April 9th to May 4th 2001.During this cruise, 3667 km of multichannel seismic reflection (360 channels, 4500 m long streamer, 4800 ci array of air guns) were recorded together with refraction records by means of 48 OBH/OBS drops. Simultaneously, some of the marine profiles have been extended onshore with 16 portable seismic land stations. We present the initial results of this study. Off El Jadida, the Moho and structures within the thinned continental crust are well imaged on both the reflection and refraction records. In the northern area, off Casablanca, we follow the deepening of the moroccan margin beneath the up to 9 sec (twtt) allochtonous series forming a prism at the front the Rif-Betic chain. Sismar cruise has been also the opportunity to record long seismic profiles making the junction between the Portuguese margin and the Moroccan one, and crossing the Iberian-African plate boundary. This allows to observe the continuity of the sedimentary sequence after the end of the large inter-plate motion in Early Cretaceous. In addition to the authors, SISMAR Group includes: AMRHAR Mostafa, BERMUDEZ VASQUEZ Antoni, CAMURRI Francesca, CONTRUCCI Isabelle, CORELA Carlos, DIAZ Jordi, DORVAL Philippe, EL ARCHI Abdelkrim, EL ATTARI Ahmed, GONZALEZ Raquel, HARMEGNIES Francois, JAFFAL

  17. Initiation of subduction at Atlantic-type margins: Insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Giardini, Domenico; Davy, Philippe; Argentieri, Alessio

    1999-02-01

    We have performed scaled lithospheric experiments to simulate the behavior of a ocean-continent plate system subjected to compressional strain over a geological timescale. Experiments have been constructed using sand and silicone putty, representing the brittle upper crust and the ductile lower crust/upper mantle, respectively; the layers floated on glucose syrup simulating the asthenosphere. Compressional stress is achieved by displacing a piston at constant velocity perpendicular to the plate margin. We investigate the influence of four parameters: (1) the negative buoyancy of oceanic lithosphere, (2) the horizontal body forces between continent and ocean, and (3) the brittle and (4) the ductile strength of the passive margin. Two numbers express the importance of these parameters: the Argand number (Ar), representing the ratio between the body force of continent and its integrated strength, and the buoyancy number (F), representing the ratio between the buoyancy force of ocean and its ductile resistance. We obtain three scenarios. In experiments with Ar 3 and F < 1 the ocean deforms by distributed folds, resembling the undulations observed in the Indian Ocean. In experiments with Ar 7 and F >1 the continent collapses toward the ocean, producing back-arc extension and subduction, simulating the post-Alpine Neogene evolution of the Mediterranean area. In experiments with Ar 3 and F > 1 the passive margin slowly evolves toward trench nucleation with the formation of a viscous mantle instability. We conclude that the latter model can be applied to the evolution of Atlantic-type margins, where there is evidence of this ongoing process.

  18. Mass wasting on the Orange Cone of the Atlantic Margin, South Africa

    NASA Astrophysics Data System (ADS)

    Fielies, Anthony; Murphy, Alain; Johnson, Sean; Thovhogi, Tshifhiwa

    2017-04-01

    The South African Atlantic Margin represents the rift-drift passive volcanic margin sequence which records the break-up of Gondwana around 155 Ma and the subsequent opening of the South Atlantic Ocean. The Orange Cone - the morphological expression of the sediment buildout and modification of the continental margin along the southwest African continental margin - has undergone extensive mass failure and slope modification over a protracted period. This failure extends all the way to the present-day toe of the Orange Cone. This paper outlines the data and analysis by South Arica in support of its Submission to the Commission on the Limits of the Continental Shelf. South Africa has, in its submission, identified and mapped a considerable number of gravity-driven failure features and deposits as evidence of the Orange Cone being classified as a slope in the sense of Article 76 of UNCLOS. Sediment mass failure, which includes slumping, sliding, mass transport deposits, etc., are known to be continental slope phenomena because they are gravity-driven and thus require a free slope upon which gravitational forces can cause kinetic action. Upper slope failure is ubiquitous on the Orange Cone and has been well documented. The most striking example of slope modification and downslope movement in the upper slope of the Orange Cone/Basin is the paired, gravity-driven deformation system, over 100 km across, with extension high on the submarine slope and contraction toward the toe of slope. The lower slope of the Orange Cone has experienced multiple episodes of failure in the form of glides, slides and debris flows. Failure on the lower slope is highly relevant for the purposes of delineating the foot of the continental slope as the deposition location represents the terminus of the slope processes. These gravity-driven failures are inherently linked to upper slope failure processes although their expression is markedly different. The change in gradients between the upper and

  19. Timing of methane efflux along the Norwegian and US Atlantic margin

    NASA Astrophysics Data System (ADS)

    Sahy, Diana; Condon, Daniel; Lepland, Aivo; Crémière, Antoine; Noble, Stephen; Ruppel, Carolyn

    2016-04-01

    Methane-related authigenic carbonates (MDAC) provide a robust archive of past methane emissions from cold seeps located along continental margins. MDAC are amenable to U-Th geochronology which can be used to assess the timing and drivers of fluid flow (Teichert et al., 2003; Bayon et al., 2013). The difficulty of sourcing MDAC typically precludes the assembly of datasets with sufficient geographic coverage and resolution to investigate the processes triggering and sustaining methane seeps on a regional scale. To address this, two collaborative projects led by the British, Norwegian and US geological surveys are currently underway, targeting methane seeps located along the Norwegian and US Atlantic margins (Skarke et al., 2014). MDAC samples collected for the two projects come from a range of depths (300-2000 m), and are linked to a variety of processes (e.g. collapse of grounded ice sheet, salt diapirism, dissociation of upper slope gas hydrates, emissions from deep reservoirs through fault networks). MDAC typically present as matrix-supported conglomerate /sandstone/ siltstone, and consist of detrital material of variable grainsize (depending on locality) encased in an aragonite and/or calcite cement. Interconnected voids within the MDAC, which likely represent fluid conduits, are often at least partially filled with clean (>90%), layered aragonite. The latter are ideal materials for U-Th geochronology, and can yield U-Th dates with precision approaching 0.5 % (2σ), with thicker (ca. 2 cm) layered cavity fills showing resolvable growth histories on the order of 1 kyr. While measurements on cavity-filling aragonite give a snapshot of seep activity, quantifying the entire methane emission history of a sample, and crucially, the timing of the onset of emissions, requires the analysis of MDAC groundmass. Such analyses are more challenging as initial detrital 230Th included in the samples must be accounted for. While precise dating of the onset of methane emissions at

  20. Biologic Indicators of Seabed Methane Venting Along the US Mid-Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Prouty, N.; Roark, E. B.; Demopoulos, A. W.; Condon, D. J.; Davis, K.; Ross, S.; Brooke, S.

    2014-12-01

    Evidence of seabed methane venting along the US Mid-Atlantic Margin is confirmed by the presence of authigenic carbonates and methantrophic deep-sea mussels, Bathymodiolus childressi, collected near areas of methane seepage. The biological indicators of methane venting presented here expand the understanding of widespread seepage identified by previous geophysical data. Both dead and living chemosynthetic mussels as well as authigenic carbonate samples were collected from Baltimore Canyon (360-430 m) and on the Virginia outer continental shelf (1600-1475 m). Stable isotope (carbon and sulfur) composition of mussel tissue material illustrates that the chemosynthetic communities are metabolically-dependent on methane rather than sulphide-oxidizing microbial symbionts. Average δ13C from tissue material was -62.80 ‰ and average δ34S was 12.58 ‰. Shell δ13C values were depleted relative to seawater dissolved inorganic carbon, highlighting the influence of methane concentration from cold seeps on shell growth. Lighter stable oxygen isotope values from shells collected at Baltimore Canyon reflect warmer temperatures relative to the colder and deeper Virginia seep site. However, at both sites isotopic disequilibrium relative to seawater δ18O suggests influence of enriched δ18O pore water. The chemical composition of the authigenic carbonates at both sites is dominated by aragonite rather than calcite, with an average δ13C signature of -46 ‰, a value expected from the microbially driven anaerobic oxidation of methane-rich fluids occurring at or near the sediment-water interface. This interpretation is supported by strontium isotope values close to modern seawater values. U/Th data are also reported from the authigenic carbonate stratigraphy to assess the timing and duration of methane venting along the US Mid-Atlantic Margin.

  1. Shelf basin exchange along the Siberian continental margin: Modification of Atlantic Water and Lower Halocline Water

    NASA Astrophysics Data System (ADS)

    Bauch, Dorothea; Cherniavskaia, Ekaterina; Timokhov, Leonid

    2016-09-01

    Salinity and stable oxygen isotope (δ18O) evidence shows a modification of Atlantic Water in the Arctic Ocean by a mixture of sea-ice meltwater and meteoric waters along the Barents Sea continental margin. On average no further influence of meteoric waters is detectable within the core of the Atlantic Water east of the Kara Sea as indicated by constant δ18O, while salinity further decreases along the Siberian continental slope. Lower Halocline Waters (LHW) may be divided into different types by Principal Component Analysis. All LHW types show the addition of river water and an influence of sea-ice formation to a varying extent. The geographical distribution of LHW types suggest that the high salinity type of LHW forms in the Barents and Kara seas, while other LHW types are formed either in the northwestern Laptev Sea or from southeastern Kara Sea waters that enter the northwestern Laptev Sea through Vilkitsky Strait. No further modification of LHW is seen in the eastern Laptev Sea but the distribution of LHW-types suggest a bifurcation of LHW at this location, possibly with one branch continuing along the continental margin and a second branch along the Lomonosov Ridge. We see no pronounced distinction between onshore and offshore LHW types, as the LHW components that are found within the halocline over the basin also show a narrow bottom-bound distribution at the continental slope that is consistent with a shelf boundary current as well as a jet of water entering the western Laptev Sea from the Kara Sea through Vilkitsky Strait.

  2. Buried Mesozoic rift basins of the U. S. middle Atlantic continental margin

    SciTech Connect

    Benson, R.N. )

    1991-08-01

    The Atlantic continental margin is one of the frontier areas for oil and gas exploration in the US. Most the activity has been offshore where Upper Jurassic-Lower Cretaceous siliciclastic and carbonate rocks have been the drilling objectives, with only one significant but noncommercial gas discover. Onshore, recent exploration activities have focused on early Mesozoic rift basins buried beneath the postrift sediments of the middle Atlantic coastal plain. Many of the basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness, if not lost through hydrocarbon generation, to be classified as source beds for oil or gas. Locations of inferred rift basins beneath the middle Atlantic coastal plain were determined by analysis of drill-hole data in combination with gravity anomaly and aeromagnetic maps. Two basins in Delaware and the Queen Anne basin of Maryland are imaged on a regional Vibroseis profile. Areas enclosing inferred rift basins in the offshore region were mapped from interpretation of seismic reflection profiles. Assuming that petroleum source beds are present in the basin (synrift) rocks, hydrocarbon-generation models (Lopatin method) indicate that for a basin just offshore Delaware that is buried by 7 km of postrift sediments, only dry gas would be present in reservoir rocks; for the Norfolk basin of the Virginia coast buried by only 3 km of postrift rocks, the upper few hundred meters of synrift rocks are still within the oil-generation window. The less deeply buried basins beneath the coastal plain likely are still within the oil window.

  3. Submarine canyon and slope processes of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    McGregor, B.A.

    1983-01-01

    Two regions on the U.S. Atlantic continental margin were surveyed using single-channel, seismic-reflection profiling techniques: the Mid-Atlantic Continental Slope and Rise seaward of New Jersey in the vicinity of Baltimore Canyon and the Continental Slope and upper Rise just north of Cape Hatteras. Submarine canyons are the dominant morphologic feature in both areas. The Continental Slope in the Baltimore Canyon area has a general sea-floor gradient of 3?-4? and a width of approximately 40 km, whereas the study area north of Cape Hatteras has a general sea-floor gradient of approximately 9? and a width of 20 km. The dominant slope process differs in each area. In the Baltimore Canyon area, subbottom reflectors suggest that sediment deposition with progradation of the slope is related to canyon processes. In the study area north of Cape Hatteras, the canyons appear erosional and mass wasting is the dominant erosional process. Dominant slope processes appear to be correlated with the width and sea-floor gradient of the Continental Slope. Although the absolute age of the canyons is difficult to determine without rotary-drill cores for stratigraphic control, Baltimore Canyon is suggested to be older than the shelf-indenting canyon just north of Cape Hatteras. An anomalously large ridge flanking Baltimore Canyon on the upper rise appears to be related to canyon depositional and erosional processes.

  4. North Atlantic early 20th century warming and impact on European summer: Mechanisms and Predictability

    NASA Astrophysics Data System (ADS)

    Müller, Wolfgang

    2017-04-01

    During the last century, substantial climate variations in the North Atlantic have occurred, such as the warmings in the 1920s and 1990s. Such variations are considered to be part of the variability known as the Atlantic Multidecadal Variations (AMV) and have a strong impact on local climates such as European summers. Here a synthesis of previous works is presented which describe the occurrence of the warming in the 1920s in the North Atlantic and its impact on the European summer climate (Müller et al. 2014, 2015). For this the 20th century reanalysis (20CR) and 20CR forced ocean experiments are evaluated. It can be shown that the North Atlantic Current and Sub-Polar Gyre are strengthened as a result of an increased pressure gradient over the North Atlantic. Concurrently, Labrador Sea convection and Atlantic meridional overturning circulation (AMOC) increase. The intensified NAC, SPG, and AMOC redistribute sub-tropical water into the North Atlantic and Nordic Seas, thereby increasing observed and modelled temperature and salinity during the 1920s. Further a mechanism is proposed by which North Atlantic heat fluxes associated with the AMV modulate European decadal summer climate (Ghosh et al. 2016). By using 20CR, it can be shown that multi-decadal variations in the European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. This response induce a sea level pressure structure modulating meridional temperature advection over north-western Europe and Blocking statistics over central Europe. This structure is shown to be the leading mode of variability and is independent of the summer North Atlantic Oscillation. Ghosh, R., W.A. Müller, J. Bader, and J. Baehr, 2016: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Clim. Dyn. doi:10.10007/s00382-016-3283-4 Müller W. A., D. Matei, M. Bersch, J. H. Jungclaus, H. Haak, K

  5. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate

    NASA Astrophysics Data System (ADS)

    Rodwell, M. J.; Rowell, D. P.; Folland, C. K.

    1999-03-01

    The weather over the North Atlantic Ocean, particularly in winter, is often characterized by strong eastward air-flow between the `Icelandic low' and the `Azores high', and by a `stormtrack' of weather systems which move towards western Europe. The North Atlantic Oscillation - an index of which can be defined as the difference in atmospheric pressure at sea level between the Azores and Iceland - is an important mode of variability in the global atmosphere, and is intimately related to the position and strength of the North Atlantic stormtrack owing to dynamic processes internal to the atmosphere,. Here we use a general circulation model of the atmosphere to investigate the ocean's role in forcing North Atlantic and European climate. Our simulations indicate that much of the multiannual to multidecadal variability of the winter North Atlantic Oscillation over the past half century may be reconstructed from a knowledge of North Atlantic sea surface temperature. We argue that sea surface temperature characteristics are `communicated' to the atmosphere through evaporation, precipitation and atmospheric-heating processes, leading to changes in temperature, precipitation and storminess over Europe. As it has recently been proposed that there may be significant multiannual predictability of North Atlantic sea surface temperature patterns, our results are encouraging for the prediction of European winter climate up to several years in advance.

  6. A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Rodrigues, T.; Alonso-García, M.; Hodell, D. A.; Rufino, M.; Naughton, F.; Grimalt, J. O.; Voelker, A. H. L.; Abrantes, F.

    2017-09-01

    The Iberian Margin is a sensitive area to track high and low latitude processes, and is a key location to understand major past climatic and oceanographic changes. Here we present new biomarker data from IODP Site U1385 (;Shackleton site;) (1017-336 ka) that, when combined with existing data from Cores MD01-2443/4 (last 335 ka), allows us to assess the evolution of sea surface temperature (SST) and meltwater influx over the last 1 Ma at the Iberian Margin. Interglacial periods throughout the last 1 Ma show SST close to 20 °C, even during the so-called ;luke-warm; interglacials that are marked by relatively low atmospheric CO2 concentrations. During glacial periods, extremely cold stadial events are recognized at the Iberian Margin, and are very likely related to meltwater discharges from the European and British-Irish ice sheets into the NE Atlantic, which were transported southwards by the Portugal Current. We subdivided the record into four intervals on the basis of the timing and the magnitude of these extremely cold stadials: 1) from 1017 to ∼900 ka, only minor sporadic freshwater input occurred during deglaciations; 2) from 900 to 675 ka extreme cold events occur as terminal stadial events at the beginning of the deglaciations, which results in abrupt deglacial SST shifts; 3) from 675 to 450 ka only a few, very short-lived events are recorded and seldom is there freshwater input at the Iberian Margin; 4) during the last 450 ka the extreme cold events occurred under full glacial conditions, with particularly severe events during MIS 6 and 8. We propose these mid -glacial events are associated with a strong discharges of European ice sheet (EIS). The fact that these extreme cold events do not coincide with deglaciations questions the role of European ice sheet discharges in triggering deglaciations.

  7. Cretaceous source rock characterization of the Atlantic Continental margin of Morocco

    SciTech Connect

    Jabour, H. )

    1993-02-01

    Characterization of the petroleum potential for the Atlantic margin of Morocco has been based primarily on limited, antiently acquired organic geochemical data. These indicate the area of drilling behind the paleoshelf edge to be only fair in organic carbon and C15+ extract values with predominantly terrestrial kerogen types. Recently acquired geochemical data obtained from relatively recent drilling both behind and beyond the paleoshelf edge indicate 4 depositional facies containing hydrogen rich amorphous kerogen assemblages. These are: (1) Lower to Mid Jurassic inner shelf facies probably deposited in algal rich lagoon-like, (2) Lower Cretaceous non marine coaly facies probably deposited in algal rich swamplike environments, (3) Middle Cretaceous facies characterized by restrited anoxic environment with sediments rich in marine kerogen types deposited under sluggish wather circulation, (4) Upper Cretaceous to Tertiary outer-shelf to Upper slope facies probably deposited under algal-rich upwelling systems. Of these, the Cretaceous facies is the most widespread and represents the best source rock potential characteristics. Correlation of these facies to recently acquired good quality seismic packages allows for extrapolation of probable organic facies distribution throughout the continental margin. This should enhance the hydrocarbon potential of the Mesozoic and Cenozoic sediments both landward and seaward of the paleoshelf edge and thus permits refinement of strategies for hydrocarbon exploration in the area.

  8. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  9. Preliminary summary of the 1976 Atlantic Margin Coring Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Hathaway, John Cummins; Schlee, J.J.; Poag, C.W.; Valentine, P.C.; Weed, E.G.A.; Bothner, Michael H.; Kohout, F.A.; Manheim, F. T.; Schloam, R.; Miller, R.E.; Schultz, D.M.

    1976-01-01

    The U.S. Geological Survey Atlantic Margin Coring Project, 1976, a 60-day expedition to obtain core samples by drilling beneath the floor of the Continental Shelf and Slope of the eastern United States, was carried out in July, August, and September 1976 aboard D/V GLOMAR CONCEPTION. The coring penetrated as much as 310 meters below the sea floor at 19 sites along the continental margin from Georgia to Georges Bank off New England in water depths ranging from 20 to 300 meters; 1,020 meters of material were recovered in 380 cores, ranging in age from Late Cretaceous to Holocene. One of the major findings was the discovery of relatively fresh water (salinities less than 3 parts per thousand) extending beneath the Continental Shelf as much as 60 nautical miles seaward from the New Jersey coast. Water of about 1 part per thousand salinity was found beneath the shelf more than 7 nautical miles off Ocean City, Maryland and Barnegat Inlet, New Jersey. Analyses for light hydrocarbons in the cores show the highest concentrations (as much as 412,000 ppm) at sites in water depth greater than 200 meters (the shelf-slope break), principally in Pleistocene sediments, although methane concentrations greater than 400,000 ppm also were found in Miocene sediments at one site near the shelf edge. (Woodard-USGS)

  10. Sediment and water column geochemistry related to methane seepage along the northern US Atlantic margin

    NASA Astrophysics Data System (ADS)

    Pohlman, J.; Ruppel, C. D.; Colwell, F. S.; Krause, S.; Treude, T.; Graw, M.; Casso, M.; Boze, L. G.; Buczkowski, B.; Brankovits, D.

    2015-12-01

    Many of the more than 550 gas plumes recently identified along the northern US Atlantic margin (USAM) using multibeam water-column backscatter data lie at, or shallower than, the upper limit of gas hydrate stability on the continental slope. Important questions remain unanswered regarding the gas sources feeding these seeps, the export of carbon from the seafloor and the fundamental biogeochemical processes that regulate the flux and transformation of carbon along this margin. In addition, few programs have ever systematically studied the dynamics across the upper slope transition from no hydrate to hydrate. In September 2015, the US Geological Survey, Oregon State University, Geomar and UCLA conducted a multidisciplinary study aboard the R/V Sharp that included piston coring, multicoring, seafloor heat flow measurements, imaging of sub-seafloor sediments and water column methane plumes, and sampling of methane plumes in the water column. This presentation provides some of the basic geochemical results from the cruise, focusing on the pore water characteristics in upper slope gas hydrate provinces that will be used to constrain the fundamental biogeochemical processes operating at methane seeps, including data on the origin of seep methane at sites with and without a possible association with gas hydrate degradation. Water column profiling of methane and other biogeochemically relevant species (e.g., dissolved inorganic and organic carbon) are also used to establish how carbon exported from the seeps affects ocean chemistry and carbon availability in the deep ocean.

  11. Preliminary assessment of a Cretaceous-Paleogene Atlantic passive margin, Serrania del Interior and Central Ranges, Venezuela/Trinidad

    SciTech Connect

    Pindell, J.L.; Drake, C.L. ); Pitman, W.C. )

    1991-03-01

    For several decades, Cretaceous arc collision was assumed along northern Venezuela based on isotopic ages of metamorphic minerals. From subsidence histories in Venezuelan/Trinidadian basins, however, it is now clear that the Cretaceous metamorphic rocks were emplaced southeastward as allochthons above an autochthonous suite of rocks in the Cenozoic, and that the pre-Cenozoic autochthonous rocks represent a Mesozoic passive margin. The passive margin rocks have been metamorphosed separately during overthrusting by the allochthons in central Venezuela, but they are uplifted but not significantly metamorphosed in Eastern Venezuela and Trinidad. There, in the Serrania del Interior and Central Ranges of Venezuela/Trinidad, Mesozoic-Paleogene passive margin sequences were uplifted in Neogene time, when the Caribbean Plate arrived from the west and transpressionally inverted the passive margin. Thus, this portion of South America's Atlantic margin subsided thermally without tectonism from Jurassic to Eocene time, and these sections comprise the only Mesozoic-Cenozoic truly passive Atlantic margin in the Western Hemisphere that is now exposed for direct study. Direct assessments of sedimentological, depositional and faunal features indicative of, and changes in, water depth for Cretaceous and Paleogene time may be made here relative to a thermally subsiding passive margin without the complications of tectonism. Work is underway, and preliminary assessments presented here suggest that sea level changes of Cretaceous-Paleogene time are not as pronounced as the frequent large and rapid sea level falls and rises that are promoted by some.

  12. Temporal variation in population size of European bird species: effects of latitude and marginality of distribution.

    PubMed

    Cuervo, José J; Møller, Anders P

    2013-01-01

    In the Northern Hemisphere, global warming has been shown to affect animal populations in different ways, with southern populations in general suffering more from increased temperatures than northern populations of the same species. However, southern populations are also often marginal populations relative to the entire breeding range, and marginality may also have negative effects on populations. To disentangle the effects of latitude (possibly due to global warming) and marginality on temporal variation in population size, we investigated European breeding bird species across a latitudinal gradient. Population size estimates were regressed on years, and from these regressions we obtained the slope (a proxy for population trend) and the standard error of the estimate (SEE) (a proxy for population fluctuations). The possible relationships between marginality or latitude on one hand and slopes or SEE on the other were tested among populations within species. Potentially confounding factors such as census method, sampling effort, density-dependence, habitat fragmentation and number of sampling years were controlled statistically. Population latitude was positively related to regression slopes independent of marginality, with more positive slopes (i.e., trends) in northern than in southern populations. The degree of marginality was positively related to SEE independent of latitude, with marginal populations showing larger SEE (i.e., fluctuations) than central ones. Regression slopes were also significantly related to our estimate of density-dependence and SEE was significantly affected by the census method. These results are consistent with a scenario in which southern and northern populations of European bird species are negatively affected by marginality, with southern populations benefitting less from global warming than northern populations, thus potentially making southern populations more vulnerable to extinction.

  13. Meso-Cenozoic uplifts on the Atlantic margin of South Morocco

    NASA Astrophysics Data System (ADS)

    Lepretre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Saddiqi, O.

    2013-12-01

    Passive margins are key areas to investigate the relationships between the continental interiors and the marine realm. A careful study of their stratigraphic record is then expected to reveal the complex interplays between subsidence, climate and eustasy (Dauteuil et al., 2013). The eastern passive margin of Central Atlantic initiated in the Early Jurassic and has been subsequently witnessing the evolution of the continental interior during the Meso-Cenozoic drifting of Africa and North America. This passive margin is bounded by the West African Craton to the East, and its geometry and evolution are poorly known (Labails et al., 2009). We have focused our study on the vertical evolution of the onshore part of the basin, in order to improve our knowledge with regards to the dynamics of the basin's infill. The purpose was to identify the main uplift vs. subsidence events impacting the margin during Meso-Cenozoic times and to correlate them to the geodynamic context. We used low-temperature thermochronology on apatites with fission tracks and (U-Th)/He dating to constrain the evolution of the margin during Meso-Cenozoic. These analyses have been performed on samples coming from the onshore basin detrital formations and basement formations from the craton. Modeled thermal histories were then carried through the use of QTQt, a recent program taking into account the most recent developments on apatite thermochronology (Gallagher, 2012). We obtained fission tracks ages ranging from 107×8 Ma to 160×11 Ma and (U-Th)/He ages from 14×1 Ma to 97×9 Ma. The scattered repartition of (U-Th)/He ages is explained by the distribution of effective uranium in the samples and reveal a quite young signal. The fission tracks ages are not so scattered and show a consistent signal. Thermal histories characterize for the first time the polyphased vertical evolution of the basin throughout its Meso-Cenozoic history. Two major steps of exhumation are recorded. First, a Late Jurassic

  14. Inferred Tectonic Segmentation in the Eastern Central Atlantic Ocean and the African Margin From Mantle Bouguer Anomalies

    NASA Astrophysics Data System (ADS)

    Llanes Estrada, P.; ten Brink, U.; Canales, J.; Carbo Gorosabel, A.; Munoz Martin, A.

    2008-12-01

    The distribution, wavelength and amplitude of the Mantle Bouguer Anomalies (MBA) in the Eastern Central Atlantic Ocean reveal regional variations in crust and-or upper mantle structure. The MBA variations of such anomalies define four corridors, limited by the Oceanographer, D, Kane, South Cape Verde and Vema fracture zones. Within these corridors second order variations are sometimes present, also limited by facture zones. There is no significant change in the MBA across the Atlantis fracture zone, in contrast to observations from the conjugate Western Atlantic Ocean, which we hypothesize, are related to asymmetry in Mid-Atlantic Ridge processes. The MBA segmentation appears to follow flowlines up to the very old oceanic lithosphere adjacent to the continental margin. However, this segmentation does not mimic the MBA segmentation found along the African continental margin, which is characterized by a narrow and intermittent band of high amplitude mantle Bouguer anomalies. The location and shape of the gravity highs and lows along the margin follow the coastal morphology, with gravity lows located in front of capes and highs in front of gulfs. We conclude that the deep structure of the continental margin has been inherited from the first stages of the rifting processes and differs from the general segmentation later produced by sea-floor spreading along the Mid-Atlantic Ridge. Intraplate volcanism, such as the Canary Islands, Cape Verde Islands and Madeira Island is not responsible for the existence of the MBA corridors or their boundaries in the eastern Atlantic Ocean, but instead generates broad areas of large negative MBA that modify the pre- existing gravity signature of the ocean floor.

  15. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature

    PubMed Central

    Yamamoto, Ayako; Palter, Jaime B.

    2016-01-01

    Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air–sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline. PMID:26975331

  16. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature.

    PubMed

    Yamamoto, Ayako; Palter, Jaime B

    2016-03-15

    Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.

  17. Sn to Sg Conversion at the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Gallegos, A. C.; Long, M. D.; Benoit, M. H.; Ni, J.

    2015-12-01

    Isacks and Stephens [1975] observed a secondary phase with high frequency Lg characteristics that arrived soon after the Sn wave on seismograms generated by events in the West Indies. They concluded that an Sn-to-Lg conversion occurred at the continental margin, where the crust suddenly thickens. A later study on conversion along the continental margin was done by Seber et al. [1993] in Morocco. They noted that historically Morocco has experienced more damage from earthquakes occurring at the Azores-Gibraltar seismic zone (e.g. the M 8.7-9.0 Lisbon earthquake) at distances up to 500-1000 km than from those within the country. They conclude in their study that there are two parallel Sn-to-Sg conversion zones along the coast and interior of Morocco, where Sg is equivalent to Lg at shorter distances. We have seen similar Sn-to-Sg conversions for a M 5.2 event occurring ~1400 km off the Atlantic Coast on Dec. 23, 2013 using EarthScope's Transportable Array (TA). We perform a travel time back-projection based on the geometry of the raypaths, similar to Seber et al. [1993], to determine the location of the conversion points for several Atlantic events and compare with seismograms generated by continental events. We also investigate the possibility of a second conversion at the crustal boundary between the Appalachians and the Coastal Plain. The MAGIC Array is used in tandem with TA to closely observe the propagation characteristics of the converted wave as it travels through the continent. With the sizeable increase in station coverage we are in a position to study this conversion in greater detail. Understanding the causes of Sn-to-Sg conversion and the conditions needed to produce it can lead to insight into the geometry and characteristics of the continental shelf and inland crustal boundaries. Learning about this conversion is also needed to determine seismic hazard along coastal areas, where high amplitude converted shear waves can cause unexpected levels of damage.

  18. New Insights into the Temporal Variability of Seafloor Methane Discharge on the Northern US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.

    2015-12-01

    Multibeam echosounder water column backscatter data and remotely operated vehicle (ROV) video imagery collected from 2011 through 2013 by NOAA Ship Okeanos Explorer and ROV Deep Discoverer revealed methane discharge at over 570 seafloor gas seep locations on the US Atlantic margin between Cape Hatteras and Georges Bank. Subsequent water column surveys and video imaging conducted by Okeanos Explorer and ROV Deep Discoverer in 2014 as well as R/V Atlantis and DSV Alvin, as part of the SeepC program in 2015, re-imaged a majority of these gas seep locations providing an opportunity to make preliminary assessments of gas plume ephemerality and the variability of seafloor methane discharge as a function of time. Analysis of newly collected water column backscatter data indicates that some previously imaged gas plumes are no longer present and that a number of new gas plumes are present in locations where they were previously determined to be absent. Additionally, newly acquired video imagery demonstrates that seafloor gas emission at seep locations can vary between absence and abundant effusively on time scales as short as minutes and that this variability is not correlated with that of in situ temperature and pressure observations. These new results indicate that individual methane plume features can be ephemeral on intra-annual to much shorter time scales. Additionally, these results suggest that short-term variability in gas discharge at individual plumes, away from the upper limit of the gas hydrate stability zone, is not mediated by fluctuations in hydrostatic pressure or thermal perturbations. Despite evidence for high temporal variability in the discharge rates of individual gas plumes, video imagery of robust chemosynthetic communities and thick carbonate crusts suggests an overall persistence of methane emissions at seep sites on time scales of hundreds to thousands of years. Collected data are insufficient to fully constrain the temporality of gas discharge on

  19. Updated size distribution of submarine landslides along the U.S. Atlantic margin

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Chaytor, J. D.; Andrews, B. D.; Brothers, D. S.; Geist, E. L.

    2012-12-01

    The volume of failed material in submarine landslides is one of the primary factors controlling tsunami amplitude, hence the cumulative volume distribution of submarine landslides on the U.S. Atlantic continental slope and rise provides information important for the evaluation of tsunami hazard potential for U.S. the East Coast. Landslide size distributions also help constrain the initiation mechanisms of submarine landslides in siliciclastic and carbonate environments [1,2], and thus improve our understanding of the pre-conditioning and propagation of landslides. Previous compilations of landslide distributions along the Atlantic continental margin used regional side-scan sonar data, seismic reflection profiles and multibeam bathymetry data that lacked coverage of large portions of the upper continental slope [3, 4]. We updated this regional database by compiling and merging multibeam echosounder data from 36 surveys conducted by various federal agencies and academia between Georges Banks and Cape Hatteras from 1990-2012. The result is a continuous 594,000 km2 digital bathymetric surface with a spatial resolution of 100 m spanning water depths between 55-6150 m. The new grid allows better identification and delineation of the areas and heights of the headwall scarps, and more precise volume estimates of the evacuated slide regions. Acoustic backscatter derived from the multibeam data and an updated compilation of sub-bottom seismic profiles and core logs improve the identification of the extent of mass transport deposits. The updated analysis includes uncertainties in the determination of the landslide areas. The cumulative area and volume distributions of the landslides excavations, their area/volume ratio, the water depth of the head wall, and the fraction of slope and rise areas covered by headwall scarps and landslide deposits, are quantified and discussed. Combining landslide size distribution with the overall rate of occurrence of landslides derived from age

  20. Can rifting evolution and passive margins architecture be driven by relative rheological heterogeneities? Insight from analogue modelling focused on South Atlantic margins.

    NASA Astrophysics Data System (ADS)

    Cappelletti, Alessio; Nestola, Yago; Tsikalas, Filippos; Salvi, Francesca; Argnani, Andrea; Cavozzi, Crisitan; Meda, Marco

    2016-04-01

    Crustal transect joined with lithospherical-scale analogue experiments are used to unreveal the evolution of the Central Segment of the South Atlantic margin. Specifically we analized the Santos and Campos basins along the Brazilian margin, where crustal inhomogeneities affects both rifting evolution and structural architecture of the conjugate margins. The results show that heterogeneities located within the lower crust can have a remarkable impact on the along-margin segmentation promoting focused and deeper basins related to a relatively "weak" rheology, and articulated basins with horsts and grabens in response to a relative "strong" rheology on the equivalent parts of the conjugate pairs. At the early-stage of rift evolution the deformation is concentrated at the proximal margin. At this stage, if a weak lower crust rheology heterogeneity exists, a main deep listric half-graben fault and associated thick and wedge shaped syn-rift basin sequences are developed; on the contrary, a strong lower crust rheology produce a more planar, rotated, domino-type faulted basins with thinner sequences directly controlled by the individual fault-blocks. At the late-stage rift evolution, once the effects of the initial crustal rheology inhomogeneities are reduced due to the lithosperic thinning process, the outer margin records a late syn-rift sequence which shows comparable thicknesses for both cases of lower crust rheologies. This tectono-stratigraphic evolution of the rifting process gives rise to along-margin alterations in symmetry versus asymmetry of the width and structural architecture. The presented models show that the tectono-stratigraphic evolution of rifting process can produces along margin switching of width and structural architecture. The change in architecture is due to the relative rheological contrast with respect to the surrounding in the lower crust. This produces a different, "relative", behavior for the lower crust if next to "weak" or to "strong

  1. Tempo and longevity of methane efflux along the US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Condon, D. J.; Sahy, D.; Ruppel, C. D.; Noble, S. R.

    2015-12-01

    The newly-discovered US Atlantic margin (USAM) methane seep province presents an unprecedented opportunity to investigate the timing and evolution of methane emissions along a passive continental margin, across a range of water depths (~300-2000meters), and at seeps linked to myriad processes (dissociation of upper slope gas hydrates, flow through fractured Eocene rock, and salt diapirism). The USAM seep province stretches nearly 1300 km from Nygren Canyon near Georges Bank in the north to the well-studied Blake Ridge Diapir seeps offshore South Carolina. Here we use methane derived authigenic carbonate (MDAC) samples retrieved by DSV Alvin on the July 2015 SeepC expedition led by C. Van Dover, supplemented by carbonates obtained on earlier expeditions, to date methane efflux at selected USAM seep sites using U-Th geochronology. MDAC U-Th analysis, carried out in conjunction with petrographic and tracer isotope analyses (e.g., δ13C), and a robust assessment of detrital Th corrections, will provide absolute dates for MDAC formation and inferentially methane efflux. Multiple dates, with associated information on petrographic context, can be obtained from each sample, and multiple samples were collected from seeps situated both on the upper continental slope, and in deepwater settings. The resulting dataset will constrain the tempo of methane efflux at each site, and the distribution of ages obtained at each seep may be used to distinguish between short-lived, or prolonged and/or episodic records of methane emission. Prior U-Th geochronologic analyses on two archive samples from Baltimore Canyon and Norfolk Canyon yielded ages corresponding to the Last Glacial Maximum and the end of the Holocene Thermal Maximum, respectively.

  2. Submarine Landslides along the U.S. Atlantic Margin: Their Distribution, Failure Processes, and Age

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; ten Brink, U. S.; Twichell, D. C.; Baxter, C. D.; Hallam, T. D.; Brothers, D. S.

    2011-12-01

    We have investigated the size, distribution, failure mode, and age of submarine landslides on the seafloor along the U.S. Atlantic continental slope and rise, using near-complete multibeam bathymetry coverage, together with new and existing seismic reflection, core, and photographic data sets. These data show that open-slope and canyon-related landslides are ubiquitous features of the continental margin and in places have been a dominant mechanism of downslope sediment transport and slope-rise modification. Retrogressive and translational mechanisms are prevailing modes of failure, although earth-flows, rare in the marine realm, are present along seafloor gradients of less than 1o on the upper rise. Individual and composite open-slope landslides with scar dimensions that exceed 900 km2 in area and 100 km3 in volume and deposit run-out distances greater than 200 km are present off Georges Bank (Munson-Nygren-Retriever complex), southern New England, Cape Hatteras (Currituck and Cape Lookout landslides), and the Blake Plateau (Cape Fear landslide). While dating of several landslides along the margin suggests a link to mechanisms driven by environmental changes at the end of the Last Glacial Maximum, the ages of the majority of the observed landslides are still unknown. In an effort to address the scarcity of age information required to investigate failure process and geohazards, we are utilizing both absolute (radiocarbon and oxygen isotope) and relative dating techniques. Radiocarbon dating of shallow water mollusks from recently collected piston cores in landslide scars and debris deposits offshore of southern New England record multiple landslide events over the last 50,000 years originating from both the continental slope and upper rise. Relative ages of landslide features are obtained from cross-cutting relationships between canyons and landslide scars and related mass-transport deposits.

  3. The gravity field of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Grow, A.J.; Bowin, C.O.; Hutchinson, D.O.

    1979-01-01

    Approximately 39,000 km of marine gravity data collected during 1975 and 1976 have been integrated with U.S. Navy and other available data over the U.S. Atlantic continental margin between Florida and Maine to obtain a 10 mgal contour free-air gravity anomaly map. A maximum typically ranging from 0 to +70 mgal occurs along the edge of the shelf and Blake Plateau, while a minimum typically ranging from -20 to -80 mgal occurs along the base of the continental slope, except for a -140 mgal minimum at the base of the Blake Escarpment. Although the maximum and minimum free-air gravity values are strongly influenced by continental slope topography and by the abrupt change in crustal thickness across the margin, the peaks and troughs in the anomalies terminate abruptly at discrete transverse zones along the margin. These zones appear to mark major NW-SE fractures in the subsided continental margin and adjacent deep ocean basin, which separate the margin into a series of segmented basins and platforms. Rapid differential subsidence of crustal blocks on either side of these fractures during the early stages after separation of North America and Africa (Jurassic and Early Cretaceous) is inferred to be the cause of most of the gravity transitions along the length of margin. The major transverse zones are southeast of Charleston, east of Cape Hatteras, near Norfolk Canyon, off Delaware Bay, just south of Hudson Canyon and south of Cape Cod. Local Airy isostatic anomaly profiles (two-dimensional, without sediment corrections) were computed along eight multichannel seismic profiles. The isostatic anomaly values over major basins beneath the shelf and rise are generally between -10 and -30 mgal while those over the platform areas are typically 0 to +20 mgal. While a few isostatic anomaly profiles show local 10-20 mgal increases seaward of the East Coast Magnetic Anomaly (ECMA: inferred to mark the ocean-continent boundary), the lack of a consistent correlation indicates that the

  4. Southernmost evidence of large European Ice Sheet-derived freshwater discharges during the Heinrich Stadials of the Last Glacial Period (Galician Interior Basin, Northwest Iberian Continental Margin)

    NASA Astrophysics Data System (ADS)

    Plaza-Morlote, M.; Rey, D.; Santos, J. F.; Ribeiro, S.; Heslop, D.; Bernabeu, A.; Mohamed, K. J.; Rubio, B.; Martíns, V.

    2017-01-01

    Reconstruction of circum-Atlantic ice-sheet motion and instabilities is crucial to understanding the mechanisms that triggered and/or enhanced abrupt climate changes. Using enviromagnetic and geochemical data, we provide a continuous and well-dated record of the evolution of glacial/interglacial sedimentation on the Northwest Iberian Margin during the last glacial period, covering the last six Heinrich Stadials. The record shows European sediments that were related to meltwater pre-events during the initial stages of HS1, HS2, and HS4 that corroborate the Channel River depositional history. The record also includes IRD from the Laurentide Ice Sheet and the European Ice Sheet during the final stages of these stadials, i.e., Heinrich Events. Therefore, this study provides insight into one of the potential forcing mechanisms for Heinrich Events and, by inference, for Heinrich Stadials.

  5. Carbonate cementation by cold marine waters: evidence from carbonate mounds at the NE Atlantic margin.

    NASA Astrophysics Data System (ADS)

    Taberner, C.; Richter, T. O.; van Weering, T. C. E.; Vonhof, H. B.; Stadnitskaya, A.

    2003-04-01

    Cementation of marine carbonate sediments by marine waters is well known to occur either in shallow tropical to temperate carbonate platforms, or during burial from modified interstitial brines. Cementation by cold marine waters is traditionally ruled out for both recent and fossil carbonates. We present petrographic and stable isotope (δ18O, δ13C) results on well-cemented carbonates from cold-water carbonate mounds at the SW and SE Rockall Margin (700--800m water depth). Calcite micritic cements, as well as concentrically zoned microspar filling cavities (e.g. foraminifera), have been recognised in dredged hardground samples and carbonate concretions from sediment cores. Microsampled cements have δ13C and δ18O values (respectively ≈+3.5 ppm PDB and ≈+5 ppm PDB) that appear to be in equilibrium with glacial intermediate waters, more than with present-day Atlantic waters at those depths. Cementation during glacial intervals is also indicated by AMS 14C ages of well-cemented deep-water carbonate rocks (hardgrounds) of 25--29ka, thus bracketing the marine isotope stage 3/2 boundary. These data provide evidence for carbonate cementation by cold marine waters and have implications for the paleoceanographic interpretation of deep-water carbonate mounds. Additionally, these results provide new insights for the re-evaluation of the depth of deposition of carbonate mounds from the geological record.

  6. Late Palaeozoic hydrocarbon migration through the Clair field, West of Shetland, UK Atlantic margin

    NASA Astrophysics Data System (ADS)

    Mark, Darren F.; Green, Paul F.; Parnell, John; Kelley, Simon P.; Lee, Martin R.; Sherlock, Sarah C.

    2008-05-01

    Geochemical analysis of bitumen- and hydrocarbon-bearing fluid inclusions from the Devonian-Carboniferous Clair field indicates that the reservoirs contain a mixture of oils from different marine and lacustrine sources. Reconstruction of the Clair field oil-charge history using fluid inclusion petrography show that oil-charging occurred at times of K-feldspar, quartz and calcite cementation. Temperature-composition-time data yielded from the integration of fluid inclusion microthermometry with high-resolution Ar-Ar dating, date hydrocarbon-bearing K-feldspar overgrowths at 247 ± 3.3 Ma. These data show that in order for oil to be trapped within primary fluid inclusions in K-feldspar overgrowths, hydrocarbon migration throughout the UK Atlantic margin must have been taking place during the Late Palaeozoic and as such, current industry oil-play models based solely on oil charging from Jurassic-Cretaceous marine sources are clearly incomplete and need revision. Apatite fission track analysis and vitrinite reflectance data were used to reconstruct thermal burial histories and assess potential oil generation from Middle Devonian lacustrine source rocks. Thermal history data from wells along The Rona Ridge adjacent to the Clair field show that the Palaeozoic section was heated to greater than 100 °C at some time between 270 and 230 Ma, confirming that Devonian source rocks were mature and expelling oil during the Late Palaeozoic at the time that authigenic K-feldspar overgrowths were growing in the Clair field.

  7. Anaerobic oxidation of methane related to methane seepage along the northern US Atlantic margin

    NASA Astrophysics Data System (ADS)

    Treude, T.; Krause, S.; Colwell, F. S.; Graw, M. F.; Pohlman, J.; Ruppel, C. D.

    2015-12-01

    Microbial anaerobic oxidation of methane (AOM), coupled to sulfate reduction, is an important mechanism in marine sediments for reducing methane emissions into the atmosphere. Here we report on AOM and sulfate reduction activity determined from sediments collected at recently-discovered methane seeps along the northern US Atlantic margin (USAM), where more than 550 gas plumes rise from the seafloor. Many of these gas plumes lie within or above the upper limit of gas hydrate stability on the continental slope. Samples were taken by TV-multicorer and a piston corer aboard the R/V Sharp during a September 2015 expedition that was jointly organized by the US Geological Survey, the Oregon State University, GEOMAR, and UCLA. This presentation will display preliminary data of AOM activity from selected seeps at the USAM to discuss (1) the capacity of the methane biofilter in relation to well-known seep sites, (2) its influence on geochemistry (e.g., sulfide accumulation, carbonate formation) and biology (established chemosynthetic communities), and (3) its potential response to recent methane mobilization from dissociating gas hydrates.

  8. Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U.S. Atlantic margin

    USGS Publications Warehouse

    Hornbach, Matthew J.; Lavier, Luc L.; Ruppel, Carolyn D.

    2007-01-01

    Analysis of new multibeam bathymetry data and seismic Chirp data acquired over the Cape Fear Slide complex on the U.S. Atlantic margin suggests that at least 5 major submarine slides have likely occurred there within the past 30,000 years, indicating that repetitive, large-scale mass wasting and associated tsunamis may be more common in this area than previously believed. Gas hydrate deposits and associated free gas as well as salt tectonics have been implicated in previous studies as triggers for the major Cape Fear slide events. Analysis of the interaction of the gas hydrate phase boundary and the various generations of slides indicates that only the most landward slide likely intersected the phase boundary and inferred high gas pressures below it. For much of the region, we believe that displacement along a newly recognized normal fault led to upward migration of salt, oversteepening of slopes, and repeated slope failures. Using new constraints on slide morphology, we develop the first tsunami model for the Cape Fear Slide complex. Our results indicate that if the most seaward Cape Fear slide event occurred today, it could produce waves in excess of 2 m at the present-day 100 m bathymetric contour.

  9. Petroleum geology of the mid-Atlantic continental margin, offshore Virginia

    USGS Publications Warehouse

    Bayer, K.C.; Milici, R.C.

    1989-01-01

    The Baltimore Canyon Trough, a major sedimentary basin on the Atlantic continental shelf, contains up to 18 km of Mesozoic and Cenozoic strata. The basin has been studied extensively by multichannel common depth point (CDP) seismic reflection profiles and has been tested by drilling for hydrocarbon resources in several places. The Mesozoic and Cenozoic strata contained in the basin were deposited in littoral to bathyal depositional settings and contain immature to marginally mature oil-prone and gas-prone kerogen. The more deeply buried strata of Early Mesozoic age are more likely to be thermally mature than are the younger strata with respect to hydrocarbon generation, but contain terrestrially derived coaly organic matter that would be prone to yield gas, rather than oil. An analysis of available CDP seismic reflection data has indicated that there are several potential hydrocarbon plays in the area offshore of Virginia. These include: (1) Lower Mesozoic synrift basins that appear similar to those exposed in the Appalachian Piedmont, (2) a stratigraphic updip pinchout of strata of Early Mesozoic age in the offshore region near the coast, (3) a deeply buried paleoshelf edge, where seismic reflectors dip sharply seaward; and (4) a Cretaceous/Jurassic shelf edge beneath the present continental rise. Of these, the synrift basins and Cretaceous/Jurassic shelf edge are considered to be the best targets for exploration. ?? 1989.

  10. Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Poppe, Lawrence J.; Poppe, Lawrence J.

    1981-01-01

    In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.

  11. Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U.S. Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hornbach, Matthew J.; Lavier, Luc L.; Ruppel, Carolyn D.

    2007-12-01

    Analysis of new multibeam bathymetry data and seismic Chirp data acquired over the Cape Fear Slide complex on the U.S. Atlantic margin suggests that at least 5 major submarine slides have likely occurred there within the past 30,000 years, indicating that repetitive, large-scale mass wasting and associated tsunamis may be more common in this area than previously believed. Gas hydrate deposits and associated free gas as well as salt tectonics have been implicated in previous studies as triggers for the major Cape Fear slide events. Analysis of the interaction of the gas hydrate phase boundary and the various generations of slides indicates that only the most landward slide likely intersected the phase boundary and inferred high gas pressures below it. For much of the region, we believe that displacement along a newly recognized normal fault led to upward migration of salt, oversteepening of slopes, and repeated slope failures. Using new constraints on slide morphology, we develop the first tsunami model for the Cape Fear Slide complex. Our results indicate that if the most seaward Cape Fear slide event occurred today, it could produce waves in excess of 2 m at the present-day 100 m bathymetric contour.

  12. Sn to Sg conversion and focusing along the Atlantic margin, Morocco - Implications for earthquake hazard evaluation

    NASA Astrophysics Data System (ADS)

    Seber, Dogan; Barazangi, Muawia; Tadili, Ben A.; Ramdani, Mohamed; Ibenbrahim, Aomar; Ben Sari, Driss; El Alami, Sidi O.

    1993-07-01

    Digital data from a telemetered, short-period seismic network in Morocco provide a new perspective for understanding the cause of severe shaking and macroseismic reports in Morocco produced by large offshore earthquakes located along the Azores-Gibraltar seismic zone. Even though the earthquake epicenters are 500-1000 km away from the Moroccan coast, historical records show that such events are capable of producing considerable damage in inland areas. We analyze 15 earthquakes that occurred in this region. The records show multiple S phases with varying frequencies and amplitudes. The S phase with the largest amplitude, usually misinterpreted as Sn, has a phase velocity of 4.2-4.4 km/s. We show that these S arrivals can best be explained as Sn to Sg converted phases. Calculated locations of the conversion points for these phases exhibit two distinct zones almost parallel to the Atlantic coastline: one is located along the passive continental margin and the other is located about 100 km inland from the coastline. We interpret these two zones to be regions where a sudden change in crustal thickness occurs. Such zones act to focus and magnify the amplitudes of seismic phases.

  13. Water Column Methanotrophy Fueled by Methane from the Hudson Canyon Seep Field, US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Chan, E. W.; Kellermann, M. Y.; Arrington, E.; Valentine, D. L.; Kessler, J. D.

    2014-12-01

    Several areas of methane seepage have recently been discovered along the US Atlantic margin, including parts of Hudson Canyon, offshore New York and New Jersey. However, little is known about the magnitude of seepage, the fate of this methane once it enters the water column, or the bacteria that may consume it. In July 2014, water column methane concentrations were measured throughout Hudson Canyon and methane oxidation tracked using a 13C-methane tracer. Samples for microbial community composition analysis were collected throughout the water column in areas with and without active seepage. 16S rRNA gene sequencing will be used to compare microbial communities from different depths, locations, and in samples with low and high methane concentrations and oxidation rates. DNA stable isotope probing experiments with 13C-labeled methane were also conducted and will be used to detect active water column methanotrophs from seep and non-seep sites. In addition, mesocosm experiments were used for high resolution measurements of methane oxidation, with samples for microbial community composition taken at several time points. 16S rRNA gene sequencing will be used to track changes in methanotrophic bacteria and the overall microbial community as methane was consumed.

  14. Crustal structure of the Mid-Atlantic Margin from the MAGIC seismic array

    NASA Astrophysics Data System (ADS)

    Benoit, M. H.; Long, M. D.; Kirby, E.; King, S. D.; Miller, S. R.

    2015-12-01

    The eastern United States continental margin has undergone two full supercontinental cycles over the last billion years. While the scars of the repeated episodes of rifting, subduction, and collision are evident in the surficial geology of the eastern United States, the deeper crust and mantle lithospheric structure of the region also was altered during this tectonism. In general, the bulk crustal structure of the eastern US has largely remained uncharacterized before the arrival of the EarthScope, other than through analysis of a handful of regional seismic arrays. We present results of receiver function stacking of seismic data recorded from the MAGIC EarthScope Flex Array, composed of 27 STS-2 broadband stations located in a linear array that spans roughly SE-NE from Richmond,VA to Fort Wayne, Indiana. The array traverses several physiographic provinces, including the Atlantic Piedmont, Blue Ridge, Appalachian Valley and Ridge, and Appalachian Plateau. Preliminary results suggest that the crustal thickness varies significantly over short lateral distances in Virginia, and that the crust within the Appalachian Valley and Ridge contains significant layering. Characterization of the crustal thickness can help address long-standing questions regarding the relative contribution of isostasy in sustaining Appalachian topography.

  15. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin

    USGS Publications Warehouse

    Lee, H.J.

    2009-01-01

    Submarine landslides are distributed unevenly both in space and time. Spatially, they occur most commonly in fjords, active river deltas, submarine canyon-fan systems, the open continental slope and on the flanks of oceanic volcanic islands. Temporally, they are influenced by the size, location, and sedimentology of migrating depocenters, changes in seafloor pressures and temperatures, variations in seismicity and volcanic activity, and changes in groundwater flow conditions. The dominant factor influencing the timing of submarine landslide occurrence is glaciation. A review of known ages of submarine landslides along the margins of the Atlantic Ocean, augmented by a few ages from other submarine locations shows a relatively even distribution of large landslides with time from the last glacial maximum until about five thousand years after the end of glaciation. During the past 5000??yr, the frequency of occurrence is less by a factor of 1.7 to 3.5 than during or shortly after the last glacial/deglaciation period. Such an association likely exists because of the formation of thick deposits of sediment on the upper continental slope during glacial periods and increased seismicity caused by isostatic readjustment during and following deglaciation. Hydrate dissociation may play a role, as suggested previously in the literature, but the connection is unclear.

  16. The North West African Margin Magnetic Anomaly revisited : implications for the initial evolution of the Central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Sahabi, M.; Olivet, J.-L.; Aslanian, D.; Patriat, M.; Géli, L.; Matias, L.; Réhault, J.-P.; Malod, J.; Bouabdelli, M.

    2003-04-01

    Due to the lack of data from the North West African margin, the Mesozïc evolution of the Central Atlantic is still controversial. Existing plate kinematics (Le Pichon et al, 1977), Wissmann and Roger (1982), Olivet et al, 1984, Klitgord and Schouten, 1986) reconstructions do not explain the characteristics of the S1 Magnetic Anomaly, nor the the presence and geometry of salt basins on the margins off NW Marocco and off Mauritania. We present a new magnetic compilation detailing the correspondance between the different conjugated magnetic anomalies that exist on each side of the Central Atlantic : the East Coast (ECMA), Brunswick (BMA) and Blake Spur (BSMA) Magnetic Anomalies on the American side, and the S1 and West African Coast (WACMA) magnetic anomalies on the African side. In addition, using all available, academic, seismic data, we mapped the ocenawards extension of the salt province of the 200 Ma old Seine Abyssal Plain basin, off Marocco, which is considered as autochtonous.

  17. UK Atlantic Margin Environmental Survey: Introduction and overview of bathyal benthic ecology

    NASA Astrophysics Data System (ADS)

    Bett, Brian J.

    2001-05-01

    The recent expansion of the Oil and Gas Industry in to the deep waters of the UK Atlantic Frontier prompted the industry and its regulator to reappraise the needs and means of environmental monitoring. In concert, deep-sea academics, specialist contractors, the regulator and the Industry, through the Atlantic Frontier Environmental Network (AFEN), devised and implemented a large-scale environmental survey of the deep waters to the north and west of Scotland. The AFEN-funded survey was carried out during the summers of 1996 and 1998, and involved two steps; an initial sidescan sonar mapping of the survey areas, followed up with direct seabed investigations by coring and photography. This contribution deals with the latter step. Seabed samples were collected to assess sediment type, organic content, heavy metals, hydrocarbons and macrobenthos. Photographic and video observations were employed to provide both 'routine' seabed assessments and to investigate particular sidescan features of note. Although essentially intended as a 'baseline' environmental survey, anthropogenic impacts are already evident throughout the areas surveyed. Indications of the effects of deep-sea trawling were frequently encountered (seabed trawl marks and areas of disturbed sediments), being present in almost all of the areas studied and extending to water depths in excess of 1000 m. Evidence of localised contamination of the seabed by drilling muds was also detected, though background hydrocarbon contamination is predominantly of terrestrial origin or derived from shipping. The benthic ecology of the UK Atlantic Margin is dominated by the marked differences in the hydrography of the Faroe-Shetland Channel (FSC) and the Rockall Trough (RT). Comparatively warm North Atlantic Water is common to both areas; however, in the FSC, cold (subzero) waters occupy the deeper parts of the channel (>600 m). The extreme thermal gradient present on the West Shetland Slope has a substantial influence on the

  18. Modeling anthropogenic Climate Change of the northwest European Shelves and the northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Sein, D. V.; Gröger, M.; Maier-Reimer, E.; Mikolajewicz, U.

    2012-04-01

    The global general circulation models involved in IPCC simulations are usually too coarse to reproduce many regional processes, which could have an impact on the future climate change in regions such as the North Sea and Baltic Sea. We present a novel approach to downscale climate change scenarios and to investigate the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic climate. A global ocean ¡V sea ice ¡V marine biogeochemistry model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. The model approach and the results of downscaled A1B scenario for the North Atlantic and North European shelves are presented. The applied regionally coupled model comprises the regional atmosphere model REMO, the global ocean model MPIOM with up to 5 km horizontal resolution in the North Sea, the marine biogeochemistry model HAMOCC and the hydrological discharge model HD. The coupled domain includes Europe, the North Atlantic and part of the Arctic Ocean. The lateral atmospheric and the surface ocean boundary conditions outside the coupled domain were prescribed using data from an A1B scenario simulation with the global ECHAM5/MPIOM model. Numerical experiments covering the period 1920-2100 were carried out. Future changes in ocean and atmospheric circulation focusing on different regions of North Atlantic and North European shelves were analyzed. In addition to the climate warming, other processes like northward shift of the Gulf Stream position, Atlantic MOC weakening, decrease of biological production in North Sea region, regional sea level rise, extreme floods and changes in amplitude and phase of the seasonal cycle of river runoff were estimated.

  19. Passive margin uplift around the North Atlantic region and its role in Northern Hemisphere late Cenozoic glaciation

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas

    1996-02-01

    Tectonic-climatic models of late Cenozoic global cooling emphasize the importance of middle latitude uplifts (e.g., Tibetan Plateau and the American west) but ignore widespread tectonic events on the margins of the North Atlantic Ocean. Pleistocene glaciations, after 2.5 Ma, are characterized by circum North Atlantic continental ice sheets that formed by the coalescence of perennial snow fields on extensive plateau surfaces in eastern Canada, northwest Britain, and Scandinavia. Plateaus record Cenozoic uplift of peneplains in response to semisynchronous magmatic underplating and thermal buoyancy of rifted continental margins. High-standing plateaus are very sensitive to small reductions in summer temperature. As late Cenozoic climate cooling proceeded, driven by uplift in regions external to the North Atlantic region, elevated plateaus became sites for extensive snow fields and ultimately ice sheets. Circum-Atlantic uplift took place in the key latitudinal belt that is most sensitive to orbitally forced changes in solar irradiation; this, together with albedo effects from large snow fields, could have amplified the relatively weak Milankovitch signal.

  20. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic

    PubMed Central

    Heiri, Oliver; Tinner, Willy; Lotter, André F.

    2004-01-01

    We analyzed fossil chironomids (nonbiting midges) and pollen in two lake-sediment records to reconstruct and quantify Holocene summer-temperature fluctuations in the European Alps. Chironomid and pollen records indicate five centennial-scale cooling episodes during the early- and mid-Holocene. The strongest temperature declines of ≈1°C are inferred at ≈10,700–10,500 and 8,200–7,600 calibrated 14C years B.P., whereas other temperature fluctuations are of smaller amplitude. Two forcing mechanisms have been presented recently to explain centennial-scale climate variability in Europe during the early- and mid-Holocene, both involving changes in Atlantic thermohaline circulation. In the first mechanism, changes in meltwater flux from the North American continent to the North Atlantic are responsible for changes in the Atlantic thermohaline circulation, thereby affecting circum-Atlantic climate. In the second mechanism, solar variability is the cause of Holocene climatic fluctuations, possibly triggering changes in Atlantic thermohaline overturning. Within their dating uncertainty, the two major cooling periods in the European Alps are coeval with substantial changes in the routing of North American freshwater runoff to the North Atlantic, whereas quantitatively, our climatic reconstructions show a poor agreement with available records of past solar activity. Thus, our results suggest that, during the early- and mid-Holocene, freshwater-induced Atlantic circulation changes had stronger influence on Alpine summer temperatures than solar variability and that Holocene thermohaline circulation reductions have led to summer-temperature declines of up to 1°C in central Europe. PMID:15492214

  1. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic.

    PubMed

    Heiri, Oliver; Tinner, Willy; Lotter, André F

    2004-10-26

    We analyzed fossil chironomids (nonbiting midges) and pollen in two lake-sediment records to reconstruct and quantify Holocene summer-temperature fluctuations in the European Alps. Chironomid and pollen records indicate five centennial-scale cooling episodes during the early- and mid-Holocene. The strongest temperature declines of approximately 1 degrees C are inferred at approximately 10,700-10,500 and 8,200-7,600 calibrated 14C years B.P., whereas other temperature fluctuations are of smaller amplitude. Two forcing mechanisms have been presented recently to explain centennial-scale climate variability in Europe during the early- and mid-Holocene, both involving changes in Atlantic thermohaline circulation. In the first mechanism, changes in meltwater flux from the North American continent to the North Atlantic are responsible for changes in the Atlantic thermohaline circulation, thereby affecting circum-Atlantic climate. In the second mechanism, solar variability is the cause of Holocene climatic fluctuations, possibly triggering changes in Atlantic thermohaline overturning. Within their dating uncertainty, the two major cooling periods in the European Alps are coeval with substantial changes in the routing of North American freshwater runoff to the North Atlantic, whereas quantitatively, our climatic reconstructions show a poor agreement with available records of past solar activity. Thus, our results suggest that, during the early- and mid-Holocene, freshwater-induced Atlantic circulation changes had stronger influence on Alpine summer temperatures than solar variability and that Holocene thermohaline circulation reductions have led to summer-temperature declines of up to 1 degrees C in central Europe.

  2. Detrital zircon geochronology of the Cretaceous succession from the Iberian Atlantic Margin: palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Dinis, Pedro A.; Dinis, Jorge; Tassinari, Colombo; Carter, Andy; Callapez, Pedro; Morais, Manuel

    2016-04-01

    Detrital zircon U-Pb data performed on eight Cretaceous sandstone samples (819 age isotopic results) from the Lusitanian basin (west Portugal) constrain the history of uplift and palaeodrainage of western Iberia following break-up of Pangaea and opening of the North Atlantic Ocean. We examined the links between shifts in provenance and known basinwide unconformities dated to the late Berriasian, Barremian, late Aptian and Cenomanian-Turonian. The detrital zircon record of sedimentary rocks with wider supplying areas is relatively homogenous, being characterized by a clear predominance of late Palaeozoic ages (c. 375-275 Ma) together with variable proportions of ages in the range c. 800-460 Ma. These two groups of ages are diagnostic of sources within the Variscan Iberian Massif. A few samples also reveal significant amounts of middle Palaeozoic (c. 420-385 Ma) and late Mesoproterozoic to early Neoproterozoic (c. 1.2-0.9 Ga) zircon, which are almost absent in the basement to the east of the Lusitanian basin, but are common in terranes with a Laurussia affinity found in NW Iberia and the conjugate margin (Newfoundland). The Barremian unconformity marks a sudden rise in the proportion of c. 375-275 Ma zircon ages accompanied by a decrease in the abundance of the c. 420-385 Ma and c. 1.2-0.9 Ga ages. This shift in the zircon signature, which is contemporaneous with the separation of the Galicia Bank from Flemish Cap, reflects increased denudation of Variscan crystalline rocks and a reduction in source material from NW Iberia and adjoining areas. The late Aptian unconformity, which represents the largest hiatus in the sedimentary record, is reflected by a shift in late Palaeozoic peak ages from c. 330-310 Ma (widespread in Iberia) to c. 310-290 Ma (more frequent in N Iberia). It is considered that this shift in the age spectra resulted from a westward migration of catchment areas following major uplift in northern Iberia and some transport southward from the Bay of

  3. New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North American margin

    NASA Astrophysics Data System (ADS)

    Hames, W. E.; Renne, P. R.; Ruppel, C.

    2000-09-01

    Dikes in the southeastern United States represent a major component of the Central Atlantic magmatic province and record kinematics of Pangean breakup near the critical, predrift junction of three major continental masses. Until now, the age of these dikes had not been determined with the same precision as those of Central Atlantic magmatic province basalts on other parts of the circum-Atlantic margin. Our new results for three dike samples from the South Carolina Piedmont yield plateau ages of 198.8 ± 2.2, 199.5 ± 1.8, and 199.7 ± 1.5 Ma. For comparison, we present new age determinations of the benchmark Watchung flows I and III of the Newark basin: 201.0 ± 2.1 and 198.8 ± 2.0 Ma, respectively. Collectively, these data suggest that basaltic volcanism responsible for the dikes, flows, and sills of eastern North America occurred within ˜1 m.y. of 200 Ma. The timing, brief duration, and extent of the Central Atlantic magmatism imply that it may have been causally related to Triassic-Jurassic mass extinctions. The distribution and timing of this magmatism and the absence of regional uplift or an identifiable hotspot track lead us to favor strong lithospheric control on the origin of the Central Atlantic magmatic province, consistent with the modern generation of plume incubation or edge-driven convection models.

  4. Size distribution of submarine landslides along the U.S. Atlantic margin

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, U.S.; Solow, A.R.; Andrews, B.D.

    2009-01-01

    Assessment of the probability for destructive landslide-generated tsunamis depends on the knowledge of the number, size, and frequency of large submarine landslides. This paper investigates the size distribution of submarine landslides along the U.S. Atlantic continental slope and rise using the size of the landslide source regions (landslide failure scars). Landslide scars along the margin identified in a detailed bathymetric Digital Elevation Model (DEM) have areas that range between 0.89??km2 and 2410??km2 and volumes between 0.002??km3 and 179??km3. The area to volume relationship of these failure scars is almost linear (inverse power-law exponent close to 1), suggesting a fairly uniform failure thickness of a few 10s of meters in each event, with only rare, deep excavating landslides. The cumulative volume distribution of the failure scars is very well described by a log-normal distribution rather than by an inverse power-law, the most commonly used distribution for both subaerial and submarine landslides. A log-normal distribution centered on a volume of 0.86??km3 may indicate that landslides preferentially mobilize a moderate amount of material (on the order of 1??km3), rather than large landslides or very small ones. Alternatively, the log-normal distribution may reflect an inverse power law distribution modified by a size-dependent probability of observing landslide scars in the bathymetry data. If the latter is the case, an inverse power-law distribution with an exponent of 1.3 ?? 0.3, modified by a size-dependent conditional probability of identifying more failure scars with increasing landslide size, fits the observed size distribution. This exponent value is similar to the predicted exponent of 1.2 ?? 0.3 for subaerial landslides in unconsolidated material. Both the log-normal and modified inverse power-law distributions of the observed failure scar volumes suggest that large landslides, which have the greatest potential to generate damaging tsunamis

  5. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats.

    PubMed

    Eggers, Florian; Slotte, Aril; Libungan, Lísa Anne; Johannessen, Arne; Kvamme, Cecilie; Moland, Even; Olsen, Esben M; Nash, Richard D M

    2014-01-01

    Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February-June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March-April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May-June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km(2) lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1-7‰ in the 0-1 m surface layer to levels of 20-25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0-5 m depth increased significantly over the season in both habitats, from 7 to 14 °C outside and 5 to 17 °C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.

  6. Seasonal Dynamics of Atlantic Herring (Clupea harengus L.) Populations Spawning in the Vicinity of Marginal Habitats

    PubMed Central

    Eggers, Florian; Slotte, Aril; Libungan, Lísa Anne; Johannessen, Arne; Kvamme, Cecilie; Moland, Even; Olsen, Esben M.; Nash, Richard D. M.

    2014-01-01

    Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February–June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March–April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May–June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km2 lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1–7‰ in the 0–1 m surface layer to levels of 20–25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0–5 m depth increased significantly over the season in both habitats, from 7 to 14°C outside and 5 to 17°C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept. PMID:25372461

  7. Microbial communities in methane seep sediments along US Atlantic Margin are structured by organic matter and seepage dynamics

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Pohlman, J.; Treude, T.; Ruppel, C. D.; Colwell, F. S.

    2016-12-01

    Methane seeps are dynamic environments on continental margins where subsurface methane reaches the ocean. Microbial communities play a critical role in carbon cycling within seep sediments via organic carbon degradation, methane production, and anaerobic oxidation of methane (AOM), which consumes 20-80% of methane in seep sediments. However, biogeochemical controls on microbial community structure at seeps on a margin-wide scale remain unclear. The passive US Atlantic Margin (USAM) has been identified as a region of active methane seepage. Passive margin seeps have traditionally been understudied relative to seeps on active margins. Passive margins exhibit large cross-margin variability in organic carbon deposition and are anticipated to have divergent seep dynamics from active margins. Thus, the USAM offers a unique opportunity to investigate controls on microbial communities in seep sediments. We undertook analysis of microbial communities inhabiting seep sediments at 6 biogeochemically distinct sites along the USAM. Microbiological samples were co-located with measurements of sediment geochemistry and AOM and sulfate reduction rates. Illumina sequencing of the 16S rRNA gene, using both universal (83 samples) and archaeal-specific (64 samples) primers, and the mcrA gene (18 samples) identified 44 bacterial phyla and 7 archaeal phyla. Seeps in canyons and on open slope, likely representing high and low organic content sediments, hosted distinct communities; the former was dominated by ammonia-oxidizing Marine Group I Thaumarchaeota and the latter by mixotrophic Hadesarchaeota. Seep stability also impacted microbial community structure, and in particular the establishment of an AOM community rather than a Bathyarchaeota-dominated community. These findings contribute to understanding how microbial communities are structured within methane seep sediments and pave the way for investigating broad differences in carbon cycling between seeps on passive and active margins.

  8. Asynchronous Little Ice Age glacier fluctuations in Iceland and European Alps linked to shifts in subpolar North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Larsen, Darren J.; Miller, Gifford H.; Geirsdóttir, Áslaug

    2013-10-01

    Records of past glacier fluctuations are an important source of paleoclimate data and provide context for future changes in global ice volume. In the North Atlantic region, glacier chronologies can be used to track the response of terrestrial environments to variations in marine conditions including circulation patterns and sea ice cover. However, the majority of glacier records are discontinuous and temporally restricted, owing in part to the extensive advance of Northern Hemisphere glaciers during the Little Ice Age (LIA), the most recent and severe climate anomaly of the Neoglacial period. Here, we combine an absolutely dated and continuous record of Langjökull ice marginal fluctuations with new reconstructions of sediment flux through the past 1.2 ka using varved sediments from Hvítárvatn, a proglacial lake in Iceland's central highlands. Large spatial and temporal variations in sediment flux related to changing ice cap dimensions are reconstructed from six sediment cores and seismic reflection profiles. Sediment data reveal two discrete phases of ice expansion occurring ca. 1400 to 1550 AD and ca. 1680 to 1890 AD. These advances are separated by a persistent interval of ice retreat, suggesting that a substantial period of warming interrupted LIA cold. The pattern of Icelandic glacier activity contrasts with that of European glaciers but shows strong similarities to reconstructed changes in North Atlantic oceanographic conditions, indicating differing regional responses to coupled ocean-atmosphere-sea ice variations. Our data suggest that subpolar North Atlantic circulation dynamics may have led to coherent asynchronous glacier fluctuations during the mid LIA and highlight the importance of circulation variability in triggering and transmitting multidecadal scale climate changes to nearby terrestrial environments.

  9. Asynchronous Little Ice Age glacier fluctuations in Iceland and European Alps linked to shifts in subpolar North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Miller, G. H.; Geirsdottir, A.

    2013-12-01

    Records of past glacier fluctuations are an important source of paleoclimate data and provide context for future changes in global ice volume. In the North Atlantic region, glacier chronologies can be used to track the response of terrestrial environments to variations in marine conditions including circulation patterns and sea ice cover. However, the majority of glacier records are discontinuous and temporally restricted, owing in part to the extensive advance of Northern Hemisphere glaciers during the Little Ice Age (LIA), the most recent and severe climate anomaly of the Neoglacial period. Here, we combine an absolutely dated and continuous record of Langjökull ice marginal fluctuations with new reconstructions of sediment flux through the past 1.2 ka using varved sediments from Hvítárvatn, a proglacial lake in Iceland's central highlands. Large spatial and temporal variations in sediment flux related to changing ice cap dimensions are reconstructed from six sediment cores and seismic reflection profiles. Sediment data reveal two discrete phases of ice expansion occurring ca. 1400 to 1550 AD and ca. 1680 to 1890 AD. These advances are separated by a persistent interval of ice retreat, suggesting that a substantial period of warming interrupted LIA cold. The pattern of Icelandic glacier activity contrasts with that of European glaciers but shows strong similarities to reconstructed changes in North Atlantic oceanographic conditions, indicating differing regional responses to coupled ocean-atmosphere-sea ice variations. Our data suggest that subpolar North Atlantic circulation dynamics may have led to coherent asynchronous glacier fluctuations during the mid LIA and highlight the importance of circulation variability in triggering and transmitting multidecadal scale climate changes to nearby terrestrial environments.

  10. Causes of long-term landscape evolution of "passive" margins and adjacent continental segments at the South Atlantic Ocean.

    NASA Astrophysics Data System (ADS)

    Glasmacher, Ulrich Anton; Hackspacher, Peter C.

    2013-04-01

    During the last 10 years research efforts have been devoted to understand the coupling between tectonic and surface processes in the formation of recent topography. Quantification of the rate at which landforms adapt to a changing tectonic, heat flow, and climate environment in the long term has become an important research object and uses intensively data revealed by low-temperature thermochronology, terrigenous cosmogenic nuclides, and geomorphological analyses. The influence of endogenic forces such as mantle processes as one of the causes for "Dynamic Topography Evolution" have been explored in a few studies, recently. In addition, the increased understanding how change in surface topography, and change in the amount of downward moving cold surface water caused by climate change affects warping isotherms in the uppermost crust allows further interpretation of low-temperature thermochronological data. "Passive" continental margins and adjacent continental segments especially at the South Atlantic ocean are perfect locations to quantify exhumation and uplift rates, model the long-term landscape evolution, and provide information on the influence of mantle processes on a longer time scale. This climate-continental margin-mantle process-response system is caused by the interaction between endogenic and exogenic forces that are related to the mantle-process driven rift - drift - "passive" continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Furthermore, the influence of major transform faults (also called: transfer zones, Fracture Zones (FZ)) on the long-term evolution of "passive" continental margins is still very much in debate. The presentation will provide insight in possible causes for the differentiated long-term landscape evolution along the South Atlantic Ocean.

  11. Assessing the potential of the European Atlantic sturgeon Acipenser sturio to control bivalve invasions in Europe.

    PubMed

    Ferreira-Rodriguez, N; Gessner, J; Pardo, I

    2016-08-01

    This pilot study explored the potential of juvenile European Atlantic sturgeon Acipenser sturio to feed on two invasive bivalve species, the Asian clam Corbicula fluminea and the Eurasian zebra mussel Dreissena polymorpha. Preliminary results indicate that native A. sturio were feeding on D. polymorpha at a very limited rate and their potential to prevent the establishment of invasive bivalve species, in new and previously invaded areas, is considered limited. © 2016 The Fisheries Society of the British Isles.

  12. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  13. Thermal history and evolution of the South Atlantic passive continental margin in northern Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Karl, Markus; Glasmacher, Ulrich Anton

    2013-04-01

    From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (Coward and Daly 1984, Daly et al. 1991), and the deposition of the Nama Group sediments and the Karoo megasequence. The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks with ages of 534 (7) Ma to 481 (25) Ma (Miller 1983, Haack 1983), as well as Mesozoic sedimentary and igneous rocks. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183 (1) Ma (Duncan et al. 1997). The Early Cretaceous Paraná-Etendeka flood basalts (132 (1) Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (Renne et al. 1992, Milner et al. 1995, Stewart et al. 1996, Turner et al. 1996). The "passive" continental margin in northern Namibia is a perfect location to quantify exhumation and uplift rates, model the long-term landscape evolution and provide information on the influence of mantle processes on a longer time scale. The poster will provide first information on the long-term landscape evolution and thermochronological data. References Coward, M. P. and Daly, M. C., 1984. Crustal lineaments and shear zones in Africa: Their relationships to plate movements, Precambrian Research 24: 27-45. Duncan, R., Hooper, P., Rehacek, J., March, J. and Duncan, A. (1997). The timing and duration of the Karoo igneous event, southern Gondwana, Journal of Geophysical Research 102: 18127-18138. Haack, U., 1983. Reconstruction of the cooling history of the Damara Orogen by correlation of radiometric ages with geography and altitude, in H. Martin and F. W. Eder (eds), Intracontinental fold belts, Springer Verlag, Berlin, pp. 837-884. Miller, R. M., 1983. Evolution of the Damara Orogen, Vol. 11, Geological Society, South Africa Spec. Pub.. Milner, S. C., le Roex, A. P. and O'Connor, J. M., 1995. Age of Mesozoic igneous rocks in

  14. Crustal Rheology and Rifted Margin Architecture: Comparing Iberia-Newfoundland, Central South Atlantic, and South China Sea

    NASA Astrophysics Data System (ADS)

    Brune, Sascha

    2015-04-01

    Crustal rheology controls the style of rifting and ultimately the architecture of rifted margins: Hot, weak, or thick continental crust is dominated by ductile deformation and extends symmetrically into a wide rift system. Extension in cold, strong, or thin crust is accommodated by brittle faults and ductile shear zones that facilitate narrow rifts with asymmetric fault geometries. This recipe provides the standard framework to understand 2D rift geometry, however, a variety of processes exert significant control on subsequent rift evolution and ultimately on the architecture of rifted margins: inherited structures, melting and volcanism, 3D effects, extension rate, and weakening mechanisms. Numerical forward modelling studies have the opportunity to evaluate the influence of these processes on rift evolution in order to understand the complex interaction between rheology and tectonic history of specific margins. Here I compare the formation of three different magma-poor margin pairs, Iberia-Newfoundland, the Central South Atlantic Rift Segment, and the South China Sea margins within a numerical forward modelling framework. I apply a 2D version of the finite element code SLIM3D, which includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology and is able to reproduces a wide range of rift-related deformation processes such as flexure, lower crustal flow, and faulting. The Iberia-Newfoundland rifted margins are marked by moderate crustal asymmetry, with ~70 km of hyper-extended crust (less than 10 km thick) on the Iberian side and a very narrow margin on the Newfoundland counterpart. Similar to the Iberia-Newfoundland conjugates, the Central South Atlantic margins are predominantly asymmetric, however involve a much stronger degree of asymmetry with more than 200 km of hyper-extended crust offshore Angola, but only few tens of km at the Brazilian side. Kinematic and numerical modelling suggests that the asymmetry is caused by lateral

  15. Control of hyper-extended passive margin architecture on subduction initiation with application to the Alps and present-day North Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Candioti, Lorenzo; Bauville, Arthur; Picazo, Suzanne; Mohn, Geoffroy; Kaus, Boris

    2016-04-01

    Hyper-extended magma-poor margins are characterized by extremely thinned crust and partially serpentinized mantle exhumation. As this can act as a zone of weakness during a subsequent compression event, a hyper-extended margin can thus potentially facilitate subduction initiation. Hyper-extended margins are also found today as passive margins fringing the Atlantic and North Atlantic ocean, e.g. Iberia and New Foundland margins [1] and Porcupine, Rockwall and Hatton basins. It has been proposed in the literature that hyper-extension in the Alpine Tethys does not exceed ~600 km in width [2]. The geodynamical evolution of the Alpine and Atlantic passive margins are distinct: no subduction is yet initiated in the North Atlantic, whereas the Alpine Tethys basin has undergone subduction. Here, we investigate the control of the presence of a hyper-extended margin on subduction initiation. We perform high resolution 2D simulations considering realistic rheologies and temperature profiles for these locations. We systematically vary the length and thickness of the hyper-extended crust and serpentinized mantle, to better understand the conditions for subduction initiation. References: [1] G. Manatschal. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci (Geol Rundsch) (2004); 432-466. [2] G. Mohn, G. Manatschal, M. Beltrando, I. Haupert. The role of rift-inherited hyper-extension in alpine-type orogens. Terra Nova (2014); 347-353.

  16. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco

    NASA Astrophysics Data System (ADS)

    Leprêtre, Rémi; Missenard, Yves; Barbarand, Jocelyn; Gautheron, Cécile; Saddiqi, Omar; Pinna-Jamme, Rosella

    2015-06-01

    The passive margin of South Morocco is a low-elevated passive margin. It constitutes one of the oldest margins of the Atlantic Ocean, with an Early Jurassic breakup, and little geological data are available concerning its postrift reactivation so far. We investigated the postrift thermal history of the onshore part of the margin with low-temperature thermochronology on apatite crystals. Fission track and (U-Th-Sm)/He ages we obtained are significantly younger than the breakup (~190 Ma). Fission track ages range from 107 ± 8 to 175 ± 16 Ma, with mean track lengths from 10.7 ± 0.3 to 12.5 ± 0.2 µm. (U-Th-Sm)/He ages range from 14 ± 1 to 185 ± 15 Ma. Using inverse modeling of low-temperature thermochronological data, we demonstrate that the South Moroccan continental margin underwent a complex postrift history with at least two burial and exhumation phases. The first exhumation event occurred during Late Jurassic/Early Cretaceous, and we attribute this to mantle dynamics rather than to intrinsic rifting-related processes such as flexural rebound. The second event, from Late Cretaceous to early Paleogene, might record the onset of Africa/Europe convergence. We show a remarkably common behavior of the whole Moroccan passive margin during its early postrift evolution. The present-day differences result from a segmentation of the margin domains due to the Africa/Europe convergence. Finally we propose that varying retained strengths during rifting and also the specific crustal/lithospheric geometry of stretching explain the difference between the topographical expressions on the continental African margin compared to its American counterpart.

  17. Xenophyophores (Rhizaria, Foraminifera) from the Nazaré Canyon (Portuguese margin, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Gooday, A. J.; Aranda da Silva, A.; Pawlowski, J.

    2011-12-01

    Xenophyophores are abundant on a terrace of the lower Nazaré Canyon (4300 m water depth) on the Portuguese margin. Here, the most abundant species, Reticulammina cerebreformis sp. nov., occurs in densities of up to 21 individuals/m 2. This large species has a soft, friable hemispherical test up to 10 cm in diameter consisting of curved, sinuous plates (lamellae) that branch and anastomose. The plates are separated by deep furrows and other depressions to form a distinctive 'brain-like' structure. The outer test layer is thin, weakly cemented and is dominated by fine sediment particles; the internal xenophyae include a higher proportion of larger mineral grains. The second new species at the 4300-m site, Nazareammina tenera gen. et sp. nov., is much less common. The test is basically plate-like, but towards the interior it is perforated by oval spaces, which typically merge into complex system of bar-like features, sometimes with irregular excrescences. The granellare system (cell body and its organic envelope) is packed with tiny mineral grains of various sizes and shapes, including titanium-bearing particles. Also common at this deep site are clusters, with a maximum diameter up to 10 cm or occasionally more, of irregular tubes belonging to Aschemonella ramuliformis Brady 1884, a species previously known mainly from isolated tubes. Rather than being single individuals, these clusters comprise a large number of separate branched tubes. Finally, Syringammina fragillissima Brady 1883, a well-known species that is widely distributed on the NW European margin, occurred on steep sediment-covered slopes at a shallower (1555 m water depth) site in the upper canyon. Almost complete SSU rDNA gene sequences obtained from A. ramuliformis and R. cerebreformis confirm that these xenophyophores are foraminifera. Together with two previously sequenced xenophophores ( Shinkaia lindsayi Lecroq, Gooday, Tsuchiya, Pawlowski 2009 and Syringammina corbicula Richardson 2001), and the

  18. Trends in late Maastrichtian calcareous nannofossil distribution patterns, Western North Atlantic margin

    USGS Publications Warehouse

    ,

    2002-01-01

    First and last occurrences of several Maastrichtian calcareous nannofossil species are shown to be diachronous across paleodepth and paleoenvironment using the graphic correlation method. Calcareous nannofossil assemblages examined from eleven cores from a deep- to shallow-water transect along the eastern United States Atlantic margin document that the first occurrence of Micula murus (Martini 1961) Bukry 1973 is diachronous, appearing 2.0 million years earlier in open ocean sites than in shallow marine sites. The first occurrence (FO) of Lithraphidites kennethii Perch-Nielsen 1984 is also nonsynchronous, appearing in the deep ocean before its FO in neritic waters. The last occurrence (LO) of L. praequadratus Roth 1978 is diachronous across paleodepth, going locally extinct first in deeper water. The LO of Watznaueria bybelliae Self-Trail 1999 is also diachronous, going locally extinct first in shallow-water settings. Ceratolithoides amplector Burnett 1997, C. pricei Burnett 1997, C. self-trailiae Burnett 1997, C. ultimus Burnett 1997, Cribrocorona gallica (Stradner 1963) Perch-Nielsen 1973. Micula praemurus (Bukry 1973) Stradner and Steinmetz 1984, Pseudomicula quadratus Perch-Nielsen et al. 1978, and Semihololithus spp. are present consistently in common to frequent abundances in ODP holes 1050C and 1052E on the Blake Nose, but they are rare or absent from neritic sections in Coastal Plain cores. It is apparent that these species flourished in an open ocean setting, suggesting that differences in assemblage abundance and diversity between deep ocean and nearshore areas were controlled by paleoceanographic factors. These species are not used for biostratigraphy, but may be useful indicators of open ocean conditions. The line of correlation (LOC) for nine Coastal Plain cores clearly defines the Cretaceous-Tertiary (K/T) boundary unconformity at the top of the Maastrichtian section (Peedee Formation) and the Campanian-Maastrichtian (C/M) unconformity at the base of

  19. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic.

    PubMed

    Trigo, Ricardo M; Valente, Maria A; Trigo, Isabel F; Miranda, Pedro M A; Ramos, Alexandre M; Paredes, Daniel; García-Herrera, Ricardo

    2008-12-01

    An analysis of the frequency of cyclones and surface wind velocity for the Euro-Atlantic sector is performed by means of an objective methodology. Monthly and seasonal trends of cyclones and wind speed magnitude are computed and trends between 1960 and 2000 evaluated. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February, and March. Seasonal and monthly analysis of wind magnitude trends shows similar spatial patterns. We show that these changes in the frequency of low-pressure centers and the associated wind patterns are partially responsible for trends in the significant height of waves. Throughout the extended winter months (October-March), regions with positive (negative) wind magnitude trends, of up to 5 cm/s/year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for January-March are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of lat 50 degrees N up to -3 cm/year, and positive up to 5 cm/year just north of Scotland). Trends in European precipitation are assessed using the Climatic Research Unit data set. The results of the assessment emphasize the link with the corresponding tendencies of cyclone frequencies. Finally, it is shown that these changes are associated, to a large extent, with the preferred phases of major large-scale atmospheric circulation modes, particularly with the North Atlantic Oscillation, the eastern Atlantic pattern, and the Scandinavian pattern.

  20. What is reactivated when at rifted margins? comparing the Northwest Svalbard and Møre segments of the NE Atlantic margin.

    NASA Astrophysics Data System (ADS)

    Terje Osmundsen, Per; Braathen, Alvar; Redfield, Thomas F.; Peron-Pinvidic, Gwenn; Maher, Harmon

    2016-04-01

    The opening of oceans along ancient mountain belts was stated as fundamental in the Wilson cycle and appears to be justified in the case of the North Atlantic. The question of what is actually inherited appears as much more difficult. We consider 3 aspects of inheritance as pertinent to the evolution of the Svalbard and Mid-Norwegian rifted margins: 1) inheritance of the post-orogenic rheological and structural template into later stages of rifting, 2) inheritance of the early rift configuration, including variations in crustal thickness and rheology, into the stage of crustal necking and 3) inheritance of the post-rift crustal template into the `passivé margin phase dominated by vertical movements. The Northwest Svalbard and Møre margins share some fundamental similarities in the arrangement of onshore and offshore structures. Both areas host inherited extensional complexes of detachment faults, strongly aligned extension-parallel fabrics including mineral lineations, doubly plunging extension-parallell folds and fold-parallel brittle faults. These fabrics developed during phases of orogenic `collapsé, suggested to be characterized by constrictional strains and regional transtension in the Norwegian case, but that have only recently been identified in Svalbard. In both areas, faults incised into the flanks of extension-parallel folds display a long history of reactivation. The necking domain of the Møre margin developed on a template of NE-SW-trending, warped detachment fabrics and sinistral strike-slip faults, which were reactivated from the Jurassic into the Cretaceous to define the inner boundary for the distal margin. Onshore these structures were reactivated in the Late Cretaceous and/or in the Cenozoic. Considerable topographic and geomorphic contrasts developed across reactivated fault strands since the Latest Cretaceous, demonstrating relationships between inherited structure and Scandinavian topography and landscape. In Svalbard, the N-S trending

  1. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, U.S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  2. Chirp seismic-reflection data from the Baltimore, Washington, and Norfolk Canyons, U.S. mid-Atlantic margin

    USGS Publications Warehouse

    Obelcz, Jeffrey B.; Brothers, Daniel S.; ten Brink, Uri S.; Chaytor, Jason D.; Worley, Charles R.; Moore, Eric M.

    2014-01-01

    A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV near three United States mid-Atlantic margin submarine canyons. These data can be used to further our understanding of passive continental margin processes during the Holocene, as well as providing valuable information regarding potential submarine geohazards.

  3. Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel

    2016-04-01

    The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.

  4. The MIRROR cruise (2011): Deep crustal structure of the Moroccan Atlantic Margin from wide-angle and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Aslanian, D.; Sahabi, M.; Moulin, M.; Schnurle, P.; Berglar, K.; Biari, Y.; Feld, A.; Graindorge, D.; Corela, C.; Mehdi, K.; Zourarah, B.; Perrot, J.; Alves Ribeiro, J.; Reichert, C. J.

    2011-12-01

    The study of conjugate margins is important to test different hypotheses of rifting and initial opening of an ocean. In this scope, seven wide-angle seismic profiles were acquired on the Moroccan Atlantic margin (at the latitudes between 32° and 33° N) together with coincident deep frequency reflection seismic data during the MIRROR cruise in May and June 2011. The main seismic profile is conjugate to an existing wide-angle seismic profile off Nova Scotia (SMART 2). Further objectives of the cruise were to image ocean-continent transition zone, to detect and eventually quantify exhumed upper mantle material present in this zone and to determine the origin of the high amplitude West African Magnetic Anomaly, which is conjugate to the north American East Coast Magnetic Anomaly and can be linked to the opening of the Atlantic. Two of the newly acquired profiles are located perpendicular and five parallel to the Moroccan margin. The seismic profiles are between 130 and 260 km in length and between 28 and 13 ocean-bottom seismometers were deployed on each one. One profile was extended on land by 15 landstations in order to better image the zone of continental thinning. A 4.5 km digital streamer and a 7200 cu inch tuned airgun array were used for the acquisition of the seismic data. Additionally magnetic, bathymetric and high resolution seismic data were acquired in the study region. Preliminary results from tomographic inversion of the first arrivals from the ocean-bottom seismometer data image the zone of crustal thinning from about 25 km to 6 km in the basin along about 70 kilometers of the profiles which are located perpendicular to the margin. The oceanic crust can be divided into 2 regions, based on the lower crustal velocities. Upper mantle velocities are about 8.0 km/s. The coincident reflection seismic data show the fine basement and sedimentary structures including salt tectonics in the basin. The comparative study of the two conjugate profiles on the

  5. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic.

    NASA Astrophysics Data System (ADS)

    Døssing, Arne; Japsen, Peter; Watts, Anthony; Nielsen, Tove; Jokat, Wilfried; Thybo, Hans

    2016-04-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone - East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of syn-rift deposition in the deep-sea basins and onset of: (i) thermo-mechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf-progradation on the NE Greenland margin. Given an estimated middle-to-late Miocene (~15-10 Ma) age of the IMU, we speculate that the event is synchronous with uplift of the East and West Greenland margins. The correlation between margin uplift and plate-motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.

  6. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Døssing, Arne; Japsen, Peter; Watts, Anthony B.; Nielsen, Tove; Jokat, Wilfried; Thybo, Hans; Dahl-Jensen, Trine

    2016-02-01

    Tectonic models predict that following breakup, rift margins undergo only decaying thermal subsidence during their postrift evolution. However, postbreakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone-East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of synrift deposition in the deep-sea basins and onset of (i) thermomechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermomechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf progradation on the NE Greenland margin. Given an estimated middle to late Miocene (~15-10 Ma) age of the IMU, we speculate that the event is synchronous with uplift of the east and west Greenland margins. The correlation between margin uplift and plate motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intraplate stresses related to global tectonics.

  7. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank; Mudelsee, Manfred; Werner, Martin; Frank, Norbert; Mangini, Augusto

    2017-07-01

    Speleothem δ18O records provide valuable information about past continental environmental and climatic conditions, although their interpretation is often not straightforward. Here we evaluate a compilation of late Holocene speleothem δ18O records using a Monte Carlo based Principal Component Analysis (MC-PCA) method that accounts for uncertainties in individual speleothem age models and for the variable temporal resolution of each δ18O record. The MC-PCA approach permits not only the identification of temporally coherent changes in speleothem δ18O; it also facilitates their graphical depiction and evaluation of their spatial coherency. The MC-PCA method was applied to 11 Holocene speleothem δ18O records that span most of the European continent (apart from the circum-Mediterranean region). We observe a common (shared) mode of speleothem δ18O variability that suggests millennial-scale coherency and cyclicity during the last 4.5 ka. These changes are likely caused by variability in atmospheric circulation akin to that associated with the North Atlantic Oscillation, reflecting meridionally shifted westerlies. We argue that these common large-scale variations in European speleothem δ18O records are in phase with changes in the North Atlantic Ocean circulation indicated by the vigour of the Iceland Scotland Overflow Water (ISOW), the strength of the subpolar gyre (SPG) and an ocean stacked North Atlantic ice rafted debris (IRD) index. Based on a recent modelling study, we conclude that these changes in the North Atlantic circulation history may be caused by wind stress on the ocean surface driven by shifted westerlies. However, the mechanisms that ultimately force the westerlies remain unclear.

  8. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank; Mudelsee, Manfred; Werner, Martin; Frank, Norbert; Mangini, Augusto

    2016-09-01

    Speleothem δ18O records provide valuable information about past continental environmental and climatic conditions, although their interpretation is often not straightforward. Here we evaluate a compilation of late Holocene speleothem δ18O records using a Monte Carlo based Principal Component Analysis (MC-PCA) method that accounts for uncertainties in individual speleothem age models and for the variable temporal resolution of each δ18O record. The MC-PCA approach permits not only the identification of temporally coherent changes in speleothem δ18O; it also facilitates their graphical depiction and evaluation of their spatial coherency. The MC-PCA method was applied to 11 Holocene speleothem δ18O records that span most of the European continent (apart from the circum-Mediterranean region). We observe a common (shared) mode of speleothem δ18O variability that suggests millennial-scale coherency and cyclicity during the last 4.5 ka. These changes are likely caused by variability in atmospheric circulation akin to that associated with the North Atlantic Oscillation, reflecting meridionally shifted westerlies. We argue that these common large-scale variations in European speleothem δ18O records are in phase with changes in the North Atlantic Ocean circulation indicated by the vigour of the Iceland Scotland Overflow Water (ISOW), the strength of the subpolar gyre (SPG) and an ocean stacked North Atlantic ice rafted debris (IRD) index. Based on a recent modelling study, we conclude that these changes in the North Atlantic circulation history may be caused by wind stress on the ocean surface driven by shifted westerlies. However, the mechanisms that ultimately force the westerlies remain unclear.

  9. Investigating the chemical and isotopic kinetics of aerobic methane oxidation in the Northern US Atlantic Margin, Hudson Canyon

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Shiller, A. M.; Redmond, M. C.; Arrington, E. C.; Valentine, D. L.

    2015-12-01

    Recent discoveries of methane seepage along the US Atlantic margin have led to speculation on the fate of the released methane. Here we examine the kinetics of aerobic methane oxidation to gain a fundamental understanding of this methane sink. In order to look at this process in its entirety, a unique mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) to monitor in real time the chemical and isotopic changes involved with aerobic methane oxidation. This system measures changes in methane, carbon dioxide, and oxygen concentrations as well as the stable carbon isotopes of methane and carbon dioxide with time. In addition samples are strategically removed to characterize trace metals, nutrients, cell counts, and microbial community genetics. This presentation will detail the results obtained from samples collected inside the Hudson Canyon at the edge of the methane clathrate stability zone and outside the Hudson Canyon, not influenced by the methane seepage. These results show that in both environments along the Atlantic margin, methane was consumed aggressively but the timing of consumption varied based on location. In addition, these results are leading to insights into the chemical requirements needed for aerobic methane oxidation and the resulting isotopic fractionation.

  10. Syn- and post-rift anomalous vertical movements in the eastern Central Atlantic passive margin: a transect across the Moroccan passive continental margin.

    NASA Astrophysics Data System (ADS)

    Charton, Remi; Bertotti, Giovanni; Arantegui, Angel; Luber, Tim; Redfern, Jonathan

    2017-04-01

    Traditional models of passive margin evolution suggesting generalised regional subsidence with rates decreasing after the break-up have been questioned in the last decade by a number of detailed studies. The occurrence of episodic km-scale exhumation well within the post-rift stage, possibly associated with significant erosion, have been documented along the Atlantic continental margins. Despite the wide-spread and increasing body of evidence supporting post-rift exhumation, there is still limited understanding of the mechanism or scale of these phenomena. Most of these enigmatic vertical movements have been discovered using low-temperature geochronology and time-temperature modelling along strike of passive margins. As proposed in previous work, anomalous upward movements in the exhuming domain are coeval with higher-than-normal downward movements in the subsiding domain. These observations call for an integrated analysis of the entire source-to-sink system as a pre-requisite for a full understanding of the involved tectonics. We reconstruct the geological evolution of a 50km long transect across the Moroccan passive margin from the Western Anti-Atlas (Ifni area) to the offshore passive margin basin. Extending the presently available low-temperature geochronology database and using a new stratigraphic control of the Mesozoic sediments, we present a reconstruction of vertical movements in the area. Further, we integrate this with the analysis of an offshore seismic line and the pattern of vertical movements in the Anti-Atlas as documented in Gouiza et al. (2016). The results based on sampled rocks indicate exhumation by circa 6km after the Variscan orogeny until the Middle Jurassic. During the Late Jurassic to Early Cretaceous the region was subsequently buried by 1-2km, and later exhumed by 1-2km from late Early/Late Cretaceous onwards. From the Permian to present day, the Ifni region is the link between the generally exhuming Anti Atlas and continually subsiding

  11. Comparative anatomy of volcanic rifted margins in the South Atlantic, with emphasis on the high-velocity lower crust

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Franke, D.; Jokat, W.; Maystrenko, Y.; Scheck-Wenderoth, M.; Schnabel, M.; Schreckenberger, B.

    2012-04-01

    The onshore components of Volcanic Rifted Margins (VRM) in the South Atlantic region are flood basalts and felsic lavas with a wide range of intrusive rocks. The hidden components are offshore (seaward-dipping reflector sequences) and in the deep crust (high-velocity lower crustal bodies). This study focuses on the latter. The nature of high-velocity bodies at volcanic rifted margins, and their extent in time and space are very important for geodynamic studies. Not only do they count heavily in the total volume of magmatism produced in a VRM, but the size and spatial distribution of these bodies along the proto-rift can influence the location and style of breakup. After breakup, the high-velocity lower crust may affect the uplift and subsidence history the newly-formed continental margins, which is of relevance to basin modelling. The high-velocity bodies are clearly an important part of the VRM story, yet their true nature is unknown, and magmatic intrusions related to breakup is not the only explanation. The best way to demonstrate a magmatic origin related to breakup is to test for variations in the size and physical properties of the bodies along a VRM where independent evidence indicates a major gradient in magmatic intensity. The South Atlantic is well suited for this kind of study. The northern segment hosts the Walvis Ridge-Rio Grande Rise hotspot track and the Paraná-Etendeka Large Igneous Province, whereas in the south, magmatic volumes are very small and petrologic data from exposed rocks indicate a southward decrease in the temperature of melting as well. This contribution combines the data from 6 wide-angle onshore-offshore seismic profiles (2 from South America, 4 from Africa) with lithospheric-scale gravity models of the conjugate margins south of the Walvis Ridge. The gravity models provide the tool for interpolation between the wide-angle profiles. The goal is to define the size and bulk properties of the high-velocity crustal bodies and their

  12. Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis

    PubMed Central

    2012-01-01

    Background Geographical isolation has generated a distinct difference between Atlantic salmon of European and North American Atlantic origin. The European Atlantic salmon generally has 29 pairs of chromosomes and 74 chromosome arms whereas it has been reported that the North American Atlantic salmon has 27 chromosome pairs and an NF of 72. In order to predict the major chromosomal rearrangements causing these differences, we constructed a dense linkage map for Atlantic salmon of North American origin and compared it with the well-developed map for European Atlantic salmon. Results The presented male and female genetic maps for the North American subspecies of Atlantic salmon, contains 3,662 SNPs located on 27 linkage groups. The total lengths of the female and male linkage maps were 2,153 cM and 968 cM respectively, with males characteristically showing recombination only at the telomeres. We compared these maps with recently published SNP maps from European Atlantic salmon, and predicted three chromosomal reorganization events that we then tested using fluorescence in situ hybridization (FISH) analysis. The proposed rearrangements, which define the differences in the karyotypes of the North American Atlantic salmon relative to the European Atlantic salmon, include the translocation of the p arm of ssa01 to ssa23 and polymorphic fusions: ssa26 with ssa28, and ssa08 with ssa29. Conclusions This study identified major chromosomal differences between European and North American Atlantic salmon. However, while gross structural differences were significant, the order of genetic markers at the fine-resolution scale was remarkably conserved. This is a good indication that information from the International Cooperation to Sequence the Atlantic salmon Genome, which is sequencing a European Atlantic salmon, can be transferred to Atlantic salmon from North America. PMID:22928605

  13. Signatures of Krakatau Tsunami Recorded by Tide Gauges along the European Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Karpytchev, M.; Daubord, C.; Hebert, H.; Woppelmann, G.

    2011-12-01

    The explosion of Krakatau volcano in 1883 generated one of the highest tsunami ever recorded by tide-gauges. In the North Atlantic, the only known tide gauges that have recorded the Krakatau tsunami are situated along the coast of France and UK. These records have been collected and reproduced by Symons (1888), but the reproductions are not of very high quality (Pelinovsky et al. 2005). As the Krakatau tsunami height is rather small in the North Atlantic (~20cm), it is often difficult to isolate the sea level oscillations due to tsunami from those provoked by high frequency tidal constituents or by meteorological forcing. In this report, we re-analyze the Krakatau tsunami signal at the North Atlantic European tide-gauges by replacing some of Symons' data by the digitized original sea level records and by adding a few new records that have been discovered recently in the archives. The theoretical tsunami arrival time has been estimated by the ray-tracing method. A wavelet decomposition has been applied to identify the tsunami wave and to isolate it from tidal and meteorological sea-level oscillations. The results of wavelet analysis have been validated at Rochefort (France) by comparing them with the predictions of a high resolution local tide-surge model available for this area.

  14. Lipid Biomarkers and Carbon Isotopic Composition from Authigenic Carbonates and Seep Sediments from the US Mid-Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Campbell, P.; Prouty, N.; Demopoulos, A. W.; Roark, B.; Coykendall, K.

    2015-12-01

    Anaerobic oxidation of methane (AOM), mediated by Archaea and sulfate-reducing bacteria, is common in continental margin sediment and can result in authigenic carbonate precipitation. A lipid biomarker study was undertaken in Mid-Atlantic submarine canyons, focusing specifically on Baltimore and Norfolk canyons, to determine biomarker variability of carbonate rock and the associated sediment in cold seep communities dominated by chemosynthetic mussels, Bathymodiolus childressi. Preliminary 16S metagenomic results confirm the presence of free-living sulfur-reducing bacteria and methantrophic endosymbiotic bacteria in the mussels. Depleted d13C values in both the mussel tissue (-63 ‰) and authigenic carbonates (-48 ‰) support methanotrophy as the dominant nutritional pathway and AOM as the main driver of carbonate precipitation. In addition, paired 14C and 230Th dates are highly discordant, reflecting dilution of the 14C pool with fossil hydrocarbon derived carbon. Seep and canyon sediment, as well as authigenic carbonates, were collected and analyzed for a suite of biomarkers, including sterols, alcohols, alkanes and fatty acids, as well as δ13C values of select biomarkers, to elucidate pathways of organic matter cycling. A comparison of terrestrial biomarker signatures (e.g., n-alkane carbon preference index and C23 / (C23 + C29) values, HMW n-alkanes and C29 sterols) suggests that terrestrial inputs dominate the submarine canyon surface sediment, whereas seep sediment is predominantly marine autochthonous (i.e., cholesterol and 5α-cholestanol). Lipid biomarker profiles (e.g., n-alkanes in the C15 to C33 range) from authigenic carbonates mirror those found in the seep sediment, suggesting that the organisms mediating carbonate precipitation on the seafloor are characteristic of the assemblages present in the sediment at these sites. With widespread methane leakage recently discovered along the Atlantic Margin, the presence of AOM-mediated carbonate

  15. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating

    NASA Astrophysics Data System (ADS)

    Ghosh, Rohit; Müller, Wolfgang A.; Baehr, Johanna; Bader, Jürgen

    2017-06-01

    The observed prominent multidecadal variations in the central to eastern (C-E) European summer temperature are closely related to the Atlantic multidecadal variability (AMV). Using the Twentieth Century Reanalysis project version 2 data for the period of 1930-2012, we present a mechanism by which the multidecadal variations in the C-E European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. Our results suggest that over the north-western Atlantic, the positive heat flux anomaly triggers a surface baroclinic pressure response to diabatic heating with a negative surface pressure anomaly to the east of the heat source. Further downstream, this response induces an east-west wave-like pressure anomaly. The east-west wave-like response in the sea level pressure structure, to which we refer as North-Atlantic-European East West (NEW) mode, is independent of the summer North Atlantic Oscillation and is the principal mode of variations during summer over the Euro-Atlantic region at multidecadal time scales. The NEW mode causes warming of the C-E European region by creating an atmospheric blocking-like situation. Our findings also suggest that this NEW mode is responsible for the multidecadal variations in precipitation over the British Isles and north-western Europe.

  16. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating

    NASA Astrophysics Data System (ADS)

    Ghosh, Rohit; Müller, Wolfgang A.; Baehr, Johanna; Bader, Jürgen

    2016-07-01

    The observed prominent multidecadal variations in the central to eastern (C-E) European summer temperature are closely related to the Atlantic multidecadal variability (AMV). Using the Twentieth Century Reanalysis project version 2 data for the period of 1930-2012, we present a mechanism by which the multidecadal variations in the C-E European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. Our results suggest that over the north-western Atlantic, the positive heat flux anomaly triggers a surface baroclinic pressure response to diabatic heating with a negative surface pressure anomaly to the east of the heat source. Further downstream, this response induces an east-west wave-like pressure anomaly. The east-west wave-like response in the sea level pressure structure, to which we refer as North-Atlantic-European East West (NEW) mode, is independent of the summer North Atlantic Oscillation and is the principal mode of variations during summer over the Euro-Atlantic region at multidecadal time scales. The NEW mode causes warming of the C-E European region by creating an atmospheric blocking-like situation. Our findings also suggest that this NEW mode is responsible for the multidecadal variations in precipitation over the British Isles and north-western Europe.

  17. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling

    NASA Astrophysics Data System (ADS)

    Bastos, Ana; Janssens, Ivan A.; Gouveia, Célia M.; Trigo, Ricardo M.; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W.

    2016-01-01

    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models.

  18. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling.

    PubMed

    Bastos, Ana; Janssens, Ivan A; Gouveia, Célia M; Trigo, Ricardo M; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W

    2016-01-18

    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models.

  19. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling

    PubMed Central

    Bastos, Ana; Janssens, Ivan A.; Gouveia, Célia M.; Trigo, Ricardo M.; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W.

    2016-01-01

    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO–EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models. PMID:26777730

  20. Investigating the relationship between North Atlantic Oscillation and flood losses at the European scale

    NASA Astrophysics Data System (ADS)

    Zanardo, Stefano; Jewson, Steve; Nicotina, Ludovico; Hilberts, Arno

    2016-04-01

    The North Atlantic Oscillation (NAO) is Europe's dominant mode of climate variability. As a consequence, the interconnections between NAO and hydrologic extremes in the European continent have long been observed and analysed. Some of this research has been focusing on the relationship between NAO and catastrophic floods, however, the lack of extensive data-sets restricts these studies to relatively small spatial and temporal scales. This is an obvious limitation when dealing with flood risk; indeed, the highly non-linear relationships among the different physical and anthropogenic controls are responsible for strong spatial and temporal correlations that cannot be accounted for at the local scale alone. The goal of this work is to explore the relationship between the NAO signal and economic flood losses at the European scale through long term stochastic simulations. For this study we use the European flood model recently developed by RMS (Risk Management Solution Ltd). The model combines 50000 years of rainfall-runoff-inundation simulations with a high definition exposure/vulnerability model to produce simulated flood losses in 13 European countries. The correlation between rainfall fields and NAO signal is based on the last 50 years of data and discretized at the monthly level. We found significant correlations between the NAO signal and both the average annual loss (AAL) and the average seasonal loss (ASL), for all the countries analysed. Noticeably, ASL-NAO trends were always negative for summer, spring and fall seasons, while could be either positive or negative for winter seasons, depending on the country.

  1. Review of the late-Holocene storm events along the European Atlantic coasts

    NASA Astrophysics Data System (ADS)

    Pouzet, Pierre; Maanan, Mohamed; Piotrowska, Natalia; Baltzer, Agnès; Stephan, Pierre

    2017-04-01

    The chronology of the mid- to late-Holocene coastal storms was reconstructed from vibracore samplings, 14C dating and sedimentary analysis from Yeu island (French Atlantic coast). The methodology used is based on the identification of disturbing sedimentary events recognized within three Holocene sedimentary transgressive sequences selected along the northern coast of the island. These sequences correspond to the present-day coastal salt-marshes and swamps. The sediment cores were centimeter-sampled and studied from several sedimentological proxies (Loss of Ignition, sand fraction, mean grain size) with a high temporal resolution. Chronology was built by age-depth model based on eleven 14C measures of organic sediments and shell samples. Ten paleo-storm events were recorded: a 2100-1950 calBP interval as a deeply stormy-disturbed period; five others major impacted times: 600-500 calBP, 2850-2350 calBP, 3500-3270 calBP, 5400-5370 calBP and 6650-6510 calBP; and four final less meaningful storminess hypothesis near 1590 calBP, 6000 calBP, 7000 calBP, and between 7670 and 7470 calBP. This chronology was compared with enhanced storminess periods recognized along the European Atlantic coast. Four stormy periods stand out from the last 4000 years: 600-300 BP, 1100-1700 BP, 2500-2900 BP and 3300-3500 BP, corresponding to late Holocene global cold events. These results suggests that these changes in coastal hydrodynamics were in phase with those identified over the North-eastern Atlantic and seem to correspond to Holocene cooling first shown in the North Atlantic and associated with decreases in sea surface temperature.

  2. NOAA Ship Okeanos Explorer 2013 Field Season on the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Lobecker, E.; Malik, M.; Skarke, A. D.

    2013-12-01

    During the 2013 field season, Okeanos Explorer used its suite of state-of-the-art sonars to systematically map and explore our nation's waters off the Atlantic seaboard, specifically the Atlantic Canyons and New England Seamounts. High resolution three dimensional maps created from the ship's sonars were used to select sites for fine-resolution exploration with the new 6000 meter remotely operated vehicle (ROV) Deep Discoverer. Scientists onboard and onshore around the world were actively engaged in all steps of the exploration process, from the identification of broad-scale mapping targets, to the planning and real-time refining of 300 to 1500 meter long planned ROV dive tracks. Live video feeds were available to the general public through the award winning website www.oceanexplorer.noaa.gov. Important exploration milestones during the Okeanos Explorer 2013 Field Season include: the completion of comprehensive, high-resolution multibeam mapping of the continental shelf break from Cape Hatteras to the northern U.S. Atlantic offshore border, totaling over 100,000 square kilometers of new seafloor data within the U.S. Exclusive Economic Zone; the first successful field season of the ROV Deep Discoverer, which conducted over 40 successful dives; and initial mapping site characterization of eight of the outer seamounts of the New England Seamount Chain. All data collected by Okeanos Explorer are available via the NOAA public archives with metadata records within 60 to 90 days of the end of each cruise.

  3. Isostatic and dynamic support of high topography on a North Atlantic passive margin

    NASA Astrophysics Data System (ADS)

    Pedersen, Vivi K.; Huismans, Ritske S.; Moucha, Robert

    2016-07-01

    Substantial controversy surrounds the origin of high topography along passive continental margins. Here we focus on the well-documented elevated passive margin in southwestern Scandinavia, and quantify the relative contributions of crustal isostasy and dynamic topography in controlling the present topography. We find that majority of the topography is compensated by the crustal structure, suggesting a topographic age that is in accord with the 400 Myr old Caledonian orogenesis. In addition, we propose that dynamic uplift of ∼300 m has rejuvenated existing topography locally in the coastal region over the last 10 Myr. Such uplift, combined with a general sea level fall, can help explain a variety of observations that have traditionally been interpreted in favor of a peneplain uplift model. We conclude that high topography along the Scandinavian margin cannot represent remnants of a peneplain uplifted within the last 20 Myr. The topography must have been high since the Caledonian orogeny.

  4. Data file, Continental Margin Program, Atlantic Coast of the United States: vol. 2 sample collection and analytical data

    USGS Publications Warehouse

    Hathaway, John C.

    1971-01-01

    The purpose of the data file presented below is twofold: the first purpose is to make available in printed form the basic data relating to the samples collected as part of the joint U.S. Geological Survey - Woods Hole Oceanographic Institution program of study of the Atlantic continental margin of the United States; the second purpose is to maintain these data in a form that is easily retrievable by modern computer methods. With the data in such form, repeate manual transcription for statistical or similar mathematical treatment becomes unnecessary. Manual plotting of information or derivatives from the information may also be eliminated. Not only is handling of data by the computer considerably faster than manual techniques, but a fruitful source of errors, transcription mistakes, is eliminated.

  5. Factors governing abundance of hydrolyzable amino acids in the sediments from the N.W. European Continental Margin (47 50°N)

    NASA Astrophysics Data System (ADS)

    Boski, T.; Pessoa, J.; Pedro, P.; Thorez, J.; Dias, J. M. A.; Hall, I. R.

    1998-12-01

    Fifty-six samples representing 6 sediment cores taken along the N.W. European Continental Margin from the shelf, slope and abyssal plain of the Goban Spur and Meriadzek Terrace were quantitatively analysed for total hydrolyzable amino acids (THAA) and clay minerals. In descending order, the five most abundant amino acids making up more than 70% of the total were: aspartic acid, glycine, serine, alanine and glutamic acid. Clay mineral proportions were typical for the N.E. Atlantic, in order of descending abundance: illite, kaolinite, chlorite, smectite and mixed layers. The Meriadzek Terrace area is characterised by fine grain suspension sedimentation with a low pelagic carbonate input and the lowest content of THAA. In contrast, the Goban Spur transect is characterised by much higher carbonate inputs and more vigorous hydrodynamics as judged from granulometry and the high abundance of minerals of shelf and continental origin and a generally higher THAA content. The pelagic portion of THAA deposited at the sea floor is more readily mineralised during early diagenesis than the more `refractory', clay mineral-associated continental portion. Along this margin the average mineralization of THAA down to 25 cm in the sediment is about 54%. There is a significant affinity between chlorites and amino acids which we suggest may involve the formation of ionic bonds between the octahedral layers of the clay and the amino acids.

  6. Key controls of surface carbonate system dynamics around the northwest European continental margin

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Hydes, D. J.; Hartman, S. E.; Hartman, M. C.

    2011-12-01

    Monthly sampling coupled to continuous underway observation from a ship-of-opportunity (Pride of Bilbao) provides new insights into the relative importance of processes controlling the seasonal to inter-annual variability of the carbonate system around the northwest European continental margin. Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, and dissolved oxygen (DO). The northwest European continental margin is temperate latitude system with a strong seasonal cycle in biological productivity determined by light, nutrient supply, and stratification. Here we contrast findings in two areas: the shallow non stratified English Channel (depth ~50 m) and seasonally stratified oligotrophic waters of the central Bay of Biscay (depth >3000 m). In the Bay of Biscay, the seasonal variations of the carbonate system, nutrient, and DO were mainly controlled by the winter mixing and spring phytoplankton bloom. DIC and nutrients in the Bay increased from autumn and reached the annual maxima in later winter, they then decreased significantly during the spring bloom corresponding to the biological uptake. DIC fell during the spring bloom with a near Redfield ratio in relation to the nutrient uptake. In contrast, post bloom in summer, a continued decrease in DIC in the absence of measurable nitrate was possibly related to the nutrient supply from the turbulent mixing. pCO2 and pH showed a double peak in the annual cycles modulated by temperature which counterbalanced the influence of winter mixing and biological production. The inter-annual biogeochemical variability was closely related to the changes in winter mixed layer depth and the phytoplankton biomass. The Bay of Biscay acted as a sink for atmospheric CO2 in all seasons, with higher air-to-sea CO2 fluxes observed in cold winter and the productive spring season. In the more dynamic

  7. Late Cretaceous-Paleocene strike-slip faults along the East Greenland margin (63°N to 75°N): constraints for the North East Atlantic opening

    NASA Astrophysics Data System (ADS)

    Guarnieri, P.

    2012-04-01

    The East Greenland margin is a long stretch starting from 60°N up to 81°N in a distance of almost 3000 km. It represents the conjugate of the European margin now separated by the North East Atlantic (NEA). After a long period of E-W extension and almost N-S oriented rift basins since Early Cretaceous, separation between Greenland and Europe began at 55 Ma following a NE-SW oriented line of breakup and the emplacement of the North Atlantic Igneous Province (NAIP). Post-breakup thermal subsidence followed in the Eocene, and the Oligocene initiated a period of plate re-organization together with the initial separation of Jan Mayen microcontinent, a complex tectonic history with inversion structures and uplifts along both the East Greenland and European margins. The effect of this history is represented by exhumed sedimentary basins, dyke swarms, fault systems, intrusive centers, shield volcanoes and plateau lavas constituting highest mountain of Greenland with some peaks up to 3700 m (e.g. Watkins Bjerge). During expeditions for fieldwork in East Greenland (2009 to 2011) to collect new geological and structural data related to the North East Atlantic tectonics, four areas were visited: Skjoldungen 63°N, Kangerlussuaq 68°N, Traill Ø 72°N and Wollaston Forland 75°N. More than 1000 measurement of fault-slip data for structural analysis along major faults were collected and helicopter flights to collect oblique pictures for 3D-photogeology and 3D-mapping were taken. Kinematic analysis of brittle deformation associated with Late Cretaceous-Paleocene rift shows strike-slip movements. Palaeo-stress tensors reconstructed from fault-slip data highlight a NE-SW maximum horizontal stress in a strike-slip tectonic setting along the entire East Greenland margin (Guarnieri 2011a; Guarnieri 2011b; Guarnieri et al. 2011). Structural data show clear evidence for oblique rifting that corresponds in time to the "volcanic rift" (61-55 Ma) with in some cases the magmatic

  8. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types

    NASA Astrophysics Data System (ADS)

    Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W. J.

    2017-03-01

    the first investigation of seep infauna along the U.S. Atlantic slope north of the Blake Ridge Diapir and provides a baseline for future regional comparisons to other seep habitats along the Atlantic margin.

  9. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest.

    PubMed

    Scarano, Fabio R

    2002-10-01

    The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi-deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone.

  10. Structure, Function and Floristic Relationships of Plant Communities in Stressful Habitats Marginal to the Brazilian Atlantic Rainforest

    PubMed Central

    SCARANO, FABIO R.

    2002-01-01

    The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi‐deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone. PMID:12324276

  11. Faults, fault rocks and fractures in basalts: a macro- to micro-analysis of fault rock evolution on the NE Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Holdsworth, R. E.; Imber, J.

    2009-12-01

    Many upper crustal fault zones contain significant volumes of brecciated wall rock formed in the vicinity of dilational jogs, which can form permeability pathways for the migration of mineralising hydrothermal fluids or hydrocarbons. Such fault-breccia formation is commonly assumed to be a geologically instantaneous process, resulting from a sudden differential in fluid pressures between a dilational jog and its surrounding country rock, which leads to inward implosion. However, at shallow crustal depths (0-2km, and potentially deeper with increased fluid pressures) mechanically strong rocks (e.g. crystalline/carbonate rocks) may be able to support dilational jogs as persistent, high permeability, open subterranean cavities that become more gradually filled by fragments of the surrounding wall rocks through time. Understanding the development of fault breccias is therefore scientifically and economically important, as the two breccia models have markedly contrasting sealing and fluid flow histories. The Faroe Islands - the location of the present study - sit above the Jurassic-Palaeogene-age Faroe-Shetland basin on the European NE Atlantic margin. The islands are largely made up of Palaeocene-age basaltic lava units (the Faroe Islands Basalt Group: FIBG; part of the North Atlantic Igneous Province: NAIP) that were emplaced as a precursor to continental break up, and sea-floor spreading in the NE Atlantic. Deformation structures developed on the islands include variously oriented fault-sets (relating to anticlockwise rotation of the extension direction through time) and broad anticlines that form a trilete pattern centred on the islands. These deformation structures were formed and evolved immediately before, during and following continental break-up. This study documents the development of regionally syn-magmatic fault arrays, and contrasts these with later post-magmatic fault-reactivation at shallow burial depths and the development of, potentially, very high

  12. Contrasting geochemical and isotopic observations on the East Greenland and Hatton-Rockall conjugate margins, North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kempton, P. D.; Chambers, L. M.; Hitchen, K.

    2003-04-01

    Basalts from the East Greenland margin show a temporal transition from N-MORB-like to Icelandic compositions, indicating that the Iceland plume was chemically zoned at the time of continental rupture, having a relatively undepleted core and a more depleted margin [1]. Using Hf-Nd isotope systematics, Kempton et al. [2] showed that the depleted margin is not, in fact, shallow N-MORB source mantle, but rather a depleted sheath surrounding the Iceland plume, probably derived from the thermal boundary layer at the base of the upper mantle. Furthermore, they found that basalts from SW of the Rockall Plateau (DSDP Site 553) and from Goban Spur (DSDP Sites 550-551) were isotopically distinct from those throughout the rest of the NAIP, plotting within the field of N-MORB in Hf-Nd isotope space. From this, Kempton et al. [2] suggested that the compositional influence of the Iceland plume did not reach this far south and east ~55 m.y. ago. However, the apparent lack of a compositional influence from the plume at Hatton Bank is surprising, considering the presence of seaward dipping reflector sequences. In an attempt to address this question, we have initiated a more comprehensive geochemical investigation of the volcanic rocks from the Rockall region, including new samples recently acquired from Rockall Bank (Aug. 2001) using the BGS rockdrill as well as previously existing core and dredge samples from in and around the Rockall Trough. Our new Nd and Hf isotope data show that magmas derived from both the N-MORB-source and the Iceland plume are present in the region. Interesting in this context is the recent observations of Hooper et al. (in press) that the early accretion history of N. Atlantic oceanic crust was asymmetrical: nearly twice the volume of material was emplaced on the Greenland margin relative to Hatton Bank, which may indicate east-directed ridge migration during initial opening. If so, this may explain the presence of both mantle types on the Rockall margin

  13. Upper Jurassic and Lower Cretaceous facies relationships in a passive margin basin, western North Atlantic

    SciTech Connect

    Prather, B.E.

    1988-02-01

    Correlation of facies from hydrocarbon-bearing continental and transitional marine sandstones to time-equivalent high-energy shelf-margin carbonates provide insight into hydrocarbon habitats of the Baltimore Canyon basin. These facies occur within a thick (> 10,000 ft) prograded wedge of shelf sediments in this passive margin basin. Wells drilled to test structural closures in shallow-water (< 600 ft) areas of Baltimore Canyon penetrate clastic facies which are time-equivalent to the downdip carbonate facies tested in deep-water wells. Numerous hydrocarbon shows, including a noncommercial gas and gas-condensate accumulation, occur with sandstone units that were deposited in prograding continental/fluvial and transitional marine environments located updip of the Oxfordian/Kimmeridgian carbonate shelf edge. The continental and transitional facies are overlain by a fine-grained deltaic complex which forms a regionally extensive top seal unit. The deltaic complex was deposited during aggradation of the Kimmeridgian through Berriasian shelf-margin carbonates penetrated by the deep-water wells. Deep-water wells (> 5000 ft) drilled off the continental shelf edge to test large structural closures along the downdip termination of the Upper Jurassic/Lower Cretaceous carbonate shelf edge encountered no significant hydrocarbon shows. Reservoir rocks in these wells consist of (1) oolite grainstone which was deposited within a shoal-water complex located at the Aptian shelf edge, and (2) coral-stromatoporoid grainstone and boundstone which formed an aggraded shelf-margin complex located at the Kimmeridgian through Berriasian shelf edge. Structural closures with reservoir and top seals are present in both updip and downdip trends. The absence of hydrocarbon shows in downdip carbonate reservoirs suggests a lack of source rocks available to charge objectives at the shelf margin.

  14. Cold water corals of the Northeast Atlantic margin: Archives of intermediate water circulation during the Holocene

    NASA Astrophysics Data System (ADS)

    Frank, N.; Paterne, M.; Ayliffe, L.; Lutringer, A.; Blamart, D.; van Weering, T.

    2003-04-01

    We present combined 230Th/U and 14C dating and stable isotope analyses on benthic corals from the northeastern North Atlantic in order to investigate past changes of the thermohaline circulation. The reef forming cold water corals Lophelia pertusa and Madrepora oculata were raised from intermediate depth (˜750m bsl) from carbonate mounds along Rockall and Porcupine Bank and Porcupine Seabight.The 230Th/U ages range from today to 247,400yr. The δ234U, 230Th/232Th, and X-ray images indicate negligible alteration of the investigated corals, i.e. open system behavior. Very young deep-sea corals were accurately dated by means of 230Th/U dating. One in-situ living Lophelia coral yielded a mean age of 1995AD, matching the date of collection in 1999AD. From this coral, the measured and calculated seawater Δ14C values are indistinguishable, and the reservoir age Rinterm of the upper intermediate waters is 710±80 years. Several modern corals, being dated between 1950AD and 1986AD, recorded the atmospheric 14C/12C increase due to the nuclear tests in the early 60s. The modern pre-bomb Δ14C value of the North Atlantic intermediate waters was determined at an average of -65±7o/oo, and the mean reservoir age at 500±50 years. Finally, several investigated benthic coral grew during the second step of the deglaciation and during the Holocene climate optimum (from 10,900 to about 8,000 CAL yr BP). The reservoir age of average 530±65 years is equivalent to that of today indicating that, during the studied coral growth episodes, a modern type oceanic circulation, as well as the air-sea and surface to deeper adjacent water 14CO2 exchanges prevailed in the Northeast Atlantic Ocean.

  15. Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic margin

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Rayray, Shan

    2016-09-01

    We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.

  16. K-Ar ages and the opening of the South Atlantic Ocean: Basaltic rock from the Brazilian margin

    USGS Publications Warehouse

    Fodor, R.V.; McKee, E.H.; Asmus, H.E.

    1983-01-01

    New K-Ar ages for 13 samples of basalt, gabbro, wehrlite, and trachyandesite drilled from the Brazilian continental shelf and coastline yield information about the timing of the opening of the South Atlantic and the nature of the crust seaward from the Brazil margin. The oldest basalt is 138.1 ?? 3.5 m.y. old and from offshore at 24.5??S; it represents Serra Geral flood basalt on attenuated crust in the Santos basin. Basalts from the coastline at 19.5??S are mixed with terrigenous graben sediments, and their ages confirm that rifting was underway before 130 m.y. Offshore sites in the Campos basin, ???22??-23??S, 41??W, have basalt ranging from 124 to 112 m.y. in age and mostly continental flood basalt in composition. One 112-m.y. basalt, however, is MORB-like and could therefore represent oceanic lithosphere mixed with continental crust about 50 km from the shoreline at ???22.5??S. Other samples reveal compositionally varied intraplate, passive-margin magmatism occurring 75-43 m.y. ago. They correlate with profuse contemporary alkalic magmatism on the southeastern Brazil coast and probably represent reactivation of zones of "weakness" (i.e., fracture zone-lineaments). ?? 1983.

  17. Interplay between dynamic topography and flexure along the U.S. Atlantic passive margin: Insights from landscape evolution modeling

    NASA Astrophysics Data System (ADS)

    Moucha, Robert; Ruetenik, Gregory A.

    2017-02-01

    Global backwards-in time models of mantle convection have resulted in vastly different interpretations of the transient state of dynamic topography on the U.S. Atlantic passive margin (Moucha et al., 2008; Spasojević et al., 2008; Rowley et al., 2013; Rovere et al., 2015). However, reconciling these geodynamic models with the observed offshore sedimentary record directly is complex because the sedimentary record integrates changes in climate, sea level, lithology, and tectonics. To circumvent this, we instead focus on modeling the observed deformation of the Orangeburg scarp, a well-documented 3.5 million year old mid-Pliocene shoreline (e.g. Rovere et al., 2015). Herein, we present results from a new landscape evolution model and demonstrate that flexural effects along this margin are comparable to changes in dynamic topography (Rowley et al., 2013) and are required to fully explain deformation of the Orangeburg scarp. Moreover, using the Orangeburg scarp as a datum subject to glacial isostatic adjustment, we demonstrate that a 15 m mid-Pliocene sea level above present-day is most consistent with interspersed coastal plain sediment and surface deformation derived from mantle convection and flexural-isostasy.

  18. Three-Dimensional Seismic Imaging of Thermohaline Circulation on North Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Dickinson, A.; Bond, C.; White, N.; Caulfield, C. C. P.

    2016-12-01

    Exchange of water across the Greenland-Scotland Ridge between the Atlantic Ocean and the Arctic Mediterranean is a key component of the global thermohaline circulation. The Faroe-Shetland Channel is a major conduit for this transport and dominates northward transfer of heat and salt. Here, we investigate the spatial and temporal variation of thermohaline structure within this channel using three-dimensional seismic reflection imagery generously provided by PGS. These data were acquired in April - October between 1995 and 1999. A total of seven separate seismic surveys, covering an area of 600 square kilometres, have been processed and analysed. Observed acoustic reflections are caused by changes in temperature and, to some extent, salinity. In this way, thermohaline fine structure is imaged. Bright reflectivity at depths of 400 - 750 m corresponds to the prominent thermocline (temperature contrast ˜ 10°C salinity contrast ˜ 0.3) that separates Modified North Atlantic Water from Norwegian Sea Deep Water. At shallower depths, fainter reflections reveal highly discontinuous fine-scale structure. Below depths of 500 - 800 m, nearly constant temperature and salinity give rise to negligible reflectivity. The three-dimensional nature of these surveys enables the oceanic wave field to be imaged at vertical and horizontal length-scales on the order of 10 m. This ability permits investigation of fundamental fluid dynamical problems such as the distribution of diapycnal mixing.

  19. Astronomical tuning for the upper Messinian Spanish Atlantic margin: Disentangling basin evolution, climate cyclicity and MOW

    NASA Astrophysics Data System (ADS)

    van den Berg, B. C. J.; Sierro, F. J.; Hilgen, F. J.; Flecker, R.; Larrasoaña, J. C.; Krijgsman, W.; Flores, J. A.; Mata, M. P.; Bellido Martín, E.; Civis, J.; González-Delgado, J. A.

    2015-12-01

    We present a new high-resolution cyclostratigraphic age model for the Messinian sediments of the Montemayor-1 core. This core was drilled in the Guadalquivir Basin in southern Spain, which formed part of the marine corridor linking the Mediterranean with the Atlantic in the Late Miocene. Tuning of high-resolution geochemical records reveals a strong precessional cyclicity, with maximum clastic supply from river run off coinciding with maximum summer insolation. We recognize a gradual change in the nature of the typical cyclic fluctuations in elemental compositions of the sediments through the core, which is associated with a gradual change in depositional environment as the basin infilled. After applying the new age model, the upper Messinian glacial stages and deglaciation are clearly identified in the oxygen isotope records of the Montemayor-1 core. Reinterpretation of existing planktonic and benthic oxygen isotope records for the core and comparison with equivalent successions in the Rifian Corridor in northern Morocco allow the re-evaluation of the influence of the different water masses in the region: North Atlantic Central Water and Mediterranean Outflow Water. We observe no direct influence of MOW immediately before or during the Messinian Salinity Crisis.

  20. Bathymetric and regional changes in benthic macrofaunal assemblages on the deep Eastern Brazilian margin, SW Atlantic

    NASA Astrophysics Data System (ADS)

    Bernardino, Angelo Fraga; Berenguer, Vanessa; Ribeiro-Ferreira, Venina P.

    2016-05-01

    Deep-sea continental slopes have valuable mineral and biological resources in close proximity to diverse, undersampled and fragile marine benthic ecosystems. The eastern Brazilian Continental Margin (19.01°S to 21.06°S, 37.88°W to 40.22°W) is an important economic region for both fishing and oil industries, but is poorly understood with respect to the structure of the soft-sediment benthic fauna, their regional distribution and their bathymetric patterns. To identify spatial and temporal patterns of benthic macrofaunal assemblages on the slope (400 to 3000 m), the Espirito Santo Basin Assessment Project (AMBES, coordinated by Cenpes-Petrobras) sampled 42 stations across the Brazilian Eastern Slope during both Summer 2012 and Winter 2013. We found a significant decrease in macrofaunal abundance at the 400 m isobath along the slope near the northern region of the Espirito Santo Basin, suggesting benthic responses to upwelling events towards the south in Campos Basin and southern Espirito Santo Basin. The taxonomic diversity and assemblage composition also changed significantly across depth zones with mid-slope peaks of diversity at 1000-1300 m. In general, macrofaunal assemblages were strongly related to slope depth, suggesting a strong influence of productivity gradients and water mass distribution on this oligotrophic margin. Sediment grain size was marginally important to macrofaunal composition on the upper slope. In general, macrofaunal assemblages on the slope of Espirito Santo Basin are similar to other areas of the SE Brazilian margin, but regional changes in response to productivity and depth need to be considered for management strategies in the face of increasing economic activities off-shore.

  1. Buried Cold-Water Coral Mound Provinces and Contourite Drifts Along the Eastern Atlantic Margin: Controls, Interactions and Connectivity

    NASA Astrophysics Data System (ADS)

    Van Rooij, D.; Vandorpe, T.; Delivet, S.; Hebbeln, D.; Wienberg, C.; Martins, I.

    2014-12-01

    The association between cold-water coral mounds and contourite drift deposits has been demonstrated in the Belgica mound province, off Ireland. On that location, IODP expedition 307 was able to drill through the base of a mound, dating mound initiation at 2.65 Ma. However, the Belgica mounds are just one of the many expressions of mound growth. More enigmatic is the buried Magellan mound province, located in the northern part of the Porcupine Basin, featuring over 1000 relatively closely spaced buried mounds, which are all rooted on a common reflector. This indicates a common start-up event, but the true driving forces behind their initial settling, growth and demise are still unknown. The influence of bottom currents cannot be ruled out, since clear obstacle marks are present surrounding the mounds. In 2013, some 3000 km south of the Magellan mounds, a new province of buried mounds was discovered along the Moroccan Atlantic Margin, which may shed new light on the "life" cycle of mounds. Here, we report the preliminary results and propose a first view on the controls, interactions and connectivity between these 2 provinces, assisted by a series of studies of contourite drifts along the Eastern Atlantic Margin. The newly discovered buried mounds can be associated to a vast province of several clusters of seabed mounds. They occur in water depths between 500 and 1000 m, buried under up to 50 m of sediment. With respect to the Magellan mounds, they are smaller, but more importantly, they do not root on one single stratigraphic level. At least 4 different initiation levels were identified. The off-mound reflectors indicate a slight influence of bottom currents, since the mounds are located in a large sediment drift. Moreover, the link between the two buried mound provinces may be found in connecting the evolution of the associated contourite drift systems, respectively in Porcupine Seabight and the Gulf of Cádiz. Intermediate sites on Goban Spur and near Le Danois

  2. US Atlantic Margin Methane Plumes Identified From Water Column Backscatter Data Acquired by NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    Kodis, M.; Skarke, A. D.; Ruppel, C. D.; Weber, T.; Lobecker, E.; Malik, M.

    2013-12-01

    The NOAA Office of Ocean Exploration and Research routinely uses NOAA Ship Okeanos Explorer to collect EM302 (30 kHz) multibeam bathymetric data and water column backscatter imagery. These backscatter data have been used to identify gas plumes associated with seafloor methane seeps as part of previous investigations in the Gulf of Mexico and at Blake Ridge. Here, we use QPS Fledermaus Midwater software to analyze over 200,000 km2 of multibeam data acquired on the continental slope and outer shelf of the US Atlantic margin in 2011, 2012, and 2013. Preliminary application of this analytical methodology in late 2012 revealed the first deepwater (> 1000 m water depth) cold seeps found on the US Atlantic margin north of Cape Hatteras as well as 47 new upper slope seeps (http://www.noaanews.noaa.gov/stories2012/20121219_gas_seeps.html). In this new analysis, we identify over 500 water column backscatter anomalies (WCA) originating at the seafloor and extending to various heights in the water column between Cape Hatteras and the Nantucket margin. Data set quality control was achieved through secondary independent analysis of all WCA backscatter records by a highly experienced researcher who assigned a quality factor to each anomaly. Additionally, a subset of the data was analyzed using a Matlab code designed to automatically detect WCA in backscatter data. These quality-control and WCA comparison procedures provide confidence that several hundred of the WCA are robust picks. The observed WCA are structurally consistent with previously confirmed gas bubble plumes, being vertically elongate, rooted at the seafloor, and deflected by currents. They are not structurally consistent with other common WCA such as schooling or swarming organisms. Additionally, the bases of selected WCA that were identified in this analysis have recently been visually and acoustically confirmed to be associated with emission of gas bubbles from the seafloor by the NOAA remotely operated vehicle

  3. Thermal history from both sides of the South Atlantic passive margin - A comparison: Argentinean pampa vs. South African escarpement.

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. In existing literature the Sierras Australes are correlated with the South African cape fold belt (Torsvik 2009; Lopez Gamundi & Rossello 1998). Existing thermochronological data shows different post-breakup cooling histories for both areas and different AFT-ages. Published thermochronological ages (e.g. Raab et al. 2002, 2005, Gallagher et al et al. 1998)from the south African escarpement vary around 150 and 100 Ma (Gallagher et al. 1998). Only some spots in the eastern part of South Africa towards the pacific margin show older ages of 250 Ma and older than 350 Ma (Gallagher et al. 1998). New thermochronological data (AHe, AFT and ZHe) from the Sierras Australes indicate a different cooling history by revealing a range of varying ages due to younger tectonic activity. By comparing the data sets from both areas it is getting clear that the post-rift evolution of both continents is differing very strong. Gallagher, K., Brown, R. and Johnson, C. 1998. Fission track analysis and its application to geological problems. Annual review of Earth and Planetary Science, 26, 519-572. Lopez Gamundi, O.R., Rossello, E.A. (1998): Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) revisited. Geol Rundsch 86 :819-834. Raab, M.J., Brown, R.W., Gallagher, K., Carter, A. and Webber, K. 2002. late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics. 349, 75-92. Raab, M.J., Brown, R.W., Gallagher, K., Webber, K. and Gleadow, A.J.W. 2005. denudational and

  4. SeepC: Preliminary Characterization of Atlantic Margin Seep Ecosystems from Norfolk Canyon to New England Seep Sites.

    NASA Astrophysics Data System (ADS)

    Turner, P. J.; Ball, B.; Cole, E.; LaBella, A.; Wagner, J.; Van Dover, C. L.; Skarke, A. D.; Ruppel, C. D.

    2015-12-01

    Since 2013, more than 500 seep sites have been located along the continental margin of the eastern US using acoustic signals of gas plumes in the water column. During a July 2015 R/V Atlantis expedition, scientists used the submersible Alvin to explore seep sites at depths of 300 to 1500 m. Study sites ranged from Norfolk Canyon north to New England Seep 2 and included Baltimore, Veatch, and Shallop Canyon sites, as well as new unnamed sites between Norfolk and Baltimore Canyons. Mussels dominated the seep sites (cf ''Bathymodiolus'' childressi) but only small populations (<10s of individuals) were observed at seep sites associated with Shallop Canyon. B. heckerae, the dominant mussel at the Blake Ridge and Cape Fear seep sites (sites associated with salt diapirs off the Carolinas), appear to be present at only one of the Atlantic Margin seeps. At the Norfolk Canyon site, dead B. heckerae shells were observed and live individuals may be within the explored area. The abundant vesicomyid clam of Blake Ridge and Cape Fear sites was absent at the continental margin seeps. Apart from B. childressi, the most conspicuous megafaunal invertebrate species at the newly explored seeps was the red crab, Chaceon sp. and the rock crab, Cancer sp. These crabs are not seep endemic but they were especially abundant at the seeps and were observed to feed and mate on the seep grounds. Molecular tools will be used to explore the genetic structure of mussel populations from Norfolk to New England seeps, and stable isotope methods will be used to test for differences among sites in the source of carbon used by mussels. Alvin video transects and photo-mosaics will be used to collect data on macrofauna associated with seeps and to test the hypothesis that shallow seeps (300-500m) support more diverse assemblages than deep sites (1000-1500m).

  5. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Obelcz, Jeffrey; Brothers, Daniel; Chaytor, Jason; Brink, Uri ten; Ross, Steve W.; Brooke, Sandra

    2014-06-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5-10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  6. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  7. Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate

    NASA Astrophysics Data System (ADS)

    Schwartz, Chen; Garfinkel, Chaim I.

    2017-04-01

    European and eastern United States wintertime weather is strongly influenced by large-scale modes of variability in the Northern Hemisphere such as the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO). The negative phase of the NAO has been linked to both the Madden-Julian Oscillation (MJO) phase with convection in the West Pacific (phases 6 and 7) and to stratospheric sudden warmings (SSW), but the relative role of each phenomenon is not clear, and the two phenomena are themselves linked, as more than half of SSW events were preceded by phases 6 and 7 of the MJO. Here we disentangle the relative roles of MJO phase 6/7 and stratospheric variability for Northern Hemisphere surface weather during boreal winter. We show that stratospheric variability leads to significantly different North Atlantic anomalies if it is preceded by MJO phase 6/7. Furthermore, MJO phase 6/7 leads to a long-lived negative AO pattern only if it modulates the stratosphere first. Hence, proper attribution of their respective influence on surface weather needs to take into consideration the linkages between these two phenomena. Finally, MJO phase 6/7 events that lead to SSW can be differentiated from those which do not by their characteristics within the tropics: only MJO phase 6/7 events in which enhanced convection propagates into the South China Sea, which rarely occurs in winter, lead to SSWs.

  8. Parasites as biological tags in marine fisheries research: European Atlantic waters.

    PubMed

    Mackenzie, K; Hemmingsen, W

    2015-01-01

    Studies of the use of parasites as biological tags for stock identification and to follow migrations of marine fish, mammals and invertebrates in European Atlantic waters are critically reviewed and evaluated. The region covered includes the North, Baltic, Barents and White Seas plus Icelandic waters, but excludes the Mediterranean and Black Seas. Each fish species or ecological group of species is treated separately. More parasite tag studies have been carried out on Atlantic herring Clupea harengus than on any other species, while cod Gadus morhua have also been the subject of many studies. Other species that have been the subjects of more than one study are: blue whiting Micromesistius poutassou, whiting Merlangius merlangus, haddock Melanogrammus aeglefinus, Norway pout Trisopterus esmarkii, horse mackerel Trachurus trachurus and mackerel Scomber scombrus. Other species are dealt with under the general headings redfishes, flatfish, tunas, anadromous fish, elasmobranchs, marine mammals and invertebrates. A final section highlights how parasites can be, and have been, misused as biological tags, and how this can be avoided. It also reviews recent developments in methodology and parasite genetics, considers the potential effects of climate change on the distributions of both hosts and parasites, and suggests host-parasite systems that should reward further research.

  9. Paleoceanographic model of neogene phosphorite deposition, u.s. Atlantic continental margin.

    PubMed

    Riggs, S R

    1984-01-13

    The Neogene stratigraphic section of the southeastern U.S. continental shelf-coastal plain system is characterized by (i) a series of major regional phosphogenic episodes; (ii) a strong spatial relationship between the structural or topographic framework and phosphate deposition; and (iii) distinct cyclical and regional patterns of deposition of the terrigenous, carbonate, and phosphate lithofacies. The complex depositional patterns are explained by a paleoceanographic model based upon the interaction of glacial eustatic sea-level fluctuations, associated changes in climate, and the dynamics of the Gulf Stream in response to the bathymetric configurations of the continental margin during the past 20 million years.

  10. European high-impact weather caused by the downstream response to the extratropical transition of North Atlantic Hurricane Katia (2011)

    NASA Astrophysics Data System (ADS)

    Blumer, Sandro R.; Grams, Christian M.

    2016-04-01

    Tropical cyclones undergoing extratropical transition (ET) are thought to cause high-impact weather (HIW) close to the transitioning tropical cyclone and in remote regions. However, no study so far clearly attributed European HIW to the downstream impact of North Atlantic ET. When Hurricane Katia underwent ET in September 2011, severe thunderstorms occurred downstream in Central Europe. We quantify the role of Katia in the European HIW, using numerical sensitivity experiments. Results show that Katia was crucial for the evolution of a narrow downstream trough. Large-scale forcing for ascent ahead of this trough triggered deep convection. In the absence of ET, no trough was present over Europe and no HIW occurred. This study is the first unambiguous documentation that European HIW is caused by the downstream impact of North Atlantic ET and would not occur otherwise. It likewise corroborates the crucial role of ET in altering the large-scale midlatitude flow in downstream regions.

  11. Analysis of Submarine Landslides and Canyons along the U.S. Atlantic Margin Using Extended Continental Shelf Mapping Data

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Brothers, D. S.; Ten Brink, U. S.; Hoy, S. K.; Baxter, C.; Andrews, B.

    2013-12-01

    U.S. Geological Survey (USGS) studies of the U.S. Atlantic continental slope and rise aim to understand the: 1) the role of submarine landslides in tsunami generation, and 2) the linkages between margin morphology and sedimentary processes, particularly in and around submarine canyon systems. Data from U.S. Extended Continental Shelf (ECS) and numerous subsequent mapping surveys have facilitated the identification and characterization of submarine landslides and related features in fine detail over an unprecedented spatial extent. Ongoing analysis of USGS collected piston cores, sub-bottom and multichannel seismic (MCS) reflection profiles, and an extensive suite of legacy MCS data from two landslides, the Southern New England landslide zone and the Currituck Landslide, suggest that the most recent major landslide events are pre-Holocene, but that failures were complex and most likely multi-phase, at times resulting in extensive overlapping debris deposits. Piston core records plus visual observations of the seafloor from recent TowCam deployments and NOAA Ship Okeanos Explorer ROV dives reveal ongoing development of colluvial wedge-style debris aprons at the base of scarps within these landslides, showing that these regions continue to evolve long after the initial failure events. Multibeam bathymetry data and MCS profiles along the upper slope reveal evidence for vertical fluid migration and possible seabed gas expulsion. These observations underscore the need to reevaluate the sources of pore fluid overpressure in slope sediments and their role in landslide generation. ECS and more recent multibeam mapping have provided the opportunity to investigate the full extent of submarine canyon morphology and evolution from Cape Hatteras up to the US-Canadian EEZ, which has led to better understanding of the important role of antecedent margin physiography on their development. Six submarine canyon systems along the margin (Veatch, Hydrographer, Hudson, Wilmington

  12. Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer.

    PubMed

    Van Drooge, Barend Leendert; Fernández, Pilar; Grimalt, Joan O; Stuchlík, Evzen; Torres García, Carlos J; Cuevas, Emilio

    2010-07-01

    Ambient air concentrations of polycyclic aromatic hydrocarbons (PAH) were determined at five elevated mountain sites on the European continent and the Atlantic Ocean. All sites can be considered remote background areas since they are situated above the timberline and they lack local emission sources of these compounds. Average gas phase concentrations of SigmaPAH were 165, 1,475, 1,553, 1,822 and 4,443 pg m(-3) for Tenerife, Pyrenees, Central Norway, Tyrolean Alps and High Tatras, respectively. Particulate phase concentrations were 55, 70, 383, 196 and 708 pg m(-3), respectively. The PAH profiles of samples from the different sites are very similar, being typical of PAH mixtures after long-range atmospheric transport. Part of the fluctuations in PAH concentrations are explained by the influence of temperature on the particulate/gas phase partitioning. The differences in PAH levels between sites, with the lowest concentrations found in Tenerife and the highest in the High Tatras, suggest the geographical influence of regional emissions on the sites, especially in the cold periods and for the sites in the eastern sector of the European continent. This is supported by air mass back-trajectories analysis for the samples on the different sites. The influence of the continent is not detectable in the case of the elevated site of Tenerife where the free troposphere has been sampled. The results in this study are consistent with the PAH levels found in soils and/or high mountain lake sediments from these areas.

  13. Methylmercury accumulation in plankton on the continental margin of the northwest Atlantic Ocean.

    PubMed

    Hammerschmidt, Chad R; Finiguerra, Michael B; Weller, Robert L; Fitzgerald, William F

    2013-04-16

    Accumulation of monomethylmercury (MMHg) by plankton is a key process influencing concentrations of this toxic mercury species in marine food webs and seafood. We examined bioaccumulation and biomagnification of MMHg in microseston and four size fractions of zooplankton on the continental shelf, slope, and rise of the northwest Atlantic Ocean. The bioaccumulation factor (BAF, L/kg) for MMHg in microseston averaged 10(4.3±0.3) among 21 locations, and concentrations were unrelated to those in colocated, filtered surface water. Instead, concentrations and the BAF of MMHg in microseston were related inversely with total suspended solids in surface water, a proxy for planktonic biomass at these remote locations. MMHg was biomagnified by a factor of 4 from microseston to zooplankton, and both concentrations of MMHg and the fraction of total mercury as MMHg increased with larger size fractions of zooplankton. These results suggest that the initial magnitude of MMHg uptake into pelagic marine food webs is influenced by the degree of primary production in surface waters and propagated up through large zooplankton. Accordingly, biological productivity, in addition to inputs of MMHg to surface waters, must be considered when predicting how MMHg bioaccumulation will vary spatially and temporally in the ocean.

  14. 3-D view of erosional scars on U. S. Mid-Atlantic continental margin

    SciTech Connect

    Farre, J.A.; Ryan, W.B.

    1985-06-01

    Deep-towed side-scan and bathymetric data have been merged to present a 3-D view of the lower continental slope and upper continental rise offshore Atlantic City, New Jersey. Carteret Canyon narrows and becomes nearly stranded on the lower slope where it leads into one of two steep-walled, flat-floored erosional chutes. The floors of the chutes, cut into semilithified middle Eocene siliceous limestones, are marked by downslope-trending grooves. The grooves are interpreted to be gouge marks formed during rock and sediment slides. On the uppermost rise, beneath the chutes, is a 40-m deep depression. The origin of the depression is believed to be related to material moving downslope and encountering the change in gradient at the slope/rise boundary. Downslope of the depression are channels, trails, and allochthonous blocks. The lack of significant post-early Miocene deposits implies that the lower slope offshore New Jersey has yet to reach a configuration conducive to sediment accumulation. The age of erosion on the lower slope apparently ranges from late Eocene-early Miocene to the recent geologic past.

  15. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua

    PubMed Central

    Therkildsen, Nina Overgaard; Hemmer-Hansen, Jakob; Hedeholm, Rasmus Berg; Wisz, Mary S; Pampoulie, Christophe; Meldrup, Dorte; Bonanomi, Sara; Retzel, Anja; Olsen, Steffen Malskær; Nielsen, Einar Eg

    2013-01-01

    Accurate prediction of species distribution shifts in the face of climate change requires a sound understanding of population diversity and local adaptations. Previous modeling has suggested that global warming will lead to increased abundance of Atlantic cod (Gadus morhua) in the ocean around Greenland, but the dynamics of earlier abundance fluctuations are not well understood. We applied a retrospective spatiotemporal population genomics approach to examine the temporal stability of cod population structure in this region and to search for signatures of divergent selection over a 78-year period spanning major demographic changes. Analyzing >900 gene-associated single nucleotide polymorphisms in 847 individuals, we identified four genetically distinct groups that exhibited varying spatial distributions with considerable overlap and mixture. The genetic composition had remained stable over decades at some spawning grounds, whereas complete population replacement was evident at others. Observations of elevated differentiation in certain genomic regions are consistent with adaptive divergence between the groups, indicating that they may respond differently to environmental variation. Significantly increased temporal changes at a subset of loci also suggest that adaptation may be ongoing. These findings illustrate the power of spatiotemporal population genomics for revealing biocomplexity in both space and time and for informing future fisheries management and conservation efforts. PMID:23789034

  16. Subseafloor to Sea-Air Interface Characterization of Methane Dynamics in the northern US Atlantic Margin Seep Province

    NASA Astrophysics Data System (ADS)

    Ruppel, C. D.; Kluesner, J.; Danforth, W. W.; Casso, M.; Pohlman, J.

    2015-12-01

    Since the discovery of hundreds of northern US Atlantic margin (USAM) cold seeps in 2012 and 2013, the USGS Gas Hydrates Project has undertaken intensive studies of the along-margin gas hydrate/free gas distribution, the plumbing systems sustaining seeps, seafloor gas emissions, and sea-air methane flux. Interest in the USAM is motivated both by climate change (i.e., documented ocean warming may contribute to seepage) and energy resource (i.e., the amount of gas-in-place in hydrates on the USAM is about the same as that in the northern Gulf of Mexico) issues. USGS-led field efforts have included an April 2015 study to acquire high-resolution multichannel seismic data, coincident split-beam water column methane plume imaging data, and real-time sea-air methane flux measurements between Wilmington and Norfolk Canyons and a September 2015 cruise (with OSU, UCLA, and Geomar) to collect piston cores, multicores, heat flow data, subbottom imagery, CTDs, and coincident water column imagery from Block Canyon to the Currituck Slide. In April 2015, we discovered methane seeps not included in the previously-published database, but found that some known seeps were not active. New high-resolution multi-channel seismic data revealed clear differences between the deep gas distribution in mid-Atlantic upper slope zones that are replete with (up to 240 sites) and lacking in seeps. Based on sea-air flux measurements, even shallow-water outer shelf (~125 m water depth) seeps and a 900-m-high methane plume originating on the mid-slope do not contribute methane to the atmosphere. Using thermistors placed on piston core outriggers, we will in September 2015 acquire thermal data to identify zones of high fluid advection and to constrain background geotherms in areas where heat flow has never been measured. During that same cruise, we will collect a series of piston cores across the no-hydrate/hydrate transition on the upper slope to constrain fluid and gas dynamics in this zone.

  17. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types

    USGS Publications Warehouse

    Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W.J.

    2016-01-01

    study is the first investigation of seep infauna along the U.S. Atlantic slope north of the Blake Ridge Diapir and provides a baseline for future regional comparisons to other seep habitats along the Atlantic margin.

  18. Polar North Atlantic Margins Methane Pathway and Seabed Gas Expulsion Systems

    NASA Astrophysics Data System (ADS)

    Mienert, J.; Rajan, A.; Buenz, S.

    2012-04-01

    Geophysical evidence exists for geologically controlled fluid migration pathways, gas hydrate, and an active seabed gas expulsion system. The complex, interacting system lies between the sedimented ocean ridge and the continental margin of NW Svalbard. The investigated seabed area covers more than 2000 km2 and extents from deep (~2000 m at the ocean ridge) to shallow water depth (~250 m at the shelf). Fluid migration pathways towards the seabed can be drawn from sub-seabed acoustic anomalies. Fluid migration towards the upper continental slope appears to be stratigraphically constrained and largely prevails over vertical focused migration at the sedimented ocean ridge. Fluids accumulate in the uppermost part of the slope just westward of the shelf break, where they are trapped beneath a prograding glacigenic sequence. Fluids are expelled on the shelf where the base of the glacigenic sequence outcrops. Gas-charged fluids may originate from deep-seated hydrocarbon reservoirs. Geophysical evidence for hydrates on the uppermost slope is missing but exists at the lower slope. Fluids at the sedimented ocean ridge may originate from serpentinized mantle and gabbro material. Only few sedimented ocean ridges exist worldwide and they may document past and ongoing serpentinization-driven migration of gas-rich fluids. Seismic data suggest a potential link between inferred areas of serpentinization, transfer of carbon from the deep-seated host rocks through the sediments, and methane capture within the gas hydrate stability zone at the eastern flank of the Knipovich Ridge of Svalbard.

  19. Revisiting submarine mass movements along the U.S. Atlantic Continental Margin: Implications for tsunami hazards

    USGS Publications Warehouse

    Chaytor, J.D.; Twichell, D.C.; ten Brink, U.S.; Buczkowski, B.J.; Andrews, B.D.

    2007-01-01

    Interest in the generation of tsunamis by submarine mass movements has warranted a reassessment of their distribution and the nature of submarine landslides offshore of the eastern U.S. The recent acquisition and analysis of multibeam bathymetric data over most of this continental slope and rise provides clearer view into the extent and style of mass movements on this margin. Debris flows appear to be the dominant type of mass movement, although some translational slides have also been identified. Areas affected by mass movements range in size from less than 9 km2 to greater than 15,200 km2 and reach measured thicknesses of up to 70 m. Failures are seen to originate on either the open-slope or in submarine canyons. Slope-sourced failures are larger than canyonsourced failures, suggesting they have a higher potential for tsunami generation although the volume of material displaced during individual failure events still needs to be refined. The slope-sourced failures are most common offshore of the northern, glaciated part of the coast, but others are found downslope of shelf-edge deltas and near salt diapirs, suggesting that several geological conditions control their distribution.

  20. Lateglacial and early Holocene climates of the Atlantic margins of Europe: Stable isotope, mollusc and pollen records from Orkney, Scotland

    NASA Astrophysics Data System (ADS)

    Whittington, Graeme; Edwards, Kevin J.; Zanchetta, Giovanni; Keen, David H.; Bunting, M. Jane; Fallick, Anthony E.; Bryant, Charlotte L.

    2015-08-01

    The margins of mainland Europe, and especially those areas coming under the influence of North Atlantic weather systems, are ideally placed to record changing palaeoclimates. Cores from an infilled lake basin at Crudale Meadow in Mainland, Orkney, revealed basal deposits of calcareous mud ('marl') beneath sedge peat. Stable isotope, palynological and molluscan analyses allowed the establishment of palaeoenvironmental changes through the Devensian Lateglacial and the early Holocene. The δ18Omarl record exhibited the existence of possibly four climatic oscillations in the Lateglacial (one of which, within event cf. GI-1c, is not often commented upon), as well as the Preboreal Oscillation and other Holocene perturbations. The cold episodes succeeding the Preboreal Oscillation were demarcated conservatively and one of these (event C5, ∼11.0 ka) may have previously been unremarked, while the putative 9.3 and 8.2 ka events seem not to produce corresponding palynologically visible floristic changes. The events at Crudale Meadow are consistent with those recorded at other sites from Britain, Ireland and elsewhere, and can be correlated with isotopic changes shown by the Greenland ice cores. The multi-proxy approach enriches the environmental reconstructions from the site, although the synchronicity of the response of the various proxies is sometimes equivocal, depending upon the time period concerned, taphonomy, and the nature of the deposits. The site may contain the most northerly Lateglacial isotope record from northwest Europe, and it has yielded one of the best archives for the demonstration of abrupt early Holocene events within Britain.

  1. Estimating the amount of gas hydrate in marine sediments in the Blake Ridge area, southeastern Atlantic margin

    USGS Publications Warehouse

    Lee, Myung W.; Dillon, William P.; Hutchinson, Deborah R.

    1992-01-01

    A relative amount of gas hydrate in marine sediments can be estimated by use of either interval velocity or amplitude blanking in seismic profiles. Under the assumption of constant concentration of hydrate irrespective of porosity, the average bulk hydrate amounts for the lower portion of marine sediments above the bottom simulating reflector in the Blake Ridge area, south-eastern Atlantic Margin, is estimated to be about 8.7% of the sediments when using velocity analysis and about 10% when using amplitude blanking. Under the assumption of variable hydrate concentration proportional to the porosity, the estimate is about 8.1% when using velocity information and about 10% when using amplitude blanking. The estimation method using amplitude is comparable to the estimation by interval velocity and provides a convenient way of quantitative classification of the degree of hydrate cementation. In the amplitude method, three classes of blanking are defined; class boundaries represent a change in reflection amplitude by a factor of 2, and the classes may be used to predict the amount of hydrate in bulk sediments.

  2. Biological and physical controls on the flux and characteristics of sinking particles on the Northwest Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hwang, Jeomshik; Manganini, Steven J.; Park, JongJin; Montluçon, Daniel B.; Toole, John M.; Eglinton, Timothy I.

    2017-06-01

    matter characteristics and radiocarbon contents of organic carbon (OC) were examined on sinking particle samples intercepted at three nominal depths of 1000 m, 2000 m, and 3000 m (˜50 m above the seafloor) during a 3 year sediment trap program on the New England slope in the Northwest Atlantic. We have sought to characterize the sources of sinking particles in the context of vertical export of biogenic particles from the overlying water column and lateral supply of resuspended sediment particles from adjacent margin sediments. High aluminum (Al) abundances and low OC radiocarbon contents indicated contributions from resuspended sediment which was greatest at 3000 m but also significant at shallower depths. The benthic source (i.e., laterally supplied resuspended sediment) of opal appears negligible based on the absence of a correlation with Al fluxes. In comparison, CaCO3 fluxes at 3000 m showed a positive correlation with Al fluxes. Benthic sources accounted for 42 ˜ 63% of the sinking particle flux based on radiocarbon mass balance and the relationship between Al flux and CaCO3 flux. Episodic pulses of Al at 3000 m were significantly correlated with the near-bottom current at a nearby hydrographic mooring site, implying the importance of current variability in lateral particle transport. However, Al fluxes at 1000 m and 2000 m were coherent but differed from those at 3000 m, implying more than one mode of lateral supply of particles in the water column.

  3. Atmospheric influence on Arctic marginal ice zone position and width in the Atlantic sector, February-April 1979-2010

    NASA Astrophysics Data System (ADS)

    Strong, Courtenay

    2012-12-01

    Arctic marginal ice zone (MIZ) widths in the Atlantic sector were measured during the months of maximum sea ice extent (February-April) for years 1979-2010 using a novel method based on objective curves through idealized sea ice concentration fields that satisfied Laplace's equation. Over the record, the Labrador Sea MIZ (MIZL) had an average width of 122 km and narrowed by 28 % while moving 254 km poleward, the Greenland Sea MIZ (MIZG) had an average width of 98 km and narrowed by 43 % while moving 158 km west toward the Greenland coast, and the Barents Sea MIZ (MIZB) had an average width of 136 km and moved 259 km east toward the Eurasian coast without a trend in width. Trends in MIZ position and width were consistent with a warming Arctic and decreasing sea ice concentrations over the record. Beyond the trends, NAO-like atmospheric patterns influenced interannual variability in MIZ position and width: MIZL widened and moved southeast under anomalously strong northerly flow conducive to advection of sea ice into the Labrador Sea, MIZG widened and moved northeast under anomalously weak northerly flow conducive to diminishing the westward component of sea ice drift, and MIZB widened and moved poleward at the expense of pack ice under anomalously strong southwesterly flow conducive to enhancing oceanic heat flux into the Barents Sea. In addition, meridional flow anomalies associated with the NAO per se moved MIZB east and west by modulating sea ice concentration over the Barents Sea.

  4. The deep structure of the South Atlantic rifted margins and the implications of the magmatic processes for the break-up

    NASA Astrophysics Data System (ADS)

    Becker, Katharina; Dieter, Franke; Trumbull, Robert; Schnabel, Michael; Heyde, Ingo; Schreckenberger, Bernd; Koopmann, Hannes; Bauer, Klaus; Jokat, Wilfried; Krawczyk, Charlotte

    2014-05-01

    The high velocity lower crust HVLC (Vp > 7km/s) together with seaward dipping reflectors (SDRs) and continental flood basalts are specific characteristics of volcanic rifted margins. The nature and origin of the HVLC is still under discussion. Here we provide a comprehensive study of the deep crustal structure of the South Atlantic rifted margins in which we focus on variations in the distribution and size of HVLC bodies along and across the margins. Two new and five existing refraction lines complemented by gravity models cover the area between the Rio Grande Rise - Walvis Ridge to the Falkland Agulhas Fracture Zone. Three seismic lines on the South American margin outline the change from a non-magmatic margin (lacking seaward dipping reflectors) in the south to a well-developed volcanic rifted margin off Uruguay in the north. While the HVLC exhibit a consistent increase in the cross-sectional area along both margins from South to North, we observe a major asymmetry across the margins. The African margin has about two-three times thicker and four times more voluminous HVLC than the South American margin. Importantly, the erupted lavas in the Etendeka-Paraná Provinces show the opposite asymmetry. Also the spatial position of the HVLC with regard to the inner SDRs varies consistently along both margins. Close to the Falkland Agulhas Fracture zone a small body of HVLC is not accompanied by seaward dipping reflectors. In the central segment, HVLC is centered under the SDRs inner wedge but in the north, HVLC also extends further seawards. These observations question a simple extrusive/intrusive relationship between SDRs and HVLC, and they imply differences in the timing of the HVLC formation during the rifting and break-up process. We conclude that the HVLC is predominantly a magmatic feature related mantle melting during break-up. Melt generation models suggest that the greater thickness of HVLC on the African margin is due to active upwelling combined with elevated

  5. Distal Impact Ejecta at Paleocene-Eocene Boundary sections on the Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Fung, M. K.; Wright, J. D.; Katz, M. E.; Kent, D. V.

    2016-12-01

    A rapid global warming event 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum, PETM) was accompanied by an abrupt negative carbon isotope excursion (CIE) observed globally. We report the discovery of silicate glass spherules in a discrete stratigraphic layer coincident with the P-E boundary from several marine sections on the Atlantic coastal plain and offshore. The spherules are found in the onset of the CIE that defines the P-E boundary at each site. They average 275 mm in diameter, have rotational and splash form morphologies, surficial microcraters, and are translucent colorless to brown, green and black. Energy dispersive x-ray spectroscopy from grain mounts and polished sections of representative spherules show that they have related major oxide chemistries of up to 50% silica, with the remainder comprised of CaO, FeO, and Al2O3, which all vary in relative proportion with silica content. The chemistries of the spherules form a population that is distinct from impact ejecta from other major strewn fields, such as the Cretaceous-Paleogene microtektites, but show more variability than is expected from volcanism. Field transmission infrared spectroscopy on a subset of spherules reveals water content <0.03%, much lower than volcanic glass spherules. They also contain inclusions of lechatelierite (a high temperature quartz glass), and quartz grain inclusions that show characteristic Raman spectra indicative of shock metamorphism: in particular relaxation of the spectral peak corresponding to SiO2 bond-bending vibration from 464 to 460 cm-1, consistent with observations from other Raman studies of quartz experimentally shocked to high peak pressures of 25.8 GPa. The summation of these characteristics is consistent with features of melt-drop microtektites and microkrystites from other known impact strewn fields. We therefore interpret the P-E boundary spherules as a component of a distal impact ejecta layer, indicating

  6. Behavioural adaptations of two sympatric sandhoppers living on a mesotidal European Atlantic sandy beach

    NASA Astrophysics Data System (ADS)

    Bessa, Filipa; Marques, João Carlos; Scapini, Felicita

    2014-06-01

    Behavioural adaptations of supralittoral species on sandy beaches are expressed as responses to environmental changes and constitute a key factor in their survival and evolution. Two sympatric talitrid amphipods (Talitrus saltator and Britorchestia brito) from a mesotidal exposed sandy beach on the European Atlantic coast (Portugal) were compared as regards orientation and littoral zonation patterns under natural conditions. Orientation experiments were carried out during spring and summer 2011 and 2012 at Quiaios beach, a highly dynamic exposed sandy beach. Multiple regression models were fitted to the angular data and the environmental effects on orientation were investigated for each species. Both talitrids were shown to be well orientated towards the shoreline and finely adapted to the mesotidal environment but a different use of local cues and climatic features between the two species was apparent. T. saltator showed a lower precision in the orientation performance (with a bimodal distribution sea- and land-wards), with less dependence on the sun cues and higher dependence on climatic features. In addition, the zonation of T. saltator was across the land-sea axis during both seasons. For B. brito the landscape vision, sun visibility and the tidal range enhanced the orientation to the shoreline. On this mesotidal Atlantic beach, T. saltator appeared to have a more flexible orientation with respect to B. brito, which appeared to be more dependent on the conditions offered by the intertidal zone, a behaviour confirmed by its restricted zonation below the high tide mark. Consequently, T. saltator showed a more flexible behaviour that may be considered an important evolutionary adaptation to dynamic and mesotidal sandy beaches.

  7. Pervasive evidence for seabed fluid expulsion along upper slope of the U.S. Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Ruppel, C. D.; Kluesner, J. W.; Chaytor, J. D.; Ten Brink, U. S.; Hill, J. C.

    2013-12-01

    Warming-induced hydrate dissociation along the US Atlantic margin (USAM) is poorly understood due to an absence of direct evidence for both in situ methane hydrate and seabed gas venting. Using high-resolution multibeam bathymetric data collected on the shelf-edge and upper slope from North Carolina to Canada, we map more than 5000 pockmarks in water depths of 120 to 700 m. The pockmarks are semicircular, ranging from 50-500 m in diameter, with the vast majority being 100-200 m wide, and 5-15 m in relief. Pockmarks are concentrated in and around canyon heads just seaward of the shelf-edge rollover, but are not found farther downslope. We utilize a dense grid of high-resolution multichannel seismic reflection profiles along the Southern New England stretch of the margin to examine the relationships among the pockmarks, substrate gas/fluid migration, and Pleistocene stratigraphy. By calculating seismic energy and gas-chimney meta-attributes along both profiles we are able to detect high-energy zones and identify probable fluid-migration pathways below the outer shelf and slope. Pockmarks overlie highly disrupted substrate containing abundant evidence for gas pockets (high-amplitude, inverse polarity reflectors) and high probability for fluid chimneys. Approximately coincident with the downslope extent of the pockmark fields (450-600 m depth), a series of enhanced reflectors that were delineated based on attribute analyses, appear within the gas hydrate stability zone (GHSZ) or near its base. The continuation of some of these reflectors upslope beyond the present-day GHSZ, the onset of pockmarks near the upslope extent of the GHSZ, and the widespread occurrence of gas chimneys and other fluid flow features in this same area implies that the GHSZ on this margin may be metastable. As the GHSZ oscillates up and down the slope, gas is released and reformed as new hydrate; associated fluids are inferred to migrate upslope and are expelled within the pockmark field. These

  8. AHC (Active Heave Compensation) - 800 Drilling on the Atlantic (New Jersey) Margin

    NASA Astrophysics Data System (ADS)

    Austin, J. A.

    2004-12-01

    The New Jersey continental shelf, an old, stable passive margin, has been a focus of latest Pleistocene-Holocene sea-level studies for decades, because eustasy is a major driving force in the production of the surficial stratigraphic record there. This margin is also geographically proximal to diverse oceanographic resources - laboratories, ports and ships - so hypothesis-testing using a "natural laboratory" approach has been suitable for data acquisition, analysis and interpretation. The Office of Naval Research has taken advantage of this shelf's characteristics to support collection and interpretation of a huge and diverse suite of geophysical data off New Jersey since the late 1980's - MCS profiles at multiple frequencies, deep-towed boomer and chirp profiles, multibeam bathymetry/ backscatter control, and most recently sediment samples using a lake-drilling system owned and operated by Drilling, Observation and Sampling of the Earth's Continental Crust (DOSECC), Inc., modified with active heave compensation for deployment off the Woods Hole Oceanographic Institution research vessel Knorr. The goal is to understand how the diverse interaction of depositional and erosional processes culminates in the preserved stratigraphic record. A first test of the AHC-800 drilling system took place in November 2001 in Block Island Sound off southern New England, with the following results: 1) some success was achieved in sampling mud, 2) fall weather was a limiting factor (heave compensation limits of 2.44 m in 8 s were often exceeded), 3) the vessel's dynamic positioning (DP) system was not always capable of maintaining station in shifting winds; precise navigation (beyond differential GPS) was required, and 4) the need for automated drillpipe handling to increase efficiency was recognized. A second test took place on the New Jersey shelf in September-October 2002, using updated software, automated pipe handling, and differential GPS navigation supplemented by a POS/MV 320

  9. The Iceland plume in space and time: a Sr-Nd-Pb-Hf study of the North Atlantic rifted margin

    NASA Astrophysics Data System (ADS)

    Kempton, P. D.; Fitton, J. G.; Saunders, A. D.; Nowell, G. M.; Taylor, R. N.; Hardarson, B. S.; Pearson, G.

    2000-04-01

    New Sr-Nd-Pb-Hf data require the existence of at least four mantle components in the genesis of basalts from the the North Atlantic Igneous Province (NAIP): (1) one (or more likely a small range of) enriched component(s) within the Iceland plume, (2) a depleted component within the Iceland plume (distinct from the shallow N-MORB source), (3) a depleted sheath surrounding the plume and (4) shallow N-MORB source mantle. These components have been available since the major phase of igneous activity associated with plume head impact during Paleogene times. In Hf-Nd isotope space, samples from Iceland, DSDP Leg 49 (Sites 407, 408 and 409), ODP Legs 152 and 163 (southeast Greenland margin), the Reykjanes Ridge, Kolbeinsey Ridge and DSDP Leg 38 (Site 348) define fields that are oblique to the main ocean island basalt array and extend toward a component with higher 176Hf/ 177Hf than the N-MORB source available prior to arrival of the plume, as indicated by the compositions of Cretaceous basalts from Goban Spur (˜95 Ma). Aside from Goban Spur, only basalts from Hatton Bank on the oceanward side of the Rockall Plateau (DSDP Leg 81) lie consistently within the field of N-MORB, which indicates that the compositional influence of the plume did not reach this far south and east ˜55 Ma ago. Thus, Hf-Nd isotope systematics are consistent with previous studies which indicate that shallow MORB-source mantle does not represent the depleted component within the Iceland plume [Thirlwall, J. Geol. Soc. London 152 (1995) 991-996; Hards et al., J. Geol. Soc. London 152 (1995) 1003-1009; Fitton et al., Earth Planet. Sci. Lett. 153 (1997) 197-208]. They also indicate that the depleted component is a long-lived and intrinsic feature of the Iceland plume, generated during an ancient melting event in which a mineral (such as garnet) with a high Lu/Hf was a residual phase. Collectively, these data suggest a model for the Iceland plume in which a heterogeneous core, derived from the lower

  10. The North American Atlantic outer continental margin landslides data base: Summary and observations

    SciTech Connect

    Booth, J.S.; O'Leary, D.W. )

    1990-06-01

    A compilation of published data from 179 Quaternary mass movement features was analyzed to determine the common attributes of the slides, to reveal general trends, and to classify and compare slide types. The data set was derived primarily from high-resolution, seismic-reflection data and sidescan-sonar images. In general, evidence of slope failure is found throughout the length of the margin and in all water depths. Slides have occurred on slope angles ranging from 1{degree} to 30{degree} (avg.{approximately}5{degree}); they vary in width from 0.2 to 50 km (avg. {approximately}4 km) and in length from 0.3 to 380 km (avg. {approximately}10 km) and have been reported to be as thick as 650 m. They are slightly more prevalent on open slopes than in other physiographic settings (e.g., canyons, ridges, spurs) and more commonly translational than rotational (i.e., slumps). The slides show no striking affinity for a particular depth range, either in the data set as a whole or when analyzed in terms of physiographic setting, size, slope angle, or other basis for classification. Comparison of slides found on the open slope with those found within canyons shows that the average open slope slide tends to occur at lower slope angles and is much larger (by an order of magnitude) than the average canyon slide. Regardless of the physiographic setting or other characteristic, large-scale slides (area >100 km{sup 2}) rather than small-scale slides (area <10 km{sup 2}) tend to be associated with gentle slopes ({approximately}3-4{degree}) Similarly, slides generated on steep slopes ({>=}10{degree}), regardless of other attributes, tend to be small (avg. area <5 km{sup 2}). With few exceptions, comparisons between slide categories show only minor differences.

  11. Analysis of slope stability, Wilmington to Lindenkohl Canyons, US mid-Atlantic margin

    SciTech Connect

    Almagor, G.; Bennett, R.H.; Lambert, D.N.; Forde, E.B.; Shephard, L.E.

    1984-01-01

    The continental slope gradient in the study area averages 7 to 8/sup 0/. Many valleys, canyons, and occasionally large sediment slumped masses occur. Moderate to steep slopes (19 to 27/sup 0/) as well as very steep to precipitous slopes (> 27/sup 0/) are abundant and occupy about 7% of the investigated area. The surficial sediments are predominantly terrigenous silty clays of medium to high plasticity (I/sub p/ = 10 to 35% w/sub L/ = 30 to 70%), but contain varying quantities of sands. Angles of internal friction are anti phi/sub d/ = 27 to 32/sup 0/, anti phi/sub cu/ = 30 to 33/sup 0/, and phi/sub cu/ = 14 to 17/sup 0/. The sediments are normally to slightly overconsolidated, but some unconsolidated sediments also were identified. c/sub u//anti p/sub 0/ values range from 0.12 to 0.78. An analysis of force equilibrium within the sediments reveals that (a) the gentle slopes in the study area are mostly stable; (b) that the stability of some steep slopes (19 to 27/sup 0/) is marginal; and (c) that on precipitous slopes (> 27/sup 0/) only a thin veneer of sediments can exist. Observations of these slopes during steep dives support these results. The analysis shows that additional accumulation of sediments and small shocks caused by earthquakes or internal waves can cause the slopes to fail. Collapse resulting from liquefaction in the uppermost slope along the canyons and valley axes, where fine sands and silt accumulate, also is likely. 22 references, 9 figures, 2 tables.

  12. Emerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline C.; Seo, Hyodae; Kwon, Young-Oh; Parfitt, Rhys; Brands, Swen; Joyce, Terrence M.

    2017-08-01

    Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.

  13. Pleistocene deformations in the contexte of the Rharb foredeep basin (north western Atlantic Moroccan margin)

    NASA Astrophysics Data System (ADS)

    Maad, N.; Le Roy, P.; Sahabi, M.; Gutscher, M. A.; Dakki, M.; Hssain, M.; van Vliet-Lanoë, B.; Brahim, L. Ait; M'hammdi, N.; Trenteseaux, A.

    2009-04-01

    This study relates to the Cenozoic post rift deformations of Rharb foredeep basin in response to the Europe-Africa convergence. Here we are going to retail the tectonic structures of the Rharb basin, in particular the active front of the Prerifaine nappe in the area of Lalla Zahra. The method is based on the interpretations of the high resolution seismic reflection data acquired during the Protit2 (2003) and the Nomads cruises (2007). The surveys were conducted by the University of Brest in France and the Faculté des Sciences d'El Jadida in Morocco. They allowed to record more than 2000 km of seismic lines through the Rharb continental shelf. The integration of new data with industrial seismic lines provided by ONHYM and field observations collected along the coastline allows us to identify the formation and the recent evolution of the western termination of the Southern Rif Corridor. This coastal basin corresponds to the foredeep basin linked to the Rif Cordillera and extends southwards through the northern Moroccan Meseta that defines the foreland region of the Western Rif (Flinch,93). The integrated study clarifies the post-nappe evolution of the offshore Rharb basin during Neogene and quaternary times. A succession of deformations affect the Rharb basin with separating episodes of relaxation and quiescence. Their ages are based on chronostratigraphical attribution of mean unconformities. A Lower Pliocene episode is characterized by reactivation of faults affecting the Nappe. The uplift of the basin and the individualization of the Lallah Zarah ridge increases and controls the terrigenous fluxes. A Middle Pleistocene still active episode and corresponds to a new uplift of the two margins of the basin. Faulting remains more active in the North along the Lallah Zarah ridge and offshore Larache where large active listric faults are observed. The progressive segmentation of the basin determinates the sedimentary filling with cyclic sequences extending progressively

  14. Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations.

    PubMed

    Nielsen, Søren B; Stephenson, Randell; Thomsen, Erik

    2007-12-13

    The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic reconstructions, can be obtained from the response of the interior of adjacent continental plates to stress changes generated by plate boundary processes. Here we demonstrate a causal relationship between North Atlantic continental rifting at approximately 62 Myr ago and an abrupt change of the intra-plate deformation style in the adjacent European continent. The rifting involved a left-lateral displacement between the North American-Greenland plate and Eurasia, which initiated the observed pause in the relative convergence of Europe and Africa. The associated stress change in the European continent was significant and explains the sudden termination of a approximately 20-Myr-long contractional intra-plate deformation within Europe, during the late Cretaceous period to the earliest Palaeocene epoch, which was replaced by low-amplitude intra-plate stress-relaxation features. The pre-rupture tectonic stress was large enough to have been responsible for precipitating continental break-up, so there is no need to invoke a thermal mantle plume as a driving mechanism. The model explains the simultaneous timing of several diverse geological events, and shows how the intra-continental stratigraphic record can reveal the timing and dynamics of stress changes, which cannot be resolved by reconstructions based only on plate kinematics.

  15. Tsunami Sceanarios from Large Earthquakes in the NE Atlantic: the Gloria Fault and the Southwest Iberia Margin case studies

    NASA Astrophysics Data System (ADS)

    Baptista, Maria Ana; Omira, Rachid; Miranda, Jorge Miguel; Batllo, Josep; Lourenço, Nuno

    2013-04-01

    In the North East Atlantic (NEA) basin, the threat of tsunami of tectonic origin comes from regional sources located in the South West Iberian Margin (SWIM), far-field sources on the Gloria fault and transoceanic tsunamis from the Caribbean region. SWIM and Gloria source areas were responsible for tsunamigenic earthquakes that affected the coasts of NEA basin. The 1755.11.01 and the 1941.11.26 events remain the most well-known (historical and instrumental) tsunamis in these areas. The SWIM area is the most active seismic area in the NEA basin. It WAS the place of several events in historical times, namely: the 60 B.C. tsunami which reported to flood Portugal and Galicia coasts and the 382 AD tsunami that impacted Portugal and the Atlantic coasts of Morocco and Spain. Recently, the 1969.02.28 earthquake triggered a small tsunami recorded in the tide-gauge network of the area. Among the historical events, of the SWIM region, the November, 1st, 1755 tsunami is probably the most destructive in the history of Europe. The Gloria fault is a segment of the Eurasia-Nubia plate boundary. This is a large strike slip fault, located between 24W and 19W, with scarce seismic activity. Nonetheless, it is the location of several large earthquakes that caused tsunamis, namely the 1941.11.26 earthquake with a magnitude of 8.3 and the 7.9 magnitude earthquake of 1975.05.26. In 1941, the sea overtopped some beaches in the north coast of Portugal; during the 1975 event, eyewitness observations report the fast withdraw of the sea and the subsequent influx over the highest water mark. In this paper, we compute far-field and regional tsunami impact in the NEA Basin based on hydrodynamic simulations of two case studies representing the worst case scenarios for SWIM and Gloria. Both scenarios correspond to the largest earthquakes expected to occur along in these areas. These scenarios are consistent with the two past events of November, 1st, 1755 and of November, 24th, 1941. We assess

  16. Complex Modeling of the Seismic Structure of the Trans-European Suture Zone's Margin from Receiver Function Analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, M.; Chrapkiewicz, K.; Lepore, S.; Polkowski, M.; Grad, M.

    2016-12-01

    The Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Paleozoic Platform from the much older Precambrian East European Craton. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) are analyzed to investigate the crustal and upper mantle structure of the margin of the Trans-European Suture Zone (TESZ) in northern Poland. Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. Recorded seismograms are rotated from ZNE to LQT system with method using the properties of RF (Wilde-Piórko, 2015). Different techniques of receiver function interpretation are applied, including 1-D inversion of RF, 1-D forward modeling of RF, 2.5D forward modeling of RF, 1-D join inversion of RF and dispersion curves of surface wave, to find the best S-wave velocity model of the TESZ margin. A high-resolution 3D P-wave velocity model in the area of Poland (Grad et al. 2016) are used as a starting model. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  17. Nitrous oxide measurements during EIFEX, the European Iron Fertilization Experiment in the subpolar South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Walter, Sylvia; Peeken, Ilka; Lochte, Karin; Webb, Adrian; Bange, Hermann W.

    2005-12-01

    We measured the vertical water column distribution of nitrous oxide (N2O) during the European Iron Fertilization Experiment (EIFEX) in the subpolar South Atlantic Ocean during February/March 2004 (R/V Polarstern cruise ANT XXI/3). Despite a huge build-up and sedimentation of a phytoplankton bloom, a comparison of the N2O concentrations within the fertilized patch with concentrations measured outside the fertilized patch revealed no N2O accumulation within 33 days. This is in contrast to a previous study in the Southern Ocean, where enhanced N2O accumulation occurred in the pycnocline. Thus, we conclude that Fe fertilization does not necessarily trigger additional N2O formation and we caution that a predicted radiative offset due to a Fe-induced additional release of oceanic N2O might be overestimated. Rapid sedimentation events during EIFEX might have hindered the build-up of N2O and suggest, that not only the production of phytoplankton biomass but also its pathway in the water column needs to be considered if N2O radiative offset is modeled.

  18. Coupling of Wave and Circulation Models in the Atlantic European North-West Shelf Predicting System

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Krüger, Oliver; Behrens, Arno; Lewis, Huw; Castillo, Juan M.

    2017-04-01

    This study addresses the coupling between wind wave and circulation models on the example of the Atlantic - European North-West Shelf (NWS). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on thermohaline distribution and ocean circulation at the NWS. Four scenarios - including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination of the three wave-induced forcing were performed to study the role of the wave-induced processes on model simulations. The individual and collective role of those processes is quantified and the results are compared with the NWS circulation model results without wave effects as well as against various in-situ measurements. The performance of the forecasting system is illustrated for the cases of several extreme events. The improved skills resulting from the new developments in the forecasting system, in particular during extreme events, justify further enhancements of the coastal operational systems. The study is performed in the frame of the COPERNICUS CMEMS Service Evolution Projects Wave2NEMO and OWAIRS.

  19. Lack of genetic structure in greylag goose (Anser anser) populations along the European Atlantic flyway

    PubMed Central

    Pellegrino, Irene; Follestad, Arne; Boos, Mathieu

    2015-01-01

    Greylag goose populations are steadily increasing in north-western Europe. Although individuals breeding in the Netherlands have been considered mainly sedentary birds, those from Scandinavia or northern Germany fly towards their winter quarters, namely over France as far as Spain. This study aimed to determine the genetic structure of these birds, and to evaluate how goose populations mix. We used mitochondrial DNA and microsatellites from individuals distributed throughout the European Atlantic flyway, from breeding sites in Norway and the Netherlands to stopover and wintering sites in northern and south-western France. The mtDNA marker (CR1 D-Loop, 288 bp sequence, 144 ind.) showed 23 different haplotypes. The genetic distances amongst individuals sampled in Norway, northern France and the Netherlands were low (range 0.012–0.013). Individuals in south-western France showed a slightly higher genetic distance compared to all other sampling areas (ranges 0.018–0.022). The NJ tree does not show evidence of any single clades grouping together all individuals from the same geographic area. Besides, individuals from each site are found in different branches. Bayesian clustering procedures on 14 microsatellites (169 individuals) did not detect any geographically distinct cluster, and a high genetic admixture was recorded in all studied areas except for the individuals from the breeding sites in Norway, which were genetically very close. Estimation of migration rates through Bayesian inference confirms the scenario for the current mixing of goose populations. PMID:26339543

  20. Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps

    USGS Publications Warehouse

    Prouty, Nancy G.; Sahy, Diana; Ruppel, Carolyn D.; Roark, E. Brendan; Condon, Dan; Brooke, Sandra; Ross, Steve W.; Demopoulos, Amanda W.J.

    2016-01-01

    The recent discovery of active methane venting along the US northern and mid-Atlantic margin represents a new source of global methane not previously accounted for in carbon budgets from this region. However, uncertainty remains as to the origin and history of methane seepage along this tectonically inactive passive margin. Here we present the first isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus   sp., and the first direct constraints on the timing of past methane emission, based on samples collected at the upper slope Baltimore Canyon (∼385 m water depth) and deepwater Norfolk (∼1600 m) seep fields within the area of newly-discovered venting. The authigenic carbonates at both sites were dominated by aragonite, with an average  signature of −47‰, a value consistent with microbially driven anaerobic oxidation of methane-rich fluids occurring at or near the sediment–water interface. Authigenic carbonate U and Sr isotope data further support the inference of carbonate precipitation from seawater-derived fluids rather than from formation fluids from deep aquifers. Carbonate stable and radiocarbon ( and ) isotope values from living Bathymodiolus   sp. specimens are lighter than those of seawater dissolved inorganic carbon, highlighting the influence of fossil carbon from methane on carbonate precipitation. U–Th dates on authigenic carbonates suggest seepage at Baltimore Canyon between 14.7±0.6 ka to 15.7±1.6 ka, and at the Norfolk seep field between 1.0±0.7 ka to 3.3±1.3 ka, providing constraint on the longevity of methane efflux at these sites. The age of the brecciated authigenic carbonates and the occurrence of pockmarks at the Baltimore Canyon upper slope could suggest a link between sediment delivery during Pleistocene sea-level lowstand, accumulation of pore fluid overpressure from sediment compaction, and release of overpressure through subsequent venting. Calculations show that

  1. Anomalous Cenozoic Post-Rift Uplift in the North Atlantic; The Role of Mantle Plumes, Transform Margins and Propagating Rifts

    NASA Astrophysics Data System (ADS)

    Clift, P. D.; Dörr, N.; Spiegel, C.

    2014-12-01

    Under classic tectonic theory sedimentary basins and continental margins are expected to experience rapid tectonic subsidence during times of active extension and then slow as subsidence becomes controlled by cooling and thickening of the mantle lithosphere after the end of extension. Subsidence has departed from this simple model in the NE Atlantic because of the temporary buoyant effects of upwelling mantle plumes (e.g., Iceland and that responsible for the emplacement of the Yermak Plateau), with this extra uplift dissipating as the plate move away from the area of upwelling. Permanent uplift has been caused by regional magmatic underplating, again often linked to melting from a plume. Svalbard in particular is anomalous in that it constitutes one of the few subaerial parts of the submarine shelf area of the Barents Sea and had also been affected by transpressional deformation resulting in the formation of the West Spitsbergen Foldbelt (WSFB). One and two-dimensional subsidence analyses were used to quantify and date phases of uplift during the Cenozoic. Svalbard has experienced two phases of uplift, from >36 to ~10 Ma, and since ~10 Ma, which is similar in timing to uplift phases identified in Greenland, Scandinavia and the Barents Shelf. Total uplift across much of the Central Tertiary Basin of Svalbard is >1.5 km and exceeds 2.5 km in parts of the WSFB. Uplift from >36 to ~10 Ma accounts for the greatest part of the vertical motion and like the younger phase reduces in magnitude towards the east. Flexural rigidity of the lithosphere is estimated to be low (Te ≈ 5 km), so that erosion of the WSFB after 36 Ma contributes little to the total amount of uplift. The permanent nature of uplift and the proximity to the Yermak Plateau implies that regional magmatic underplating is the cause of uplift. Plume dynamic support and flexural unloading along the western transform margin of the Eurasian plate can be ruled out as significant influences on vertical motions

  2. Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps

    NASA Astrophysics Data System (ADS)

    Prouty, N. G.; Sahy, D.; Ruppel, C. D.; Roark, E. B.; Condon, D.; Brooke, S.; Ross, S. W.; Demopoulos, A. W. J.

    2016-09-01

    The recent discovery of active methane venting along the US northern and mid-Atlantic margin represents a new source of global methane not previously accounted for in carbon budgets from this region. However, uncertainty remains as to the origin and history of methane seepage along this tectonically inactive passive margin. Here we present the first isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus sp., and the first direct constraints on the timing of past methane emission, based on samples collected at the upper slope Baltimore Canyon (∼385 m water depth) and deepwater Norfolk (∼1600 m) seep fields within the area of newly-discovered venting. The authigenic carbonates at both sites were dominated by aragonite, with an average δ13C signature of - 47 ‰, a value consistent with microbially driven anaerobic oxidation of methane-rich fluids occurring at or near the sediment-water interface. Authigenic carbonate U and Sr isotope data further support the inference of carbonate precipitation from seawater-derived fluids rather than from formation fluids from deep aquifers. Carbonate stable and radiocarbon (δ13C and Δ13C) isotope values from living Bathymodiolus sp. specimens are lighter than those of seawater dissolved inorganic carbon, highlighting the influence of fossil carbon from methane on carbonate precipitation. U-Th dates on authigenic carbonates suggest seepage at Baltimore Canyon between 14.7 ± 0.6 ka to 15.7 ± 1.6 ka, and at the Norfolk seep field between 1.0 ± 0.7 ka to 3.3 ± 1.3 ka, providing constraint on the longevity of methane efflux at these sites. The age of the brecciated authigenic carbonates and the occurrence of pockmarks at the Baltimore Canyon upper slope could suggest a link between sediment delivery during Pleistocene sea-level lowstand, accumulation of pore fluid overpressure from sediment compaction, and release of overpressure through subsequent venting. Calculations show that the

  3. Droughts in the East Asian summer monsoon margin during the last 6 kyrs: Link to the North Atlantic cooling events

    NASA Astrophysics Data System (ADS)

    Fan, Jiawei; Xiao, Jule; Wen, Ruilin; Zhang, Shengrui; Wang, Xu; Cui, Linlin; Li, He; Xue, Dingshuai; Yamagata, Hideki

    2016-11-01

    Teleconnections to the high latitudes, forcing by the tropical oceans and solar variability have all been suggested as dominant factors in the sub-millennial global climate changes, yet there is little consensus as to the relative importance of these factors for the East Asian summer monsoon (EASM) variability. This study presents the results of high-resolution analyses of Ca and Mg concentrations, Mg/Ca ratio, δ18O and δ13C values of endogenic calcites from a sediment core from Dali Lake in the EASM margin, in order to investigate the sub-millennial EASM variability and its possible driving forces during the last 6 kyrs. Increases in these chemical proxy data were interpreted as drought events in the region due to the intensive evaporation losses overwhelming the water input to the lake. The chemical proxy data in this study combined with multi-proxy indicators including grain size component and total organic carbon concentrations from the same sediment core imply that declines in the EASM intensity may have played a dominant role in triggering the drought events during the last 6 kyrs. The results indicate that the EASM intensity significantly declined at the intervals of 5.8-4.75, 3.2-2.8, 1.65-1.15 and 0.65-0.2 kyrs BP. Large declines in the EASM intensity during the last 6 kyrs correspond in time to occurrences of ice-rafted debris in the North Atlantic, indicating that millennial-to-centennial scale changes in the EASM intensity were mainly controlled by climatic processes occurring in the northern high latitudes. These data imply that persistent global warming may be favorable for the strengthening of the EASM circulation and for the transportation of more rainfall to the semi-arid regions of northern China on sub-millennial scales.

  4. Rise and demise of the Bahama-Grand Banks gigaplatform, northern margin of the Jurassic proto-Atlantic seaway

    USGS Publications Warehouse

    Poag, C. Wylie

    1991-01-01

    An extinct, > 5000-km-long Jurassic carbonate platform and barrier reef system lies buried beneath the Atlantic continental shelf and slope of the United States. A revised stratigraphic framework, a series of regional isopach maps, and paleogeographic reconstructions are used to illustrate the 42-m.y. history of this Bahama-Grand Banks gigaplatform from its inception in Aalenian(?) (early Middle Jurassic) time to its demise and burial in Berriasian-Valanginian time (early Early Cretaceous). Aggradation-progradation rates for the gigaplatform are comparable to those of the familiar Capitan shelf margin (Permian) and are closely correlated with volumetric rates of siliciclastic sediment accumulation and depocenter migration. Siliciclastic encroachment behind the carbonate tracts appears to have been an important impetus for shelf-edge progradation. During the Early Cretaceous, sea-level changes combined with eutrophication (due to landward soil development and seaward upwelling) and the presence of cooler upwelled waters along the outer shelf appear to have decimated the carbonate producers from the Carolina Trough to the Grand Banks. This allowed advancing siliciclastic deltas to overrun the shelf edge despite a notable reduction in siliciclastic accumulation rates. However, upwelling did not extend southward to the Blake-Bahama megabank, so platform carbonate production proceeded there well into the Cretaceous. Subsequent stepwise carbonate abatement characterized the Blake Plateau Basin, whereas the Bahamas have maintained production to the present. The demise of carbonate production on the northern segments of the gigaplatform helped to escalate deep-water carbonate deposition in the Early Cretaceous, but the sudden augmentation of deep-water carbonate reservoirs in the Late Jurassic was triggered by other agents, such as global expansion of nannoplankton communities. ?? 1991.

  5. Thermal history, exhumation and long-term landscape evolution of the South Atlantic passive continental margin, Kaoko Belt, NW Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Glasmacher, Ulrich A.; Hackspacher, Peter C.; Schneider, Gabriele; Zentner, Henning; Karl, Markus

    2014-05-01

    After the Damara Orogeny at the end of the Neoproterozoic the Kaoko Belt in northwestern Namibia was affected by deep erosion of the Damara Sequence, followed by the depositon of the Karoo Supergroup from Permo-Carboniferous to Early Cretaceous. The lithostratigraphic units consist of Late Proterozoic to Cambrian metamorphosed rocks and intrusive complexes of the Damara Group, with ages of 534 (7) Ma to 481 (25) Ma (Miller 1983), that are unconformably overlain by terrestrial deposits of the Karoo Supergroup (Stollhofen 1999), comprising two flood basalt events: the Karoo flood basalts, at 183 (1) Ma (Duncan et al. 1997), and the Early Cretaceous Paraná-Etendeka flood basalts, at 132 (1) Ma (Renne et al. 1996). The latter marking the rift stage of the opening of the South Atlantic. The "passive" continental margin along the Kaoko Belt in northern Namibia is a perfect location to quantify exhumation and uplift rates, model the long-term landscape evolution and provide information about the major processes controlling the landscape evolution in this region. The poster/talk will present thermochronological data, t-T-models and exhumation rates for the Kaoko belt, NW Namibia. References Miller, R. M., 1983. Evolution of the Damara Orogen, Vol. 11, Geol. Soc., South Africa Spec. Pub.. Renne, P.R., Glen, J.M., Milner, S.C., Duncan, A.R., 1996. Age of Etendeka flood volcanism and associated intrusions in southwestern Africa, Geology 24 (7): 659- 662. Duncan, R., Hooper, P., Rehacek, J., March, J. and Duncan, A., 1997. The timing and duration of the Karoo igneous event, southern Gondwana, J. Geophys. Res. 102: 18127-18138. Stollhofen, H., 1999. Karoo Synrift-Sedimentation und ihre tektonische Kontrolle am entstehenden Kontinentalrand Namibias, Z.dt.geol.Ges. 149: 519-632.

  6. Sea floor cycling of organic matter in the continental margin of the mid-Atlantic Bight. Final report, May 1, 1995--April 30, 1998

    SciTech Connect

    Jahnke, R.A.

    1998-12-31

    The objective of this project was to examine quantitatively the cycling of organic matter at the sea floor of the mid-Atlantic Bight continental margin. This information would be used to better understand sedimentary geochemical processes and, when used in conjunction with other measurements made within the DOE Ocean Margins Program, would be used to constrain the offshore and surface-to-deep water transport of organic carbon in this region. The latter information is critical in assessing the role of continental margins in the sequestration of anthropogenic carbon dioxide, the dominant greenhouse gas, in the deep ocean. Because the build-up of greenhouse gases in the atmosphere may cause significant changes in climate, this project had major societal importance.

  7. The role of the North Atlantic Oscillation in European climate projections

    NASA Astrophysics Data System (ADS)

    Deser, Clara; Hurrell, James W.; Phillips, Adam S.

    2016-12-01

    This study highlights the expected range of projected winter air temperature and precipitation trends over the next 30-50 years due to unpredictable fluctuations of the North Atlantic Oscillation (NAO) superimposed upon forced anthropogenic climate change. The findings are based on a 40-member initial-condition ensemble of simulations covering the period 1920-2100 conducted with the Community Earth System Model version 1 (CESM1) at 1° spatial resolution. The magnitude (and in some regions, even the sign) of the projected temperature and precipitation trends over Europe, Russia and parts of the Middle East vary considerably across the ensemble depending on the evolution of the NAO in each individual member. Thus, internal variability of the NAO imparts substantial uncertainty to future changes in regional climate over the coming decades. To validate the model results, we apply a simple scaling approach that relates the margin-of-error on a trend to the statistics of the interannual variability. In this way, we can obtain the expected range of projected climate trends using the interannual statistics of the observed NAO record in combination with the model's radiatively-forced response (given by the ensemble-mean of the 40 simulations). The results of this observationally-based estimate are similar to those obtained directly from the CESM ensemble, attesting to the fidelity of the model's representation of the NAO and the utility of this approach. Finally, we note that the interannual statistics of the NAO and associated surface climate impacts are subject to uncertainty due to sampling fluctuations, even when based on a century of data.

  8. Major controlling factors on hydrocarbon generation and leakage in South Atlantic conjugate margins: A comparative study of Colorado, Orange, Campos and Lower Congo basins

    NASA Astrophysics Data System (ADS)

    Marcano, Gabriela; Anka, Zahie; di Primio, Rolando

    2013-09-01

    We present a supra-regional comparative study of the major internal and external factors controlling source rock (SR) maturation and hydrocarbon (HC) generation and leakage in two pairs of conjugate margins across the South Atlantic: the Brazil (Campos Basin)-Angola (Lower Congo Basin) margins located in the "central segment", and the Argentina (Colorado Basin)-South Africa (Orange Basin) in the "southern segment". Our approach is based on the analysis and integration of borehole data, 1D numerical modeling, 2D seismic reflection data, and published reports. Coupling of modeling results, sedimentation rate calculation and seal-bypass system analysis reveal that: (1) oil window is reached by syn-rift SRs in the southern segment during the Early to Late Cretaceous when thermal subsidence is still active, while in the central segment they reach it in Late-Cretaceous-Neogene during a salt remobilization phase, and (2) early HC generation from post-rift SRs in the southern segment and from all SRs in the central segment appears to be controlled mainly by episodes of increased sedimentation rates. The latter seems to be associated with the Andes uplift history for the western South Atlantic basins (Campos and Colorado) and to a possibly climate-driven response for the eastern South Atlantic basins (Orange and Lower Congo). Additionally, we observe that the effect of volcanism on SR maturation in the southern segment is very local. The comparison of Cretaceous mass transport deposit (MTD) episodes with HC peak of generation and paleo-leakage indicators in the southern segment revealed the possible causal effect that HC generation and leakage have over MTD development. Interestingly, Paleogene leakage indicators, which were identified in the Argentina-South Africa conjugate margins, occur contemporaneously to low sedimentation rate periods. Nonetheless, present-day leakage indicators which were also identified in both pairs of conjugate margins might be related to seal

  9. Accretion of a rifted passive margin: The Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides)

    NASA Astrophysics Data System (ADS)

    Oncken, O.; von Winterfeld, C.; Dittmar, U.

    1999-02-01

    In the western Rhenish Massif, the Rhenohercynian fold and thrust belt of the Middle European Varsicides exposes a telescoped complete Devonian to Early Carboniferous passive margin. This permits the analysis of geometry and kinematic processes of passive margin accretion to an erogenic wedge. During Variscan collision (330-300 Ma), the sedimentary cover of the passive margin was shortened by some 50% or 180 km. Crustal scale balancing and restoration reveals a wide, symmetric rift with a central graben. A marginal plateau separated this failed Lower Devonian rift from an Emsian-Middle Devonian oceanic basin in the south, remnants of which are preserved in the southernmost imbricates and the Giessen-Harz nappes. The seismically well-imaged Aachen-Midi detachment (Faille du Midi) acted as the basal decollement of this thin- to thick-skinned orogenic wedge. It shows a ramp and flat geometry from the blind tip down to middle crustal levels. Owing to its position below the base of the basin fill, the thick synrift sequence and structure controlled structural evolution during contraction by localizing thrust branch lines and by inversion of rift structures, synthetic to the subduction direction, with formation of basement footwall shortcuts. Moreover, the three-dimensional detachment geometry shows large-scale oblique ramp-flat features which control the architecture of the belt and the distribution of metamorphic grade. Rocks and fabrics from the detachment show that the latter was located at the transition into the ductile field at the fossil 300°-400°C isotherm. In the restored section, the detachment trajectory displays a saucershaped geometry rising to the surface at the rear and at the front. This suggests that the basal detachment propagated into the passive margin by ductile failure during lithospheric flexure under the load of an advancing upper plate. The regional pattern of synkinematic metamorphic grade shows varying modes of margin accretion: basal

  10. A two-tier atmospheric circulation classification scheme for the European-North Atlantic region

    NASA Astrophysics Data System (ADS)

    Guentchev, Galina S.; Winkler, Julie A.

    A two-tier classification of large-scale atmospheric circulation was developed for the European-North-Atlantic domain. The classification was constructed using a combination of principal components and k-means cluster analysis applied to reanalysis fields of mean sea-level pressure for 1951-2004. Separate classifications were developed for the winter, spring, summer, and fall seasons. For each season, the two classification tiers were identified independently, such that the definition of one tier does not depend on the other tier having already been defined. The first tier of the classification is comprised of supertype patterns. These broad-scale circulation classes are useful for generalized analyses such as investigations of the temporal trends in circulation frequency and persistence. The second, more detailed tier consists of circulation types and is useful for numerous applied research questions regarding the relationships between large-scale circulation and local and regional climate. Three to five supertypes and up to 19 circulation types were identified for each season. An intuitive nomenclature scheme based on the physical entities (i.e., anomaly centers) which dominate the specific patterns was used to label each of the supertypes and types. Two example applications illustrate the potential usefulness of a two-tier classification. In the first application, the temporal variability of the supertypes was evaluated. In general, the frequency and persistence of supertypes dominated by anticyclonic circulation increased during the study period, whereas the supertypes dominated by cyclonic features decreased in frequency and persistence. The usefulness of the derived circulation types was exemplified by an analysis of the circulation associated with heat waves and cold spells reported at several cities in Bulgaria. These extreme temperature events were found to occur with a small number of circulation types, a finding that can be helpful in understanding past

  11. The joint inversion of phase dispersion curves and receiver functions at the margin of East European Craton

    NASA Astrophysics Data System (ADS)

    Chrapkiewicz, Kajetan; Wilde-Piórko, Monika; Polkowski, Marcin

    2017-04-01

    For the first time a joint inversion of Rayleigh-wave phase velocity dispersion curves and P receiver functions has been applied to study the south-western margin of East European Craton (EEC) in Poland. The area of investigation lies in the vicinity of Trans-European Suture Zone (TESZ) regarded as the most prominent lithospheric boundary in Europe separating the Precambrian EEC from assemblage of Phanerozoic-accreted terranes (e.g. Pharaoh, 1999). While the sedimentary and crystalline crust of EEC's margin has been precisely recognized with the borehole and refraction data compilation (Grad et al., 2016), the structure of lithosphere-asthenosphere boundary (LAB) underneath remains poorly understood. To address this issue, the passive seismic experiment „13 BB Star" (2013-2016) was carried out in northern Poland - just at the margin of EEC. For each station of „13 BB Star" network we obtained a credible 1-D shear-wave velocity model with linearized damped least-squares inversion (Herrmann, 2013) down to the depth of 250 km. The joint inversion of receiver functions and surface-wave dispersion curves has proved to be a natural approach when inferring the nature of cratonic LAB (e.g. Bodin et al., 2014). It's sensitive to both absolute velocities and sharp discontinuities and thus provides a better vertical resolution compared to surface wave data alone. The results indicate the presence of steady 4 per cent grow in the shear-wave velocity between 120 and 180 km depth and gradual 6 per cent drop over 180-220 km depth range. The latter may be interpreted as the LAB with depth and absolute-velocity change similar to those reported for other cratons (Kind et al., 2012). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  12. Factors associated with quality of services for marginalized groups with mental health problems in 14 European countries

    PubMed Central

    2014-01-01

    Background Different service characteristics are known to influence mental health care delivery. Much less is known about the impact of contextual factors, such as the socioeconomic circumstances, on the provision of care to socially marginalized groups. The objectives of this work were to assess the organisational characteristics of services providing mental health care for marginalized groups in 14 European capital cities and to explore the associations between organisational quality, service features and country-level characteristics. Methods 617 services were assessed in two highly deprived areas in 14 European capital cities. A Quality Index of Service Organisation (QISO) was developed and applied across all sites. Service characteristics and country level socioeconomic indicators were tested and related with the Index using linear regressions and random intercept linear models. Results The mean (standard deviation) of the QISO score (minimum = 0; maximum = 15) varied from 8.63 (2.23) in Ireland to 12.40 (2.07) in Hungary. The number of different programmes provided was the only service characteristic significantly correlated with the QISO (p < 0.05). The national Gross Domestic Product (GDP) was inversely associated with the QISO. Nearly 15% of the variance of the QISO was attributed to country-level variables, with GDP explaining 12% of this variance. Conclusions Socioeconomic contextual factors, in particular the national GDP are likely to influence the organisational quality of services providing mental health care for marginalized groups. Such factors should be considered in international comparative studies. Their significance for different types of services should be explored in further research. PMID:24490720

  13. Variability of river discharge and Atlantic-water inflow at the Laptev Sea continental margin during the past 15,000 years: implications from maceral and biomarker records

    NASA Astrophysics Data System (ADS)

    Boucsein, B.; Fahl, K.; Stein, R.

    2000-08-01

    In order to reconstruct the depositional environment from the Laptev Sea continental slope and shelf during the past 15,000 years BP maceral analysis was carried out on two sediment cores (PS2458-4, PS2725-5) and compared with organic-geochemical parameters. During the transition from the Last Glacial to the Holocene the environment of the Laptev Sea shelf was controlled by the post-glacial sea level rise, variations in river discharge, surface-water productivity, and Atlantic-water inflow along the Eurasian continental margin. Based on our results, we identify the following significant changes of the environment: (a) at approximately 13,500 years BP the first step of deglaciation (Termination 1a) is documented by the deposition of marine and fresh-water organic matter; (b) at approximately 10,400 years BP the first post-glacial influence of Atlantic-water inflow along the Eastern Laptev Sea continental margin is indicated by an increase in marine organic matter; (c) at the beginning of the Holocene an increased fluvial supply is documented by an increase in fresh-water alginite; and (d) since 9500-8000 years BP modern marine conditions are established at the Laptev Sea continental margin as documented in increased amounts of marine macerals, biomarkers (dinosterol, brassicasterol, short-chain fatty acids), and dinoflagellate cysts.

  14. Long-term subsidence, cooling, and exhumation history along the South Atlantic passive continental margin in NW-Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Glasmacher, Ulrich Anton; Salomon, Eric; Hackspacher, Peter Christian; Schneider, Gabi

    2016-04-01

    In northwest Namibia the Kaoko Belt is one of the most important Precambrian crustal segments that have stored the subsidence, cooling, and exhumation history of Namibia since the Neoproterozoic. ZFT-ages are processed to give new insights on this early evolution. Paleozoic to Mesozoic sedimentary rocks of the Karoo Supergroup and the Lower Cretaceous volcanic rocks of the Etendeka sequence overlay the Proterozoic metamorphic and intrusive rocks (1). New apatite fission-track (AFT) ages range from 390.9 (17.9) Ma to 80.8 (6.0) Ma. Along the coast apatites of Proterozoic rock samples reveal the youngest ages. Further inland the ages increase significantly. In addition, rapid change of AFT-ages occurs on both sides of major thrust and shear zones. Using the oldest thermochronological data the revealed t-T paths indicate a long era of exhumation, starting at the end of the Pan-African Orogeny in the Neoproterozoic and continuing into the Permo-Carboniferous. The subsequent sedimentation of the Karoo Supergroup initiates a new era of subsidence until the end of Triassic (2). The subsequent period of denudation ends abruptly with the rapid deposition of the Etendeka basalts in the Early Cretaceous (3). The maximum thickness of the Etendeka volcanic suite has been estimated, using the apatite fission-track data, to about 3.2 (1.2) km. With the ongoing opening of the South Atlantic and the formation of the continental margin the Kaoko Belt went through a rapid cooling event starting ~ 130 Ma and ending ~ 80 Ma, at a mean rate of 0.034 km/Ma for the western, and 0.018 km/Ma for the northern and eastern Kaoko Belt. This cooling event was accompanied by a reactivation of major fault zones, like the Purros Mylonite Zone (4). Thereafter, stable conditions were established, with denudation rates generally lower than 0.010 km/Ma, until the Neogene, where a second cooling event led to increased exhumation rates around 0.042 km/Ma. The total amount of denudation in the last 130 Ma

  15. Heterogeneous Cenozoic cooling of central Britain: insights into the complex evolution of the North Atlantic passive margin

    NASA Astrophysics Data System (ADS)

    Łuszczak, Katarzyna; Persano, Cristina; Stuart, Finlay

    2015-04-01

    The western flank of the North Atlantic passive margin has experienced multiple episodes of rock uplift and denudation during the Cenozoic that have been locally variable in scale. Two regional scale exhumation events have been identified: early Palaeogene and Neogene [see 1 for review]. The former has been identified both onshore and offshore and it appears to be temporally coincident with basaltic magmatism related to the arrival of the proto-Iceland mantle plume beneath thinned continental lithosphere, which may have cause long wavelength, low amplitude dynamic uplift. Quantifying the amount of early Palaeogene exhumation using mineral thermochronometers may be complicated by elevated heat flow. The magnitude and timing of exhumation during the Neogene is even less clear, as is the driving mechanism. Quantifying the amount of early Palaeogene exhumation, determining the precise timing as well as the amount of uplift and erosion in the Neogene, require detailed application of low temperature thermochronometers. Here we present the first multiple low temperature thermochronometer study from S Scotland, N England and N Wales. New apatite fission track (AFT) data are integrated with apatite and zircon (U-Th-Sm)/He (AHe and ZHe, respectively) ages to establish regional rock cooling history from 200°C to 30°C. To precisely constrain the early Palaeogene cooling history, and to better define the possible Neogene cooling event, >20 single grain AHe ages have been produced on key samples and modelled using the newly codified HelFrag technique. The new AFT and AHe ages confirm earlier studies that show the Lake District and North Pennines experienced rapid cooling from >120°C in the Palaeogene. The amount of cooling/exhumation gradually decreases northwards into S Scotland and southwards in N Wales; there is no evidence for the rapid Palaeogene event in areas ~70 km from the Lake District centre. Inverse modelling of the AHe and AFT data suggest that the rapid cooling

  16. Long-term subsidence, cooling, and exhumation history along the South Atlantic passive continental margin in NW-Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Glasmacher, Ulrich Anton; Salomon, Eric; Hackspacher, Peter Christian; Schneider, Gabi

    2017-04-01

    In northwestern Namibia the Kaoko Belt is one of the most important Precambrian crustal segments that have stored the subsidence, cooling, and exhumation history of Namibia since the Neoproterozoic. ZFT-ages, with ages between 292.7 (46.0) and 436.8 (45.9) Ma, are giving new insights on this early evolution. Paleozoic to Mesozoic sedimentary rocks of the Karoo Supergroup and the Lower Cretaceous volcanic rocks of the Etendeka sequence overlay the Proterozoic metamorphic and intrusive rocks (1). New apatite fission-track (AFT) ages range from 390.9 (17.9) Ma to 80.8 (6.0) Ma. Along the coast apatites of Proterozoic rock samples reveal the youngest ages. Further inland the ages increase significantly. In addition, rapid change of AFT-ages occurs on both sides of major thrust and shear zones. Using the oldest thermochronological data the revealed t-T paths indicate a long era of exhumation, starting at the end of the Pan-African Orogeny in the Neoproterozoic and continuing into the Permo-Carboniferous. The subsequent sedimentation of the Karoo Supergroup initiates a new era of subsidence until the end of Triassic (2).The subsequent period of denudation ends abruptly with the rapid deposition of the Etendeka basalts in the Early Cretaceous (3). The maximum thickness of the Etendeka volcanic suite has been estimated, using the apatite fission-track data, to about 3.2 (1.2) km. With the ongoing opening of the South Atlantic and the formation of the continental margin the Kaoko Belt went through a rapid cooling event starting 130 Ma and ending 80 Ma, at a mean rate of 0.034 km/Ma for the western, and 0.018 km/Ma for the northern and eastern Kaoko Belt. This cooling event was accompanied by a reactivation of major fault zones, like the Purros Mylonite Zone (4). Thereafter, stable conditions were established, with denudation rates generally lower than 0.010 km/Ma, until the Neogene, where a second cooling event led to increased exhumation rates around 0.042 km/Ma. The total

  17. Controls of asymmetrical opening on rift and sag basins of South Atlantic conjugate margins: Insights from gravity transects and mapping using grids of seismic reflection data

    NASA Astrophysics Data System (ADS)

    Loureiro, P.; Mann, P.

    2015-12-01

    A recent model by Brune et al. (2014) explains the asymmetrical, conjugate margins of the South Atlantic as the result of passive rift migration with sequential normal faulting during early continental breakup. The onset of continental rifting in the South Atlantic began in the Valanginian about 138 Ma. Flood basalts - originating from the eruption of the Tristan Da Cunha plume on both conjugate margins - have been dated between 138-128 Ma and indicating a transition from passive rifting controlled by plate motions to active rifting controlled by a mantle plume. Using seven 2D gravity transects ranging from 200-1000 km in length, we identify variations in crustal thickness and depth to Moho for conjugate margins in Brazil and Angola. Low pass filters applied to a regional satellite derived gravity grid reveal now inactive, sequential normal faults. The modeled gravity transects refine the extent of hyperextended continental crust and allow for the identification of hanging-wall/ footwall relationships. For the Santos-Namibe conjugate margin, we propose that the Santos basin is the footwall of an asymmetrical rift system spanning a 200-km-wide zone and that the Namibe basin is the hanging wall with a 125-km-wide rift. For the Campos-Benguela conjugate margin 400 km to the north, we propose the Campos basin is the hanging wall with a 150-km-wide rift zone. Well data shows that a thicker carbonate sag basin (135- 325 m) and overlying salt basin (up to 2 km) are associated with the footwall blocks of Kwanza and Santos while thinner carbonate sag basins (15-75 m) and overlying salt (up to 1.5 km) are associated with hanging wall blocks in accord with model predictions for early opening.

  18. Deep structure of the U.S. Atlantic continental margin, offshore South Carolina, from coincident ocean bottom and multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Holbrook, W. Steven; Reiter, E. C.; Purdy, G. M.; Sawyer, D.; Stoffa, P. L.; Austin, J. A., Jr.; Oh, J.; Makris, J.

    1994-05-01

    We present the results of a combined multichannel seismic reflection (MCS) and wide-angle, ocean bottom seismic profile collected in 1988 across the Carolina Trough on the U.S. Atlantic continental margin. Inversion of vertical-incidence and wide-angle travel time data has produced a velocity model of the entire crust across the continent-ocean transition. The margin consists of three structural elements: (1) rifted continental crust, comprising 1-4 km of post-rift sedimentary rocks overlying a 30-34 km thick subsedimentary crust, (2) transitional crust, a 70- to 80-km-wide zone comprising up to 12 km of postrift sedimentary rocks overlying a 10- to 24-km-thick subsedimentary crust, and (3) oceanic crust, comprising 8 km of sedimentary rocks overlying an 8-km-thick crystalline crust. The boundary between rifted continental and transitional crust, marked by the Brunswick magnetic anomaly, represents an abrupt change in physical properties, with strong lateral increases in seismic velocity, density, and magnetic susceptibility. The transitional crust contains mid-crustal seaward-dipping reflections observed on the MCS section and has seismic velocities of 6.5-6.9 km/s in the midcrust and 7.2-7.5 km/s in the lower crust. Modeling of potential field data shows that transitional crust also produces the prominent, margin-parallel gravity anomaly and the Brunswick and East Coast magnetic anomalies. These observations support the interpretation that the transitional crust was formed by magmatism during continental breakup. The prodigious thickness (up to 24 km) of igneous material rivals that interpreted on continental margins of the North Atlantic (e.g., Hatton Bank and Vøring Plateau), which formed in the vicinity of the Iceland hotspot. These observations, when combined with other transects across the margin, confirm previous suggestions that the U.S. Atlantic margin is strongly volcanic and further imply that the magmatism was not the result of a long-lived mantle

  19. Thick and thin: Crust and lithospheric structure of the Mid-Atlantic Margin from the MAGIC seismic array

    NASA Astrophysics Data System (ADS)

    Benoit, M. H.; Long, M. D.; Evans, R. L.; Ford, H. A.; Elsenbeck, J.

    2016-12-01

    The eastern United States continental margin has undergone two full supercontinental cycles over the last billion years. While the scars of the repeated episodes of rifting, subduction, and collision are evident in the surficial geology of the eastern United States, the deeper structure was also altered during this tectonism yet is under-studied. We present results of both Ps and Sp receiver function stacking of seismic data recorded from the MAGIC EarthScope Flex Array, composed of 27 STS-2 broadband stations located in a linear array that spans SE-NE from Richmond,VA to Fort Wayne, Indiana. The array traverses several physiographic provinces, including the Atlantic Piedmont, Blue Ridge, Appalachian Valley and Ridge, and Appalachian Plateau. Preliminary results show that there are significant variations in crustal thickness across domains, including a 15km "step" in the Moho between the eastern Piedmont and Valley and Ridge regions, near the location of the Virginia seismic zone and 2011 5.8 Mineral earthquake. Additionally, our results suggest that the Appalachian Mountains are overcompensated isostatically, and that surface elevations are 200-600 meters lower than would be expected for average crustal densities. We hypothesize that the lower crust may be denser and stronger than typical lower crust, due to incremental garnet growth after orogensis (Williams et al., 2014). The Appalachians provide an interesting counterexample to the Sierra Nevada, which have a thinner root than expected for their elevation, and have been hypothesized to have undergone some kind of delamination process. Additionally, thinned crust in western West Virginia corresponds spatially with the Rome Trough, a Cambrian-aged rift. CCP stacks of Sp receiver functions, along with 2D models of resistivity from MT data, suggest that lithospheric thickness varies considerably along the array. The most striking feature is that the lithosphere appears to be thinnest beneath the Appalachian

  20. Post-rift uplift, paleorelief and sedimentary fluxes: the case example of the African margin of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.; Dauteuil, O.

    2012-04-01

    volume of eroded sediments. This can explain abnormal stratigraphic response along the African South Atlantic passive margins, such as thin clayey basin floor fans at time of uplift and erosion of weathering profiles. Keywords: Africa, Cenozoic, Siliciclastic sediment fluxes, Tectonics, Climate

  1. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains

  2. The problems of the kinematic restoration of hyper-extended rifted margins: the example of the southern North-Atlantic

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Tugend, Julie; Kusznir, Nick

    2016-04-01

    The development in space and time of hyper-extended lithosphere is fundamental to our understanding of the 3D development and propagation of rifting and lithospheric breakup. Hyper-extended domains, consisting of extremely thinned continental crust and exhumed mantle with possible minor magmatic addition, often extend over wide areas, sometimes up to 400 km, continentward of the first unequivocal oceanic crust. Although considerable work has been done in the last decades to describe the evolution of hyper-extended domains, there is yet no generally accepted approach to kinematically restore them. Indeed, in contrast to oceanic crust, where the kinematics can be defined by isochronal magnetic anomalies, in hyper-extended well-defined consistent magnetic anomalies are lacking. Therefore in order to restore these domains, we need to define alternative approaches. The main questions to be addressed to solve this problem are: 1) how can hyper-extended domains be restored, 2) which kinematic markers could be used 3) what are the implications for the 3D propagation of hyper-extended systems. We use the example of the southern North-Atlantic to develop and apply an approach to kinematically analyse the evolution of hyper-extended domains. We combine seismic dataset and drill hole data available with crustal thickness maps determined from gravity inversion to define and map rift domains and rift domain boundaries. We distinguish between the proximal domain (weakly thinned continental crust), thinned continental crust, exhumed mantle, and oceanic crust. From this mapping, we observe that the width of each domain is variable along the margins and that domain boundaries are not always straight lines. It implies that these boundaries, in particular the edge of the continental crust cannot be easily superimposed at a specific time. Therefore, rift domain boundaries cannot be considered as isochrones and do not represent kinematical markers. The restoration of hyper

  3. ENSO influence on the North Atlantic European climate: a non-linear and non-stationary approach

    NASA Astrophysics Data System (ADS)

    López-Parages, Jorge; Rodríguez-Fonseca, Belén; Dommenget, Dietmar; Frauen, Claudia

    2016-10-01

    El Niño Southern Oscillation (ENSO) impact on the North Atlantic European sector (NAE) is still under discussion. Recent studies have found a non stationary feature of this teleconnection, suggesting an effective modulating role of the ocean mean state. Nevertheless, physical explanations about the underlying mechanisms have been little studied in the available literature. In addition, ENSO events show different SST spatial patterns, phases, and amplitudes, which can also influence on the related remote impacts. In view of all this, in the present study a set of partially coupled experiments have been performed with a global atmospheric general circulation model in which different SST ENSO patterns are superimposed over distinct Pacific and Atlantic SST mean states. These SST background conditions are constructed according to the observational difference between periods with a distinct impact of ENSO on the leading Euro-Mediterranean rainfall mode in late winter-early spring. Our results point to two distinct mechanisms associated with ENSO that can be modulated by the SST mean state: (1) the thermally driven direct circulation (Walker and Hadley cells) connecting the Atlantic and Pacific basins, and (2) the Rossby wave propagation from the tropical Pacific to the North Atlantic. The former elucidates that the positive NAO-like pattern usually related to La Niña events could be only valid for selected decades. The latter explains a reinforced signature of Eastern Pacific Niños on the Euro-Mediterranean rainfall when the tropical Pacific is warmer than usual and the North Atlantic is colder than usual. This feature is consistent with the changing ENSO impact identified in previous studies and demonstrates how the ENSO teleconnection with the NAE climate at interannual timecales could be modulated by multidecadal changes in the SST. According to our results, the assumption of stationarity which is still common to many studies of ENSO teleconnections clearly has to

  4. On the influence of multi-decadal North Atlantic climate variations on drought occurrence in the European Greater Alpine Region

    NASA Astrophysics Data System (ADS)

    Haslinger, Klaus; Schöner, Wolfgang; Blöschl, Günter

    2017-04-01

    The development of drought is characterized by an evolving precipitation deficit taking place on different spatial and temporal scales. As recent studies show, meteorological drought characteristics, like intensity, seasonality and severity, exhibit multi-decadal changes. Internal variations of the climate system and the associated changes of dominant weather regimes are therefore considered the main driver of these drought features. In this study we analyze the connection between drought characteristics and large scale atmospheric and oceanic modes particularly those of the North Atlantic which are heavily influencing European climate. We use the dataset of Haslinger and Blöschl (2017) which consists of a collection of meteorological drought events occurring in the European Greater Alpine Region (GAR) over the past 210 years. Every event is determined by an extent in space and time and certain attributes as duration, intensity, temperature anomaly, region of most impact etc. In addition the monthly time series of the North Atlantic Oscillation Index (NAO) and the Atlantic Multidecadal Oscillation Index (AMO) are used. Preliminary results show that late winter and spring droughts are associated with a positive phase of the NAO, which is particularly the case for the more continentally and Mediterranean influenced areas of the GAR. A regression analysis of the 30-year running mean NAO Index and drought intensities reveal a strong connection (r2 = 0.7) from 1820 until 1960. However, afterwards the correlation drops significantly (r2 = 0.3). This abrupt change might indicate a general regime shift considering long-term precipitation characteristics in the GAR. Haslinger K. and G Blöschl (2017): Space-time patterns of meteorological drought events in the European Greater Alpine Region, in preparation for Water Resources Research.

  5. Si-WEBS, a European network for the study of Si fluxes on continental margins

    NASA Astrophysics Data System (ADS)

    Ragueneau, O.; Si-Webs Team

    2003-04-01

    Diatoms play an essential role in the export of carbon (C) towards both higher trophic levels and the deep ocean. They have a crucial need for silicon (Si) to build their frustule, but this element has clearly been neglected in studies of carbon and nutrient (N, P) fluxes in continental margins. Over the last 20 years however, coastal ecosystems of temperate regions became particularly sensitive to declining Si:N and Si:P nutrient ratios. Such declines have been related to increased eutrophication and the build-up of dams in river systems. As a result of these anthropogenic perturbations, many ecosystems have switched from nitrate limitation to silicic acid (DSi) limitation, with important consequences for phytoplankton dynamics (from diatoms to less desirable species) and cascading effects on pelagic and benthic food webs. Short-term consequences of Si availability on the shelf mostly affect the resource whereas long-term consequences may affect carbon dioxide (CO2) sequestration on the shelf and the auxiliary biological pump. Continental margins also play a filtering role so that changes in Si delivery to the hydrosphere and/or retention along the Land-Ocean-Continuum (LOC) may have a long-term impact on the oceanic C cycle. Here, we suggest an approach to improve our understanding of (1) the role of Si in the functioning of coastal ecosystems and (2) Si delivery to the open ocean at global scale. This approach implies (1) extending the LOICZ budgeting approach to the element Si to derive worldwide Si budgets on continental margins; (2) improving our knowledge of the processes that control Si transformations along the LOC. The EU-SiWEBS Research Training Network (2002-2006) will work in this last direction, by (a) improving the parameterization of the Si cycle in three river, coastal zone and open ocean models, (b) building quantitative modeling tools to describe Si transformations along the land-ocean continuum, and (c) using these tools to evaluate the

  6. Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, mid-Atlantic margin of the United States

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Kominz, M.A.; Sugarman, P.J.; Monteverde, D.; Feigenson, M.D.; Hernandez, J.C.

    2006-01-01

    We use backstripping to quantify the roles of variations in global sea level (eustasy), subsidence, and sediment supply on the development of the Miocene stratigraphic record of the mid-Atlantic continental margin of the United States (New Jersey, Delaware, and Maryland). Eustasy is a primary influence on sequence patterns, determining the global template of sequences (i.e., times when sequences can be preserved) and explaining similarities in Miocene sequence architecture on margins throughout the world. Sequences can be correlated throughout the mid-Atlantic region with Sr-isotopic chronology (??0.6 m.y. to ??1.2 m.y.). Eight Miocene sequences correlate regionally and can be correlated to global ??18O increases, indicating glacioeustatic control. This margin is dominated by passive subsidence with little evidence for active tectonic overprints, except possibly in Maryland during the early Miocene. However, early Miocene sequences in New Jersey and Delaware display a patchwork distribution that is attributable to minor (tens of meters) intervals of excess subsidence. Backstripping quantifies that excess subsidence began in Delaware at ca. 21 Ma and continued until 12 Ma, with maximum rates from ca. 21-16 Ma. We attribute this enhanced subsidence to local flexural response to the progradation of thick sequences offshore and adjacent to this area. Removing this excess subsidence in Delaware yields a record that is remarkably similar to New Jersey eustatic estimates. We conclude that sea-level rise and fall is a first-order control on accommodation providing similar timing on all margins to the sequence record. Tectonic changes due to movement of the crust can overprint the record, resulting in large gaps in the stratigraphic record. Smaller differences in sequences can be attributed to local flexural loading effects, particularly in regions experiencing large-scale progradation. ?? 2006 Geological Society of America.

  7. Rates, causes, and dynamic of long-term landscape evolution of the South Atlantic "passive continental margin", Brazil and Namibia, as revealed by thermo-kinematic numerical modeling.

    NASA Astrophysics Data System (ADS)

    Christian, Stippich; Anton, Glasmacher Ulrich; Peter, Christian, Hackspacher

    2014-05-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE and FastCape). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates.

  8. Plankton blooms, ocean circulation and the European slope current: Response to weather and climate in the Bay of Biscay and W English Channel (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Pingree, Robin D.; Garcia-Soto, Carlos

    2014-08-01

    The flow of upper-layer surface water and circulation for the Bay of Biscay, continental slope and in the wider region of the NE Atlantic is presented, as well as the seasonality of flow and internal tides. The marine plankton environments of Biscay Ocean, Biscay Eddies, Biscay Slope and Biscay Shelf are defined. The Shelf region (Armorican and Celtic) is further divided into Stratified Shelf, Frontal and Tidally Mixed. Seasonal distributions of chlorophyll a are given for all environment from in situ measurements and remote sensing data. Mixing and stabilisation of surface water in the euphotic layer for the start of the spring bloom using in situ profiling measurements is examined. Some regional responses for the slope current, dinoflagellate blooms and interannual variations in spring diatom numbers with respect to weather and climate in the Bay of Biscay and around the British Isles are suggested and discussed. An example of the Eastern European Ocean Margin continental slope response to winter weather (sea level atmospheric pressure forcing) resulting in warm winter water in the southern Bay of Biscay (Navidad, with eddy production) and off the Shetland continental slopes (the warm-water supply route to the Arctic) is given from the slope climate observation series.

  9. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies.

    PubMed

    Mancinelli, Giorgio; Chainho, Paula; Cilenti, Lucrezia; Falco, Silvia; Kapiris, Kostas; Katselis, George; Ribeiro, Filipe

    2017-06-15

    The native distribution of the blue crab Callinectes sapidus in the western Atlantic extends from Nova Scotia to Argentina. Introduced to Europe at the beginning of the 20th century, it is currently recorded almost ubiquitously in the Mediterranean and in the Black Sea. An overview of the occurrence, abundance, and ecological impact of the species in southern European waters is provided; additionally, we present a pragmatic assessment of its management scenarios, explicitly considering the dual nature of C. sapidus as both an invasive species and a fishery resource. We emphasise that the ongoing expansion of C. sapidus in the region may represent a stimulating challenge for the identification and implementation of future strategies in the management of invasive crustaceans. The impact of the invader could be converted into an enhancement of the services delivered by southern European coastal ecosystems, while mitigation costs could be transformed into profits for local populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of the feeding apparatus and diet of European sardines Sardina pilchardus of Atlantic and Mediterranean waters: ecological implications.

    PubMed

    Costalago, D; Garrido, S; Palomera, I

    2015-04-01

    In this study, the feeding apparatus (gill rakers, GR) and the diet composition of European sardine Sardina pilchardus populations living in two contrasting environments were compared: the upwelling area off western Iberia and the comparatively less productive region of the north-western Mediterranean Sea. The importance of local adaptations in the trophic ecology of this species was estimated. Sardina pilchardus from the Atlantic Iberian coast and from the north-western Mediterranean Sea have clear differences in the feeding apparatus and diet compositions. Those from the Atlantic Iberian coast have significantly more GRs than S. pilchardus of the same size range in the Mediterranean Sea. While S. pilchardus from the Mediterranean Sea mostly depend on prey ranging between 750-1500 and 3000-4000 µm, corresponding mostly to cladocerans, decapods and copepods, those from the Atlantic depend on smaller prey (50-500 and 1000-1500 µm) that include phytoplankton and copepods, particularly during summer months, and S. pilchardus eggs during the winter. The marked difference between the trophic ecology of S. pilchardus in the two areas studied appears to have originated from different dietary strategies that the two populations have adopted in contrasting feeding environments. These differences are shown to profoundly affect the size and quality of prey consumed, and the effect of cannibalism on the populations. © 2015 The Fisheries Society of the British Isles.

  11. The winter North Atlantic eddy-driven jet: two-dimensional structure and its link to European weather regimes

    NASA Astrophysics Data System (ADS)

    Madonna, Erica; Li, Camille; Grams, Christian; Woollings, Tim

    2017-04-01

    The large-scale midlatitude circulation exhibits large variability over a range of time scales, and influences regional weather and climate. The goal of this study is to link the climate dynamics perspective of this variability (jet stream fluctuations) to the synoptic dynamics perspective (weather regimes, i.e., recurrent and quasi-stationary states of the large-scale atmospheric circulation persisting over one or several weeks). In the North Atlantic, the jet stream is found at three preferred latitudes, but it is not fully understood why these latitudes are preferred and which mechanisms are responsible for latitudinal shifts of the jet. In terms of weather regimes (WRs), four regimes are robustly identified for the winter season in the Atlantic-European region, independent of the specific diagnostic approach. To link jet variability to weather regimes, we first perform a cluster analysis of the zonal wind over the North Atlantic basin. The approach reveals that, besides the three preferred jet latitude positions, a fourth long-lasting jet configuration exists. This fourth cluster corresponds to a mixed jet, with either two separated branches or a single jet with a pronounced southwest-northeast tilt, and seems to be associated with the Scandinavian blocking WR.

  12. Genetic stock identification of Atlantic salmon (Salmo salar) populations in the southern part of the European range

    PubMed Central

    2010-01-01

    Background Anadromous migratory fish species such as Atlantic salmon (Salmo salar) have significant economic, cultural and ecological importance, but present a complex case for management and conservation due to the range of their migration. Atlantic salmon exist in rivers across the North Atlantic, returning to their river of birth with a high degree of accuracy; however, despite continuing efforts and improvements in in-river conservation, they are in steep decline across their range. Salmon from rivers across Europe migrate along similar routes, where they have, historically, been subject to commercial netting. This mixed stock exploitation has the potential to devastate weak and declining populations where they are exploited indiscriminately. Despite various tagging and marking studies, the effect of marine exploitation and the marine element of the salmon lifecycle in general, remain the "black-box" of salmon management. In a number of Pacific salmonid species and in several regions within the range of the Atlantic salmon, genetic stock identification and mixed stock analysis have been used successfully to quantify exploitation rates and identify the natal origins of fish outside their home waters - to date this has not been attempted for Atlantic salmon in the south of their European range. Results To facilitate mixed stock analysis (MSA) of Atlantic salmon, we have produced a baseline of genetic data for salmon populations originating from the largest rivers from Spain to northern Scotland, a region in which declines have been particularly marked. Using 12 microsatellites, 3,730 individual fish from 57 river catchments have been genotyped. Detailed patterns of population genetic diversity of Atlantic salmon at a sub-continent-wide level have been evaluated, demonstrating the existence of regional genetic signatures. Critically, these appear to be independent of more commonly recognised terrestrial biogeographical and political boundaries, allowing reporting

  13. Allostratigraphy of the U.S. middle Atlantic continental margin; characteristics, distribution, and depositional history of principal unconformity-bounded upper Cretaceous and Cenozoic sedimentary units

    USGS Publications Warehouse

    Poag, C. Wylie; Ward, Lauck W.

    1993-01-01

    Publication of Volumes 93 and 95 ('The New Jersey Transect') of the Deep Sea Drilling Project's Initial Reports completed a major phase of geological and geophysical research along the middle segment of the U. S. Atlantic continental margin. Relying heavily on data from these and related published records, we have integrated outcrop, borehole, and seismic-reflection data from this large area (500,000 km^2 ) to define the regional allostratigraphic framework for Upper Cretaceous and Cenozoic sedimentary rocks. The framework consists of 12 alloformations, which record the Late Cretaceous and Cenozoic depositional history of the contiguous Baltimore Canyon trough (including its onshore margin) and Hatteras basin (northern part). We propose stratotype sections for each alloformation and present a regional allostratigraphic reference section, which crosses these basins from the inner edge of the coastal plain to the inner edge of the abyssal plain. Selected supplementary reference sections on the coastal plain allow observation of the alloformations and their bounding unconformities in outcrop. Our analyses show that sediment supply and its initial dispersal on the middle segment of the U. S. Atlantic margin have been governed, in large part, by hinterland tectonism and subsequently have been modified by paleoclimate, sea-level changes, and oceanic current systems. Notable events in the Late Cretaceous to Holocene sedimentary evolution of this margin include (1) development of continental-rise depocenters in the northern part of the Hatteras basin during the Late Cretaceous; (2) the appear ance of a dual shelf-edge system, a marked decline in siliciclastic sediment accumulation rates, and widespread acceleration of carbonate production during high sea levels of the Paleogene; (3) rapid deposition and progradation of thick terrigenous delta complexes and development of abyssal depocenters during the middle Miocene to Quaternary interval; and (4) deep incision of the

  14. 3D lithospheric mapping of the Iberian Peninsula and surrounding Atlantic and Mediterranean margins from 3D joint inversion of potential field and elevation data.

    NASA Astrophysics Data System (ADS)

    Torne, Montserrat; Zeyen, Hermann; Jimenez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume

    2017-04-01

    We investigate the lithospheric density structure of the Iberian Peninsula and the surrounding Atlantic and Mediterranean margins from a 3D joint inversion of free-air, geoid and elevation data, based on a Bayesian approach. In addition, the crustal structure has been further constrained by incorporating about 750 Moho values from DSS investigations and RF analysis covering the entire region. Our preliminary results shows a significant lithospheric deformation along the plate boundaries, the Bay of Biscay-Pyrenees to the North and the Azores-Gibraltar to the south, where the CMB and LAB are located at depths more than 45 and 150 km, respectively. Noteworthy is the arcuate lithospheric thickening located at the westernmost end of the Gibraltar Arc system showing the presence of the NW-to-Westward retreated Gibraltar Arc slab that has given rise to the formation of the Betics-Rif Alpine belt system and the back arc Alboran basin. To the west, the stable-slightly deformed Iberian massif shows a quasi-flat CMB and LAB topography (30 to 32 km and about 110 km, respectively). The crust and mantle lithosphere thin towards the Mediterranean and Atlantic margins, with the exception of its northern margin where lithospheric thickening extends offshore to the Gulf of Biscay. In the western Mediterranean the SE-Neogene slab retreat has resulted in a significant thinning of the crust and mantle lithosphere. Thin lithosphere is also observed in the Tagus-Horseshoe abyssal plain region where the LAB shallows to less than 90 km. This work has been funded by the Spanish projects MITE (CGL2014-59516-P) and WEME-CSIC project 201330E11.

  15. A History of Repeated Failures: Stratigraphy of the Currituck and Cape Fear Slide Complexes on the Central U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.

    2016-12-01

    The Currituck and Cape Fear Slide complexes, offshore of North Carolina, are two of the largest (>150 km3) submarine slope failure provinces on the U.S. Atlantic margin. Detailed stratigraphy of these slides and the surrounding regions is derived from a combination of high-resolution sparker multichannel seismic (MCS) data collected by the USGS in 2012, airgun MCS collected as part of the NSF GeoPRISMs Community Seismic Experiment in 2014 & legacy industry airgun MCS data collected in 1970s and 80s. Both the Currituck and Cape Fear Slide complexes are located in regions with high sediment input that resulted in the development of a broad, low gradient (<6°) margin with thick slope sediment accumulation since at least the Miocene. Bedding parallel failure planes highlight the influence of subsurface stratigraphy here. Differential compaction across buried scarps and other erosional surfaces found in proximity to many of the headwalls may have contributed to excess pore pressure in these zones, setting the stage for repeated failures. Within the Currituck Slide complex, there appear to be several buried mass transport deposits (MTDs) within both the Quaternary and Pliocene sections that may be related to buried scarps found beneath both the upper and lower headwalls. At the Cape Fear Slide, the Quaternary section upslope of a large salt diapir displays evidence of possible downslope creep folding within strata that downlap onto a possible buried failure plane. While submarine slope failure along this portion of the margin has long been linked with hydrate dissociation and/or salt tectonics, features that are pervasive along the margin, our new stratigraphic analyses suggest that antecedent margin physiography and sediment loading may be critical factors in determining the locations of large-scale slope failures.

  16. Benthic-Pelagic Coupling: Effects on Nematode Communities along Southern European Continental Margins

    PubMed Central

    Pape, Ellen; Jones, Daniel O. B.; Manini, Elena; Bezerra, Tania Nara; Vanreusel, Ann

    2013-01-01

    Along a west-to-east axis spanning the Galicia Bank region (Iberian margin) and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m). Nematode standing stock (abundance and biomass) and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude) governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter). Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes. PMID:23565176

  17. Benthic-pelagic coupling: effects on nematode communities along southern European continental margins.

    PubMed

    Pape, Ellen; Jones, Daniel O B; Manini, Elena; Bezerra, Tania Nara; Vanreusel, Ann

    2013-01-01

    Along a west-to-east axis spanning the Galicia Bank region (Iberian margin) and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m). Nematode standing stock (abundance and biomass) and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude) governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter). Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes.

  18. Flexural unloading and uplift along the Côte d'Ivoire-Ghana Transform Margin, equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Lorenzo, Juan M.

    1999-11-01

    Recent Ocean Drilling Program sampling of the Côte d'Ivoire-Ghana margin of West Africa provides for the first time the opportunity to study the development of a marginal ridge that formed along a sheared passive margin adjacent to the continent-ocean transition after the end of intracontinental wrenching. We model its evolution using a two dimensional flexural backstripping technique. The model is constrained by existing seismic refraction and reflection data on the crustal structure and stratigraphy and paleobathymetric evidence from the cores. Following rifting at 120 Ma (Aptian), intracontinental wrenching continued until ˜105 Ma (mid Albian), when South America and Africa separated along this transform. While the possible presence of thicker crust under the Marginal Ridge compared to the Deep Ivorian Basin may explain some of the ridge's topography, the entire uplift can be readily modeled as a flexural response to unloading along a shallow-dipping (˜25°) fault at the time of continental separation. Forward subsidence modeling of the Marginal Ridge suggests that an effective elastic thickness of 2.5 km at 105 Ma is most appropriate to match the observed structure. Conduction of heat from the oceanic plate across the continent-ocean transition drove temporary uplift of at least 1200 m peaking just before 89 Ma, when sedimentary data show deposition within the photic zone (0-50 m). This study shows that significant, transient thermal uplift can be found in sheared continental passive margin settings even where magmatism is insignificant.

  19. Suspended matter in surface waters of the Atlantic continental margin from Cape Cod to the Florida Keys.

    PubMed

    Manheim, F T; Meade, R H; Bond, G C

    1970-01-23

    Appreciable Amounts Of suspended matter (> 1.0 milligram per liter) in surface waters are restricted to within a few kilometers of the Atlantic coast. Particles that escape estuaries or are discharged by rivers into the shelf region tend to travel longshoreward rather than seaward. Suspended matter farther offshore, chiefly amorphous organic particles, totals 0.1 milligram per liter or less. Soot, fly ash, processed cellulose, and other pollutants are widespread.

  20. Suspended matter in surface waters of the Atlantic continental margin from Cape Cod to the Florida keys

    USGS Publications Warehouse

    Manheim, F. T.; Meade, R.H.; Bond, G.C.

    1970-01-01

    Appreciable amounts of suspended matter (> 1.0 milligram per liter) in surface waters are restricted to within a few kilometers of the Atlantic coast. Particles that escape estuaries or are discharged by rivers into the shelf region tend to travel longshoreward rather than seaward. Suspended matter farther offshore, chiefly amorphous organic particles, totals 0.1 milligram per liter or less. Soot, fly ash, processed cellulose, and other pollutants are widespread.

  1. The Role of Antecedent Geology in Submarine Slope Failure: Insights from the Currituck Slide Complex along the Central U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Craig, B.; Chaytor, J. D.; Flores, C. H.

    2015-12-01

    To investigate the influence of antecedent geology on the distribution of submarine landslides along the central U.S. Atlantic margin, we examined a suite of multichannel seismic data, including vintage airgun data from Norfolk Canyon to Cape Hatteras and new high-resolution sparker data across the Currituck Slide, as well as regional multibeam bathymetry. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by angular, convex deltaic clinoforms deposited during the Mid-Miocene, which generated an abrupt shelf-break with relatively steep downslope gradients (>8°). As a result, upper slope sediment bypass, closely spaced submarine canyons, and small landslides confined to canyon headwalls and sidewalls characterize these areas. In contrast, the Currituck region is defined by a sigmoidal geometry, with a smooth shelf-edge rollover and more gentle slope gradient (<6°) that allowed >800m of Plio-Pleistocene sediment accumulation across the continental slope prior to failure. Regionally continuous seismic reflectors show little or no evidence of canyonization beneath the Currituck Slide. A significant volume of intact strata on the lower slope suggests the Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. Failure along bedding planes is evident in outcropping strata along the upper and lower headwalls. Buried scarps beneath these headwalls imply repeated cycles of failure. Folds and faults suggest differential compaction across these scarps may have contributed to the most recent failure. These results suggest high sedimentation and subsequent compaction along a sigmoidal margin were critical components in preconditioning the Currituck Slide for failure. Examination of the regional geological framework illustrates the importance of sediment supply and antecedent slope morphology in the development of large, potentially unstable depocenters along passive margins.

  2. Revealing the long-term landscape evolution of the South Atlantic passive continental margin, Brazil and Namibia, by thermokinematic numerical modeling using the software code Pecube.

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Glasmacher, Ulrich Anton; Hackspacher, Peter

    2015-04-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE1,2 and FastScape3). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 2. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj

  3. Palynology of the Bryn Mawr Formation (Miocene): insights on the age and genesis of middle atlantic margin fluvial deposits

    NASA Astrophysics Data System (ADS)

    Pazzaglia, F. J.; Robinson, R. A. J.; Traverse, A.

    1997-02-01

    The ages of fluvial deposits at the head of Chesapeake Bay, thought to be the updip, chronostratigraphic equivalents of a well-dated late Oligocene to Quaternary marine sequence in the Salisbury Embayment, are poorly known. We present data regarding a new occurrence of a palynoflora recovered from the Bryn Mawr Formation in Cecil County, Maryland. The floral assemblage for the Bryn Mawr Formation includes at least 40 taxa at the generic level where Quercus, Cupuliferae, Ilex, Carya, Taxodium, and Pinus are important elements. Most of the taxa identified from the Bryn Mawr Formation palynoflora are extant and occur within the modern middle Atlantic Coastal Plain; however, several important taxa such as Alangium, Engelhardia, Sciadopitys, Tricolporopollenites sp., and Cupuliferoidaepollenites sp. are at present either extinct or exotic to the middle Atlantic Coastal Plain. Comparison of the Bryn Mawr Formation palynoflora to well-dated marine deposits of the Salisbury Embayment suggests a late middle to early late Miocene age (late Serravallian-early Tortonian) for Bryn Mawr Formation phase-2 deposition, supporting previously proposed genetic links to the marine deposits of the Choptank Formation in the subsurface of the Delmarva Peninsula. Relative abundances of common, extant taxa such as Quercus, Carya, Pinus, and NAP (the total non-arboreal pollen) vary considerably throughout late Cenozoic deposits of the middle Atlantic Coastal Plain. We present data for common, extant taxa in a ternary diagram to define discrete palynofacies that discriminate among middle Miocene, late Miocene, Pliocene, and Pleistocene palynofloras. These results show that relative abunances of common, easily identifiable extant pollen may be as diagnostic as exotic taxa in assigning ages to middle Atlantic Coastal Plain deposits. The Bryn Mawr Formation palynoflora, like other middle to late Miocene palynofloras of the middle Atlantic Coastal Plain, suggests terrestrial climatic cooling. In

  4. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations.

    PubMed

    Yáñez, J M; Naswa, S; López, M E; Bassini, L; Correa, K; Gilbey, J; Bernatchez, L; Norris, A; Neira, R; Lhorente, J P; Schnable, P S; Newman, S; Mileham, A; Deeb, N; Di Genova, A; Maass, A

    2016-07-01

    A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype-phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole-genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom(®) myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high-density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high-resolution genomewide information.

  5. Dynamics of Organic Carbon Flux on the Northwest Atlantic Margin: Results from a Three-year Time-Series Sediment Trap Study

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Manganini, S. J.; Montlucon, D. B.; Eglinton, T. I.

    2012-12-01

    Sinking particles have been collected on the Northwest Atlantic margin since summer 2004 to understand the dynamics of particle export and the role of the Deep Western Boundary Current in resuspension of particles from sediment and their horizontal transport. Three traps were deployed at roughly 1000m, 2000m, and 3000m (50 m above the bottom) on a mooring at 3000m isobath. The results from the 2004-2005 deployment have been published previously (Hwang et al., 2009). We report the results from summer 2004 to summer 2007 in this presentation. Lithogenic component accounted for an increasing fraction with increasing depth from 27% at 1000m to 42% at 3000m. Radiocarbon contents as Δ14C values of sinking particulate organic matter were significantly depleted from the value of particulate organic matter in the surface water. The 3-year average value decreased with increasing depth from +13 per mil at 1000m to -20 per mil at 3000m. As previously observed for the first year samples, radiocarbon content showed a strong negative correlation with aluminum concentration. Because there is no considerable riverine input the high concentrations of lithogenic component and depleted Δ14C values imply the influence of laterally transported particles resuspended from sediment. Fluxes of biogenic and lithogenic components and their temporal variation will be discussed in relation with production in the surface water, lateral supply of resuspended sediment, and the variability of the Deep Western Boundary Current. Hwang, J., et al. (2009), Dynamics of particle export on the Northwest Atlantic margin, Deep-Sea Res. I, 56, 1792-1803.

  6. Paleoclimate and paleoceanographic reconstruction in the southern Iberian Mediterranean and Atlantic margins across the Younger Dryas event

    NASA Astrophysics Data System (ADS)

    Rodrigo-Gámiz, Marta; Martínez-Ruiz, Francisca

    2017-04-01

    The Alboran Sea basin in the Mediterranean and the Gulf of Cadiz in the Atlantic have provided excellent paleoarchives for reconstructing past climate variability in southern Iberian regions. Particularly interesting has been the study of the paleoclimate evolution of abrupt climate events from the Last Glacial Maximum (LGM) to the onset of the Holocene such as the Younger Dryas (YD). A diverse range of geochemical proxies, integrating inorganic and organic, has been used for paleoclimate reconstructions in these regions. Elemental concentrations and elemental ratios have been used for determining detrital inputs and bottom water oxygen conditions while organic molecular biomarkers as algal and archaea derived lipids have been used for estimating sea surface temperature (SST). Al-ratios mirroring eolian input, such as Zr/Al and Si/Al ratios, record enhanced dust input at the end of the LGM, during the last Heinrich event (H1) and at the onset of the YD in the Alboran Sea. For this latest interval, these ratios suggest an initial dry phase followed by a progressive aridity decrease throughout the YD. In the Gulf of Cadiz, these variations are not similarly recorded, probably due to less sensitive open ocean records in comparison to the restricted nature of the Alboran Sea basin. Selected redox proxies, Fe/Al and Mn/Al ratios, show peaks of oxidation fronts during the LGM and the H1 in the Alboran Sea and during the Bölling-Alleröd and the onset of the Holocene in the Gulf of Cadiz, derived from variations in ventilation and oxygen conditions that differ in the Mediterranean and Atlantic regions. SST records have also showed remarkable differences between both basins with minima temperature estimated values during the YD of ca. 12°C in the Alboran Sea and ca. 18°C in the Gulf of Cadiz, according to the freshening of the Atlantic jet along the Alboran basin. In general, a different paleoclimate and oceanographic evolution with a different YD response is recorded

  7. Oligocene-Miocene Transition in the North Atlantic Interrupted by Warming: New Records from the Newfoundland Margin, IODP Expedition 342

    NASA Astrophysics Data System (ADS)

    Smith, R.; Liebrand, D.; van Peer, T. E.; Bohaty, S. M.; Friedrich, O.; Bornemann, A.; Blum, P.; Wilson, P. A.

    2016-12-01

    The beginning and end of the Oligocene epoch were marked by major Antarctic glaciation events. While the Eocene-Oligocene transition is known to have initiated sustained major ice sheets on Antarctica, the intensification of glaciation associated with the Oligocene-Miocene Transition (OMT) 23 Ma appears to have been ephemeral. The inference of rapid growth and then retreat of large Antarctic ice sheets on orbital time scales is difficult to reconcile with the strong hysteresis seen in the results of numerical ice sheet model experiments and the modest variability seen in published records of atmospheric CO2. A number of benthic foraminiferal proxy records have been generated at orbital resolution across the OMT, but high-resolution sea-surface records are sparse, particularly in the mid to high latitudes of the northern hemisphere, with none yet produced in the Atlantic Ocean. IODP Site 1406 (40°N, 3799 m water depth, Expedition 342: Newfoundland Sediment Drifts) recovered an interval spanning the OMT in the North Atlantic. We present planktic foraminiferal stable isotope data from this interval (23.5-22.5 Ma) with an average sample spacing of 2 kyrs. Our high-fidelity sea surface record benefits from exceptional `glassy' preservation of clay-hosted foraminifera. Variability in our record shows prominent 100 kyr eccentricity pacing (cycle amplitude typically >1.0 ‰ in δ18O and >0.6‰ in δ13C) and a strong precessional influence. Intriguingly, while the rise in δ18O associated with the OMT is fairly smooth in benthic records, our planktic data show that after over two-thirds of the total 1.6‰ rise in δ18O had already taken place, a 50 kyr recovery to pre-OMT δ18O values occured, preceeding a rapid transition to the OMT δ18O maximum. Our results demonstrate for the first time the North Atlantic sea surface response to OMT events. The structure in our new planktic stable isotope record differs markedly from that seen in published benthic records

  8. Plio-Quaternary paleostresses in the Atlantic passive margin of the Moroccan Meseta: Influence of the Central Rif escape tectonics related to Eurasian-African plate convergence

    NASA Astrophysics Data System (ADS)

    Chabli, Ahmed; Chalouan, Ahmed; Akil, Mostapha; Galindo-Zaldívar, Jesús; Ruano, Patricia; Sanz de Galdeano, Carlos; López-Garrido, Angel Carlos; Marín-Lechado, Carlos; Pedrera, Antonio

    2014-07-01

    The Atlantic Moroccan Meseta margin is affected by far field recent tectonic stresses. The basement belongs to the variscan orogen and was deformed by hercynian folding and metamorphism followed by a post-Permian erosional stage, producing the flat paleorelief of the region. Tabular Mesozoic and Mio-Plio-Quaternary deposits locally cover the Meseta, which has undergone recent uplift, while north of Rabat the subsidence continues in the Gharb basin, constituting the foreland basin of the Rif Cordillera. The Plio-Quaternary sedimentary cover of the Moroccan Meseta, mainly formed by aeolian and marine terraces deposits, is affected by brittle deformations (joints and small-scale faults) that evidence that this region - considered up to date as stable - is affected by the far field stresses. Striated faults are recognized in the oldest Plio-Quaternary deposits and show strike-slip and normal kinematics, while joints affect up to the most recent sediments. Paleostress may be sorted into extensional, only affecting Rabat sector, and three main compressive groups deforming whole the region: (1) ENE-WSW to ESE-WNW compression; (2) NNW-SSE to NE-SW compression and (3) NNE-SSW compression. These stresses can be attributed mainly to the NW-SE oriented Eurasian-African plate convergence in the western Mediterranean and the escape toward the SW of the Rif Cordillera. Local paleostress deviations may be related to basement fault reactivation. These new results reveal the tectonic instability during Plio-Quaternary of the Moroccan Meseta margin in contrast to the standard passive margins, generally considered stable.

  9. ENAM: A community seismic experiment targeting rifting processes and post-rift evolution of the Mid Atlantic US margin

    NASA Astrophysics Data System (ADS)

    Van Avendonk, H. J.; Magnani, M. B.; Shillington, D. J.; Gaherty, J. B.; Hornbach, M. J.; Dugan, B.; Long, M. D.; Lizarralde, D.; Becel, A.; Benoit, M. H.; Harder, S. H.; Wagner, L. S.; Christeson, G. L.

    2014-12-01

    The continental margins of the eastern United States formed in the Early Jurassic after the breakup of supercontinent Pangea. The relationship between the timing of this rift episode and the occurrence of offshore magmatism, which is expressed in the East Coast Magnetic Anomaly, is still unknown. The possible influence of magmatism and existing lithospheric structure on the rifting processes along margin of the eastern U.S. was one of the motivations to conduct a large-scale community seismic experiment in the Eastern North America (ENAM) GeoPRISMS focus site. In addition, there is also a clear need for better high-resolution seismic data with shallow penetration on this margin to better understand the geological setting of submarine landslides. The ENAM community seismic experiment is a project in which a team of scientists will gather both active-source and earthquake seismic data in the vicinity of Cape Hatteras on a 500 km wide section of the margin offshore North Carolina and Virginia. The timing of data acquisition in 2014 and 2015 facilitates leveraging of other geophysical data acquisition programs such as Earthscope's Transportable Array and the USGS marine seismic investigation of the continental shelf. In April of 2014, 30 broadband ocean-bottom seismometers were deployed on the shelf, slope and abyssal plain of the study site. These instruments will record earthquakes for one year, which will help future seismic imaging of the deeper lithosphere beneath the margin. In September and October of 2014, regional marine seismic reflection and refraction data will be gathered with the seismic vessel R/V Marcus Langseth, and airgun shots will also be recorded on land to provide data coverage across the shoreline. Last, in the summer of 2015, a land explosion seismic refraction study will provide constraints on the crustal structure in the adjacent coastal plain of North Carolina and Virginia. All seismic data will be distributed to the community through IRIS

  10. Comparative study of pineal clock gene and AANAT2 expression in relation to melatonin synthesis in Atlantic salmon (Salmo salar) and European seabass (Dicentrarchus labrax).

    PubMed

    McStay, Elsbeth; Migaud, Herve; Vera, Luisa Maria; Sánchez-Vázquez, Francisco Javier; Davie, Andrew

    2014-03-01

    The photoreceptive teleost pineal is considered to be essential to the generation, synchronisation and maintenance of biological rhythms, primarily via melatonin release. The role of internal (circadian clock) and external (light) signals controlling melatonin production in the fish pineal differs between species, yet the reasons underpinning this remain largely unknown. Whilst in salmonids, pineal melatonin is apparently regulated directly by light, in all other studied teleosts, rhythmic melatonin production persists endogenously under the regulation of clock gene expression. To better understand the role of clocks in teleost pineals, this study aimed to characterise the expression of selected clock genes in vitro under different photoperiodic conditions in comparison to in vivo in both Atlantic salmon (Salmo salar) and in European seabass (Dicentrarchus labrax) (in vitro 12L:12D), a species known to display endogenous rhythmic melatonin synthesis. Results revealed no rhythmic clock gene (Clock, Period 1 &2) expression in Atlantic salmon or European seabass (Clock and Period 1) pineal in vitro. However rhythmic expression of Cryptochrome 2 and Period 1 in the Atlantic salmon pineal was observed in vivo, which infers extra-pineal regulation of clocks in this species. No rhythmic arylalkylamine N-acetyltransferase 2 (Aanat2) expression was observed in the Atlantic salmon yet in the European seabass, circadian Aanat2 expression was observed. Subsequent in silico analysis of available Aanat2 genomic sequences reveals that Atlantic salmon Aanat2 promoter sequences do not contain similar regulatory architecture as present in European seabass, and previously described in other teleosts which alludes to a loss in functional connection in the pathway.

  11. New data on the composition and age of rocks from the Bathymetrists Seamounts (Eastern margin of the equatorial Atlantic)

    NASA Astrophysics Data System (ADS)

    Skolotnev, S. G.; Peyve, A. A.; Bylinskaya, M. E.; Golovina, L. A.

    2017-01-01

    The petrology, geochemistry, and isotope ratios of volcanics dredged during the 43rd cruise of R/V Academik Ioffe on the Bathymetrists Seamounts in the eastern equatorial Atlantic have been studied. These are alkaline volcanics of basic and ultramafic compositions. Spider diagrams of the trace elements of volcanic rocks demonstrate strong fractionation, indicating formation of their primary melts from an enriched mantle source at garnet depth facies. Considering the isotope ratio values of 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, and 87Sr/86Sr and the character of their variations, the volcanic mantle source was chemically heterogeneous: for various volcanic rocks it was a mixture of the mantle components HIMU with EM-1 or EM-2. Limestones dredged together with the volcanics yielded microfossils suggesting a Middle Eocene age of their formation in a carbonate platform environment.

  12. NOAA Ship Okeanos Explorer 2012 Field Season in the Northern Gulf of Mexico and U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.; Lobecker, E.; Malik, M.; VerPlanck, N.

    2012-12-01

    The NOAA Ship Okeanos Explorer, jointly operated by the NOAA Office of Ocean Exploration and Research and the NOAA Office of Marine and Aviation Operations, is America's only federally managed ship dedicated solely to ocean exploration. The 2012 field season was spent exploring the northern Gulf of Mexico and the U.S. Atlantic continental shelf break and slope. In the Gulf of Mexico, mapping and remotely operated vehicle operations focused on the salt domes and canyons offshore Mississippi and Louisiana, and characterized several of the hundreds of seeps that were detected in the water column backscatter data collected with the ship's Kongsberg EM 302 multibeam sonar (30 kHz) during the 2011 field season. A team of NOAA and non-NOAA partners identified priority frontier areas along the continental shelf and slope between North Carolina and Cape Cod, mapping numerous canyons selected for focused mapping exploration in partnership with the North East Fisheries Science Center, the Mid-Atlantic Regional Council on the Ocean (a state level partnership between various states including NY, NJ, DE, MD, and VA), Woods Hole Oceanographic Institution (WHOI) and Virginia Sea Grant. The 2012 mapping efforts built on data collected during the 2011 field season. Okeanos Explorer data were leveraged by NOAA Ship Henry B. Bigelow to conduct towed camera operations to ground truth multibeam backscatter data for deepwater coral habitat assessment. The Blake Ridge and Cape Fear Diapirs offshore North Carolina were a third focus of exploration operations. Seven 900 meter high cold seeps were discovered in the diapir province. Exploration incorporated WHOI's Sentry autonomous underwater vehicle and its full suite of mapping and oceanographic sensors were used to characterize six seep sites. All data collected by Okeanos Explorer are available via the NOAA public archives with metadata records within 60 to 90 days of the end of each cruise.

  13. The complex post-rift evolution of the South Atlantic margin, South Africa: new insights from joint inversion of apatite (U-Th)/He and fission track thermochronometry.

    NASA Astrophysics Data System (ADS)

    Wildman, Mark; Brown, Roderick; Persano, Cristina; Beucher, Romain; Stuart, Finlay

    2013-04-01

    The continental edge of southwestern Africa has long been seen as a type example of a high elevation passive margin, with its characteristic topography forming during or shortly after rifting (c. 130 Ma). Recent work along the South Atlantic passive margin has highlighted the importance of interactions between rift-tectonics, mantle flow and dynamic topography on controlling margin evolution, however, the temporal relationship between these processes is still poorly understood. There is now increasing evidence from satellite imagery, onshore field observations (e.g. Viola et al., 2012) and offshore sedimentary basin analysis (e.g. Hirsch et al., 2010) that suggests that these processes have resulted in a much more complex structural and thermal history along the margin than previously thought. A critical step towards developing a better understanding of the post-rift evolution of this margin is to quantify the surface response (i.e. uplift and erosion) to these major structural and thermal events. Apatite fission track analysis (AFTA) has been used world-wide as a powerful means of extracting quantitative constraints on the timing and rate of major episodes of onshore denudation. Previous AFTA studies in SW Africa have identified two distinct cooling events occurred during early and late Cretaceous, respectively. However, in places AFT ages vary significantly over relatively short distances and this has been interpreted to indicate local differential erosion levels controlled by tectonic displacements related to fault reactivation. A limitation of the AFT system is that it is sensitive to a temperature range of c. 120-60°C and therefore is unable to evaluate the magnitude of denudation episodes where the amounts are less than c. 1.5-2 km. So while the Cretaceous history of erosion is well established from existing AFTA data, the details of the timing and amount of erosion occurring during the Cenozoic remain relatively poorly constrained. The apatite (U

  14. Regional seismic stratigraphy and controls on the Quaternary evolution of the Cape Hatteras region of the Atlantic passive margin, USA

    USGS Publications Warehouse

    Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Thieler, E.R.; Foster, D.; Wehmiller, J.; Farrell, K.M.; Pierson, J.

    2010-01-01

    Seismic and core data, combined with amino acid racemization and strontium-isotope age data, enable the definition of the Quaternary stratigraphic framework and recognition of geologic controls on the development of the modern coastal system of North Carolina, U.S.A. Seven regionally continuous high amplitude reflections are defined which bound six seismic stratigraphic units consisting of multiple regionally discontinuous depositional sequences and parasequence sets, and enable an understanding of the evolution of this margin. Data reveal the progressive eastward progradation and aggradation of the Quaternary shelf. The early Pleistocene inner shelf occurs at a depth of ca. 20-40 m beneath the western part of the modern estuarine system (Pamlico Sound). A mid- to outer shelf lowstand terrace (also early Pleistocene) with shelf sand ridge deposits comprising parasequence sets within a transgressive systems tract, occurs at a deeper level (ca. 45-70 m) beneath the modern barrier island system (the Outer Banks) and northern Pamlico Sound. Seismic and foraminiferal paleoenvironmental data from cores indicate the occurrence of lowstand strandplain shoreline deposits on the early to middle Pleistocene shelf. Middle to late Pleistocene deposits occur above a prominent unconformity and marine flooding surface that truncates underlying units, and contain numerous filled fluvial valleys that are incised into the early and middle Pleistocene deposits. The stratigraphic framework suggests margin progradation and aggradation modified by an increase in the magnitude of sea-level fluctuations during the middle to late Pleistocene, expressed as falling stage, lowstand, transgressive and highstand systems tracts. Thick stratigraphic sequences occur within the middle Pleistocene section, suggesting the occurrence of high capacity fluvial point sources debouching into the area from the west and north. Furthermore, the antecedent topography plays a significant role in the evolution

  15. Instabilities in the relation between European Weather Types and mid-latitude circulation in the Atlantic

    NASA Astrophysics Data System (ADS)

    Alvarez Castro, Maria del Carmen; Gallego, David; Trigo, Ricardo M.; García-Herrera, Ricardo; Ribera, Pedro

    2015-04-01

    Recently, a new instrumental index (Westerly Index or "WI") measuring the frequency of the westerlies over the English Channel has been developed for the period 1685-1750 (Wheeler et al. 2009) and further extended to the present (Barriopedro et al. 2014). This index holds a climatic signal similar to the North Atlantic Oscillation (NAO) in the temperature and precipitation over large areas of Europe. Nevertheless we are confident that the WI offers two major advantages: first the WI signatures are not restricted to the winter being significant during the entire year and second, the WI does not rely on proxy data and, as such, it is less prone to the uncertainties associated to the calibration process of the NAO reconstructions. During the last decades, regional mid-latitude circulation has also been quantified objectively through the widespread use of so-called Weather Types (WT). WT are used to identify and classify the different patterns of Sea Level Pressure configurations originating particular weather in a given area. In consequence, WT over most Western Europe should be closely related to atmospheric circulation indexes such as the WI. Here we adopted a similar WT classification of the classical WTs developed empirically by Hubert Lamb for the UK and automated by Jones et al. (1993) but centered at the English Channel latitudinal band to be compatible with the window used to define the WI (Wheeler et al., 2009). In this work we compare the long-term (1850-2003) monthly values of WI with the corresponding monthly frequency of directional weather types in the WI area. As expected, we found significant positive (negative) correlation values with WTs dominated by a westerly (easterly) component but interestingly, some quasi periodic intervals of lack of correlation have been found, suggesting an oscillating behaviour on the lack of stationarity between the large-scale north Atlantic circulation and local weather types. Wheeler, D.; García-Herrera, R.; Wilkinson

  16. Long-term landscape evolution of the South Atlantic passive continental margin along the Kaoko- and Damara Belts, NW-Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Glasmacher, Ulrich Anton; Hackspacher, Peter; Schneider, Gabriele; Salomon, Eric

    2015-04-01

    The Kaoko Belt in northwestern Namibia originates in the collision of the Rio de la Plata and Kongo Craton during the Pan-African Orogeny in the Neoproterozoic (1) and represents the northern arm of the Damara Orogen. NW-Namibias continental crust mainly consists of the NE-SW striking intracontinental branch of the Pan-African Damara mobile belt, which separates the Congo from the Kalahari craton. The Damara Orogen is divided into several tectonostratigraphic zones that are bounded by steeply dipping, ductile shear zones. These regional lineaments can be traced at least 150 km offshore (2). The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks (534 (7) Ma - 481 (25) Ma (3) as well as Mesozoic sedimentary and igneous rocks. From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (4), and the deposition of the Nama Group sediments and the Karoo megasequence (5). Between the Otjihorongo and the Omaruru Lineament-Waterberg Thrust early Mesozoic tectonic activity is recorded by coarse clastic sediments deposited within NE trending half-graben structures. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183±1 Ma (6). The Early Cretaceous Paraná-Etendeka flood basalts (132±1 Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (7). Early Cretaceous alkaline intrusions (137-124 Ma) occur preferentially along Mesozoic half-graben structures and are called the Damaraland Igneous Province (8). Late Cretaceous alkaline intrusions and kimberlite pipes occur in northern Namibia. Post Early Paleocene siliciclastic sedimentation in Namibia was largely restricted to a 150 km wide zone (9) and is represented by the Tsondab Sandstone Formation (~ 300 m thickness). The oldest part has an age of early Paleocene and the upper part span from middle Miocene

  17. Physiological cost of tolerance to toxicants in the European flounder Platichthys flesus, along the French Atlantic Coast.

    PubMed

    Marchand, Justine; Quiniou, Louis; Riso, Ricardo; Thebaut, Marie-Thérèse; Laroche, Jean

    2004-12-20

    Physiological and genetic responses of flounder Platichthys flesus populations were investigated along the French Atlantic Coast in one moderately contaminated estuary (Ster) and three contaminated estuaries (Seine, Loire and Gironde). The focus of this study was to explore the relationship between stress resistance and energetic trade-offs, in order to detect possible differential physiological capacities or performances between individuals carrying particular alleles or genotypes (allozyme data) characterised as "tolerant" or "sensitive". A general reduction of the relative fecundity, the growth rate and the condition factor was highlighted in contaminated fish populations, suggesting that survival in such polluted systems implies energetic costs for fish thus reducing the energy available for particular functions. A lower observed heterozygosity was also detected in contaminated populations with respect to the Ster, suggesting a general decrease in genetic variability in response to chemical stress (with an exception for the Seine estuary). This study confirmed the previously detected relationship between PGM 85, AAT1 95 alleles and reduced DNA damage in contaminated fish [Marchand, J., Tanguy, A., Laroche, J., Quiniou, L., Moraga, D., 2003. Responses of European flounder Platichthys flesus populations to contamination in different estuaries along the Atlantic coast of France. Mar. Ecol. Prog. Ser. 260, 273-284] and furthermore suggested that, reduced fecundity and condition factor associated to the individuals carrying the previous alleles, were also reflecting the cost of resistance to stress in polluted populations. The cost of tolerance to stress as well as the high gene flow from neighbouring populations less exposed to contamination may explain the apparently moderate increase of the suspected "tolerant" alleles in contaminated flounder populations.

  18. Is the Atlantic surface temperature a good proxy for forecasting the recruitment of European eel in the Guadalquivir estuary?

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Estrada, Juan Carlos; Pulido-Calvo, Inmaculada

    2015-01-01

    This study analysed the possibility of using the sea surface temperature (SST) of the Atlantic Ocean to predict the recruitment of European eels in one of the most important estuaries of the south of Europe. For this purpose, two different time series concerning glass eel in the Guadalquivir estuary (the first obtained from a set of fishery-independent experimental samplings in this estuary and the second from an unofficial database on commercial catches provided by one of the main local marketer-buyers) were standardised to obtain a single time series on a monthly scale. This series was correlated with a total of 368 SST time series for 368 sectors of 1.95° × 1.95° of the Atlantic Ocean covering the possible migration routes of adult eels and leptocephalous larvae. The significant sectors were clustered and selected as inputs for artificial neural network models (ANNs) with the objective of obtaining a model to forecast glass eel recruitment. Globally, the best result was given by an ANN with only 12 clusters as input variables and 35 neurons in the hidden layer. For this configuration, the explained variance in the test phase was slightly higher than 79%. These results were significantly better than those obtained with classical methods. The strong correlation between predicted and observed glass eel abundance suggests that: (a) there is a marked non-linear relationship between SST and glass eel recruitment in the Guadalquivir estuary; (b) SST is a good proxy for predicting glass eel recruitment and; (c) one of the main factors responsible for the changes in abundance of this species is changes in the ocean conditions.

  19. Observations of seismicity and ground motion in the northeast U.S. Atlantic margin from ocean bottom seismometer data

    USGS Publications Warehouse

    Flores, Claudia; ten Brink, Uri S.; McGuire, Jeffrey J.; Collins, John A.

    2017-01-01

    Earthquake data from two short-period ocean-bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.

  20. Geophysical database of the east coast of the United States; southern Atlantic margin, stratigraphy and velocity in map grids

    USGS Publications Warehouse

    Hutchinson, D.R.; Poag, C.W.; Johnson, Aaron H.; Popenoe, Peter; Wright, C.

    1997-01-01

    In 1990, the Naval Oceanographic Office and the U.S. Geological Survey agreed to develop a digital data base of stratigraphy and acoustic properties of sediments along the U.S. East Coast of the United States. The objective of this work was to utilize more than 25,000 km of publically available multichannel seismic-reflection profiles (Sheridan et al., 1988) in order to assign acoustic properties to the continental margin postrift sediments in an internally consistent, geologically meaningful, regionally extensive, digital form. The acoustic properties of interest include thickness, depth, compressional- and shear-wave velocity, compressional- and shear-wave attenuation, density, and lithology. This data base subdivides the 0- to 14-km thick Jurassic and younger postrift deposits into 18 mappable horizons. The spatial scale of gridding is 5' latitude by 5 ' longitude, or about 9x8 km. This report describes the second part of developing the data base for the continental margin between Florida and Cape Hatteras: spatial gridding of the digital stratigraphic and velocity data, derivative calculations of density, shear-wave velocity, and attenuation, and construction of the final data base. The first report (Hutchinson et al., 1995) describes how the stratigraphy and velocity were digitized from the original profiles. Complementary reports that describe the data base for the area between Cape Hatteras and Georges Bank are given in Klitgord and Schneider (1994) and Klitgord et al. (1994).

  1. Geology of the offshore Southeast Georgia Embayment, U.S. Atlantic continental margin, based on multichannel seismic reflection profiles

    USGS Publications Warehouse

    Buffler, Richard T.; Watkins, Joel S.; Dillon, William P.

    1979-01-01

    The sedimentary section is divided into three major seismic intervals. The intervals are separated by unconformities and can be mapped regionally. The oldest interval ranges in age from Early Cretaceous through middle Late Cretaceous, although it may contain Jurassic rocks where it thickens beneath the Blake Plateau. It probably consists of continental to nearshore clastic rocks where it onlaps basement and grades seaward to a restricted carbonate platform facies (dolomite-evaporite). The middle interval (Upper Cretaceous) is characterized by prograding clinoforms interpreted as open marine slope deposits. This interval represents a Late Cretaceous shift of the carbonate shelf margin from the Blake Escarpment shoreward to about its present location, probably due to a combination of co tinued subsidence, an overall Late Cretaceous rise in sea level, and strong currents across the Blake Plateau. The youngest (Cenozoic) interval represents a continued seaward progradation of the continental shelf and slope. Cenozoic sedimentation on the Blake Plateau was much abbreviated owing mainly to strong currents.

  2. Re-analysis of the Krakatoa Tsunami Records along the European Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Karpytchev, M.; Daubord, C.; Hebert, H.; Woppelmann, G.

    2012-04-01

    The explosion of the Krakatoa volcano on August, 27, 1883, generated one of the highest tsunami ever recorded by tide gauges. The sea level measurements available at that time were collected and published by the Krakatoa Committee (Symons, 1888) but the original records seem to be lost. Pelinovsky et al (2005) digitized the Krakatoa Committee reproductions and pointed at the difficulties of using Symons' (1888) figures for a quantitave analysis. In this study, we attempted to identify the Krakatoa tsunami signature in the Symons' records along the British and French Atlantic coasts by comparing them to the sea level variations measured at the tidal station of Saint Servan. The original Saint Servan sea level record has been recently discovered in the French Navy (SHOM) data archive. The wavelet-based technqiues of cross-correlation and coherence analysis revealed a coherence between the Saint Servan observations and some of the Krakatoa Comittee records. The wavelet-based methods helped to identify the Krakatau tsunami signature in the English Channel and to estimate its parameters. Additional signal detection techniques were required, however, to extract the Krakatoa tsunami from the sea level oscillations recorded in the Bay of Biscay, at Rochefort and Soccoa tidal stations.

  3. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling.

    PubMed

    Geels, C; Christensen, J H; Hansen, A W; Heinemeier, J; Kiilsholm, S; Larsen, N W; Larsen, S E; Pedersen, T; Sørensen, L L; Brandt, J; Frohn, L M; Djurhuus, S

    2006-06-01

    As part of the Danish NEAREX project the origin and variability of anthropogenic atmospheric CO(2) over the Northeast Atlantic Region (NEAR) has been studied. The project consisted of a combination of experimental and modelling activities. Local volunteers operated CO(2) sampling stations, built at University of Copenhagen, for (14)C analysis at four locations (East Denmark, Shetland Isles, Faroe Isles and Iceland). The samples were only collected during winter periods of south-easterly winds in an attempt to trace air enriched in fossil-fuel derived CO(2) due to combustion of fossil fuels within European countries. In order to study the transport and concentration fields over the region in detail, a three-dimensional Eulerian hemispheric air pollution model has been extended to include the main anthropogenic sources for atmospheric CO(2). During the project period (1998-2001) only a few episodes of transport from Central Europe towards NEAR arose, which makes the data set for the evaluation of the method sparse. The analysed samples indicate that the signal for fossil CO(2), as expected, is largest (up to 3.7+/-0.4% fossil CO(2)) at the Danish location closest to the European emissions areas and much weaker (up to approximately 1.5+/-0.6% fossil CO(2)) at the most remote location. As the anthropogenic signal is weak in the clean atmosphere over NEAR these numbers will, however, be very sensitive to the assumed background (14)CO(2) activity and the precision of the measurements. The model simulations include the interplay between the driving processes from the emission into the boundary layer and the following horizontal/vertical mixing and atmospheric transport and are used to analyse the meteorological conditions leading to the observed events of high fossil CO(2) over NEAR. This information about the history of the air masses is essential if an observed signal is to be utilised for identifying and quantifying sources for fossil CO(2).

  4. Genetic isolation by distance among populations of the netted dog whelk Nassarius reticulatus (L.) along the European Atlantic coastline.

    PubMed

    Couceiro, Lucía; Barreiro, Rodolfo; Ruiz, José M; Sotka, Erik E

    2007-01-01

    Estimates of the average distances by which marine larvae disperse are generally poorly described, despite the central role that larval dispersal plays in the demographic connectivity of populations across geographic space. Here, we describe the population genetic structure and average dispersal distance of the netted dog whelk Nassarius reticulatus (L.) (Mollusca, Gastropoda, Prosobranchia), a widespread member of European intertidal communities, using DNA sequence variation in a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI). An analysis of 156 individuals from 6 locations spread across approximately 1700 km of the European Atlantic coastline revealed weak and nonsignificant population structure (overall Phi(ST) = 0.00013). However, pairwise Phi(ST) values revealed a slight but significant increase in genetic isolation with geographic distance (IBD), suggesting that populations are not panmictic across the sampled geographic range. If we assume that the isolation by distance is maintained by a stable, stepping stone model of gene flow, then the slope of the IBD is consistent with an average larval dispersal distance of approximately 70 km per generation. The spatial scale of larval dispersal in N. reticulatus is consistent with the life cycle of the species (planktotrophic veliger lasting 30-60 days before competent to settle). A mismatch analysis of the COI sequences revealed a signature of an ancient demographic expansion that began 61 500-160,000 years ago, well before the most recent Pleistocene glaciation event. The greatest levels of genetic diversity occur within the middle latitudes of the whelk's geographic range, consistent with the notion that historic populations of N. reticulatus might have expanded northward and southward from the centrally located Bay of Biscay.

  5. Low contribution of N2 fixation to new production and excess nitrogen in the subtropical northeast Atlantic margin

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Arístegui, Javier; Agawin, Nona S. R.; Álvarez-Salgado, Xosé Antón; Álvarez, Marta; Troupin, Charles

    2013-11-01

    We used 15N-labeled substrates to measure dinitrogen (N2) fixation, nitrate (NO3-) and ammonium () uptake, regeneration and associated dissolved organic nitrogen (DON) release in a coastal upwelling system (Cape Ghir, ˜31°N) and an open ocean grid (bounded between 25°-42°N and 20°W) in the Canary Current region during the summer of 2009. New production (Pnew=NO3-uptake+N2 fixation+DON released from NO3uptake-NO3- regeneration) was higher in the upwelling than in the open ocean zone (0.126 and 0.014 µmol N L-1 h-1, respectively), while regenerated production (Preg=NH4+ uptake+DON released from NH4+uptake+NH4+ regeneration) was similar in both zones (0.157 and 0.133 µmol N L-1 h-1, respectively). The resulting f-ratio (Pnew/Pnew+Preg) for the open ocean and upwelling zones was 0.08 and 0.48, respectively. The availability of nitrogen in excess of that expected from Redfield stoichiometry is generally attributed to N2 fixation. A previous study indicated that our open ocean grid zone had an excess nitrogen production rate of 40±22×1010 mol N yr-1. We revisited this budget including new dissolved organic matter and NO3-fluxes through the Strait of Gibraltar and estimated a revised nitrogen excess rate of 22±19×1010 mol N yr-1. The average volumetric rate of N2 fixation for this zone was only 1.3×10-3 nmol N L-1 d-1, indicating that its influence in Pnew and nitrogen excess production in this part of the Atlantic is negligible.

  6. Multiple, discrete inversion episodes revealed by apatite fission track analysis along the southernmost Atlantic margin of South Africa

    NASA Astrophysics Data System (ADS)

    Wildman, M.; Brown, R. W.; Persano, C.; Stuart, F. M.

    2013-12-01

    The morpho-tectonic history of the western South African continental margin and interior plateau remains enigmatic. Recent investigations of offshore sediment accumulation and interpretations of onshore structural and geomorphological observations have highlighted the complex geological evolution of South Africa throughout the Mesozoic and Cenozoic. Moreover, advances in geodynamic modelling approaches have explored the crustal response to varying styles of rifting and the influence of mantle upwelling beneath the African plate. These geological observations and models, however, require validation from quantitative constraints on the surface response (i.e. uplift and erosion) to syn- and post rift thermal and tectonic processes Over the last two decades, low temperature thermochronometry, particularly apatite fission track analysis (AFTA) and apatite (U-Th)/He, have been effective tools in providing these constraints by tracking the time-temperature history of rocks through c. 60 - 110°C and 80 - 40°C, respectively. The unique ability of AFTA to constrain both the timing and nature of sample cooling rests largely on the sensitivity of fission track annealing to temperature. Here, we present new AFT data from a suite of samples across the entire western continental margin of South Africa which contributes to a now extensive AFT dataset spanning the entire sub-continent. This dataset broadly invokes at least two discrete episodes of cooling driven by km scale denudation at c. 130 Ma, following rifting and break up of West Gondwana, and 90 Ma as a response to renewed tectonic uplift. However, the apparent lack of correlation of AFT age with elevation or with distance from the coast highlight the spatial and temporal variability of post-rift cooling that may be related to Mid-Cretaceous structural reactivation along the margin. We also present thermal history modelling using the Bayesian transdimensional inverse modelling approach of QTQt (Gallagher, 2012). Modelling

  7. Low temperature thermochronology and topographic evolution of the South Atlantic passive continental margin in the region in eastern Argentina

    NASA Astrophysics Data System (ADS)

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    To understand the evolution of the passive continental margin in Argentina low temperature thermochronology is an appropriate method, which will lead to new conclusions in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the southamerican passive continental margin the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes of. The igneous-metamorphic basement is pre-proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons it is overlain by a series of Neoproterozoic to early Paleozoic sediments (Cingolani, 2010), like siliciclastics, dolostones, shales and limestones (Demoulin et al., 2005). The aim of the study is to quantify the long-term landscape evolution of the passive continental margin in eastern Argentina in terms of thermal history, exhumation and tectonic activities. For that purpose, samples were taken from the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham, 2005; Ketcham 2007; Ketcham et al., 2009). The results indicate apatite fission track ages between 101.6 (9.4) to 228.9 (22.3) Ma, what means all measured ages are younger as their formation age. That shows all samples have been reset. Six samples accomplished enough confined tracks and were used to test geological t-T models against the AFT data set. These models give a more detailed insight on the cooling history and tectonic activities in the research area. References: Cingolani C. A. (2010): The Tandilia System of Argentina as a southern extension of the Río de la

  8. Northeast Atlantic bathymetric map

    NASA Astrophysics Data System (ADS)

    Loubrieu, B.; Sibuet, J.-C.; Monti, S.; Mazé, J.-P.

    2003-04-01

    The new bathymetric map of the Bay of Biscay and Northeast Atlantic Ocean is based on all available conventional and multibeam data. It extends from the European coast to the mid-Atlantic ridge in longitude and from the Azores-Gibraltar fracture zone to 50^oN in latitude. Grid spacing is one km. The map is in Mercator projection at a 1/2,400,000 scale. With respect to previously published maps, the detailed morphology of Eurasian and Iberian continental margins, a complete picture of the two fossil trajectories of the Bay of Biscay triple junction, which limit the western extension of the Bay of Biscay, and the precise location of the plate boundary between Eurasia and Iberia, which was active during the Tertiary, are now available. The Bay of Biscay and Northeast Atlantic opened simultaneously between chrons M0 (118 Ma) and 33o (80 Ma). A triple junction existed during that period. Fossil triple junctions trajectories on each of the three Eurasia (EU), Iberia (IB) and North America (NA) plates separate oceanic domains which were formed between the three plate pairs: IB/EU for the Bay of Biscay, EU/NA and IB/NA for the northern and southern portions of the Northeast Atlantic respectively. On each side of the fossil trajectories, rift directions formed between different plate pairs present different azimuths. The two eastern branches have been identified on the basis of available bathymetric, magnetic and seismic data. They are generally associated with a basement ridge whose bathymetric expression is clearly shown in their youngest parts. The intersections of these two fossil trajectories with the base of the continental margins are conjugate points before the opening of the Bay of Biscay, giving an independent constraint for plate reconstructions at M0 time. In a companion poster, we have used the constraints deduced from the new bathymetric map to derive the IB/EU kinematic motions and discuss their consequences on the formation of Pyrenees.

  9. Seed Dormancy and Germination of the European Chaerophyllum temulum (Apiaceae), a Member of a Trans-Atlantic Genus

    PubMed Central

    Vandelook, Filip; Bolle, Nele; Van Assche, Jozef A.

    2007-01-01

    Background and Aims The European Chaerophyllum temulum and two North American Chaerophyllum species have a trans-Atlantic disjunct distribution. This work aimed to resolve requirements for dormancy break and germination of C. temulum seeds and to compare dormancy traits with those of the two North American congeners. Methods Phenology of germination and embryo growth was studied by regularly exhuming seeds sown in natural conditions. Temperature requirements for embryo growth, breaking of dormancy and germination were determined by incubating seeds under controlled laboratory conditions. Additionally the effect of GA3 on germination was tested to determine the specific dormancy type. Key Results In natural conditions, embryo growth starts in early winter. Seedlings emerge in late winter shortly after the embryos reached the critical ratio for embryo length to seed length (E : S) of approx. 0·95. Growth of the embryo only occurs during a prolonged incubation period at 5 °C. After stratification at 5 °C, which breaks physiological and morphological dormancy, seeds can germinate at a wide range of temperatures. GA3 did not substitute for cold stratification in seeds placed at 23 °C. Conclusions Chaerophyllum temulum has deep complex morphophysiological dormancy. This dormancy type differs considerably from that of the two North American congeners. PMID:17556382

  10. A Statistical Resampling Technique for Conditioning Simulated Daily European Surface Temperatures on the North Atlantic Oscillation Index

    NASA Astrophysics Data System (ADS)

    Cook, B. I.; Mann, M.; Smith, T.

    2002-12-01

    We describe a technique for simulating the influence of the North Atlantic Oscillation on daily winter surface temperatures over the European sector. The approach itself is general enough that it could easily beÿ applied to other climate variables (e.g., daily precipitation) and indices (e.g., the Southern Oscillation Index). The technique employs a Principal Component Analysis (PCA) to represent the spatial structure in the daily surface temperature field, by retaining only the leading, statistically significant empirical eigenvectors, and modeling any residual variance as spatially-uncorrelated noise. The associated principal components time series and noise residuals are modeled as AR(1) autoregressive processes. For those principal component time series which exhibit a statistically significant seasonal relationship with the NAO index, the parameters of the AR(1) model (mean, innovation variance, and lag-one autocorrelation) are then conditioned on the phase (high, neutral, or low) of the NAO. This process allows for realistic simulations of synoptic-scale surface temperature variability over Europe as it is influence by the NAO index.ÿ Use of these simulations for the investigation of climate change scenarios,ÿ with applications to changing phenological patterns, will be discussed.

  11. Trends and Variability of Storminess in the NE Atlantic-European Region during 1874-2007 and their relationship to the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Zwiers, F. W.; Swail, V. R.; Feng, Y.; Wan, H.

    2009-04-01

    This study builds on the previous studies on storminess conditions in the Northeast Atlantic-European region. The period of surface pressure data analyzed is extended from 1881-1998 to 1874-2007; and the region analyzed is extended south to the Iberian Peninsula. The seasonality and regional differences of storminess conditions in this region are also explored in more detail. The results show that storminess conditions in this region have undergone substantial decadal or longer time scale fluctuations, with considerable seasonal and regional differences. The most notable differences are seen between winter and summer, and between the North Sea area and other parts of the region. In particular, winter storminess shows an unprecedented maximum in the 1990s in the North Sea area and over southern Iberian Peninsula, while it has declined over the Bay of Biscay and northern Iberian Peninsula, and in the northwest part of the region. In summer, storminess appears to have declined in most parts of this region, except southern Iberian Peninsula where summer storminess has increased significantly. In the transition seasons, the storminess trend is characterized by decreases in the south-central part of the region and increases in the extreme north part, with decreases being most significant over the Bay of Biscay and northern Iberian Peninsula in both seasons, while increases in the extreme north part of the region being most significant in spring. In particular, the results also show that in the North Sea area the earliest storminess maximum occurred in summer (around 1880), while the latest storminess maximum occurred in winter (in the early 1990s). Looking at the annual metrics alone (as in previous studies), one would conclude that the latest storminess maximum is at about the same level as the earliest storminess maximum, without realizing that this is comparing the highest winter storminess level with the highest summer storminess level in the period of record

  12. New discoveries of mud volcanoes on the Moroccan Atlantic continental margin (Gulf of Cádiz): morpho-structural characterization

    NASA Astrophysics Data System (ADS)

    León, Ricardo; Somoza, Luis; Medialdea, Teresa; Vázquez, Juan Tomás; González, Francisco Javier; López-González, Nieves; Casas, David; del Pilar Mata, María; del Fernández-Puga, María Carmen; Giménez-Moreno, Carmen Julia; Díaz-del-Río, Víctor

    2012-12-01

    During the MVSEIS-08 cruise of 2008, ten new mud volcanoes (MVs) were discovered on the offshore Moroccan continental margin (Gulf of Cádiz) at water depths between 750 and 1,600 m, using multibeam bathymetry, backscatter imagery, high-resolution seismic and gravity core data. Mud breccias were recovered in all cases, attesting to the nature of extrusion of these cones. The mud volcanoes are located in two fields: the MVSEIS, Moundforce, Pixie, Las Negras, Madrid, Guadix, Almanzor and El Cid MVs in the western Moroccan field, where mud volcanoes have long been suspected but to date not identified, and the Boabdil and Al Gacel MVs in the middle Moroccan field. Three main morphologies were observed: asymmetric, sub-circular and flat-topped cone-shaped types, this being the first report of asymmetric morphologies in the Gulf of Cádiz. Based on morpho-structural analysis, the features are interpreted to result from (1) repeated constructive (expulsion of fluid mud mixtures) and destructive (gravity-induced collapse and submarine landsliding) episodes and (2) interaction with bottom currents.

  13. Structure and history of submarine slope failures at the Cape Fear submarine landslide, U.S. Atlantic margin

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Chaytor, J. D.; Hutchinson, D. R.; Ten Brink, U. S.; Flores, C. H.

    2015-12-01

    New multi-channel seismic (MCS), chirp sub-bottom, and multibeam bathymetry and backscatter data image the Late Pleistocene-Holocene age Cape Fear submarine landslide (CFS) along its complete ~375 km length, from the multiple headwalls at ~2500 m water depth on the slope to the lobate, low-relief toe at ~5400 m water depth. A surficial chaotic mass transport deposit (MTD) filling the failure scar exceeds 100 m in thickness over large sections of the deposit, thinning towards the margins of the slide. Below 5000 m, the CFS truncates the surficial MTD of the Cape Lookout Landslide in several places, indicating that it post-dates the Cape Lookout Landslide. At depth, the MCS data image the edge of the Cape Fear salt diapir and a seismically transparent region that may be associated with fluid flow focused along the edge of the diapir. This potential fluid pathway sits directly beneath the headwalls of the CFS, supporting the hypothesis that the salt diapir is responsible for the failure, either through deformation of sediments during salt emplacement or by focusing of fluids, or both. The MCS data also image several earlier MTDs. These deposits are confined to sediments younger than the early Cenozoic, consistent with interpretations of major canyon cutting in the Eocene and initiation of intense deep and erosive currents in the Late Paleogene. These processes can over-steepen and redistribute slope sediments, enhancing conditions for slope failures and salt diapirism.

  14. The spatial distribution and potential sources of polycyclic aromatic hydrocarbons (PAHs) over the Asian marginal seas and the Indian and Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Zhang, Yan-Lin; Li, Jun; Gioia, Rosalinda; Zhang, Gan; Li, Xiang-Dong; Spiro, Baruch; Bhatia, Ravinder S.; Jones, Kevin C.

    2012-04-01

    Gaseous and particle-bound polycyclic aromatic hydrocarbons (PAHs) were analyzed in air samples taken on a voyage of the Scholar Ship from January 16th to March 14th, 2008. Samples were taken from the Asian marginal seas and the Indian and Atlantic Oceans, providing an opportunity to assess spatial trends and potential sources of atmospheric PAHs over those oceans. The results show that continental sources were still responsible for some high concentrations of PAHs measured over the oceans. The Σ15PAHs in the gaseous phase were elevated on the approach to China and India, while the highest Σ15PAHs in the particulate phase were found at Chennai Harbor and close to Guinea. The high proportion of fluorene in the gas phase over the East and South China Sea could be a marker of coal and coke related combustion emission from Mainland China. The elevated high-molecular-weight PAHs in particles close to Guinea might be related to biomass burning in Africa. These results are consistent with previous PAH emission inventories and highlight the potential impact of continental PAH sources in China, India and Africa on the adjacent marine atmosphere.

  15. Assessment of Canyon Wall Failure Process and Disturbance Gradients from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, Puerto Rico and the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Demopoulos, A. W.; Ten Brink, U. S.; Quattrini, A.

    2016-02-01

    Over the last several years, canyons around Puerto Rico and along the U.S. Atlantic continental margin between Georges Bank and Cape Hatteras have been investigated using high-resolution multibeam bathymetry and Remotely Operated Vehicle (ROV) dives utilizing the exploration vessels E/V Nautilus and NOAA Ship Okeanos Explorer. The imaging capabilities of these ROVs have provided the opportunity to begin to investigate the size of canyon wall failures, the processes responsible for their occurrence and to develop a conceptual framework for determining their relative age. Bed and formation scale lithologies exposed in the canyons and localized structural features (bedding planes, fracture planes, etc.) appear to be the primary control on the style of failures observed. Near vertical walls, sedimented benches, talus slopes, and canyon floor debris aprons were present in most canyons visited. Evidence of brittle failure over different spatial and temporal scales, physical abrasion by downslope moving flows, and bio-erosion in the form of burrows and surficial scrape marks provide insight into the modification processes active in these canyons. The level of colonization by sessile species (e.g., corals, sponges) on the canyon walls and displaced material, especially on substrates affected by failure and sediment bioturbation, provide a critical, but as yet, poorly understood chronological record of geologic processes within these systems. Therefore, comparison of the processes among these geologically, oceanographically, and ecologically different regions provides the opportunity to critically assess the wide range of drivers that control recolonization of sessile fauna influenced by continuous or episodic disturbances.

  16. The Eocene-Oligocene sedimentary record in the Chesapeake Bay impact structure: Implications for climate and sea-level changes on the western Atlantic margin

    USGS Publications Warehouse

    Schulte, P.; Wade, B.S.; Kontny, A.; ,

    2009-01-01

    other northwest Atlantic margin sections. It could result from a shift to more distal depositional environments and condensed sedimentation during maximum fl ooding, rather than refl ecting a climatic change in the hinterland. The distinct 1% increase of the oxygen isotopes may correspond to the short-term latest Eocene "precursor isotope event." (4) The abrupt increase of sediment grainsize, carbonate content, and abundance of authigenic minerals (glauconite) across the major unconformity that separates Eocene from Oligocene sediments in the Eyreville core refl ects deposition in shallower settings associated with erosion, winnowing, and reworking. Sediments within the central crater were affected by the rapid eustatic sea-level changes associated with the greenhouse-icehouse transition, as well as by an abrupt major uplift event and possibly enhanced current activity on the northwestern Atlantic margin. ?? 2009 The Geological Society of America.

  17. Temperature and salinity changes associated with the Paleocene-Eocene Carbon Isotope Excursion along the mid Atlantic margin

    NASA Astrophysics Data System (ADS)

    Makarova, M.; Miller, K. G.; Wright, J. D.; Rosenthal, Y.; Babila, T. L.

    2015-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an abrupt warming event, characterized by a global temperature increase of about 5-8°C and associated with the Carbon Isotope Excursion (CIE) of ~2.5-4‰ in marine environments. Here we evaluate temperature and salinity changes across the Paleocene/Eocene boundary in the Millville New Jersey coastal plain core (ODP Leg 174AX) using two independent temperature proxies (the organic paleothermometer TEX86 and Mg/Ca ratio of planktonic foraminifera) and δ18O of planktonic foraminifera. Paleotemperature estimates show warming of 5-7°C during the CIE, though different temperature calibrations provide a broad range of absolute temperatures. We argue that the temperature calibration of TEXL 86 provides the best temperature estimate (warming from 23°C to 30°C) because it is the only one that yields realistic salinities, whereas the TEXH 86 calibration yields extremely high sea surface salinities (~48 psu in the latest Paleocene). In contrast to the previous studies, use of the correct calibration effectively eliminates any temperature increase prior to the CIE suggesting that temperature was not the trigger for the massive release of carbon. A salinity decrease of at least ~4 psu was associated with the onset of the CIE/PETM. This implies freshening of surface and thermocline waters supports the hypothesis of an enhanced hydrological cycle. We conclude that our results are consistent with the hypothesis of Appalachian Amazon river system development and increased river runoff to the New Jersey continental margin during the PETM.

  18. Export of a Winter Shelf Phytoplankton Bloom at the Shelf Margin of Long Bay (South Atlantic Bight, USA)

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Seim, H.; Edwards, C. R.; Lockhart, S.; Moore, T.; Robertson, C. Y.; Amft, J.

    2016-02-01

    A winter 2012 field study off Long Bay (seaward of Myrtle Beach, South Carolina) investigated exchange processes along the shelf margin. Topics addressed included mechanisms of nutrient input (upper slope to outer shelf), phytoplankton blooms and community characteristics (mid-to-outer shelf), and possible export of shelf bloom material (transport to and across the shelf break to the upper slope). Observations utilized three moorings (mid-shelf, shelf break, upper slope), two gliders and ship operations (repeat cruises with profiling, water sampling and towed body surveys) along with satellite SST and ocean color imagery and near-by NOAA buoy records. Here we focus on the late January to early February period, when a mid-shelf bloom of Phaeocystis globosa (which forms large gelatinous colonies) was transported to the shelf break. The presence of Phaeocystis colonies resulted in strong spiking in chlorophyll (chl) fluorescence profiles. A partitioning approach was adapted to estimate chl in colonies (spikes) and small forms (baseline signal) and to account for an apparent difference in measured in vivo fluorescence per unit chl (lower in colonies). Up to 40-50% of chl in the bloom (surface to bottom on the mid-shelf) was estimated to be in the colonies. In late January, there a pronounced seaward slumping of relatively dense mid-shelf water along the bottom under warmer surface water derived from the inshore edge of a broad jet of Gulf Stream water flowing southwestward along the upper slope. We describe the evolution of this event and the conditions which set up this mechanism for episodic near-bed transport of fresh bloom material produced on the shelf to the upper slope off Long Bay. Down-slope transport may have been enhanced in this case by the high phytoplankton biomass in gelatinous colonies, which appeared to be settling in the water column on the shelf prior to the transport event.

  19. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)

    NASA Astrophysics Data System (ADS)

    Fossing, Henrik; Ferdelman, Timothy G.; Berg, Peter

    2000-03-01

    Sulfate reduction rates (SRR) and concentrations of SO 42-, H 2S, pyrite sulfur, total sulfur, CH 4, and organic carbon were measured with high depth resolution through the entire length of the SO 42--zone and well into the CH 4-zone at two continental slope stations in the eastern South Atlantic (Benguela upwelling area). The sediments were characterized by a high organic carbon content of approx. 7.5% at GeoB 3703 and 3.7% at GeoB 3714. At GeoB 3703 SO 42- concentrations decreased linearly with depth to about 40 μM at the sulfate-methane transition zone (SMT) at 3.5 m, while at GeoB 3714, SO 42- remained at sea water concentration in the top 2 m of the sediment and then decreased linearly to about 70 μM at the SMT at 6 m. Direct rate measurements of SRR ( 35SO 42-) showed that the highest SRR occurred within the surface 3-5 cm with peak rates of up to 20 and 7 nmol SO 42- cm -3 day -1 at GeoB 3703 and GeoB 3714, respectively. SRR decreased quasi-exponentially with depth at GeoB 3703 and the cumulative SRR over the length of the SO 42- zone resulted in an areal SRR (SRR area) of 1114-3493 μmol m -2 day -1 (median value: 2221 μmol m -2 day -1) at GeoB 3703 with more than 80% of the total sulfate reduction proceeding in the top 30 cm sediment. At GeoB 3714 SRR exhibited more scatter with a cumulative SRR area of 398-1983 μmol m -2 day -1 (median value: 1251 μmol m -2 day -1) and with >60% of the total sulfate reduction occurring below a depth of 30 cm due partially to a deeply buried zone of sulfate reduction located between 3 and 5 m depths. SRR peaks were also observed in SMT of both cores, ostensibly associated with methane oxidation, but with rates about 10 times lower than at the surface. Modeled SRR balanced both methane oxidation rates and measured SRR within the SMT, but severely underestimated by up to 89% the total SRR area that were obtained from direct measurements. Modeled and measured SRR were reconciled by including solute transport by

  20. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (south-east Atlantic off Namibia)

    SciTech Connect

    Fossing, H.; Ferdelman, T.G.; Berg, P.

    2000-03-01

    Sulfate reduction rates (SRR) and concentrations of SO{sub 4}{sup 2{minus}}, H{sub 2}S, pyrite sulfur, total sulfur, CH{sub 4}, and organic carbon were measured with high depth resolution through the entire length of the SO{sub 4}{sup 2{minus}}-zone and well into the CH{sub 4}-xone at two continental slope stations in the eastern South Atlantic (Benguela upwelling area). The sediments were characterized by a high organic carbon content of approx. 7.5% at GeoB 3703 and 3.7% at GeoB 3714. At GeoB 3703 SO{sub 4}{sup 2{minus}} concentrations decreased linearly with depth to about 40 {micro}M at the sulfate-methane transition zone (SMT) at 3.5 m, while at GeoB 3714, SO{sub 4}{sup 2{minus}} remained at sea water concentration in the top 2 m of the sediment and then decreased linearly to about 70 {micro}M at the SMT at 6 m. Direct rate measurements of SRR ({sup 35}SO{sub 4}{sup 2{minus}}) showed that the highest SRR occurred within the surface 3--5 cm with peak rates of up to 20 and 7 nmol SO{sub 4}{sup 2{minus}} cm{sup 3}/day at GeoB 3703 and GeoB 3714, respectively. SRR decreased quasi-exponentially with depth at GeoB 3703 and the cumulative SRR over the length of the SO{sub 4}{sup 2{minus}} zone resulted in an areal SRR of 1114--3493 {micro}mol/m{sup 2} day at GeoB 3703 with more than 80% of the total sulfate reduction proceeding in the top 30 cm sediment. Modeled SRR balanced both methane oxidation rates and measured SRR within the SMT, but severely underestimated by up to 89% the total SRR{sub area} that were obtained from direct measurements. Modeled and measured SRR were reconciled by including solute transport by irrigation described by a non-local pore water exchange function ({alpha}) which had values of up to 0.3 year{sup {minus}1} in the top sediment, and decreased exponentially to zero (i.e., no irrigation) at 2--3 meters (i.e., above SMT). These results suggested that co-existing sulfate reduction processes and linear SO{sub 4}{sup 2{minus}} gradients can be

  1. Subglacial geomorphology reveals connections between glacial dynamics and deeper hydrocarbon reservoir leakages at the Polar north Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Andreassen, Karin; Deryabin, Alexey; Rafaelsen, Bjarne; Richarsen, Morten

    2014-05-01

    Three-dimensional (3D) seismic data from the Barents Sea continental shelf and margin reveal spatial links between subsurface distributions of inferred glacitectonic geomorphic landforms and seismic indications of fluid flow from deeper hydrocarbon reservoirs. Particularly 3D seismic techniques allow detailed mapping and visualization of buried glacial geomorphology and geophysical indications of fluid flow and gas accumulations. Several subsurface glacitectonic landforms show pronounced depressions up to 200 m deep and several km wide. These appear in many locations just upstream from hills of similar sizes and volumes, and are inferred to be hill-hole pairs. The hills are interpreted as thrusted and compressed slabs of sediments and bedrock which have been removed from their original location by moving glaciers during the last glacial, leaving the holes as depressions. The mapped depressions seem often to appear in sediments of different lithology and age. The appearance of mega-scale glacial lineations indicates that fast-flowing ice streams, draining the former Barents Sea and Fennoscandian ice sheets were the main agents of these glacitectonic landforms. Mapped fluid flow migration pathways from deeper reservoirs and shallow gas accumulations show evidence of active fluid migration systems over longer time periods, and their spatial relationship with the glacitectonic landforms is documented for several areas of the Barents Sea continental shelf. A conceptual model is proposed for the depressions, where brittle glacitectonic deformation takes place along a weak layer at the base of gas-hydrate cemented sediments. Fluid flow from deeper hydrocarbon reservoirs is inferred to be associated with cycles of glaciations and unloading due to glacial erosion and ice retreat, causing gas to expand, which in turn potentially breaks the traps, reactivates faults and creates new faults. Gas hydrate stability modeling indicates that the south-western Barents Sea is today

  2. Impact of North Atlantic Sea Surface Temperatures on European Summer Climate on Multi-decadal Timescales in Reanalysis and Model Simulations

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Bader, J.; Eichhorn, A.; Mueller, W. A.; Baehr, J.

    2015-12-01

    The observed prominent multidecadal variations in the central to eastern (C-E) European summer temperature are closely related to the Atlantic Multidecadal Variability (AMV). Using the Twentieth Century Reanalysis project version 2 data for the period of 1922 to 2012, we present a mechanism by which the multidecadal variations in the C-E European summer temperature are governed by a quasi-geostrophic (QG) atmospheric response to the AMV related surface heat fluxes. Our results suggest that the QG response causes temperature variations over the C-E European region and it is also responsible for the variations in precipitation over the British Isles and north-western Europe on multidecadal timescales. We further investigate the relation between AMV and European summer climate in the coupled model MPI-ESM and we find that the model is able to simulate a QG response. However, the spatial location of the response differs from the reanalysis which could be due to the differences in the observed and simulated North Atlantic sea surface temperatures (SST). Therefore, further experiments are done to understand the differences in the atmospheric response between the reanalysis and the MPI-ESM through idealized SST-sensitivity experiments with the atmospheric component of MPI-ESM. The atmospheric model is forced by the observed AMV type of SST pattern to better understand the impact of SST biases in the coupled model on the response.

  3. Effect of gas-transfer velocity parameterization choice on air-sea CO2 fluxes in the North Atlantic Ocean and the European Arctic

    NASA Astrophysics Data System (ADS)

    Wrobel, Iwona; Piskozub, Jacek

    2016-09-01

    The oceanic sink of carbon dioxide (CO2) is an important part of the global carbon budget. Understanding uncertainties in the calculation of this net flux into the ocean is crucial for climate research. One of the sources of the uncertainty within this calculation is the parameterization chosen for the CO2 gas-transfer velocity. We used a recently developed software toolbox, called the FluxEngine (Shutler et al., 2016), to estimate the monthly air-sea CO2 fluxes for the extratropical North Atlantic Ocean, including the European Arctic, and for the global ocean using several published quadratic and cubic wind speed parameterizations of the gas-transfer velocity. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic Ocean. This region is a large oceanic sink of CO2, and it is also a region characterized by strong winds, especially in winter but with good in situ data coverage. We show that the uncertainty in the parameterization is smaller in the North Atlantic Ocean and the Arctic than in the global ocean. It is as little as 5 % in the North Atlantic and 4 % in the European Arctic, in comparison to 9 % for the global ocean when restricted to parameterizations with quadratic wind dependence. This uncertainty becomes 46, 44, and 65 %, respectively, when all parameterizations are considered. We suggest that this smaller uncertainty (5 and 4 %) is caused by a combination of higher than global average wind speeds in the North Atlantic (> 7 ms-1) and lack of any seasonal changes in the direction of the flux direction within most of the region. We also compare the impact of using two different in situ pCO2 data sets (Takahashi et al. (2009) and Surface Ocean CO2 Atlas (SOCAT) v1.5 and v2.0, for the flux calculation. The annual fluxes using the two data sets differ by 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal fluxes in the Arctic computed from the two data sets disagree with each

  4. Sensitivity analysis of a variability in rock thermal conductivity concerning implications on the thermal evolution of the Brazilian South Atlantic passive continental margin

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian

    2017-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport

  5. The development of cold-water coral mounds along the Moroccan Atlantic and Mediterranean margins revealed by MeBo drillings

    NASA Astrophysics Data System (ADS)

    Hebbeln, Dierk; Wienberg, Claudia; Frank, Norbert

    2015-04-01

    Cold-water corals (CWC) mostly occur in intermediate water depths between 200 m and 1000 m and are capable of forming substantial seafloor structures, so-called coral carbonate mounds. These mounds can reach heights from a few meters up to >300 m and are composed of a mixture of CWC (and other shell) fragments and hemipelagic sediments, that both individually serve as distinct paleo-archives. IODP Leg 307 drilled through Challenger Mound at the Irish margin and revealed for the first time the full life history of a coral mound. However, although CWC occur almost worldwide, the 155 m long Challenger Mound record was for many years the only record from a coral mound exceeding 10 m in length. During expedition MSM36 with the German R/V MARIA S. MERIAN in spring 2014, several coral mounds along the Moroccan margin, both in the Atlantic Ocean and in the Mediterranean Sea, were drilled (actually: push-cored) by applying the Bremen Seafloor Drill Rig MeBo. The MeBo is a remotely controlled drilling system that is lowered from the vessel to the seafloor. Energy supply and video control are secured by an umbilical linking the MeBo to the vessel. The scientific foci of expedition MSM36 were to investigate (1) the long-term development of CWC mounds in both areas over the last several 100,000 years in relation to changes in the ambient environmental conditions in the respective intermediate waters, (2) the life time history of these mounds, and (3) the forcing factors for the initiation and decease of individual mounds. In both working areas, a total amount of 11 sites were successfully drilled with MeBo. Eight drillings were conducted at CWC mounds (on-mound sites) and 3 drillings in the direct vicinity of the mounds (off-mound sites) in order to obtain continuous paleoceanographic records. Drilling depths ranged between 17 m and 71 m with the latter corresponding to the maximum drilling depth of MeBo. The core recoveries varied between the sites and ranged between 47% and

  6. Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin

    USGS Publications Warehouse

    Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.

    1999-01-01

    facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. By comparison, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean outflow current, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. Radiocarbon ages verify that the inner shelf shoreface sand facies (sedimentation rate 7.1 cm/kyr), mid-shelf mud facies (maximum rate 234 cm/kyr) and surface sandy contourite layer of 0.2-1.2 m thickness on the Cadiz slope (1-12 cm/kyr) have deposited during Holocene time when high sea level results in maximum water depth over the Gibraltar sill and full development of the Atlantic inflow and Mediterranean outflow currents. The transgressive sand sheet of the shelf, and the mud layer underlying the surface contourite sand sheet of the slope, correlate, respectively, with the late Pleistocene sea level lowstand and apparent weak Mediterranean outflow current.

  7. Mesozoic architecture of a tract of the European-Iberian continental margin: Insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Santantonio, Massimo; Fabbi, Simone; Aldega, Luca

    2016-01-01

    The sedimentary successions exposed in northeast Calabria document the Jurassic-Early Cretaceous tectonic-sedimentary evolution of a former segment of the European-Iberian continental margin. They are juxtaposed today to units representing the deformation of the African and Adriatic plates margins as a product of Apenninic crustal shortening. A complex pattern of unconformities reveals a multi-stage tectonic evolution during the Early Jurassic, which affected the facies and geometries of siliciclastic and carbonate successions deposited in syn- and post-rift environments ranging from fluvial to deep marine. Late Sinemurian/Early Pliensbachian normal faulting resulted in exposure of the Hercynian basement at the sea-floor, which was onlapped by marine basin-fill units. Shallow-water carbonate aprons and reefs developed in response to the production of new accommodation space, fringing the newborn islands which represent structural highs made of Paleozoic crystalline and metamorphic rock. Their drowning and fragmentation in the Toarcian led to the development of thin caps of Rosso Ammonitico facies. Coeval to these deposits, a thick (> 1 km) hemipelagic/siliciclastic succession was sedimented in neighboring hanging wall basins, which would ultimately merge with the structural high successions. Footwall blocks of the Early Jurassic rift, made of Paleozoic basement and basin-margin border faults with their onlapping basin-fill formations, are found today at the hanging wall of Miocene thrusts, overlying younger (Middle/Late Jurassic to Late Paleogene) folded basinal sediments. This paper makes use of selected case examples to describe the richly diverse set of features, ranging from paleontology to sedimentology, to structural geology, which are associated with the field identification of basin-margin unconformities. Our data provide key constraints for restoring the pre-orogenic architecture of a continental margin facing a branch of the Liguria-Piedmont ocean in the

  8. High-resolution seismic attribute analysis for the detection of methane hydrate and substrate fluid migration pathways along the central U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Ruppel, C. D.; Brothers, D. S.; Danforth, W. W.; Edwards, J. H.; Hart, P. E.

    2015-12-01

    High-resolution multi-channel (72 channel) seismic (MCS) reflection profiles and coincident water column methane plume imagery were collected by the USGS on the U.S. mid-Atlantic margin aboard the R/V Endeavor in April 2015. The seismic data are analyzed using advanced attributes to detect and delineate the base of the gas hydrate stability (BGHS) and fluid-migration pathways associated with recently discovered seafloor methane seeps. The sparker was operated at 2.6 kJ, and the amplitude frequency spectrum of the resulting data ranges from ~50-700 Hz, with the dominant frequency centered at 150 Hz. Using a frequency attribute workflow, we calculate and visualize changes in dominant frequency content within the seismic profiles. Laterally-distributed and abrupt high-to-low frequency changes are observed at depth. High frequencies are attenuated below this transition, which commonly mimics the seafloor and gradually shoals towards the seafloor with decreasing water depth. The BGHS depths calculated using gas hydrate stability constraints and geothermal gradients closely coincide with these transitions, which are likely caused by free gas that scatters and attenuates higher frequencies. This approach allows for improved delineation of the BGHS on high-frequency MCS data that lack a reverse-polarity bottom-simulating reflector and on upper slopes where the BGHS is hard to discern. We also apply a neural-network seismic attribute workflow to analyze potential fluid-pathways below methane plumes imaged in the water column. The workflow uses structural steering calculations and multiple weighted attributes in a neural-network algorithm targeted for gas chimney detection. The results highlight probable fluid flow pathways in areas with and without seafloor methane seeps and delineate deep-seated features (e.g., fractures) that supply gas to some of the deepwater (> 1000 m) seep sites.

  9. A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin

    USGS Publications Warehouse

    Poag, C.W.; Sevon, W.D.

    1989-01-01

    The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.

  10. Marginality of Transfer Commuter Students.

    ERIC Educational Resources Information Center

    Kodama, Corinne Maekawa

    2002-01-01

    Examines marginality issues facing transfer commuter students attending a mid-Atlantic university and what student characteristics relate to their sense of marginality. Results showed that transfer students have few sources of on-campus support, which may lead to their feelings of marginality. Results were particularly true for woman and Asian…

  11. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  12. What can otolith shape analysis tell us about population structure of the European sardine, Sardina pilchardus, from Atlantic and Mediterranean waters?

    NASA Astrophysics Data System (ADS)

    Jemaa, Sharif; Bacha, Mahmoud; Khalaf, Gaby; Dessailly, David; Rabhi, Khalef; Amara, Rachid

    2015-02-01

    The European sardine, Sardina pilchardus, exhibits a complex population structure, which has produced conflicting results in previous genetic studies. Despite its importance in the fisheries industry, stock delineation for management and conservation purposes is still a matter of debate throughout the distribution range of the species. This study examines whether otolith shapes are more efficient than genetic markers to detect population structure in pelagic species with large population sizes. Sardines were analyzed from 15 sampling localities in the Northeast Atlantic and Mediterranean Sea covering almost the whole distribution range of the species. A combination of otolith shape indices and elliptic Fourier descriptors was investigated by multivariate statistical procedures. Within the studied area, three distinct groups were identified with an overall correct classification of 77%. Group A: northern Mediterranean Sea and Gulf of Gabès; group B: Atlantic Morocco-south Alboran-Algero-provençal coasts; and group C: European Atlantic coast. The Almeria-Oran front and the Gibraltar strait are not an efficient barrier for sardine population separation as there seems to be exchanges between populations of the south-western Mediterranean Sea and those of the Moroccan Atlantic Ocean coast or Gulf of Cadiz. The results are discussed in relation to environmental conditions, oceanographic features, and physical barriers to dispersal in the study area, and compared with those obtained by previous genetic, morphometric, and meristic data. For pelagic species with high gene flow, present results highlighted the need to take into account the identification of phenotypic stocks to ensure sustainable fishery benefits and efficient conservation as they may have unique demographic properties and responses to exploitation.

  13. Sensitivity of advective transfer times across the North Atlantic Ocean to the temporal and spatial resolution of model velocity data: Implication for European eel larval transport

    NASA Astrophysics Data System (ADS)

    Blanke, Bruno; Bonhommeau, Sylvain; Grima, Nicolas; Drillet, Yann

    2012-05-01

    European eel (Anguilla anguilla) larvae achieve one of the longest larval migrations of the marine realm, i.e., more than 6000 km from their spawning grounds in the Sargasso Sea to European continental shelves. The duration of this migration remains debated, between 7 months and 3 years. This information is, however, crucial since it determines the period over which larvae are affected by environmental conditions and hence the subsequent recruitment success. We investigate the pathways and duration of trans-Atlantic connections using 3 years of high-resolution (daily, 1/12°) velocity fields available from a Mercator-Océan model configuration without data assimilation. We study specifically the effect of spatial and temporal resolutions on our estimates by applying various filters in time (from daily to 12-day averages) and space (from 1/12° to 1° gridcell aggregation) to the nominal model outputs. Numerical particles are released in the presumed European eel spawning area and considered as passive tracers at three specific depths (around 0, 50, and 200 m). We diagnose particularly the intensity of the water transfer between suitable control sections that encompass the eel larva distribution. Transit ages are also investigated, with a particular focus on the pathways that minimize the connection times between the western and eastern North Atlantic. We show that small-scale structures (eddies and filaments) contribute to faster connections though they also correspond to additional complexity in trajectories. The shortest pathways mostly follow the Gulf Stream and the North Atlantic Drift, whereas interior connections require longer transfers that prove less compatible with biological observations.

  14. Comparing momentum and mass (aerosol source function) fluxes for the North Atlantic and the European Arctic using different parameterizations

    NASA Astrophysics Data System (ADS)

    Wróbel, Iwona; Piskozub, Jacek

    2016-04-01

    Wind speed has a disproportionate role in the forming of the climate as well it is important part in calculate of the air-sea interaction thanks which we can study climate change. It influences on mass, momentum and energy fluxes and the standard way of parametrizing those fluxes is use this variable. However, the very functions used to calculate fluxes from winds have evolved over time and still have large differences (especially in the case of aerosol sources function). As we have shown last year at the EGU conference (PICO presentation EGU2015-11206-1) and in recent public article (OSD 12,C1262-C1264,2015) there is a lot of uncertainties in the case of air-sea CO2 fluxes. In this study we calculated regional and global mass and momentum fluxes based on several wind speed climatologies. To do this we use wind speed from satellite data in FluxEngine software created within OceanFlux GHG Evolution project. Our main area of interest is European Arctic because of the interesting air-sea interaction physics (six-monthly cycle, strong wind and ice cover) but because of better data coverage we have chosen the North Atlantic as a study region to make it possible to compare the calculated fluxes to measured ones. An additional reason was the importance of the area for the North Hemisphere climate, and especially for Europe. The study is related to an ESA funded OceanFlux GHG Evolution project and is meant to be part of a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). We have used a modified version FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) for calculating trace gas fluxes to derive two purely wind driven (at least in the simplified form used in their parameterizations) fluxes. The modifications included removing gas transfer velocity formula from the toolset and replacing it with the respective formulas for momentum transfer and mass (aerosol production

  15. Natural variability of pCO2 and pH in the Atlantic and Pacific coastal margins of the U.S

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Sabine, C. L.; Feely, R. A.; Newton, J.; Salisbury, J.; Vandemark, D. C.; Musielewicz, S. B.; Maenner-Jones, S.; Bott, R.; Lawrence-Slavas, N.

    2011-12-01

    The discovery that seawater chemistry is changing as a result of carbon dioxide (CO2) emissions, referred to as "ocean acidification", has prompted a large effort to understand how this changing chemistry will impact marine life. Changes in carbon chemistry have been documented in the open ocean; however, in dynamic coastal systems where many marine species live, ocean acidification and the natural biogeochemical variability that organisms are currently exposed to are poorly quantified. In 2010 we began equipping coastal moorings currently measuring pCO2 with pH and other biogeochemical sensors to measure ocean acidification parameters at 3 hour intervals in the surface water. Here we present the magnitude and diurnal to seasonal variability of pCO2 and pH during the first year of observations at 2 sites in the Atlantic and Pacific coastal margins of the U.S.: the Gulf of Maine and outer coast of Washington state. Both the magnitude and range of pCO2 and pH values were much greater at the coastal moorings compared to the open ocean mooring at Ocean Station Papa in the North Pacific and also varied between the two coastal mooring sites. We observed maximum pCO2 values in coastal waters exceeding predicted values for the open ocean at 2x pre-industrial CO2 levels. The range of pCO2 and pH values during this time series was approximately 4 times the range observed at open ocean mooring Papa (2007-2011 time series). In many cases, large variance was observed at short time scales, with values fluctuating more than 200 μatm pCO2 and 0.2 pH between 3-hour cycles. These types of observations are critical for understanding how ocean acidification will manifest in naturally dynamic coastal systems and for informing the experimental design of species response studies that aim to mimic carbon chemistry experienced by coastal marine organisms.

  16. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  17. The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland

    NASA Astrophysics Data System (ADS)

    Bayer, U.; Grad, M.; Pharaoh, T. C.; Thybo, H.; Guterch, A.; Banka, D.; Lamarche, J.; Lassen, A.; Lewerenz, B.; Scheck, M.; Marotta, A.-M.

    2002-12-01

    The extension of eastern Avalonia from Britain through the NE German Basin into Poland is, in some sense, a virtual structure. It is covered almost everywhere by late Paleozoic and younger sediments. Evidence for this terrane is only gathered from geophysical data and age information derived from magmatic rocks. During the last two decades, much geophysical and geological information has been gathered since the European Geotraverse (EGT), which was followed by the BABEL, LT-7, MONA LISA, DEKORP-Basin'96, and POLONAISE'97 deep seismic experiments. Based on seismic lines, a remarkable feature has been observed between the North Sea and Poland: north of the Elbe Line (EL), the lower crust is characterised by high velocities (6.8-7.0 km/s), a feature which seems to be characteristic for at least a major part of eastern Avalonia (far eastern Avalonia). In addition, the seismic lines indicate that a wedge of the East European Craton (EEC) (or Baltica) continues to the south below the southern Permian Basin (SPB)—a structure which resembles a passive continental margin. The observed pattern may either indicate an extension of the Baltic crust much farther south than earlier expected or oceanic crust of the Tornquist Sea trapped during the Caledonian collision. In either case, the data require a reinterpretation of the docking mechanism of eastern Avalonia, and the Elbe-Odra Line (EOL), as well as the Elbe Fault system, together with the Intra-Sudedic Faults, appear to be related to major changes in the deeper crustal structures separating the East European crust from the Paleozoic agglomeration of Middle European terranes.

  18. The pre-Atlantic Hf isotope evolution of the east Laurentian continental margin: Insights from zircon in basement rocks and glacial tillites from northern New Jersey and southeastern New York

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. Alex; Setera, Jacob; Mathez, Edmond; Vantongeren, Jill; Fossum, Ryanna

    2017-02-01

    This paper presents laser ablation U-Pb age and Hf isotope data for zircons from basement rocks and glacial deposits in northern New Jersey and southeastern New York. The purpose is to understand the eastern Laurentian continental margin's Hf isotope record in relation to its geologic evolution prior to the opening of the Atlantic Ocean. The basement samples encompass a Meso- to Neoproterozoic continental margin arc, an anatectic magmatic suite, as well as a Late Ordovician alkaline igneous suite emplaced during post-orogenic melting of the lithospheric mantle. Additional samples were collected from terminal moraines of two Quaternary continental ice sheets. Across the entire dataset, zircons with ages corresponding to the timing of continental margin arc magmatism ( 1.4 Ga to 1.2 Ga) have positive εHf(initial) values that define the more radiogenic end of a crustal evolution array. This array progresses towards more unradiogenic εHf(initial) values along a series of low 176Lu/177Hf (0.022 to 0.005) trajectories during subsequent anatectic magmatism ( 1.2 Ga to 1.0 Ga) and later metamorphic and metasomatic re-working ( 1.0 Ga to 0.8 Ga) of the continental margin arc crust. In contrast, nearly chondritic εHf(initial) values from the Late Ordovician alkaline magmas indicate that the Laurentian margin was underlain by a re-fertilized mantle source. Such a source may have developed by subduction enrichment of the mantle wedge beneath the continental margin during the Mesoproterozoic. Additionally, preliminary data from a metasedimentary unit of unknown provenance hints at the possibility that some of the sediments occupying this portion of the Laurentian margin prior to the Ordovician were sourced from crust older than 1.9 Ga.

  19. New clues to the evolutionary history of the main European paternal lineage M269: dissection of the Y-SNP S116 in Atlantic Europe and Iberia.

    PubMed

    Valverde, Laura; Illescas, Maria José; Villaescusa, Patricia; Gotor, Amparo M; García, Ainara; Cardoso, Sergio; Algorta, Jaime; Catarino, Susana; Rouault, Karen; Férec, Claude; Hardiman, Orla; Zarrabeitia, Maite; Jiménez, Susana; Pinheiro, Maria Fátima; Jarreta, Begoña M; Olofsson, Jill; Morling, Niels; de Pancorbo, Marian M

    2016-03-01

    The dissection of S116 in more than 1500 individuals from Atlantic Europe and the Iberian Peninsula has provided important clues about the controversial evolutionary history of M269. First, the results do not point to an origin of M269 in the Franco-Cantabrian refuge, owing to the lack of sublineage diversity within M269, which supports the new theories proposing its origin in Eastern Europe. Second, S116 shows frequency peaks and spatial distribution that differ from those previously proposed, indicating an origin farther west, and it also shows a high frequency in the Atlantic coastline. Third, an outstanding frequency of the DF27 sublineage has been found in Iberia, with a restricted distribution pattern inside this peninsula and a frequency maximum in the area of the Franco-Cantabrian refuge. This entire panorama indicates an old arrival of M269 into Western Europe, because it has generated at least two episodes of expansion in the Franco-Cantabrian area. This study demonstrates the importance of continuing the dissection of the M269 lineage in different European populations because the discovery and study of new sublineages can adjust or even completely revise the theories about European peopling, as has been the case for the place of origin of M269.

  20. Late-summer mass deposition of gelatinous phytodetritus along the slope of the N.W. European Continental Margin

    NASA Astrophysics Data System (ADS)

    de Wilde, P. A. W. J.; Duineveld, G. C. A.; Berghuis, E. M.; Lavaleye, M. S. S.; Kok, A.

    1998-12-01

    In the period 1993-1995 the OMEX area has been visited 3 times to address the question of across-slope transport of suspended matter from the shelf to the deep sea. By analyzing phytopigments and nucleic acids in the sediment and water of the N.W. European Continental slope and rise seasonal patterns of benthic food input were investigated and relation between input and the structure and activity of the benthic community were explored. Chloropigments in the surface sediments indicated that a spring bloom effect could be traced down to about 2500 m. During late August 1995 heavy deposits of gelatinous matter, characterized by high concentrations of chloropigments and nucleic acids, were detected all over the ocean floor of the outer slope and continental rise below 3500 m. It is estimated that this mucus layer had a carbon load of 250 mmol C m -2 over an area of 50,000 km 2. The recent state of the mucus allowed us to search for its origin. Characteristic pigment composition and the presence of coccoliths pointed to prymnesiophytes (coccolithophorids) as a major contributor, but dinoflagellates (peridinin) and green algae (chlorophyll-b, lutein) must have contributed as well. Simultaneous observations of the overlying water column, deep chlorophyll maximum, revealed the presence of a coccolithophorid bloom in a recent stage of disintegration at St. III. An obvious relation with the mucus carpet, however, could not be indicated. This, and the significant differences in pigment composition and pigment ratios at the various deep stations lead us to understand that the extended mucus field at the Celtic slope originates from different, more or less synoptically occurring surface blooms. The presence of large `vacuum-cleaning' sea-cucumbers is considered indicative of the occurrence of phytodetritus pulses.

  1. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    NASA Astrophysics Data System (ADS)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  2. Lithosphere structure of the Donbas Fodbelt and Karpinsky Swell region (the southern margin of the East-European Craton), Ukraine and Russia, from seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Yegorova, T.; Baranova, E.; Starostenko, V.

    2003-04-01

    LITHOSPHERE STRUCTURE OF THE DONBAS FOLDBELT AND KARPINSKI SWELL REGION (THE SOUTHERN MARGIN OF THE EAST-EUROPEAN CRATON), UKRAINE AND RUSSIA, FROM SEISMIC AND GRAVITY DATA T.Yegorova (1), E.Baranova (1), V.Starostenko (1) (1) Institute of Geophysics, National Academy of Sciences of Ukraine egorova@igph.kiev.ua Along the southern margin of the East-European platform (EEC) super deep Late Devonian rift basins Dnieper-Donets Basin (DDB) and Peri-Caspian Basin (PCB) are located. The structures are adjacent to a zone along which crust was reworked and/or accreted to the EEC during Late Palaeozoic-Triassic times. The objective of the present study is deriving constraints from available geological and geophysical data for understanding the tectonic setting and processes controlling the evolution of the southern margin of the EEC. The study area includes the inverted southernmost part of the intracratonic DDB Donbas Foldbelt (DF), its south-eastern prolongation along the margin of the EEC the sedimentary succession of the Karpinsky Swell (KS), the south-western part of the Peri-Caspian Basin (PCB) and the Scythian Plate. According to the structure of the sedimentary basin, the DF and the KS form a single linear structure, represented by the uplift of Palaeozoic rocks, with the exposure of Carboniferous coal-bearing rocks in the DF, and by deep trough (down to the depth of 20 km and more) on the top of the crystalline Precambrian basement. The 3D gravity back-stripping analysis, implemented to test the sediment structure, reveals a distinct elongate zone of positive sediment corrected anomalies along the axis of the DF-KS and strong positive anomaly in the PCB. This is caused by heterogeneous lithosphere structure below the basin: Moho topography and/or the existence of a high density material in the crystalline crust and uppermost mantle. Our previous investigations have supported the existence of high-density body in the crystalline crust along the DDB axis. The

  3. Monazite stability, composition and geochronology as tracers of Paleoproterozoic events at the eastern margin of the East European Craton (Taratash complex, Middle Urals)

    NASA Astrophysics Data System (ADS)

    Sindern, Sven; Gerdes, Axel; Ronkin, Yuri L.; Dziggel, Annika; Hetzel, Ralf; Schulte, Bernd Aloys

    2012-02-01

    The Precambrian Taratash complex (Middle Urals) is one of the rare windows into the Palaeoproterozoic and earlier history of the eastern margin of the East European Craton. Monazite from intensively deformed rocks within a major amphibolite-facies shear zone in the Taratash complex has been investigated by means of electron-probe microanalysis and laser-ablation SF-ICP-MS. Metamorphic and magmatic cores of monazite from metasedimentary and metagranitoid rocks yield U-Pb ages of 2244 ± 19 and 2230 ± 22 Ma (± 2 σ) and record a previously unknown pre-deformational HT-metamorphic event in the Taratash complex. Subsequent dissolution-reprecipitation of monazite, during shear zone formation under amphibolite-facies conditions, caused patchy zonation and chemical alteration of the recrystallised monazite domains, leading to higher cheralite and huttonite components. This process, which was mediated by a probable (alkali + OH)-bearing metamorphic fluid also caused a total resetting of the U-Pb-system. The patchy domains yield concordant U-Pb-ages between 2052 ± 16 and 2066 ± 22 Ma, interpreted as the age of the shear zone. In line with previously published ages of high grade metamorphism and migmatisation, the data may point to a Palaeoproterozoic orogenic event at the eastern margin of the East European Craton. Post-deformational fluid-induced greenschist-facies retrogression caused partial to complete breakdown of monazite to fluorapatite, REE + Y-rich epidote, allanite and Th-orthosilicate.The retrograde assemblages either form coronas around monazite, or occur as dispersed reaction zones, indicating that the REE, Y, and Th were mobile at least on the thin section scale. The greenschist-facies metamorphic fluid was aqueous and rich in Ca. Monazite affected by advanced breakdown responded to the retrogression by incorporating the cheralite or huttonite components during a fluid-induced dissolution-reprecipitation process. This event did not reset the U

  4. Influence of the North Atlantic oceanograghic and climatic parameters on the Spanish European Eel population recruitment: relationships in the past and for a future climate change

    NASA Astrophysics Data System (ADS)

    Ribalaygua, Jaime; Pórtoles, Javier; Monjo, Robert; Díaz, Estíbaliz; Korta, María; Chust, Guillem

    2016-04-01

    The status of the European eel population is critical.; the annual recruitment of glass eel to European waters in 2015 is 1.2% of the 1960-1979 level in the 'North Sea' area, and 8.4% in the rest of Europe (ICES 2015) . There are a number of anthropogenic impacts potentially affecting eel population including commercial exploitation, habitat loss, dam and weir construction, hydropower, pumping stations and surface water abstractions. Furthermore, the first eel stages and larval migration and marine survival are heavily influenced by oceanic and climatic factors since the species breeds in the Sargasso Sea and migrates to the continental shelf of the Atlantic coast of Europe and North Africa. Therefore, the study of the relations between recruitment and oceanic conditions may allow to study the potential effect of climatic change on the future eel recruitment and therefore stock. In the present study, the relation between glass eel recruitment and oceanic and climatic factors has been studied. Historic glass eel catches data beginning in the 50s from two Mediterranean and two Atlantic estuaries have been used as a proxy of recruitment. The relation of catches with the main oceanographic and climatic factors identified in the literature was established using an ocean reanalysis, the Simple Ocean Data Assimilation (SODA) and determined which variables are significantly related to the number of catches. The analysis shows significant relationships between catches and oceanic (Surface Downward Stress, Sea Water Temperature and Sea Water Velocity) and atmospheric (NAO Index, AMO Index) variables. Subsequently, we applied the results of three climate models (GFDL-ESM2M, CanESM2 and CNRM-CM5), associated with the Coupled Model Intercomparison Project Phase 5 (CMIP5) under two simulations of climate change (RCP4.5 and RCP8.5), both associated with the 5th Assessment Report of the IPCC, for possible future influences on the eel. This research was funded by the Spanish

  5. Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits

    NASA Astrophysics Data System (ADS)

    Sima, A.; Kageyama, M.; Rousseau, D.-D.; Ramstein, G.; Balkanski, Y.; Antoine, P.; Hatté, C.

    2013-07-01

    European loess sequences of the Marine Isotope Stage 3 (~60-25 kyr BP) show periods of strong dust accumulation alternating with episodes of reduced sedimentation, favoring soil development. In the western part of the loess belt centered around 50° N, these variations appear to have been related to the North Atlantic rapid climate changes: the Dansgaard-Oeschger (DO) and Heinrich (H) events. It has been recently suggested that the North Atlantic climate signal can be detected further east, in loess deposits from Stayky (50°05.65' N, 30°53.92' E), Ukraine. Here we use climate and dust emission modeling to investigate this data interpretation. We focus on the areas north and northeast of the Carpathians, where loess deposits can be found, and the corresponding main dust sources must have been located as well. The simulations were performed with the LMDZ atmospheric general circulation model and the ORCHIDEE land surface model. They represent a reference "Greenland stadial" state and two perturbations, seen as sensitivity tests with respect to changes in the North Atlantic surface conditions between 30° and 63° N: a "Greenland interstadial" and an "H event". The main source for the loess deposits in the studied area is identified as a dust deflation band, with two very active spots located west-northwest from our reference site. Emissions only occur between February and June. Differences from one deflation spot to another, and from one climate state to another, are explained by analyzing the relevant meteorological and surface variables. Over most of the source region, the annual emission fluxes in the "interstadial" experiment are 30 to 50% lower than the "stadial" values; they would only be about 20% lower if the inhibition of dust uplift by the vegetation were not taken into account. Assuming that lower emissions result in reduced dust deposition leads us to the conclusion that the loess-paleosol stratigraphic succession in the Stayky area reflects indeed

  6. Lead isotopes in trade wind aerosols at Barbados: the influence of European emissions over the North Atlantic

    SciTech Connect

    Hamelin, B.; Grousset, F.E.; Biscaye, P.E.; Zindler, A. ); Prospero, J.M. )

    1989-11-15

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contribution from different sources. We present Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt. Aerosols sampled at Barbados during the 1969--1985 period have a Pb isotopic compositions different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb that is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes. {copyright} American Geophysical Union 1989

  7. Lead isotopes in trade wind aerosols at Barbados - The influence of European emissions over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Hamelin, B.; Grousset, F. E.; Biscaye, P. E.; Zindler, A.; Prospero, J. M.

    1989-01-01

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contributions from different sources. Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt are presented. Aerosols sampled at Barbados during the 1969-1985 period have a Pb isotopic composition different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb that is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes.

  8. Species-specific effects of Asian and European earthworms on microbial communities in Mid-Atlantic deciduous forests

    USDA-ARS?s Scientific Manuscript database

    Earthworm species with different feeding, burrowing, and/or casting behaviors can lead to distinct microbial communities through complex direct and indirect processes. European earthworm invasion into temperate deciduous forests in North America has been shown to alter microbial biomass in the soil ...

  9. Geophysical constraints on the crustal structure of the East European Platform margin and its foreland based on the POLCRUST-01 deep reflection seismic profile

    NASA Astrophysics Data System (ADS)

    Malinowski, M.; Guterch, A.; Narkiewicz, M.; Petecki, Z.; Janik, T.; Środa, P.; Maksym, A.; Probulski, J.; Grad, M.; Czuba, W.; Gaczyński, E.; Majdański, M.; Jankowski, L.

    2015-06-01

    A new 240-km long, deep seismic reflection profile (POLCRUST-01) was recently acquired in SE Poland crossing the East European Platform (EEP) margin south-east of the North-German-Polish Caledonides (NGPC). Here we document geophysical field work and subsequent data processing and modeling. Results obtained from reflection seismic data are augmented by results of the first-arrival tomography applied to co-located extended-offset refraction data, as well as potential field modeling and comparison with the available wide-angle reflection/refraction data. Our preferred model of the crustal structure, derived by integrating seismic, potential field and geological data, is composed of crustal blocks (terranes) separated by nearly-vertical faults. These are: (I) intact part of the EEP; (II) Łysogóry Terrane; (III) Małopolska Terrane; and (IV) Carpathian Mts. with their basement. Reflective lower crust of the EEP can be an inherited feature of crustal extension (rifting) or compressional tectonics acting at the cratonic margin. The Teisseyre-Tornquist Zone (TTZ) is depicted as a Caledonian transcurrent accretion zone corresponding with the near-vertical Tomaszów Fault, bounding the Łysogóry Terrane to the east. The crust of the Łysogóry Terrane suggests EEP affinity, although its middle/lower crust thickness is highly reduced. The Małopolska Terrane seems to be internally subdivided into blocks of different magnetic properties of the lower crust. The Carpathian frontal thrust is associated with a change in the rock properties in the deep basement (an unknown crustal block?) which is not visible in seismic data alone. The interpreted structure of the Caledonian terranes and their tectonic boundaries favors a transcurrent style of a crustal accretion along the central and SE Polish segments of the TTZ, implying a very complex nature of the Caledonian accretionary belt of Central Europe: from an array of terranes displaced along the TTZ to an accretionary wedge of

  10. Tectonics of Atlantic Canada

    USGS Publications Warehouse

    Williams, H.; Dehler, S.A.; Grant, A.C.; Oakey, G.N.

    1999-01-01

    The tectonic history of Atlantic Canada is summarized according to a model of multiple ocean opening-closing cycles. The modern North Atlantic Ocean is in the opening phase of its cycle. It was preceded by an early Paleozoic lapetus Ocean whose cycle led to formation of the Appalachian Orogen. lapetus was preceded by the Neoproterozoic Uranus Ocean whose cycle led to formation of the Grenville Orogen. The phenomenon of coincident, or almost coincident orogens and modern continental margins that relate to repeated ocean opening-closing cycles is called the Accordion Effect. An understanding of the North Atlantic Ocean and its continental margins provides insights into the nature of lapetus and the evolution of the Appalachian Orogen. Likewise, an understanding of lapetus and the Appalachian Orogen raises questions about Uranus and the development of the Grenville Orogen. Modern tectonic patterns in the North Atlantic may have been determined by events that began before 1000 m.y.

  11. Assessment of canyon wall failure process from multibeam bathymetry and Remotely Operated Vehicle (ROV) observations, U.S. Atlantic continental margin: Chapter 10 in Submarine mass movements and their consequences: 7th international symposium part II

    USGS Publications Warehouse

    Chaytor, Jason D.; Demopoulos, Amanda W. J.; Ten Brink, Uri; Baxter, Christopher D. P.; Quattrini, Andrea M.; Brothers, Daniel S.; Lamarche, Geoffroy; Mountjoy, Joshu; Bull, Suzanne; Hubble, Tom; Krastel, Sebastian; Lane, Emily; Micallef, Aaron; Moscardelli, Lorena; Mueller, Christof; Pecher, Ingo; Woelz, Susanne

    2016-01-01

    Over the last few years, canyons along the northern U.S. Atlantic continental margin have been the focus of intensive research examining canyon evolution, submarine geohazards, benthic ecology and deep-sea coral habitat. New high-resolution multibeam bathymetry and Remotely Operated Vehicle (ROV) dives in the major shelf-breaching and minor slope canyons, provided the opportunity to investigate the size of, and processes responsible for, canyon wall failures. The canyons cut through thick Late Cretaceous to Recent mixed siliciclastic and carbonate-rich lithologies which impart a primary control on the style of failures observed. Broad-scale canyon morphology across much of the margin can be correlated to the exposed lithology. Near vertical walls, sedimented benches, talus slopes, and canyon floor debris aprons were present in most canyons. The extent of these features depends on canyon wall cohesion and level of internal fracturing, and resistance to biological and chemical erosion. Evidence of brittle failure over different spatial and temporal scales, physical abrasion by downslope moving flows, and bioerosion, in the form of burrows and surficial scrape marks provide insight into the modification processes active in these canyons. The presence of sessile fauna, including long-lived, slow growing corals and sponges, on canyon walls, especially those affected by failure provide a critical, but as yet, poorly understood chronological record of geologic processes within these systems.

  12. The Blake Nose Cretaceous-Paleogene (Florida Atlantic margin, ODP Leg 171B): an exemplar record of the Maastrichtian-Danian transition

    USGS Publications Warehouse

    Bellier, J.-P.; Marca, S.; Norris, R.D.; Kroon, D.; Klaus, A.; Alexander, I.T.; Bardot, L.P.; Barker, C.E.; Blome, C.D.; Clarke, L.J.; Erbacher, J.; Faul, K.L.; Holmes, M.A.; Huber, B.T.; Katz, M.E.; MacLeod, K.G.; Martinez-Ruiz, F. C.; Mita, I.; Nakai, M.; Ogg, James G.; Pak, D.K.; Pletsch, T.K.; ,; Shackleton, N.J.; Smit, J.; Ussler, W.; Watkins, D.K.; Widmark, J.; Wilson, P.A.

    1997-01-01

    During ODP Leg 171B, devoted to the analysis of the Blake Plateau margin in front of Florida, 16 holes have been drilled in 5 distinct sites. The sites have documented a sedimentary succession ranging in age from Aptian to Eocene. Emphasis has been put on critical periods, comprising the Paleocene-Eocene transition, the Cretaceous-Tertiary boundary which has been cored in excellent conditions, the middle Maastrichtian extinctions and the Albian anoxic episodes.

  13. Long-term evolution of the western South Atlantic passive continental margin in a key area of SE Brazil revealed by thermokinematic numerical modeling using the software code Pecube

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The

  14. A Changing Europe: The Maturation of the European Community and How It Will Affect the Trans-Atlantic Link

    DTIC Science & Technology

    1990-04-01

    to the two Germanies agreeing to cohabitate without the official sanction of matrimony and hoping I that as time passes their common-law marriage will...intent can be realized and what hindrances U there are to US involvement in Europe. 3 52 R. Hornick, "The Peace Dividend: Myth and Reality," Tim 12 Feb...Summer 1988. I Hornick, R. "The Peace Dividend: Myth and Reality." Time 12 February 1990, p. 22. Howe, Robert. The European Community’s 1992 Plan

  15. Behaviour of Talitrus saltator (Crustacea: Amphipoda) on a rehabilitated sandy beach on the European Atlantic Coast (Portugal)

    NASA Astrophysics Data System (ADS)

    Bessa, Filipa; Rossano, Claudia; Nourisson, Delphine; Gambineri, Simone; Marques, João Carlos; Scapini, Felicita

    2013-01-01

    Environmental and human controls are widely accepted as the main structuring forces of the macrofauna communities on sandy beaches. A population of the talitrid amphipod Talitrus saltator (Montagu, 1808) was investigated on an exposed sandy beach on the Atlantic coast of Portugal (Leirosa beach) to estimate orientation capabilities and endogenous rhythms in conditions of recent changes in the landscape (artificial reconstruction of the foredune) and beach morphodynamics (stabilization against erosion from the sea). We tested sun orientation of talitrids on the beach and recorded their locomotor activity rhythms under constant conditions in the laboratory. The orientation data were analysed with circular statistics and multiple regression models adapted to angular distributions, to highlight the main factors and variables influencing the variation of orientation. The talitrids used the sun compass, visual cues (landscape and sun visibility) to orient and the precision of orientation varied according to the tidal regime (rising or ebbing tides). A well-defined free-running rhythm (circadian with in addition a bimodal rhythmicity, likely tidal) was highlighted in this population. This showed a stable behavioural adaptation on a beach that has experienced a process of artificial stabilization of the dune through nourishment actions over a decade. Monitoring the conditions of such dynamic environments and the resilience capacity of the inhabiting macroinfauna is a main challenge for sandy beach ecologists.

  16. NOAA Office of Ocean Exploration and Research'sOkeanos Explorer Program 2014 Discoveries - U.S. Atlantic Continental Margin and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lobecker, E.; McKenna, L.; Sowers, D.; Elliott, K.; Kennedy, B.

    2014-12-01

    NOAA ShipOkeanos Explorer, the only U.S. federal vessel dedicated to global ocean exploration, made several important discoveries in U.S. waters of the North Atlantic Ocean and Gulf of Mexico during the 2014 field season. Based on input received from a broad group ofmarine scientists and resource managers, over 100,000 square kilometers of seafloor and associated water column were systematically explored using advanced mapping sonars. 39 ROV diveswere conducted, leading to new discoveries that will further ourunderstanding of biologic, geologic, and underwater-cultural heritage secrets hidden withinthe oceans. In the Atlantic, season highlights include completion of a multi-year submarine canyons mapping effort of the continental shelf break from North Carolina to the U.S.-Canada maritime border;new information on the ephemerality of recently discovered and geographically extensive cold water seeps; and continued exploration of the New England Seamount chain; and mapping of two potential historically significant World War II wreck sites. In the Gulf of Mexico, season highlights includecompletion of a multi-year mapping effort of the West Florida Escarpment providing new insight into submarine landslides and detachment zones;the discovery of at least two asphalt volcanoes, or 'tar lilies'; range extensions of deep-sea corals; discovery of two potential new species of crinoids; identification of at least 300 potential cold water seeps; and ROV exploration of three historically significant19th century shipwrecks. In both regions, high-resolution mapping led to new insight into the geological context in which deep sea corals develop,while ROV dives provided valuable observations of deep sea coral habitats and their associated organisms, and chemosynthetic habitats. All mapping and ROV data is freely available to the public in usable data formats and maintained in national geophysical and oceanographic data archives.

  17. RAD sequencing reveals genomewide divergence between independent invasions of the European green crab (Carcinus maenas) in the Northwest Atlantic.

    PubMed

    Jeffery, Nicholas W; DiBacco, Claudio; Van Wyngaarden, Mallory; Hamilton, Lorraine C; Stanley, Ryan R E; Bernier, Renée; FitzGerald, Jennifer; Matheson, K; McKenzie, C H; Nadukkalam Ravindran, Praveen; Beiko, Robert; Bradbury, Ian R

    2017-04-01

    Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction-site-associated DNA sequencing-derived SNPs to explore fine-scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.

  18. Phytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North East Atlantic, 2006-2008)

    NASA Astrophysics Data System (ADS)

    Van Oostende, Nicolas; Harlay, Jérôme; Vanelslander, Bart; Chou, Lei; Vyverman, Wim; Sabbe, Koen

    2012-10-01

    We determined the spatial and temporal dynamics of major phytoplankton groups in relation to biogeochemical and physical variables during the late spring coccolithophore blooms (May-June) along and across the continental margin in the Celtic Sea (2006-2008). Photosynthetic biomass (chl a) of the dominant plankton groups was determined by CHEMTAX analysis of chromatographic (HPLC) pigment signatures. Phytoplankton standing stock biomass varied substantially between and during the campaigns (areal chl a [mg chl a m-2] in June 2006: 63.8 ± 26.5, May 2007: 27.9 ± 8.4, and May 2008: 41.3 ± 21.8), reflecting the different prevailing conditions of weather, irradiance, and sea surface temperature between the campaigns. Coccolithophores, represented mainly by Emiliania huxleyi, and diatoms were the dominant phytoplankton groups, with a maximal contribution of, respectively, 72% and 89% of the total chl a. Prasinophytes, dinoflagellates, and chrysophytes often co-occurred during coccolithophorid blooms, while diatoms dominated the phytoplankton biomass independently of the biomass of other groups. The location of the stations on the shelf or on the slope side of the continental margin did not influence the biomass and the composition of the phytoplankton community despite significantly stronger water column stratification and lower nutrient concentrations on the shelf. The alternation between diatom and coccolithophorid blooms of similar biomass, following the mostly diatom-dominated main spring bloom, was partly driven by changes in nutrient stoichiometry (N:P and dSi:N). High concentrations of transparent exopolymer particles (TEP) were associated with stratified, coccolithophore-rich water masses, which probably originated from the slope of the continental margin and warmed during advection onto the shelf. Although we did not determine the proportion of export production attributed to phytoplankton groups, the abundance of coccolithophores, together with TEP and

  19. Contrasting morphological and DNA barcode-suggested species boundaries among shallow-water amphipod fauna from the southern European Atlantic coast.

    PubMed

    Lobo, Jorge; Ferreira, Maria S; Antunes, Ilisa C; Teixeira, Marcos A L; Borges, Luisa M S; Sousa, Ronaldo; Gomes, Pedro A; Costa, Maria Helena; Cunha, Marina R; Costa, Filipe O

    2017-02-01

    In this study we compared DNA barcode-suggested species boundaries with morphology-based species identifications in the amphipod fauna of the southern European Atlantic coast. DNA sequences of the cytochrome c oxidase subunit I barcode region (COI-5P) were generated for 43 morphospecies (178 specimens) collected along the Portuguese coast which, together with publicly available COI-5P sequences, produced a final dataset comprising 68 morphospecies and 295 sequences. Seventy-five BINs (Barcode Index Numbers) were assigned to these morphospecies, of which 48 were concordant (i.e., 1 BIN = 1 species), 8 were taxonomically discordant, and 19 were singletons. Twelve species had matching sequences (<2% distance) with conspecifics from distant locations (e.g., North Sea). Seven morphospecies were assigned to multiple, and highly divergent, BINs, including specimens of Corophium multisetosum (18% divergence) and Dexamine spiniventris (16% divergence), which originated from sampling locations on the west coast of Portugal (only about 36 and 250 km apart, respectively). We also found deep divergence (4%-22%) among specimens of seven species from Portugal compared to those from the North Sea and Italy. The detection of evolutionarily meaningful divergence among populations of several amphipod species from southern Europe reinforces the need for a comprehensive re-assessment of the diversity of this faunal group.

  20. Trophic ecology of European sardine Sardina pilchardus and European anchovy Engraulis encrasicolus in the Bay of Biscay (north-east Atlantic) inferred from δ13C and δ15N values of fish and identified mesozooplanktonic organisms

    NASA Astrophysics Data System (ADS)

    Chouvelon, T.; Chappuis, A.; Bustamante, P.; Lefebvre, S.; Mornet, F.; Guillou, G.; Violamer, L.; Dupuy, C.

    2014-01-01

    European sardine (Sardina pilchardus) and European anchovy (Engraulis encrasicolus) are two species of economical and ecological significance in the Bay of Biscay (north-east Atlantic). However, the trophic ecology of both species is still poorly known in the area, and more generally, few studies have considered the potential trophic overlap between sardines and anchovies worldwide. This study aims to highlight the trophic links between the mesozooplankton and adults of these two pelagic fish in the Bay of Biscay, through carbon and nitrogen stable isotope analysis (SIA). Mesozooplankton and individuals of sardines and anchovies were collected during one season (spring 2010), over spatially contrasted stations within the study area. First, the potential effect of preservation (ethanol vs. freezing) and of delipidation (by cyclohexane) on mesozooplankton δ13C and δ15N values was assessed. Results demonstrated the necessity to correct for the preservation effect and for lipid contents in mesozooplankton for further analyses of sardines' and anchovies' diet through SIA. Next, this study highlighted the interest of working on identified mesozooplanktonic organisms instead of undetermined assemblages when unravelling food sources of planktivorous fish using stable isotopes. The inter-specific variability of isotope values within a planktonic assemblage was effectively high, probably depending on the various feeding behaviours that can occur among mesozooplankton species. Intra-specific variability was also significant and related to the spatial variations of baseline signatures in the area. To investigate the foraging areas and potential diet overlap of S. pilchardus and E. encrasicolus, mixing models (SIAR) were applied. Both fish species appeared to feed mainly in the neritic waters of the Bay of Biscay in spring and to select mainly small- to medium-sized copepods (e.g. Acartia sp., Temora sp.). However, E. encrasicolus showed a greater trophic plasticity by

  1. Evolution of the South Atlantic passive continental margin and lithosphere dynamic movement in Southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    NASA Astrophysics Data System (ADS)

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    Passive continental margins are important geoarchives related to mantle dynamics, the breakup of continents, lithospheric dynamics, and other processes. The main concern yields the quantifying long-term lithospheric evolution of the continental margin between São Paulo and Laguna in southeastern Brazil since the Neoproterozoic. We put special emphasis on the reactivation of old fracture zones running into the continent and their constrains on the landscape evolution. In this contribution, we represent already consisting thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4) Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 427.6 (1.8) Ma whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0) Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.52) and 92.0 (1.86) Ma. These thermochronological ages from metamorphic, sedimentary and intrusive rocks show six distinct blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos) with different evolution cut by old fracture zones. Furthermore, models of time-temperature evolution illustrate the differences in Pre- to post-rift exhumation histories of these blocks. The presented data will provide an insight into the complex exhumation history of the continental margin based on the existing literature data on the evolution of the Paraná basin in Brazil and the latest thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic

  2. Apatite fission track dating and long-term landscape evolution of the South Atlantic passive continental margin in the region of the Sierras Septentrionales in eastern Argentina

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Glasmacher, P. A.; Kollenz, S.

    2013-12-01

    To understand the evolution of the passive continental margin in Argentina apatite fission track dating is an appropriate method, which will lead to new conclusions in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills Salado basin is orientated whereas the Claromeó basin is located south of the mountain range. In contrary to most basins along the southamerican passive continental margin the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography ranges between 50 and 250m within the study area and is therefore fairly flat. The igneous-metamorphic basement is pre-proterozoic in age build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons and is overlain by a series of Neoproterozoic to early Paleozoic sediments (Cingolani, 2010). The aim of the study is to evaluate the long-term landscape evolution of the passive continental margin in eastern Argentina in terms of thermal history and exhumation. For that purpose samples were taken from the Sierra Septentrionales basement analyzed for the apatite-FT method. The results so far indicate apatite fission track ages between 146.2 (10.1) Ma and 200.4 (12.7) Ma, which shows all samples have been reseted. Still ongoing length measurements will lead to 2D thermo kinematic Hefty (Ketcham, 2005; Ketcham et al., 2009; Ketcham, 2007) models. This will leads to further more insights on the cooling history and tectonic activities in the research area. References: Cingolani C. A. (2010): The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview. Int. J. Earth Sci. (Geol. Rundsch.) (2011) 100:221-242, doi 10.1007/s00531-010-0611-5. Ketcham, R. A. (2005): Forward and inverse modeling of low-temperature thermochronometry data, in Low

  3. The Carolina Sandhills: Quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States

    USGS Publications Warehouse

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard; Mahan, Shannon; Garrity, Christopher P.; Aleman Gonzalez, Wilma B.; Dobbs, Kerby M.

    2016-01-01

    The Carolina Sandhills is a physiographic region of the Atlantic Coastal Plain province in the southeastern United States. In Chesterfield County (South Carolina), the surficial sand of this region is the Pinehurst Formation, which is interpreted as eolian sand derived from the underlying Cretaceous Middendorf Formation. This sand has yielded three clusters of optically stimulated luminescence ages: (1) 75 to 37 thousand years ago (ka), coincident with growth of the Laurentide Ice Sheet; (2) 28 to 18 ka, coincident with the last glacial maximum (LGM); and (3) 12 to 6 ka, mostly coincident with the Younger Dryas through final collapse of the Laurentide Ice Sheet. Relict dune morphologies are consistent with winds from the west or northwest, coincident with modern and inferred LGM January wind directions. Sand sheets are more common than dunes because of effects of coarse grain size (mean range: 0.35–0.59 mm) and vegetation. The coarse grain size would have required LGM wind velocities of at least 4–6 m/sec, accounting for effects of colder air temperatures on eolian sand transport. The eolian interpretation of the Carolina Sandhills is consistent with other evidence for eolian activity in the southeastern United States during the last glaciation.

  4. The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related?

    PubMed

    Roberts, J M; Long, D; Wilson, J B; Mortensen, P B; Gage, J D

    2003-01-01

    In this study, an updated distribution of Lophelia pertusa between the Porcupine Seabight and Norwegian shelf is presented. It seems unlikely that enigmatic mound structures observed at water depths of more than 570 m during acoustic seabed surveys, particularly to the west of the Shetland Islands, are related to the occurrence of L. pertusa. At these depths in the Faroe-Shetland Channel, the predominant influence of cold Arctic water precludes its growth. Iceberg dumpsites are also considered unlikely explanations for the origin of these mounds, and they are interpreted as most likely to be related to the release of fluids at the seabed. When mound structures were investigated, no scleractinian corals were recovered at water depths >500 m. This study shows the importance of seabed temperature as an environmental control on cold-water coral distribution. The significance of cold-water coral habitats in sustaining high levels of local-scale biodiversity is now becoming apparent in parallel with increased hydrocarbon extraction and fishing activity beyond the shelf edge. There is growing evidence that these areas have been marked by the passage of deep-water trawls. It seems likely that trawling activity has already reduced the extent of cold-water coral distribution in this region of the north-east Atlantic.

  5. Genomic evidence of hybridization between two independent invasions of European green crab (Carcinus maenas) in the Northwest Atlantic.

    PubMed

    Jeffery, N W; DiBacco, C; Wringe, B F; Stanley, R R E; Hamilton, L C; Ravindran, P N; Bradbury, I R

    2017-09-01

    Invasive species have been associated with significant negative impacts in their introduced range often outcompeting native species, yet the long-term evolutionary dynamics of biological invasions are not well understood. Hybridization, either among waves of invasion or between native and introduced populations, could alter the ecological and evolutionary impacts of invasions yet has rarely been studied in marine invasive species. The European green crab (Carcinus maenas) invaded eastern North America twice from northern and southern locations in its native range. Here we examine the frequency of hybridization among these two distinct invasions at locations from New Jersey, USA to Newfoundland, Canada using restriction-site-associated DNA sequencing (RAD-seq), microsatellite loci and cytochrome c oxidase subunit I mitochondrial DNA (mtDNA) sequences. We used Bayesian clustering and hybrid assignment analyses to investigate hybridization between the northern and southern populations. Of the samples analyzed, six locations contained at least one hybrid individual, while two locations were characterized by extensive hybridization, with 95% of individuals collected from Placentia Bay, Newfoundland being hybrids (mostly F2) and 90% of individuals from Kejimkujik, Nova Scotia being classified as hybrids, mostly backcrosses to the northern ecotype. The presence of both F2 hybrids and backcrossed individuals suggests that these hybrids are viable and introgression is occurring between invasions. Our results provide insight into the demographic and evolutionary consequences of hybridization between independent invasions, and will inform the management of green crabs in eastern North America.

  6. Reactivation of inherited structures during the opening of the South Atlantic: a low-temperature thermochronology study on the Araçuaí orogenic belt (east Brazilian margin)

    NASA Astrophysics Data System (ADS)

    Van Ranst, Gerben; De Grave, Johan; Pedrosa-Soares, Antonio Carlos; Tack, Luc; Baudet, Daniel; Novo, Tiago

    2017-04-01

    A subject that has historically been regarded with increasing interest in geology are the supercontinent-cycles. This still poses questions about tectonic evolution on a regional scale, more precisely on the role of reactivation of older, pre-existing structures (inheritance), in which the same faults or weak zones are reactivated rather than the emergence of new systems. A region that is ideally suited for this research is the Araçuaí-West Congo Orogenic belt (AWCO), which is situated partly in eastern Brazil (Gonçalves et al., 2014) and partly in western Africa (D.R. Congo, Congo Brazza, Gabon and Angola; Frimmel et al., 2006; Tack et al., 2001). This orogenic belt was formed during the Cambrian as a result of a series of extension and compression events, of which the final phase is known as the Braziliano-Pan-African orogenesis (e.g. Pedrosa-Soares & Alkmim, 2011). During the break-up of Gondwana and the opening of the South Atlantic, the AWCO became separated. The main part is situated in east Brazil, known as the Araçuaí orogeny, while on the west African margin, the West Congo Belt is a witness to this event. In order to gain a better understanding, the tectonic movements should be placed in an absolute timeframe. Multi-method low-temperature thermochronology lends itself as an ideal tool for this purpose. In this study samples from N-S and E-W profiles in east Brazil (Caparáo-Vitória-Gov. Valadares) have been acquired. These samples are investigated using the apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) methods. In a later phase the samples which were taken on profiles in the D.R. Congo (Lower Congo) will be analysed by the same methods. Preliminary results for the Brazilian margin indicate cooling ages ranging between 55 Ma and c. 80 Ma.

  7. Holocene Geomagnetic Change in the Northern North Atlantic

    NASA Astrophysics Data System (ADS)

    Stoner, J. S.; Channell, J. E.; Mazaud, A.; Xuan, C.; Strano, S. E.; Olafsdottir, S.; Jennings, A. E.

    2012-12-01

    High-resolution and well-dated paleomagnetic records constrain the geomagnetism of the Holocene North Atlantic. These records comprise ultra-high resolution sediment records from lakes (Haukadalsvatn, Iceland) and from continental margins (MD99-2269, N Iceland shelf; MD99-2322, E. Greenland), and from high accumulating (>50 cm/kyr) deep-sea sediments from the Eirik Drift, Labrador Sea (IODP Site U1305). Similarities among these directional paleomagnetic secular variation (PSV) records from very different environments imply that the records provide robust reconstructions of the paleo-geomagnetic field. Assuming that the age of magnetization is best defined by PSV in the highest sedimentation rate (>200 cm /kyr) records, allows us to place northern North Atlantic PSV and relative paleointensity (RPI) into a regional context. Northern North Atlantic PSV and RPI are more consistent with European than North American records, and the evolution of virtual geomagnetic poles (VGP) are temporally and longitudinally similar too global reconstructions, though with much larger latitudinal variations. The largest deviation from a geocentric axial dipole, in contrast to the usual assumption, is observed during times of highest field intensities in the North Atlantic and globally, while the highest rates of VGP change are associated with North Atlantic field intensity lows. These observations are consistent with the hypothesis that PSV results from temporal oscillations of flux concentrations (lobes) at a few recurrent locations.

  8. Long-term landscape evolution of the South Atlantic "passive" continental margin in Eastern Argentina using apatite fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.

    2015-04-01

    To understand the evolution of the "passive" continental margin in Argentina low temperature thermochronology is an appropriate method, which might lead to new insights in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills the Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the South American "passive" continental margin, the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes up to 350 m. The igneous-metamorphic basement is pre-Proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons. It is overlain by a series of Neoproterozoic to early Paleozoic sedimentary rocks (Cingolani 2011), like siliciclastic rocks, dolostones, shales and limestones (Demoulin 2005). The aim of the study is to quantify the long-term landscape evolution of the "passive" continental margin in eastern Argentina in terms of thermal, exhumation and tectonic evolution. For that purpose, samples were taken from the basement of the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham 2005; Ketcham 2007; Ketcham et al. 2009). Because there are different hypotheses in literature regarding the geological evolution of this area two different models were generated, one after Demoulin et al. (2005) and another after Zalba et al.(2007). All samples were taken from the Neoproterozoic igneous-metamorphic basement. Apatite fission-track ages range from 101.6 (9.4) to 228.9 (22.3) Ma, and, therefore, are younger than their formation age, indicating all samples have been thermally reset. Six samples accomplished enough confined

  9. The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution

    NASA Astrophysics Data System (ADS)

    O'Dea, Enda; Furner, Rachel; Wakelin, Sarah; Siddorn, John; While, James; Sykes, Peter; King, Robert; Holt, Jason; Hewitt, Helene

    2017-08-01

    We describe the physical model component of the standard Coastal Ocean version 5 configuration (CO5) of the European north-west shelf (NWS). CO5 was developed jointly between the Met Office and the National Oceanography Centre. CO5 is designed with the seamless approach in mind, which allows for modelling of multiple timescales for a variety of applications from short-range ocean forecasting to climate projections. The configuration constitutes the basis of the latest update to the ocean and data assimilation components of the Met Office's operational Forecast Ocean Assimilation Model (FOAM) for the NWS. A 30.5-year non-assimilating control hindcast of CO5 was integrated from January 1981 to June 2012. Sensitivity simulations were conducted with reference to the control run. The control run is compared against a previous non-assimilating Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) hindcast of the NWS. The CO5 control hindcast is shown to have much reduced biases compared to POLCOMS. Emphasis in the system description is weighted to updates in CO5 over previous versions. Updates include an increase in vertical resolution, a new vertical coordinate stretching function, the replacement of climatological riverine sources with the pan-European hydrological model E-HYPE, a new Baltic boundary condition and switching from directly imposed atmospheric model boundary fluxes to calculating the fluxes within the model using a bulk formula. Sensitivity tests of the updates are detailed with a view toward attributing observed changes in the new system from the previous system and suggesting future directions of research to further improve the system.

  10. Magnetic signatures of North Atlantic climate in Cores MD01-2443 and -2444 from the Southwest Iberian Margin (0-400 ka)

    NASA Astrophysics Data System (ADS)

    Channell, J. E.; Hodell, D. A.; Skinner, L.; Tzedakis, P. C.

    2012-12-01

    Cores MD01-2443 and MD01-2444 from the southwest Iberian margin provide records back to 420 ka, and age control is facilitated by correlation of planktic foraminifer δ18O to Greenland-ice δ18O. Normalized remanence provides relative paleointensity (RPI) proxies for sedimentation rates in the 10-40 cm/kyr range, that fit reference stacks, and show no significant coherence with normalizers implying a lack of lithologic contamination. Magnetic properties are dominated by magnetite in sub-micron grain sizes of likely biogenic (bacterial) origin. Magnetic grain-size proxies (karm/k and ARM/IRM) mimic δ18O and have power at orbital periods, implying enhanced flux of biogenic magnetite during interglacials and warm stadials probably as a result of a linkage of surface-sediment organic carbon and abundance of (benthic) bacterial magnetite. Preservation during diagenesis of reactive bacterial magnetite is attributed to low organic carbon (<1 wt%) and hence low rates of sulfate reduction. A high-coercivity magnetic mineral (hematite from Saharan dust), detected through S-ratios and reflectance data, has enhanced concentration during glacial intervals and cold stadials. Magnetic susceptibility peaks, magnetic grain size coarsening, and high coercivity minerals, mark Heinrich stadials (HS), particularly HS4 and HS7.

  11. Histopathological lesions and DNA adducts in the liver of European flounder (Platichthys flesus) collected in the Seine estuary versus two reference estuarine systems on the French Atlantic coast.

    PubMed

    Cachot, Jérôme; Cherel, Yan; Larcher, Thibaut; Pfohl-Leszkowicz, Annie; Laroche, Jean; Quiniou, Louis; Morin, Jocelyne; Schmitz, Julien; Burgeot, Thierry; Pottier, Didier

    2013-02-01

    An epidemiological survey was conducted in the Seine estuary and in two smaller and relatively preserved estuaries on the French Atlantic coast in order to estimate the occurrence of liver lesions in European flounder, Platichthys flesus, and also to seek putative risk factors for the recorded pathologies. Four hundred and seventy-eight fish of both sexes and of different size ranges were sampled in the three studied areas, 338 of which in the Seine estuary. All fish were examined for histopathological liver lesions, while DNA adducts and otoliths were analyzed on a subsample. Five categories of hepatic lesions were recorded with the following prevalence for the Seine estuary: 36.7 % inflammations, 8 % parasites (mainly encysted nematodes), 6.5 % foci of cellular alteration (FCA), 5.3 % foci of necrosis or regeneration (FNR), and 1.5 % tumors. Inflammation occurrence increased according to age, contrary to parasitic infestations and FCA which were more prevalent in young fish, notably those of <1 year old (group 0). Tumors were only observed in females of more than two winters. Females exhibited a higher prevalence of tumors (3.0 %) and FCA (6.5 %) than males (0 and 2.6 %, respectively). Parasitic and infectious lesions and FNR were equally distributed in males and females. The prevalence of FNR was also shown to vary according to sampling season, with significantly more occurrences of liver necrosis in the fish collected in summer than in spring. Spatial differences were observed with a higher occurrence of encysted parasites in flounders from the upper Seine estuary, while inflammations predominated in flounders living downstream. Temporal trends were also noted, with an increased prevalence of parasitic infestations, inflammations, and FCA in the 2002-2003 period in comparison to the 1996-1997 one. The three flounder populations from the Seine estuary (Normandy), Ster estuary (Brittany), and Bay of Veys (Normandy) showed different spectra of hepatic lesions

  12. Successful eradication of the European rabbit (Oryctolagus cuniculus) and house mouse (Mus musculus) from the island of Selvagem Grande (Macaronesian archipelago), in the Eastern Atlantic.

    PubMed

    Olivera, Paulo; Menezes, Dilia; Trout, Roger; Buckle, Alan; Geraldes, Pedro; Jesus, José

    2010-03-01

    The Portuguese island of Selvagem Grande (Great Salvage) in Macaronesia is an important seabird breeding station in the eastern Atlantic. Significant populations of Cory's shearwater Calonectris diomedea (Scopoli, 1769), Bulwer's petrel Bulweria bulweria (Jardine & Selby, 1828) and little shearwater Puffinus assimilis baroli (Bonaparte, 1857) are present, and white-faced storm-petrel Pelagodroma marina (Latham, 1790) and Madeiran storm-petrel Oceanodroma castro (Harcourt, 1851) populations are of global significance. Selvagem Grande also provides diverse habitats for an extensive flora, including 11 endemic species. The 270-ha island was also inhabited by two alien invasive mammals: the European rabbit Oryctolagus cuniculus (Linnaeus, 1758) and the house mouse Mus musculus (Linnaeus, 1758). Both are known to have had adverse impacts on breeding seabirds and island vegetation. In 2002, the Natural Park of Madeira conducted a program using brodifacoum bait formulations aimed at rabbit and mouse eradication. Approximately 17 000 individual baiting points were established on a 12.5 × 12.5 m grid. Baits were also applied by hand "seeding" on steep slopes and cliffs where bait stations could not be placed. Rabbits were removed after a month. However, mice persisted for considerably longer and strategic bait applications against them continued for a further six months. Subsequent assessments by trapping, bait takes and systematic observation of signs over three years, has confirmed the removal of both alien invasive species. This paper presents information on these operations, on measures adopted to mitigate adverse impacts of the eradication program on important vertebrate non-target species, including Berthelot's pipit Anthus berthelotii Bolle, 1862 and a species of gecko Tarentola bischoffi Joger, 1984 and on the initial response of the island's ecosystem to the eradication of rabbits and mice. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  13. Molecular cloning and measurement of telomerase reverse transcriptase (TERT) transcription patterns in tissues of European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua) during aging.

    PubMed

    López de Abechuco, E; Bilbao, E; Soto, M; Díez, G

    2014-05-10

    Telomerase is a reverse transcriptase ribonucleoprotein that maintains the ends of linear chromosomes. This enzyme plays a major role in cell processes like proliferation, differentiation and tumorigenesis, being associated with aging and survival of species. In this study, the gene coding for TERT (Telomerase Reverse Transcriptase) of two commercial fish species, European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua), has been partially cloned. A fragment of 1581bp (hake) and 633bp (cod) showed high homology (identity 74%, query cover 99%, E-value=0) with known Perciformes TERT sequences. TERT transcription patterns were assessed by qRT-PCR in different tissues of hake (brain, ovary, testis, muscle, skin, gills, liver and kidney) and cod (brain, muscle and skin) of different sizes/ages in order to understand its role in the physiological aging of teleosts. TERT was found to be ubiquitously transcribed in all tissues and size/age groups studied in both species. Significantly higher relative transcription levels (p<0.05) were found with increasing size/age of M. merluccius in the kidney, muscle, skin and gonad, the latter exhibiting particularly high relative transcription levels. Male hakes showed higher TERT relative transcription levels in the brain, gonad and liver than females, although these differences were not statistically significant (p<0.05). In G. morhua, higher TERT relative transcription levels were recorded in the muscle and brain of fry and juvenile individuals. Therefore, TERT relative transcription pattern exhibited a higher telomerase demand in early developmental stages and also in mature stages, suggesting tissue renewal or regeneration processes as a conserved mechanism for maintaining long-term cell proliferation capacity and preventing senescence. Thus, it can be concluded that TERT relative transcription level was species and tissue specific and changed with the age of fishes.

  14. Timing and Kinematics of Cretaceous to Paleogene inversion at the SE margin of the Central European Basin System: Part 2, Thermochronology

    NASA Astrophysics Data System (ADS)

    Hoffmann, V.-E.; Dunkl, I.; von Eynatten, H.; Jähne, F.; Voigt, T.; Kley, J.

    2009-04-01

    During the Late Cretaceous to Early Tertiary some parts of the Central European Basin System (CEBS) were uplifted along NW-SE to WNW-ESE striking compressive fault systems. As a result Pre-Zechstein (Permian) basement is exposed at the southern border of the CEBS from Central Germany to the sudetes still further east (e.g. Harz Mountains, Thuringian Forest). Thrust-related basins like the Subhercynian Cretaceous Basin (SCB) in the foreland of the Harz Mountains accumulated up to 2500m of siliciclastic and chemical sediments in only 10 million years (Late Turonian to Lower Campanian, Voigt et al., 2006). By means of low-temperature thermochronology it is possible to characterise these basin inversion processes with respect to timing, pattern and rates of cooling and exhumation. Differed authors have already applied Apatite Fission Track analysis (AFT) in certain areas of the southern margin of CEBS. Thomson and Zeh (2000) published AFT apparent ages of 69 to 81 Ma for the Ruhla Crystalline Complex in the Thuringian Forest. Similar AFT-ages (73-84 Ma) of granitoids from the Harz Mountains were reported by Thomson et al. (1997). The late Carboniferous felsic volcanic rocks near Halle yield a much broader range of AFT apparent ages (75-108 Ma; Jacobs and Breitkreuz, 2003). Comparable AFT-ages (84-90 Ma) had been also observed for gabbros from the north-eastern part of the Mid German Crystalline High (Ventura et al. 2003). The present study tries to bridge some of the major gaps in the regional distribution of thermochronological data by analysing samples from central and southern parts of the CEBS. Overall almost 50 AFT-ages from Saxony-Anhalt, Lower Saxony, Thuringia, Hesse and North Rhine-Westphalia were measured. Emphasis is placed on the regions from the Harz Mountains to the Rhenish Uplands and the Thuringian Forest and its foreland. Furthermore, apatite (U-Th)/He thermochronology is used to better constrain the time-temperature history models. Apart from some

  15. Management of surgical margins after endoscopic laser surgery for early glottic cancers: a multicentric evaluation in French-speaking European countries.

    PubMed

    Fakhry, Nicolas; Vergez, Sébastien; Babin, Emmanuel; Baumstarck, Karine; Santini, Laure; Dessi, Patrick; Giovanni, Antoine

    2015-06-01

    The aim of this study was to evaluate the practices of ENT surgeons for the management of surgical margins after endoscopic laser surgery for early glottic cancers. A questionnaire was sent to different surgeons managing cancers of the larynx in France, Belgium and Switzerland. A descriptive and comparative analysis of practices across centers was performed. Sixty-nine surgeons completed the questionnaire (58 in France, 10 in Belgium and 1 in Switzerland). In case of very close or equivocal resection margins after definitive histological examination, 67 % of surgeons perform close follow-up, 28 % further treatment and 5 % had no opinion. Factors resulting in a significant change in the management of equivocal or very close margins were: the country of origin (p = 0.011), the specialty of the multidisciplinary team leader (p = 0.001), the fact that radiation equipment is located in the same center (p = 0.027) and the access to IMRT technique (p = 0.027). In case of positive resection margins, 80 % of surgeons perform further treatment, 15 % surveillance, and 5 % had no opinion. The only factor resulting in a significant change in the management of positive margins was the number of cancers of the larynx treated per year (p = 0.011). It is important to spare, on one hand equivocal or very close margins and on the other hand, positive margins. Postoperative management should be discussed depending on intraoperative findings, patient, practices of multidisciplinary team, and surgeon experience. This management remains non-consensual and writing a good practice guideline could be useful.

  16. Biodiversity and life strategies of deep-sea meiofauna and nematode assemblages in the Whittard Canyon (Celtic margin, NE Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Gambi, Cristina; Danovaro, Roberto

    2016-02-01

    An extensive sampling strategy has been carried out along bathymetric transects in two branches (Eastern middle and Western) of the Whittard Canyon and in two adjacent open slopes to investigate meiofaunal assemblages (including nematode diversity and their life strategy) in the Celtic margin, Northern Gulf of Biscay. Our results show the presence of differences in terms of meiofaunal abundance and biomass among habitats even when located at the same depth. Meiofaunal abundance and biomass in the upper and middle (1000-2000 m) part of the branches of the Whittard Canyon are typically higher than those reported in adjacent open slopes while, in deeper sediments (ca. 3000 m), an opposite pattern is detected. The availability of food sources (both in term of quantity and quality) plays a key role in explaining such differences. Diversity expressed either as the richness of meiofaunal taxa and of nematode species is typically higher in slopes than in the branches of the Whittard Canyon. Turnover diversity is high (40-100% for meiofaunal rare taxa and 61-78% for nematode species, respectively) either among habitats and depths. Although a general dominance of deposit feeders, predators are more abundant in slopes (9-12% of total nematode abundance) than in both branches of the Whittard Canyon (4-7%). The higher fraction of predators of the nematode assemblages inhabiting the slopes determined higher values of the maturity index (i.e., more persisters, c-p=4/5). We hypothesize that the life strategies of nematode assemblages are influenced by gravity flows, sediment instability and the 2-3 times higher availability of phytopigments, which characterize the upper part of the Whittard Canyon, favoring opportunist/colonizer species. Our findings indicate that different deep-sea habitats are associated to different life strategies, thus contributing to increase the functional diversity of deep-sea ecosystems.

  17. Biodiversity of the deep-sea continental margin bordering the Gulf of Maine (NW Atlantic): relationships among sub-regions and to shelf systems.

    PubMed

    Kelly, Noreen E; Shea, Elizabeth K; Metaxas, Anna; Haedrich, Richard L; Auster, Peter J

    2010-11-19

    In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39-43°N, 63-71°W, 150-3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists.

  18. Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    PubMed Central

    Kelly, Noreen E.; Shea, Elizabeth K.; Metaxas, Anna; Haedrich, Richard L.; Auster, Peter J.

    2010-01-01

    Background In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life

  19. Glacial/interglacial changes in southern Africa: Compound-specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments

    NASA Astrophysics Data System (ADS)

    Rommerskirchen, Florian; Eglinton, Geoffrey; Dupont, Lydie; RullköTter, Jürgen

    2006-08-01

    This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the δ13C data and in the abundances of C31 and C33n-alkanes, and the C32n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative

  20. Assessing the influence of the North Atlantic Oscillation on the European atmospheric composition from a climatic perspective: a case study for polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Jerez, Sonia; Ratola, Nuno

    2014-05-01

    The North Atlantic Oscillation (NAO) controls a large amount of the European climate variability with asymmetric impacts in both time and space. These NAO-related impacts on the atmospheric fields are bound to influence the atmospheric composition, through both local processes and large-scale transport of air pollutants. The studies devoted to explore such an influence from a climatic perspective (long-term modeling) are few, and even less disentangling between local and large-scale settings. Therefore, the contribution of the local NAO-controlled processes on the climatology of air pollution levels is still hardly established. Hence, the objective of the present study is to assess the NAO fingerprint in terms of mean concentration of polycyclic aromatic hydrocarbons (PAHs, in this case benzo[a]pyrene, BaP) in a region covering the entire Mediterranean basin from the north of Africa to the north of Europe, focusing on the influence of the small scale processes. BaP is arguably the most studied PAH, and the reference for PAH air quality standards defined by the European Commission. To achieve this goal, we use a numerical simulation of the atmospheric chemical composition that spans from 1989 to 2010 and fixing the anthropogenic emissions, thus allowing to isolate the climatic variations in BaP. The chemistry transport model selected was CHIMERE and the domain considered has a spatial resolution of 0.2 degrees in the horizontal, which is about 25 km at the European latitudes considered, and eight vertical levels unevenly spaced up to 550 hPa. This resolution is higher than the commonly applied in climate runs. The simulation was designed to disregard the signals from the NAO impact on the long-range transport, using constant climatological boundary conditions for the pollutants concentrations. This allows the enhancement of our understanding regarding the role of the local underlying mechanisms as they are governed by the NAO. The results show impacts with

  1. Features of the lithosphere structure of oil-gas-bearing zones of the Atlantic Ocean European site on the base of the geomagnetic field components measurements data

    NASA Astrophysics Data System (ADS)

    Demina, I. M.; Petrova, A. A.; Batkova, L. A.

    2009-04-01

    The purpose of this paper is to investigate the geomagnetic field of the oil-gas-bearing pools. The feature of this problem is that the object investigated (petroleum series deposit) in itself does not produce magnetic anomalies. To map such kind of weakly magnetic measures the technique of spectral-spatial analysis has been suggested by us. Successive linear spectrum filtering followed by the inverse transformation of the spectra set obtained within interested range of anomalies periods lies at the heart of this method. This technique was applied by us to investigate the deep structure features of earthcrust of the Atlantic Ocean European site which are involved in oil-gas-accumulation processes. The input data used by us were the results of geomagnetic field components measurements which had been obtained along the length profiles crossing North Sea and Norwegian Sea during the expeditions on the non-magnetic schooner Zarya over 1955-1980 period. The geomagnetic sections of the earth crust for Viking trough (Norwegian - North Sea), Forties trough, West sole trough (Southern North Sea basin) were made on the base of an analysis of the spectrum structure of the geomagnetic field Z component. The distribution pattern of a rock magnetization was analyzed in the depth range from 1 to 30km. The rock magnetic characteristics were obtained for regions of the big gas and oil fields such as Frigg, Brent, Beril (Viking trough.), Ekofisk, Erskin, Franklin (Forties trough), Leman, Infatigebl, Ok (West sole trough). It was obtained that petroleum series deposits are located near the depth permeable zones which contain lenses of marker beds differing in the lower magnetization. At that weakly magnetic lenses were revealed not in sedimentary cover mass only but in a basement in the depth range from 8 to 11 km and from15 to 18 km and in the lover crust from 20 to 28 km. The similar lithosphere structure was obtained early for the Russia oil-gas-bearing provinces Volga

  2. Dual Symbiosis in a Bathymodiolus sp. Mussel from a Methane Seep on the Gabon Continental Margin (Southeast Atlantic): 16S rRNA Phylogeny and Distribution of the Symbionts in Gills

    PubMed Central

    Duperron, Sébastien; Nadalig, Thierry; Caprais, Jean-Claude; Sibuet, Myriam; Fiala-Médioni, Aline; Amann, Rudolf; Dubilier, Nicole

    2005-01-01

    Deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) harbor symbiotic bacteria in their gills and are among the dominant invertebrate species at cold seeps and hydrothermal vents. An undescribed Bathymodiolus species was collected at a depth of 3,150 m in a newly discovered cold seep area on the southeast Atlantic margin, close to the Zaire channel. Transmission electron microscopy, comparative 16S rRNA analysis, and fluorescence in situ hybridization indicated that this Bathymodiolus sp. lives in a dual symbiosis with sulfide- and methane-oxidizing bacteria. A distinct distribution pattern of the symbiotic bacteria in the gill epithelium was observed, with the thiotrophic symbiont dominating the apical region and the methanotrophic symbiont more abundant in the basal region of the bacteriocytes. No variations in this distribution pattern or in the relative abundances of the two symbionts were observed in mussels collected from three different mussel beds with methane concentrations ranging from 0.7 to 33.7 μM. The 16S rRNA sequence of the methanotrophic symbiont is most closely related to those of known methanotrophic symbionts from other bathymodiolid mussels. Surprisingly, the thiotrophic Bathymodiolus sp. 16S rRNA sequence does not fall into the monophyletic group of sequences from thiotrophic symbionts of all other Bathymodiolus hosts. While these mussel species all come from vents, this study describes the first thiotrophic sequence from a seep mussel and shows that it is most closely related (99% sequence identity) to an environmental clone sequence obtained from a hydrothermal plume near Japan. PMID:15811991

  3. Dual symbiosis in a Bathymodiolus sp. mussel from a methane seep on the Gabon continental margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills.

    PubMed

    Duperron, Sébastien; Nadalig, Thierry; Caprais, Jean-Claude; Sibuet, Myriam; Fiala-Médioni, Aline; Amann, Rudolf; Dubilier, Nicole

    2005-04-01

    Deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) harbor symbiotic bacteria in their gills and are among the dominant invertebrate species at cold seeps and hydrothermal vents. An undescribed Bathymodiolus species was collected at a depth of 3,150 m in a newly discovered cold seep area on the southeast Atlantic margin, close to the Zaire channel. Transmission electron microscopy, comparative 16S rRNA analysis, and fluorescence in situ hybridization indicated that this Bathymodiolus sp. lives in a dual symbiosis with sulfide- and methane-oxidizing bacteria. A distinct distribution pattern of the symbiotic bacteria in the gill epithelium was observed, with the thiotrophic symbiont dominating the apical region and the methanotrophic symbiont more abundant in the basal region of the bacteriocytes. No variations in this distribution pattern or in the relative abundances of the two symbionts were observed in mussels collected from three different mussel beds with methane concentrations ranging from 0.7 to 33.7 microM. The 16S rRNA sequence of the methanotrophic symbiont is most closely related to those of known methanotrophic symbionts from other bathymodiolid mussels. Surprisingly, the thiotrophic Bathymodiolus sp. 16S rRNA sequence does not fall into the monophyletic group of sequences from thiotrophic symbionts of all other Bathymodiolus hosts. While these mussel species all come from vents, this study describes the first thiotrophic sequence from a seep mussel and shows that it is most closely related (99% sequence identity) to an environmental clone sequence obtained from a hydrothermal plume near Japan.

  4. First data on the concentrations and distribution of noble metals in Riphean magmatic complexes of the Bashkir meganticlinorium and eastern margin of the East European Platform

    NASA Astrophysics Data System (ADS)

    Kovalev, S. G.; Puchkov, V. N.; Vysotsky, S. I.; Kovalev, S. S.

    2016-12-01

    The noble metal (PGE and Au) geochemical specialization of igneous rocks of the Bashkir meganticlinorium and adjacent areas of the East European Platform is characterized for the first time. The identical plots of normalized PGE and Au concentrations of igneous rocks in these regions indicate similar conditions and mechanisms of the formation of the noble metal geochemical specialization during the emplacement of magmatic bodies. It is established that a specific feature of noble metal geochemical specialization (the "rhodium anomaly") in magmatic complexes of the Bashkir meganticlinorium and eastern areas of the East European Platform is determined by the concentrations of noble metals in sulfide minerals (pentlandite); i.e., it is "primary" in origin.

  5. Decadal variability in the Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Klein, Birgit; Kieke, Dagmar; Klein, Holger; Rhein, Monika; Roessler, Achim; Denker, Claudia

    2016-04-01

    The strong warming and salinification of the Eastern North Atlantic starting in the mid 1990s has been attributed to a westward contraction of the subpolar gyre and stronger inflow of waters from the subtropical gyre. Temporal changes in the shape and strength of the two gyres have been related to the major mode of atmospheric variability in the Atlantic sector, the NAO. Hydrographic conditions along the Northwest European shelf are thus the result of different processes such as variations in transports, varying relative contributions of water masses from the two gyres and property trends in the source water masses. We examine the decadal variability in the eastern North Atlantic based on Argo data from 2000-2015 and have constructed time series for four water masses (Subpolar Mode Water (SPMW), Intermediate Water (IW), upper Labrador Sea Water (uLSW) and deep Labrador Sea Water (dLSW)) at selected locations along the Northwest European shelf. Data from the Rockall Trough and the Iceland Basin are chosen to represent advective pathways in the subpolar gyre at two major branches of the North Atlantic Current towards the Nordic Seas and the Arctic Ocean. Temporal variability of subtropical waters transported northward along the eastern boundary is studied at Goban Spur around 48°N. The Argo data are extended in time with long-term hydrographic observations such as the Extended Ellet Line data and other climatological sources in the region. For the study of transport fluctuations time series from the RACE (Regional circulation and Global change) program (2012-2015) and predecessor programs have been used. These programs have monitored the subpolar gyre in the western basin and provide time series of transports and hydrographic anomalies from moored instruments at the western flank of the Mid Atlantic Ridge (MAR). First results show that the temperatures and salinities remained at high levels for the upper waters (SPMW and IW) until 2010 and have been decreasing since

  6. Comparing the deformation and hydrothermal alteration record of tectonic exhumation of mantle-derived ultramafic rocks from the Mid-Atlantic Ridge and from Ocean Continent Transitions (Central Alps and Western Iberia Margin)

    NASA Astrophysics Data System (ADS)

    Picazo, S. M.; Cannat, M.; Manatschal, G.

    2012-12-01

    The exhumation of mantle-derived rocks is widespread at slow and ultraslow Mid-Ocean Ridges and at the Ocean-Continent Transition (OCT) of rifted continental margins. It occurs along large offset normal faults also called detachment faults. Thermo-mechanical models indicate that significant strain softening of the fault rocks in the footwall is required in order to produce such large fault offsets. Our work focuses on actual deformation textures, and the associated mineralogy in ultramafic rocks sampled in the upper levels of the footwall next to the exhumation fault at two contrasted exhumation settings: the Mid-Atlantic Ridge (MAR) at lat. 13°N and 15°N (next to the Ashadze and Logatchev vent sites); and two OCT examples, the Totalp relict of a paleo-Tethys OCT exposed in SE Switzerland, and the Iberian distal margin (ODP Leg 173 Site 1070). These two settings differ by a number of characteristics, most notably the nature of the exhumed mantle (sub-continental mantle at OCTs, oceanic mantle at the ridge) and the extent of magmatic activity during exhumation (extensive magmatism at the MAR, few magmatic rocks at OCTs). Our comparative approach aims at identifying possible differences in the deformation processes during exhumation. We show that in both settings the ultramafic rocks in the upper levels of the footwall next to the detachment fault undergo a series of plastic to semi-brittle and brittle deformations. In samples from OCT settings, we find a cataclasites to gouges-sequence that affects the serpentinized peridotites. It involves a component of plastic deformation of serpentine following pronounced brittle grain-size reduction responsible for matrix-supported gouges formation in the most highly strained intervals. In this case the rheology of serpentine therefore controls the detachment fault. A similar sequence of serpentinite cataclasites and gouges is found in a few samples at one of the studied MAR locations, but in most samples from the MAR we find

  7. Potential use of the invasive European green crab (Carcinus maenas) as an ingredient in Atlantic Salmon (Salmo salar) diets; a preliminary analysis

    USDA-ARS?s Scientific Manuscript database

    Atlantic salmon (Salmo salar) is an important cultured carnivorous species with wide comsumer acceptance. With the finite supply of available fishmeal and fish oil available for aquafeeds, research on and utilization of alternative protein and lipid sources is expandingWe examined the nutritional p...

  8. Marginal Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  9. The Kongsfjorden Channel System offshore NW Spitsbergen, European Arctic: evidence of down-slope processes in a contour-current dominated setting on the continental margin

    NASA Astrophysics Data System (ADS)

    Forwick, Matthias; Sverre Laberg, Jan; Hass, H. Christian; Osti, Giacomo

    2016-04-01

    The Kongsfjorden Channel System (KCS) is located on the continental slope in the eastern Fram Strait, off northwest Spitsbergen. It provides evidence that the influence of down-slope sedimentary processes locally exceeds regional along-slope sedimentation. Compared to other submarine channel systems on and off glaciated continental margins, it is a relatively short system (~120 km) occurring at a large range of water depths (~250-4000 m). It originates with multiple gullies on the Kongsfjorden Trough Mouth Fan merging to small channels that further downslope merge to a main channel. The overall location of the channel system is controlled by variations in slope gradients (0-20°) and the ambient regional bathymetry: widest and deepest incisions occur in areas of steepest slope gradients. The KCS has probably been active since ~1 Ma when glacial activity on Svalbard increased and grounded ice expanded to the shelf break off Kongsfjorden repeatedly. Activity within the system was probably highest during glacials. However, reduced activity presumably took place also during interglacials. The presentation summarizes the work of Forwick et al. (2015). Reference: Forwick, M., Laberg, J.S., Hass, H.C. & Osti, C., 2015. The Kongsfjorden Channel System offshore NW Svalbard: downslope sedimentary processes in a contour-current-dominated setting. Arktos 1, DOI: 10.1007/s41063-015-0018-4.

  10. Marginality principle

    USDA-ARS?s Scientific Manuscript database

    Soil is a fragile resource supplying many goods and services. Given the diversity of soil across the world and within a landscape, there are many different capacities among soils to provide the basic soil functions. Marginality of soils is a difficult process to define because the metrics to define ...

  11. The Evolution of the South Atlantic.

    ERIC Educational Resources Information Center

    McCoy, Floyd W.; Rabinowitz, Philip D.

    1979-01-01

    The development of the South Atlantic continental margins through geological time is discussed in a series of three time slices, all of which depict various characteristics in the initial formation of this margin during the Cretaceous period (180 to 65 million years ago) of the Mesozoic era. (BT)

  12. The Evolution of the South Atlantic.

    ERIC Educational Resources Information Center

    McCoy, Floyd W.; Rabinowitz, Philip D.

    1979-01-01

    The development of the South Atlantic continental margins through geological time is discussed in a series of three time slices, all of which depict various characteristics in the initial formation of this margin during the Cretaceous period (180 to 65 million years ago) of the Mesozoic era. (BT)

  13. Pellucid marginal corneal degeneration.

    PubMed

    Krachmer, J H

    1978-07-01

    Pellucid marginal degeneration of the cornea is a bilateral, clear, inferior, peripheral corneal-thinning disorder. Protrusion of the cornea occurs above a band of thinning, which is located 1 to 2 mm from the limbus and measures 1 to 2 mm in width. American ophthalmologists are generally not familiar with the condition because most of the literature concerning pellucid degeneration is European. Four cases are described. This condition is differentiated from other noninflammatory cornel-thinning disorders such as keratoconus, keratoglobus, keratotorus, and posterior keratoconus. It is also differentiated from peripheral corneal disorders associated with inflammation such as Terrien's peripheral corneal degeneration, Mooren's ulcers, and ulcers from connective tissue disease.

  14. The hydrography of the mid-latitude northeast Atlantic Ocean. I: The deep water masses

    NASA Astrophysics Data System (ADS)

    van Aken, Hendrik M.

    2000-05-01

    The circulation of the deep water masses in the mid-latitude northeast Atlantic Ocean was studied by analysis of the distributions of potential temperature, salinity, dissolved oxygen, phosphate, nitrate, and silicate. Pre-formed nutrients were used to allow a quantitative description of the deep water masses, especially the Northeast Atlantic Deep Water, in terms of four local source water types: Iceland-Scotland Overflow Water, Lower Deep Water, Labrador Sea Water, and Mediterranean Sea Water. Over the Porcupine Abyssal Plain between 2500 and 2900 dbar Northeast Atlantic Deep Water appears to be a mixture of mainly Iceland-Scotland Overflow Water and Labrador Sea Water (˜80%), with minor contributions of Lower Deep Water and Mediterranean Sea Water. When the Northeast Atlantic Deep Water re-circulates in the north-eastern Atlantic and flows southwards towards the Madeira Abyssal Plain, contributions of the former two water types of northern origin diminish to about 50% due to diapycnal mixing with the overlying and underlying water masses. The observed meridional and zonal trends of dissolved oxygen and nutrients in the Northeast Atlantic Deep Water appear to be caused both by diapycnal mixing with the underlying Lower Deep Water and by mineralization of organic matter. The eastward decrease of oxygen and increase of nutrients especially require considerable mineralization of organic matter near the European continental margin. At deeper levels (˜4100 dbar), where the nutrient rich Lower Deep Water is found near the bottom, the meridional gradients of oxygen and nutrients are opposite to those found between 2500 and 2900 dbar. Diapycnal mixing cannot explain this change in gradients, which is therefore considered to be a qualitative indication of ageing of the Lower Deep Water when it flows northwards. A considerable part of the Iceland-Scotland Overflow Water and the Lower Deep Water that enter the northeast Atlantic may be removed by deep upwelling in the Bay

  15. Geotherms and heat flow estimates in the Odra Fault Zone (NE margin of Bohemian Massif, Central Europe) and its relationships to geological structure of NE termination of the European Variscan Orogen

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Czechowski, Leszek; Majorowicz, Jacek; Pietranik, Anna; Grad, Marek

    2017-04-01

    . Funding. This study was possible thanks to the project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science to JP. Dörr W., Żelaźniewicz A., Bylina P., Schastok J., Franke W., Haack U., Kulicki C., 2006. Tournaisian age of granitoids from the Odra Fault Zone (southwestern Poland): equivalent of the Mid-German Crystalline High? International Journal of Earth Sciences 95, 341-349. Puziewicz J., Czechowski L., Krysiński L., Majorowicz J., Matusiak-Małek M., Wróblewska M. , 2012. Lithosphere thermal structure at the eastern margin of the Bohemian Massif: a case petrological and geophysical study of the Niedźwiedź amphibolite massif (SW Poland). International Journal of Earth Sciences 101 (5), 1211-1228. Tesauro M., Kaban M. K., Cloetingh S.A.P.L., 2009. A new thermal and rheological model of the European lithosphere. Tectonophysics 476, 478-495. Żelaźniewicz A., Oberc-Dziedzic T., Fanning C. M., Protas A., Muszyński A., 2017. Late Carboniferous -early Permian events in the Trans-European Suture Zone: Tectonic and acid magmatic evidence from Poland. Tectonophysics 675, 227-243.

  16. Genetic polymorphism and its potential relation to environmental stress in five populations of the European flounder Platichthys flesus, along the French Atlantic coast.

    PubMed

    Marchand, J; Evrard, E; Guinand, B; Cachot, J; Quiniou, L; Laroche, J

    2010-08-01

    In this study, new DNA markers were explored for the flounder Platichthys flesus. cDNA and genomic sequences of the genes encoding the glyceraldehyde-3-phosphate-deshydrogenase (GAPDH), the cytosolic creatine kinase (CK), the prostaglandin D synthase (PGDS) and the betaine homocysteine methyltransferase (BHMT) were characterized. The tumour suppressor p53 gene structure was already described. A PCR-SSCP (Single Strand Conformation Polymorphism) analysis was finally conducted to study the genetic polymorphism of different populations of flounders collected along the French Atlantic coast. Four highly contaminated French estuaries (Seine, Vilaine, Loire and Gironde) were sampled and compared to a reference estuary (Ster) to explore possible selective effect of the environment on specific allelic frequencies. Our results showed that two loci p53 and PGDS, could be potential markers of chemical stress: p53A allele frequency increased in contaminated systems compared to the reference system. In the Vilaine estuary, PGDS polymorphism could be related to pesticide stress.

  17. Hyperactive neotectonic near the South Rifian front. Lifted Late Quaternary lagunal deposits (Atlantic Morocco)

    NASA Astrophysics Data System (ADS)

    Benmohammadi, Aïcha; Griboulard, Roger; Zourarah, Bendahhou; Carruesco, Christian; Mehdi, Khalid; Mridekh, Aziz; Moussaoui, Abderahmane El; Alaoui, Asmae Mhamdi; Carbonel, Pierre; Londeix, Laurent

    2007-10-01

    The recent discovery of emerged and lifted lagunal deposits near the Moulay Bouselham lagoon (North Moroccan Atlantic coast), up to 32 m above sea level, requires a new model to explain the evolution of this ecosystem. All the studies on these deposits seem to indicate that we are dealing with very recent lagoonal levels. The main problem is to explain the altitude of these deposits. Likely explanations are a historical tsunami, tempest, and/or a very strong neotectonics in this area. We choose the later hypothesis because it matches the occurrence of an argilokinetic tectonic in front of the North Atlantic Moroccan margin. In this tectonic context, results of 14C analysis data, i.e. 2400 ± 250 BP for one outcrop and 2170 ± 215 BP for a value in a core taken in the lagoon, we obtain a rate of uplift of about 14 mm/yr. Therefore, this region corresponds to an important tectonic junction between the stable Meseta to the south, the Rifian domain to the north and the accretionary prism, in relation with the subduction of the Atlantic crust under the African and European plates to the west. Moreover, in front of the studied site, many mud volcanoes have been observed in the Gulf of Cadiz, near the Moroccan margin.

  18. Radium-226 and barium as tracers of water masses in the North Atlantic (GA01-GEOTRACES)

    NASA Astrophysics Data System (ADS)

    Le Roy, Emilie; Sanial, Virginie; Charette, Matthew; Henderson, Paul; Jacquet, Stéphanie; García-Ibáñez, Maribel; Pérez, Fiz; Lherminer, Pascale; Souhaut, Marc; Jeandel, Catherine; Lacan, François; van Beek, Pieter

    2017-04-01

    In this study, we report concentrations of radium-226 (226Ra, t1/2=1602 y) and barium determined along the GEOVIDE section conducted in the North Atlantic (May-July 2014; Portugal-Greenland-Canda) in the framework of the international GEOTRACES program. A high vertical resolution (up to 22 depths per station) was achieved by analyzing small volumes (˜10 L) of seawater for 226Ra using a radon emanation technique. We will present the distribution of 226Ra activities and barium concentrations in contrasting biogeochemical regions of the North Atlantic (Iberian margin, West European Basin, Reykjanes Ridge, Irminger Sea, Greenland margin and Labrador Sea). These regions strongly differ in terms of boundary inputs, biogeochemistry and deep water formation. We observe a linear correlation between 226Ra and barium along the GEOVIDE section, which results from the dominantly conservative behavior of the two tracers. However, deviations from the linear correlation between 226Ra and Ba are found in several places. The potential causes for such deviations are investigated. Optimum multi-parameter (OMP) analysis was thus used to distinguish the relative importance of physical transport (i.e., water mass mixing) from non-conservative processes (sedimentary, river or hydrothermal inputs; uptake by particles) on the 226Ra and Ba distribution in the North Atlantic.

  19. Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (s. s.) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic coast: implications for food safety.

    PubMed

    Cipriani, Paolo; Smaldone, Giorgio; Acerra, Virginia; D'Angelo, Luisa; Anastasio, Aniello; Bellisario, Bruno; Palma, Giuseppe; Nascetti, Giuseppe; Mattiucci, Simonetta

    2015-04-02

    The consumption of the hake Merluccius merluccius is widespread in European countries, where this fish has a high commercial value. To date, different larval species of Anisakis have been identified as parasites in M. merluccius from European waters, Anisakis pegreffii and Anisakis simplex (s. s.) being the two most common. The aim of the study is to present data on the occurrence of Anisakis spp. larvae in the viscera and flesh of M. merluccius. Consequently, the distribution and infection rates of different species of Anisakis in different sites (viscera, and dorsal and ventral fillets) were investigated in hake caught in the central Tyrrhenian Sea (FAO 37.1.3) and the NE Atlantic Ocean (FAO 27 IXa). A sample of N=65 fish individuals (length>26 cm) was examined parasitologically from each fishing ground. The fillets were examined using the pepsin digestion method. A large number (1310) of Anisakis specimens were identified by multilocus allozyme electrophoresis (MAE) and mtDNA cox2 sequence analysis; among these, 814 larvae corresponded to A. simplex (s. s.) and 476 to A. pegreffii. They were found to infect both the flesh and the viscera. The two species co-infected the same individual fish (both in the viscera and in the flesh) from the FAO 27 area, whereas only A. pegreffii was found in hake from the Tyrrhenian Sea. The average parasite burden of A. pegreffii in hake from the Tyrrhenian Sea was significantly lower to that observed from hake off the Atlantic coast of Spain, both in prevalence and in abundance. In addition, whereas no significant difference in overall prevalence values was recorded between the two Anisakis species in the viscera of the FAO 27 sample, significant differences were found in the abundance levels observed between these species in the flesh, with A. simplex (s. s.) exhibiting significantly higher levels than that observed for A. pegreffii (p<0.001). Given that the pathogenic role in relation to man is known for these two species of

  20. Velocity model of the crust and upper mantle at the southern margin of the East European Craton (Azov Sea-Crimea-Black Sea area), DOBRE-2 & DOBRE'99 transect

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaly; Janik, Tomasz; Stephenson, Randell; Gryn, Dmytro; Tolkunov, Anatoliy; Czuba, Wojciech; Środa, Piotr; Sydorenko, Grigoriy; Lysynchuk, Dmytro; Omelchenko, Victor; Grad, Marek; Guterch, Aleksander; Kolomiyets, Katerina; Thybo, Hans; Dannowski, Anke; Flűh, Ernst R.; Legostaeva, Olga

    2013-04-01

    The southern part of the eastern European continental landmass consists mainly of a thick platform of Vendian and younger sediments overlying Precambrian basement, part of the East European Craton (EEC). The Scythian Platform (SP) lies between the EEC and the (mainly Alpine) deformed belt running from Dobrudja (Romania) to Crimea (Ukraine) and the Greater Caucasus (Russia), along the northern margin of the Black Sea. Hard constraints on the Palaeozoic history on the SP are very sparse and little is known of its crustal structure in this area. The poster presents the seismic results of a multidisciplinary project that fills some of this gap. The project is called DOBRE-2 (as it forms a prolongation of the successful DOBRE project executed in 1999-2001). The main objectives of DOBRE-2 were to elucidate the deep-seated structure of the lithosphere and geodynamic setting of the shelf zones of the Azov and Black seas and the Crimean peninsula and to study the deep controls on the structure of basement and sedimentary cover. DOBRE-2 traverses a number of major faults and suture zones separating the EEC from the SP, the Crimean Mountains, and the Black Sea depression. Significant hydrocarbon reserves occur in the basins traversed by DOBRE-2. Deep seismic reflection profiling (30 second, Vibroseis) has been completed on a 100-km segment of the profile on the Azov massif (part of the Ukrainian Shield) as well as a 47-km segment in Crimea. These are complemented by refraction profiling on the shelf zones of the Azov (~53 km) and Black (~160 km) seas and coincident near-vertical (CDP) in the Black Sea, using a combination of onshore seismograph stations, ocean-bottom seismometers, onshore explosive energy sources (6 shot points), as well as ship-borne seismic acquisition. We present a 2-D seismic velocity model (Vp in the crust, depth to the Moho and depth to the intracrustal reflectors) along (~780 km) the DOBRE-2 & DOBRE'99 transect. Our model extends the model published

  1. Bay of Biscay and Northeast Atlantic Bathymetric map

    NASA Astrophysics Data System (ADS)

    Loubrieu, B.; Sibuet, J.; Monti, S.; Maze, J.

    2002-12-01

    The new bathymetric map of the Bay of Biscay and Northeast Atlantic ocean is based on all available conventional and multibeam data. It extends from the European coast to the mid-Atlantic ridge in longitude and from the Azores-Gibraltar fracture zone to 50°N in latitude. Grid spacing is one km. The map is in Mercator projection at a 1/2,400,000 scale. With respect to previously published maps, the detailed morphology of Eurasian and Iberian continental margins, a complete picture of the two fossil trajectories of the Bay of Biscay triple junction, which limit the western extension of the Bay of Biscay, and the precise location of the plate boundary between Eurasia and Iberia, which was active during the Tertiary, are now available. The Bay of Biscay and Northeast Atlantic opened simultaneously between chrons M0 (118 Ma) and 33o (80 Ma). A triple junction existed during that period. Fossil triple junctions trajectories on each of the three Eurasia (EU), Iberia (IB) and North America (NA) plates separate oceanic domains which were formed between the three plate pairs: IB/EU for the Bay of Biscay, EU/NA and IB/NA for the northern and southern portions of the Northeast Atlantic respectively. On each side of the fossil trajectories, rift directions formed between different plate pairs present different azimuths. The two eastern branches have been identified on the basis of available bathymetric, magnetic and seismic data. They are generally associated with a basement ridge whose bathymetric expression is clearly shown in their youngest parts. The intersections of these two fossil trajectories with the base of the continental margins are conjugate points before the opening of the Bay of Biscay, giving an independent constraint for plate reconstructions at M0 time. In addition, two topographic features of similar size, the Armorican and Coruna seamounts are tangential to the fossil trajectories, at about 200 km from the triple junction. They are interpreted as twin

  2. Modelling non-analogue elements of Pliocene North Atlantic warming

    NASA Astrophysics Data System (ADS)

    Hill, D. J.

    2013-12-01

    the North Atlantic, including the Barents Sea. North American and European rivers have changed course, due to the newly created marginal seas and glacial rerouting, potentially affecting the salinity balance in the North Atlantic. We present simulations using the Hadley Centre coupled atmosphere-ocean HadCM3 model to estimate the impact of these changes on Atlantic Meridional Overturning Circulation (AMOC) and SST in the North Atlantic. By applying palaeogeographic changes to the standard PlioMIP Experiment 2 simulation individually and as a whole, we show that these can produce North Atlantic SST changes of a similar magnitude to data-model discrepancies. Palaeoclimate model simulations can only reproduce global and regional climate accurately if the boundary conditions given to the model are sufficient to capture all the significant changes in climate processes and dynamics. Incorporation of other important boundary condition changes and proper quantification of the model uncertainties due to unknown boundary conditions could explain existing data-model mismatches in the Pliocene North Atlantic.

  3. Decadal changes in the link between El Niño and springtime North Atlantic oscillation and European-North African rainfall

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter; Ulbrich, Uwe; Marques, Filipa; Corte-Real, João

    2003-09-01

    The link between El Niño-southern oscillation (ENSO) variability in boreal winter (represented by the NIÑO3 index, i.e. East Pacific sea-surface temperature anomalies) and the large-scale circulation and weather conditions over Europe-northwest Africa in spring is explored, considering station reports of precipitation, sea-level pressure (SLP) anomalies and two North Atlantic oscillation (NAO) indices. It is found that these relations have undergone consistent and simultaneous changes in the 20th century. Three characteristic periods can be identified. During 1900-25 and 1962-87, positive NIÑO3 index values are associated with enhanced precipitation over central Europe and reduced rainfall in southern Europe and northern Africa. The ENSO influence on precipitation over Scotland and Norway is small. The rainfall anomalies can be explained from the advective and dynamical implications of a north-south dipole in SLP correlations (warm ENSO events followed by low pressure in northern Europe and high pressure over the Mediterranean Sea-North Africa). This dipole hardly projects on the commonly used NAO centres (Iceland and Azores/Gibraltar) and thus ENSO-NAO correlations are insignificant. During 1931-56 the NIÑO3 index reveals little influence on precipitation over the Iberian Peninsula and Morocco, but there are large negative correlations with precipitation over Scotland and Norway. This is related to an alteration of the NIÑO3-SLP correlation pattern, which implies high pressure over northern Europe and low pressure over central Europe after warm events, and thus a virtually inverted dipole with respect to the other two periods. The large westward extension of the dipole leads to a significant NAO-NIÑO3 correlation of r = -0.5. These alterations were accompanied by substantial large-scale circulation changes during the period 1931-56, as revealed by anomalously high pressure and dry conditions over central-western Europe, a change in precipitation

  4. An approach to the intercalibration of benthic ecological status assessment in the North Atlantic ecoregion, according to the European Water Framework Directive.

    PubMed

    Borja, Angel; Josefson, Alf B; Miles, Alison; Muxika, Iñigo; Olsgard, Frode; Phillips, Graham; Rodríguez, J Germán; Rygg, Brage

    2007-01-01

    The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of transitional and coastal waters; its final objective is to achieve at least 'good water status' for all waters, by 2015. The WFD requires Member States (MSs) to assess the Ecological Status (ES) of water bodies. This assessment will be based upon the status of the biological, hydromorphological and physico-chemical quality elements, by comparing data obtained from monitoring networks to reference (undisturbed) conditions, and then deriving an Ecological Quality Ratio (EQR). One of the biological quality elements to be considered is the benthic invertebrate component and some structural parameters (composition, diversity and disturbance-sensitive taxa) must be included in the ES assessment. Following these criteria, several approaches to benthic invertebrate assessment have been proposed by MSs. The WFD requires that these approaches are intercalibrated. This contribution describes the comparison of the different methodologies proposed by United Kingdom, Spain, Denmark and Norway. Results show a high consistency between the approaches, both with regard to determining the EQR and boundary settings for the ES.

  5. Assessment of contaminant concentrations in sediments, fish and mussels sampled from the North Atlantic and European regional seas within the ICON project.

    PubMed

    Robinson, Craig D; Webster, Lynda; Martínez-Gómez, Concepción; Burgeot, Thierry; Gubbins, Matthew J; Thain, John E; Vethaak, A Dick; McIntosh, Alistair D; Hylland, Ketil

    2017-03-01

    Understanding the status of contaminants in the marine environment is a requirement of European Union Directives and the Regional Seas Conventions, so that measures to reduce pollution can be identified and their efficacy assessed. The international ICON workshop (Hylland et al., in this issue) was developed in order to test an integrated approach to assessing both contaminant concentrations and their effects. This paper describes and assesses the concentrations of trace metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in sediments, mussels, and fish collected from estuarine, coastal and offshore waters from Iceland to the Mediterranean Sea. For organic contaminants, concentrations progressively increased from Iceland, to the offshore North Sea, to the coastal seas, and were highest in estuaries. Metals had a more complex distribution, reflecting local anthropogenic inputs, natural sources and hydrological conditions. Use of internationally recognised assessment criteria indicated that at no site were concentrations of all contaminants at background and that concentrations of some contaminants were of significant concern in all areas, except the central North Sea.

  6. Wave observation in the marginal ice zone with the TerraSAR-X satellite

    NASA Astrophysics Data System (ADS)

    Gebhardt, Claus; Bidlot, Jean-Raymond; Gemmrich, Johannes; Lehner, Susanne; Pleskachevsky, Andrey; Rosenthal, Wolfgang

    2016-07-01

    This article investigates the penetration of ocean waves into the marginal ice zone (MIZ), observed by satellite, and likewise provides a basis for the future cross-validation of respective models. To this end, synthetic aperture radar images from the TerraSAR-X satellite (TS-X) and numerical simulations of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used. The focus is an event of swell waves, developed during a storm passage in the Atlantic, penetrating deeply into the MIZ off the coast of Eastern Greenland in February 2013. The TS-X scene which is the basis for this investigation extends from the ice-free open ocean to solid ice. The variation of the peak wavelength is analysed and potential sources of variability are discussed. We find an increase in wavelength which is consistent with the spatial dispersion of deep water waves, even within the ice-covered region.

  7. Vitellogenin gene expression in the intertidal blenny Lipophrys pholis: a new sentinel species for estrogenic chemical pollution monitoring in the European Atlantic coast?

    PubMed

    Ferreira, F; Santos, M M; Castro, L Filipe C; Reis-Henriques, M A; Lima, D; Vieira, M N; Monteiro, N M

    2009-01-01

    The presence of estrogenic chemicals (ECs) in the aquatic environment is a growing problem. While most attention was initially given to fresh water and estuarine ecosystems, it is now evident that coastal marine areas are also vulnerable to these pollutants. The use of vitellogenin induction in male fish, a specific biomarker of EC exposure, has been the most widely applied methodology. However, in some occasions, the high mobility and migratory behaviour of common sentinel fish species makes data interpretation difficult. Hence, there is the need to validate new sentinel marine fish species which should display, among other features, a strong homing behaviour. The shanny, Lipophrys pholis, is an intertidal fish that combines many of the required characteristics for a sentinel species: abundance and easy of catch, wide geographical distribution and restricted home range. Thus, in order to evaluate, in the field, the species sensitivity to ECs, L. pholis males were collected at two sites reflecting different degrees of anthropogenic contamination. The vitellogenin II gene (VTGII) was isolated and its liver expression evaluated by RT-PCR in the field samples. A significant induction of gene expression was observed in the specimens collected in the urban area, if compared to the reference site, which suggests exposure to ECs. Moreover, a 21-days laboratory exposure to environmental relevant concentrations of ethinylestradiol (EE2) was also performed. A significant induction of L. pholis VTGII gene in EE2 exposed males was observed suggesting similar sensitivity to that of other marine/estuarine fishes. Even though further validation is currently in progress, the available data indicates that L. pholis is responsive to ECs, thus favouring its future integration in monitoring programmes designed to evaluate the presence of ECs in European marine ecosystems.

  8. New insights on shear margin gravitational evolution through time. The case of the equatorial margins

    NASA Astrophysics Data System (ADS)

    Loncke, L.; Basile, C.; Gaullier, V.; Maillard, A.; Patriat, M.; Sage, F.; Roest, W.

    2009-04-01

    30% of passive margins in the world correspond to shear margins. Unlike divergent margins, those margins present a very sharp ocean-continent boundary which is expressed by steep surface slopes and complex rift structures. In addition of tilted blocks, wrench and strike-slip faults frequently deform the continental crust. High marginal ridges, rising 1-3 km over the adjacent margin typically form along the continental side of the margin. The best known example of transform margin is the Côte d'Ivoire-Ghana margin, highly investigated in the 1980's. New observations along the French-Guiana shear margin (GUYAPLAC survey, 2003) have evidenced massive early (immediately after rifting) and late collapses of the margin. These collapses concern huge volumes: remobilized masses that reach nearly 15000 km3 have been identified in the abyssal plain. No marginal ridge has been observed there. These observations have been compared to results published for the Surinam prolongation of this shear segment (Gouyet, 1988; Erbacher et al., 2004). There also, collapses and slope instabilities are evident, though part of a marginal ridge remains present. Finally, published data from the western Côte d'Ivoire transform margin (De Caprona, 1992) show wide collapses, some deep-seated, and other shallow. Sinking of entire parts of shear margins by gravity collapses appears thus rather common. These observations show that the post-rift gravity collapse of shear margins has been largely underestimated, and has even not been considered in evolutional models of transform margins, despite the fact this has important implications on the geometry and balance of those margins. On the basis of these observations, we propose a tentative scenario for the equatorial Atlantic shear margin gravitational evolution. References: Gouyet, S., 1988. Evolution tectono-sédimentaire des marges guyannaise et Nord-Brésilienne au cours de l'ouverture de l'Atlantique Sud. PhD Thesis, univ Pau et des pays de l

  9. The atlantic salmon: Genetics, conservation and management

    USGS Publications Warehouse

    Verspoor, Eric; Stradmeyer, Lee; Nielsen, Jennifer L.

    2007-01-01

    Atlantic Salmon is a cultural icon throughout its North Atlantic range; it is the focus of probably the World’s highest profile recreational fishery and is the basis for one of the World’s largest aquaculture industries. Despite this, many wild stocks of salmon are in decline and underpinning this is a dearth of information on the nature and extent of population structuring and adaptive population differentiation, and its implications for species conservation.This important new book will go a long way to rectify this situation by providing a thorough review of the genetics of Atlantic salmon. Sponsored by the European Union and the Atlantic Salmon Trust, this book comprises the work of an international team of scientists, carefully integrated and edited to provide a landmark book of vital interest to all those working with Atlantic salmon.

  10. BRITICE-CHRONO and GLANAM: new exciting developments in the study of circum-North Atlantic ice sheets

    NASA Astrophysics Data System (ADS)

    Benetti, Sara; Clark, Chris D.; Petter Serjup, Hans

    2013-04-01

    This talk will present two newly funded projects on the reconstruction of former marine-based ice sheets bordering the North Atlantic Ocean and their effects on the surrounding continental margins. The NERC-funded BRITICE-CHRONO started in October 2012 and its consortium involves scientists from all over the UK with partners in Ireland, Canada and Norway. It aims to carry out a systematic campaign to collect and date material to constrain the timing and rates of change of the collapse of the former British-Irish Ice Sheet. This will be achieved by focussing on eight transects running from the shelf edge to a short distance onshore and acquiring marine and terrestrial samples for geochronometric dating. The sampling will be accomplished by two research cruises and eight fieldwork campaigns around UK and Ireland. The project will result in the world's best empirical reconstruction of a shrinking ice sheet, for use in improving ice sheet models, and to provide the long term context against which contemporary observations can be assessed. The FP7-funded Marie Curie Initial Training Networks GLANAM (Glaciated North Atlantic Margins) will start in April 2013 and aims at improving the career prospects and development of young researchers in both the public and private sector within the field of earth science, focusing specifically on North Atlantic glaciated margins. The training network comprises ten partner institutions, both academic and industrial, from Norway, UK and Denmark and will train eleven PhD and four postdoctoral researchers. The young scientists will perform multi-disciplinary research and receive training through three interconnected workpackages that collectively address knowledge gaps related to the glacial sedimentary depocentres on the North Atlantic margins. Filling these gaps will not only result in major new insights regarding glacial processes on continental margins in general, but critically will have particular impact on the exploitation of

  11. Comparative assessment of endocrine modulators with oestrogenic activity: I. Definition of a hygiene-based margin of safety (HBMOS) for xeno-oestrogens against the background of European developments.

    PubMed

    Bolt, H M; Janning, P; Michna, H; Degen, G H

    2001-01-01

    A novel concept - the hygiene-based margin of safety (HBMOS) - is suggested for the assessment of the impact of potential endocrine modulators. It integrates exposure scenarios and potency data for industrial chemicals and naturally occurring dietary compounds with oestrogenic activity. An HBMOS is defined as a quotient of estimated daily intakes weighted by the relative in vivo potencies of these compounds. The Existing Chemicals Programme of the European Union provides Human and Environmental Risk Assessments of Existing Chemicals which include human exposure scenarios. Such exposure scenarios, along with potency estimates for endocrine activities, may provide a basis for a quantitative comparison of the potential endocrine-modulating effects of industrial chemicals with endocrine modulators as natural constituents of human diet. Natural phyto-oestrogens exhibit oestrogenic activity in vitro and in vivo. Important phyto-oestrogens for humans are isoflavones (daidzein, genistein) and lignans, with the highest quantities found in soybeans and flaxseed, respectively. Daily isoflavone exposures calculated for infants on soy-based formulae were in the ranges of 4.5-8 mg/kg body wt.; estimates for adults range up to 1 mg/kg body wt. The Senate Commission on the Evaluation of Food Safety (SKLM) of the Deutsche Forschungsgemeinschaft has also indicated a wide range of dietary exposures. For matters of risk assessment, the SKLM has based recommendations on dietary exposure scenarios, implying a daily intake of phyto-oestrogens in the order of 1 mg/kg body wt. On the basis of information compiled within the Existing Chemicals Programme of the EU, it appears that a daily human exposure to nonylphenol of 2 microg/kg body wt. may be a worst-case assumption, but which is based on valid scenarios. The intake of octylphenol is much lower, due to a different use pattern and applications, and may be neglected. Data from migration studies led to estimations of the daily human

  12. Zooplankton data report: the Marginal Ice Zone Experiment MIZEX, 1984

    SciTech Connect

    Smith, S.L.; Lane, P.V.Z.; Schwarting, E.M.

    1986-03-01

    The Marginal Ice Zone Experiment (MIZEX 84) concentrated on atmospheric, oceanic, and ice interactions in the Fram Strait region of the Greenland Sea, specifically the effect of the retreating ice margin on the productivity in the area and the use of zooplanktonic species as indicators of Arctic and North Atlantic water masses. The data in this report are the quantitative analyses of zooplankton collected while aboard the research vessel Polarstern.

  13. Dynamic variability of dissolved Pb and Pb isotope composition from the U.S. North Atlantic GEOTRACES transect

    NASA Astrophysics Data System (ADS)

    Noble, Abigail E.; Echegoyen-Sanz, Yolanda; Boyle, Edward A.; Ohnemus, Daniel C.; Lam, Phoebe J.; Kayser, Rick; Reuer, Matt; Wu, Jingfeng; Smethie, William

    2015-06-01

    United States historically tend to carry 206Pb/207Pb signatures >1.17 (Hurst, 2002), subsurface signatures as low as 1.1563 in 206Pb/207Pb were observed in this feature. This signature appears to be carried westward within saline Subtropical Underwater (STUW), that ventilates from the Central Eastern part of the North Atlantic Subtropical Gyre where the lowest surface isotope 206Pb/207Pb ratios are observed. Along the western boundary, deep water masses of different ages carry distinct isotope ratios corresponding to their respective times of ventilation. Finally, a low 206Pb/207Pb signature in bottom water along the Eastern margin suggests that there may be some mobilization of European-derived anthropogenic Pb from recent surface deposits on the ocean floor.

  14. The basins on the Argentine continental margin

    SciTech Connect

    Urien, C.M.

    1996-08-01

    After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

  15. Magnetic and bathymetric data from R/V FARNELLA cruises FRNL87-1, 87-2, 87-3, 87-4 and 87-5 in the U.S. Atlantic Margin EEZ, southern Blake Escarpment, and Nova Scotia continental rise

    USGS Publications Warehouse

    Lubinski, David J.; Hughes-Clarke, John; Dillon, William P.; O'Leary, Dennis W.; Popenoe, Peter; Robb, James M.; Schmuck, Eric A.

    1990-01-01

    During the winter and spring of 1987, the U.S. Geological Survey, in cooperation with the Institute of Oceanographic Sciences of the United Kingdom, collected approximately 31,350 line kilometers (km) of magnetic data and approximately 32,280 line km of bathymetric data in the U.S. Atlantic Margin Exclusive Economic Zone (EEZ), Southern Blake Escarpment, and Nova Scotia Rise (Fig. 1). Collected simultaneously with the magnetic and bathymetric data was a suite of geophysical data. These geophysical datasets will be released at a later date and include GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar digital image data, 3.5 kilohertz (kHz) high-resolution sub-bottom profiler records, 10 kHz bottom profiler records from which bathymetric data were derived, and two channel seismic-reflection profiles. Survey line spacing was about 25 km in water depths exceeding 3,000 meters (m) and gradually decreased to less than 5 km in 200 m water depths. No areas were surveyed with depths shallower than 200 m. Orientation of the tracklines varies with respect to the trend of the bathymetric contours for each of the five legs (Fig.l).

  16. Geology of Atlantic Coastal Plain

    SciTech Connect

    Olsson, R.K.; Gohn, G.S.

    1985-01-01

    The Atlantic Coastal Plain developed landward of a hinge zone on slowly subsiding continental crust during the postrift phase of the opening of the Atlantic Ocean. Generally, a wedge of marine and non-marine sediments reaches 2000m thickness near the Atlantic Coastline. Variations in deposition along strike in the coastal plain was controlled by tectonic movement of basins and structural highs which from north to south include the Raritan Embayment, South New Jersey High, Chesapeake-Delaware Basin, Norfolk Arch, Albemarle Embayment, Cape Fear Arch, Southeast Georgia Embayment and South Florida Basin. Postrift sedimentation was initiated during late Jurassic and early Cretaceous time adjacent to the faulted hinge zone which separates thicker unstretched continental crust beneath the coastal plain from thinner stretched crust beneath the outer Atlantic margin. Continental clastic and deltaic sediments were deposited in onlapping sequence from Long Island to northern Florida. During this time carbonate deposition was initiated in the South Florida Basin. Marine deposition of terrigenous sands, silts and clays occurred along the coastal plain in late Cenomanian time. Shallow carbonate deposition continued in Florida. Transgressive and regressive marine deposition was dominant in the coastal plain during late Cretaceous and Paleogene time. Deposition during the Neogene was affected by numerous changes in sea level and consequently it is stratigraphically incomplete and irregularly distributed. Many units lack precise biostratigraphic resolution.

  17. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto

    PubMed Central

    Castillo-Ramírez, S.; Fingerle, V.; Jungnick, S.; Straubinger, R. K.; Krebs, S.; Blum, H.; Meinel, D. M.; Hofmann, H.; Guertler, P.; Sing, A.; Margos, G.

    2016-01-01

    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s.s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgr