Science.gov

Sample records for european software engineering

  1. Software engineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan

    1993-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.

  2. European Software Engineering Process Group Conference (2nd Annual), EUROPEAN SEPG󈨥. Delegate Material, Tutorials

    DTIC Science & Technology

    1997-06-17

    improvements European SEPG 1997 - Measurement Symposium [-chumer ier i Schtumberger Retail Petroleum Systems e Capture definitions, assumptions and 0 models ...Yellow Technology 񓃅 systems , 13,000 modules, I5MLOC "Analysis took 10 people 3 months "*The total estimate is 150 to 200 programmer years c • S...fml7 e Mt~ e .. , ~ Th. Ye A ’• P Some Examples - 2 A Cap Gemini study of 3 organizations *financial services -40 systems -6.5 MLOC -89,535 dates to

  3. Software Engineering Guidebook

    NASA Technical Reports Server (NTRS)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  4. Software Engineering Improvement Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  5. Software Engineering for Portability.

    ERIC Educational Resources Information Center

    Stanchev, Ivan

    1990-01-01

    Discussion of the portability of educational software focuses on the software design and development process. Topics discussed include levels of portability; the user-computer dialog; software engineering principles; design techniques for student performance records; techniques of courseware programing; and suggestions for further research and…

  6. Proceedings of the European Seminar on Industrial Software Engineering (2nd) Held in Freiburg (Germany, F.R.) on 9-10 May 1985,

    DTIC Science & Technology

    1985-05-10

    ACCESS TO INDIVIDUALLY AUTHORED SECTIONS OF PROCEEDING, ANNALS, SYMPOSIA, ETC. HOWEVER, THE COMPONENT SHOULD BE CONSIDERED WITHIN THE CONTEXT OF THE...REPORT SECURITY CLASSIFICATIONl b. RESTRICTIVE MARKINGS.. J/-, Unclassified WI4" . J/ IS’r 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION...Classification) (U) Proceedings of the Second European Seminar on Industrial Software Engineering 12. PERSONAL AUTHOR (S)IA. Ba zert .M . Jackson, P

  7. Unified Engineering Software System

    NASA Technical Reports Server (NTRS)

    Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.

    1989-01-01

    Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.

  8. Statistical Software Engineering

    DTIC Science & Technology

    2007-11-02

    engineers, scientists, and statisticians The most important findings are: What is needed to address the challenge of cost- effectively building huge...MOST IMPORTANT RESULTS What is needed to address the challenge of cost- effectively building huge high- quality software systems is productive...information across software engineering projects as a means of evaluating effects of technology, language, organization, and process. CONTENTS OF THIS REPORT

  9. Software engineering ethics

    NASA Technical Reports Server (NTRS)

    Bown, Rodney L.

    1991-01-01

    Software engineering ethics is reviewed. The following subject areas are covered: lack of a system viewpoint; arrogance of PC DOS software vendors; violation od upward compatibility; internet worm; internet worm revisited; student cheating and company hiring interviews; computing practitioners and the commodity market; new projects and old programming languages; schedule and budget; and recent public domain comments.

  10. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1988-01-01

    The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.

  11. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  12. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 15

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  13. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 14

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  14. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 13

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  15. Software Engineering Education Directory

    DTIC Science & Technology

    1990-04-01

    Science Bowling Green, 094 43402 Degrees: BS CS, MS CS Contact: Dr. Barbee Mynatt Associate Professor (419) 372-2339 Update: November 1967 * MUSE RO-R4...Projpc Gumdance by Mynatt , Barb.. Tools: Teamwork, Prototyper VAX Station, IBM PC/AT Vourdon notation Software Engineering (584) Codes: GPEB5 Human Fators

  16. Software Engineering Education Directory

    DTIC Science & Technology

    1988-01-01

    technical information exchange. Review and Approval This report has been reviewed and is approved for publication. FOR THE COMMANDER Daniel Burton...Metrics and Models by Conte, Samuel Daniel , Dunsmore, H.E., and Shen, V.Y. Compilers: SPSS Computers: Cyber Languages: SPSS Software...Engineering II CS 616 G P E Y 4 Textbooks: Handbook of Walkthroughs, Inspections, and Technical Reviews by Freedman, Daniel P. and Weinberg, Gerald M

  17. Software Engineering Principles.

    DTIC Science & Technology

    1980-07-01

    but many differences as well . ct goal: Develop a family of military message systems using 2nt software engineering principles :ovide useful product to...The hard copy could then be manually scanned , distributed, and logged. SMP would be useful in developing and testing MP. It would provide minimal...design decisions.t4 C. Alternative ways to develop the program 1. Start from scratch. 2. Start with Stage 3. Scan line by line and make required changes. 3

  18. Software engineering methodologies and tools

    NASA Technical Reports Server (NTRS)

    Wilcox, Lawrence M.

    1993-01-01

    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.

  19. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  20. Software Engineering Education Directory. Software Engineering Curriculum Project

    DTIC Science & Technology

    1991-05-01

    Programming Methodology (COINS 320) Codes: UPRT11 Textbooks: Software Engineering with Student Project Guidance by Mynatt 66 CMU/SEI-91-TR-9...Development (460) Codes: U P R T 0 Textbooks: Software Engineering with Student Project Guidance by Mynatt , Barbee Tools: C, COBOL, FORTRAN, Pascal IBM-PC...Software Engineering with Student Project Guidance by Mynatt , Barbee Tools: C, COBOL, FORTRAN, Pascal IBM-PC/XT/AT, IBM PS/2, Macintosh, Sun VAX

  1. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  2. Software productivity improvement through software engineering technology

    NASA Technical Reports Server (NTRS)

    Mcgarry, F. E.

    1985-01-01

    It has been estimated that NASA expends anywhere from 6 to 10 percent of its annual budget on the acquisition, implementation and maintenance of computer software. Although researchers have produced numerous software engineering approaches over the past 5-10 years; each claiming to be more effective than the other, there is very limited quantitative information verifying the measurable impact htat any of these technologies may have in a production environment. At NASA/GSFC, an extended research effort aimed at identifying and measuring software techniques that favorably impact productivity of software development, has been active over the past 8 years. Specific, measurable, software development technologies have been applied and measured in a production environment. Resulting software development approaches have been shown to be effective in both improving quality as well as productivity in this one environment.

  3. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  4. Theoretical Issues in Software Engineering.

    DTIC Science & Technology

    1982-09-01

    large software projects. It has been less successful in acquiring a solid theoretical foundation for these methods. The software development process...justification save practice that has evolved for large , concur- rently processed programs. Furthermore, each phase needs formal description and analysis. The...Abstract B Me discipline of software engineering has transferred the common-sense methods of good programing and management to large software projects. It

  5. An Engineering Context for Software Engineering

    DTIC Science & Technology

    2008-09-01

    from a database. Richard Fairley presents one of the definitions reminiscent of industrial engineering practice, ... the technological and...2002. [Fair85] Fairley , Richard, Software Engineering Concepts, McGraw-Hill, 1985. [Flo87] Florman, Samuel C., The Civilized Engineer, St. Martins

  6. SEI Software Engineering Education Directory.

    DTIC Science & Technology

    1987-02-01

    Systems: VAX-8600 Compiler Design CS 465 U P X T - Textbooks: Compiler Design Theory, Lewis , Rosenkrantz, Steams Systems: VAx-8600 Simulation Techniques...Corvallis, OR,- 97331 United States Degrees: BS, MS, PHD Contact: Prof. Lewis , Ted Professor (503) 754-3273 Courses: Software Design CS 319 U P R T...Software Engineering Laboratory CS247 B P E Y Systems: microcomputer (vanes) Stanford University (Entry 2); Terman Engineering Center; Department of

  7. Future of Software Engineering Standards

    NASA Technical Reports Server (NTRS)

    Poon, Peter T.

    1997-01-01

    In the new millennium, software engineering standards are expected to continue to influence the process of producing software-intensive systems which are cost-effetive and of high quality. These sytems may range from ground and flight systems used for planetary exploration to educational support systems used in schools as well as consumer-oriented systems.

  8. Computer systems and software engineering

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  9. Concurrent Software Engineering Project

    ERIC Educational Resources Information Center

    Stankovic, Nenad; Tillo, Tammam

    2009-01-01

    Concurrent engineering or overlapping activities is a business strategy for schedule compression on large development projects. Design parameters and tasks from every aspect of a product's development process and their interdependencies are overlapped and worked on in parallel. Concurrent engineering suffers from negative effects such as excessive…

  10. A Multidimensional Software Engineering Course

    ERIC Educational Resources Information Center

    Barzilay, O.; Hazzan, O.; Yehudai, A.

    2009-01-01

    Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…

  11. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  12. Software Engineering Education Directory

    DTIC Science & Technology

    1989-02-01

    the SEI were helpful in developing its attractive layout. We extend our thanks to them and all others who aided this effort. Norman E . Gibbs Director...Bachelor Degree (Other) CSED Computer Science Education CT Computer Technologies M Master Degree E Engineering MA Master of Arts EE Electrical...None X No information supplied Status: R E Required Elective B Both 0 Other X No information supplied Frequency: B Biennial Y T

  13. Collected software engineering papers, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics addressed include: summaries of the software engineering laboratory (SEL) organization, operation, and research activities; results of specific research projects in the areas of resource models and software measures; and strategies for data collection for software engineering research.

  14. Engine Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    McKnight, R. L.; Maffeo, R. J.; Schrantz, S.; Hartle, M. S.; Bechtel, G. S.; Lewis, K.; Ridgway, M.; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The report describes the technical effort to develop: (1) geometry recipes for nozzles, inlets, disks, frames, shafts, and ducts in finite element form, (2) component design tools for nozzles, inlets, disks, frames, shafts, and ducts which utilize the recipes and (3) an integrated design tool which combines the simulations of the nozzles, inlets, disks, frames, shafts, and ducts with the previously developed combustor, turbine blade, and turbine vane models for a total engine representation. These developments will be accomplished in cooperation and in conjunction with comparable efforts of NASA Glenn Research Center.

  15. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  16. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1993-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.

  17. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Groves, Paula; Valett, Jon

    1990-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.

  18. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  19. Software Engineering Process Group Guide

    DTIC Science & Technology

    1990-09-01

    unless there is a unifying influence applied. It is the job of the corporate (i.e., highest level) process group to track and harmonize the action...the realm of influence of the process group and its spon- sor need to be acknowledged and taken into account in planning, even when they cannot be...Technical Report CMU/SEI-90-TR-24 ESD-90-TR-225 Software Engineering Process Group Guide Priscilla Fowler Stan Rifkin September 1990 Technical Report

  20. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  1. Software Engineering Program: Software Process Improvement Guidebook

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The purpose of this document is to provide experience-based guidance in implementing a software process improvement program in any NASA software development or maintenance community. This guidebook details how to define, operate, and implement a working software process improvement program. It describes the concept of the software process improvement program and its basic organizational components. It then describes the structure, organization, and operation of the software process improvement program, illustrating all these concepts with specific NASA examples. The information presented in the document is derived from the experiences of several NASA software organizations, including the SEL, the SEAL, and the SORCE. Their experiences reflect many of the elements of software process improvement within NASA. This guidebook presents lessons learned in a form usable by anyone considering establishing a software process improvement program within his or her own environment. This guidebook attempts to balance general and detailed information. It provides material general enough to be usable by NASA organizations whose characteristics do not directly match those of the sources of the information and models presented herein. It also keeps the ideas sufficiently close to the sources of the practical experiences that have generated the models and information.

  2. Improving Software Engineering on NASA Projects

    NASA Technical Reports Server (NTRS)

    Crumbley, Tim; Kelly, John C.

    2010-01-01

    Software Engineering Initiative: Reduces risk of software failure -Increases mission safety. More predictable software cost estimates and delivery schedules. Smarter buyer of contracted out software. More defects found and removed earlier. Reduces duplication of efforts between projects. Increases ability to meet the challenges of evolving software technology.

  3. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Buhler, Melanie; Valett, Jon

    1989-01-01

    An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  4. Software engineering from a Langley perspective

    NASA Technical Reports Server (NTRS)

    Voigt, Susan

    1994-01-01

    A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.

  5. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Kistler, David; Bristow, John; Smith, Don

    1994-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  6. Software Engineering Laboratory Series: Proceedings of the Twenty-First Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  7. Software Engineering Laboratory Series: Proceedings of the Twenty-Second Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  8. Software Engineering Laboratory Series: Proceedings of the Twentieth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  9. Conducting SEI (Software Engineering Institute)-Assisted Software Process Assessments

    DTIC Science & Technology

    1989-02-01

    Agresti, W.W., "Applying Industrial Engineering to the Software Development Process," Proceedings, IEEE Fall COMPCON, Washington, DC: IEEE Com- puter...information. CMU/SEI-89-TR-7 1.2. Software Process Maturity Framework A software process maturity framework was developed by the SEI for two purposes : to pro...training. The purpose of this briefing is to give SEI team members a good understanding of the organization and the types of software it develops . Typical

  10. Ten recommendations for software engineering in research.

    PubMed

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  11. Requirements Engineering in Building Climate Science Software

    ERIC Educational Resources Information Center

    Batcheller, Archer L.

    2011-01-01

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…

  12. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 100 publications are summarized. These publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials are grouped into five general subject areas for easy reference: (1) the software engineering laboratory; (2) software tools; (3) models and measures; (4) technology evaluations; and (5) data collection. An index further classifies these documents by specific topic.

  13. Proceedings of the Seventeenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.

  14. Consolidated View on Space Software Engineering Problems - An Empirical Study

    NASA Astrophysics Data System (ADS)

    Silva, N.; Vieira, M.; Ricci, D.; Cotroneo, D.

    2015-09-01

    Independent software verification and validation (ISVV) has been a key process for engineering quality assessment for decades, and is considered in several international standards. The “European Space Agency (ESA) ISVV Guide” is used for the European Space market to drive the ISVV tasks and plans, and to select applicable tasks and techniques. Software artefacts have room for improvement due to the amount if issues found during ISVV tasks. This article presents the analysis of the results of a large set of ISVV issues originated from three different ESA missions-amounting to more than 1000 issues. The study presents the main types, triggers and impacts related to the ISVV issues found and sets the path for a global software engineering improvement based on the most common deficiencies identified for space projects.

  15. Software Engineering: A New Component for Instructional Software Development.

    ERIC Educational Resources Information Center

    Chen, J. Wey; Shen, Chung-Wei

    1989-01-01

    Discussion of software engineering for computer-based instruction (CBI) focuses on a model for instructional software development. Highlights include a multidisciplinary team approach; needs analysis; feasibility study; requirement analysis; prototype construction; design phase; implementation and development; testing and evaluation; and project…

  16. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  17. Implementing Large Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  18. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  19. Selection of software for mechanical engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Cheah, C. T.; Yin, C. S.; Halim, T.; Naser, J.; Blicblau, A. S.

    2016-07-01

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  20. Glossary of Software Engineering Laboratory terms

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A glossary of terms used in the Software Engineering Laboratory (SEL) is given. The terms are defined within the context of the software development environment for flight dynamics at the Goddard Space Flight Center. A concise reference for clarifying the language employed in SEL documents and data collection forms is given. Basic software engineering concepts are explained and standard definitions for use by SEL personnel are established.

  1. MOSS, an evaluation of software engineering techniques

    NASA Technical Reports Server (NTRS)

    Bounds, J. R.; Pruitt, J. L.

    1976-01-01

    An evaluation of the software engineering techniques used for the development of a Modular Operating System (MOSS) was described. MOSS is a general purpose real time operating system which was developed for the Concept Verification Test (CVT) program. Each of the software engineering techniques was described and evaluated based on the experience of the MOSS project. Recommendations for the use of these techniques on future software projects were also given.

  2. Software engineering and Ada in design

    NASA Technical Reports Server (NTRS)

    Oneill, Don

    1986-01-01

    Modern software engineering promises significant reductions in software costs and improvements in software quality. The Ada language is the focus for these software methodology and tool improvements. The IBM FSD approach, including the software engineering practices that guide the systematic design and development of software products and the management of the software process are examined. The revised Ada design language adaptation is revealed. This four level design methodology is detailed including the purpose of each level, the management strategy that integrates the software design activity with the program milestones, and the technical strategy that maps the Ada constructs to each level of design. A complete description of each design level is provided along with specific design language recording guidelines for each level. Finally, some testimony is offered on education, tools, architecture, and metrics resulting from project use of the four level Ada design language adaptation.

  3. Collected Software Engineering Papers, Volume 10

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from Oct. 1991 - Nov. 1992. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document. For the convenience of this presentation, the 11 papers contained here are grouped into 5 major sections: (1) the Software Engineering Laboratory; (2) software tools studies; (3) software models studies; (4) software measurement studies; and (5) Ada technology studies.

  4. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  5. The Software Engineering Laboratory: An operational software experience factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon

    1992-01-01

    For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.

  6. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  7. Software-Engineering Process Simulation (SEPS) model

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  8. Software process improvement in the NASA software engineering laboratory

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  9. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  10. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  11. An Ontology for Software Engineering Education

    ERIC Educational Resources Information Center

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  12. Glossary of software engineering laboratory terms

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A glossary of terms used in the Software Engineering Laboratory (SEL) is presented. The terms are defined within the context of the software development environment for flight dynamics at Goddard Space Flight Center. A concise reference for clarifying and understanding the language employed in SEL documents and data collection forms is provided.

  13. Design of software engineering teaching website

    NASA Astrophysics Data System (ADS)

    Li, Yuxiang; Liu, Xin; Zhang, Guangbin; Liu, Xingshun; Gao, Zhenbo

    "􀀶oftware engineering" is different from the general professional courses, it is born for getting rid of the software crisis and adapting to the development of software industry, it is a theory course, especially a practical course. However, due to the own characteristics of software engineering curriculum, in the daily teaching process, concerning theoretical study, students may feel boring, obtain low interest in learning and poor test results and other problems. ASPNET design technique is adopted and Access 2007 database is used for system to design and realize "Software Engineering" teaching website. System features mainly include theoretical teaching, case teaching, practical teaching, teaching interaction, database, test item bank, announcement, etc., which can enhance the vitality, interest and dynamic role of learning.

  14. Collected software engineering papers, volume 8

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period November 1989 through October 1990 is presented. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography. The seven presented papers are grouped into four major categories: (1) experimental research and evaluation of software measurement; (2) studies on models for software reuse; (3) a software tool evaluation; and (4) Ada technology and studies in the areas of reuse and specification.

  15. Collected software engineering papers, volume 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1990 through October 1991. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the ninth such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. For the convenience of this presentation, the eight papers contained here are grouped into three major categories: (1) software models studies; (2) software measurement studies; and (3) Ada technology studies. The first category presents studies on reuse models, including a software reuse model applied to maintenance and a model for an organization to support software reuse. The second category includes experimental research methods and software measurement techniques. The third category presents object-oriented approaches using Ada and object-oriented features proposed for Ada. The SEL is actively working to understand and improve the software development process at GSFC.

  16. Advances in knowledge-based software engineering

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt

    1991-01-01

    The underlying hypothesis of this work is that a rigorous and comprehensive software reuse methodology can bring about a more effective and efficient utilization of constrained resources in the development of large-scale software systems by both government and industry. It is also believed that correct use of this type of software engineering methodology can significantly contribute to the higher levels of reliability that will be required of future operational systems. An overview and discussion of current research in the development and application of two systems that support a rigorous reuse paradigm are presented: the Knowledge-Based Software Engineering Environment (KBSEE) and the Knowledge Acquisition fo the Preservation of Tradeoffs and Underlying Rationales (KAPTUR) systems. Emphasis is on a presentation of operational scenarios which highlight the major functional capabilities of the two systems.

  17. Diversification and Challenges of Software Engineering Standards

    NASA Technical Reports Server (NTRS)

    Poon, Peter T.

    1994-01-01

    The author poses certain questions in this paper: 'In the future, should there be just one software engineering standards set? If so, how can we work towards that goal? What are the challenges of internationalizing standards?' Based on the author's personal view, the statement of his position is as follows: 'There should NOT be just one set of software engineering standards in the future. At the same time, there should NOT be the proliferation of standards, and the number of sets of standards should be kept to a minimum.It is important to understand the diversification of the areas which are spanned by the software engineering standards.' The author goes on to describe the diversification of processes, the diversification in the national and international character of standards organizations, the diversification of the professional organizations producing standards, the diversification of the types of businesses and industries, and the challenges of internationalizing standards.

  18. Automated software engineering planning with SASEA

    SciTech Connect

    Lawlis, P.K.; Hoffman, C.L.

    1998-07-01

    Planning for effective software engineering is not easy, and software project managers would usually welcome assistance in this area. Very effective assistance could be provided by automated tools that are decision aids. However, a comprehensive suite of such tools does not yet exist. One area that has been addressed is the selection of a programming language. This paper discusses in detail a decision tool that has been developed for language selection. It also addresses the areas in which other such tools are required.

  19. Software And Systems Engineering Risk Management

    DTIC Science & Technology

    2010-04-01

    Management System ISO 9000 Quality Management Vocabulary Environment ISO TC 207 ISO 14001 Environmental Management System IT Security JTC1/SC22 IS 27005...Software & Systems Engineering Standards Committee, IEEE Computer Society US TAG to ISO TMB Risk Management Working Group Systems and Software...guidelines • Risk management — Vocabulary • Risk management — Risk Assessment 4 Changed Risk definition Published RSKM Vocabulary, ISO Guide 73 2002

  20. Repository-based software engineering program

    NASA Technical Reports Server (NTRS)

    Wilson, James

    1992-01-01

    The activities performed during September 1992 in support of Tasks 01 and 02 of the Repository-Based Software Engineering Program are outlined. The recommendations and implementation strategy defined at the September 9-10 meeting of the Reuse Acquisition Action Team (RAAT) are attached along with the viewgraphs and reference information presented at the Institute for Defense Analyses brief on legal and patent issues related to software reuse.

  1. Software engineering and the role of Ada: Executive seminar

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1987-01-01

    The objective was to introduce the basic terminology and concepts of software engineering and Ada. The life cycle model is reviewed. The application of the goals and principles of software engineering is applied. An introductory understanding of the features of the Ada language is gained. Topics addressed include: the software crises; the mandate of the Space Station Program; software life cycle model; software engineering; and Ada under the software engineering umbrella.

  2. Some Future Software Engineering Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Boehm, Barry

    This paper provides an update and extension of a 2006 paper, “Some Future Trends and Implications for Systems and Software Engineering Processes,” Systems Engineering, Spring 2006. Some of its challenges and opportunities are similar, such as the need to simultaneously achieve high levels of both agility and assurance. Others have emerged as increasingly important, such as the challenges of dealing with ultralarge volumes of data, with multicore chips, and with software as a service. The paper is organized around eight relatively surprise-free trends and two “wild cards” whose trends and implications are harder to foresee. The eight surprise-free trends are:

  3. The Research of Software Engineering Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Kuang, Li-Qun; Han, Xie

    With the problem that software engineering training can't meet the needs of the community, this paper analysis some outstanding reasons in software engineering curriculum teaching, such as old teaching contents, weak in practice and low quality of teachers etc. We propose the methods of teaching reform as guided by market demand, update the teaching content, optimize the teaching methods, reform the teaching practice, strengthen the teacher-student exchange and promote teachers and students together. We carried out the reform and explore positive and achieved the desired results.

  4. Collected software engineering papers, volume 12

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1993 through October 1994. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the 12th such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document.

  5. Collected software engineering papers, volume 11

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1992 through November 1993. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the 11th such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document.

  6. DEASEL: An expert system for software engineering

    NASA Technical Reports Server (NTRS)

    Valett, J. D.; Raskin, A.

    1985-01-01

    For the past ten year, the Software Engineering Laboratory (SEL) has been collecting data on software projects carried out in the Systems Development Branch of the Flight Dynamics Division at NASA's Goddard Space Flight Center. Through a series of studies using this data, much knowledge has been gained on how software is developed within this environment. Two years ago work began on a software tool which would make this knowledge readily available to software managers. Ideally, the Dynamic Management Information Tool (DynaMITe) will aid managers in comparison across projects, prediction of a project's future, and assessment of a project's current state. This paper describes an effort to create the assessment portion of DynaMITe, called the DynaMITe Expert Advisor for the SEL (DEASEL).

  7. Requirements Engineering for Software Integrity and Safety

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G.

    2002-01-01

    Requirements flaws are the most common cause of errors and software-related accidents in operational software. Most aerospace firms list requirements as one of their most important outstanding software development problems and all of the recent, NASA spacecraft losses related to software (including the highly publicized Mars Program failures) can be traced to requirements flaws. In light of these facts, it is surprising that relatively little research is devoted to requirements in contrast with other software engineering topics. The research proposed built on our previous work. including both criteria for determining whether a requirements specification is acceptably complete and a new approach to structuring system specifications called Intent Specifications. This grant was to fund basic research on how these ideas could be extended to leverage innovative approaches to the problems of (1) reducing the impact of changing requirements, (2) finding requirements specification flaws early through formal and informal analysis, and (3) avoiding common flaws entirely through appropriate requirements specification language design.

  8. Proceedings of the Thirteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.

  9. Software Development for EECU Platform of Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk

    2017-04-01

    The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.

  10. Engineering software development with HyperCard

    NASA Technical Reports Server (NTRS)

    Darko, Robert J.

    1990-01-01

    The successful and unsuccessful techniques used in the development of software using HyperCard are described. The viability of the HyperCard for engineering is evaluated and the future use of HyperCard by this particular group of developers is discussed.

  11. Value Engineering: An Application to Computer Software

    DTIC Science & Technology

    1995-06-01

    of Value Engineering to a software development process. Purchasing agents for the State of New Mexico were tasked to reduce the amount of wailing costs...of VE in sortware acquisitionfdevelopment (ie. educacion , award programs, designate Govt. savings for use in 77 generating additional savings

  12. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  13. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  14. Collected software engineering papers, volume 7

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A collection is presented of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period Dec. 1988 to Oct. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the seven papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.

  15. Collected software engineering papers, volume 6

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A collection is presented of technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period 1 Jun. 1987 to 1 Jan. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the twelve papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.

  16. Parallelization of Rocket Engine System Software (Press)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  17. What's Happening in the Software Engineering Laboratory?

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Green, Scott; Smith, Donald

    1995-01-01

    Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.

  18. Requirements Engineering in Building Climate Science Software

    NASA Astrophysics Data System (ADS)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the

  19. Domain and Specification Models for Software Engineering

    NASA Technical Reports Server (NTRS)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui

    1992-01-01

    This paper discusses our approach to representing application domain knowledge for specific software engineering tasks. Application domain knowledge is embodied in a domain model. Domain models are used to assist in the creation of specification models. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model. One aspect of the system-hierarchical organization is described in detail.

  20. Data systems and computer science: Software Engineering Program

    NASA Technical Reports Server (NTRS)

    Zygielbaum, Arthur I.

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.

  1. Impact of knowledge-based software engineering on aerospace systems

    NASA Technical Reports Server (NTRS)

    Peyton, Liem; Gersh, Mark A.; Swietek, Gregg

    1991-01-01

    The emergence of knowledge engineering as a software technology will dramatically alter the use of software by expanding application areas across a wide spectrum of industries. The engineering and management of large aerospace software systems could benefit from a knowledge engineering approach. An understanding of this technology can potentially make significant improvements to the current practice of software engineering, and provide new insights into future development and support practices.

  2. Proceedings of the Eighth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The four major topics of discussion included: the NASA Software Engineering Laboratory, software testing, human factors in software engineering and software quality assessment. As in the past years, there were 12 position papers presented (3 for each topic) followed by questions and very heavy participation by the general audience.

  3. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel; Morasca, Sandro; Basili, Victor R.

    1995-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysis, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact, and rigorous, because it is based on precise mathematical concepts. This framework defines several important measurement concepts (size, length, complexity, cohesion, coupling). It is not intended to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalism and properties we introduce are convenient and intuitive. In addition, we have reviewed the literature on this subject and compared it with our work. This framework contributes constructively to a firmer theoretical ground of software measurement.

  4. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Morasca, Sandro; Basili, Victor R.

    1997-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts, regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysts, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalisms and properties we introduce are convenient and intuitive. This framework contributes constructively to a firmer theoretical ground of software measurement.

  5. Proceedings of the Ninth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experiences in measurement, utilization, and evaluation of software methodologies, models, and tools are discussed. NASA's involvement in ever larger and more complex systems, like the space station project, provides a motive for the support of software engineering research and the exchange of ideas in such forums. The topics of current SEL research are software error studies, experiments with software development, and software tools.

  6. Software for Collaborative Engineering of Launch Rockets

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  7. Software Engineering Laboratory (SEL) cleanroom process model

    NASA Technical Reports Server (NTRS)

    Green, Scott; Basili, Victor; Godfrey, Sally; Mcgarry, Frank; Pajerski, Rose; Waligora, Sharon

    1991-01-01

    The Software Engineering Laboratory (SEL) cleanroom process model is described. The term 'cleanroom' originates in the integrated circuit (IC) production process, where IC's are assembled in dust free 'clean rooms' to prevent the destructive effects of dust. When applying the clean room methodology to the development of software systems, the primary focus is on software defect prevention rather than defect removal. The model is based on data and analysis from previous cleanroom efforts within the SEL and is tailored to serve as a guideline in applying the methodology to future production software efforts. The phases that are part of the process model life cycle from the delivery of requirements to the start of acceptance testing are described. For each defined phase, a set of specific activities is discussed, and the appropriate data flow is described. Pertinent managerial issues, key similarities and differences between the SEL's cleanroom process model and the standard development approach used on SEL projects, and significant lessons learned from prior cleanroom projects are presented. It is intended that the process model described here will be further tailored as additional SEL cleanroom projects are analyzed.

  8. Presenting the Shuttle Main Engine Software

    NASA Technical Reports Server (NTRS)

    Schreur, Barbara

    1998-01-01

    Originally, this project was to produce an animated Powerpoint presentation of the 'Shuttle Engine and its Software' and to produce a web page with animation including the same materials but with greater detail in the description of the software. The principal emphasis was to be on the web page. Midway through the first year of the project, we were advised by the technical coordinator of this work at MSFC to concentrate on the web page alone. Also, the project was expanded to include a web presentation of the MRECS (Modular Rocket Control System). For the SSME project, the web page presentation has been completed. The integration of the animation into the web page is complete although we have been asked to speed up the animation. Also, the addition of greater detail to the description of the SSME controller software has been added. Much of the work on this program was done by students as their task for their senior project course, the capstone course of their program of study. The students gained a great deal from this project. They have learned to use VISIO, POWERPOINT, PHOTOSHOP, and several web page software packages. The starting point for this project was a PowerPoint presentation by the PI while on a Summer Faculty Fellowship at MSFC. For this project, about half of the drawings of the SSME were improved and about half were completely redrawn. The original still drawings have been animated to illustrate the fuel flow through the SSME system.

  9. Training Engineers of Joint Programs for the European Aerospace Industry.

    ERIC Educational Resources Information Center

    Thomas, Jurgen

    1985-01-01

    Examines topics and issues related to training engineers of joint programs for the European aerospace industry. Forms of cooperation, European educational systems, and skills needed to successfully work as an engineer in a joint program for the European aircraft industry are the major areas addressed. (JN)

  10. Human-Centered Software Engineering: Software Engineering Architectures, Patterns, and Sodels for Human Computer Interaction

    NASA Astrophysics Data System (ADS)

    Seffah, Ahmed; Vanderdonckt, Jean; Desmarais, Michel C.

    The Computer-Human Interaction and Software Engineering (CHISE) series of edited volumes originated from a number of workshops and discussions over the latest research and developments in the field of Human Computer Interaction (HCI) and Software Engineering (SE) integration, convergence and cross-pollination. A first volume in this series (CHISE Volume I - Human-Centered Software Engineering: Integrating Usability in the Development Lifecycle) aims at bridging the gap between the field of SE and HCI, and addresses specifically the concerns of integrating usability and user-centered systems design methods and tools into the software development lifecycle and practices. This has been done by defining techniques, tools and practices that can fit into the entire software engineering lifecycle as well as by defining ways of addressing the knowledge and skills needed, and the attitudes and basic values that a user-centered development methodology requires. The first volume has been edited as Vol. 8 in the Springer HCI Series (Seffah, Gulliksen and Desmarais, 2005).

  11. Grid generation software engineering at Los Alamos

    SciTech Connect

    Clark, G.L.; Ankeny, L.A.

    1988-01-01

    We have collected and re-engineered a small library of computer codes for general-purpose grid generation in one-, two-, and three-dimensional domains. The design intent was to produce easy-to-use general purpose codes that are portable to as many different hardware and software environments as practical, that are consistent in programming style and user interface, and that cover a gamut of applications. The paper describes some of the features of the codes, emphasizing the perspective of the potential user or programmer, rather than that of the researcher interested in mathematical techniques. 7 refs., 3 figs.

  12. Software Engineering and Swarm-Based Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  13. Software Engineering Tools for Scientific Models

    NASA Technical Reports Server (NTRS)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  14. Epistemology, software engineering and formal methods

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    1994-01-01

    One of the most basic questions anyone can ask is, 'How do I know that what I think I know is true?' The study of this question is called epistemology. Traditionally, epistemology has been considered to be of legitimate interest only to philosophers, theologians, and three year old children who respond to every statement by asking, 'Why?' Software engineers need to be interested in the subject, however, because a lack of sufficient understanding of epistemology contributes to many of the current problems in the field.

  15. Can your software engineer program your PLC?

    NASA Astrophysics Data System (ADS)

    Borrowman, Alastair J.; Taylor, Philip

    2016-07-01

    The use of Programmable Logic Controllers (PLCs) in the control of large physics experiments is ubiquitous1, 2, 3. The programming of these controllers is normally the domain of engineers with a background in electronics, this paper introduces PLC program development from the software engineer's perspective. PLC programs provide the link between control software running on PC architecture systems and physical hardware controlled and monitored by digital and analog signals. The higher-level software running on the PC is typically responsible for accepting operator input and from this deciding when and how hardware connected to the PLC is controlled. The PLC accepts demands from the PC, considers the current state of its connected hardware and if correct to do so (based upon interlocks or other constraints) adjusts its hardware output signals appropriately for the PC's demands. A published ICD (Interface Control Document) defines the PLC memory locations available to be written and read by the PC to control and monitor the hardware. Historically the method of programming PLCs has been ladder diagrams that closely resemble circuit diagrams, however, PLC manufacturers nowadays also provide, and promote, the use of higher-level programming languages4. Based on techniques used in the development of high-level PC software to control PLCs for multiple telescopes, this paper examines the development of PLC programs to operate the hardware of a medical cyclotron beamline controlled from a PC using the Experimental Physics and Industrial Control System (EPICS), which is also widely used in telescope control5, 6, 7. The PLC used is the new generation Siemens S7-1200 programmed using Siemens Pascal based Structured Control Language (SCL), which is their implementation of Structured Text (ST). The approach described is that from a software engineer's perspective, utilising Siemens Totally Integrated Automation (TIA) Portal integrated development environment (IDE) to create

  16. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  17. Math Description Engine Software Development Kit

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  18. Software for Engineering Simulations of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  19. Parallelization of Rocket Engine Simulator Software (PRESS)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1997-01-01

    Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The second-year funding, which supports two graduate students enrolled in our new Master's program in Computer Science at Hampton University and the principal investigator, have been obtained for the period from October 19, 1996 through October 18, 1997. The key part of the interim report was new directions for the second year funding. This came about from discussions during Rocket Engine Numeric Simulator (RENS) project meeting in Pensacola on January 17-18, 1997. At that time, a software agreement between Hampton University and NASA Lewis Research Center had already been concluded. That agreement concerns off-NASA-site experimentation with PUMPDES/TURBDES software. Before this agreement, during the first year of the project, another large-scale FORTRAN-based software, Two-Dimensional Kinetics (TDK), was being used for translation to an object-oriented language and parallelization experiments. However, that package proved to be too complex and lacking sufficient documentation for effective translation effort to the object-oriented C + + source code. The focus, this time with better documented and more manageable PUMPDES/TURBDES package, was still on translation to C + + with design improvements. At the RENS Meeting, however, the new impetus for the RENS projects in general, and PRESS in particular, has shifted in two important ways. One was closer alignment with the work on Numerical Propulsion System Simulator (NPSS) through cooperation and collaboration with LERC ACLU organization. The other was to see whether and how NASA's various rocket design software can be run over local and intra nets without any radical efforts for redesign and translation into object-oriented source code. There were also suggestions that the Fortran based code be

  20. The need for scientific software engineering in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Luty, Brock; Rose, Peter W.

    2016-12-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  1. The need for scientific software engineering in the pharmaceutical industry.

    PubMed

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  2. Performing Verification and Validation in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1999-01-01

    The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.

  3. Annotated bibliography of Software Engineering Laboratory (SEL) literature

    NASA Technical Reports Server (NTRS)

    Card, D.

    1982-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 75 publications are summarized. An index of these publications by subject is also included. These publications cover many areas of software engineering and range from research reports to software documentation.

  4. Ada Implementation Guide. Software Engineering With Ada. Volume 2

    DTIC Science & Technology

    1994-04-01

    Standards and Technology ............. A-4 DON Software Executive Official ...................... A-4 DON Ada Representative...Cost Analysis ........................ A-6 Software Technology Support Center .................... A-6 Software Engineering Institute...A-7 Software Technology for Adaptable, Reliable Systems (STARS) ....................................... A-7 A.1.2 Training

  5. Proceedings of the 14th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.

  6. Evaluating software development characteristics: Assessment of software measures in the Software Engineering Laboratory. [reliability engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.

    1981-01-01

    Work on metrics is discussed. Factors that affect software quality are reviewed. Metrics is discussed in terms of criteria achievements, reliability, and fault tolerance. Subjective and objective metrics are distinguished. Product/process and cost/quality metrics are characterized and discussed.

  7. Software Engineering Laboratory (SEL) data and information policy

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank

    1991-01-01

    The policies and overall procedures that are used in distributing and in making available products of the Software Engineering Laboratory (SEL) are discussed. The products include project data and measures, project source code, reports, and software tools.

  8. Involving Software Engineering Students in Open Source Software Projects: Experiences from a Pilot Study

    ERIC Educational Resources Information Center

    Sowe, Sulayman K.; Stamelos, Ioannis G.

    2007-01-01

    Anecdotal and research evidences show that the Free and Open Source Software (F/OSS) development model has produced a paradigm shift in the way we develop, support, and distribute software. This shift is not only redefining the software industry but also the way we teach and learn in our software engineering (SE) courses. But for many universities…

  9. FMT (Flight Software Memory Tracker) For Cassini Spacecraft-Software Engineering Using JAVA

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Uffelman, Hal; Wax, Allan H.

    1997-01-01

    The software engineering design of the Flight Software Memory Tracker (FMT) Tool is discussed in this paper. FMT is a ground analysis software set, consisting of utilities and procedures, designed to track the flight software, i.e., images of memory load and updatable parameters of the computers on-board Cassini spacecraft. FMT is implemented in Java.

  10. Seeing beyond Computer Science and Software Engineering

    NASA Astrophysics Data System (ADS)

    Nori, Kesav Vithal

    The boundaries of computer science are defined by what symbolic computation can accomplish. Software Engineering is concerned with effective use of computing technology to support automatic computation on a large scale so as to construct desirable solutions to worthwhile problems. Both focus on what happens within the machine. In contrast, most practical applications of computing support end-users in realizing (often unsaid) objectives. It is often said that such objectives cannot be even specified, e.g., what is the specification of MS Word, or for that matter, any flavour of UNIX? This situation points to the need for architecting what people do with computers. Based on Systems Thinking and Cybernetics, we present such a viewpoint which hinges on Human Responsibility and means of living up to it.

  11. Software development for Laser Engineered Net Shaping

    SciTech Connect

    Ensz, M.T.; Griffith, M.L.; Harwell, L.D.

    1998-08-01

    Laser Engineered Net Shaping, also known as LENS{trademark}, is an advanced manufacturing technique used to fabricate near-net shaped, fully dense metal components directly from computer solid models without the use of traditional machining processes. The LENS{trademark} process uses a high powered laser to create a molten pool into which powdered metal is injected and solidified. Like many SFF techniques, LENS{trademark} parts are made through a layer additive process. In the current system, for any given layer, the laser is held stationary, while the part and its associated substrate is moved, allowing for the each layer`s geometry to be formed. Individual layers are generated by tracing out the desired border, followed by filling in the remaining volume. Recent research into LENS{trademark} has highlighted the sensitivity of the processes to multiple software controllable parameters such as substrate travel velocity, border representation, and fill patterns. This research is aimed at determining optimal border outlines and fill patterns for LENS{trademark} and at developing the associated software necessary for automating the creation of the desired motion control.

  12. Proceedings of the 19th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document.

  13. Data collection procedures for the Software Engineering Laboratory (SEL) database

    NASA Technical Reports Server (NTRS)

    Heller, Gerard; Valett, Jon; Wild, Mary

    1992-01-01

    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms.

  14. Performance Engineering Technology for Scientific Component Software

    SciTech Connect

    Malony, Allen D.

    2007-05-08

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress

  15. Software metrics: Software quality metrics for distributed systems. [reliability engineering

    NASA Technical Reports Server (NTRS)

    Post, J. V.

    1981-01-01

    Software quality metrics was extended to cover distributed computer systems. Emphasis is placed on studying embedded computer systems and on viewing them within a system life cycle. The hierarchy of quality factors, criteria, and metrics was maintained. New software quality factors were added, including survivability, expandability, and evolvability.

  16. Erasmus Thematic Networks and the European Dimension of Engineering Education

    ERIC Educational Resources Information Center

    Borri, Claudio; Guberti, Elisa; Maffioli, Francesco

    2005-01-01

    Some of the most important challenges for engineering schools at the beginning of the 21st century are summarised as well as the role of ERASMUS Thematic Networks (TN) in this scenario. Though focus is mainly given to the European environment, the changes which are interesting Engineering Education appear to involve also the non-European sphere…

  17. An algebraic approach to modeling in software engineering

    SciTech Connect

    Loegel, G.J. |; Ravishankar, C.V.

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ``computer science`` objects like abstract data types, but in practice software errors are often caused because ``real-world`` objects are improperly modeled. There is a large semantic gap between the customer`s objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form.

  18. Generic domain models in software engineering

    NASA Technical Reports Server (NTRS)

    Maiden, Neil

    1992-01-01

    This paper outlines three research directions related to domain-specific software development: (1) reuse of generic models for domain-specific software development; (2) empirical evidence to determine these generic models, namely elicitation of mental knowledge schema possessed by expert software developers; and (3) exploitation of generic domain models to assist modelling of specific applications. It focuses on knowledge acquisition for domain-specific software development, with emphasis on tool support for the most important phases of software development.

  19. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software

    PubMed Central

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians. PMID:25996054

  20. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software.

    PubMed

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians.

  1. Professional Ethics of Software Engineers: An Ethical Framework.

    PubMed

    Lurie, Yotam; Mark, Shlomo

    2016-04-01

    The purpose of this article is to propose an ethical framework for software engineers that connects software developers' ethical responsibilities directly to their professional standards. The implementation of such an ethical framework can overcome the traditional dichotomy between professional skills and ethical skills, which plagues the engineering professions, by proposing an approach to the fundamental tasks of the practitioner, i.e., software development, in which the professional standards are intrinsically connected to the ethical responsibilities. In so doing, the ethical framework improves the practitioner's professionalism and ethics. We call this approach Ethical-Driven Software Development (EDSD), as an approach to software development. EDSD manifests the advantages of an ethical framework as an alternative to the all too familiar approach in professional ethics that advocates "stand-alone codes of ethics". We believe that one outcome of this synergy between professional and ethical skills is simply better engineers. Moreover, since there are often different software solutions, which the engineer can provide to an issue at stake, the ethical framework provides a guiding principle, within the process of software development, that helps the engineer evaluate the advantages and disadvantages of different software solutions. It does not and cannot affect the end-product in and of-itself. However, it can and should, make the software engineer more conscious and aware of the ethical ramifications of certain engineering decisions within the process.

  2. Experiences with Integrating Simulation into a Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Bollin, Andreas; Hochmuller, Elke; Mittermeir, Roland; Samuelis, Ladislav

    2012-01-01

    Software Engineering education must account for a broad spectrum of knowledge and skills software engineers will be required to apply throughout their professional life. Covering all the topics in depth within a university setting is infeasible due to curricular constraints as well as due to the inherent differences between educational…

  3. A Guideline of Using Case Method in Software Engineering Courses

    ERIC Educational Resources Information Center

    Zainal, Dzulaiha Aryanee Putri; Razali, Rozilawati; Shukur, Zarina

    2014-01-01

    Software Engineering (SE) education has been reported to fall short in producing high quality software engineers. In seeking alternative solutions, Case Method (CM) is regarded as having potential to solve the issue. CM is a teaching and learning (T&L) method that has been found to be effective in Social Science education. In principle,…

  4. V&V Within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and Validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission-critical software. V&V is a systems engineering discipline that evaluates the software in a systems context, and is currently applied during the development of a specific application system. In order to bring the effectiveness of V&V to bear within reuse-based software engineering, V&V must be incorporated within the domain engineering process.

  5. Proceedings of the Fifteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given.

  6. Proceedings of the Twenty-Fourth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On December 1 and 2, the Software Engineering Laboratory (SEL), a consortium composed of NASA/Goddard, the University of Maryland, and CSC, held the 24th Software Engineering Workshop (SEW), the last of the millennium. Approximately 240 people attended the 2-day workshop. Day 1 was composed of four sessions: International Influence of the Software Engineering Laboratory; Object Oriented Testing and Reading; Software Process Improvement; and Space Software. For the first session, three internationally known software process experts discussed the influence of the SEL with respect to software engineering research. In the Space Software session, prominent representatives from three different NASA sites- GSFC's Marti Szczur, the Jet Propulsion Laboratory's Rick Doyle, and the Ames Research Center IV&V Facility's Lou Blazy- discussed the future of space software in their respective centers. At the end of the first day, the SEW sponsored a reception at the GSFC Visitors' Center. Day 2 also provided four sessions: Using the Experience Factory; A panel discussion entitled "Software Past, Present, and Future: Views from Government, Industry, and Academia"; Inspections; and COTS. The day started with an excellent talk by CSC's Frank McGarry on "Attaining Level 5 in CMM Process Maturity." Session 2, the panel discussion on software, featured NASA Chief Information Officer Lee Holcomb (Government), our own Jerry Page (Industry), and Mike Evangelist of the National Science Foundation (Academia). Each presented his perspective on the most important developments in software in the past 10 years, in the present, and in the future.

  7. Teaching Undergraduate Software Engineering Using Open Source Development Tools

    DTIC Science & Technology

    2012-01-01

    on Computer Science Education (SIGCSE 󈧏), 153- 158. Pandey, R. (2009). Exploiting web resources for teaching /learning best software design tips...Issues in Informing Science and Information Technology Volume 9, 2012 Teaching Undergraduate Software Engineering Using Open Source Development...multi-course sequence, to teach students both the theoretical concepts of soft- ware development as well as the practical aspects of developing software

  8. Engineering Software Suite Validates System Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers

  9. A report on NASA software engineering and Ada training requirements

    NASA Technical Reports Server (NTRS)

    Legrand, Sue; Freedman, Glenn B.; Svabek, L.

    1987-01-01

    NASA's software engineering and Ada skill base are assessed and information that may result in new models for software engineering, Ada training plans, and curricula are provided. A quantitative assessment which reflects the requirements for software engineering and Ada training across NASA is provided. A recommended implementation plan including a suggested curriculum with associated duration per course and suggested means of delivery is also provided. The distinction between education and training is made. Although it was directed to focus on NASA's need for the latter, the key relationships to software engineering education are also identified. A rationale and strategy for implementing a life cycle education and training program are detailed in support of improved software engineering practices and the transition to Ada.

  10. A Progress Report on Undergraduate Software Engineering Education

    DTIC Science & Technology

    1994-05-01

    Figures Figure 2.1. Locations of Undergraduate Programs Surveyed 3 Figure 3.1. Locations of Software Engineering Graduate Programs 14 Figure 3.2 Growth of...and Senior Years 21 Figure 3.4 CMU Combined Electrical and Computer Engineering Curriculum 22 Table of Tables Table 3.1. Graduate Programs in...Software Engineering 13 Table 3.2. Graduate Programs in Computer Science with a Software Engineering Option 13 ii CMU/SEI-94-TR-11 A Progress Report on

  11. On the Prospects and Concerns of Integrating Open Source Software Environment in Software Engineering Education

    ERIC Educational Resources Information Center

    Kamthan, Pankaj

    2007-01-01

    Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…

  12. On Quality and Measures in Software Engineering

    ERIC Educational Resources Information Center

    Bucur, Ion I.

    2006-01-01

    Complexity measures are mainly used to estimate vital information about reliability and maintainability of software systems from regular analysis of the source code. Such measures also provide constant feedback during a software project to assist the control of the development procedure. There exist several models to classify a software product's…

  13. 1989 SEI Report on Graduate Software Engineering Education

    DTIC Science & Technology

    1989-06-01

    Software Specification: A Framework, H. Dieter Rombach CM-17 User Interface Development, Gary Perlman CM-19 Software Requirements, John W. Brackett...reviews. Support Materials for The Software Technical Review Process Edited by John Cross, This support materials package includes materials helpful in...engineer. It discusses both written and oral communication. SEI-CM-18-1.0 CMU/SEI-89-TR-21 79 Software Requirements John Brackett, Boston

  14. Agile-Lean Software Engineering (ALSE) Evaluating Kanban in Systems Engineering

    DTIC Science & Technology

    2013-03-06

    Agile-Lean Software Engineering (ALSE) Evaluating Kanban in Systems Engineering A013 - Final Technical Report SERC-2013-TR-022-2 March 6, 2013...06 MAR 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Agile-Lean Software Engineering (ALSE) Evaluating...engineering (SE). Such approaches have been seen to be valuable in software system development. In particular, the research focuses on SE where rapid response

  15. Avionics Simulation, Development and Software Engineering

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During this reporting period, all technical responsibilities were accomplished as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14), the MSFC EXPRESS Project Office (FD31), and the Huntsville Boeing Company. Accomplishments included: performing special tasks; supporting Software Review Board (SRB), Avionics Test Bed (ATB), and EXPRESS Software Control Panel (ESCP) activities; participating in technical meetings; and coordinating issues between the Boeing Company and the MSFC Project Office.

  16. On the engineering of crucial software

    NASA Technical Reports Server (NTRS)

    Pratt, T. W.; Knight, J. C.; Gregory, S. T.

    1983-01-01

    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described.

  17. Large-scale visualization projects for teaching software engineering.

    PubMed

    Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel

    2012-01-01

    The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.

  18. Proceedings of the Eighteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The workshop provided a forum for software practitioners from around the world to exchange information on the measurement, use, and evaluation of software methods, models, and tools. This year, approximately 450 people attended the workshop, which consisted of six sessions on the following topics: the Software Engineering Laboratory, measurement, technology assessment, advanced concepts, process, and software engineering issues in NASA. Three presentations were given in each of the topic areas. The content of those presentations and the research papers detailing the work reported are included in these proceedings. The workshop concluded with a tutorial session on how to start an Experience Factory.

  19. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  20. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    NASA Astrophysics Data System (ADS)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  1. Empirical studies of design software: Implications for software engineering environments

    NASA Technical Reports Server (NTRS)

    Krasner, Herb

    1988-01-01

    The empirical studies team of MCC's Design Process Group conducted three studies in 1986-87 in order to gather data on professionals designing software systems in a range of situations. The first study (the Lift Experiment) used thinking aloud protocols in a controlled laboratory setting to study the cognitive processes of individual designers. The second study (the Object Server Project) involved the observation, videotaping, and data collection of a design team of a medium-sized development project over several months in order to study team dynamics. The third study (the Field Study) involved interviews with the personnel from 19 large development projects in the MCC shareholders in order to study how the process of design is affected by organizationl and project behavior. The focus of this report will be on key observations of design process (at several levels) and their implications for the design of environments.

  2. Happy software developers solve problems better: psychological measurements in empirical software engineering.

    PubMed

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  3. Happy software developers solve problems better: psychological measurements in empirical software engineering

    PubMed Central

    Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint

  4. Software Engineering Code of Ethics and Professional Practice.

    PubMed

    2001-04-01

    The Software Engineering Code of Ethics and Professional Practice, intended as a standard for teaching and practicing software engineering, documents the ethical and professional obligations of software engineers. The code should instruct practitioners about the standards society expects them to meet, about what their peers strive for, and about what to expect of one another. In addition, the code should also inform the public about the responsibilities that are important to the profession. Adopted in 2000 by the IEEE Computer Society and the ACM--two leading international computing societies--the code of ethics is intended as a guide for members of the evolving software engineering profession. The code was developed by a multinational task force with additional input from other professionals from industry, government posts, military installations, and educational professions.

  5. 7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering

    NASA Technical Reports Server (NTRS)

    Housch, Helen; Godfrey, Sally

    2011-01-01

    The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.

  6. Microcomputer Software Engineering, Documentation and Evaluation

    DTIC Science & Technology

    1981-03-31

    microcomputer program called "EVAL." 4.1 The Evaluation Methodology At the core of EVAL lies an evaluation methodology known as multi-attribute utility theory ...Agent (RITA) : Reference Manual. Santa Monica, California: The Rand Corporation, December 1976. Edwards, W. "How to Use Multiattribute Utility ...structured programming, unconventional docu- mentation, and multi-attribute utility -based software evaluation. The general methods employed include software

  7. The Hidden Job Requirements for a Software Engineer

    SciTech Connect

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.

    2014-01-09

    In a world increasingly operated by computers, where innovation depends on software, the software engineer’s role is changing continuously and gaining new dimensions. In commercial software development as well as scientific research environments, the way software developers are perceived is changing, because they are more important to the business than ever before. Nowadays, their job requires skills extending beyond the regular job description posted by HR, and more is expected. To advance and thrive in their new roles, the software engineers must embrace change, and practice the themes of the new era (integration, collaboration and optimization). The challenges may be somehow intimidating for freshly graduated software engineers. Through this paper the authors hope to set them on a path for success, by helping them relinquish their fear of the unknown.

  8. SREM (Software Requirements Engineering Methodology) Evaluation. Volume 1.

    DTIC Science & Technology

    1984-02-01

    71 -11631 SREM (SOFTWARE REQUIREMENTS ENGINEERING METODOLOGY )EV 1A O SU U MA A ENE EOPC EVALUATION VOLUME l(U) MARTIN MARIETTA DENVER AEROSPACE...specify the software requirements for two Air Force systems. One of these was a large distributed computer system whose 515 page, English language system...system requirements. In addition to the step-by-step requirements engineering 4 1 techniques, SREM includes a machine-processable " English -like

  9. Proceedings of the Twenty-Third Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Twenty-third Annual Software Engineering Workshop (SEW) provided 20 presentations designed to further the goals of the Software Engineering Laboratory (SEL) of the NASA-GSFC. The presentations were selected on their creativity. The sessions which were held on 2-3 of December 1998, centered on the SEL, Experimentation, Inspections, Fault Prediction, Verification and Validation, and Embedded Systems and Safety-Critical Systems.

  10. Models for Undergraduate Project Courses in Software Engineering

    DTIC Science & Technology

    1991-08-01

    Endres [122] specify 11 examples of courses and projects, while Leventhal and Mynatt [78] derived only 3. These analyses make roughly the same...TR-10 11 the-large. Despite these disadvantages, Leventhal and Mynatt [78] report that 40% of all software engineering courses use this style. 4.2...10 15 Leventhal and Mynatt [78] surveyed software engineering courses in 240 of the 820 under- graduate computer science programs listed in ACM’s 1984

  11. Infusing Software Engineering Technology into Practice at NASA

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  12. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  13. Imprinting Community College Computer Science Education with Software Engineering Principles

    NASA Astrophysics Data System (ADS)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  14. Software Engineering Infrastructure in a Large Virtual Campus

    ERIC Educational Resources Information Center

    Cristobal, Jesus; Merino, Jorge; Navarro, Antonio; Peralta, Miguel; Roldan, Yolanda; Silveira, Rosa Maria

    2011-01-01

    Purpose: The design, construction and deployment of a large virtual campus are a complex issue. Present virtual campuses are made of several software applications that complement e-learning platforms. In order to develop and maintain such virtual campuses, a complex software engineering infrastructure is needed. This paper aims to analyse the…

  15. Imprinting Community College Computer Science Education with Software Engineering Principles

    ERIC Educational Resources Information Center

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  16. Models and metrics for software management and engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.

    1988-01-01

    This paper attempts to characterize and present a state of the art view of several quantitative models and metrics of the software life cycle. These models and metrics can be used to aid in managing and engineering software projects. They deal with various aspects of the software process and product, including resources allocation and estimation, changes and errors, size, complexity and reliability. Some indication is given of the extent to which the various models have been used and the success they have achieved.

  17. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  18. Tuning Engineering Education into the European Higher Education Orchestra.

    ERIC Educational Resources Information Center

    Maffioli, Francesco; Augusti, Giuliano

    2003-01-01

    The 'Bologna Process' promotes fundamental changes throughout European higher education. The EC 'Tuning' project was set up to investigate the feasibility of this process. Summarizes the final report of the Engineering Synergy Group which examined the 'tuning' of engineering education (EE), taking advantage of the work of previous and current…

  19. The Business Case for Automated Software Engineering

    NASA Technical Reports Server (NTRS)

    Menzies, Tim; Elrawas, Oussama; Hihn, Jairus M.; Feather, Martin S.; Madachy, Ray; Boehm, Barry

    2007-01-01

    Adoption of advanced automated SE (ASE) tools would be more favored if a business case could be made that these tools are more valuable than alternate methods. In theory, software prediction models can be used to make that case. In practice, this is complicated by the 'local tuning' problem. Normally. predictors for software effort and defects and threat use local data to tune their predictions. Such local tuning data is often unavailable. This paper shows that assessing the relative merits of different SE methods need not require precise local tunings. STAR 1 is a simulated annealer plus a Bayesian post-processor that explores the space of possible local tunings within software prediction models. STAR 1 ranks project decisions by their effects on effort and defects and threats. In experiments with NASA systems. STARI found one project where ASE were essential for minimizing effort/ defect/ threats; and another project were ASE tools were merely optional.

  20. Software engineering with application-specific languages

    NASA Technical Reports Server (NTRS)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  1. Vertical Interaction in Open Software Engineering Communities

    DTIC Science & Technology

    2009-03-01

    Open Source software[6, 77]. 1 CHAPTER 1. INTRODUCTION 1.1 A Brief History of Open Source The roots of Open Source software go back to the dawn of...was going to be open source and what would remain proprietary. On the one hand, Open Sourcing a component could give the business a great competitive...ecosystem by using Open Source. Indeed, as the origins of Eclipse go back to the mid-1990’s such an idea would have been far too radical for the state

  2. HydroShare: Applying professional software engineering to a new NSF-funded large software project

    NASA Astrophysics Data System (ADS)

    Idaszak, R.; Tarboton, D. G.; Ames, D.; Saleem Arrigo, J. A.; Band, L. E.; Bedig, A.; Castronova, A. M.; Christopherson, L.; Coposky, J.; Couch, A.; Dash, P.; Gan, T.; Goodall, J.; Gustafson, K.; Heard, J.; Hooper, R. P.; Horsburgh, J. S.; Jackson, S.; Johnson, H.; Maidment, D. R.; Mbewe, P.; Merwade, V.; Miles, B.; Reeder, S.; Russell, T.; Song, C.; Taylor, A.; Thakur, S.; Valentine, D. W.; Whiteaker, T. L.

    2013-12-01

    HydroShare is an online, collaborative system being developed for sharing hydrologic data and models as part of the NSF's Software Infrastructure for Sustained Innovation (SI2) program (NSF collaborative award numbers 1148453 and 1148090). HydroShare involves a large software development effort requiring cooperative research and distributed software development between domain scientists, professional software engineers (here 'professional' denotes previous commercial experience in the application of modern software engineering), and university software developers. HydroShare expands upon the data sharing capabilities of the Hydrologic Information System of the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI) by broadening the classes of data accommodated, expanding capability to include the sharing of models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. With a goal of enabling better science concomitant with improved sustainable software practices, we will describe our approach, experiences, and lessons learned thus-far in applying professional software engineering to a large NSF-funded software project from the project's onset.

  3. Studies and experiments in the Software Engineering Lab (SEL)

    NASA Technical Reports Server (NTRS)

    Mcgarry, F. E.; Card, D. N.

    1985-01-01

    The Software Engineering Laboratory (SEL) is an organization created nearly 10 years ago for the purpose of identifying, measuring and applying quality software engineering techniques in a production environment. The members of the SEL include NASA/Goddard Space Flight Center (GSFC, the sponsor and organizer), University of Maryland, and Computer Sciences Corporation. Since its inception the SEL has conducted numerous experiments, and has evaluated a wide range of software technologies. This paper describes several of the more recent experiments as well as some of the general conclusions to which the SEL has arrived.

  4. Support for Different Roles in Software Engineering Master's Thesis Projects

    ERIC Educational Resources Information Center

    Host, M.; Feldt, R.; Luders, F.

    2010-01-01

    Like many engineering programs in Europe, the final part of most Swedish software engineering programs is a longer project in which the students write a Master's thesis. These projects are often conducted in cooperation between a university and industry, and the students often have two supervisors, one at the university and one in industry. In…

  5. Theoretical and Pragmatic Issues in Software Engineering

    DTIC Science & Technology

    1990-09-30

    University Press , 1988. (Martin Davis) The Evaluation of Program-Based Software Test Data Adequacy Criteria, Communications of the ACM, June 1988, pp...The Universal Turing Machine - A Half- Century Survey, Rolf Herken, editor, pp. 315-326. Verlag Kemmerer & Unverzagt, Hamburg, Berlin 1988; Oxford

  6. Software Engineering Laboratory (SEL) data base reporting software user's guide and system description. Volume 1: Introduction and user's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reporting software programs provide formatted listings and summary reports of the Software Engineering Laboratory (SEL) data base contents. The operating procedures and system information for 18 different reporting software programs are described. Sample output reports from each program are provided.

  7. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  8. Proposing an Evidence-Based Strategy for Software Requirements Engineering.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2016-01-01

    This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.

  9. Avionics Simulation, Development and Software Engineering

    NASA Technical Reports Server (NTRS)

    Francis, Ronald C.; Settle, Gray; Tobbe, Patrick A.; Kissel, Ralph; Glaese, John; Blanche, Jim; Wallace, L. D.

    2001-01-01

    This monthly report summarizes the work performed under contract NAS8-00114 for Marshall Space Flight Center in the following tasks: 1) Purchase Order No. H-32831D, Task Order 001A, GPB Program Software Oversight; 2) Purchase Order No. H-32832D, Task Order 002, ISS EXPRESS Racks Software Support; 3) Purchase Order No. H-32833D, Task Order 003, SSRMS Math Model Integration; 4) Purchase Order No. H-32834D, Task Order 004, GPB Program Hardware Oversight; 5) Purchase Order No. H-32835D, Task Order 005, Electrodynamic Tether Operations and Control Analysis; 6) Purchase Order No. H-32837D, Task Order 007, SRB Command Receiver/Decoder; and 7) Purchase Order No. H-32838D, Task Order 008, AVGS/DART SW and Simulation Support

  10. Software Engineering Reviews and Audits. Overview

    DTIC Science & Technology

    2011-05-19

    review was conducted and performed correctly, you have done it right.” 26 Quality Management System (QMS) Standards AS9100, SAE AS9110, and ISO 9001 ...on gura on u ISO International Organization for Standardization PCA Physical Configuration Audit QMS Quality Management System 33 ...test, integration, and delivery software quality evaluations 6 Capability Maturity Model Integration (CMMI) Quality Management System (QMS) “Soft

  11. An overview of the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report describes the background and structure of the SEL organization, the SEL process improvement approach, and its experimentation and data collection process. Results of some sample SEL studies are included. It includes a discussion of the overall implication of trends observed over 17 years of process improvement efforts and looks at the return on investment based on a comparison of total investment in process improvement with the measurable improvements seen in the organization's software product.

  12. Software Engineering with Database Management Systems

    DTIC Science & Technology

    1989-03-01

    annual rate of reduction in the unit cost of memory and storage . Unfortunately, our ability to build software, which is necessary to interface with...clearly stated, but he thiniks that the scope is too costly. The SCD is not willing to allocate more than $15,000 for this project. Therefore the scope...that we are not going to be able to go beyond micro- computer storage capability. One of the advantages of this solution is that it solves the delay

  13. Engineering Education Research in "European Journal of Engineering Education" and "Journal of Engineering Education": Citation and Reference Discipline Analysis

    ERIC Educational Resources Information Center

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of "European Journal of Engineering Education" ("EJEE") and "Journal of Engineering Education" ("JEE") in 1973 ("JEE," 1975 "EJEE"), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become…

  14. Software Technology for Adaptable, Reliable Systems (STARS) Program. The Cleanroom Engineering Software Development Process

    DTIC Science & Technology

    1991-02-28

    required for performing a Cleanroom Engineering effort from the standpoint of specifiers, developers, certifiers, and managers . The manual was developed...Process, Process Management , Defined Process, Cleanroom, 302 Software Engineering 16. PRICE CODE N/A 17. ’.CURIrY CLASSIFICATION 18. SECURITY...Findings 1-4 1.3 IR-70 Project Profile 1-5 1.4 Acknowledgements 1-5 2. The Cleanroom Engineering Process: The Management Basis 2.1 Why Cleanroom

  15. Object oriented development of engineering software using CLIPS

    NASA Technical Reports Server (NTRS)

    Yoon, C. John

    1991-01-01

    Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.

  16. Software Engineering Institute, Annual Report 2001

    DTIC Science & Technology

    2002-03-01

    Raytheon Systems Company Gerald P. Dinneen Chair, Policy Division, National Research Council Philip L. Dowd Senior Vice President, SunGard Data...Dr. Michael Andrews II Deputy Assistant Secretary of the Army (Research & Technology) RADM Jay Cohen Chief of Naval Research Office of Naval Research...Mr. Michael O’Driscoll Deputy Chief Engineer Office of the Assistant Secretary of the Navy (Research, Development, & Acquisition) Dr. Chuck Perkins

  17. Software Estimates Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Simulation-Based Cost Model (SiCM) is a computer program that simulates pertinent aspects of the testing of rocket engines for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.

  18. Software architecture and engineering for patient records: current and future.

    PubMed

    Weng, Chunhua; Levine, Betty A; Mun, Seong K

    2009-05-01

    During the "The National Forum on the Future of the Defense Health Information System," a track focusing on "Systems Architecture and Software Engineering" included eight presenters. These presenters identified three key areas of interest in this field, which include the need for open enterprise architecture and a federated database design, net centrality based on service-oriented architecture, and the need for focus on software usability and reusability. The eight panelists provided recommendations related to the suitability of service-oriented architecture and the enabling technologies of grid computing and Web 2.0 for building health services research centers and federated data warehouses to facilitate large-scale collaborative health care and research. Finally, they discussed the need to leverage industry best practices for software engineering to facilitate rapid software development, testing, and deployment.

  19. Software Engineering Research/Developer Collaborations in 2004 (C104)

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Markosian, Lawrance

    2005-01-01

    In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.

  20. V & V Within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission critical software. This paper describes the working group's success in identifying V&V tasks that could be performed in the domain engineering and transition levels of reuse-based software engineering. The primary motivation for V&V at the domain level is to provide assurance that the domain requirements are correct and that the domain artifacts correctly implement the domain requirements. A secondary motivation is the possible elimination of redundant V&V activities at the application level. The group also considered the criteria and motivation for performing V&V in domain engineering.

  1. Repository-Based Software Engineering Program: Working Program Management Plan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  2. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  3. Artificial Intelligence Software Engineering (AISE) model

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  4. Seamless Method- and Model-based Software and Systems Engineering

    NASA Astrophysics Data System (ADS)

    Broy, Manfred

    Today engineering software intensive systems is still more or less handicraft or at most at the level of manufacturing. Many steps are done ad-hoc and not in a fully systematic way. Applied methods, if any, are not scientifically justified, not justified by empirical data and as a result carrying out large software projects still is an adventure. However, there is no reason why the development of software intensive systems cannot be done in the future with the same precision and scientific rigor as in established engineering disciplines. To do that, however, a number of scientific and engineering challenges have to be mastered. The first one aims at a deep understanding of the essentials of carrying out such projects, which includes appropriate models and effective management methods. What is needed is a portfolio of models and methods coming together with a comprehensive support by tools as well as deep insights into the obstacles of developing software intensive systems and a portfolio of established and proven techniques and methods with clear profiles and rules that indicate when which method is ready for application. In the following we argue that there is scientific evidence and enough research results so far to be confident that solid engineering of software intensive systems can be achieved in the future. However, yet quite a number of scientific research problems have to be solved.

  5. Software Estimates Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Smith, C. L.

    2003-01-01

    Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.

  6. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  7. Parallelization of Rocket Engine Simulator Software (PRESS)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1998-01-01

    We have outlined our work in the last half of the funding period. We have shown how a demo package for RESSAP using MPI can be done. However, we also mentioned the difficulties with the UNIX platform. We have reiterated some of the suggestions made during the presentation of the progress of the at Fourth Annual HBCU Conference. Although we have discussed, in some detail, how TURBDES/PUMPDES software can be run in parallel using MPI, at present, we are unable to experiment any further with either MPI or PVM. Due to X windows not being implemented, we are also not able to experiment further with XPVM, which it will be recalled, has a nice GUI interface. There are also some concerns, on our part, about MPI being an appropriate tool. The best thing about MPr is that it is public domain. Although and plenty of documentation exists for the intricacies of using MPI, little information is available on its actual implementations. Other than very typical, somewhat contrived examples, such as Jacobi algorithm for solving Laplace's equation, there are few examples which can readily be applied to real situations, such as in our case. In effect, the review of literature on both MPI and PVM, and there is a lot, indicate something similar to the enormous effort which was spent on LISP and LISP-like languages as tools for artificial intelligence research. During the development of a book on programming languages [12], when we searched the literature for very simple examples like taking averages, reading and writing records, multiplying matrices, etc., we could hardly find a any! Yet, so much was said and done on that topic in academic circles. It appears that we faced the same problem with MPI, where despite significant documentation, we could not find even a simple example which supports course-grain parallelism involving only a few processes. From the foregoing, it appears that a new direction may be required for more productive research during the extension period (10/19/98 - 10

  8. Based Aspect-oriented Petri Nets in Software Engineering

    NASA Astrophysics Data System (ADS)

    Hu, Wensong; Yang, Xingui; Zuo, Ke

    Aspect Oriented (Aspect-Oriented, referred to as AO) as a new programming technology is increasingly cause for concern. This article describes a number of experts to study the current object-oriented Petri Nets (OO PN) adding aspect-oriented thinking, combined with software design and development cycle, given the aspect-oriented OO PN in software engineering methods and steps. Shows the method of using AO PN government office system software design and development of application examples, and gives some object class, the log section and the application form. As the plane of isolation, reducing the coupling, the use of AO PN ways in different applications will use a combination of each section, allowing code reusability enhancement. OOPN itself can process the software system design and development of effective control to ensure that the software system reliability and standardization.

  9. Software engineering practices for the EGO Virgo project

    NASA Astrophysics Data System (ADS)

    Carbognani, Franco; de Wet, Jacques

    2004-09-01

    The Virgo Gravitational Waves Detector has recently entered its commissioning phase. An important element in this phase is the application of Software Engineering (SE) practices to the Control and Data Analysis Software. This article focus on the experience in applying those SE practices as a simple but effective set of standards and tools. The main areas covered are software configuration management, problem reporting, integration planning, software testing and systems performance monitoring. Key elements of Software Configuration Management (SCM) are source code control allowing checkin/checkout of sources from a software archive combined with a backup plan. The tool SCVS developed on top of CVS in order to provide an easier and more structured use mode is supporting this. Tracking bugs and modifications is a necessary complement of SCM. A central database with email and web interface to submit, query and modify Software Problem Reports (SPR) has been implemented on top of the WREQ tool. Integrating software components that were not designed with integration in mind is one of the major problems in software development. An explicit Integration Plan is therefore absolutely essential. We are currently implementing a slow upgrade cycle Common Software Releases management as structured integration plan. Software Testing must be closely integrated with development and to the most feasible extent automatic. With the use of the automated test tool tat, the developer can incrementally build a unit/regression test suite that will help measure progress, spot unintended side effects, and focus the development efforts. One of the characteristics of large and complex projects, like Virgo, is the difficulty in understanding how well the different subsystems are performing and then plan for changes. In order to support System Performance Monitoring the tool Big Brother has been adopted to make it possible to trace the reliability of the different subsystems and thus providing

  10. SEI (Software Engineering Institute) Report on Graduate Software Engineering Education, 1989

    DTIC Science & Technology

    1989-06-01

    Framework, H. Dieter Rombach CM-17 User Interface Development, Gary Perlman CM-19 Software Requirements, John W. Brackett Pedagogical Concerns Case...Software Technical Review Process Edited by John Cross, This support materials package includes materials helpful in teach- Indiana University of ing a...communication. SEI-CM- 18-1.0 CMU/SEI-89-TR-21 79 Software Requirements • John Brackett, This curriculum module is concerned with the definition of

  11. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    ERIC Educational Resources Information Center

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  12. Open Source Projects in Software Engineering Education: A Mapping Study

    ERIC Educational Resources Information Center

    Nascimento, Debora M. C.; Almeida Bittencourt, Roberto; Chavez, Christina

    2015-01-01

    Context: It is common practice in academia to have students work with "toy" projects in software engineering (SE) courses. One way to make such courses more realistic and reduce the gap between academic courses and industry needs is getting students involved in open source projects (OSP) with faculty supervision. Objective: This study…

  13. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    ERIC Educational Resources Information Center

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  14. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  15. The Company Approach to Software Engineering Project Courses

    ERIC Educational Resources Information Center

    Broman, D.; Sandahl, K.; Abu Baker, M.

    2012-01-01

    Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…

  16. A Software Technology Transition Entropy Based Engineering Model

    DTIC Science & Technology

    2002-03-01

    using Shannon’s statistical approach to entropy. The TechTx Entropy Feedback model 1 Piaget , Jean ...32 2. Structure Changes – Internal - External Relationship ( Piaget )... 32 3. Technology Model...instruments used as necessary between the subject and the object to be reached. ( Piaget 1977, p. 72). For philosophical musings in software engineering, we

  17. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    NASA Astrophysics Data System (ADS)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  18. QUICK - An interactive software environment for engineering design

    NASA Technical Reports Server (NTRS)

    Skinner, David L.

    1989-01-01

    QUICK, an interactive software environment for engineering design, provides a programmable FORTRAN-like calculator interface to a wide range of data structures as well as both built-in and user created functions. QUICK also provides direct access to the operating systems of eight different machine architectures. The evolution of QUICK and a brief overview of the current version are presented.

  19. Investigation of specification measures for the Software Engineering Laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Requirements specification measures are investigated for potential application in the Software Engineering Laboratory. Eighty-seven candidate measures are defined; sixteen are recommended for use. Most measures are derived from a new representation, the Composite Specification Model, which is introduced. The results of extracting the specification measures from the requirements of a real system are described.

  20. A Team Building Model for Software Engineering Courses Term Projects

    ERIC Educational Resources Information Center

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  1. Issues in Software Engineering of Relevance to Instructional Design

    ERIC Educational Resources Information Center

    Douglas, Ian

    2006-01-01

    Software engineering is popularly misconceived as being an upmarket term for programming. In a way, this is akin to characterizing instructional design as the process of creating PowerPoint slides. In both these areas, the construction of systems, whether they are learning or computer systems, is only one part of a systematic process. The most…

  2. Milestones in Software Engineering and Knowledge Engineering History: A Comparative Review

    PubMed Central

    del Águila, Isabel M.; Palma, José; Túnez, Samuel

    2014-01-01

    We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because “those who cannot remember the past are condemned to repeat it.” This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one. PMID:24624046

  3. Milestones in software engineering and knowledge engineering history: a comparative review.

    PubMed

    del Águila, Isabel M; Palma, José; Túnez, Samuel

    2014-01-01

    We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because "those who cannot remember the past are condemned to repeat it." This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one.

  4. Would Consolidation of Army Software Engineering Organizations Help to Control Software Costs for Current and Future Systems

    DTIC Science & Technology

    2015-04-16

    Would Consolidation of Army Software Engineering Organizations Help to Control Software Costs for Current and Future Systems ? Gary M. Lichvar...xi Chapter 1 – Introduction ...71 vi vii List of Figures Figure 1 – System Acquisition

  5. Software Engineering Laboratory (SEL) data base reporting software user's guide and system description. Volume 2: Program descriptions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The structure and functions of each reporting software program for the Software Engineering Laboratory data base are described. Baseline diagrams, module descriptions, and listings of program generation files are included.

  6. Sharing Research Models: Using Software Engineering Practices for Facilitation.

    PubMed

    Bryant, Stephanie P; Solano, Eric; Cantor, Susanna; Cooley, Philip C; Wagener, Diane K

    2011-03-01

    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems' behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations-such as nonintuitive user interface features and data input specifications-may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices- the iterative software development process, object-oriented methodology, and Unified Modeling Language-and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers.

  7. Framework for Small-Scale Experiments in Software Engineering: Guidance and Control Software Project: Software Engineering Case Study

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1998-01-01

    Software is becoming increasingly significant in today's critical avionics systems. To achieve safe, reliable software, government regulatory agencies such as the Federal Aviation Administration (FAA) and the Department of Defense mandate the use of certain software development methods. However, little scientific evidence exists to show a correlation between software development methods and product quality. Given this lack of evidence, a series of experiments has been conducted to understand why and how software fails. The Guidance and Control Software (GCS) project is the latest in this series. The GCS project is a case study of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, Software Considerations in Airborne Systems and Equipment Certification. All civil transport airframe and equipment vendors are expected to comply with these guidelines in building systems to be certified by the FAA for use in commercial aircraft. For the case study, two implementations of a guidance and control application were developed to comply with the DO-178B guidelines for Level A (critical) software. The development included the requirements, design, coding, verification, configuration management, and quality assurance processes. This paper discusses the details of the GCS project and presents the results of the case study.

  8. AVIDOS--a software package for European accredited aviation dosimetry.

    PubMed

    Latocha, M; Beck, P; Rollet, S

    2009-10-01

    AVIDOS is a computer code used for the dose assessment of aircraft crew exposed to cosmic radiation. The code employs a multiparameter model built upon simulations of cosmic radiation exposure done using the FLUKA Monte Carlo code. AVIDOS calculates both ambient dose equivalent H*(10) and effective dose E for flight routes over the whole world at typically used altitudes and for the full range of solar activity. The dose assessment procedure using AVIDOS is accredited by the Austrian office for accreditation according to European regulations and is valid in the whole Europe. AVIDOS took part in an international comparison of different codes assessing radiation exposure of aircraft crew where a fully satisfactory agreement between codes has been found. An online version of AVIDOS with user friendly interface is accessible to public under the internet address: http://avidos.healthphysics.at.

  9. Software Engineering Laboratory (SEL) relationships, models, and management rules

    NASA Technical Reports Server (NTRS)

    Decker, William; Hendrick, Robert; Valett, Jon D.

    1991-01-01

    Over 50 individual Software Engineering Laboratory (SEL) research results, extracted from a review of published SEL documentation, that can be applied directly to managing software development projects are captured. Four basic categories of results are defined and discussed - environment profiles, relationships, models, and management rules. In each category, research results are presented as a single page that summarizes the individual result, lists potential uses of the result by managers, and references the original SEL documentation where the result was found. The document serves as a concise reference summary of applicable research for SEL managers.

  10. Software engineering capability for Ada (GRASP/Ada Tool)

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1995-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.

  11. A survey of program slicing for software engineering

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.

  12. Aspect-Oriented Model-Driven Software Product Line Engineering

    NASA Astrophysics Data System (ADS)

    Groher, Iris; Voelter, Markus

    Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.

  13. Experience Paper: Software Engineering and Community Codes Track in ATPESC

    SciTech Connect

    Dubey, Anshu; Riley, Katherine M.

    2016-01-01

    Argonne Training Program in Extreme Scale Computing (ATPESC) was started by the Argonne National Laboratory with the objective of expanding the ranks of better prepared users of high performance computing (HPC) machines. One of the unique aspects of the program was inclusion of software engineering and community codes track. The inclusion was motivated by the observation that the projects with a good scientific and software process were better able to meet their scientific goals. In this paper we present our experience of running the software track from the beginning of the program until now. We discuss the motivations, the reception, and the evolution of the track over the years. We welcome discussion and input from the community to enhance the track in ATPESC, and also to facilitate inclusion of similar tracks in other HPC oriented training programs.

  14. Engineering Safety-Related Requirements for Software-Intensive Systems

    DTIC Science & Technology

    2006-03-01

    Climate Orbiter ($125 million) English vs. Metric units mismatch Mars Polar Lander Missing requirement concerning touchdown sensor behavior Therac – 25 ...Engineering Safety-Related Requirements for Software-Intensive Systems 25 Corresponding Safety Subfactors Safety SubfactorSafety Safety Problem Type Safety...station with the doors open for boarding, the horizontal gap between the station platform and the vehicle door threshold shall be no greater than 25 mm

  15. Software Engineering Laboratory (SEL) database organization and user's guide

    NASA Technical Reports Server (NTRS)

    So, Maria; Heller, Gerard; Steinberg, Sandra; Spiegel, Douglas

    1989-01-01

    The organization of the Software Engineering Laboratory (SEL) database is presented. Included are definitions and detailed descriptions of the database tables and views, the SEL data, and system support data. The mapping from the SEL and system support data to the base tables is described. In addition, techniques for accessing the database, through the Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured query language (SQL), are discussed.

  16. Software Engineering Laboratory Ada performance study: Results and implications

    NASA Technical Reports Server (NTRS)

    Booth, Eric W.; Stark, Michael E.

    1992-01-01

    The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts.

  17. The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)

    2003-01-01

    We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.

  18. Agile Software Teams: How They Engage with Systems Engineering on DoD Acquisition Programs

    DTIC Science & Technology

    2014-07-01

    world found that a primary cause of post- design requirements change was “keeping the software and hardware engineers … out of the decision making...engineers translate systems requirements to software requirements to logical design (architecture) in a significantly different way than other types of...software cause software engineers to approach requirements devel- opment and design differently from other forms of engineering. Rather than tying the

  19. Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering Workforce Development

    DTIC Science & Technology

    2010-04-01

    Knowledge Application domain Procedural design Cobol & Assembler Numerical analysis Skills Requirements analysis System design Project management...Software Engineer III Knowledge Application domain Procedural design Cobol & Assembler Num rical analysis Skills Requirements analysis Software Engineer II...Knowledge Application domain Procedural design Cobol & Assembler Num rical analysis Software Engineer I Knowledge Application domain Procedural

  20. Software Process Improvement through the Removal of Project-Level Knowledge Flow Obstacles: The Perceptions of Software Engineers

    ERIC Educational Resources Information Center

    Mitchell, Susan Marie

    2012-01-01

    Uncontrollable costs, schedule overruns, and poor end product quality continue to plague the software engineering field. Innovations formulated with the expectation to minimize or eliminate cost, schedule, and quality problems have generally fallen into one of three categories: programming paradigms, software tools, and software process…

  1. Software forecasting as it is really done: A study of JPL software engineers

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann; Hihn, Jairus M.; Bruno, Kristin J.; Fouser, Thomas J.; Tausworthe, Robert C.

    1993-01-01

    This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally funded research task to study the costing process and parameters used by internally recognized software cost estimating experts. Protocol Analysis and Markov process modeling were used to capture software engineer's forecasting mental models. While there is significant variation between the mental models that were studied, it was nevertheless possible to identify a core set of cost forecasting activities, and it was also found that the mental models cluster around three forecasting techniques. Further partitioning of the mental models revealed clustering of activities, that is very suggestive of a forecasting lifecycle. The different forecasting methods identified were based on the use of multiple-decomposition steps or multiple forecasting steps. The multiple forecasting steps involved either forecasting software size or an additional effort forecast. Virtually no subject used risk reduction steps in combination. The results of the analysis include: the identification of a core set of well defined costing activities, a proposed software forecasting life cycle, and the identification of several basic software forecasting mental models. The paper concludes with a discussion of the implications of the results for current individual and institutional practices.

  2. Benchmarking the ATLAS software through the Kit Validation engine

    NASA Astrophysics Data System (ADS)

    De Salvo, Alessandro; Brasolin, Franco

    2010-04-01

    The measurement of the experiment software performance is a very important metric in order to choose the most effective resources to be used and to discover the bottlenecks of the code implementation. In this work we present the benchmark techniques used to measure the ATLAS software performance through the ATLAS offline testing engine Kit Validation and the online portal Global Kit Validation. The performance measurements, the data collection, the online analysis and display of the results will be presented. The results of the measurement on different platforms and architectures will be shown, giving a full report on the CPU power and memory consumption of the Monte Carlo generation, simulation, digitization and reconstruction of the most CPU-intensive channels. The impact of the multi-core computing on the ATLAS software performance will also be presented, comparing the behavior of different architectures when increasing the number of concurrent processes. The benchmark techniques described in this paper have been used in the HEPiX group since the beginning of 2008 to help defining the performance metrics for the High Energy Physics applications, based on the real experiment software.

  3. Changes and challenges in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose

    1994-01-01

    Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.

  4. Measuring the effect of conflict on software engineering teams.

    PubMed

    Karn, J S; Cowling, A J

    2008-05-01

    This article describes a project that aimed to uncover the effects of different forms of conflict on team performance during the important feasibility, requirements analysis, and design phases of software engineering (SE) projects. The research subjects were master of science students who were working to produce software commissioned by real-world clients. A template was developed that allowed researchers to record details of any conflicts that occurred. It was found that some forms of conflict were more damaging than others and that the frequency and intensity of specific conflicts are important factors to consider. The experience of the researchers when using the final template suggests that it is a valuable weapon to have in one's arsenal if one is interested in observing and recording the details of conflict in either SE teams or teams in different contexts.

  5. Engine structures modeling software system: Computer code. User's manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.

  6. An evaluation of expert systems for software engineering management

    NASA Technical Reports Server (NTRS)

    Ramsey, Connie Loggia; Basili, Victor R.

    1989-01-01

    The development of four separate prototype expert systems to aid in software engineering management is described. Given the values for certain metrics, these systems provide interpretations which explain any abnormal patterns of these values during the development of a software project. The four expert systems, which solve the same problem, were built using two different approaches to knowledge acquisition, a bottom-up approach and a top-down approach, and two different expert system methods, rule-based deduction and frame-based abduction. In a comparison to see which methods might better suit the needs of this field, it was found that the bottom-up approach led to better results than did the top-down approach, and the rule-based deduction systems using simple rules provided more complete and correct solutions than did the frame-based abduction systems.

  7. Open source software engineering for geoscientific modeling applications

    NASA Astrophysics Data System (ADS)

    Bilke, L.; Rink, K.; Fischer, T.; Kolditz, O.

    2012-12-01

    , static analysis tools) - Informs developers on errors (via email) - Generates source code documentation - Provides binaries for end users These points enhance the software development process considerably. Firstly, platform independence is maintained. Additionally, errors in the source code can be tracked down easily. Lastly, developers gain access to code analysis tools and up-to-date source code documentation.; Overview of the OpenGeoSys software engineering workflow

  8. Ada Implementation Guide. Software Engineering With Ada. Volume 1

    DTIC Science & Technology

    1994-04-01

    teaching, the student is less likely to readily adopt new, more powerful ways of accomplishing old tasks 122 Depatn of the NaY I ! Trablng and Educaion and...Maturity Model3 (CMU/SEI-92-TR-25, ESC-TR-/92-0M5). Pittsburgh, PA : Carnegie-Mellon University, 1992. SBoehm. B.W. Software Engineering Economics...Pittsburgh, PA : Carnegie-Mellon University, 19-21 March 1991. £ Contrast: Ada 9X and C++, Schonberg, E. New York University, 1992 (Distributed by Ada IC on

  9. SEI Report on Graduate Software Engineering Education for 1991

    DTIC Science & Technology

    1991-04-01

    be exemplified by the case of the Therac - 25 therapeutic radiation machine. The machine evolved from earlier designs, with hardware func- tion being...Curriculum Topic Index 17 2.6. Curriculum Design 21 2.7. Project Experience Component 21 2.8. Electives 25 2.9. Pedagogical Considerations 25 2.10. The...advanced programming. CMU/SEI-91-TR-2 25 2.8. Electives Electives may comprise 20% to 40% of a curriculum. Although software engineering is a young

  10. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 4

    DTIC Science & Technology

    2007-04-01

    plan-driven software proponents into the systems engineering world. by Dr. Richard Turner CMMI Level 5 and the Team Software Process The 309th Software...at Agile development from Dr. Richard Turner in Toward Agile Systems Engineering Processes. In further discussions, my co-sponsors at the 309th...this question by comparing core agile characteristics to those of traditional systems engineering. Dr. Richard Turner Systems and Software Consortium

  11. Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj

    2010-01-01

    The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings

  12. Software for Preprocessing Data from Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  13. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2002-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC "E" test-stand complex and utilize the SSC file format. The programs are the following: 1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel; 2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris); and 3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  14. Open source projects in software engineering education: a mapping study

    NASA Astrophysics Data System (ADS)

    Nascimento, Debora M. C.; Almeida Bittencourt, Roberto; Chavez, Christina

    2015-01-01

    Context: It is common practice in academia to have students work with "toy" projects in software engineering (SE) courses. One way to make such courses more realistic and reduce the gap between academic courses and industry needs is getting students involved in open source projects (OSP) with faculty supervision. Objective: This study aims to summarize the literature on how OSP have been used to facilitate students' learning of SE. Method: A systematic mapping study was undertaken by identifying, filtering and classifying primary studies using a predefined strategy. Results: 72 papers were selected and classified. The main results were: (a) most studies focused on comprehensive SE courses, although some dealt with specific areas; (b) the most prevalent approach was the traditional project method; (c) studies' general goals were: learning SE concepts and principles by using OSP, learning open source software or both; (d) most studies tried out ideas in regular courses within the curriculum; (e) in general, students had to work with predefined projects; (f) there was a balance between approaches where instructors had either inside control or no control on the activities performed by students; (g) when learning was assessed, software artefacts, reports and presentations were the main instruments used by teachers, while surveys were widely used for students' self-assessment; (h) most studies were published in the last seven years. Conclusions: The resulting map gives an overview of the existing initiatives in this context and shows gaps where further research can be pursued.

  15. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    NASA Astrophysics Data System (ADS)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  16. Shaping Software Engineering Curricula Using Open Source Communities: A Case Study

    ERIC Educational Resources Information Center

    Bowring, James; Burke, Quinn

    2016-01-01

    This paper documents four years of a novel approach to teaching a two-course sequence in software engineering as part of the ABET-accredited computer science curriculum at the College of Charleston. This approach is team-based and centers on learning software engineering in the context of open source software projects. In the first course, teams…

  17. In the soft-to-hard technical spectrum: Where is software engineering?

    NASA Technical Reports Server (NTRS)

    Leibfried, Theodore F.; Macdonald, Robert B.

    1992-01-01

    In the computer journals and tabloids, there have been a plethora of articles written about the software engineering field. But while advocates of the need for an engineering approach to software development, it is impressive how many authors have treated the subject of software engineering without adequately addressing the fundamentals of what engineering as a discipline consists of. A discussion is presented of the various related facets of this issue in a logical framework to advance the thesis that the software development process is necessarily an engineering process. The purpose is to examine more of the details of the issue of whether or not the design and development of software for digital computer processing systems should be both viewed and treated as a legitimate field of professional engineering. Also, the type of academic and professional level education programs that would be required to support a software engineering discipline is examined.

  18. Software Engineering Support Activities for Very Small Entities

    NASA Astrophysics Data System (ADS)

    Ribaud, Vincent; Saliou, Philippe; O'Connor, Rory V.; Laporte, Claude Y.

    The emerging ISO/IEC 29110 standard Lifecycle profiles for Very Small Entities has at its core a Management and Engineering Guides which is targeted at very small entity (enterprise, organization, department or project) having up to 25 people, to assist them unlock the potential benefits of using standards which are specifically designed to address there needs. The developers of the standard, ISO/IEC JCT1/SC7 Working Group 24 (WG24), recommend the use of pilot projects as a mean to trial the adoption of the new International standard in small organisations. Accordingly an ISO/IEC 29110 pilot project has been established between the Software Engineering group of Brest University and a 14 person company with the aim of establishing an engineering discipline for a new web-based project. This paper details the lessons learned from the pilot project and based on our experiences with using ISO/IEC 29110 we identify a potential deficiency and accordingly propose new process area, "Infrastructure and Support" for include in the future evolution of ISO/IEC 29110 Process Profiles.

  19. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings Appendices

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.

  20. A Role-Playing Game for a Software Engineering Lab: Developing a Product Line

    ERIC Educational Resources Information Center

    Zuppiroli, Sara; Ciancarini, Paolo; Gabbrielli, Maurizio

    2012-01-01

    Software product line development refers to software engineering practices and techniques for creating families of similar software systems from a basic set of reusable components, called shared assets. Teaching how to deal with software product lines in a university lab course is a challenging task, because there are several practical issues that…

  1. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: synthesis - integrating product and process; Serpent - a user interface management system; prototyping distributed simulation networks; and software reuse.

  2. The Many Faces of a Software Engineer in a Research Community

    SciTech Connect

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks at the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.

  3. Variable length data formats. [in hardware-software engineering

    NASA Technical Reports Server (NTRS)

    Brakefield, J. C.; Quinn, M. J.

    1978-01-01

    The purpose of this paper is to discuss a number of variable length floating point and integer formats and to give the various advantages and disadvantages of their use. Often it is known in advance that a given integer will not exceed a certain magnitude or that a particular floating point number is accurate to only 'n' places of accuracy. Faced with this, it is good engineering to choose variable length floating point and integer formats which require the least amount of hardware or the minimum amount of software or which have some other dominant advantage. The formats discussed have the advantage that length change algorithms are invariant with respect to data types (unsigned, signed, floating point, integers, and complex numbers). The STARAN associative array processor, which uses a completely variable fixed point and floating point formats, is described.

  4. Applying Software Engineering Metrics to Land Surface Parameterization Schemes.

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Henderson-Sellers, B.; Pollard, D.; Verner, J. M.; Pitman, A. J.

    1995-05-01

    In addition to model validation techniques and intermodel comparison projects, the authors propose the use of software engineering metrics as an additional tool for the enhancement of `quality' in climate models. By discriminating between internal, directly measurable characteristics of structural complexity, and external characteristics, such as maintainability and comprehensibility, a way to benefit climate modeling by the use of easily derivable metrics is explored. As a small illustration, the results of a pilot project are presented. This is a subproject of the Project for Intercomparison of Landsurface Parameterization Schemes in which the authors use some typical structural complexity metrics, namely, for control flow, size, and coupling. Finally, and purely indicatively, the authors compare the results obtained from these metrics with scientists' subjective views of the psychological complexity of the programs.

  5. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  6. Repository-based software engineering program: Concept document

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document provides the context for Repository-Based Software Engineering's (RBSE's) evolving functional and operational product requirements, and it is the parent document for development of detailed technical and management plans. When furnished, requirements documents will serve as the governing RBSE product specification. The RBSE Program Management Plan will define resources, schedules, and technical and organizational approaches to fulfilling the goals and objectives of this concept. The purpose of this document is to provide a concise overview of RBSE, describe the rationale for the RBSE Program, and define a clear, common vision for RBSE team members and customers. The document also provides the foundation for developing RBSE user and system requirements and a corresponding Program Management Plan. The concept is used to express the program mission to RBSE users and managers and to provide an exhibit for community review.

  7. Introducing Risk Management Techniques Within Project Based Software Engineering Courses

    NASA Astrophysics Data System (ADS)

    Port, Daniel; Boehm, Barry

    2002-03-01

    In 1996, USC switched its core two-semester software engineering course from a hypothetical-project, homework-and-exam course based on the Bloom taxonomy of educational objectives (knowledge, comprehension, application, analysis, synthesis, and evaluation). The revised course is a real-client team-project course based on the CRESST model of learning objectives (content understanding, problem solving, collaboration, communication, and self-regulation). We used the CRESST cognitive demands analysis to determine the necessary student skills required for software risk management and the other major project activities, and have been refining the approach over the last 5 years of experience, including revised versions for one-semester undergraduate and graduate project course at Columbia. This paper summarizes our experiences in evolving the risk management aspects of the project course. These have helped us mature more general techniques such as risk-driven specifications, domain-specific simplifier and complicator lists, and the schedule as an independent variable (SAIV) process model. The largely positive results in terms of review of pass / fail rates, client evaluations, product adoption rates, and hiring manager feedback are summarized as well.

  8. Software Engineering Research/Developer Collaborations (C104)

    NASA Technical Reports Server (NTRS)

    Shell, Elaine; Shull, Forrest

    2005-01-01

    The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with

  9. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  10. Evolutionary Software Engineering at the Naval Postgraduate School (NPS), Monterey

    DTIC Science & Technology

    1990-10-01

    person may not be able to understand them all in detail. Currently software objects, processes, and tools are not completely understood, partially...software objects, software processes, and tools * insufficient use of validated, prefabricated, & adaptable software components * risks of misdevelopment...due to late or insufficient feedback information * individuality of application domains, organizations, methods and tools implies need to adapt

  11. Free and Open Source Software underpinning the European Forest Data Centre

    NASA Astrophysics Data System (ADS)

    Rodriguez Aseretto, Dario; Di Leo, Margherita; de Rigo, Daniele; Corti, Paolo; McInerney, Daniel; Camia, Andrea; San-Miguel-Ayanz, Jesús

    2013-04-01

    Worldwide, governments are growingly focusing [1] on free and open source software (FOSS) as a move toward transparency and the freedom to run, copy, study, change and improve the software [2]. The European Commission (EC) is also supporting the development of FOSS (see e.g., [3]). In addition to the financial savings, FOSS contributes to scientific knowledge freedom in computational science (CS) [4] and is increasingly rewarded in the science-policy interface within the emerging paradigm of open science [5-8]. Since complex computational science applications may be affected by software uncertainty [4,9-11], FOSS may help to mitigate part of the impact of software errors by CS community-driven open review, correction and evolution of scientific code [10,12-15]. The continental scale of EC science-based policy support implies wide networks of scientific collaboration. Thematic information systems also may benefit from this approach within reproducible [16] integrated modelling [4]. This is supported by the EC strategy on FOSS: "for the development of new information systems, where deployment is foreseen by parties outside of the EC infrastructure, [F]OSS will be the preferred choice and in any case used whenever possible" [17]. The aim of this contribution is to highlight how a continental scale information system may exploit and integrate FOSS technologies within the transdisciplinary research underpinning such a complex system. A European example is discussed where FOSS innervates both the structure of the information system itself and the inherent transdisciplinary research for modelling the data and information which constitute the system content. The information system. The European Forest Data Centre (EFDAC, http://forest.jrc.ec.europa.eu/efdac/) has been established at the EC Joint Research Centre (JRC) as the focal point for forest data and information in Europe to supply European decision-makers with processed, quality checked and timely policy relevant

  12. The Effective Use of Professional Software in an Undergraduate Mining Engineering Curriculum

    ERIC Educational Resources Information Center

    Kecojevic, Vladislav; Bise, Christopher; Haight, Joel

    2005-01-01

    The use of professional software is an integral part of a student's education in the mining engineering curriculum at The Pennsylvania State University. Even though mining engineering represents a limited market across U.S. educational institutions, the goal still exists for using this type of software to enrich the learning environment with…

  13. Success Factors for Using Case Method in Teaching and Learning Software Engineering

    ERIC Educational Resources Information Center

    Razali, Rozilawati; Zainal, Dzulaiha Aryanee Putri

    2013-01-01

    The Case Method (CM) has long been used effectively in Social Science education. Its potential use in Applied Science such as Software Engineering (SE) however has yet to be further explored. SE is an engineering discipline that concerns the principles, methods and tools used throughout the software development lifecycle. In CM, subjects are…

  14. Changes in Transferable Knowledge Resulting from Study in a Graduate Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Bareiss, Ray; Sedano, Todd; Katz, Edward

    2012-01-01

    This paper presents the initial results of a study of the evolution of students' knowledge of software engineering from the beginning to the end of a master's degree curriculum in software engineering. Students were presented with a problem involving the initiation of a complex new project at the beginning of the program and again at the end of…

  15. Using UML Modeling to Facilitate Three-Tier Architecture Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Mitra, Sandeep

    2014-01-01

    This article presents the use of a model-centric approach to facilitate software development projects conforming to the three-tier architecture in undergraduate software engineering courses. Many instructors intend that such projects create software applications for use by real-world customers. While it is important that the first version of these…

  16. Parallel multiphysics algorithms and software for computational nuclear engineering

    NASA Astrophysics Data System (ADS)

    Gaston, D.; Hansen, G.; Kadioglu, S.; Knoll, D. A.; Newman, C.; Park, H.; Permann, C.; Taitano, W.

    2009-07-01

    There is a growing trend in nuclear reactor simulation to consider multiphysics problems. This can be seen in reactor analysis where analysts are interested in coupled flow, heat transfer and neutronics, and in fuel performance simulation where analysts are interested in thermomechanics with contact coupled to species transport and chemistry. These more ambitious simulations usually motivate some level of parallel computing. Many of the coupling efforts to date utilize simple code coupling or first-order operator splitting, often referred to as loose coupling. While these approaches can produce answers, they usually leave questions of accuracy and stability unanswered. Additionally, the different physics often reside on separate grids which are coupled via simple interpolation, again leaving open questions of stability and accuracy. Utilizing state of the art mathematics and software development techniques we are deploying next generation tools for nuclear engineering applications. The Jacobian-free Newton-Krylov (JFNK) method combined with physics-based preconditioning provide the underlying mathematical structure for our tools. JFNK is understood to be a modern multiphysics algorithm, but we are also utilizing its unique properties as a scale bridging algorithm. To facilitate rapid development of multiphysics applications we have developed the Multiphysics Object-Oriented Simulation Environment (MOOSE). Examples from two MOOSE-based applications: PRONGHORN, our multiphysics gas cooled reactor simulation tool and BISON, our multiphysics, multiscale fuel performance simulation tool will be presented.

  17. Paralel Multiphysics Algorithms and Software for Computational Nuclear Engineering

    SciTech Connect

    D. Gaston; G. Hansen; S. Kadioglu; D. A. Knoll; C. Newman; H. Park; C. Permann; W. Taitano

    2009-08-01

    There is a growing trend in nuclear reactor simulation to consider multiphysics problems. This can be seen in reactor analysis where analysts are interested in coupled flow, heat transfer and neutronics, and in fuel performance simulation where analysts are interested in thermomechanics with contact coupled to species transport and chemistry. These more ambitious simulations usually motivate some level of parallel computing. Many of the coupling efforts to date utilize simple 'code coupling' or first-order operator splitting, often referred to as loose coupling. While these approaches can produce answers, they usually leave questions of accuracy and stability unanswered. Additionally, the different physics often reside on separate grids which are coupled via simple interpolation, again leaving open questions of stability and accuracy. Utilizing state of the art mathematics and software development techniques we are deploying next generation tools for nuclear engineering applications. The Jacobian-free Newton-Krylov (JFNK) method combined with physics-based preconditioning provide the underlying mathematical structure for our tools. JFNK is understood to be a modern multiphysics algorithm, but we are also utilizing its unique properties as a scale bridging algorithm. To facilitate rapid development of multiphysics applications we have developed the Multiphysics Object-Oriented Simulation Environment (MOOSE). Examples from two MOOSE based applications: PRONGHORN, our multiphysics gas cooled reactor simulation tool and BISON, our multiphysics, multiscale fuel performance simulation tool will be presented.

  18. Advanced software development workstation project: Engineering scripting language. Graphical editor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  19. Evaluating software development by analysis of changes: The data from the software engineering laboratory

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An effective data collection methodology for evaluating software development methodologies was applied to four different software development projects. Goals of the data collection included characterizing changes and errors, characterizing projects and programmers, identifying effective error detection and correction techniques, and investigating ripple effects. The data collected consisted of changes (including error corrections) made to the software after code was written and baselined, but before testing began. Data collection and validation were concurrent with software development. Changes reported were verified by interviews with programmers.

  20. Engineering Ethics at the Catholic University of Lille (France): Research and Teaching in a European Context.

    ERIC Educational Resources Information Center

    Didier, Christelle

    2000-01-01

    Discusses the development of non-technical education and ethics in engineering curricula in Europe and particularly in France. Investigates two projects at the Catholic University of Lille. The first project is an engineering ethics course and the second has to do with writing a European handbook on engineering ethics as a discipline. (Contains 28…

  1. Software engineering project management - A state-of-the-art report

    NASA Technical Reports Server (NTRS)

    Thayer, R. H.; Lehman, J. H.

    1977-01-01

    The management of software engineering projects in the aerospace industry was investigated. The survey assessed such features as contract type, specification preparation techniques, software documentation required by customers, planning and cost-estimating, quality control, the use of advanced program practices, software tools and test procedures, the education levels of project managers, programmers and analysts, work assignment, automatic software monitoring capabilities, design and coding reviews, production times, success rates, and organizational structure of the projects.

  2. Software tools of the Computis European project to process mass spectrometry images.

    PubMed

    Robbe, Marie-France; Both, Jean-Pierre; Prideaux, Brendan; Klinkert, Ivo; Picaud, Vincent; Schramm, Thorsten; Hester, Atfons; Guevara, Victor; Stoeckli, Markus; Roempp, Andreas; Heeren, Ron M A; Spengler, Bernhard; Gala, Olivier; Haan, Serge

    2014-01-01

    Among the needs usually expressed by teams using mass spectrometry imaging, one that often arises is that for user-friendly software able to manage huge data volumes quickly and to provide efficient assistance for the interpretation of data. To answer this need, the Computis European project developed several complementary software tools to process mass spectrometry imaging data. Data Cube Explorer provides a simple spatial and spectral exploration for matrix-assisted laser desorption/ionisation-time of flight (MALDI-ToF) and time of flight-secondary-ion mass spectrometry (ToF-SIMS) data. SpectViewer offers visualisation functions, assistance to the interpretation of data, classification functionalities, peak list extraction to interrogate biological database and image overlay, and it can process data issued from MALDI-ToF, ToF-SIMS and desorption electrospray ionisation (DESI) equipment. EasyReg2D is able to register two images, in American Standard Code for Information Interchange (ASCII) format, issued from different technologies. The collaboration between the teams was hampered by the multiplicity of equipment and data formats, so the project also developed a common data format (imzML) to facilitate the exchange of experimental data and their interpretation by the different software tools. The BioMap platform for visualisation and exploration of MALDI-ToF and DESI images was adapted to parse imzML files, enabling its access to all project partners and, more globally, to a larger community of users. Considering the huge advantages brought by the imzML standard format, a specific editor (vBrowser) for imzML files and converters from proprietary formats to imzML were developed to enable the use of the imzML format by a broad scientific community. This initiative paves the way toward the development of a large panel of software tools able to process mass spectrometry imaging datasets in the future.

  3. The Use of the Software MATLAB To Improve Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Damatto, T.; Maegava, L. M.; Filho, R. Maciel

    In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…

  4. Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C. M.

    2006-01-01

    Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.

  5. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 2

    DTIC Science & Technology

    2008-02-01

    FEB 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4 . TITLE AND SUBTITLE CrossTalk: The Journal of Defense Software Engineering...The Journal of Defense Software Engineering February 2008 4 9 14 19 22 27 3 8 18 28 29 30 31 D ep ar t m e n t s From the Publisher Coming Events Call...for both. Good Things Come in Small Packages Elizabeth Starrett Publisher 4 CROSSTALK The Journal of Defense Software Engineering February 2008 DRILS

  6. Accreditation of Engineering Programmes: European Perspectives and Challenges in a Global Context

    ERIC Educational Resources Information Center

    Augusti, Giuliano

    2007-01-01

    The EUR-ACE Socrates-Tempus project (September 2004/March 2006) proposed a decentralized European system for accreditation of engineering programmes in the "Bologna process" area (European Higher Education Area) at the First and Second Cycle (FC and SC) level (but including "Integrated Programmes", i.e. programmes leading…

  7. European Software Engineering Process Group Conference (2nd Annual), EUROPEAN SEPG󈨥. Delegate Material, Conference

    DTIC Science & Technology

    1997-06-19

    The product life cycle process must be generic in essential parts and allow to create variants for different project classes * must allow seamless...Phase 2 (Step 1): Project definition Work out improvements ( Generic part) Transfer ,nto P:business units- Phase 2 (Step 2): Business unit specific ada...times Exceptions at system release New products/Versions Modified features per version Customer projects Redesign probability for ASICs r quir Iets [Il~l

  8. Engineering Play: Children's Software and the Cultural Politics of Edutainment

    ERIC Educational Resources Information Center

    Ito, Mizuko

    2006-01-01

    The late 1980s saw the emergence of a new genre of instructional media, "edutainment", which utilized the capabilities of multimedia personal computers to animate software designed to both educate and entertain young children. This paper describes the production of, marketing of and play with edutainment software as a contemporary example of…

  9. Seven Processes that Enable NASA Software Engineering Technologies

    NASA Technical Reports Server (NTRS)

    Housch, Helen; Godfrey, Sally

    2011-01-01

    This slide presentation reviews seven processes that NASA uses to ensure that software is developed, acquired and maintained as specified in the NPR 7150.2A requirement. The requirement is to ensure that all software be appraised for the Capability Maturity Model Integration (CMMI). The enumerated processes are: (7) Product Integration, (6) Configuration Management, (5) Verification, (4) Software Assurance, (3) Measurement and Analysis, (2) Requirements Management and (1) Planning & Monitoring. Each of these is described and the group(s) that are responsible is described.

  10. Software engineering and data management for automated payload experiment tool

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Provancha, Anna; Chattam, David

    1994-01-01

    The Microgravity Projects Office identified a need to develop a software package that will lead experiment developers through the development planning process, obtain necessary information, establish an electronic data exchange avenue, and allow easier manipulation/reformatting of the collected information. An MS-DOS compatible software package called the Automated Payload Experiment Tool (APET) has been developed and delivered. The objective of this task is to expand on the results of the APET work previously performed by UAH and provide versions of the software in a Macintosh and Windows compatible format.

  11. Software engineering and data management for automated payload experiment tool

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Provancha, Anna; Chattam, David

    1994-01-01

    The Microgravity Projects Office identified a need to develop a software package that will lead experiment developers through the development planning process, obtain necessary information, establish an electronic data exchange avenue, and allow easier manipulation/reformatting of the collected information. An MS-DOS compatible software package called the Automated Payload Experiment Tool (APET) has been developed and delivered. The objective of this task is to expand on the results of the APET work previously performed by University of Alabama in Huntsville (UAH) and provide versions of the software in a Macintosh and Windows compatible format. Appendix 1 science requirements document (SRD) Users Manual is attached.

  12. Integrating Value and Utility Concepts into a Value Decomposition Model for Value-Based Software Engineering

    NASA Astrophysics Data System (ADS)

    Rönkkö, Mikko; Frühwirth, Christian; Biffl, Stefan

    Value-based software engineering (VBSE) is an emerging stream of research that addresses the value considerations of software and extends the traditional scope of software engineering from technical issues to business-relevant decision problems. While the concept of value in VBSE relies on the well-established economic value concept, the exact definition for this key concept within VBSE domain is still not well defined or agreed upon. We argue the discourse on value can significantly benefit from drawing from research in management, particularly software business. In this paper, we present three aspects of software: as a technology, as a design, and as an artifact. Furthermore, we divide the value concept into three components that are relevant for software product development companies and their customers: intrinsic value, externalities and option value. Finally, we propose a value decomposition matrix based on technology views and value components.

  13. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    SciTech Connect

    Carrington, David Bradley; Waters, Jiajia

    2016-10-25

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  14. Sustainable access to data, products, services and software from the European seismological Research Infrastructures: the EPOS TCS Seismology

    NASA Astrophysics Data System (ADS)

    Haslinger, Florian; Dupont, Aurelien; Michelini, Alberto; Rietbrock, Andreas; Sleeman, Reinoud; Wiemer, Stefan; Basili, Roberto; Bossu, Rémy; Cakti, Eser; Cotton, Fabrice; Crawford, Wayne; Diaz, Jordi; Garth, Tom; Locati, Mario; Luzi, Lucia; Pinho, Rui; Pitilakis, Kyriazis; Strollo, Angelo

    2016-04-01

    Easy, efficient and comprehensive access to data, data products, scientific services and scientific software is a key ingredient in enabling research at the frontiers of science. Organizing this access across the European Research Infrastructures in the field of seismology, so that it best serves user needs, takes advantage of state-of-the-art ICT solutions, provides cross-domain interoperability, and is organizationally and financially sustainable in the long term, is the core challenge of the implementation phase of the Thematic Core Service (TCS) Seismology within the EPOS-IP project. Building upon the existing European-level infrastructures ORFEUS for seismological waveforms, EMSC for seismological products, and EFEHR for seismological hazard and risk information, and implementing a pilot Computational Earth Science service starting from the results of the VERCE project, the work within the EPOS-IP project focuses on improving and extending the existing services, aligning them with global developments, to at the end produce a well coordinated framework that is technically, organizationally, and financially integrated with the EPOS architecture. This framework needs to respect the roles and responsibilities of the underlying national research infrastructures that are the data owners and main providers of data and products, and allow for active input and feedback from the (scientific) user community. At the same time, it needs to remain flexible enough to cope with unavoidable challenges in the availability of resources and dynamics of contributors. The technical work during the next years is organized in four areas: - constructing the next generation software architecture for the European Integrated (waveform) Data Archive EIDA, developing advanced metadata and station information services, fully integrate strong motion waveforms and derived parametric engineering-domain data, and advancing the integration of mobile (temporary) networks and OBS deployments in

  15. An Integrated Approach to Functional Engineering: An Engineering Database for Harness, Avionics and Software

    NASA Astrophysics Data System (ADS)

    Piras, Annamaria; Malucchi, Giovanni

    2012-08-01

    In the design and development phase of a new program one of the critical aspects is the integration of all the functional requirements of the system and the control of the overall consistency between the identified needs on one side and the available resources on the other side, especially when both the required needs and available resources are not yet consolidated, but they are evolving as the program maturity increases.The Integrated Engineering Harness Avionics and Software database (IDEHAS) is a tool that has been developed to support this process in the frame of the Avionics and Software disciplines through the different phases of the program. The tool is in fact designed to allow an incremental build up of the avionics and software systems, from the description of the high level architectural data (available in the early stages of the program) to the definition of the pin to pin connectivity information (typically consolidated in the design finalization stages) and finally to the construction and validation of the detailed telemetry parameters and commands to be used in the test phases and in the Mission Control Centre. The key feature of this approach and of the associated tool is that it allows the definition and the maintenance / update of all these data in a single, consistent environment.On one side a system level and concurrent approach requires the feasibility to easily integrate and update the best data available since the early stages of a program in order to improve confidence in the consistency and to control the design information.On the other side, the amount of information of different typologies and the cross-relationships among the data imply highly consolidated structures requiring lot of checks to guarantee the data content consistency with negative effects on simplicity and flexibility and often limiting the attention to special needs and to the interfaces with other disciplines.

  16. A Middleware Platform for Providing Mobile and Embedded Computing Instruction to Software Engineering Students

    ERIC Educational Resources Information Center

    Mattmann, C. A.; Medvidovic, N.; Malek, S.; Edwards, G.; Banerjee, S.

    2012-01-01

    As embedded software systems have grown in number, complexity, and importance in the modern world, a corresponding need to teach computer science students how to effectively engineer such systems has arisen. Embedded software systems, such as those that control cell phones, aircraft, and medical equipment, are subject to requirements and…

  17. Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) user's guide and system description

    NASA Technical Reports Server (NTRS)

    Lo, P. S.; Card, D.

    1983-01-01

    The Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) is explained. The various software facilities of the SEL, DBAM operating procedures, and DBAM system information are described. The relationships among DBAM components (baseline diagrams), component descriptions, overlay descriptions, indirect command file listings, file definitions, and sample data collection forms are provided.

  18. Incorporating Computer-Aided Software in the Undergraduate Chemical Engineering Core Courses

    ERIC Educational Resources Information Center

    Alnaizy, Raafat; Abdel-Jabbar, Nabil; Ibrahim, Taleb H.; Husseini, Ghaleb A.

    2014-01-01

    Introductions of computer-aided software and simulators are implemented during the sophomore-year of the chemical engineering (ChE) curriculum at the American University of Sharjah (AUS). Our faculty concurs that software integration within the curriculum is beneficial to our students, as evidenced by the positive feedback received from industry…

  19. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  20. QUICK - AN INTERACTIVE SOFTWARE ENVIRONMENT FOR ENGINEERING DESIGN

    NASA Technical Reports Server (NTRS)

    Schlaifer, R. S.

    1994-01-01

    QUICK provides the computer user with the facilities of a sophisticated desk calculator which can perform scalar, vector and matrix arithmetic, propagate conic orbits, determine planetary and satellite coordinates and perform other related astrodynamic calculations within a Fortran-like environment. QUICK is an interpreter, therefore eliminating the need to use a compiler or a linker to run QUICK code. QUICK capabilities include options for automated printing of results, the ability to submit operating system commands on some systems, and access to a plotting package (MASL)and a text editor without leaving QUICK. Mathematical and programming features of QUICK include the ability to handle arbitrary algebraic expressions, the capability to define user functions in terms of other functions, built-in constants such as pi, direct access to useful COMMON areas, matrix capabilities, extensive use of double precision calculations, and the ability to automatically load user functions from a standard library. The MASL (The Multi-mission Analysis Software Library) plotting package, included in the QUICK package, is a set of FORTRAN 77 compatible subroutines designed to facilitate the plotting of engineering data by allowing programmers to write plotting device independent applications. Its universality lies in the number of plotting devices it puts at the user's disposal. The MASL package of routines has proved very useful and easy to work with, yielding good plots for most new users on the first or second try. The functions provided include routines for creating histograms, "wire mesh" surface plots and contour plots as well as normal graphs with a large variety of axis types. The library has routines for plotting on cartesian, polar, log, mercator, cyclic, calendar, and stereographic axes, and for performing automatic or explicit scaling. The lengths of the axes of a plot are completely under the control of the program using the library. Programs written to use the MASL

  1. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  2. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  3. Is Chinese Software Engineering Professionalizing or Not?: Specialization of Knowledge, Subjective Identification and Professionalization

    ERIC Educational Resources Information Center

    Yang, Yan

    2012-01-01

    Purpose: This paper aims to discuss the challenge for the classical idea of professionalism in understanding the Chinese software engineering industry after giving a close insight into the development of this industry as well as individual engineers with a psycho-societal perspective. Design/methodology/approach: The study starts with the general…

  4. Turbine Engine Control Synthesis. Volume 2. Simulation and Controller Software

    DTIC Science & Technology

    1975-03-01

    kinds of engines the cost to design * should be less than for presently used methods. Volume I summarizes opti-- rma l ’ontrol dt-l-ign methodology, A...Unclassified @acs.?’V CLASIPMCATHIO OF THIS PAOR(Mba D~a 5u 20. Abstract iContinued) A cowmand controller is synthesized and wind tunnel tested...There is stron stability. Volume II contains three Appendices. Appendix A contains the details of engine math models, The softwara for the wind

  5. A methodology for collecting valid software engineering data

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Weiss, David M.

    1983-01-01

    An effective data collection method for evaluating software development methodologies and for studying the software development process is described. The method uses goal-directed data collection to evaluate methodologies with respect to the claims made for them. Such claims are used as a basis for defining the goals of the data collection, establishing a list of questions of interest to be answered by data analysis, defining a set of data categorization schemes, and designing a data collection form. The data to be collected are based on the changes made to the software during development, and are obtained when the changes are made. To insure accuracy of the data, validation is performed concurrently with software development and data collection. Validation is based on interviews with those people supplying the data. Results from using the methodology show that data validation is a necessary part of change data collection. Without it, as much as 50% of the data may be erroneous. Feasibility of the data collection methodology was demonstrated by applying it to five different projects in two different environments. The application showed that the methodology was both feasible and useful.

  6. Software Engineering Laboratory (SEL) programmer workbench phase 1 evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Phase 1 of the SEL programmer workbench consists of the design of the following three components: communications link, command language processor, and collection of software aids. A brief description, and evaluation, and recommendations are presented for each of these three components.

  7. A Concept Study for a National Software Engineering Database

    DTIC Science & Technology

    1992-07-01

    Elizabeth Bailey Nat Macon Institute for Data Analyses/ National Science Foundation Software Metrics, Inc Bruce Barnes Dale Martin National Science...Center Samuel Conte Celia Modell Purdue University Boeing CMU/SEI-92-TR-23 Barry Corson Warren Moseley U.S. Navy Texas Instruments Naval Air Systems

  8. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  9. International aerospace engineering: NASA shuttle and European Spacelab

    NASA Technical Reports Server (NTRS)

    Bilstein, R. E.

    1981-01-01

    NASA negotiations and contractual arrangements involving European space research organizations' participation in manned space operations and efforts in building Spacelab for the U.S. Reusable Space Shuttle are discussed. Some of the diplomatic and technical collaboration involved in the international effort is reviewed.

  10. Editorial: ESBES - European Society of Biochemical Engineering Sciences.

    PubMed

    Ferreira, Guilherme; Jungbauer, Alois

    2013-06-01

    The latest ESBES special issue on "Biochemical Engineering Sciences" is edited by Prof. Guilherme Ferreira (Chairman, ESBES) and Prof. Alois Jungbauer (co-Editor-in-Chief, Biotechnology Journal). This special issue comprises the latest research in biochemical engineering science presented at the 9(th) ESBES Conference held in Istanbul, Turkey in 2012.

  11. Software Engineering Principles 3-14 August 1981,

    DTIC Science & Technology

    1981-08-01

    Monterey, CA 93940 Computer , Software Computer Programming Training A 20. ATRACT (Continue on rovete side If necessary nd Identify by block number) This...Multiversion production and maintenance 3. Handling of undesired events (UEs) 4. Usual comon additional properties a. Machine "near" - machine dependent...modules: Model of abstract interface methodology 5. Specifications for virtual machine D. Influence on this course V. References Heninger, K. L. 1980

  12. The Use of Modeling for Flight Software Engineering on SMAP

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Jones, Chris G.; Reder, Leonard; Cheng, Shang-Wen

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission proposes to deploy an Earth-orbiting satellite with the goal of obtaining global maps of soil moisture content at regular intervals. Launch is currently planned in 2014. The spacecraft bus would be built at the Jet Propulsion Laboratory (JPL), incorporating both new avionics as well as hardware and software heritage from other JPL projects. [4] provides a comprehensive overview of the proposed mission

  13. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  14. Engineering Play: A Cultural History of Children's Software

    ERIC Educational Resources Information Center

    Ito, Mizuko

    2009-01-01

    Today, computers are part of kids' everyday lives, used both for play and for learning. We envy children's natural affinity for computers, the ease with which they click in and out of digital worlds. Thirty years ago, however, the computer belonged almost exclusively to business, the military, and academia. In "Engineering Play," Mizuko Ito…

  15. Impacts of software and its engineering on the carbon footprint of ICT

    SciTech Connect

    Kern, Eva; Dick, Markus; Naumann, Stefan; Hiller, Tim

    2015-04-15

    The energy consumption of information and communication technology (ICT) is still increasing. Even though several solutions regarding the hardware side of Green IT exist, the software contribution to Green IT is not well investigated. The carbon footprint is one way to rate the environmental impacts of ICT. In order to get an impression of the induced CO{sub 2} emissions of software, we will present a calculation method for the carbon footprint of a software product over its life cycle. We also offer an approach on how to integrate some aspects of carbon footprint calculation into software development processes and discuss impacts and tools regarding this calculation method. We thus show the relevance of energy measurements and the attention to impacts on the carbon footprint by software within Green Software Engineering.

  16. Software engineering and Ada (Trademark) training: An implementation model for NASA

    NASA Technical Reports Server (NTRS)

    Legrand, Sue; Freedman, Glenn

    1988-01-01

    The choice of Ada for software engineering for projects such as the Space Station has resulted in government and industrial groups considering training programs that help workers become familiar with both a software culture and the intricacies of a new computer language. The questions of how much time it takes to learn software engineering with Ada, how much an organization should invest in such training, and how the training should be structured are considered. Software engineering is an emerging, dynamic discipline. It is defined by the author as the establishment and application of sound engineering environments, tools, methods, models, principles, and concepts combined with appropriate standards, guidelines, and practices to support computing which is correct, modifiable, reliable and safe, efficient, and understandable throughout the life cycle of the application. Neither the training programs needed, nor the content of such programs, have been well established. This study addresses the requirements for training for NASA personnel and recommends an implementation plan. A curriculum and a means of delivery are recommended. It is further suggested that a knowledgeable programmer may be able to learn Ada in 5 days, but that it takes 6 to 9 months to evolve into a software engineer who uses the language correctly and effectively. The curriculum and implementation plan can be adapted for each NASA Center according to the needs dictated by each project.

  17. Engine Structures Analysis Software: Component Specific Modeling (COSMO)

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-01-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  18. Engine structures analysis software: Component Specific Modeling (COSMO)

    NASA Astrophysics Data System (ADS)

    McKnight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-08-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  19. Applying neural networks as software sensors for enzyme engineering.

    PubMed

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  20. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merion M.

    2002-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  1. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2004-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  2. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2003-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  3. Marooned on Mars: Mind-Spinning Books for Software Engineers

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    Dragonfly - NASA and the Crisis Aboard MIR (New York: HarperCollins Publishers), the story of the Russian-American misadventures on MIR. An expose with almost embarrassing detail about the inner-workings of Johnson Space Center in Houston, this book is best read with the JSC organization chart in hand. Here's the real world of engineering and life in extreme environments. It makes most other accounts of "requirements analysis" appear glib and simplistic. The book vividly portrays the sometimes harrowing experiences of the American astronauts in the web of Russian interpersonal relations and literally in the web of MIR's wiring. Burrough's exposition reveals how handling bureaucratic procedures and bulky facilities is as much a matter of moxie and goodwill as technical capability. Lessons from MIR showed NASA that getting to Mars required a different view of knowledge and improvisation-long-duration missions are not at all like the scripted and pre-engineered flights of Apollo or the Space Shuttle.

  4. A Methodology to Evaluate Agent Oriented Software Engineering Techniques

    SciTech Connect

    Lin, Chia-En; Kavi, Krishna M.; Sheldon, Frederick T; Daley, Kristopher M; Abercrombie, Robert K

    2007-01-01

    Systems using software agents (or multi-agent systems, MAS) are becoming more popular within the development mainstream because, as the name suggests, an agent aims to handle tasks autonomously with intelligence. To benefit from autonomous control and reduced running costs, system functions are performed automatically. Agent-oriented considerations are being steadily accepted into the various software design paradigms. Agents may work alone, but most commonly, they cooperate toward achieving some application goal(s). MAS's are components in systems that are viewed as many individuals living in a society working together. From a SE perspective, solving a problem should encompass problem realization, requirements analysis, architecture design and implementation. These steps should be implemented within a life-cycle process including testing, verification, and reengineering to proving the built system is sound. In this paper, we explore the various applications of agent-based systems categorized into different application domains. A baseline is developed herein to help us focus on the core of agent concepts throughout the comparative study and to investigate both the object-oriented and agent-oriented techniques that are available for constructing agent-based systems. In each respect, we address the conceptual background associated with these methodologies and how available tools can be applied within specific domains.

  5. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  6. Ethical education in software engineering: responsibility in the production of complex systems.

    PubMed

    Génova, Gonzalo; González, M Rosario; Fraga, Anabel

    2007-12-01

    Among the various contemporary schools of moral thinking, consequence-based ethics, as opposed to rule-based, seems to have a good acceptance among professionals such as software engineers. But naïve consequentialism is intellectually too weak to serve as a practical guide in the profession. Besides, the complexity of software systems makes it very hard to know in advance the consequences that will derive from professional activities in the production of software. Therefore, following the spirit of well-known codes of ethics such as the ACM/IEEE's, we advocate for a more solid position in the ethical education of software engineers, which we call 'moderate deontologism', that takes into account both rules and consequences to assess the goodness of actions, and at the same time pays an adequate consideration to the absolute values of human dignity. In order to educate responsible professionals, however, this position should be complemented with a pedagogical approach to virtue ethics.

  7. Database Access Manager for the Software Engineering Laboratory (DAMSEL) user's guide

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Operating instructions for the Database Access Manager for the Software Engineering Laboratory (DAMSEL) system are presented. Step-by-step instructions for performing various data entry and report generation activities are included. Sample sessions showing the user interface display screens are also included. Instructions for generating reports are accompanied by sample outputs for each of the reports. The document groups the available software functions by the classes of users that may access them.

  8. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 10, October 2007

    DTIC Science & Technology

    2007-10-01

    principlesspecifically to the development of large, complex software systems provides a powerful tool for process and product management. This process is called...technical processes as well as its products. System engineering provides the tools the technical management task requires. The application of system...However, it can be argued that SwSE is a distinct and powerful tool for managing the technical develop- ment of large software projects. This

  9. Integrating CMMI and Six Sigma in Software and Systems Engineering

    DTIC Science & Technology

    2005-09-01

    QDO \\VLV %DVLF7RROV &DXVH (IIHFW ’LDJUDPV0DWUL[ )DLOXUH0RGHV (IIHFWV$ QDO \\VLV 6WDWLVWLFDO ,QIHUHQFH 5HOLDELOLW\\ $ QDO \\VLV 5RRW&DXVH $ QDO ...0DQDJHPHQW E\\)DFW´ 0HDVXUH $ QDO \\]H ,PSURYH &RQWURO © 2003 by Carnegie Mellon University page 19 CarnegieMellon S oftware Engineer ing Inst itute Outline...DFWLYLWLHV ’HVLJQRI ([SHULPHQWV 0RGHOLQJ 7ROHUDQFLQJ 5REXVW’HVLJQ 6\\VWHPV 7KLQNLQJ ’HFLVLRQ 5LVN$ QDO \\VLV %DVLF7RROV &DXVH

  10. Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2003-01-01

    This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.

  11. The Need for V&V in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1997-01-01

    V&V is currently performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to entire' domain or product line rather than a critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. engineering. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for activities.

  12. A Framework for Performing Verification and Validation in Reuse Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1997-01-01

    Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission- critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  13. Environmental concept for engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Lopez, L. A.; Valimohamed, K.

    1989-01-01

    The issues related to developing an environment in which engineering systems can be implemented on MIMD machines are discussed. The problem is presented in terms of implementing the finite element method under such an environment. However, neither the concepts nor the prototype implementation environment are limited to this application. The topics discussed include: the ability to schedule and synchronize tasks efficiently; granularity of tasks; load balancing; and the use of a high level language to specify parallel constructs, manage data, and achieve portability. The objective of developing a virtual machine concept which incorporates solutions to the above issues leads to a design that can be mapped onto loosely coupled, tightly coupled, and hybrid systems.

  14. Core Logistics Capability Policy Applied to USAF Combat Aircraft Avionics Software: A Systems Engineering Analysis

    DTIC Science & Technology

    2010-06-01

    PROJECT Presented to the Faculty Department of Systems and Engineering Management Graduate School of Engineering and Management Air Force...a light grey box around the definitions. This table, a fit-for-purpose architecture product , is loosely based on the DoD Architecture Framework ...synopsis of ISO/IEC 12207, Raghu Singh of the Federal Aviation Administration states “Whenever a software product needs modifications, the development

  15. The European Project Semester at ISEP: The Challenge of Educating Global Engineers

    ERIC Educational Resources Information Center

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-01-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European…

  16. Engineers' Spatial Orientation Ability Development at the European Space for Higher Education

    ERIC Educational Resources Information Center

    Carrera, C. Carbonell; Perez, J. L. Saorin; Cantero, J. de la Torre; Gonzalez, A. M. Marrero

    2011-01-01

    The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was…

  17. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    ERIC Educational Resources Information Center

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  18. Towards a mature measurement environment: Creating a software engineering research environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  19. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  20. The software-cycle model for re-engineering and reuse

    NASA Technical Reports Server (NTRS)

    Bailey, John W.; Basili, Victor R.

    1992-01-01

    This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.

  1. Teaching Tip: Managing Software Engineering Student Teams Using Pellerin's 4-D System

    ERIC Educational Resources Information Center

    Doman, Marguerite; Besmer, Andrew; Olsen, Anne

    2015-01-01

    In this article, we discuss the use of Pellerin's Four Dimension Leadership System (4-D) as a way to manage teams in a classroom setting. Over a 5-year period, we used a modified version of the 4-D model to manage teams within a senior level Software Engineering capstone course. We found that this approach for team management in a classroom…

  2. Software Engineering Laboratory (SEL). Data base organization and user's guide, revision 1

    NASA Technical Reports Server (NTRS)

    Lo, P. S.; Wyckoff, D.; Page, J.; Mcgarry, F. E.

    1983-01-01

    The structure of the Software Engineering Laboratory (SEL) data base is described. It defines each data base file in detail and provides information about how to access and use the data for programmers and other users. Several data base reporting programs are described also.

  3. The software engineering journey: From a naieve past into a responsible future

    SciTech Connect

    Chapa, S.K.

    1997-08-01

    All engineering fields experience growth, from early trial & error approaches, to disciplined approaches based on fundamental understanding. The field of software engineering is making the long and arduous journey, accomplished by evolution of thinking in many dimensions. This paper takes the reader along a trio of simultaneous evolutionary paths. First, the reader experiences evolution from a zero-risk mindset to a managed-risk mindset. Along this path, the reader observes three generations of security risk management and their implications for software system assurance. Next is a growth path from separate surety disciplines to an integrated systems surety approach. On the way, the reader visits safety, security, and dependability disciplines and peers into a future vision which coalesces them. The third and final evolutionary path explored here transitions the software engineering field from best practices to fundamental understanding. Along this road, the reader observes a framework for developing a {open_quotes}science behind the engineering{close_quotes}, and methodologies for software surety analysis.

  4. Similarities and Differences in the Academic Education of Software Engineering and Architectural Design Professionals

    ERIC Educational Resources Information Center

    Hazzan, Orit; Karni, Eyal

    2006-01-01

    This article focuses on the similarities and differences in the academic education of software engineers and architects. The rationale for this work stems from our observation, each from the perspective of her or his own discipline, that these two professional design and development processes share some similarities. A pilot study was performed,…

  5. Selective Guide to Literature on Software Review Sources. Engineering Literature Guides, Number 8.

    ERIC Educational Resources Information Center

    Bean, Margaret H., Ed.

    This selective literature guide serves as a directory to software evaluation sources for all sizes of microcomputers. Information is provided on review sources and guides which deal with a variety of applications such as library, engineering, school, and business as well as a variety of systems, including DOS and CP/M. This document is intended to…

  6. BIRP: Software for interactive search and retrieval of image engineering data

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Bolef, L. K.; Guinness, E. A.; Norberg, P.

    1980-01-01

    Better Image Retrieval Programs (BIRP), a set of programs to interactively sort through and to display a database, such as engineering data for images acquired by spacecraft is described. An overview of the philosophy of BIRP design, the structure of BIRP data files, and examples that illustrate the capabilities of the software are provided.

  7. The Design and Evaluation of a Cryptography Teaching Strategy for Software Engineering Students

    ERIC Educational Resources Information Center

    Dowling, T.

    2006-01-01

    The present paper describes the design, implementation and evaluation of a cryptography module for final-year software engineering students. The emphasis is on implementation architectures and practical cryptanalysis rather than a standard mathematical approach. The competitive continuous assessment process reflects this approach and rewards…

  8. Teaching Software Engineering by Means of Computer-Game Development: Challenges and Opportunities

    ERIC Educational Resources Information Center

    Cagiltay, Nergiz Ercil

    2007-01-01

    Software-engineering education programs are intended to prepare students for a field that involves rapidly changing conditions and expectations. Thus, there is always a danger that the skills and the knowledge provided may soon become obsolete. This paper describes results and draws on experiences from the implementation of a computer…

  9. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  10. Facilitating Constructive Alignment in Power Systems Engineering Education Using Free and Open-Source Software

    ERIC Educational Resources Information Center

    Vanfretti, L.; Milano, F.

    2012-01-01

    This paper describes how the use of free and open-source software (FOSS) can facilitate the application of constructive alignment theory in power systems engineering education by enabling the deep learning approach in power system analysis courses. With this aim, this paper describes the authors' approach in using the Power System Analysis Toolbox…

  11. A Constrained and Guided Approach for Managing Software Engineering Course Projects

    ERIC Educational Resources Information Center

    Cheng, Y.-P.; Lin, J. M.-C.

    2010-01-01

    This paper documents several years of experimentation with a new approach to organizing and managing projects in a software engineering course. The initial failure and subsequent refinements that the new approach has been through since 2004 are described herein. The "constrained and guided" approach, as it is called, has helped to reduce…

  12. The application of formal software engineering methods to the unattended and remote monitoring software suite at Los Alamos National Laboratory

    SciTech Connect

    Determan, John Clifford; Longo, Joseph F; Michel, Kelly D

    2009-01-01

    The Unattended and Remote Monitoring (UNARM) system is a collection of specialized hardware and software used by the International Atomic Energy Agency (IAEA) to institute nuclear safeguards at many nuclear facilities around the world. The hardware consists of detectors, instruments, and networked computers for acquiring various forms of data, including but not limited to radiation data, global position coordinates, camera images, isotopic data, and operator declarations. The software provides two primary functions: the secure and reliable collection of this data from the instruments and the ability to perform an integrated review and analysis of the disparate data sources. Several years ago the team responsible for maintaining the software portion of the UNARM system began the process of formalizing its operations. These formal operations include a configuration management system, a change control board, an issue tracking system, and extensive formal testing, for both functionality and reliability. Functionality is tested with formal test cases chosen to fully represent the data types and methods of analysis that will be commonly encountered. Reliability is tested with iterative, concurrent testing where up to five analyses are executed simultaneously for thousands of cycles. Iterative concurrent testing helps ensure that there are no resource conflicts or leaks when multiple system components are in use simultaneously. The goal of this work is to provide a high quality, reliable product, commensurate with the criticality of the application. Testing results will be presented that demonstrate that this goal has been achieved and the impact of the introduction of a formal software engineering framework to the UNARM product will be presented.

  13. Research versus educational practice: positioning the European Journal of Engineering Education

    NASA Astrophysics Data System (ADS)

    de Graaff, Erik

    2014-01-01

    Over the past years, the European Journal of Engineering Education (EJEE), the journal of the European Society for Engineering Education (SEFI) developed as a more research oriented journal. Bibliometric analyses show that EJEE keeps pace with other leading journals in the field of Engineering Education in most respects. EJEE serves a worldwide audience with about as many contributions from Europe as from other parts of the world. Yet, the impact factor of the journal calculated according to the formula of Thomson's ISI Web of Science seems to be lagging behind. As an explanation for this phenomenon, it is argued that EJEE keeps on publishing papers that are appreciated by practitioners in the field, even if they do not generate a lot of citations in scientific journals.

  14. ARROWSMITH-P: A prototype expert system for software engineering management

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Ramsey, Connie Loggia

    1985-01-01

    Although the field of software engineering is relatively new, it can benefit from the use of expert systems. Two prototype expert systems were developed to aid in software engineering management. Given the values for certain metrics, these systems will provide interpretations which explain any abnormal patterns of these values during the development of a software project. The two systems, which solve the same problem, were built using different methods, rule-based deduction and frame-based abduction. A comparison was done to see which method was better suited to the needs of this field. It was found that both systems performed moderately well, but the rule-based deduction system using simple rules provided more complete solutions than did the frame-based abduction system.

  15. Software.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1989

    1989-01-01

    Presented are reviews of two computer software packages for Apple II computers; "Organic Spectroscopy," and "Videodisc Display Program" for use with "The Periodic Table Videodisc." A sample spectrograph from "Organic Spectroscopy" is included. (CW)

  16. The Application of V&V within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward

    1996-01-01

    Verification and Validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In reuse-based software engineering, decisions on the requirements, design and even implementation of domain assets can can be made prior to beginning development of a specific system. in order to bring the effectiveness of V&V to bear within reuse-based software engineering. V&V must be incorporated within the domain engineering process.

  17. Establishing a Methodology for Evaluation and Selecting Computer Aided Software Engineering Tools for a Defined Software Engineering Environment at the Air Force Institute of Technology School of Engineering

    DTIC Science & Technology

    1991-12-01

    F. Lecouat, and V. Ambriola. "A Tool to Coordinate Tools," IEEE Software: 17-25 (November 1988). 6. Bruce , T. A., J. Fuller, and T. Moriarty, "So You...34 Journal of Systems Management, 40-5: 29-32 (May 1989). BIB.1 14. Dart, S. A., R. J. Ellison, P. H. Feiler , and A. N. Habermann, "Software

  18. The Relationship between Job Satisfaction and Intent to Turnover among Software Engineers in the Information Technology Industry

    ERIC Educational Resources Information Center

    Agada, Chuks N.

    2013-01-01

    The focus of this study was to examine the relationship between job satisfaction and intent to turnover among software engineers in the information technology (IT) industry. The population that was analyzed in this study was software engineers in the IT industry to determine whether there is a relationship between job satisfaction and intent to…

  19. An Investigation of the Quantification of the Probability of Occurrence of Software Engineering Project Risks with Bayesian Probability

    DTIC Science & Technology

    2007-12-01

    Implementing Risk Management on Software Intensive Projects. IEEE Software, 14(3):83-89. Fairley , R . (1994). Risk Management for Software Projects...conditional probability and the Bayesian effect is preceded by an introduction to some basic concepts of probability. Though this discussion draws from R ...Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. Charette, R . N. (1991). The Risks with Risk Analysis

  20. Development of New European VLIW Space DSP ASICS, IP Cores and Related Software via ESA Contracts in 2015 and Beyond

    NASA Astrophysics Data System (ADS)

    Trautner, R.

    2015-09-01

    European space industry needs a new generation of payload data processors in order to cope with in-creasing payload data processing requirements. ESA has defined a roadmap for the development of future payload processor hardware which is being implemented. A key part of this roadmap addresses the development of VLIW Digital Signal Processor (DSP) ASICs, IP cores and associated software. In this paper, we first present an overview of the ESA roadmap and the key development routes. We recapitulate the activities that have created the technology base for the ongoing DSP development, and present the ASIC development and several accompanying activities that will lead to the availability of a new space qualified DSP - the Scalable Sensor Data Processor (SSDP) - in the near future. We then present the expected future evolution of this technology area, and summarize the corresponding ESA roadmap part on VLIW DSPs and related IP and software.

  1. A Framework for Performing V&V within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  2. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    SciTech Connect

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

  3. Health care professional workstation: software system construction using DSSA scenario-based engineering process.

    PubMed

    Hufnagel, S; Harbison, K; Silva, J; Mettala, E

    1994-01-01

    This paper describes a new method for the evolutionary determination of user requirements and system specifications called scenario-based engineering process (SEP). Health care professional workstations are critical components of large scale health care system architectures. We suggest that domain-specific software architectures (DSSAs) be used to specify standard interfaces and protocols for reusable software components throughout those architectures, including workstations. We encourage the use of engineering principles and abstraction mechanisms. Engineering principles are flexible guidelines, adaptable to particular situations. Abstraction mechanisms are simplifications for management of complexity. We recommend object-oriented design principles, graphical structural specifications, and formal components' behavioral specifications. We give an ambulatory care scenario and associated models to demonstrate SEP. The scenario uses health care terminology and gives patients' and health care providers' system views. Our goal is to have a threefold benefit. (i) Scenario view abstractions provide consistent interdisciplinary communications. (ii) Hierarchical object-oriented structures provide useful abstractions for reuse, understandability, and long term evolution. (iii) SEP and health care DSSA integration into computer aided software engineering (CASE) environments. These environments should support rapid construction and certification of individualized systems, from reuse libraries.

  4. An exploratory survey on the views of European tissue engineers concerning the ethical issues of tissue engineering research.

    PubMed

    Trommelmans, Leen; Selling, Joseph; Dierickx, Kris

    2009-09-01

    We present the first exploratory survey about the views of tissue engineers on the ethical issues of tissue engineering (TE), conducted among participants of a large European TE consortium. We analyzed the topics for which ethical guidance is necessary and the preferred dissemination channels, which are relevant issues and goals of clinical trials with human tissue-engineered products, and which information is to be given to trial participants. The need for comprehensive, specific ethical guidance of TE is a first key finding of this survey. Second, it becomes clear that little clarity exists on some crucial issues in the setup and conduct of clinical trials in TE. Identifying the unique features of TE and their repercussions for the ethical conduct of TE research and therapy is necessary. Third, prospective trial participants are to be informed about a wide variety of issues before taking part in the trial.

  5. Training in software used by practising engineers should be included in university curricula

    NASA Astrophysics Data System (ADS)

    Silveira, A.; Perdigones, A.; García, J. L.

    2009-04-01

    Deally, an engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that synergistically combine creativity and imagination with rigour and discipline. Recently, pressures on curricula have resulted in the development of software-specific courses, often to the detriment of the understanding of theory [1]. However, it is also true that there is a demand for information technology courses by students other than computer science majors [2]. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities [3]. Training in the use of certain computer programs may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which computer programs are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. The results showed that 72% of their working hours involved the use computer programs. The software packages most commonly used were Microsoft Office (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of Microsoft Excel, budgeting and engineering software. The results of this survey underline the importance of computer software training in this and perhaps other fields of engineering. [1] D. J. Moore, and D. R. Voltmer, "Curriculum for an engineering renaissance," IEEE Trans. Educ., vol. 46, pp. 452-455, Nov. 2003. [2] N. Kock, R. Aiken, and C. Sandas, "Using complex IT in specific domains: developing and assessing a course for nonmajors

  6. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    NASA Technical Reports Server (NTRS)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  7. Component Based Engineering and Multi-Platform Deployment for Nanosatellite On-Board Software

    NASA Astrophysics Data System (ADS)

    Polo, Oscar R.; Parra, Pablo; Knobluch, Martin; Garcia, Ignacio; Fernandez, Javier; Sanchez, Sebastian; Angulo, Manuel

    2012-08-01

    Nanosatellite on-board software development risks can be mitigated by means of component based software engineering techniques. Component based modelling makes easy the design patterns reuse and incremental development process, and its adoption can reduce significantly the deliverable time and error rate. This technique is optimally combined with automatic code generation in order to assure the coherency between the model and the implemented system. This paper introduces the component base modelling and automatic code generation of Nanosat-1B on-board software.Nanosat-1B is a scientific nanosatellite developed by the Spanish National Institute of Aerospace Technology (INTA) that was launched on July 09. The paper describes the UML2 diagrams used for specifying the system components, their interfaces and behaviour, emphasizing on their reuse possibilities on the same domain and how it facilitates the software maintenance after the satellite’s launch. It also introduces the main characteristics of the EDROOM tool used for Nanosat-1B component based software modelling, by means of UML2 diagrams, and embedded C++ code generation. Finally, the paper describes how the on-board software is integrated in a framework, called MICOBS, that empowers the multi- platform approach required for the system prototype’s evolution and validation over different targets.

  8. The European Project Semester at ISEP: the challenge of educating global engineers

    NASA Astrophysics Data System (ADS)

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-05-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.

  9. Developing Engineering and Science Process Skills Using Design Software in an Elementary Education

    NASA Astrophysics Data System (ADS)

    Fusco, Christopher

    This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.

  10. Assess/Mitigate Risk through the Use of Computer-Aided Software Engineering (CASE) Tools

    NASA Technical Reports Server (NTRS)

    Aguilar, Michael L.

    2013-01-01

    The NASA Engineering and Safety Center (NESC) was requested to perform an independent assessment of the mitigation of the Constellation Program (CxP) Risk 4421 through the use of computer-aided software engineering (CASE) tools. With the cancellation of the CxP, the assessment goals were modified to capture lessons learned and best practices in the use of CASE tools. The assessment goal was to prepare the next program for the use of these CASE tools. The outcome of the assessment is contained in this document.

  11. CREASE 6.0 Catalog of Resources for Education in Ada and Software Engineering

    DTIC Science & Technology

    1992-02-01

    MV15000 Honeywell DPS90 HP 720, 800, 835, 925, 1500, 3000, 9000 1-4 Catalog of Resources for Educaion in Ada and Software Engineering (CREASE) Version 6...Resources for Educaion in Ada ad Softwre Egimeering (CRFASE) Version 6 February 1992 14. What other training requirements do you have? Numerous responses. 15...USA phone: (805) 756-1392 e-mail: nwebre@zeus.calpoly.edu 2-13 CasaWe of Resources for Educaion In Ada and Sefuare Engineering (CREASE) version 6

  12. The European water framework directive: water quality classification and implications to engineering planning.

    PubMed

    Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang

    2005-04-01

    The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.

  13. Concept document of the repository-based software engineering program: A constructive appraisal

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A constructive appraisal of the Concept Document of the Repository-Based Software Engineering Program is provided. The Concept Document is designed to provide an overview of the Repository-Based Software Engineering (RBSE) Program. The Document should be brief and provide the context for reading subsequent requirements and product specifications. That is, all requirements to be developed should be traceable to the Concept Document. Applied Expertise's analysis of the Document was directed toward assuring that: (1) the Executive Summary provides a clear, concise, and comprehensive overview of the Concept (rewrite as necessary); (2) the sections of the Document make best use of the NASA 'Data Item Description' for concept documents; (3) the information contained in the Document provides a foundation for subsequent requirements; and (4) the document adequately: identifies the problem being addressed; articulates RBSE's specific role; specifies the unique aspects of the program; and identifies the nature and extent of the program's users.

  14. Engineering in software testing: statistical testing based on a usage model applied to medical device development.

    PubMed

    Jones, P L; Swain, W T; Trammell, C J

    1999-01-01

    When a population is too large for exhaustive study, as is the case for all possible uses of a software system, a statistically correct sample must be drawn as a basis for inferences about the population. A Markov chain usage model is an engineering formalism that represents the population of possible uses for which a product is to be tested. In statistical testing of software based on a Markov chain usage model, the rich body of analytical results available for Markov chains provides numerous insights that can be used in both product development and test planing. A usage model is based on specifications rather than code, so insights that result from model building can inform product decisions in the early stages of a project when the opportunity to prevent problems is the greatest. Statistical testing based on a usage model provides a sound scientific basis for quantifying the reliability of software.

  15. Factors that Influence First-Career Choice of Undergraduate Engineers in Software Services Companies: A South Indian Experience

    ERIC Educational Resources Information Center

    Gokuladas, V. K.

    2010-01-01

    Purpose: The purpose of this paper is to identify how undergraduate engineering students differ in their perception about software services companies in India based on variables like gender, locations of the college and branches of engineering. Design/methodology/approach: Data obtained from 560 undergraduate engineering students who had the…

  16. Configuration management plan. System definition and project development. Repository Based Software Engineering (RBSE) program

    NASA Technical Reports Server (NTRS)

    Mckay, Charles

    1991-01-01

    This is the configuration management Plan for the AdaNet Repository Based Software Engineering (RBSE) contract. This document establishes the requirements and activities needed to ensure that the products developed for the AdaNet RBSE contract are accurately identified, that proposed changes to the product are systematically evaluated and controlled, that the status of all change activity is known at all times, and that the product achieves its functional performance requirements and is accurately documented.

  17. A proposal for reverse engineering CASE tools to support new software development

    SciTech Connect

    Maxted, A.

    1993-06-01

    Current CASE technology provides sophisticated diagramming tools to generate a software design. The design, stored internal to the CASE tool, is bridged to the code via code generators. There are several limitations to this technique: (1) the portability of the design is limited to the portability of the CASE tools, and (2) the code generators offer a clumsy link between design and code. The CASE tool though valuable during design, becomes a hindrance during implementation. Frustration frequently causes the CASE tool to be abandoned during implementation, permanently severing the link between design and code. Current CASE stores the design in a CASE internal structure, from which code is generated. The technique presented herein suggests that CASE tools store the system knowledge directly in code. The CASE support then switches from an emphasis on code generators to employing state-of-the-art reverse engineering techniques for document generation. Graphical and textual descriptions of each software component (e.g., Ada Package) may be generated via reverse engineering techniques from the code. These reverse engineered descriptions can be merged with system over-view diagrams to form a top-level design document. The resulting document can readily reflect changes to the software components by automatically generating new component descriptions for the changed components. The proposed auto documentation technique facilitates the document upgrade task at later stages of development, (e.g., design, implementation and delivery) by using the component code as the source of the component descriptions. The CASE technique presented herein is a unique application of reverse engineering techniques to new software systems. This technique contrasts with more traditional CASE auto code generation techniques.

  18. Software Engineering Laboratory (SEL) database organization and user's guide, revision 2

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Bristow, John

    1992-01-01

    The organization of the Software Engineering Laboratory (SEL) database is presented. Included are definitions and detailed descriptions of the database tables and views, the SEL data, and system support data. The mapping from the SEL and system support data to the base table is described. In addition, techniques for accessing the database through the Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured query language (SQL) are discussed.

  19. Using a Formal Approach for Reverse Engineering and Design Recovery to Support Software Reuse

    NASA Technical Reports Server (NTRS)

    Gannod, Gerald C.

    2002-01-01

    This document describes 3rd year accomplishments and summarizes overall project accomplishments. Included as attachments are all published papers from year three. Note that the budget for this project was discontinued after year two, but that a residual budget from year two allowed minimal continuance into year three. Accomplishments include initial investigations into log-file based reverse engineering, service-based software reuse, and a source to XML generator.

  20. Crosstalk: The Journal of Defense Software Engineering. Volume 22, Number 2, February 2009

    DTIC Science & Technology

    2009-02-01

    CrossTalk, providing both editorial oversight and technical review of the journal.CrossTalk’s mission is to encourage the engineering development of...schedule, and performance issues. Functional specialization has its role, but successful system development could benefit from increasing...the development life cycle. This month’s CrossTalk features excellent articles on the topic of software and systems integration. In Leveraging Federal

  1. Development of an Ada programming support environment database SEAD (Software Engineering and Ada Database) administration manual

    NASA Technical Reports Server (NTRS)

    Liaw, Morris; Evesson, Donna

    1988-01-01

    Software Engineering and Ada Database (SEAD) was developed to provide an information resource to NASA and NASA contractors with respect to Ada-based resources and activities which are available or underway either in NASA or elsewhere in the worldwide Ada community. The sharing of such information will reduce duplication of effort while improving quality in the development of future software systems. SEAD data is organized into five major areas: information regarding education and training resources which are relevant to the life cycle of Ada-based software engineering projects such as those in the Space Station program; research publications relevant to NASA projects such as the Space Station Program and conferences relating to Ada technology; the latest progress reports on Ada projects completed or in progress both within NASA and throughout the free world; Ada compilers and other commercial products that support Ada software development; and reusable Ada components generated both within NASA and from elsewhere in the free world. This classified listing of reusable components shall include descriptions of tools, libraries, and other components of interest to NASA. Sources for the data include technical newletters and periodicals, conference proceedings, the Ada Information Clearinghouse, product vendors, and project sponsors and contractors.

  2. The cleanroom case study in the Software Engineering Laboratory: Project description and early analysis

    NASA Technical Reports Server (NTRS)

    Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David

    1990-01-01

    This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.

  3. The (mis)use of subjective process measures in software engineering

    NASA Technical Reports Server (NTRS)

    Valett, Jon D.; Condon, Steven E.

    1993-01-01

    A variety of measures are used in software engineering research to develop an understanding of the software process and product. These measures fall into three broad categories: quantitative, characteristics, and subjective. Quantitative measures are those to which a numerical value can be assigned, for example effort or lines of code (LOC). Characteristics describe the software process or product; they might include programming language or the type of application. While such factors do not provide a quantitative measurement of a process or product, they do help characterize them. Subjective measures (as defined in this study) are those that are based on the opinion or opinions of individuals; they are somewhat unique and difficult to quantify. Capturing of subjective measure data typically involves development of some type of scale. For example, 'team experience' is one of the subjective measures that were collected and studied by the Software Engineering Laboratory (SEL). Certainly, team experience could have an impact on the software process or product; actually measuring a team's experience, however, is not a strictly mathematical exercise. Simply adding up each team member's years of experience appears inadequate. In fact, most researchers would agree that 'years' do not directly translate into 'experience.' Team experience must be defined subjectively and then a scale must be developed e.g., high experience versus low experience; or high, medium, low experience; or a different or more granular scale. Using this type of scale, a particular team's overall experience can be compared with that of other teams in the development environment. Defining, collecting, and scaling subjective measures is difficult. First, precise definitions of the measures must be established. Next, choices must be made about whose opinions will be solicited to constitute the data. Finally, care must be given to defining the right scale and level of granularity for measurement.

  4. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  5. Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.

    PubMed

    Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon

    2010-06-01

    Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.

  6. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  7. Development and Engineering Design in Support of "Rover Ranch": A K-12 Outreach Software Project

    NASA Technical Reports Server (NTRS)

    Pascali, Raresh

    2003-01-01

    A continuation of the initial development started in the summer of 1999, the body of work performed in support of 'ROVer Ranch' Project during the present fellowship dealt with the concrete concept implementation and resolution of the related issues. The original work performed last summer focused on the initial examination and articulation of the concept treatment strategy, audience and market analysis for the learning technologies software. The presented work focused on finalizing the set of parts to be made available for building an AERCam Sprint type robot and on defining, testing and implementing process necessary to convert the design engineering files to VRML files. Through reverse engineering, an initial set of mission critical systems was designed for beta testing in schools. The files were created in ProEngineer, exported to VRML 1.0 and converted to VRML 97 (VRML 2.0) for final integration in the software. Attributes for each part were assigned using an in-house developed JAVA based program. The final set of attributes for each system, their mutual interaction and the identification of the relevant ones to be tracked, still remain to be decided.

  8. A Study of the Use of Ontologies for Building Computer-Aided Control Engineering Self-Learning Educational Software

    ERIC Educational Resources Information Center

    García, Isaías; Benavides, Carmen; Alaiz, Héctor; Alonso, Angel

    2013-01-01

    This paper describes research on the use of knowledge models (ontologies) for building computer-aided educational software in the field of control engineering. Ontologies are able to represent in the computer a very rich conceptual model of a given domain. This model can be used later for a number of purposes in different software applications. In…

  9. Evaluation of a Game to Teach Requirements Collection and Analysis in Software Engineering at Tertiary Education Level

    ERIC Educational Resources Information Center

    Hainey, Thomas; Connolly, Thomas M.; Stansfield, Mark; Boyle, Elizabeth A.

    2011-01-01

    A highly important part of software engineering education is requirements collection and analysis which is one of the initial stages of the Database Application Lifecycle and arguably the most important stage of the Software Development Lifecycle. No other conceptual work is as difficult to rectify at a later stage or as damaging to the overall…

  10. The repository-based software engineering program: Redefining AdaNET as a mainstream NASA source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Repository-based Software Engineering Program (RBSE) is described to inform and update senior NASA managers about the program. Background and historical perspective on software reuse and RBSE for NASA managers who may not be familiar with these topics are provided. The paper draws upon and updates information from the RBSE Concept Document, baselined by NASA Headquarters, Johnson Space Center, and the University of Houston - Clear Lake in April 1992. Several of NASA's software problems and what RBSE is now doing to address those problems are described. Also, next steps to be taken to derive greater benefit from this Congressionally-mandated program are provided. The section on next steps describes the need to work closely with other NASA software quality, technology transfer, and reuse activities and focuses on goals and objectives relative to this need. RBSE's role within NASA is addressed; however, there is also the potential for systematic transfer of technology outside of NASA in later stages of the RBSE program. This technology transfer is discussed briefly.

  11. Masculinities in Organizational Cultures in Engineering Education in Europe: Results of the European Union Project WomEng

    ERIC Educational Resources Information Center

    Sagebiel, F.; Dahmen, J.

    2006-01-01

    The paper describes elements of engineering organizational cultures and structures in higher engineering education from the European project WomEng. Hypotheses, based on state of the art, refer to: women friendly presentation, attractiveness of interdisciplinary teaching methods, single sex education, perceptions of minority status, feelings of…

  12. Software engineering principles applied to large healthcare information systems--a case report.

    PubMed

    Nardon, Fabiane Bizinella; de A Moura, Lincoln

    2007-01-01

    São Paulo is the largest city in Brazil and one of the largest cities in the world. In 2004, São Paulo City Department of Health decided to implement a Healthcare Information System to support managing healthcare services and provide an ambulatory health record. The resulting information system is one of the largest public healthcare information systems ever built, with more than 2 million lines of code. Although statistics shows that most software projects fail, and the risks for the São Paulo initiative were enormous, the information system was completed on-time and on-budget. In this paper, we discuss the software engineering principles adopted that allowed to accomplish that project's goals, hoping that sharing the experience of this project will help other healthcare information systems initiatives to succeed.

  13. Rule groupings: A software engineering approach towards verification of expert systems

    NASA Technical Reports Server (NTRS)

    Mehrotra, Mala

    1991-01-01

    Currently, most expert system shells do not address software engineering issues for developing or maintaining expert systems. As a result, large expert systems tend to be incomprehensible, difficult to debug or modify and almost impossible to verify or validate. Partitioning rule based systems into rule groups which reflect the underlying subdomains of the problem should enhance the comprehensibility, maintainability, and reliability of expert system software. Attempts were made to semiautomatically structure a CLIPS rule base into groups of related rules that carry the same type of information. Different distance metrics that capture relevant information from the rules for grouping are discussed. Two clustering algorithms that partition the rule base into groups of related rules are given. Two independent evaluation criteria are developed to measure the effectiveness of the grouping strategies. Results of the experiment with three sample rule bases are presented.

  14. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts

    PubMed Central

    2012-01-01

    Background A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. Methods In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). Results The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. Conclusions When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies. PMID:22405400

  15. Airborne Systems Software Acquisition Engineering Guidebook for Requirements Analysis and Specification.

    DTIC Science & Technology

    1978-09-01

    analysis should be included for each C PCI, e.g., the F-X RDPS. If CPCI’s have not been identified, the airborne software qystem can be treated as a...Fre y Destination mFunction Paragraph SR Symbol NA 0 1 (a5 5 Air-to-Air 3.2. 1Reject O Depresion deg 0 360 0.01 5 Air-to-Air 3.2. 1 Angle Table 4-5. F...making logic. The human engineering requirements should pro- vide enough information about the crew performance so that the crew members can be treated

  16. Recent trends related to the use of formal methods in software engineering

    NASA Technical Reports Server (NTRS)

    Prehn, Soren

    1986-01-01

    An account is given of some recent developments and trends related to the development and use of formal methods in software engineering. Ongoing activities in Europe are focussed on, since there seems to be a notable difference in attitude towards industrial usage of formal methods in Europe and in the U.S. A more detailed account is given of the currently most widespread formal method in Europe: the Vienna Development Method. Finally, the use of Ada is discussed in relation to the application of formal methods, and the potential for constructing Ada-specific tools based on that method is considered.

  17. SOLE: Applying Semantics and Social Web to Support Technology Enhanced Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Jiménez-López, Diego; García-Crespo, Ángel; Blanco-Iglesias, Borja

    eLearning educative processes are a challenge for educative institutions and education professionals. In an environment in which learning resources are being produced, catalogued and stored using innovative ways, SOLE provides a platform in which exam questions can be produced supported by Web 2.0 tools, catalogued and labeled via semantic web and stored and distributed using eLearning standards. This paper presents, SOLE, a social network of exam questions sharing particularized for Software Engineering domain, based on semantics and built using semantic web and eLearning standards, such as IMS Question and Test Interoperability specification 2.1.

  18. Software metrics: The quantitative impact of four factors on work rates experienced during software development. [reliability engineering

    NASA Technical Reports Server (NTRS)

    Gaffney, J. E., Jr.; Judge, R. W.

    1981-01-01

    A model of a software development process is described. The software development process is seen to consist of a sequence of activities, such as 'program design' and 'module development' (or coding). A manpower estimate is made by multiplying code size by the rates (man months per thousand lines of code) for each of the activities relevant to the particular case of interest and summing up the results. The effect of four objectively determinable factors (organization, software product type, computer type, and code type) on productivity values for each of nine principal software development activities was assessed. Four factors were identified which account for 39% of the observed productivity variation.

  19. Educational Measures to Promote the Level of Human Resource Development Skill for Manager Class Embedded Software Development Engineers

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaki; Unagami, Tomoaki; Shioya, Atsuko; Mori, Takao; Takada, Hiroaki

    The present paper reports the development of three education courses for manager class embedded software development engineers. The authors first summarized several issues arising in the contemporary Japanese embedded software industry into three categories ; a) engineers are required to compose software development documents, b) the documents are treated as the intermediate product and c) the growing number of mental problems among engineers. To provide knowledge to encounter the above problems, the authors then prepared three education courses; “document review” , “management skill focusing on product quality” , and “management skill focusing on human resource development” . The three courses were designed to reflect the true state of the embedded software industry, and the participants showed high levels of satisfaction after attending the lecture.

  20. COTS-based OO-component approach for software inter-operability and reuse (software systems engineering methodology)

    NASA Technical Reports Server (NTRS)

    Yin, J.; Oyaki, A.; Hwang, C.; Hung, C.

    2000-01-01

    The purpose of this research and study paper is to provide a summary description and results of rapid development accomplishments at NASA/JPL in the area of advanced distributed computing technology using a Commercial-Off--The-Shelf (COTS)-based object oriented component approach to open inter-operable software development and software reuse.

  1. Parallelization of Rocket Engine Simulator Software (P.R.E.S.S.)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1999-01-01

    Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The project has started on October 19, 1995, and after a three-year period corresponding to project phases and fiscal-year funding by NASA Lewis Research Center (now Glenn Research Center), has ended on October 18, 1998. The one-year no-cost extension period was granted on June 7, 1998, until October 19, 1999. The aim of this one year no-cost extension period was to carry out further research to complete the work and lay the groundwork for subsequent research in the area of aerospace engine design optimization software tools. The previous progress for the research has been reported in great detail in respective interim and final research progress reports, seven of them, in all. While the purpose of this report is to be a final summary and an valuative view of the entire work since the first year funding, the following is a quick recap of the most important sections of the interim report dated April 30, 1999.

  2. Methodology for object-oriented real-time systems analysis and design: Software engineering

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  3. IEEE Conference on Software Engineering Education and Training (CSEE&T 2012) Proceedings (25th, Nanjing, Jiangsu, China, April 17-19, 2012)

    ERIC Educational Resources Information Center

    IEEE Conference on Software Engineering Education and Training, Proceedings (MS), 2012

    2012-01-01

    The Conference on Software Engineering Education and Training (CSEE&T) is the premier international peer-reviewed conference, sponsored by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) Computer Society, which addresses all major areas related to software engineering education, training, and professionalism. This year, as…

  4. Microcomputer Software System Development: Suggested Revisions to MIL-STD-1521A for Cost-Effective Acquisition of Custom Software through Software Engineering.

    DTIC Science & Technology

    1983-09-01

    testing, checking, auditing , or otherwise establishing and documenting whether or not items, processes, services , or documents conform to specified...36 Measures of Software Design ......... 38 Testing the Software ... ........... 39 The Configuration Audit ... .......... 40 Summary...42 APPENDIX A. AN INTERPRETATION OF MIL-STD-1521A: TECHNICAL REVIEWS AND AUDITS FOR SYSTEMS, EQUIPMENT, AND COMPUTER PROGRAMS

  5. Agile hardware and software systems engineering for critical military space applications

    NASA Astrophysics Data System (ADS)

    Huang, Philip M.; Knuth, Andrew A.; Krueger, Robert O.; Garrison-Darrin, Margaret A.

    2012-06-01

    The Multi Mission Bus Demonstrator (MBD) is a successful demonstration of agile program management and system engineering in a high risk technology application where utilizing and implementing new, untraditional development strategies were necessary. MBD produced two fully functioning spacecraft for a military/DOD application in a record breaking time frame and at dramatically reduced costs. This paper discloses the adaptation and application of concepts developed in agile software engineering to hardware product and system development for critical military applications. This challenging spacecraft did not use existing key technology (heritage hardware) and created a large paradigm shift from traditional spacecraft development. The insertion of new technologies and methods in space hardware has long been a problem due to long build times, the desire to use heritage hardware, and lack of effective process. The role of momentum in the innovative process can be exploited to tackle ongoing technology disruptions and allowing risk interactions to be mitigated in a disciplined manner. Examples of how these concepts were used during the MBD program will be delineated. Maintaining project momentum was essential to assess the constant non recurring technological challenges which needed to be retired rapidly from the engineering risk liens. Development never slowed due to tactical assessment of the hardware with the adoption of the SCRUM technique. We adapted this concept as a representation of mitigation of technical risk while allowing for design freeze later in the program's development cycle. By using Agile Systems Engineering and Management techniques which enabled decisive action, the product development momentum effectively was used to produce two novel space vehicles in a fraction of time with dramatically reduced cost.

  6. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    PubMed Central

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-01-01

    Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis

  7. ThermoData engine (TDE): software implementation of the dynamic data evaluation concept. 4. Chemical reactions.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Frenkel, Michael

    2009-12-01

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. This paper describes the first application of this concept to the evaluation of thermodynamic properties for chemical reactions. Reaction properties evaluated are the enthalpies, entropies, Gibbs energies, and thermodynamic equilibrium constants. Details of key considerations in the critical evaluation of enthalpies of formation and of standard entropies for organic compounds are discussed in relation to their application in the calculation of reaction properties. Extensions to the class structure of the program are described that allow close linkage between the derived reaction properties and the underlying pure-component properties. Derivation of pure-component enthalpies of formation and of standard entropies through the use of directly measured reaction properties (enthalpies of reaction and equilibrium constants) is described. Directions for future enhancements are outlined.

  8. Using ethnographic methods to carry out human factors research in software engineering.

    PubMed

    Karn, J S; Cowling, A J

    2006-08-01

    This article describes how ethnographic methods were used to observe and analyze student teams working on software engineering (SE) projects. The aim of this research was to uncover the effects of the interplay of different personality types, as measured by a test based on the Myers-Briggs Type Indicator (MBTI), on the workings of an SE team. Using ethnographic methods allowed the researchers to record the effects of personality type on behavior toward teammates and how this related to the amount of disruption and positive ideas brought forward from each member, also examined in detail were issues that were either dogged by disruption or that did not have sufficient discussion devoted to them and the impact that they had on the outcomes of the project. Initial findings indicate that ethnographic methods are a valuable weapon to have in one's arsenal when carrying out research into human factors of SE.

  9. Mechanistic modelling of cancer: some reflections from software engineering and philosophy of science.

    PubMed

    Cañete-Valdeón, José M; Wieringa, Roel; Smallbone, Kieran

    2012-12-01

    There is a growing interest in mathematical mechanistic modelling as a promising strategy for understanding tumour progression. This approach is accompanied by a methodological change of making research, in which models help to actively generate hypotheses instead of waiting for general principles to become apparent once sufficient data are accumulated. This paper applies recent research from philosophy of science to uncover three important problems of mechanistic modelling which may compromise its mainstream application, namely: the dilemma of formal and informal descriptions, the need to express degrees of confidence and the need of an argumentation framework. We report experience and research on similar problems from software engineering and provide evidence that the solutions adopted there can be transferred to the biological domain. We hope this paper can provoke new opportunities for further and profitable interdisciplinary research in the field.

  10. Mechanistic modelling of cancer: some reflections from software engineering and philosophy of science

    NASA Astrophysics Data System (ADS)

    Cañete-Valdeón, José M.; Wieringa, Roel; Smallbone, Kieran

    2012-12-01

    There is a growing interest in mathematical mechanistic modelling as a promising strategy for understanding tumour progression. This approach is accompanied by a methodological change of making research, in which models help to actively generate hypotheses instead of waiting for general principles to become apparent once sufficient data are accumulated. This paper applies recent research from philosophy of science to uncover three important problems of mechanistic modelling which may compromise its mainstream application, namely: the dilemma of formal and informal descriptions, the need to express degrees of confidence and the need of an argumentation framework. We report experience and research on similar problems from software engineering and provide evidence that the solutions adopted there can be transferred to the biological domain. We hope this paper can provoke new opportunities for further and profitable interdisciplinary research in the field.

  11. CrossTalk. The Journal of Defense Software Engineering. Volume 27, Number 2. March/April 2014

    DTIC Science & Technology

    2014-04-01

    prepublication, 2013 9. Kramer, Franklin D., Stuart H. Starr, and Larry K. Wentz, Cyberpower and National Security, National Defense University, ISBN 978...2011/201109/201109-ONeill.pdf> 13. O’Neill, Don, “Peer Reviews”, Encyclopedia of Software Engineering- Volume 2, Second Edition, Edited by John ...Marciniak, John Wiley & Sons, Inc., January 2002, pp. 929-945 14. Schulmeyer, G. Gordon, “Handbook of Software Quality Assurance”, Artech House

  12. BEER - The Beamline for European Materials Engineering Research at the ESS

    NASA Astrophysics Data System (ADS)

    Fenske, J.; Rouijaa, M.; Šaroun, J.; Kampmann, R.; Staron, P.; Nowak, G.; Pilch, J.; Beran, P.; Šittner, P.; Strunz, P.; Brokmeier, H.-G.; Ryukhtin, V.; Kadeřávek, L.; Strobl, M.; Müller, M.; Lukáš, P.; Schreyer, A.

    2016-09-01

    The Beamline for European Materials Engineering Research (BEER) will be built at the European Spallation Source (ESS). The diffractometer utilizes the high brilliance of the long-pulse neutron source and offers high instrument flexibility. It includes a novel chopper technique that extracts several short pulses out of the long pulse, leading to substantial intensity gain of up to an order of magnitude compared to pulse shaping methods for materials with high crystal symmetry. This intensity gain is achieved without compromising resolution. Materials of lower crystal symmetry or multi-phase materials will be investigated by additional pulse shaping methods. The different chopper set-ups and advanced beam extracting techniques offer an extremely broad intensity/resolution range. Furthermore, BEER offers an option of simultaneous SANS or imaging measurements without compromising diffraction investigations. This flexibility opens up new possibilities for in-situ experiments studying materials processing and performance under operation conditions. To fulfil this task, advanced sample environments, dedicated to thermo-mechanical processing, are foreseen.

  13. Balancing Plan-Driven and Agile Methods in Software Engineering Project Courses

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Port, Dan; Winsor Brown, A.

    2002-09-01

    For the past 6 years, we have been teaching a two-semester software engineering project course. The students organize into 5-person teams and develop largely web-based electronic services projects for real USC campus clients. We have been using and evolving a method called Model- Based (System) Architecting and Software Engineering (MBASE) for use in both the course and in industrial applications. The MBASE Guidelines include a lot of documents. We teach risk-driven documentation: if it is risky to document something, and not risky to leave it out (e.g., GUI screen placements), leave it out. Even so, students tend to associate more documentation with higher grades, although our grading eventually discourages this. We are always on the lookout for ways to have students learn best practices without having to produce excessive documentation. Thus, we were very interested in analyzing the various emerging agile methods. We found that agile methods and milestone plan-driven methods are part of a “how much planning is enough?” spectrum. Both agile and plan-driven methods have home grounds of project characteristics where they clearly work best, and where the other will have difficulties. Hybrid agile/plan-driven approaches are feasible, and necessary for projects having a mix of agile and plan-driven home ground characteristics. Information technology trends are going more toward the agile methods' home ground characteristics of emergent requirements and rapid change, although there is a concurrent increase in concern with dependability. As a result, we are currently experimenting with risk-driven combinations of MBASE and agile methods, such as integrating requirements, test plans, peer reviews, and pair programming into “agile quality management.”

  14. Integrating Testing into Software Engineering Courses Supported by a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Clarke, Peter J.; Davis, Debra; King, Tariq M.; Pava, Jairo; Jones, Edward L.

    2014-01-01

    As software becomes more ubiquitous and complex, the cost of software bugs continues to grow at a staggering rate. To remedy this situation, there needs to be major improvement in the knowledge and application of software validation techniques. Although there are several software validation techniques, software testing continues to be one of the…

  15. ThermoData Engine (TDE) software implementation of the dynamic data evaluation concept. 7. Ternary mixtures.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Muzny, Chris D; Kazakov, Andrei F; Kroenlein, Kenneth; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Frenkel, Michael

    2012-01-23

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for ternary chemical systems. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity coefficient models for phase equilibrium properties (vapor-liquid and liquid-liquid equilibrium). Constructed ternary models are based on those for the three pure component and three binary subsystems evaluated on demand through the TDE software algorithms. All models are described in detail, and extensions to the class structure of the program are provided. Reliable evaluation of properties for the binary subsystems is essential for successful property evaluations for ternary systems, and algorithms are described to aid appropriate parameter selection and fitting for the implemented activity coefficient models (NRTL, Wilson, Van Laar, Redlich-Kister, and UNIQUAC). Two activity coefficient models based on group contributions (original UNIFAC and NIST-KT-UNIFAC) are also implemented. Novel features of the user interface are shown, and directions for future enhancements are outlined.

  16. Software-engineering challenges of building and deploying reusable problem solvers

    PubMed Central

    O’CONNOR, MARTIN J.; NYULAS, CSONGOR; TU, SAMSON; BUCKERIDGE, DAVID L.; OKHMATOVSKAIA, ANNA; MUSEN, MARK A.

    2012-01-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach. PMID:23565031

  17. Creating a strategic plan for configuration management using computer aided software engineering (CASE) tools

    SciTech Connect

    Smith, P.R.; Sarfaty, R.

    1993-05-01

    This paper provides guidance in the definition, documentation, measurement, enhancement of processes, and validation of a strategic plan for configuration management (CM). The approach and methodology used in establishing a strategic plan is the same for any enterprise, including the Department of Energy (DOE), commercial nuclear plants, the Department of Defense (DOD), or large industrial complexes. The principles and techniques presented are used world wide by some of the largest corporations. The authors used industry knowledge and the areas of their current employment to illustrate and provide examples. Developing a strategic configuration and information management plan for DOE Idaho Field Office (DOE-ID) facilities is discussed in this paper. A good knowledge of CM principles is the key to successful strategic planning. This paper will describe and define CM elements, and discuss how CM integrates the facility`s physical configuration, design basis, and documentation. The strategic plan does not need the support of a computer aided software engineering (CASE) tool. However, the use of the CASE tool provides a methodology for consistency in approach, graphics, and database capability combined to form an encyclopedia and a method of presentation that is easily understood and aids the process of reengineering. CASE tools have much more capability than those stated above. Some examples are supporting a joint application development group (JAD) to prepare a software functional specification document and, if necessary, provide the capability to automatically generate software application code. This paper briefly discusses characteristics and capabilities of two CASE tools that use different methodologies to generate similar deliverables.

  18. Investigation of the current requirements engineering practices among software developers at the Universiti Utara Malaysia Information Technology (UUMIT) centre

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Abdullah, Inam

    2016-08-01

    Requirements Engineering (RE) is a systemic and integrated process of eliciting, elaborating, negotiating, validating and managing of the requirements of a system in a software development project. UUM has been supported by various systems developed and maintained by the UUM Information Technology (UUMIT) Centre. The aim of this study was to assess the current requirements engineering practices at UUMIT. The main problem that prompted this research is the lack of studies that support software development activities at the UUMIT. The study is geared at helping UUMIT produce quality but time and cost saving software products by implementing cutting edge and state of the art requirements engineering practices. Also, the study contributes to UUM by identifying the activities needed for software development so that the management will be able to allocate budget to provide adequate and precise training for the software developers. Three variables were investigated: Requirement Description, Requirements Development (comprising: Requirements Elicitation, Requirements Analysis and Negotiation, Requirements Validation), and Requirement Management. The results from the study showed that the current practice of requirement engineering in UUMIT is encouraging, but still need further development and improvement because a few RE practices were seldom practiced.

  19. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.

  20. Electronic Engineering Notebook: A software environment for research execution, documentation and dissemination

    NASA Technical Reports Server (NTRS)

    Moerder, Dan

    1994-01-01

    The electronic engineering notebook (EEN) consists of a free form research notebook, implemented in a commercial package for distributed hypermedia, which includes utilities for graphics capture, formatting and display of LaTex constructs, and interfaces to the host operating system. The latter capability consists of an information computer-aided software engineering (CASE) tool and a means to associate executable scripts with source objects. The EEN runs on Sun and HP workstations. The EEN, in day-to-day use can be used in much the same manner as the sort of research notes most researchers keep during development of projects. Graphics can be pasted in, equations can be entered via LaTex, etc. In addition, the fact that the EEN is hypermedia permits easy management of 'context', e.g., derivations and data can contain easily formed links to other supporting derivations and data. The CASE tool also permits development and maintenance of source code directly in the notebook, with access to its derivations and data.

  1. Software Solutions for ICME

    NASA Astrophysics Data System (ADS)

    Schmitz, G. J.; Engstrom, A.; Bernhardt, R.; Prahl, U.; Adam, L.; Seyfarth, J.; Apel, M.; de Saracibar, C. Agelet; Korzhavyi, P.; Ågren, J.; Patzak, B.

    2016-01-01

    The Integrated Computational Materials Engineering expert group (ICMEg), a coordination activity of the European Commission, aims at developing a global and open standard for information exchange between the heterogeneous varieties of numerous simulation tools. The ICMEg consortium coordinates respective developments by a strategy of networking stakeholders in the first International Workshop on Software Solutions for ICME, compiling identified and relevant software tools into the Handbook of Software Solutions for ICME, discussing strategies for interoperability between different software tools during a second (planned) international workshop, and eventually proposing a scheme for standardized information exchange in a future book or document. The present article summarizes these respective actions to provide the ICME community with some additional insights and resources from which to help move this field forward.

  2. A Proposed Taxonomy for Software Development Risks for High-Performance Computing (HPC) Scientific/Engineering Applications

    DTIC Science & Technology

    2007-01-01

    Risks a. Customer Communication b. User Commitment c. Sponsor Alignment d. Subcontractor Alignment e. Prime Contractor f. Corporate ... Communication g. Vendor Performance h. Political SOFTWARE ENGINEERING INSTITUTE | 3 4 | CMU/SEI-2006-TN-039 A. Development Cycle Risks The...arise from poorly defined task defini- tions, complex reporting arrangements, or dependencies on technical or programmatic informa- tion. f. Corporate

  3. The Design and Development of a Computerized Tool Support for Conducting Senior Projects in Software Engineering Education

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Teng, Kao-Chiuan

    2011-01-01

    This paper presents a computerized tool support, the Meetings-Flow Project Collaboration System (MFS), for designing, directing and sustaining the collaborative teamwork required in senior projects in software engineering (SE) education. Among many schools' SE curricula, senior projects serve as a capstone course that provides comprehensive…

  4. NEXUS/NASCAD- NASA ENGINEERING EXTENDIBLE UNIFIED SOFTWARE SYSTEM WITH NASA COMPUTER AIDED DESIGN

    NASA Technical Reports Server (NTRS)

    Purves, L. R.

    1994-01-01

    NEXUS, the NASA Engineering Extendible Unified Software system, is a research set of computer programs designed to support the full sequence of activities encountered in NASA engineering projects. This sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. NEXUS primarily addresses the process of prototype engineering, the task of getting a single or small number of copies of a product to work. Prototype engineering is a critical element of large scale industrial production. The time and cost needed to introduce a new product are heavily dependent on two factors: 1) how efficiently required product prototypes can be developed, and 2) how efficiently required production facilities, also a prototype engineering development, can be completed. NEXUS extendibility and unification are achieved by organizing the system as an arbitrarily large set of computer programs accessed in a common manner through a standard user interface. The NEXUS interface is a multipurpose interactive graphics interface called NASCAD (NASA Computer Aided Design). NASCAD can be used to build and display two and three-dimensional geometries, to annotate models with dimension lines, text strings, etc., and to store and retrieve design related information such as names, masses, and power requirements of components used in the design. From the user's standpoint, NASCAD allows the construction, viewing, modification, and other processing of data structures that represent the design. Four basic types of data structures are supported by NASCAD: 1) three-dimensional geometric models of the object being designed, 2) alphanumeric arrays to hold data ranging from numeric scalars to multidimensional arrays of numbers or characters, 3) tabular data sets that provide a relational data base capability, and 4) procedure definitions to combine groups of system commands or other user procedures to create more powerful functions. NASCAD has extensive abilities to

  5. Reverse Engineering and Software Products Reuse to Teach Collaborative Web Portals: A Case Study with Final-Year Computer Science Students

    ERIC Educational Resources Information Center

    Medina-Dominguez, Fuensanta; Sanchez-Segura, Maria-Isabel; Mora-Soto, Arturo; Amescua, Antonio

    2010-01-01

    The development of collaborative Web applications does not follow a software engineering methodology. This is because when university students study Web applications in general, and collaborative Web portals in particular, they are not being trained in the use of software engineering techniques to develop collaborative Web portals. This paper…

  6. Charlemagne's summit canal: an early medieval hydro-engineering project for passing the Central European Watershed.

    PubMed

    Zielhofer, Christoph; Leitholdt, Eva; Werther, Lukas; Stele, Andreas; Bussmann, Jens; Linzen, Sven; Schneider, Michael; Meyer, Cornelius; Berg-Hobohm, Stefanie; Ettel, Peter

    2014-01-01

    The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.

  7. Charlemagne's Summit Canal: An Early Medieval Hydro-Engineering Project for Passing the Central European Watershed

    PubMed Central

    Zielhofer, Christoph; Leitholdt, Eva; Werther, Lukas; Stele, Andreas; Bussmann, Jens; Linzen, Sven; Schneider, Michael; Meyer, Cornelius; Berg-Hobohm, Stefanie; Ettel, Peter

    2014-01-01

    The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water. PMID:25251589

  8. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (3rd) Held in Denver, Colorado on June 14-16, 1988

    DTIC Science & Technology

    1988-06-01

    Typically it is a project oriented course focusing on the software development lifecycle (Leventhal and Mynatt , 1987). Several other models have been...and Barbee T. Mynatt , 1987: "Components of Typical Undergraduate Software Engineering Courses: Results from a Survey", IEEE Trans. Software Eng., vol

  9. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 3. Binary mixtures.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Frenkel, Michael

    2009-02-01

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for binary chemical systems. Five activity-coefficient models have been implemented for representation of phase-equilibrium data (vapor-liquid, liquid-liquid, and solid-liquid equilibrium): NRTL, UNIQUAC, Van Laar, Margules/Redlich-Kister, and Wilson. Implementation of these models in TDE is fully described. Properties modeled individually are densities, surface tensions, critical temperatures, critical pressures, excess enthalpies, and the transport properties-viscosity and thermal conductivity. Extensions to the class structure of the program are described with emphasis on special features allowing close linkage between mixture and pure-component properties required for implementation of the models. Details of gas-phase models used in conjunction with the activity-coefficient models are shown. Initial implementation of the dynamic data evaluation concept for reactions is demonstrated with evaluation of enthalpies of formation for compounds containing carbon, hydrogen, oxygen, and nitrogen. Directions for future enhancements are outlined.

  10. Software Engineering Environments for Mission Critical Applications -- STARS Alternative Programmatic Approaches.

    DTIC Science & Technology

    1984-08-01

    various phases would select the best candidates to continue development , reducing parallel efforts. Reshaping the policies, practices and regulations...replaced to meet changing needs, while continuing to support existing software. Software developed in an environment should be transportable to a...maintenance personnel are the developer , a separately identified life cycle support contractor, or a Government software support facility. Management

  11. CrossTalk. The Journal of Defense Software Engineering. Volume 14, Number 2, February 2001

    DTIC Science & Technology

    2001-02-01

    that companies that are successfully improving quality and schedules are the ones with the best measurements. by Capers Jones Applying Function Point...structured method for doing a requirements review. In Software Measurement Programs and Industry Leadership, Capers Jones significantly points out that...Allgood Section Chief, TISEA Software Measurement Programs and Industry Leadership Capers Jones Software Productivitiy Research Inc. This author and

  12. Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective.

    PubMed

    Díaz-Zuccarini, V; Narracott, A J; Burriesci, G; Zervides, C; Rafiroiu, D; Jones, D; Hose, D R; Lawford, P V

    2009-07-13

    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective.

  13. Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective

    PubMed Central

    Díaz-Zuccarini, V.; Narracott, A.J.; Burriesci, G.; Zervides, C.; Rafiroiu, D.; Jones, D.; Hose, D.R.; Lawford, P.V.

    2009-01-01

    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202

  14. Cooperation with Central and Eastern Europe in Language Engineering.

    ERIC Educational Resources Information Center

    Andersen, Poul

    This paper outlines trends and activities in Central and Eastern European language research and language-related software development (language engineering) and briefly describes some specific projects. The language engineering segment of the European Union's Fourth Framework Programme, intended to facilitate use of telematics applications and…

  15. Studies and analyses of the space shuttle main engine. Failure information propagation model data base and software

    NASA Technical Reports Server (NTRS)

    Tischer, A. E.

    1987-01-01

    The failure information propagation model (FIPM) data base was developed to store and manipulate the large amount of information anticipated for the various Space Shuttle Main Engine (SSME) FIPMs. The organization and structure of the FIPM data base is described, including a summary of the data fields and key attributes associated with each FIPM data file. The menu-driven software developed to facilitate and control the entry, modification, and listing of data base records is also discussed. The transfer of the FIPM data base and software to the NASA Marshall Space Flight Center is described. Complete listings of all of the data base definition commands and software procedures are included in the appendixes.

  16. HPCMP CREATE (trademark)-AV Quality Assurance: Best Practices for Validating and Supporting Computation-Based Engineering Software

    DTIC Science & Technology

    2015-09-30

    30/2015 Oct 2008-Sep 2015 HPCMP CREATE™-AV Quality Assurance: Best Practices for Validating and Supporting Computation-Based Engineering Software...2) “Does this tool adequately perform any and all advertised capabilities?” This paper will describe how the HPCMP CREATE Air Vehicles (AV...project ensures positive answers to these questions through the functions performed by the Quality Assurance group. Industry quality standards will be

  17. CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 3, May/June 2010

    DTIC Science & Technology

    2010-06-01

    GEO P/L+S/C SR P/L+S/C P/L = Payload, S/C = Spacecraft, AEHF = Advanced Extreme High Frequency, GEO = Geosynchronous Earth Orbit, GPS = Global...our software foibles behind extremely visible hardware issues, but not any longer. Establishing a National Systems Engineering Laboratory Quality and...Division. Buett- ner has more than 20 years of experience including contracts from NASA’s comet sample return mission, all phases of defense industry

  18. CrossTalk: The Journal of Defense Software Engineering. Volume 24, Number 3, May/June 2011

    DTIC Science & Technology

    2011-05-01

    Man-machine systems, MIT Press, Cambridge, MA, 1974. 16. C.D. Wickens and J.G. Hollands, Engineering psychology and human performance, Pearson...and Psychology 18 (1908), 459-482. 18. Madni, A.M. “Integrating Humans with Software and Systems: Technical Challenges and a Research Agenda...influence on individual risk taking, Journal of Abnormal and Social Psychology 65 (1962), 75-86. 22. M.A. Wallach, N. Kogan, and D.G. Bern

  19. CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 4, July/August 2010

    DTIC Science & Technology

    2010-08-01

    Tomorrow. New York: Harper & Row, 1957. 5. Taylor , Frederick Winslow . The Principles of Scientific Management. New York: Harper & Brothers, 1911. 6...still based largely on the prin- ciples from Fredrick Winslow Taylor’s 1911 book, “The Principles of Scientific Management” [5]. Taylor’s methods were...7. Brooks, Frederick P. The Mythical Man Month: Essays on Software Engineering. 20th Anniversary Edition. Reading, MA: Addison-Wesley, 1995. 8

  20. Directory of Industry and University Collaborations with a Focus on Software Engineering Education and Training, Version 6

    DTIC Science & Technology

    1997-11-01

    pointer to potential new client bases. A short bibliography points the reader to background material on software engineering curricula , coalitions...studies and influence on course material ) is a condition of the funding. Points of Contact for further information Dr. Jacob Slonim Head of Research...1995-96 academic year, the Computer Science Department experimented with a new approach to teaching its first two courses in the undergraduate

  1. CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 1, Jan/Feb 2010

    DTIC Science & Technology

    2010-02-01

    and the associated principles for implementation. Mike Phillips and Sandy Shrum continue the CMMI topic with their article Process Improvement for All...those currently using CMMI. Mike Phillips and Sandy Shrum Software Engineering Institute Process Improvement for All: What to Expect from CMMI...10feb2009.cfm A perfect supplement to Mike Phillips and Sandy Shrum’s Process Improvement for All: What to Expect from CMMI Version 1.3, this webinar

  2. The Impact of Function Extraction Technology on Next-Generation Software Engineering

    DTIC Science & Technology

    2005-07-01

    sections summarize this research stream. 2.2 Fundamentals of Program Behavior Calculation The function-theoretic model of software [ Hausler 90...for FX technology to be applied in these areas. The central thesis of this research is that the ultra-large-scale systems of the fu - ture can be...Productivity Perceptions on the Use of Software Process Improve- ment Innovations." Information and Software Technology 47, 8 (June 2005): 543-553. [ Hausler 90

  3. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  4. Crosstalk: The Journal of Defense Software Engineering. Volume 18, Number 1

    DTIC Science & Technology

    2005-01-01

    TPKE Burlington, MA 01803 Phone: (781) 993-5500 Fax: (781) 993-5501 E-mail: hlougee@foliage.com Open Forum Free/Libre/Open Source Software( FLOSS ) has...become a competitive alternative to commercial software in almost all areas of computing. It has become more and more common to find FLOSS software...some exam- ples of FLOSS software that is being used on an increasing basis. There are many obvious advantages to FLOSS : the freedom to tinker with the

  5. NEXUS/NASCAD- NASA ENGINEERING EXTENDIBLE UNIFIED SOFTWARE SYSTEM WITH NASA COMPUTER AIDED DESIGN

    NASA Technical Reports Server (NTRS)

    Purves, L. R.

    1994-01-01

    NEXUS, the NASA Engineering Extendible Unified Software system, is a research set of computer programs designed to support the full sequence of activities encountered in NASA engineering projects. This sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. NEXUS primarily addresses the process of prototype engineering, the task of getting a single or small number of copies of a product to work. Prototype engineering is a critical element of large scale industrial production. The time and cost needed to introduce a new product are heavily dependent on two factors: 1) how efficiently required product prototypes can be developed, and 2) how efficiently required production facilities, also a prototype engineering development, can be completed. NEXUS extendibility and unification are achieved by organizing the system as an arbitrarily large set of computer programs accessed in a common manner through a standard user interface. The NEXUS interface is a multipurpose interactive graphics interface called NASCAD (NASA Computer Aided Design). NASCAD can be used to build and display two and three-dimensional geometries, to annotate models with dimension lines, text strings, etc., and to store and retrieve design related information such as names, masses, and power requirements of components used in the design. From the user's standpoint, NASCAD allows the construction, viewing, modification, and other processing of data structures that represent the design. Four basic types of data structures are supported by NASCAD: 1) three-dimensional geometric models of the object being designed, 2) alphanumeric arrays to hold data ranging from numeric scalars to multidimensional arrays of numbers or characters, 3) tabular data sets that provide a relational data base capability, and 4) procedure definitions to combine groups of system commands or other user procedures to create more powerful functions. NASCAD has extensive abilities to

  6. Complexity, Systems, and Software

    DTIC Science & Technology

    2014-08-14

    2014 Carnegie Mellon University Complexity, Systems, and Software Software Engineering Institute Carnegie Mellon University Pittsburgh, PA...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 8...for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United States

  7. Will They Report It? Ethical Attitude of Graduate Software Engineers in Reporting Bad News

    ERIC Educational Resources Information Center

    Sajeev, A. S. M.; Crnkovic, Ivica

    2012-01-01

    Hiding critical information has resulted in disastrous failures of some major software projects. This paper investigates, using a subset of Keil's test, how graduates (70% of them with work experience) from different cultural backgrounds who are enrolled in a postgraduate course on global software development would handle negative information that…

  8. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    NASA Technical Reports Server (NTRS)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  9. An RL10A-3-3A rocket engine model using the Rocket Engine Transient Simulator (ROCETS) software

    NASA Technical Reports Server (NTRS)

    Binder, Michael

    1993-01-01

    The RL10 engine is a critical component of past, present, and future space missions. The paper discusses the RL10A-3-3A engine system and its model created using the ROCETS computer code. The simulation model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. A comparison of steady-state model predictions with test-stand data is presented together with a comparison of predicted start transient behavior with flight data.

  10. An RL10A-3-3A rocket engine model using the Rocket Engine Transient Simulator (ROCETS) software

    NASA Astrophysics Data System (ADS)

    Binder, Michael

    1993-06-01

    The RL10 engine is a critical component of past, present, and future space missions. The paper discusses the RL10A-3-3A engine system and its model created using the ROCETS computer code. The simulation model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. A comparison of steady-state model predictions with test-stand data is presented together with a comparison of predicted start transient behavior with flight data.

  11. Software Program: Software Management Guidebook

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The purpose of this NASA Software Management Guidebook is twofold. First, this document defines the core products and activities required of NASA software projects. It defines life-cycle models and activity-related methods but acknowledges that no single life-cycle model is appropriate for all NASA software projects. It also acknowledges that the appropriate method for accomplishing a required activity depends on characteristics of the software project. Second, this guidebook provides specific guidance to software project managers and team leaders in selecting appropriate life cycles and methods to develop a tailored plan for a software engineering project.

  12. Contemporary issues in HIM. Software engineering--what does it mean to you?

    PubMed

    Wear, L L

    1994-02-01

    There have been significant advances in the way we develop software in the last two decades. Many companies are using the new process oriented approach to software development. Companies that use the new techniques and tools have reported improvements in both productivity and quality, but there are still companies developing software the way we did 30 years ago. If you saw the movie Jurassic Park, you saw the perfect way not to develop software. The programmer in the movie was the only person who knew the details of the system. No processes were followed, and there was no documentation. This was an absolutely perfect prescription for failure. Some of you are probably familiar with the term hacker which describes a person who spends hours sitting at a terminal hacking out code. Hackers have created some outstanding software products, but with today's complex systems, most companies are trying to get away from their dependence on hackers. They are instead turning to the process-oriented approach. When selecting software vendors, don't just look at the functionality of a product. Try to determine how the vendor develops software, and determine if you are dealing with hackers or a process-driven company. In the long run, you should get better, more reliable products from the latter.

  13. An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software

    NASA Technical Reports Server (NTRS)

    Binder, Michael

    1993-01-01

    Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.

  14. An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software

    NASA Astrophysics Data System (ADS)

    Binder, Michael

    1993-07-01

    Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.

  15. Advanced engineering software for in-space assembly and manned planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Delaquil, Donald; Mah, Robert

    1990-01-01

    Meeting the objectives of the Lunar/Mars initiative to establish safe and cost-effective extraterrestrial bases requires an integrated software/hardware approach to operational definitions and systems implementation. This paper begins this process by taking a 'software-first' approach to systems design, for implementing specific mission scenarios in the domains of in-space assembly and operations of the manned Mars spacecraft. The technological barriers facing implementation of robust operational systems within these two domains are discussed, and preliminary software requirements and architectures that resolve these barriers are provided.

  16. Software system safety

    NASA Technical Reports Server (NTRS)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  17. Thirty years of European biotechnology programmes: from biomolecular engineering to the bioeconomy.

    PubMed

    Aguilar, Alfredo; Magnien, Etienne; Thomas, Daniel

    2013-06-25

    This article traces back thirty years of biotechnology research sponsored by the European Union (EU). It outlines the crucial role played by De Nettancourt, Goffeau and Van Hoeck to promote and prepare the first European programme on biotechnology (1982-1986) run by the European Commission. Following this first biotechnology programme, others followed until the current one, part of the seventh Framework Programme for Research, Technological Development and Demonstration (2007-2013) (FP7). Particular attention is given to the statutory role of the European institutions in the design and orientation of the successive biotechnology programmes, compared to the more informal-yet visionary-role of key individuals upstream to any legislative decision. Examples of success stories and of the role of the biotechnology programmes in addressing societal issues and industrial competitiveness are also presented. Finally, an outline of Horizon 2020, the successor of FP7, is described, together with the role of biotechnology in building the bioeconomy.

  18. Computer Program Maintenance. One of the Software Acquisition Engineering Guidebook Series.

    DTIC Science & Technology

    1977-12-01

    61 5.3.1 Change Management Definition ........................ 62 5.3.2 Baseline Management...Formal change control is estab- / lished for CPCI specifications when they 5.3.1 Change Management Definition are approved. Software change control is

  19. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 5. Experiment planning and product design.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael

    2011-01-24

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.

  20. A Study of the Use of Ontologies for Building Computer-Aided Control Engineering Self-Learning Educational Software

    NASA Astrophysics Data System (ADS)

    García, Isaías; Benavides, Carmen; Alaiz, Héctor; Alonso, Angel

    2013-08-01

    This paper describes research on the use of knowledge models (ontologies) for building computer-aided educational software in the field of control engineering. Ontologies are able to represent in the computer a very rich conceptual model of a given domain. This model can be used later for a number of purposes in different software applications. In this study, domain ontology about the field of lead-lag compensator design has been built and used for automatic exercise generation, graphical user interface population and interaction with the user at any level of detail, including explanations about why things occur. An application called Onto-CELE (ontology-based control engineering learning environment) uses the ontology for implementing a learning environment that can be used for self and lifelong learning purposes. The experience has shown that the use of knowledge models as the basis for educational software applications is capable of showing students the whole complexity of the analysis and design processes at any level of detail. A practical experience with postgraduate students has shown the mentioned benefits and possibilities of the approach.

  1. Fall 2014 SEI Research Review: FY14-03 Software Assurance Engineering

    DTIC Science & Technology

    2014-10-28

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 Fall 2014 SEI Research Review Presenter Last Name and Date © 2014 Carnegie...service marks of Carnegie Mellon University. DM-0001767 3 Fall 2014 SEI Research Review Presenter Last Name and Date © 2014 Carnegie...2: Applying Software Quality Models to Software Assurance 4 Fall 2014 SEI Research Review Presenter Last Name and Date © 2014 Carnegie Mellon

  2. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 11

    DTIC Science & Technology

    2006-11-01

    Siok, Clinton J. Whittaker, and Dr. Jeff Tian Software Recapitalization Economics This article analyzes the economics of cyclic replacement or...Jarzombek Jeff Schwalb Brent Baxter Elizabeth Starrett Kase Johnstun Chelene Fortier-Lozancich Nicole Kentta (801) 775-5555 crosstalk.staff@hill.af.mil...believe all software processes should include. Our final theme article by Michael F. Siok, Clinton J. Whittaker, and Dr. Jeff Tian discusses how to

  3. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  4. Attracting Prospective Engineering Students in the Emerging European Space for Higher Education

    ERIC Educational Resources Information Center

    Lopez-Martin, Antonio J.

    2010-01-01

    A set of outreach activities implemented by the College of Engineering of the Public University of Navarra, Spain, is described. They represent different initiatives aimed to improve recruitment of young engineers in the difficult context of declining interest in engineering and the educational changes Europe is facing nowadays. The initiatives…

  5. ADA (Trade Name) Software Engineering Education and Training Symposium (2nd) Held in Dallas, Texas on 9-11 June 1987.

    DTIC Science & Technology

    1987-06-11

    now exist. If managers are made aware of how Ada based technology can be used to develop quality and cost effective software products, they will be... based on an analysis of individual needs. Software engineers must be cognizant of related methods and maintain an awareness of current and new efforts in...Karyl Adams, Air Force Institute of Technology Lessons Learned in Using Formal Specification Techniques in ............... 79 an Ada- based Software

  6. First experiences with the implementation of the European standard EN 62304 on medical device software for the quality assurance of a radiotherapy unit

    PubMed Central

    2014-01-01

    . It has been demonstrated that a standards-compliant development of small and medium-sized medical software can be carried out by a small team with limited resources in a clinical setting. This is of particular relevance as the upcoming revision of the Medical Device Directive is expected to harmonize and tighten the current legal requirements for all European in-house manufacturers. PMID:24655818

  7. An Assessment of the ECTS in Software Engineering: A Teaching Experience

    ERIC Educational Resources Information Center

    Salas-Morera, L.; Berral-Yeron, J.; Serrano-Gomez, I.; Martinez-Jimenez, P.

    2009-01-01

    Spain is currently implementing the regulatory modifications promulgated by the Declaration of Bologna, which should result in the updating of the structure of university degrees, and the inclusion of the European Credit Transfer and Accumulation System (ECTS) methodology. In some Spanish universities, the experimental adoption of this methodology…

  8. CrossTalk. The Journal of Defense Software Engineering. Volume 26, Number 5

    DTIC Science & Technology

    2013-10-01

    Security Risks, Opportunities and Recommendations for Users. Heraklion, Crete, Greece: European Network and Information Security Agency, Dec... Badger , Emily. “The Government Internet ID Proposal’s Pros and Cons.” Miller-McCune. 19 Apr. 2011. <http://www.miller- mccune.com/politics/the

  9. The development of an Ada programming support environment database: SEAD (Software Engineering and Ada Database), user's manual

    NASA Technical Reports Server (NTRS)

    Liaw, Morris; Evesson, Donna

    1988-01-01

    This is a manual for users of the Software Engineering and Ada Database (SEAD). SEAD was developed to provide an information resource to NASA and NASA contractors with respect to Ada-based resources and activities that are available or underway either in NASA or elsewhere in the worldwide Ada community. The sharing of such information will reduce the duplication of effort while improving quality in the development of future software systems. The manual describes the organization of the data in SEAD, the user interface from logging in to logging out, and concludes with a ten chapter tutorial on how to use the information in SEAD. Two appendices provide quick reference for logging into SEAD and using the keyboard of an IBM 3270 or VT100 computer terminal.

  10. Software engineering the mixed model for genome-wide association studies on large samples.

    PubMed

    Zhang, Zhiwu; Buckler, Edward S; Casstevens, Terry M; Bradbury, Peter J

    2009-11-01

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.

  11. Software maintenance in scientific and engineering environments: An introduction and guide

    NASA Technical Reports Server (NTRS)

    Wright, David

    1986-01-01

    The purpose of software maintenance techniques is addressed. The aims of perfective, adaptive and corrective software maintenance are defined and discussed, especially in the NASA research environment. Areas requiring maintenance, and tools available for this, and suggestions for their use are made. Stress is placed on the organizational aspect of maintenance at both the individual and group level. Particular emphasis is placed on the use of various forms of documentation as the basis around which to organize. Finally, suggestions are given on how to proceed in the partial or complete absence of such documentation.

  12. CrossTalk: The Journal of Defense Software Engineering. Volume 26, Number 4

    DTIC Science & Technology

    2013-07-01

    earpieces disguised as communicators, we could not comprehend a future with such wonderful devices. Now, I can wear a small device in my ear, tap it...officer on the USS Shenandoah. After the Navy, Mr. Schauer worked on Tactical Software for the SPY - 1A Phased Array radar at the Naval Surface

  13. CrossTalk: The Journal of Defense Software Engineering. Volume 13, Number 5, May 2000

    DTIC Science & Technology

    2000-05-01

    to have a good understanding of what things are so sacro - sanct that they could not change—the degree of stealthiness; performance param- eters...low-risk avionics development approach blended with state-of-the- art software development tools and processes has proven successful. Boeing also is

  14. Crosstalk: The Journal of Defense Software Engineering. Volume 22, Number 1, January 2009

    DTIC Science & Technology

    2009-01-01

    Understanding Communication, Negotiation Maturity/ Accountability/ Trust SWOT */ Portfolio Analysis Positioning and Value Proposition Strategic Planning and...L if e- C yc le P ro ce ss es P h as e * SWOT : Strengths, Weaknesses, Opportunities, and Threats Figure 1: Software Product...Economic Thinking and Behaviors Technology Understanding Communication, Negotiation Maturity/ Accountability/ Trust SWOT */ Portfolio Analysis

  15. 78 FR 11129 - Office of Engineering and Technology Seeks Comment on Updated OET-69 Software

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... contour into approximately rectangular ``grid cells,'' and then evaluates these cells for coverage and... predictions by cell. We are interested in feedback that discusses the capabilities of the TVStudy software to..., such an approach requires maintaining a database of interference status at the cell level. The...

  16. Pipe Flow Simulation Software: A Team Approach to Solve an Engineering Education Problem.

    ERIC Educational Resources Information Center

    Engel, Renata S.; And Others

    1996-01-01

    A computer simulation program for use in the study of fluid mechanics is described. The package is an interactive tool to explore the fluid flow characteristics of a pipe system by manipulating the physical construction of the system. The motivation, software design requirements, and specific details on how its objectives were met are presented.…

  17. Cooperative Project-Based Learning in a Web-Based Software Engineering Course

    ERIC Educational Resources Information Center

    Piccinini, Nicola; Scollo, Giuseppe

    2006-01-01

    Even in self-organized project-based learning, the instructors' role re-mains critical, especially in the initial orientation provided to the students in order to grasp the educational goals and the various roles they may undertake to achieve them. In this paper we survey a few questions proposed to that purpose in a web-based software engineering…

  18. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 12

    DTIC Science & Technology

    2005-12-01

    mission-critical soft- ware may result in harm to, or loss of human life and/or mission objectives such as in the case of the Therac -25 radiation overdose...accidents [2] and the Ariane-5 maiden launch failure [9]. The Therac -25 software caused severe radiation burns in numerous cancer patients before it

  19. Software Cost Estimation Using a Decision Graph Process: A Knowledge Engineering Approach

    NASA Technical Reports Server (NTRS)

    Stukes, Sherry; Spagnuolo, John, Jr.

    2011-01-01

    This paper is not a description per se of the efforts by two software cost analysts. Rather, it is an outline of the methodology used for FSW cost analysis presented in a form that would serve as a foundation upon which others may gain insight into how to perform FSW cost analyses for their own problems at hand.

  20. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 8, August 2007

    DTIC Science & Technology

    2007-08-01

    shelf and DoD-supplied software. Instead, they opted for the com- plexity of writing additional code that let the system run in parallel with Arabic and...location); Oracle e-Business (exhibits cost and performance), Primavera P3ec (devel- ops the schedule), DoD standard procure- ment system (authors the

  1. Modeling and Supporting the Authoring Process of Multimedia Simulation Based Educational Software: A Knowledge Engineering Approach.

    ERIC Educational Resources Information Center

    Kuyper, Michiel; de Hoog, Robert; de Jong, Ton

    2001-01-01

    Discussion of support for authoring educational software focuses on a shift from attention on activities to products, and describes the SIMQUEST authoring system for designing and creating simulation-based multimedia learning environments that include support for the discovery process of the learner consisting of explanations, assignments, a…

  2. Software reengineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III

    1991-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.

  3. Software Architecture to Support the Evolution of the ISRU RESOLVE Engineering Breadboard Unit 2 (EBU2)

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Nurge, Mark; Perusich, Stephen

    2011-01-01

    The In-Situ Resource Utilization (ISRU) Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) software provides operation of the physical plant from a remote location with a high-level interface that can access and control the data from external software applications of other subsystems. This software allows autonomous control over the entire system with manual computer control of individual system/process components. It gives non-programmer operators the capability to easily modify the high-level autonomous sequencing while the software is in operation, as well as the ability to modify the low-level, file-based sequences prior to the system operation. Local automated control in a distributed system is also enabled where component control is maintained during the loss of network connectivity with the remote workstation. This innovation also minimizes network traffic. The software architecture commands and controls the latest generation of RESOLVE processes used to obtain, process, and quantify lunar regolith. The system is grouped into six sub-processes: Drill, Crush, Reactor, Lunar Water Resource Demonstration (LWRD), Regolith Volatiles Characterization (RVC) (see example), and Regolith Oxygen Extraction (ROE). Some processes are independent, some are dependent on other processes, and some are independent but run concurrently with other processes. The first goal is to analyze the volatiles emanating from lunar regolith, such as water, carbon monoxide, carbon dioxide, ammonia, hydrogen, and others. This is done by heating the soil and analyzing and capturing the volatilized product. The second goal is to produce water by reducing the soil at high temperatures with hydrogen. This is done by raising the reactor temperature in the range of 800 to 900 C, causing the reaction to progress by adding hydrogen, and then capturing the water product in a desiccant bed. The software needs to run the entire unit and all sub-processes; however

  4. Profile of NASA software engineering: Lessons learned from building the baseline

    NASA Technical Reports Server (NTRS)

    Hall, Dana; Mcgarry, Frank

    1993-01-01

    It is critically important in any improvement activity to first understand the organization's current status, strengths, and weaknesses and, only after that understanding is achieved, examine and implement promising improvements. This fundamental rule is certainly true for an organization seeking to further its software viability and effectiveness. This paper addresses the role of the organizational process baseline in a software improvement effort and the lessons we learned assembling such an understanding for NASA overall and for the NASA Goddard Space Flight Center in particular. We discuss important, core data that must be captured and contrast that with our experience in actually finding such information. Our baselining efforts have evolved into a set of data gathering, analysis, and crosschecking techniques and information presentation formats that may prove useful to others seeking to establish similar baselines for their organization.

  5. Software and knowledge engineering aspects of smart homes applied to health.

    PubMed

    Augusto, Juan Carlos; Nugent, Chris; Martin, Suzanne; Olphert, Colin

    2005-01-01

    Smart Home technology offers a viable solution to the increasing needs of the elderly, special needs and home based-healthcare populations. The research to date has largely focused on the development of communication technologies, sensor technologies and intelligent user interfaces. We claim that this technological evolution has not been matched with a step of a similar size on the software counterpart. We particularly focus on the software that emphasizes the intelligent aspects of a Smart Home and the difficulties that arise from the computational analysis of the information collected from a Smart Home. The process of translating information into accurate diagnosis when using non-invasive technology is full of challenges, some of which have been considered in the literature to some extent but as yet without clear landmarks.

  6. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 7

    DTIC Science & Technology

    2008-07-01

    widespread fear among buyers that there might be mal- ware in their new software, for example, would depress sales and tarnish a brand. One only need recall...root zone servers. These DDOS attacks attempt to overwhelm servers with vast num- bers of messages. The use of bot - nets has increased the...Mail With Attachments Single and Group Chats Shared Workspaces Audio Conferencing Video Conferencing Centralized IT (DNS, DHCP) Centralized Backup and

  7. A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture

    PubMed Central

    Cornelis, Hugo; Coop, Allan D.; Bower, James M.

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or

  8. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 6

    DTIC Science & Technology

    2008-06-01

    If the average defect potential is five bugs – or defects – per function point and removal efficiency is 85 percent, then the total number of delivered...and 2) defect removal efficiency. The term defect potentials refers to the total quantity of bugs or defects that will be found in five software arti...defect potentials or reduce the num- bers of bugs that must be eliminated. Examples of defect prevention methods include joint application design

  9. A federated design for a neurobiological simulation engine: the CBI federated software architecture.

    PubMed

    Cornelis, Hugo; Coop, Allan D; Bower, James M

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or

  10. Developing Interactive Educational Engineering Software for the World Wide Web with Java.

    ERIC Educational Resources Information Center

    Reed, John A.; Afjeh, Abdollah A.

    1998-01-01

    Illustrates the design and implementation of a Java applet for use in educational propulsion engineering curricula. The Java Gas Turbine Simulator applet provides an interactive graphical environment which allows the rapid, efficient construction and analysis of arbitrary gas turbine systems. The simulator can be easily accessed from the World…

  11. Applying Peer Reviews in Software Engineering Education: An Experiment and Lessons Learned

    ERIC Educational Resources Information Center

    Garousi, V.

    2010-01-01

    Based on the demonstrated value of peer reviews in the engineering industry, numerous industry experts have listed it at the top of the list of desirable development practices. Experience has shown that problems (defects) are eliminated earlier if a development process incorporates peer reviews and that these reviews are as effective as or even…

  12. Voices of Women in a Software Engineering Course: Reflections on Collaboration

    ERIC Educational Resources Information Center

    Berenson, Sarah B.; Slaten, Kelli M.; Williams, Laurie; Ho, Chih-Wei

    2004-01-01

    Those science, mathematics, and engineering faculty who are serious about making the education they offer as available to their daughters as to their sons are, we posit, facing the prospect of dismantling a large part of its traditional pedagogical structure, along with the assumptions and practice which support it. [Seymour and Hewett 1997].Prior…

  13. Self-Assessment and Reflection in a 1st Semester Course for Software Engineering Students

    ERIC Educational Resources Information Center

    Nielsen, Jacob; Majgaard, Gunver; Sørensen, Erik

    2013-01-01

    How can student self-assessment be used as a tool and become beneficial for both lecturers and students? We used a simple self-assessment tool for pre- and post-testing on a first-semester engineering course. The students graded their knowledge on human-computer interaction based on their ability to understand and explain specific concepts. The…

  14. Diagrams and Languages for Model-Based Software Engineering of Embedded Systems: UML and AADL

    DTIC Science & Technology

    2007-12-01

    653 (ARINC 653-1). http://www.lynuxworks.com/solu- tions/milaero/arinc-653.php (2003). [ICECCS 2007] Feiler , Peter H., de Niz, Dionisio, Raistrick...Chris, & Lewis, Bruce A. “From PIMs to PSMs,” 365–370. 12th IEEE International Conference on Engineer- ing Complex Computer Systems (ICECCS 2007

  15. Providing the Persistent Data Storage in a Software Engineering Environment Using Java/COBRA and a DBMS

    NASA Technical Reports Server (NTRS)

    Dhaliwal, Swarn S.

    1997-01-01

    An investigation was undertaken to build the software foundation for the WHERE (Web-based Hyper-text Environment for Requirements Engineering) project. The TCM (Toolkit for Conceptual Modeling) was chosen as the foundation software for the WHERE project which aims to provide an environment for facilitating collaboration among geographically distributed people involved in the Requirements Engineering process. The TCM is a collection of diagram and table editors and has been implemented in the C++ programming language. The C++ implementation of the TCM was translated into Java in order to allow the editors to be used for building various functionality of the WHERE project; the WHERE project intends to use the Web as its communication back- bone. One of the limitations of the translated software (TcmJava), which militated against its use in the WHERE project, was persistent data management mechanisms which it inherited from the original TCM; it was designed to be used in standalone applications. Before TcmJava editors could be used as a part of the multi-user, geographically distributed applications of the WHERE project, a persistent storage mechanism must be built which would allow data communication over the Internet, using the capabilities of the Web. An approach involving features of Java, CORBA (Common Object Request Broker), the Web, a middle-ware (Java Relational Binding (JRB)), and a database server was used to build the persistent data management infrastructure for the WHERE project. The developed infrastructure allows a TcmJava editor to be downloaded and run from a network host by using a JDK 1.1 (Java Developer's Kit) compatible Web-browser. The aforementioned editor establishes connection with a server by using the ORB (Object Request Broker) software and stores/retrieves data in/from the server. The server consists of a CORBA object or objects depending upon whether the data is to be made persistent on a single server or multiple servers. The CORBA

  16. CrossTalk. The Journal of Defense Software Engineering. Volume 15, Number 12, December 2002

    DTIC Science & Technology

    2002-12-01

    by Lt. Col. Barry L. Shoop and Lt. Col. Kenneth L. Alford A CMMI Case Study: Process Engineering vs. Culture and Leadership This article proposes...that a successful Capability Maturity Model Integration depends on a company’s culture and the ability of its leaders to adopt new behaviors and...major weapons simulations. Each of seven major field offices dif- fers from the other in terms of customer culture , and all projects differ in size

  17. Engineering Safety- and Security-Related Requirements for Software-Intensive Systems

    DTIC Science & Technology

    2007-05-31

    touchdown sensor behavior • Therac – 25 Radiation Therapy Machine — Timing of unusual input sequence results in unexpected output • Patriot Missile...attack. 25 Engineering Safety- & Security-Related Requirements Donald Firesmith, 31 May 2007 © 2007 Carnegie Mellon University Use Case, Use Case Path...be no greater than 25 mm (1.0 in.) and the height of the vehicle floor shall be within plus/minus 12 mm (0.5 in.) of the platform height under all

  18. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 12, December 2006

    DTIC Science & Technology

    2006-12-01

    Feature-Oriented Domain Analysis ( FODA ) FODA is a domain analysis and engineer- ing method that focuses on developing reusable assets [9]. By examining...requirements of that class of systems in the form of a domain model, and a set of approaches for their implementation. The FODA method was founded on two...proportional to the variety and level of participation of stakeholders in the project. In fact, in our case study, Misuse Cases SSM QFD CORE IBIS JAD FODA CDA

  19. Engineering of Data Acquiring Mobile Software and Sustainable End-User Applications

    NASA Technical Reports Server (NTRS)

    Smith, Benton T.

    2013-01-01

    The criteria for which data acquiring software and its supporting infrastructure should be designed should take the following two points into account: the reusability and organization of stored online and remote data and content, and an assessment on whether abandoning a platform optimized design in favor for a multi-platform solution significantly reduces the performance of an end-user application. Furthermore, in-house applications that control or process instrument acquired data for end-users should be designed with a communication and control interface such that the application's modules can be reused as plug-in modular components in greater software systems. The application of the above mentioned is applied using two loosely related projects: a mobile application, and a website containing live and simulated data. For the intelligent devices mobile application AIDM, the end-user interface have a platform and data type optimized design, while the database and back-end applications store this information in an organized manner and manage access to that data to only to authorized user end application(s). Finally, the content for the website was derived from a database such that the content can be included and uniform to all applications accessing the content. With these projects being ongoing, I have concluded from my research that the applicable methods presented are feasible for both projects, and that a multi-platform design for the mobile application only marginally drop the performance of the mobile application.

  20. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.