Sample records for euryhaline fish species

  1. Euryhalinity in an evolutionary context

    USGS Publications Warehouse

    Schultz, Eric T.; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    This chapter focuses on the evolutionary importance and taxonomic distribution of euryhalinity. Euryhalinity refers to broad halotolerance and broad halohabitat distribution. Salinity exposure experiments have demonstrated that species vary tenfold in their range of tolerable salinity levels, primarily because of differences in upper limits. Halotolerance breadth varies with the species’ evolutionary history, as represented by its ordinal classification, and with the species’ halohabitat. Freshwater and seawater species tolerate brackish water; their empirically-determined fundamental haloniche is broader than their realized haloniche, as revealed by the halohabitats they occupy. With respect to halohabitat distribution, a minority of species (<10%) are euryhaline. Habitat-euryhalinity is prevalent among basal actinopterygian fishes, is largely absent from orders arising from intermediate nodes, and reappears in the most derived taxa. There is pronounced family-level variability in the tendency to be halohabitat-euryhaline, which may have arisen during a burst of diversification following the Cretaceous-Palaeogene extinction. Low prevalence notwithstanding, euryhaline species are potent sources of evolutionary diversity. Euryhalinity is regarded as a key innovation trait whose evolution enables exploitation of new adaptive zone, triggering cladogenesis. We review phylogenetically-informed studies that demonstrate freshwater species diversifying from euryhaline ancestors through processes such as landlocking. These studies indicate that some euryhaline taxa are particularly susceptible to changes in halohabitat and subsequent diversification, and some geographic regions have been hotspots for transitions to freshwater. Comparative studies on mechanisms among multiple taxa and at multiple levels of biological integration are needed to clarify evolutionary pathways to, and from, euryhalinity.

  2. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  3. Community assembly of a euryhaline fish microbiome during salinity acclimation.

    PubMed

    Schmidt, Victor T; Smith, Katherine F; Melvin, Donald W; Amaral-Zettler, Linda A

    2015-05-01

    Microbiomes play a critical role in promoting a range of host functions. Microbiome function, in turn, is dependent on its community composition. Yet, how microbiome taxa are assembled from their regional species pool remains unclear. Many possible drivers have been hypothesized, including deterministic processes of competition, stochastic processes of colonization and migration, and physiological 'host-effect' habitat filters. The contribution of each to assembly in nascent or perturbed microbiomes is important for understanding host-microbe interactions and host health. In this study, we characterized the bacterial communities in a euryhaline fish and the surrounding tank water during salinity acclimation. To assess the relative influence of stochastic versus deterministic processes in fish microbiome assembly, we manipulated the bacterial species pool around each fish by changing the salinity of aquarium water. Our results show a complete and repeatable turnover of dominant bacterial taxa in the microbiomes from individuals of the same species after acclimation to the same salinity. We show that changes in fish microbiomes are not correlated with corresponding changes to abundant taxa in tank water communities and that the dominant taxa in fish microbiomes are rare in the aquatic surroundings, and vice versa. Our results suggest that bacterial taxa best able to compete within the unique host environment at a given salinity appropriate the most niche space, independent of their relative abundance in tank water communities. In this experiment, deterministic processes appear to drive fish microbiome assembly, with little evidence for stochastic colonization. © 2015 John Wiley & Sons Ltd.

  4. Why are there so few freshwater fish species in most estuaries?

    PubMed

    Whitfield, A K

    2015-04-01

    The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0-17·9), polyhaline (salinity: 18·0-29·9) or euhaline (salinity: 30·0-39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0-100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as

  5. Population and osmoregulatory responses of a euryhaline fish to extreme salinity fluctuations in coastal lagoons of the Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Wedderburn, Scotte D.; Bailey, Colin P.; Delean, Steven; Paton, David C.

    2016-01-01

    River flows and salinity are key factors structuring fish assemblages in estuaries. The osmoregulatory ability of a fish determines its capacity to tolerate rising salt levels when dispersal is unfeasible. Estuarine fishes can tolerate minor fluctuations in salinity, but a relatively small number of species in a few families can inhabit extreme hypersaline waters. The Murray-Darling Basin drains an extensive area of south-eastern Australia and river flows end at the mouth of the River Murray. The system is characterized by erratic rainfall and highly variable flows which have been reduced by intensive river regulation and water extraction. The Coorong is a coastal lagoon system extending some 110 km south-eastwards from the mouth. It is an inverted estuary with a salinity gradient that typically ranges from estuarine to triple that of sea water. Hypersalinity in the southern region suits a select suite of biota, including the smallmouth hardyhead Atherinosoma microstoma - a small-bodied, euryhaline fish with an annual life cycle. The population response of A. microstoma in the Coorong was examined during a period of considerable hydrological variation and extreme salinity fluctuations (2001-2014), and the findings were related to its osmoregulatory ability. Most notably, the species was extirpated from over 50% of its range during four continuous years without river flows when salinities exceeded 120 (2007-2010). These salinities exceeded the osmoregulatory ability of A. microstoma. Substantial river flows that reached the Coorong in late 2010 and continued into 2011 led salinities to fall below 100 throughout the Coorong by January 2012. Subsequently, A. microstoma recovered to its former range by January 2012. The findings show that the consequences of prolonged periods of insufficient river flows to temperate inverted estuaries will include substantial declines in the range of highly euryhaline fishes, which also may have wider ecological consequences.

  6. Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity.

    PubMed

    Freire, Carolina A; Amado, Enelise M; Souza, Luciana R; Veiga, Marcos P T; Vitule, Jean R S; Souza, Marta M; Prodocimo, Viviane

    2008-04-01

    This study aimed at detecting possible patterns in the relationship between Anisosmotic Extracellular Regulation (AER) and Isosmotic Intracellular Regulation (IIR) in crustaceans and teleost fish from different habitats and evolutionary histories in fresh water (FW), thus different osmoregulatory capabilities, and degrees of euryhalinity. Crustaceans used were the hololimnetic FW Aegla schmitti, and Macrobrachium potiuna, the diadromous FW Macrobrachium acanthurus, the estuarine Palaemon pandaliformis and the marine Hepatus pudibundus; fishes used were the FW Corydoras ehrhardti, Mimagoniates microlepis, and Geophagus brasiliensis, and the marine-estuarine Diapterus auratus. The capacity for IIR was assessed in vitro following wet weight changes of isolated muscle slices incubated in anisosmotic saline (~50% change). M. potiuna was the crustacean with the highest capacity for IIR; the euryhaline perciforms G. brasiliensis and D. auratus displayed total capacity for IIR. It is proposed that a high capacity for IIR is required for invading a new habitat, but that it is later lost after a long time of evolution in a stable habitat, such as in the FW anomuran crab A. schmitti, and the Ostariophysian fishes C. ehrhardti and M. microlepis. More recent FW invaders such as the palaemonid shrimps (M. potiuna and M. acanthurus) and the cichlid G. brasiliensis are euryhaline and still display a high capacity for IIR.

  7. Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna

    PubMed Central

    TIETZE, S. M.; GERALD, G. W.

    2016-01-01

    Salinity preference and responses to predatory chemical cues were examined both separately and simultaneously in freshwater (FW) and saltwater (SW)-acclimated sailfin mollies Poecilia latipinna, a euryhaline species. It was hypothesized that P. latipinna would prefer FW over SW, move away from chemical cues from a crayfish predator, and favour predator avoidance over osmoregulation when presented with both demands. Both FW and SW-acclimated P. latipinna preferred FW and actively avoided predator cues. When presented with FW plus predator cues v. SW with no cues, P. latipinna were more often found in FW plus predator cues. These results raise questions pertaining to the potential osmoregulatory stress of salinity transitions in euryhaline fishes relative to the potential fitness benefits and whether euryhalinity is utilized for predator avoidance. This study sheds light on the potential benefits and consequences of being salt tolerant or intolerant and complicates the understanding of the selection pressures that have favoured the different osmoregulatory mechanisms among fishes. PMID:27001481

  8. Euryhaline ecology of early tetrapods revealed by stable isotopes.

    PubMed

    Goedert, Jean; Lécuyer, Christophe; Amiot, Romain; Arnaud-Godet, Florent; Wang, Xu; Cui, Linlin; Cuny, Gilles; Douay, Guillaume; Fourel, François; Panczer, Gérard; Simon, Laurent; Steyer, J-Sébastien; Zhu, Min

    2018-06-01

    The fish-to-tetrapod transition-followed later by terrestrialization-represented a major step in vertebrate evolution that gave rise to a successful clade that today contains more than 30,000 tetrapod species. The early tetrapod Ichthyostega was discovered in 1929 in the Devonian Old Red Sandstone sediments of East Greenland (dated to approximately 365 million years ago). Since then, our understanding of the fish-to-tetrapod transition has increased considerably, owing to the discovery of additional Devonian taxa that represent early tetrapods or groups evolutionarily close to them. However, the aquatic environment of early tetrapods and the vertebrate fauna associated with them has remained elusive and highly debated. Here we use a multi-stable isotope approach (δ 13 C, δ 18 O and δ 34 S) to show that some Devonian vertebrates, including early tetrapods, were euryhaline and inhabited transitional aquatic environments subject to high-magnitude, rapid changes in salinity, such as estuaries or deltas. Euryhalinity may have predisposed the early tetrapod clade to be able to survive Late Devonian biotic crises and then successfully colonize terrestrial environments.

  9. Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna.

    PubMed

    Tietze, S M; Gerald, G W

    2016-05-01

    Salinity preference and responses to predatory chemical cues were examined both separately and simultaneously in freshwater (FW) and saltwater (SW)-acclimated sailfin mollies Poecilia latipinna, a euryhaline species. It was hypothesized that P. latipinna would prefer FW over SW, move away from chemical cues from a crayfish predator, and favour predator avoidance over osmoregulation when presented with both demands. Both FW and SW-acclimated P. latipinna preferred FW and actively avoided predator cues. When presented with FW plus predator cues v. SW with no cues, P. latipinna were more often found in FW plus predator cues. These results raise questions pertaining to the potential osmoregulatory stress of salinity transitions in euryhaline fishes relative to the potential fitness benefits and whether euryhalinity is utilized for predator avoidance. This study sheds light on the potential benefits and consequences of being salt tolerant or intolerant and complicates the understanding of the selection pressures that have favoured the different osmoregulatory mechanisms among fishes. © 2016 The Fisheries Society of the British Isles.

  10. Diversity, extinction risk and conservation of Malaysian fishes.

    PubMed

    Chong, V C; Lee, P K Y; Lau, C M

    2010-06-01

    A total of 1951 species of freshwater and marine fishes belonging to 704 genera and 186 families are recorded in Malaysia. Almost half (48%) are currently threatened to some degree, while nearly one third (27%) mostly from the marine and coral habitats require urgent scientific studies to evaluate their status. Freshwater habitats encompass the highest percentage of threatened fish species (87%) followed by estuarine habitats (66%). Of the 32 species of highly threatened (HT) species, 16 are freshwater and 16 are largely marine-euryhaline species. Fish extinctions in Malaysia are confined to two freshwater species, but both freshwater and marine species are being increasingly threatened by largely habitat loss or modification (76%), overfishing (27%) and by-catch (23%). The most important threat to freshwater fishes is habitat modification and overfishing, while 35 species are threatened due to their endemism. Brackish-water, euryhaline and marine fishes are threatened mainly by overfishing, by-catch and habitat modification. Sedimentation (pollution) additionally threatens coral-reef fishes. The study provides recommendations to governments, fish managers, scientists and stakeholders to address the increasing and unabated extinction risks faced by the Malaysian fish fauna.

  11. EXPRESSION OF BRANCHIAL FLAVIN-CONTAINING MONOOXYGENASE IS DIRECTLY CORRELATED WITH SALINITY-INDUCED ALDICARB TOXICITY IN THE EURYHALINE FISH (ORYZIAS LATIPES). (R826109)

    EPA Science Inventory

    Abstract

    Earlier studies in our laboratory have demonstrated a reduction of flavin-containing monooxygenase (FMO) activity when salt-water adapted euryhaline fish were transferred to water of less salinity. Since FMOs have been shown to be responsible for the bioact...

  12. Evidence of euryhalinity of the Gulf corvina (Cynoscion othonopterus).

    PubMed

    Perez-Velazquez, M; Urquidez-Bejarano, P; González-Félix, M L; Minjarez-Osorio, C

    2014-01-01

    The effects of environmental salinity on physiological responses, growth, and survival of the Gulf corvina, C. othonopterus, were evaluated in a 6-week completely randomized design experiment. Corvina (17.2+/-2.3 g mean initial body weight) were subjected to salinities of 5, 15, 25, and 35 ‰ and fed a commercial feed with protein and lipid contents of 46 and 14 %, respectively. Plasma osmolality increased significantly with salinity, ranging from 335.1+/-5.3 mOsm/kg in fish maintained at 5 ‰, to 354.8+/-6.8 mOsm/kg in fish kept in seawater, while a significant inverse relationship was observed between salinity and moisture content of whole fish, ranging from 73.8+/-0.7 (measured at 5 ‰) to 76.9+/-1.0 % (measured at 35 ‰). In spite of this, growth indices (final weight, weight gain, specific growth rate, condition factor, survival) were not altered, suggesting that, like other members of the family Sciaenidae, the Gulf corvina is a strong osmoregulator. The isosmotic point for this species was estimated to correspond to a salinity of 9.8 ‰. The present study represents the first set of experimental data on salinity tolerance of C. othonopterus and confirms the euryhalinity of this species.

  13. Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology

    PubMed Central

    Plata, Consuelo; Kurita, Yukihiro; Kato, Akira; Hirose, Shigehisa; Romero, Michael F.

    2012-01-01

    Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO3 precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO3− secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na+/HCO3− cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li+/nHCO3− cotransport; HCO3− independent, DIDS-insensitive transport; and increased basal intracellular Na+ accumulation. fNBCe1 is a voltage-dependent Na+/nHCO3− cotransporter that rectifies, independently from the extracellular Na+ or HCO3− concentration, around −60 mV. Na+ removal (0Na+ prepulse) is necessary to produce the true HCO3−-elicited current. HCO3− addition results in huge outward currents with quick current decay. Kinetic analysis of HCO3− currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher Km) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = −80 mV; [HCO3−] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO3− secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence. PMID:22159080

  14. An assay of optimal cytochrome c oxidase activity in fish gills.

    PubMed

    Hu, Yau-Chung; Chung, Meng-Han; Lee, Tsung-Han

    2018-07-15

    Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 μg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses.

    PubMed

    Tang, Cheng-Hao; Hwang, Lie-Yueh; Shen, I-Da; Chiu, Yu-Hui; Lee, Tsung-Han

    2011-12-01

    Opposite patterns of branchial Na(+)/K(+)-ATPase (NKA) responses were found in euryhaline milkfish (Chanos chanos) and pufferfish (Tetraodon nigroviridis) upon salinity challenge. Because the electrochemical gradient established by NKA is thought to be the driving force for transcellular Cl(-) transport in fish gills, the aim of this study was to explore whether the differential patterns of NKA responses found in milkfish and pufferfish would lead to distinct distribution of Cl(-) transporters in their gill epithelial cells indicating different Cl(-) transport mechanisms. In this study, immunolocalization of various Cl(-) transport proteins, including Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), anion exchanger 1 (AE1), and chloride channel 3 (ClC-3), were double stained with NKA, the basolateral marker of branchial mitochondrion-rich cells (MRCs), to reveal the localization of these transporter proteins in gill MRC of FW- or SW-acclimated milkfish and pufferfish. Confocal microscopic observations showed that the localization of these transport proteins in the gill MRCs of the two studied species were similar. However, the number of gill NKA-immunoreactive (IR) cells in milkfish and pufferfish exhibited to vary with environmental salinities. An increase in the number of NKA-IR cells should lead to the elevation of NKA activity in FW milkfish and SW pufferfish. Taken together, the opposite branchial NKA responses observed in milkfish and pufferfish upon salinity challenge could be attributed to alterations in the number of NKA-IR cells. Furthermore, the localization of these Cl(-) transporters in gill MRCs of the two studied species was identical. It depicted the two studied euryhaline species possess the similar Cl(-) transport mechanisms in gills.

  16. Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water.

    PubMed

    Tang, Cheng-Hao; Wu, Wen-Yi; Tsai, Shu-Chuan; Yoshinaga, Tatsuki; Lee, Tsung-Han

    2010-08-01

    The milkfish (Chanos chanos) is an economic species in Southeast Asia. In Taiwan, the milkfish are commercially cultured in environments of various salinities. Na(+)/K(+)-ATPase (NKA) is a key enzyme for fish iono- and osmoregulation. When compared with gills, NKA and its potential role were less examined by different approaches in the other osmoregulatory organs (e.g., kidney) of euryhaline teleosts. The objective of this study was to investigate the correlation between osmoregulatory plasticity and renal NKA in this euryhaline species. Muscle water contents (MWC), plasma, and urine osmolality, kidney histology, as well as distribution, expression (mRNA and protein), and specific activity of renal NKA were examined in juvenile milkfish acclimated to fresh water (FW), seawater (SW 35 per thousand), and hypersaline water (HSW 60 per thousand) for at least two weeks before experiments. MWC showed no significant difference among all groups. Plasma osmolality was maintained within the range of physiological homeostasis in milkfish acclimated to different salinities, while, urine osmolality of FW-acclimated fish was evidently lower than SW- and HSW-acclimated individuals. The renal tubules were identified by staining with periodic acid Schiff's reagent and hematoxylin. Moreover, immunohistochemical staining showed that NKA was distributed in the epithelial cells of proximal tubules, distal tubules, and collecting tubules, but not in glomeruli, of milkfish exposed to different ambient salinities. The highest abundance of relative NKA alpha subunit mRNA was found in FW-acclimated milkfish rather than SW- and HSW-acclimated individuals. Furthermore, relative protein amounts of renal NKA alpha and beta subunits as well as NKA-specific activity were also found to be higher in the FW group than SW and the HSW groups. This study integrated diverse levels (i.e., histological distribution, gene, protein, and specific activity) of renal NKA expression and illustrated the

  17. Freshwater to seawater transitions in migratory fishes

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Michael P. Wilkie,

    2012-01-01

    The transition from freshwater to seawater is integral to the life history of many fishes. Diverse migratory fishes express anadromous, catadromous, and amphidromous life histories, while others make incomplete transits between freshwater and seawater. The physiological mechanisms of osmoregulation are widely conserved among phylogenetically diverse species. Diadromous fishes moving between freshwater and seawater develop osmoregulatory mechanisms for different environmental salinities. Freshwater to seawater transition involves hormonally mediated changes in gill ionocytes and the transport proteins associated with hypoosmoregulation, increased seawater ingestion and water absorption in the intestine, and reduced urinary water losses. Fishes attain salinity tolerance through early development, gradual acclimation, or environmentally or developmentally cued adaptations. This chapter describes adaptations in diverse taxa and the effects of salinity on growth. Identifying common strategies in diadromous fishes moving between freshwater and seawater will reveal the ecological and physiological basis for maintaining homeostasis in different salinities, and inform efforts to conserve and manage migratory euryhaline fishes.

  18. Fishing down the largest coral reef fish species.

    PubMed

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cell proliferation and apoptosis in the anterior intestine of an amphibious, euryhaline mudskipper (Periophthalmus modestus).

    PubMed

    Takahashi, H; Sakamoto, T; Narita, K

    2006-06-01

    In order to replace the diffusive loss of water to the surrounding environment, seawater (SW)-acclimated euryhaline fishes have gastrointestinal tracts with higher ion/water flux in concert with greater permeability, and contrast that to freshwater (FW)-acclimated fish. To understand the cellular basis for these differences, we examined cell proliferation and apoptosis in the anterior intestine of mudskipper transferred from one-third SW to FW or to SW for 1 and 7 days, and those kept out of water for 1 day. The intestinal apoptosis (indicated by DNA laddering) increased during seawater acclimation. TUNEL staining detected numerous apoptotic cells over the epithelium of SW-acclimated fish. Cell proliferation ([3H]thymidine incorporation) in the FW fish was greater than those in SW 7 days after transfer. Labeling with a Proliferating cell nuclear antigen (PCNA) antibody indicated that proliferating cells were greater in number and randomly distributed in the epithelium of FW fish, whereas in SW fish they were almost entirely in the troughs of the intestinal folds. There were no changes in cell turnover in fish kept out of water. During acclimation to different salinities, modification of the cell turnover and abundance may play an important role in regulating the permeability (and transport capacity) of the gastrointestinal tract of fish.

  20. Metazoan parasites of fishes from the Celestun coastal lagoon, Yucatan, Mexico.

    PubMed

    Sosa-Medina, Trinidad; Vidal-Martínez, Víctor M; Aguirre-Macedo, M Leopoldina

    2015-08-31

    The aims of this study were to produce a checklist of the metazoan parasites of fishes from the Celestun coastal lagoon and to determine the degree of faunal similarity among the fishes based on the metazoan parasites they share. A checklist was prepared including all available records (1996-2014) of parasites of marine, brackish water and freshwater fishes of the area. All of these data were included in a presence/absence database and used to determine similarity via Jaccard's index. The results indicate the presence of 62 metazoan parasite species infecting 22 fish species. The number of metazoan parasite species found in the fishes from the Celestún lagoon is apparently the highest reported worldwide for a tropical coastal lagoon. The parasites included 12 species of adult digeneans, 27 digeneans in the metacercarial stage, 6 monogeneans, 3 metacestodes, 9 nematodes, 2 acanthocephalans, 2 crustaceans and 1 annelid. Forty parasite species were autogenic and 23 were allogenic and 1 unknown. The overall similarity among all of the species of fish with respect to the metazoan parasites they share was low (0.08 ± 0.12), with few similarity values above 0.4 being obtained. This low similarity was due primarily to the presence of suites of parasites exclusive to specific species of fish. The autogenic component of the parasite fauna (40 species) dominated the allogenic component (21 species). The most likely explanation for the large number of fish parasites found at Celestún is the good environmental condition of the lagoon, which allows the completion of parasite life cycles and free circulation of euryhaline fishes from the marine environment bringing marine parasites into the lagoon.

  1. Genome and Transcriptome Analyses Provide Insight into the Euryhaline Adaptation Mechanism of Crassostrea gigas

    PubMed Central

    Zhang, Linlin; Li, Chunyan; Li, Li; She, Zhicai; Huang, Baoyu; Zhang, Guofan

    2013-01-01

    Background The Pacific oyster, Crassostrea gigas, has developed special mechanisms to regulate its osmotic balance to adapt to fluctuations of salinities in coastal zones. To understand the oyster’s euryhaline adaptation, we analyzed salt stress effectors metabolism pathways under different salinities (salt 5, 10, 15, 20, 25, 30 and 40 for 7 days) using transcriptome data, physiology experiment and quantitative real-time PCR. Results Transcriptome data uncovered 189, 480, 207 and 80 marker genes for monitoring physiology status of oysters and the environment conditions. Three known salt stress effectors (involving ion channels, aquaporins and free amino acids) were examined. The analysis of ion channels and aquaporins indicated that 7 days long-term salt stress inhibited voltage-gated Na+/K+ channel and aquaporin but increased calcium-activated K+ channel and Ca2+ channel. As the most important category of osmotic stress effector, we analyzed the oyster FAAs metabolism pathways (including taurine, glycine, alanine, beta-alanine, proline and arginine) and explained FAAs functional mechanism for oyster low salinity adaptation. FAAs metabolism key enzyme genes displayed expression differentiation in low salinity adapted individuals comparing with control which further indicated that FAAs played important roles for oyster salinity adaptation. A global metabolic pathway analysis (iPath) of oyster expanded genes displayed a co-expansion of FAAs metabolism in C. gigas compared with seven other species, suggesting oyster’s powerful ability regarding FAAs metabolism, allowing it to adapt to fluctuating salinities, which may be one important mechanism underlying euryhaline adaption in oyster. Additionally, using transcriptome data analysis, we uncovered salt stress transduction networks in C. gigas. Conclusions Our results represented oyster salt stress effectors functional mechanisms under salt stress conditions and explained the expansion of FAAs metabolism pathways as

  2. Na+, K+-ATPase β1 subunit associates with α1 subunit modulating a "higher-NKA-in-hyposmotic media" response in gills of euryhaline milkfish, Chanos chanos.

    PubMed

    Hu, Yau-Chung; Chu, Keng-Fu; Yang, Wen-Kai; Lee, Tsung-Han

    2017-10-01

    The euryhaline milkfish (Chanos chanos) is a popular aquaculture species that can be cultured in fresh water, brackish water, or seawater in Southeast Asia. In gills of the milkfish, Na + , K + -ATPase (i.e., NKA; sodium pump) responds to salinity challenges including changes in mRNA abundance, protein amount, and activity. The functional pump is composed of a heterodimeric protein complex composed of α- and β-subunits. Among the NKA genes, α1-β1 isozyme comprises the major form of NKA subunits in mammalian osmoregulatory organs; however, most studies on fish gills have focused on the α1 subunit and did not verify the α1-β1 isozyme. Based on the sequenced milkfish transcriptome, an NKA β1 subunit gene was identified that had the highest amino acid homology to β233, a NKA β1 subunit paralog originally identified in the eel. Despite this high level of homology to β233, phylogenetic analysis and the fact that only a single NKA β1 subunit gene exists in the milkfish suggest that the milkfish gene should be referred to as the NKA β1 subunit gene. The results of accurate domain prediction of the β1 subunit, co-localization of α1 and β1 subunits in epithelial ionocytes, and co-immunoprecipitation of α1 and β1 subunits, indicated the formation of a α1-β1 complex in milkfish gills. Moreover, when transferred to hyposmotic media (fresh water) from seawater, parallel increases in branchial mRNA and protein expression of NKA α1 and β1 subunits suggested their roles in hypo-osmoregulation of euryhaline milkfish. This study molecularly characterized the NKA β1 subunit and provided the first evidence for an NKA α1-β1 association in gill ionocytes of euryhaline teleosts.

  3. Seasonal composition, abundance and biomass of the subestuarine fish assemblage in Solís Chico (Río de la Plata estuary, Uruguay).

    PubMed

    Plavan, A Acuña; Gurdek, R; Muñoz, N; Gutierrez, J M; Spósito, M; Correa, P; Caride, A

    2017-01-01

    The large estuaries can present long narrow branches called subestuaries or tidal creeks. These types of subsystems are distributed along the Uruguayan coast of the Río de la Plata estuary and are very important as nursery and refuge areas for fish. For the first time, the seasonal composition and abundance of the fish community of the Solís Chico subestuary was studied by using beach and gill nets. Fourteen species, mainly euryhaline (86%) presented a significant representation of juvenile stages. The fish community was dominated by Odontesthes argentinensis, Platanichthys platana, Mugil liza, Brevoortia aurea, Micropogonias furnieri and Paralichthys orbignyanus, similar to adjacent subestuaries. While Micropogonias furnieri and B. aurea were the most abundant species, some other species were rarely caught. A seasonal variation of the fish assemblage abundance was detected, with higher values in autumn showing a positive correlation with temperature. Species that complete their life cycle in the Río de la Plata estuary, some of which are relevant to fisheries (64% of the analyzed species) were captured in the Solís Chico subestuary. The importance of this environment as a transitional system for some estuarine fish species is advised.

  4. Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Vega-Cendejas, Ma. Eugenia; Hernández de Santillana, Mireya

    2004-06-01

    Rio Lagartos, a tropical coastal lagoon in northern Yucatan Peninsula of Mexico, is characterized by high salinity during most of the year (55 psu annual average). Even though the area has been designated as a wetland of international importance because of its great biodiversity, fish species composition and distribution are unknown. To determine whether the salinity gradient was influencing fish assemblages or not, fish populations were sampled seasonally by seine and trawl from 1992 to 1993 and bimonthly during 1997. We identified 81 fish species, eight of which accounted for 53.1% considering the Importance Value Index ( Floridichthys polyommus, Sphoeroides testudineus, Eucinostomus argenteus, Eucinostomus gula, Fundulus majalis, Strongylura notata, Cyprinodon artifrons and Elops saurus). Species richness and density declined from the mouth to the inner zone where extreme salinity conditions are prominent (>80) and competitive interactions decreased. However, in Coloradas basin (53 average sanity) and in the inlet of the lagoon, the highest fish density and number of species were observed. Greater habitat heterogeneity and fish immigration were considered as the best explanation. Multivariate analysis found three zones distinguished by fish occurrence, abundance and distribution. Ichthyofaunal spatial differences were attributed to selective recruitment from the Gulf of Mexico due to salinity gradient and to changing climatic periods. Estuarine and euryhaline marine species are abundant, with estuarine dependent ones entering the system according to environmental preferences. This knowledge will contribute to the management of the Special Biosphere Reserve through baseline data to evaluate environmental and anthropogenic changes.

  5. Increased formation of carcinogenic PAH metabolites in fish promoted by nitrite.

    PubMed

    Shailaja, M S; Rajamanickam, Rani; Wahidulla, Solimabi

    2006-09-01

    Nitrite (NO(2)(-)), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed the impact of nitrite (NO(2)(-)) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO(2)(-) enhanced the cytochrome P450-dependent biotransformation activity determined as 7-ethoxyresorufin-O-deethylase (EROD), by nearly 36% compared to the value observed in the absence of NO(2)(-) (50.2 +/- 6.74 pmol resorufin min(-1) g(-1) liver). Fixed wavelength fluorescence measurements in bile revealed maximum enhancement to have occurred in the metabolites of benzo[a]pyrene, a carcinogenic PAH. Lasting, sublethal physiological deterioration was apparent in fish exposed simultaneously to an oil refinery effluent and NO(2)(-), from the unremittingly decreasing liver somatic index, even after the withdrawal of the contaminants.

  6. Effects of fishing and regional species pool on the functional diversity of fish communities.

    PubMed

    Martins, Gustavo M; Arenas, Francisco; Neto, Ana I; Jenkins, Stuart R

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities' functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities' functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning.

  7. Effects of Fishing and Regional Species Pool on the Functional Diversity of Fish Communities

    PubMed Central

    Martins, Gustavo M.; Arenas, Francisco; Neto, Ana I.; Jenkins, Stuart R.

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities’ functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities’ functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning. PMID:22952950

  8. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  9. Chemokines in teleost fish species.

    PubMed

    Alejo, Alí; Tafalla, Carolina

    2011-12-01

    Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes.

    PubMed

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-08-01

    Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines. © 2015 Marine Biological Laboratory.

  11. DNA barcoding Australia's fish species

    PubMed Central

    Ward, Robert D; Zemlak, Tyler S; Innes, Bronwyn H; Last, Peter R; Hebert, Paul D.N

    2005-01-01

    Two hundred and seven species of fish, mostly Australian marine fish, were sequenced (barcoded) for a 655 bp region of the mitochondrial cytochrome oxidase subunit I gene (cox1). Most species were represented by multiple specimens, and 754 sequences were generated. The GC content of the 143 species of teleosts was higher than the 61 species of sharks and rays (47.1% versus 42.2%), largely due to a higher GC content of codon position 3 in the former (41.1% versus 29.9%). Rays had higher GC than sharks (44.7% versus 41.0%), again largely due to higher GC in the 3rd codon position in the former (36.3% versus 26.8%). Average within-species, genus, family, order and class Kimura two parameter (K2P) distances were 0.39%, 9.93%, 15.46%, 22.18% and 23.27%, respectively. All species could be differentiated by their cox1 sequence, although single individuals of each of two species had haplotypes characteristic of a congener. Although DNA barcoding aims to develop species identification systems, some phylogenetic signal was apparent in the data. In the neighbour-joining tree for all 754 sequences, four major clusters were apparent: chimaerids, rays, sharks and teleosts. Species within genera invariably clustered, and generally so did genera within families. Three taxonomic groups—dogfishes of the genus Squalus, flatheads of the family Platycephalidae, and tunas of the genus Thunnus—were examined more closely. The clades revealed after bootstrapping generally corresponded well with expectations. Individuals from operational taxonomic units designated as Squalus species B through F formed individual clades, supporting morphological evidence for each of these being separate species. We conclude that cox1 sequencing, or ‘barcoding’, can be used to identify fish species. PMID:16214743

  12. Species-specific mercury bioaccumulation in a diverse fish community.

    PubMed

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish. © 2015 SETAC.

  13. Trophic interactions between native and introduced fish species in a littoral fish community.

    PubMed

    Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A

    2014-11-01

    The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.

  14. Expression Profiles of Branchial FXYD Proteins in the Brackish Medaka Oryzias dancena: A Potential Saltwater Fish Model for Studies of Osmoregulation

    PubMed Central

    Yang, Wen-Kai; Kang, Chao-Kai; Chang, Chia-Hao; Hsu, An-Di; Lee, Tsung-Han; Hwang, Pung-Pung

    2013-01-01

    FXYD proteins are novel regulators of Na+-K+-ATPase (NKA). In fish subjected to salinity challenges, NKA activity in osmoregulatory organs (e.g., gills) is a primary driving force for the many ion transport systems that act in concert to maintain a stable internal environment. Although teleostean FXYD proteins have been identified and investigated, previous studies focused on only a limited group of species. The purposes of the present study were to establish the brackish medaka (Oryzias dancena) as a potential saltwater fish model for osmoregulatory studies and to investigate the diversity of teleostean FXYD expression profiles by comparing two closely related euryhaline model teleosts, brackish medaka and Japanese medaka (O. latipes), upon exposure to salinity changes. Seven members of the FXYD protein family were identified in each medaka species, and the expression of most branchial fxyd genes was salinity-dependent. Among the cloned genes, fxyd11 was expressed specifically in the gills and at a significantly higher level than the other fxyd genes. In the brackish medaka, branchial fxyd11 expression was localized to the NKA-immunoreactive cells in gill epithelia. Furthermore, the FXYD11 protein interacted with the NKA α-subunit and was expressed at a higher level in freshwater-acclimated individuals relative to fish in other salinity groups. The protein sequences and tissue distributions of the FXYD proteins were very similar between the two medaka species, but different expression profiles were observed upon salinity challenge for most branchial fxyd genes. Salinity changes produced different effects on the FXYD11 and NKA α-subunit expression patterns in the gills of the brackish medaka. To our knowledge, this report is the first to focus on FXYD expression in the gills of closely related euryhaline teleosts. Given the advantages conferred by the well-developed Japanese medaka system, we propose the brackish medaka as a saltwater fish model for

  15. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish

    USGS Publications Warehouse

    Hiroi, Junya; McCormick, Stephen D.

    2012-01-01

    Teleost fishes are able to acclimatize to seawater by secreting excess NaCl by means of specialized “ionocytes” in the gill epithelium. Antibodies against Na+/K+-ATPase (NKA) have been used since 1996 as a marker for identifying branchial ionocytes. Immunohistochemistry of NKA by itself and in combination with Na+/K+/2Cl− cotransporter and CFTR Cl− channel provided convincing evidence that ionocytes are functional during seawater acclimation, and also revealed morphological variations in ionocytes among teleost species. Recent development of antibodies to freshwater- and seawater-specific isoforms of the NKA alpha-subunit has allowed functional distinction of ion absorptive and secretory ionocytes in Atlantic salmon. Cutaneous ionocytes of tilapia embryos serve as a model for branchial ionocytes, allowing identification of 4 types: two involved in ion uptake, one responsible for salt secretion and one with unknown function. Combining molecular genetics, advanced imaging techniques and immunohistochemistry will rapidly advance our understanding of both the unity and diversity of ionocyte function and regulation in fish osmoregulation.

  16. The role of salinity in the trophic transfer of 137Cs in euryhaline fish.

    PubMed

    Pouil, Simon; Oberhänsli, François; Swarzenski, Peter W; Bustamante, Paco; Metian, Marc

    2018-09-01

    In order to better understand the influence of changing salinity conditions on the trophic transfer of 137 Cs in marine fish that live in dynamic coastal environments, its depuration kinetics was investigated in controlled aquaria. The juvenile turbot Scophthalmus maximus was acclimated to three distinct salinity conditions (10, 25 and 38) and then single-fed with compounded pellets that were radiolabelled with 137 Cs. At the end of a 21-d depuration period, assimilation efficiencies (i.e. AEs = proportion of 137 Cs ingested that is actually assimilated by turbots) were determined from observational data acquired over the three weeks. Our results showed that AEs of 137 Cs in the turbots acclimated to the highest salinity condition were significantly lower than for the other conditions (p < 0.05). Osmoregulation likely explains the decreasing AE observed at the highest salinity condition. Indeed, observations indicate that fish depurate ingested 137 Cs at a higher rate when they increase ion excretion, needed to counterbalance the elevated salinity. Such data confirm that ambient salinity plays an important role in trophic transfer of 137 Cs in some fish species. Implications for such findings extend to seafood safety and climate change impact studies, where the salinity of coastal waters may shift in future years in response to changing weather patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Smolt physiology and endocrinology

    USGS Publications Warehouse

    McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  18. Mitochondrial cytochrome b DNA sequence variations: an approach to fish species identification in processed fish products.

    PubMed

    Pepe, Tiziana; Trotta, Michele; di Marco, Isolina; Cennamo, Paola; Anastasio, Aniello; Cortesi, Maria Luisa

    2005-02-01

    The identification of fish species in food products is problematic because morphological features of the fish are partially or completely lost during processing. It is important to determine fish origin because of the increasing international seafood trade and because European Community Regulation 104/2000 requires that the products be labeled correctly. Sequence analysis of PCR products from a conserved region of the cytochrome b gene was used to identity fish species belonging to the families Gadidae and Merluccidae in 18 different processed fish products. This method allowed the identification of fish species in all samples. Fish in all of the examined products belonged to these two families, with the exception of one sample of smoked baccalà (salt cod), which was not included in the Gadidae cluster.

  19. Heterophysiasis, an intestinal fluke infection of man and vertebrates transmitted by euryhaline gastropods and fish

    NASA Astrophysics Data System (ADS)

    Taraschewski, H.

    1984-03-01

    Heterophyes heterophyes, agent of human heterophyiasis in the Near East, is transmitted in marine lagoons and saline inland waters, where the euryhaline intermediate hosts are abundant. In Egypt, mullets, the predominant second intermediate hosts, are customarily consumed raw; thus man becomes infected easily. Symptoms of human infections are usually considered mild. Mullets do not seem to be affected by the metacercariae encysted in the muscles, whereas the growth of the snail host Pirenella conica was found to be enhanced due to the infestation by the trematodes. In laboratory experiments, the flukes were found to be well developed in dogs, foxes and cats, but failed to reach sexual maturity in several other potentially piscivorous mammals and birds. In nature, dogs probably serve as the major reservoir hosts. Heterophyiasis is most prevalent in the Nile Delta, a huge brackish water area which is densely populated by humans and, consequently, also by dogs and cats. In the Far East, besides Heterophyes nocens, several other heterophysids with marine or fresh-water life-cycles are known to infect humans.

  20. Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    The ability of ovine growth hormone (oGH), recombinant bovine insulin- like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+,K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 ??g/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 ??g/g) also increased hypoosmoregulatory ability but only the higher doses (2 ??g/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 ??g/g) and rbIGF-I (0.1 ??g/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 ??g/g) and bovine insulin (0.01 and 0.05 ??g/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of E heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.

  1. Differential effects of cortisol and 11-deoxycorticosterone on ion transport protein mRNA levels in gills of two euryhaline teleosts, Mozambique tilapia (Oreochromis mossambicus) and striped bass (Morone saxatilis).

    PubMed

    Kiilerich, Pia; Tipsmark, Christian K; Borski, Russell J; Madsen, Steffen S

    2011-04-01

    The role of cortisol as the only corticosteroid in fish osmoregulation has recently been challenged with the discovery of a mineralocorticoid-like hormone, 11-deoxycorticosterone (DOC), and necessitates new studies of the endocrinology of osmoregulation in fish. Using an in vitro gill explant incubation approach, DOC-mediated regulation of selected osmoregulatory target genes in the gill was investigated and compared with that of cortisol in two euryhaline teleosts, Mozambique tilapia (Oreochromis mossambicus) and striped bass (Morone saxatilis). The effects were tested in gills from both fresh water (FW)- and seawater (SW)-acclimated fish. Both cortisol and DOC caused an up-regulation of the Na(+),K(+)-ATPase α1 subunit in SW-acclimated tilapia but had no effect in FW-acclimated fish. Cortisol conferred an increase in Na(+),K(+),2Cl(-) cotransporter (NKCC) isoform 1a transcript levels in FW- and SW-acclimated tilapia, whereas DOC had a stimulatory effect only in SW-acclimated fish. Cortisol had no effect on NKCC isoform 1b mRNA levels at both salinities, while DOC stimulated this isoform in SW-acclimated fish. In striped bass, cortisol conferred an up-regulation of Na(+),K(+)-ATPase α1 and NKCC transcript levels in FW- and SW-acclimated fish, whereas DOC resulted in down-regulation of these transcripts in FW-acclimated fish. It was also found that both corticosteroids may rapidly (30 min) alter the mitogen-activated protein kinase signalling pathway in gill, inducing phosphorylation of extracellular signal-regulated kinase 1 (ERK1) and ERK2 in a salinity-dependent manner. The study shows a disparate organisation of corticosteroid signalling mechanisms involved in ion regulation in the two species and adds new evidence to a role of DOC as a mineralocorticoid hormone in teleosts.

  2. Otolith Length-Fish Length Relationships of Eleven US Arctic Fish Species and Their Application to Ice Seal Diet Studies

    NASA Astrophysics Data System (ADS)

    Walker, K. L.; Norcross, B.

    2016-02-01

    The Arctic ecosystem has moved into the spotlight of scientific research in recent years due to increased climate change and oil and gas exploration. Arctic fishes and Arctic marine mammals represent key parts of this ecosystem, with fish being a common part of ice seal diets in the Arctic. Determining sizes of fish consumed by ice seals is difficult because otoliths are often the only part left of the fish after digestion. Otolith length is known to be positively related to fish length. By developing species-specific otolith-body morphometric relationships for Arctic marine fishes, fish length can be determined for fish prey found in seal stomachs. Fish were collected during ice free months in the Beaufort and Chukchi seas 2009 - 2014, and the most prevalent species captured were chosen for analysis. Otoliths from eleven fish species from seven families were measured. All species had strong linear relationships between otolith length and fish total length. Nine species had coefficient of determination values over 0.75, indicating that most of the variability in the otolith to fish length relationship was explained by the linear regression. These relationships will be applied to otoliths found in stomachs of three species of ice seals (spotted Phoca largha, ringed Pusa hispida, and bearded Erignathus barbatus) and used to estimate fish total length at time of consumption. Fish lengths can in turn be used to calculate fish weight, enabling further investigation into ice seal energetic demands. This application will aid in understanding how ice seals interact with fish communities in the US Arctic and directly contribute to diet comparisons among and within ice seal species. A better understanding of predator-prey interactions in the US Arctic will aid in predicting how ice seal and fish species will adapt to a changing Arctic.

  3. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code Bristlemouths...

  4. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code Bristlemouths...

  5. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code Bristlemouths...

  6. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code Bristlemouths...

  7. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code Bristlemouths...

  8. Proteomics for the authentication of fish species.

    PubMed

    Mazzeo, Maria Fiorella; Siciliano, Rosa Anna

    2016-09-16

    Assessment of seafood authenticity and origin, mainly in the case of processed products (fillets, sticks, baby food) represents the crucial point to prevent fraudulent deceptions thus guaranteeing market transparency and consumers health. The most dangerous practice that jeopardies fish safety is intentional or unintentional mislabeling, originating from the substitution of valuable fish species with inferior ones. Conventional analytical methods for fish authentication are becoming inadequate to comply with the strict regulations issued by the European Union and with the increase of mislabeling due to the introduction on the market of new fish species and market globalization. This evidence prompts the development of high-throughput approaches suitable to identify unambiguous biomarkers of authenticity and screen a large number of samples with minimal time consumption. Proteomics provides suitable and powerful tools to investigate main aspects of food quality and safety and has given an important contribution in the field of biomarkers discovery applied to food authentication. This report describes the most relevant methods developed to assess fish identity and offers a perspective on their potential in the evaluation of fish quality and safety thus depicting the key role of proteomics in the authentication of fish species and processed products. The assessment of fishery products authenticity is a main issue in the control quality process as deceptive practices could imply severe health risks. Proteomics based methods could significantly contribute to detect falsification and frauds, thus becoming a reliable operative first-line testing resource in food authentication. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures

    PubMed Central

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats. PMID:28002499

  10. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures.

    PubMed

    Starr, Richard M; Gleason, Mary G; Marks, Corina I; Kline, Donna; Rienecke, Steve; Denney, Christian; Tagini, Anne; Field, John C

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats.

  11. Salinity-dependent nickel accumulation and oxidative stress responses in the euryhaline killifish (Fundulus heteroclitus).

    PubMed

    Blewett, Tamzin A; Wood, Chris M

    2015-02-01

    The mechanisms of nickel (Ni) toxicity in marine fish remain unclear, although evidence from freshwater (FW) fish suggests that Ni can act as a pro-oxidant. This study investigated the oxidative stress effects of Ni on the euryhaline killifish (Fundulus heteroclitus) as a function of salinity. Killifish were exposed to sublethal levels (5, 10, and 20 mg L(-1)) of waterborne Ni for 96 h in FW (0 ppt) and 100 % saltwater (SW) (35 ppt). In general, SW was protective against both Ni accumulation and indicators of oxidative stress [protein carbonyl formation and catalase (CAT) activity]. This effect was most pronounced at the highest Ni exposure level. For example, FW intestine showed increased Ni accumulation relative to SW intestine at 20 mg Ni L(-1), and this was accompanied by significantly greater protein carbonylation and CAT activity in this tissue. There were exceptions, however, in that although liver of FW killifish at the highest exposure concentration showed greater Ni accumulation relative to SW liver, levels of CAT activity were greatly decreased. This may relate to tissue- and salinity-specific differences in oxidative stress responses. The results of the present study suggest (1) that there was Ni-induced oxidative stress in killifish, (2) that the effects of salinity depend on differences in the physiology of the fish in FW versus SW, and (3) that increased levels of cations (sodium, calcium, potassium, and magnesium) and anions (SO4 and Cl) in SW are likely protective against Ni accumulation in tissues exposed to the aquatic environment.

  12. 75 FR 2106 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in... steelhead not to exceed 2 percent of the total number of fish captured for each life stage and species...

  13. Genetic calibration of species diversity among North America's freshwater fishes.

    PubMed

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  14. Genetic calibration of species diversity among North America's freshwater fishes

    PubMed Central

    April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis

    2011-01-01

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required. PMID:21670289

  15. Clustering and estimating fish fingerling abundance in a tidal river in close ploximity to a thermal power plant in Southern Thailand

    NASA Astrophysics Data System (ADS)

    Chesoh, S.; Lim, A.; Luangthuvapranit, C.

    2018-04-01

    This study aimed to cluster and to quantify the wild-caught fingerlings nearby thermal power plant. Samples were monthly collected by bongo nets from four upstream sites of the Na Thap tidal river in Thailand from 2008 to 2013. Each caught species was identified, counted and calculated density in term of individuals per 1,000 cubic meters. A total of 45 aquatic animal fingerlings was commonly trapped in the average density of 2,652 individuals per 1,000 cubic meters of water volume (1,235–4,570). The results of factor analysis revealed that factor 1 was represented by the largest group of freshwater fish species, factors 2 represented a medium-sized group of mesohaline species, factor 3 represented several brackish species and factor 4 was a few euryhaline species. All four factor reached maximum levels during May to October. Total average numbers of fish fingerling caught at the outflow showed greater than those of other sampling sites. The impact of heated pollution from power plant effluents did not clearly detected. Overall water quality according the Thailand Surface Water Quality Standards Coastal tidal periodic and seasonal runoff phenomena exhibit influentially factors. Continuous ecological monitoring is strongly recommended.

  16. Mitochondrial DNA identification of game and harvested freshwater fish species.

    PubMed

    Kyle, C J; Wilson, C C

    2007-02-14

    The use of DNA in forensics has grown rapidly for human applications along with the concomitant development of bioinformatics and demographic databases to help fully realize the potential of this molecular information. Similar techniques are also used routinely in many wildlife cases, such as species identification in food products, poaching and the illegal trade of endangered species. The use of molecular techniques in forensic cases related to wildlife and the development of associated databases has, however, mainly focused on large mammals with the exception of a few high-profile species. There is a need to develop similar databases for aquatic species for fisheries enforcement, given the large number of exploited and endangered fish species, the intensity of exploitation, and challenges in identifying species and their derived products. We sequenced a 500bp fragment of the mitochondrial cytochrome b gene from representative individuals from 26 harvested fish taxa from Ontario, Canada, focusing on species that support major commercial and recreational fisheries. Ontario provides a unique model system for the development of a fish species database, as the province contains an evolutionarily diverse array of freshwater fish families representing more than one third of all freshwater fish in Canada. Inter- and intraspecific sequence comparisons using phylogenetic analysis and a BLAST search algorithm provided rigorous statistical metrics for species identification. This methodology and these data will aid in fisheries enforcement, providing a tool to easily and accurately identify fish species in enforcement investigations that would have otherwise been difficult or impossible to pursue.

  17. Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus.

    PubMed

    Glover, Chris N; Urbina, Mauricio A; Harley, Rachel A; Lee, Jacqueline A

    2016-05-01

    The euryhaline galaxiid fish, inanga (Galaxias maculatus) is widely spread throughout the Southern hemisphere occupying near-coastal streams that may be elevated in trace elements such as copper (Cu). Despite this, nothing is known regarding their sensitivity to Cu contamination. The mechanisms of Cu toxicity in inanga, and the ameliorating role of salinity, were investigated by acclimating fish to freshwater (FW), 50% seawater (SW), or 100% SW and exposing them to a graded series of Cu concentrations (0-200μgL(-1)) for 48h. Mortality, whole body Cu accumulation, measures of ionoregulatory disturbance (whole body ions, sodium (Na) influx, sodium/potassium ATPase activity) and ammonia excretion were monitored. Toxicity of Cu was greatest in FW, with mortality likely resulting from impaired Na influx. In both FW and 100% SW, ammonia excretion was significantly elevated, an effect opposite to that observed in previous studies, suggesting fundamental differences in the effect of Cu in this species relative to other studied fish. Salinity was protective against Cu toxicity, and physiology seemed to play a more important role than water chemistry in this protection. Inanga are sensitive to waterborne Cu through a conserved impairment of Na ion homeostasis, but some effects of Cu exposure in this species are distinct. Based on effect concentrations, current regulatory tools and limits are likely protective of this species in New Zealand waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Phytoplankton IF-FISH: Species-specific labeling of cellular proteins by immunofluorescence (IF) with simultaneous species identification by fluorescence immunohybridization (FISH).

    PubMed

    Meek, Megan E; Van Dolah, Frances M

    2016-05-01

    Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Relative changes in the abundance of branchial Na(+)/K(+)-ATPase alpha-isoform-like proteins in marine euryhaline milkfish (Chanos chanos) acclimated to environments of different salinities.

    PubMed

    Tang, Cheng-Hao; Chiu, Yu-Huei; Tsai, Shu-Chuan; Lee, Tsung-Han

    2009-08-01

    Previous studies revealed that upon salinity challenge, milkfish (Chanos chanos), the euryhaline teleost, exhibited adaptive changes in branchial Na(+)/K(+)-ATPase (NKA) activity with different Na(+) and K(+) affinities. Since alteration of activity and ion-affinity may be influenced by changes in different isoforms of NKA alpha-subunit (i.e., the catalytic subunit), it is, thus, intriguing to compare the patterns of protein abundance of three major NKA alpha-isoform-like proteins (i.e., alpha1, alpha2, and alpha3) in the gills of euryhaline milkfish following salinity challenge. The protein abundance of three NKA alpha-isoform-like proteins in gills of milkfish reared in seawater (SW), fresh water (FW), as well as hypersaline water (HSW, 60 per thousand) were analyzed by immunoblotting. In the acclimation experiments, the SW group revealed significantly higher levels of NKA alpha1- and alpha3-like proteins than the FW or HSW group. Time-course experiments on milkfish that were transferred from SW to HSW revealed the abundance of branchial NKA alpha1-like and alpha3-like proteins decreased significantly after 96 and 12 hr, respectively, and no significant difference was found in NKA alpha2-like protein. Furthermore, when fish were transferred from SW to FW, the amounts of NKA alpha1- and alpha3-like proteins was significantly decreased after 96 hr. Taken together, acute and chronic changes in the abundance of branchial NKA alpha1- and alpha3-like proteins may fulfill the requirements of altering NKA activity with different Na(+) or K(+) affinity for euryhaline milkfish acclimated to environments of various salinities. 2009 Wiley-Liss, Inc.

  20. Reassociation and hybridization properties of DNAs from several species of fish

    USGS Publications Warehouse

    Gharrett, A.J.; Simon, R.C.; McIntyre, J.D.

    1977-01-01

    Reassociation and hybridization properties from spectrophotometric studies of DNAs from 10 species of fish indicate:1. Great diversity in the amounts of repeated sequences in the genomes of different species - more specialized fish had less redundancy.2. Large differences in the complexities of the DNAs - more specialized fish had less information.3. Little homology between sequences of remotely related species but substantial homology between sequences of closely related species.

  1. Total mercury levels in commercial fish species from Italian fishery and aquaculture.

    PubMed

    Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena

    2017-06-01

    Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.

  2. Endangered Fish Species in Kansas: Historic vs Contemporary Distribution

    EPA Science Inventory

    Background/Question/Methods Kansas state has more freshwater fish species than other states in the west and northern US. Based on recent count, more than 140 fishes have been documented in Kansas rivers. And at least five are categorized as endangered species in Kansas (and thre...

  3. Adaptations of semen characteristics and sperm motility to harsh salinity: Extreme situations encountered by the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859).

    PubMed

    Legendre, Marc; Alavi, Sayyed Mohammad Hadi; Dzyuba, Boris; Linhart, Otomar; Prokopchuk, Galina; Cochet, Christophe; Dugué, Rémi; Cosson, Jacky

    2016-09-15

    In most teleost fishes, sperm cells are quiescent in the seminal plasma and are activated by either a drop (fresh water fish) or an increase in osmolality (marine fish) when released in the water. It is most interesting to examine how the mechanisms of sperm motility activation can adapt to a broad range of salinities, as applies to some euryhaline species, and particularly to the tilapia Sarotherodon melanotheron heudelotii, which can reproduce at salinities from 0 up to 120 in the wild. Here, the gonado-somatic index, semen characteristics, and the osmotic and ionic requirements of sperm motility activation were compared in S. m. heudelotii reared in fresh water (FW), sea water (SW), or hypersaline water (HW; salinities of 0, 35, and 70, respectively). No salinity-dependent differences were found in gonado-somatic index or semen characteristics, except for an increase of seminal plasma osmolality with increasing salinity (from 318 to 349 mOsm kg(-1) in FW and HW fish, respectively). The osmolality range allowing the highest percentages of sperm activation broadened and shifted toward higher values with increasing fish ambient salinity (150-300, 300-800, and 500-1200 mOsm kg(-1), for FW, SW, and HW fish, respectively). Nevertheless, at the three fish rearing salinities, sperm could be activated in media that were hypotonic, isotonic, or hypertonic relative to the seminal plasma, at least when some calcium was present above a threshold concentration. The [Ca(2+)] required for the activation of S. m. heudelotii sperm is (1) higher in fish reared at a higher salinity (2) higher in hypertonic than that in hypotonic activation media, whatever the fish rearing salinity, and (3) higher in the presence of Na(+) or K(+), the negative effects of which increased with an increase in fish rearing salinity. The [Ca(2+)]/[Na(+)] ​ ratios allowing for maximal sperm motility in SW or HW fish are close to those observed in natural environments, either in sea or hypersaline

  4. Quantitative species-level ecology of reef fish larvae via metabarcoding.

    PubMed

    Kimmerling, Naama; Zuqert, Omer; Amitai, Gil; Gurevich, Tamara; Armoza-Zvuloni, Rachel; Kolesnikov, Irina; Berenshtein, Igal; Melamed, Sarah; Gilad, Shlomit; Benjamin, Sima; Rivlin, Asaph; Ohavia, Moti; Paris, Claire B; Holzman, Roi; Kiflawi, Moshe; Sorek, Rotem

    2018-02-01

    The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.

  5. Hepatic urea biosynthesis in the euryhaline elasmobranch Carcharhinus leucas.

    PubMed

    Anderson, W Gary; Good, Jonathan P; Pillans, Richard D; Hazon, Neil; Franklin, Craig E

    2005-10-01

    Plasma urea levels and hepatic urea production in the euryhaline bull shark, Carcharhinus leucas, acclimated to freshwater and seawater environments were measured. It was found that plasma urea concentration increased with salinity and that this increase was, in part, the result of a significant increase in hepatic production of urea. This study provides direct evidence that hepatic production of urea plays an important role in the osmoregulatory strategy of C. leucas. (c) 2005 Wiley-Liss, Inc.

  6. 75 FR 16738 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... plan and request for comment. SUMMARY: Notice is hereby given that the Washington Department of Fish... fish, sturgeon, carp, and other species.'' The FMEP describes the management of recreational fisheries...

  7. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity.

    PubMed

    Luque, J L; Poulin, R

    2007-06-01

    Although research on parasite biodiversity has intensified recently, there are signs that parasites remain an underestimated component of total biodiversity in many regions of the planet. To identify geographical hotspots of parasite diversity, we performed qualitative and quantitative analyses of the parasite-host associations in fishes from Latin America and the Caribbean, a region that includes known hotspots of plant and animal biodiversity. The database included 10,904 metazoan parasite-host associations involving 1660 fish species. The number of host species with at least 1 parasite record was less than 10% of the total known fish species in the majority of countries. Associations involving adult endoparasites in actinopterygian fish hosts dominated the database. Across the whole region, no significant difference in parasite species richness was detected between marine and freshwater fishes. As a rule, host body size and study effort (number of studies per fish species) were good predictors of parasite species richness. Some interesting patterns emerged when we included only the regions with highest fish species biodiversity and study effort (Brazil, Mexico and the Caribbean Islands). Independently of differences in study effort or host body sizes, Mexico stands out as a hotspot of parasite diversity for freshwater fishes, as does Brasil for marine fishes. However, among 57 marine fish species common to all 3 regions, populations from the Caribbean consistently harboured more parasite species. These differences may reflect true biological patterns, or regional discrepancies in study effort and local priorities for fish parasitology research.

  8. 77 FR 67796 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., Assistant Regional Director of the U.S. Fish and Wildlife Service (FWS), in accordance with the Endangered...-226) governing listed fish and wildlife permits. Species Covered in This Notice This notice is...

  9. Specific IgE to fish extracts does not predict allergy to specific species within an adult fish allergic population

    PubMed Central

    2014-01-01

    Background Fish is an important cause of food allergy. Studies on fish allergy are scarce and in most cases limited to serological evaluation. Our objective was to study patterns of self-reported allergy and tolerance to different commonly consumed fish species and its correlation to IgE sensitization to the same species. Methods Thirty-eight adult fish allergic patients completed a questionnaire regarding atopy, age of onset and symptoms to 13 commonly consumed fish species in the Netherlands (pangasius, cod, herring, eel, hake, pollock, mackerel, tilapia, salmon, sardine, tuna, plaice and swordfish). Specific IgE to these fish extracts were analyzed by ImmunoCAP. Results Median age of onset of fish allergy was 8.5 years. Severe reactions were reported by the majority of patients (n = 20 (53%) respiratory and of these 20 patients, 6 also had cardiovascular symptoms). After diagnosis, 66% of the patients had eliminated all fish from their diet. Allergy to all species ever tried was reported by 59%. In relation to species ever tried, cod (84%) and herring (79%) were the most frequently reported culprit species while hake (57%) and swordfish (55%) were the least frequent. A positive sIgE (value ≥ 0.35 kUA/L) to the culprit species ranged between 50% (swordfish) and 100% (hake). In tolerant patients, a negative sIgE (value < 0.35 kUA/L) ranged from 0% (hake, pollock and swordfish) to 75% (sardine). For cod, the agreement between sIgE test results and reported allergy or tolerance was 82% and 25%, respectively. Sensitization to cod parvalbumin (Gad c 1) was present in 77% of all patients. Conclusion Serological cross-reactivity between fish species is frequent, but in a significant proportion of patients, clinical relevance appears to be limited to only certain species. A well-taken history or food challenge is required for discrimination between allergy to the different fish species. PMID:25225608

  10. Specific IgE to fish extracts does not predict allergy to specific species within an adult fish allergic population.

    PubMed

    Schulkes, Karlijn Jg; Klemans, Rob Jb; Knigge, Lidy; de Bruin-Weller, Marjolein; Bruijnzeel-Koomen, Carla Afm; Marknell deWitt, Asa; Lidholm, Jonas; Knulst, André C

    2014-01-01

    Fish is an important cause of food allergy. Studies on fish allergy are scarce and in most cases limited to serological evaluation. Our objective was to study patterns of self-reported allergy and tolerance to different commonly consumed fish species and its correlation to IgE sensitization to the same species. Thirty-eight adult fish allergic patients completed a questionnaire regarding atopy, age of onset and symptoms to 13 commonly consumed fish species in the Netherlands (pangasius, cod, herring, eel, hake, pollock, mackerel, tilapia, salmon, sardine, tuna, plaice and swordfish). Specific IgE to these fish extracts were analyzed by ImmunoCAP. Median age of onset of fish allergy was 8.5 years. Severe reactions were reported by the majority of patients (n = 20 (53%) respiratory and of these 20 patients, 6 also had cardiovascular symptoms). After diagnosis, 66% of the patients had eliminated all fish from their diet. Allergy to all species ever tried was reported by 59%. In relation to species ever tried, cod (84%) and herring (79%) were the most frequently reported culprit species while hake (57%) and swordfish (55%) were the least frequent. A positive sIgE (value ≥ 0.35 kUA/L) to the culprit species ranged between 50% (swordfish) and 100% (hake). In tolerant patients, a negative sIgE (value < 0.35 kUA/L) ranged from 0% (hake, pollock and swordfish) to 75% (sardine). For cod, the agreement between sIgE test results and reported allergy or tolerance was 82% and 25%, respectively. Sensitization to cod parvalbumin (Gad c 1) was present in 77% of all patients. Serological cross-reactivity between fish species is frequent, but in a significant proportion of patients, clinical relevance appears to be limited to only certain species. A well-taken history or food challenge is required for discrimination between allergy to the different fish species.

  11. Liquid chromatographic determination of oxytetracycline in edible fish fillets from six species of fish

    USGS Publications Warehouse

    Meinertz, J.R.; Stehly, G.R.; Gingerich, W.H.

    1998-01-01

    The approved use of oxytetracycline (OTC) in U.S. Aquaculture is limited to specific diseases in salmonids and channel catfish. OTC may also be effective in controlling diseases in other fish species important to public aquaculture, but before approved use of OTC can be augmented, an analytical method for determining OTC in fillet tissue from multiple species of fish will be required to support residue depletion studies. The objective of this study was to develop and validate a liquid chromatographic (LC) method that is accurate, precise, and sensitive for OTC in edible fillets from multiple species of fish. Homogenized fillet tissues from walleye, Atlantic salmon, striped bass, white sturgeon, rainbow trout, and channel catfish were fortified with OTC at nominal concentrations of 10, 20, 100, 1000, and 5000 ng/g. In tissues fortified with OTC at 100, 1000, and 5000 ng/g, mean recoveries ranged from 83 to 90%, and relative standard deviations (RSDs) ranged from 0.9 to 5.8%. In all other tissues, mean recoveries ranged from 59 to 98%, and RSDs ranged from 3.3 to 20%. Method quantitation limits ranged from 6 to 22 ng/g for the 6 species. The LC parameters produced easily integratable OTC peaks without coelution of endogenous compounds. The method is accurate, precise, and sensitive for OTC in fillet tissue from 6 species of fish from 5 phylogenetically diverse groups.

  12. 77 FR 23463 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... is for issuance of an Endangered Species Act section 10(a)(1)(A) permit to US Fish and Wildlife Service to collect Central Valley spring-run Chinook salmon eggs and juveniles from the Feather River Fish...

  13. Cloning of growth hormone, somatolactin, and their receptor mRNAs, their expression in organs, during development, and on salinity stress in the hermaphroditic fish, Kryptolebias marmoratus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2012-04-01

    Salinity is an important parameter that affects survival and metabolism in fish. In fish, pituitary growth hormone (GH) regulates physiological functions including adaptation to different salinity as well as somatic growth. GH is stimulated by growth hormone-releasing hormone (GHRH) and exerts its function via binding to growth hormone receptor (GHR). As Kryptolebias marmoratus is a euryhaline fish, this species would be a useful model species for studying the adaptation to osmotic stress conditions. Here, we cloned GH, -GHR, somatolactin (SL), and somatolactin receptor (SLR) genes, and analyzed their expression patterns in different tissues and during early developmental stages by using real-time RT-PCR. We also further examined expression of them after acclimation to different salinity. Tissue distribution studies revealed that Km-GH and -SL mRNAs were remarkably expressed in brain and pituitary, whereas Km-GHR and -SLR mRNAs were predominantly expressed in liver, followed by gonad, muscle, pituitary, and brain. During embryonic developmental stages, the expression of their mRNA was increased at stage 3 (9 dpf). The Km-GH and -SL mRNA transcripts were constantly elevated until stage 5 (5h post hatch), whereas Km-GHR and -SLR mRNA levels decreased at this stage. After we transferred K. marmoratus from control (12 psu) to hyper-osmotic condition (hyperseawater, HSW; 33 psu), Km-GH, -SL, and GHR mRNA levels were enhanced. In hypo-osmotic conditions like freshwater (FW), Km-GH and -SL expressions were modulated 24 h after exposure, and Km-SLR transcripts were significantly upregulated. This finding suggests that Km-GH and -SL may be involved in the osmoregulatory mechanism under hyper-osmotic as well as hypo-osmotic stress. This is the first report on transcriptional modulation and relationship of GH, GHR, SL, and SLR during early development and after salinity stress. This study will be helpful to a better understanding on molecular mechanisms of adaptation response

  14. Estimating the efficiency of fish cross-species cDNA microarray hybridization.

    PubMed

    Cohen, Raphael; Chalifa-Caspi, Vered; Williams, Timothy D; Auslander, Meirav; George, Stephen G; Chipman, James K; Tom, Moshe

    2007-01-01

    Using an available cross-species cDNA microarray is advantageous for examining multigene expression patterns in non-model organisms, saving the need for construction of species-specific arrays. The aim of the present study was to estimate relative efficiency of cross-species hybridizations across bony fishes, using bioinformatics tools. The methodology may serve also as a model for similar evaluations in other taxa. The theoretical evaluation was done by substituting comparative whole-transcriptome sequence similarity information into the thermodynamic hybridization equation. Complementary DNA sequence assemblages of nine fish species belonging to common families or suborders and distributed across the bony fish taxonomic branch were selected for transcriptome-wise comparisons. Actual cross-species hybridizations among fish of different taxonomic distances were used to validate and eventually to calibrate the theoretically computed relative efficiencies.

  15. Phylogeny of Fish-Infecting Calyptospora species (Apicomplexa: Eimeriorina)

    EPA Science Inventory

    There are numerous species of apicomplexans that infect poikilothermic vertebrates such as fishes, and possess unique morphological features that provide insight into the evolution of this important phylum of parasites. Here the relationship of the fish-infecting Calyptospora spe...

  16. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  17. Reactive oxygen species, antioxidants and fish mitochondria.

    PubMed

    Wilhelm Filho, Danilo

    2007-01-01

    In fishes, irrespective of their thermoregulatory capacity or metabolic rate, the main physiological source of reactive oxygen species (ROS) is mitochondria. During active swimming, ROS is by an large provided by red muscle mitochondria. Other tissues such as lens, liver, heart, swimbladder, roe and blood also afford important ROS production and antioxidant levels in resting fish. A close relationship between structure and function is evident in fish mitochondrion with a surface-to-volume optimization by the size of cristae to maximize electron transfer. The mechanism of fish mitochondrial superoxide anion (O2*-) and ROS production as well as the mechanism of mitochondrial coupling and proton leak seems similar to that of mammals. Contrary to mammalian red cells, fish erythrocytes possess nuclei and mitochondria. The presence of cardiolipin and the absence of cholesterol in fish mitochondrial membranes confer a high structural flexibility. The difference in phospholipid unsaturation may explain the greater proton leak in endotherms compared to thermoconformers. The present review summarizes our current understanding in respect to comparative aspects of fish mitochondrial function, with an emphasis on the adaptations to changes in temperature, O2 availability and O2 consumption, which are generally coupled to changes in antioxidant status and ROS production. Nevertheless, most work on this fascinating area has yet to be done. The literature on the effect of xenobiotics, aquatic contamination, and aquaculture issues are not reviewed. Data on the production of NO and reactive nitrogen species (RNS), on O2 sensing and on the role of ROS and RNS in cell signalling involving fish mitochondria are almost completely lacking in the literature.

  18. Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study.

    PubMed

    Dooley, John J; Sage, Helen D; Clarke, Marie-Anne L; Brown, Helen M; Garrett, Stephen D

    2005-05-04

    Identification of 10 white fish species associated with U.K. food products was achieved using PCR-RFLP of the mitochondrial cytochrome b gene. Use of lab-on-a-chip capillary electrophoresis for end-point analysis enabled accurate sizing of DNA fragments and identification of fish species at a level of 5% (w/w) in a fish admixture. One restriction enzyme, DdeI, allowed discrimination of eight species. When combined with NlaIII and HaeIII, specific profiles for all 10 species were generated. The method was applied to a range of products and subjected to an interlaboratory study carried out by five U.K. food control laboratories. One hundred percent correct identification of single species samples and six of nine admixture samples was achieved by all laboratories. The results indicated that fish species identification could be carried out using a database of PCR-RFLP profiles without the need for reference materials.

  19. Development of Solar Drying Model for Selected Cambodian Fish Species

    PubMed Central

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381

  20. Modeling of Valued Fish Species in River Networks

    EPA Science Inventory

    Riverine fish provide many ecosystem services in support of human well-being, including food, recreation, and biodiversity. Under future drivers of land use and climate change, inland waters are likely to be impaired, and conservation and protection of fish species and services ...

  1. [Species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China].

    PubMed

    Zhang, Qian; Zhong, Jin-Xin

    2013-05-01

    Based on the related published papers, and by using Geographic Information System (ArcGIS 9.3), this paper analyzed the species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China. There were 83 threatened species living in the Province, belonging to 5 orders, 13 families, and 47 genera. Cypriniformes was absolutely dominant, with 64 species, followed by Siluriformes, with 16 species. Cyprinidae fishes had 51 species, accounting for 79.7% of Cypriniformes. The most species of Cyprinid fishes were of Barbinae (14 species), Cyprininae (10 species), and Cultrinae (10 species). The threatened fishes could be divided into two zoogeographical regions, i. e., Tibetan Plateau region and Oriental region, and their species composition and geographical distribution were resulted from the historical evolution adapted to the related environments. Whatever in rivers and in lakes, the Cyprinid fishes were both absolutely dominant, occupying 36.1% and 31.3% of the total, respectively. The Cyprinid fishes in rivers were mostly of endangered species, while those in lakes were mostly of vulnerable species. The factors affecting the threatened fishes in the Province were discussed from the two aspects of geodynamic evolution and present situation.

  2. Oral vaccination of fish: Lessons from humans and veterinary species.

    PubMed

    Embregts, Carmen W E; Forlenza, Maria

    2016-11-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. 76 FR 51352 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Department of Fish and Wildlife (WDFW), for a direct take permit pursuant to the Endangered Species Act of... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Section 9 of the ESA and Federal regulations prohibit the ``taking'' of a species listed as endangered or...

  4. [Fatty acids in different edible fish species from Mexico].

    PubMed

    Castro González, María Isabel; Rodríguez, Ana Gabriela Maafs; Galindo Gómez, Carlos

    2013-12-01

    Different biotic and abiotic factors determine the fatty acid (FA) composition of fish tissues and organs. This information is useful for humans due to the fact that fish consumption is associated with health benefits. The aim of the present study was to identify the variation in the concentration of fatty acids, according to different factors, among ten edible marine fish species in Mexico, collected from June to December 2009 in the largest fish market in Mexico City: Euthynnus alletteratus, Sciaenops ocellatus, Bairdiella chrysoura, Sphyraena guachancho, Symphurus elongatus, Istiophorus platypterus, Ophichthus rex, Eugerres plumieri, Eucinostomus entomelas and Oreochromrnis mossambicus. Lipid content was gravimetrically quantified, the fatty acids were determined using a gas chromatograph and the results were statistically analyzed. Total lipid content ranged from 0.93 to 1.95 g/100 g in E. entomelas and O. urolepis hornorum, respectively. E. alletteratus, B. chrysoura, S. elongatus, I. platypterus, O. rex and E. plumieri presented the following order in FA concentration: Polyunsaturated FA (PUFA)>Saturated FA (SFA)>Monounsaturated FA (MUFA). S. ocellatus, S. guachancho and E. entomelas presented SFA>PUFA>MUFA; and only O. mossambicus presented SFA>MUFA>PUFA. O. mossambicus had the highest concentration (mg/100 g) of SFA (559.40) and MUFA (442.60), while B. chrysoura presented the highest content (mg/100 g) of PUFA (663.03), n-3 PUFA (514.03), EPA+DHA (506.10) and n-6 PUFA (145.80). Biotic and abiotic factors of the analyzed fish significantly influenced their FA concentration. Subtropical species presented 42.1% more EPA+DHA than tropical specie. Values presented here will vary according to the changes in the ecosystem and characteristics of each fish species, however the information generated in the present study is useful for improving fish consumption recommendations.

  5. Model for Predicting Passage of Invasive Fish Species Through Culverts

    NASA Astrophysics Data System (ADS)

    Neary, V.

    2010-12-01

    Conservation efforts to promote or inhibit fish passage include the application of simple fish passage models to determine whether an open channel flow allows passage of a given fish species. Derivations of simple fish passage models for uniform and nonuniform flow conditions are presented. For uniform flow conditions, a model equation is developed that predicts the mean-current velocity threshold in a fishway, or velocity barrier, which causes exhaustion at a given maximum distance of ascent. The derivation of a simple expression for this exhaustion-threshold (ET) passage model is presented using kinematic principles coupled with fatigue curves for threatened and endangered fish species. Mean current velocities at or above the threshold predict failure to pass. Mean current velocities below the threshold predict successful passage. The model is therefore intuitive and easily applied to predict passage or exclusion. The ET model’s simplicity comes with limitations, however, including its application only to uniform flow, which is rarely found in the field. This limitation is addressed by deriving a model that accounts for nonuniform conditions, including backwater profiles and drawdown curves. Comparison of these models with experimental data from volitional swimming studies of fish indicates reasonable performance, but limitations are still present due to the difficulty in predicting fish behavior and passage strategies that can vary among individuals and different fish species.

  6. Functional feeding traits as predictors of invasive success of alien freshwater fish species using a food-fish model.

    PubMed

    Nagelkerke, Leopold A J; van Onselen, Eline; van Kessel, Nils; Leuven, Rob S E W

    2018-01-01

    Invasions of Ponto-Caspian fish species into north-western European river basins accelerated since the opening of the Rhine-Main-Danube Canal in 1992. Since 2002, at least five Ponto-Caspian alien fish species have arrived in The Netherlands. Four species belong to the Gobiidae family (Neogobius fluviatilis, Neogobius melanostomus, Ponticola kessleri, and Proterorhinus semilunaris) and one to the Cyprinidae family (Romanogobio belingi). These species are expected to be potentially deleterious for the populations of four native benthic fish species: Gobio gobio (Cyprinidae), Barbatula barbatula (Nemacheilidae), Cottus perifretum, and C. rhenanus (Cottidae). Invasion success may be dependent on competitive trophic interactions with native species, which are enabled and/or constrained by feeding-related morphological traits. Twenty-two functional feeding traits were measured in nine species (in total 90 specimens). These traits were quantitatively linked to the mechanical, chemical and behavioral properties of a range of aquatic resource categories, using a previously developed food-fish model (FFM). The FFM was used to predict the trophic profile (TP) of each fish: the combined capacities to feed on each of the resource types. The most extreme TPs belonged to three alien species, indicating that they were most specialized among the studied species. Of these three, only P. kessleri overlapped with the two native Cottus species, indicating potential trophic competition. N. fluviatilis and R. belingi did not show any overlap, indicating that there is low trophic competition. The two remaining alien goby species (N. melanostomus and P. semilunaris) had average TPs and could be considered generalist feeders. They overlapped with each other and with G. gobio and B. barbatula, indicating potential trophic competition. This study suggests that both generalist and specialist species can be successful invaders. Since the FFM predicts potential interactions between species, it

  7. Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?

    PubMed

    Pereira, Larissa Strictar; Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O

    2017-01-01

    Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes.

  8. Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?

    PubMed Central

    Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O.

    2017-01-01

    Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes. PMID:28122040

  9. Effects of increasing docosahexaenoic acid and arachidonic acid in brood diets of monodactylus sebae on fecundity, egg and larval quality, and egg fatty acid composition

    USDA-ARS?s Scientific Manuscript database

    Monodactylus sebae is a popular euryhaline ornamental fish species with limited aquaculture production. One of the bottlenecks to their commercial production has been knowledge of broodstock nutritional requirements. Therefore, three brood diets were formulated and fed to M. sebae brood to determine...

  10. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2011-03-15

    There are few data on risks to biota and humans from mercury levels in saltwater fish. This paper examines mercury and selenium levels in muscle of 19 species of fish caught by recreational fisherfolk off the New Jersey shore, as a function of species of fish, size, and season, and risk of mercury to consumers. Average mercury levels ranged from 0.01 ppm (wet weight) (Menhaden Brevoortia tyrannus) to 1.83 ppm (Mako Shark Isurus oxyrinchus). There were four categories of mercury levels: very high (only Mako), high (averaging 0.3-0.5 ppm, 3 species), medium (0.14-0.20 ppm, 10 species), and low (below 0.13 ppm, 5 species). Average selenium levels for the fish species ranged from 0.18 ppm to 0.58 ppm, and had lower variability than mercury (coefficient of variation=38.3 vs 69.1%), consistent with homeostatic regulation of this essential element. The correlation between mercury and selenium was significantly positive for five and negative for two species. Mercury levels showed significant positive correlations with fish size for ten species. Size was the best predictor of mercury levels. Selenium showed no consistent relationship to fish length. Over half of the fish species had some individual fish with mercury levels over 0.3 ppm, and a third had fish with levels over 0.5 ppm, levels that pose a human health risk for high end consumers. Conversely several fish species had no individuals above 0.5 ppm, and few above 0.3 ppm, suggesting that people who eat fish frequently, can reduce their risk from mercury by selecting which species (and which size) to consume. Overall, with the exception of shark, Bluefin Tuna (Thunnus thynnus), Bluefish (Pomatomus saltatrix) and Striped Bass (Morone saxatilis), the species sampled are generally medium to low in mercury concentration. Selenium:mercury molar ratios were generally above 1:1, except for the Mako shark. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There are few data on risks to biota and humans from mercury levels in saltwater fish. This paper examines mercury and selenium levels in muscle of 19 species of fish caught by recreational fisherfolk off the New Jersey shore, as a function of species of fish, size, and season, and risk of mercury to consumers. Average mercury levels ranged from 0.01 ppm (wet weight) (Menhaden Brevoortia tyrannus) to 1.83 ppm (Mako Shark Isurus oxyrinchus). There were four categories of mercury levels: very high (only Mako), high (averaging 0.3–0.5 ppm, 3 species), medium (0.14–0.20 ppm, 10 species), and low (below 0.13 ppm, 5 species). Average selenium levels for the fish species ranged from 0.18 ppm to 0.58 ppm, and had lower variability than mercury (coefficient of variation=38.3 vs 69.1%), consistent with homeostatic regulation of this essential element. The correlation between mercury and selenium was significantly positive for five and negative for two species. Mercury levels showed significant positive correlations with fish size for ten species. Size was the best predictor of mercury levels. Selenium showed no consistent relationship to fish length. Over half of the fish species had some individual fish with mercury levels over 0.3 ppm, and a third had fish with levels over 0.5 ppm, levels that pose a human health risk for high end consumers. Conversely several fish species had no individuals above 0.5 ppm, and few above 0.3 ppm, suggesting that people who eat fish frequently, can reduce their risk from mercury by selecting which species (and which size) to consume. Overall, with the exception of shark, Bluefin Tuna (Thunnus thynnus), Bluefish (Pomatomus saltatrix) and Striped Bass (Morone saxatilis), the species sampled are generally medium to low in mercury concentration. Selenium:mercury molar ratios were generally above 1:1, except for the Mako shark. PMID:21292311

  12. Characterization of the Cultivable Gut Microflora in Wild-Caught 
Mediterranean Fish Species.

    PubMed

    Jammal, Ahmad; Bariche, Michel; Zu Dohna, Heinrich; Kambris, Zakaria

    2017-05-01

    Microflora of the gastrointestinal tract plays important roles in food digestion, nutrient absorption and in host defense against ingested pathogens. Several studies have focused on the microflora of farmed fishes, but the gut flora of wild fishes remains poorly characterized. The aim of this work was to provide an overview of the bacteria colonizing the gut of wild-caught fishes and to determine whether some bacterial species can be pathogenic. We isolated cultivable bacteria from fifteen wild-caught Mediterranean fish species corresponding to different habitat, diet and origin. Bacterial species identity was determined by 16s rRNA gene sequencing for the 61 isolates. The potential pathogenicity of isolated bacteria was investigated using fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) as model organisms. Two bacterial strains (Serratia sp. and Aeromonas salmonicida) were lethal when microinjected to Drosophila, while zebrafish did not develop any disease when exposed to any of 34 isolated bacterial strains. However, it was interesting to note that two bacterial strains (Shewanella and Arthrobacter) isolated from marine fishes were able to colonize the guts of freshwater zebrafish. The results of this study give an overview of the bacterial species found in the guts of wild fishes living off Beirut seashore. It shows that some parameters believed to be limiting factors to host-gut colonization by bacteria can be overcome by some species. This pilot study could be extended by sampling a larger number of fish species with several specimens per fish species, and by identifying uncultivable bacteria that reside in the fish guts. Our results may have implications for the utilization of certain bacterial species in fish farming or their use as bio-indicators for water and/or food quality.

  13. Life history strategies of fish species and biodiversity in eastern USA streams

    USGS Publications Warehouse

    Meador, Michael R.; Brown, Larry M.

    2015-01-01

    Predictive models have been used to determine fish species that occur less frequently than expected (decreasers) and those that occur more frequently than expected (increasers) in streams in the eastern U.S. Coupling life history traits with 51 decreaser and 38 increaser fish species provided the opportunity to examine potential mechanisms associated with predicted changes in fish species distributions in eastern streams. We assigned six life history traits – fecundity, longevity, maturation age, maximum total length, parental care, and spawning season duration – to each fish species. Decreaser species were significantly smaller in size and shorter-lived with reduced fecundity and shorter spawning seasons compared to increaser species. Cluster analysis of traits revealed correspondence with a life history model defining equilibrium (low fecundity, high parental care), opportunistic (early maturation, low parental care), and periodic (late maturation, high fecundity, low parental care) end-point strategies. Nearly 50 % of decreaser species were associated with an intermediate opportunistic-periodic strategy, suggesting that abiotic factors such as habitat specialization and streamflow alteration may serve as important influences on life history traits and strategies of decreaser species. In contrast, the percent of increaser species among life history strategy groups ranged from 21 to 32 %, suggesting that life history strategies of increaser species were more diverse than those of decreaser species. This study highlights the utility of linking life history theory to biodiversity to better understand mechanisms that contribute to fish species distributions in the eastern U.S.

  14. Branchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas: a molecular analysis of ion transporters.

    PubMed

    Reilly, Beau D; Cramp, Rebecca L; Wilson, Jonathan M; Campbell, Hamish A; Franklin, Craig E

    2011-09-01

    Bull sharks, Carcharhinus leucas, are one of only a few species of elasmobranchs that live in both marine and freshwater environments. Osmoregulation in euryhaline elasmobranchs is achieved through the control and integration of various organs (kidney, rectal gland and liver) in response to changes in environmental salinity. However, little is known regarding the mechanisms of ion transport in the gills of euryhaline elasmobranchs and how they are affected by osmoregulatory challenges. This study was conducted to gain insight into the branchial ion and acid-base regulatory mechanisms of C. leucas by identifying putative ion transporters and determining whether their expression is influenced by environmental salinity. We hypothesised that expression levels of the Na(+)/K(+)-ATPase (NKA) pump, Na(+)/H(+) exchanger 3 (NHE3), vacuolar-type H(+)-ATPase (VHA) and anion exchanger pendrin (PDN) would be upregulated in freshwater (FW) C. leucas. Immunohistochemistry was used to localise all four ion transporters in gills of bull sharks captured in both FW and estuarine/seawater (EST/SW) environments. NHE3 immunoreactivity occurred in the apical region of cells with basolateral NKA expression whereas PDN was apically expressed in cells that also exhibited basolateral VHA immunoreactivity. In accordance with our hypotheses, quantitative real-time PCR showed that the mRNA expression of NHE3 and NKA was significantly upregulated in gills of FW-captured C. leucas relative to EST/SW-captured animals. These data suggest that NHE3 and NKA together may be important in mediating branchial Na(+) uptake in freshwater environments, whereas PDN and VHA might contribute to Cl(-)/HCO(3)(-) transport in marine and freshwater bull shark gills.

  15. Accounting for Incomplete Species Detection in Fish Community Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Jager, Yetta

    2013-01-01

    Riverine fish assemblages are heterogeneous and very difficult to characterize with a one-size-fits-all approach to sampling. Furthermore, detecting changes in fish assemblages over time requires accounting for variation in sampling designs. We present a modeling approach that permits heterogeneous sampling by accounting for site and sampling covariates (including method) in a model-based framework for estimation (versus a sampling-based framework). We snorkeled during three surveys and electrofished during a single survey in suite of delineated habitats stratified by reach types. We developed single-species occupancy models to determine covariates influencing patch occupancy and species detection probabilities whereas community occupancy models estimated speciesmore » richness in light of incomplete detections. For most species, information-theoretic criteria showed higher support for models that included patch size and reach as covariates of occupancy. In addition, models including patch size and sampling method as covariates of detection probabilities also had higher support. Detection probability estimates for snorkeling surveys were higher for larger non-benthic species whereas electrofishing was more effective at detecting smaller benthic species. The number of sites and sampling occasions required to accurately estimate occupancy varied among fish species. For rare benthic species, our results suggested that higher number of occasions, and especially the addition of electrofishing, may be required to improve detection probabilities and obtain accurate occupancy estimates. Community models suggested that richness was 41% higher than the number of species actually observed and the addition of an electrofishing survey increased estimated richness by 13%. These results can be useful to future fish assemblage monitoring efforts by informing sampling designs, such as site selection (e.g. stratifying based on patch size) and determining effort required (e

  16. Underappreciated species in ecology: "ugly fish" in the northwest Atlantic Ocean.

    PubMed

    Link, Jason S

    2007-10-01

    Species shifts and replacements are common in ecological studies. Observations thereof serve as the impetus for many ecological endeavors. Many of the species now known to dominate ecosystem functioning were largely ignored until studies of those underappreciated species elucidated their critical roles. Recognizing the potential importance of underappreciated species has implications for functional redundancies in ecosystems and should alter our approach to long-term monitoring. One example of an applied ecological system containing species shifts, underappreciated species, and potential changes in functional redundancies is the topic of fisheries. The demersal component of many fish communities usually consists of high-profile and commercially valuable species that are targets of fisheries, plus a diverse group of lesser known species that have minimal commercial value and focus. Yet ecologically these traditionally nontargeted species are often a major biomass sink in marine ecosystems and can also be critical in the functioning of bentho-demersal food webs. I examined the biomass trajectories of several species of skates, cottids, lophiids, anarhichadids, zooarcids, and similar species in the northeast U.S. Atlantic ecosystem to determine whether their relative abundance has changed across the past four decades. Distribution and stomach contents of these species were also evaluated over time to further elucidate the relative importance of these species. Landings of these underappreciated bentho-demersal fish were also examined in comparison to those species that historically have been commercially targeted. Of particular emphasis was the evaluation of evidence for sequential stock depletion and the ramifications for functional redundancy for this ecosystem. Results indicate that some of these fish species are now the dominant piscivores, benthivores, and scavengers in this ecosystem. These formerly under-studied species generally have either maintained a

  17. Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2Cl- cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus.

    PubMed

    Kang, Chao-Kai; Liu, Fu-Chen; Chang, Wen-Been; Lee, Tsung-Han

    2012-06-01

    The goal of this study was to determine the osmoregulatory ability of a juvenile marine fish, silver moony (Monodactylus argenteus), for the purpose of developing a new experimental species for ecophysiological research. In this study, M. argenteus was acclimated to freshwater (FW), brackish water (BW), or seawater (SW). The salinity tolerance of this euryhaline species was effective, and the fish survived well upon osmotic challenges. The largest apical surface of mitochondrion-rich cells was found in the FW individuals. Immunohistochemical staining revealed that Na(+), K(+)-ATPase immunoreactive (NKA-IR) cells were distributed in the interlamellar region of the gill filaments of the silver moony in all experimental groups. In addition to the filaments, NKA-IR cells were also found in the lamellae of the FW individuals. The number of NKA-IR cells in the gills of the FW individuals exceeded that of the BW and SW individuals. The NKA-IR cells of FW and SW individuals exhibited bigger size than that of BW fish. The NKA activities and protein expression of the NKA α-subunit in the gills of the FW individuals were significantly higher than in the BW and SW groups. Additionally, the relative amounts of Na(+), K(+), 2Cl(-) cotransporter 1 (NKCC1) were salinity-dependent in the gills. Immunofluorescent signals of NKCC1 were localized to the basolateral membrane of NKA-IR cells in all groups. In the gills of the FW individuals, however, some NKA-IR cells did not exhibit a basolateral NKCC1 signal. In conclusion, the present study illustrated the osmoregulatory mechanisms of this easy- and economic-to-rear marine teleost with euryhaline capacity and proved the silver moony to be a good experimental animal.

  18. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages.

    PubMed

    Colin, Nicole; Villéger, Sébastien; Wilkes, Martin; de Sostoa, Adolfo; Maceda-Veiga, Alberto

    2018-06-01

    Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is

  19. 78 FR 23222 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC630 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: NOAA's National Marine Fisheries Service (NMFS... CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in This Notice This...

  20. 75 FR 33243 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 6048-XW87 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: NOAA's National Marine Fisheries Service (NMFS... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in...

  1. 77 FR 34349 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Department of Fish and Wildlife (ODFW) pursuant to the protective regulations promulgated for Pacific salmon... hatchery fish to support fishing opportunities while minimizing potential risks to natural-origin spring...

  2. Male-mediated species recognition among African weakly electric fishes

    PubMed Central

    Nagel, Rebecca; Kirschbaum, Frank; Engelmann, Jacob; Hofmann, Volker; Pawelzik, Felix

    2018-01-01

    Effective communication among sympatric species is often instrumental for behavioural isolation, where the failure to successfully discriminate between potential mates could lead to less fit hybrid offspring. Discrimination between con- and heterospecifics tends to occur more often in the sex that invests more in offspring production, i.e. females, but males may also mediate reproductive isolation. In this study, we show that among two Campylomormyrus African weakly electric fish species, males preferentially associate with conspecific females during choice tests using live fish as stimuli, i.e. when all sensory modalities potentially used for communication were present. We then conducted playback experiments to determine whether the species-specific electric organ discharge (EOD) used for electrocommunication serves as the cue for this conspecific association preference. Interestingly, only C. compressirostris males associated significantly more with the conspecific EOD waveform when playback stimuli were provided, while no such association preference was observed in C. tamandua males. Given our results, the EOD appears to serve, in part, as a male-mediated pre-zygotic isolation mechanism among sympatric species. However, the failure of C. tamandua males to discriminate between con- and heterospecific playback discharges suggests that multiple modalities may be necessary for species recognition in some African weakly electric fish species. PMID:29515818

  3. Fish status survey of Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition.

    PubMed

    Tammi, Jouni; Appelberg, Magnus; Beier, Ulrika; Hesthagen, Trygve; Lappalainen, Antti; Rask, Martti

    2003-03-01

    The status of fish populations in 3821 lakes in Norway, Sweden and Finland was assessed in 1995-1997. The survey lakes were chosen by stratified random sampling from all (126 482) Fennoscandian lakes > or = 0.04 km2. The water chemistry of the lakes was analyzed and information on fish status was obtained by a postal inquiry. Fish population losses were most frequent in the most highly acidified region of southern Norway and least common in eastern Fennoscandia. According to the inquiry results, the number of lost stocks of brown trout (Salmo trutta), roach (Rutilus rutilus), Arctic char (Salvelinus alpinus) and perch (Perca fluviatilis) was estimated to exceed 10000. The number of stocks of these species potentially affected by the low alkalinity of lake water was estimated to exceed 11000. About 3300 lakes showed high total phosphorus (> 25 microg L(-1)) and cyprinid dominance in eastern Fennoscandia, notably southwestern Finland. This survey did not reveal any extinction of fish species due to eutrophication. One-third of the lakes had been artificially stocked with at least one new species, most often brown trout, whitefish (Coregonus lavaretus s.l.), Arctic char, rainbow trout (Oncorhynchus mykiss), pike-perch (Stizostedion lucioperca), grayling (Thymallus thymallus), pike (Esox lucius), bream (Abramis brama), tench (Tinca tinca) and European minnow (Phoxinus phoxinus). The number of artificially manipulated stocks of these species in Fennoscandian lakes was estimated to exceed 52000. Hence, the number of fish species occurring in Nordic lakes has recently been changed more by stockings than by losses of fish species through environmental changes such as acidification.

  4. Connecting ground water influxes with fish species diversity in an urbanized watershed

    USGS Publications Warehouse

    Steffy, L.Y.; McGinty, A.L.; Welty, C.; Kilham, S.S.

    2004-01-01

    Valley Creek watershed is a small stream system that feeds the Schuylkill River near Philadelphia, Pennsylvania. The watershed is highly urbanized, including over 17 percent impervious surface cover (ISC) by area. Imperviousness in a watershed has been linked to fish community structure and integrity. Generally, above 10 to 12 percent ISC there is marked decline in fish assemblages with fish being absent above 25 percent ISC. This study quantifies the importance of ground water in maintaining fish species diversity in subbasins with over 30 percent ISC. Valley Creek contains an atypical fish assemblage in that the majority of the fish are warm-water species, and the stream supports naturally reproducing brown trout, which were introduced and stocked from the early 1900s to 1985. Fish communities were quantified at 13 stations throughout the watershed, and Simpson's species diversity index was calculated. One hundred and nine springs were located, and their flow rates measured. A cross covariance analysis between Simpson's species diversity index and spring flow rates upstream of fish stations was performed to quantify the spatial correlation between these two variables. The correlation was found to be highest at lag distances up to about 400 m and drop off significantly beyond lag distances of about 800 m.

  5. 78 FR 74116 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... plans and request for comment. SUMMARY: Notice is hereby given that the Oregon Department of Fish and... River and Columbia River basins by providing hatchery fish to support fishing opportunities while...

  6. 77 FR 27188 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... plans and request for comment SUMMARY: Notice is hereby given that the Oregon Department of Fish and... River and Columbia River basins by providing hatchery fish to support fishing opportunities while...

  7. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease

    PubMed Central

    Harris, M. P.; Henke, K.; Hawkins, M. B.; Witten, P. E.

    2014-01-01

    Summary Fishes are wonderfully diverse. This variety is a result of the ability of ray-finned fishes to adapt to a wide range of environments, and has made them more specious than the rest of vertebrates combined. With such diversity it is easy to dismiss comparisons between distantly related fishes in efforts to understand the biology of a particular fish species. However, shared ancestry and the conservation of developmental mechanisms, morphological features and physiology provide the ability to use comparative analyses between different organisms to understand mechanisms of development and physiology. The use of species that are amenable to experimental investigation provides tools to approach questions that would not be feasible in other ‘non-model’ organisms. For example, the use of small teleost fishes such as zebrafish and medaka has been powerful for analysis of gene function and mechanisms of disease in humans, including skeletal diseases. However, use of these fish to aid in understanding variation and disease in other fishes has been largely unexplored. This is especially evident in aquaculture research. Here we highlight the utility of these small laboratory fishes to study genetic and developmental factors that underlie skeletal malformations that occur under farming conditions. We highlight several areas in which model species can serve as a resource for identifying the causes of variation in economically important fish species as well as to assess strategies to alleviate the expression of the variant phenotypes in farmed fish. We focus on genetic causes of skeletal deformities in the zebrafish and medaka that closely resemble phenotypes observed both in farmed as well as natural populations of fishes. PMID:25221374

  8. 77 FR 63295 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... fish and wildlife permits (50 CFR parts 222-226). Those individuals requesting a hearing on an... 17428 The U.S. Fish and Wildlife Service, Sacramento Fish and Wildlife Office is requesting a 5-year...

  9. 76 FR 27017 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... governing listed fish and wildlife permits (50 CFR 222-226). NMFS issues permits based on findings that such... in the area. The UW proposes to capture fish using enclosure nets and beach seines. The captured fish...

  10. Assessing the natural and anthropogenic influences on basin-wide fish species richness.

    PubMed

    Cheng, Su-Ting; Herricks, Edwin E; Tsai, Wen-Ping; Chang, Fi-John

    2016-12-01

    Theory predicts that the number of fish species increases with river size in natural free-flowing rivers, but the relationship is lost under intensive exploitation of water resources associated with dams and/or landscape developments. In this paper, we aim to identify orthomorphic issues that disrupt theoretical species patterns based on a multi-year, basin-wide assessment in the Danshuei River Watershed of Taiwan. We hypothesize that multiple human-induced modifications fragment habitat areas leading to decreases of local fish species richness. We integrally relate natural and anthropogenic influences on fish species richness by a multiple linear regression model that is driven by a combination of factors including river network structure controls, water quality alterations of habitat, and disruption of channel connectivity with major discontinuities in habitat caused by dams. We found that stream order is a major forcing factor representing natural influence on fish species richness. In addition to stream order, we identified dams, dissolved oxygen deficiency (DO), and excessive total phosphorus (TP) as major anthropogenic influences on the richness of fish species. Our results showed that anthropogenic influences were operating at various spatial scales that inherently regulate the physical, chemical, and biological condition of fish habitats. Moreover, our probability-based risk assessment revealed causes of species richness reduction and opportunities for mitigation. Risks of species richness reduction caused by dams were determined by the position of dams and the contribution of tributaries in the drainage network. Risks associated with TP and DO were higher in human-activity-intensified downstream reaches. Our methodology provides a structural framework for assessing changes in basin-wide fish species richness under the mixed natural and human-modified river network and habitat conditions. Based on our analysis results, we recommend that a focus on landscape

  11. Key issues concerning environmental enrichment for laboratory-held fish species.

    PubMed

    Williams, T D; Readman, G D; Owen, S F

    2009-04-01

    An improved knowledge and understanding of the fundamental biological requirements is needed for many of the species of fish held in captivity and, without this knowledge it is difficult to determine the optimal conditions for laboratory culture. The aim of this paper is to review the key issues concerning environmental enrichment for laboratory-held fish species and identify where improvements are required. It provides background information on environmental enrichment, describes enrichment techniques currently used in aquatic ecotoxicology studies, identifies potential restrictions in their use and discusses why more detailed and species-specific guidance is needed.

  12. 77 FR 51520 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... (16 U.S.C. 1531-1543) and regulations governing listed fish and wildlife permits (50 CFR parts 222-226... expect to kill any listed fish but a small number, up to 20 percent (equivalent to one fish), may die as...

  13. 78 FR 59005 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... with Section 10(a)(1)(A) of the ESA of 1973 (16 U.S.C. 1531-1543) and regulations governing listed fish.... Applications Received Permit 1415 The U.S. Fish and Wildlife Services' (USFWS) Red Bluff Fish and Wildlife...

  14. Sperm quality and cryopreservation of Brazilian freshwater fish species: a review.

    PubMed

    Viveiros, A T M; Godinho, H P

    2009-03-01

    The Brazilian freshwater fish diversity is the richest in the world. Only 0.7% of all Brazilian species have had any aspect of their sperm biology addressed up to this date. The majority of the fish species described in this review migrate during the spawning season (a phenomenon known as piracema). Urbanization, pollution, hydroelectric dams and deforestation are some of the causes of stock depletion or even local extinction of some of these species. The knowledge concerning sperm quality and minimum sperm:egg ratio is important to maximize the use of males without reducing hatching rates. Furthermore, sperm cryopreservation and gene banking can guarantee the conservation of genetic diversity and development of adequate breeding programs of native fish species. In this review, we present and evaluate the existing information on Brazilian fish species that have been subject to sperm quality and cryopreservation studies. The following parameters were evaluated: volume of extractable sperm, sperm motility, sperm concentration, freezing media, freezing methods, and post-thaw sperm quality. Although the existing protocols yield relatively high post-thaw motility and fertilization rates, the use of cryopreserved sperm in routine hatchery production is still limited in Brazil.

  15. 76 FR 2664 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS...) and 14092 (applicant: California Department of Fish and Game). In that notice, the permit application... American green sturgeon associated with conducting surveys measuring fish response to initial and...

  16. The fish fauna of Anambra river basin, Nigeria: species abundance and morphometry.

    PubMed

    Odo, Gregory Ejikeme; Didigwu, Nwani Christopher; Eyo, Joseph Effiong

    2009-01-01

    The fish yields of most Nigeria inland waters are generally on the decline for causes that may range from inadequate management of the fisheries to degradation of the water bodies. Sustainable exploitation requires knowledge of the ichthyofaunal composition in the water bodies. We did a survey of fish species in Anambra river basin for 22 months. Fish samples were collected using four different gears -hook and line of size 13, caste nets, gill nets, and cages of mesh sizes of 50 mm, 75 mm, and 100 mm each. We recorded 52 fish species belonging to 17 families: 171, 236, and 169 individuals at Ogurugu, Otuocha, and Nsugbe stations respectively. Two families, Characidae, 19.5%, and Mochokidae, 11.8%, constituted the dominant fish families in the river. The dominant fish species were Citherinus citherius, 9.02%, and Alestes nurse, 7.1%. Other fish species with significant abundance were Synodontis clarias 6.9%, Macrolepidotus curvier 5.7%, Labeo coubie 5.4%, Distichodus rostrtus 4.9%, and Schilbe mystus 4.5%. The meristic features of the two most abundant fish species caught are as follows: Citharinus citharius dorsal fins 20, anal fins 30, caudal fins 21, pectoral fins, 9 and 8 ventral fins, and Alestes nurse 10 dorsal fins, 14 anal fins, 31 caudal fins, 7 pectoral fins and 6 ventral fins. The morphometric features of the two most abundant fish species are Citharinus citharius total length 300 mm, standard length 231 mm, head length 69 mm, body length 101 mm, body girth 176 mm, body weight 900 mg. Alestes nurse total length 200, standard length 140 mm, head length 60 mm, body length 80 mm, body girth 120 mm, body weight 400 mg. The most abundant animal utilizing the basin was Ardea cinerea (D3) with 22.2% occurrence (D4) and this was followed by Caprini with 13.51%, and Varanus niloticus, 10.04%. The least abundant animals utilizing basin were Chephalophus rufilatus, and Erythrocebus patas, with 0.58% each of occurrence.

  17. Clove oil induces anaesthesia and blunts muscle contraction power in three Amazon fish species.

    PubMed

    Fujimoto, Rodrigo Yudi; Pereira, Débora Martins; Silva, Jessica Cristina Souza; de Oliveira, Laís Cássia Araújo; Inoue, Luis Antonio Kioshi Aoki; Hamoy, Moisés; de Mello, Vanessa Jóia; Torres, Marcelo Ferreira; Barbas, Luis André Luz

    2018-02-01

    Clove oil is used as an anaesthetic for many species of fish worldwide; however, relatively few studies have assessed its effectiveness on Amazon fish species and no compelling evidence has ever been reported on the relaxant properties of this oil for skeletal muscle of fish. Thus, the objective of this study was to evaluate the latencies to deep anaesthesia and recovery, along with the myorelaxant effect of clove oil on three Amazon fish species: cardinal tetra, Paracheirodon axelrodi, banded cichlid, Heros severus and angelfish, Pterophyllum scalare, submitted to short-term anaesthetic baths. Fish were assayed in three groups of 60 fish each and individually anaesthetized in a completely randomized design with six clove oil concentrations using 10 fish/species/concentration. Electromyographic recordings from dorsal muscle were performed during stages of induction and recovery in which nine fish/species/stage were used. Deep anaesthesia was attained for all concentrations tested, and no mortalities were observed throughout the experiments and after a 48-h observation period. Concentration of 90 μL L -1 and above promoted fast deep anaesthesia (< 3 min) and calm recovery in angelfish and cardinal tetra, whereas the concentration of 60 μL L -1 sufficed to quickly anaesthetize banded cichlid. Times to full recovery were not significantly contrasting among species and occurred within appropriate time threshold (< 5 min). Clove oil exerted a conspicuous depression of muscle contraction power, and therefore can be effectively used as a muscle relaxant agent for P. scalare, P. axelrodi, H. severus and potentially, for other fish species.

  18. An integrated fish-plankton aquaculture system in brackish water.

    PubMed

    Gilles, S; Fargier, L; Lazzaro, X; Baras, E; De Wilde, N; Drakidès, C; Amiel, C; Rispal, B; Blancheton, J-P

    2013-02-01

    Integrated Multi-Trophic Aquaculture takes advantage of the mutualism between some detritivorous fish and phytoplankton. The fish recycle nutrients by consuming live (and dead) algae and provide the inorganic carbon to fuel the growth of live algae. In the meanwhile, algae purify the water and generate the oxygen required by fishes. Such mechanism stabilizes the functioning of an artificially recycling ecosystem, as exemplified by combining the euryhaline tilapia Sarotherodon melanotheron heudelotii and the unicellular alga Chlorella sp. Feed addition in this ecosystem results in faster fish growth but also in an increase in phytoplankton biomass, which must be limited. In the prototype described here, the algal population control is exerted by herbivorous zooplankton growing in a separate pond connected in parallel to the fish-algae ecosystem. The zooplankton production is then consumed by tilapia, particularly by the fry and juveniles, when water is returned to the main circuit. Chlorella sp. and Brachionus plicatilis are two planktonic species that have spontaneously colonized the brackish water of the prototype, which was set-up in Senegal along the Atlantic Ocean shoreline. In our system, water was entirely recycled and only evaporation was compensated (1.5% volume/day). Sediment, which accumulated in the zooplankton pond, was the only trophic cul-de-sac. The system was temporarily destabilized following an accidental rotifer invasion in the main circuit. This caused Chlorella disappearance and replacement by opportunist algae, not consumed by Brachionus. Following the entire consumption of the Brachionus population by tilapias, Chlorella predominated again. Our artificial ecosystem combining S. m. heudelotii, Chlorella and B. plicatilis thus appeared to be resilient. This farming system was operated over one year with a fish productivity of 1.85 kg/m2 per year during the cold season (January to April).

  19. 77 FR 42278 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... regulations governing listed fish and wildlife permits (50 CFR parts 222-226). NMFS issues permits based on.... This project will examine predation by introduced fishes (striped bass, largemouth bass, smallmouth...

  20. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species

    PubMed Central

    Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J. Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; Kondoh, M.; Iwasaki, W.

    2015-01-01

    We developed a set of universal PCR primers (MiFish-U/E) for metabarcoding environmental DNA (eDNA) from fishes. Primers were designed using aligned whole mitochondrial genome (mitogenome) sequences from 880 species, supplemented by partial mitogenome sequences from 160 elasmobranchs (sharks and rays). The primers target a hypervariable region of the 12S rRNA gene (163–185 bp), which contains sufficient information to identify fishes to taxonomic family, genus and species except for some closely related congeners. To test versatility of the primers across a diverse range of fishes, we sampled eDNA from four tanks in the Okinawa Churaumi Aquarium with known species compositions, prepared dual-indexed libraries and performed paired-end sequencing of the region using high-throughput next-generation sequencing technologies. Out of the 180 marine fish species contained in the four tanks with reference sequences in a custom database, we detected 168 species (93.3%) distributed across 59 families and 123 genera. These fishes are not only taxonomically diverse, ranging from sharks and rays to higher teleosts, but are also greatly varied in their ecology, including both pelagic and benthic species living in shallow coastal to deep waters. We also sampled natural seawaters around coral reefs near the aquarium and detected 93 fish species using this approach. Of the 93 species, 64 were not detected in the four aquarium tanks, rendering the total number of species detected to 232 (from 70 families and 152 genera). The metabarcoding approach presented here is non-invasive, more efficient, more cost-effective and more sensitive than the traditional survey methods. It has the potential to serve as an alternative (or complementary) tool for biodiversity monitoring that revolutionizes natural resource management and ecological studies of fish communities on larger spatial and temporal scales. PMID:26587265

  1. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species.

    PubMed

    Miya, M; Sato, Y; Fukunaga, T; Sado, T; Poulsen, J Y; Sato, K; Minamoto, T; Yamamoto, S; Yamanaka, H; Araki, H; Kondoh, M; Iwasaki, W

    2015-07-01

    We developed a set of universal PCR primers (MiFish-U/E) for metabarcoding environmental DNA (eDNA) from fishes. Primers were designed using aligned whole mitochondrial genome (mitogenome) sequences from 880 species, supplemented by partial mitogenome sequences from 160 elasmobranchs (sharks and rays). The primers target a hypervariable region of the 12S rRNA gene (163-185 bp), which contains sufficient information to identify fishes to taxonomic family, genus and species except for some closely related congeners. To test versatility of the primers across a diverse range of fishes, we sampled eDNA from four tanks in the Okinawa Churaumi Aquarium with known species compositions, prepared dual-indexed libraries and performed paired-end sequencing of the region using high-throughput next-generation sequencing technologies. Out of the 180 marine fish species contained in the four tanks with reference sequences in a custom database, we detected 168 species (93.3%) distributed across 59 families and 123 genera. These fishes are not only taxonomically diverse, ranging from sharks and rays to higher teleosts, but are also greatly varied in their ecology, including both pelagic and benthic species living in shallow coastal to deep waters. We also sampled natural seawaters around coral reefs near the aquarium and detected 93 fish species using this approach. Of the 93 species, 64 were not detected in the four aquarium tanks, rendering the total number of species detected to 232 (from 70 families and 152 genera). The metabarcoding approach presented here is non-invasive, more efficient, more cost-effective and more sensitive than the traditional survey methods. It has the potential to serve as an alternative (or complementary) tool for biodiversity monitoring that revolutionizes natural resource management and ecological studies of fish communities on larger spatial and temporal scales.

  2. Resource partitioning within major bottom fish species in a highly productive upwelling ecosystem

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Souad; El Halouani, Hassan; Tai, Imane; Masski, Hicham

    2017-09-01

    The Saharan Bank (21-26°N) is a wide subtropical continental shelf and a highly productive upwelling ecosystem. The bottom communities are dominated by octopus and sparid fish, which are the main targets of bottom-trawl fishing fleets. To investigate resource partitioning within the bottom fish community, adult fish from 14 of the most abundant species were investigated for stomach content analysis. Samples were collected during two periods: October 2003 and May 2007. The diet of the analysed species showed more variation between periods than between size classes, suggesting that temporal or spatial variability in prey availability appears to play a significant role in their diet. Multivariate analysis and subsequent clustering led to a grouping of the species within five trophic guilds. Two species were fish feeders, and the others mainly fed on benthic invertebrates, where epibenthic crustaceans, lamellibranchs and fish were the most important groups in defining trophic guilds. We found that the studied species had a high rate of overlapping spatial distributions and overlapping trophic niches. In this highly productive upwelling ecosystem, where food resources may not be a limiting factor, inter-specific competition did not appear to be an important factor in structuring bottom fish communities. For the species that showed differences in the proportions of prey categories in comparison with other ecosystems, the rise of the proportion of epibenthic crustaceans in their diet was a common feature; a possible consequence of the benthic productivity of this highly productive upwelling ecosystem.

  3. Spatial variation in fish species richness of the upper Mississippi River system

    USGS Publications Warehouse

    Koel, T.M.

    2004-01-01

    Important natural environmental gradients, including the connectivity of off-channel aquatic habitats to the main-stem river, have been lost in many reaches of the upper Mississippi River system, and an understanding of the consequences of this isolation is lacking in regard to native fish communities. The objectives of this study were to describe patterns of fish species richness, evenness, and diversity among representative habitats and river reaches and to examine the relationship between fish species richness and habitat diversity. Each year (1994-1999) fish communities of main-channel borders (MCB), side channel borders (SCB), and contiguous backwater shorelines (BWS) were sampled using boat-mounted electrofishing, mini-fyke-nets, tyke nets, hoop nets, and seines at a standardized number of sites. A total of 0.65 million fish were collected, representing 106 species from upper Mississippi River Pools 4, 8, 13, and 26; the open (unimpounded) river reach; and the La Grange Reach of the Illinois River. Within pools, species richness based on rarefaction differed significantly among habitats and was highest in BWS and lowest in MCB (P < 0.0001). At the reach scale, Pools 4, 8, and 13 consistently had the highest species richness and Pool 26, the open-river reach, and the La Grange Reach were significantly lower (P < 0.0001). Species evenness and diversity indices showed similar trends. The relationship between native fish species richness and habitat diversity was highly significant (r(2) = 0.85; P = 0.0091). These results support efforts aimed at the conservation and enhancement of connected side channels and backwaters. Although constrained by dams, pools with high native species richness could serve as a relative reference. The remnants of natural riverine dynamics that remain in these reaches should be preserved and enhanced; conditions could be used to guide restoration activities in more degraded reaches.

  4. 78 FR 43858 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... number of predicted adults increase, the number of fish escaping to the spawning grounds will also... fish; and (3) application of a sliding scale approach to determine appropriate ESA take limits on...

  5. 75 FR 22738 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... seq.) and regulations governing listed fish and wildlife permits (50 CFR 222-226). NMFS issues permits... of toxicants). The KWIAHT would capture fish (using beach seines); measure them; check them for marks...

  6. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity.

    PubMed

    Xenopoulos, Marguerite A; Lodge, David M

    2006-08-01

    In response to the scarcity of tools to make quantitative forecasts of the loss of aquatic species from anthropogenic effects, we present a statistical model that relates fish species richness to river discharge. Fish richness increases logarithmically with discharge, an index of habitat space, similar to a species-area curve in terrestrial systems. We apply the species-discharge model as a forecasting tool to build scenarios of changes in riverine fish richness from climate change, water consumption, and other anthropogenic drivers that reduce river discharge. Using hypothetical reductions in discharges (of magnitudes that have been observed in other rivers), we predict that reductions of 20-90% in discharge would result in losses of 2-38% of the fish species in two biogeographical regions in the United States (Lower Ohio-Upper Mississippi and Southeastern). Additional data on the occurrence of specific species relative to specific discharge regimes suggests that fishes found exclusively in high discharge environments (e.g., Shovelnose sturgeon) would be most vulnerable to reductions in discharge. Lag times in species extinctions after discharge reduction provide a window of opportunity for conservation efforts. Applications of the species-discharge model can help prioritize such management efforts among species and rivers.

  7. Salinity dependent Na+-K+ATPase activity in gills of the euryhaline crab Chasmagnathus granulata.

    PubMed

    Schleich, C E; Goldemberg, L A; López Mañanes, A A

    2001-09-01

    The occurrence and response of Na+-K+ATPase specific activity to environmental salinity changes were studied in gill extracts of all of the gills of the euryhaline crab Chasmagnathus granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). All of the gills exhibited a salinity dependent Na+-K+ATPase activity, although the pattern of response to environmental salinity was different among gills. As described in other euryhaline crabs highest Na+-K+ATPase specific activity was found in posterior gills (6 to 8), which, with exception of gill 6, increased upon acclimation to reduced salinity. However, a high increase of activity also occurred in anterior gills (1 to 5) in diluted media. Furthermore, both short and long term differential changes of Na+-K+ATPase activity occurred among the gills after the transfer of crabs to reduced salinity. The fact that variations of Na+-K+ATPase activity in the gills were concomitant with the transition from osmoconformity to ionoregulation suggests that this enzyme is a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab.

  8. Impacts of fishing low-trophic level species on marine ecosystems.

    PubMed

    Smith, Anthony D M; Brown, Christopher J; Bulman, Catherine M; Fulton, Elizabeth A; Johnson, Penny; Kaplan, Isaac C; Lozano-Montes, Hector; Mackinson, Steven; Marzloff, Martin; Shannon, Lynne J; Shin, Yunne-Jai; Tam, Jorge

    2011-08-26

    Low-trophic level species account for more than 30% of global fisheries production and contribute substantially to global food security. We used a range of ecosystem models to explore the effects of fishing low-trophic level species on marine ecosystems, including marine mammals and seabirds, and on other commercially important species. In five well-studied ecosystems, we found that fishing these species at conventional maximum sustainable yield (MSY) levels can have large impacts on other parts of the ecosystem, particularly when they constitute a high proportion of the biomass in the ecosystem or are highly connected in the food web. Halving exploitation rates would result in much lower impacts on marine ecosystems while still achieving 80% of MSY.

  9. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish

    PubMed Central

    Wang, Xiaodan; Kültz, Dietmar

    2017-01-01

    Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of O. mossambicus. Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named “OSRE1.” Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1. Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation). PMID:28289196

  10. Some euryhalinity may be more common than expected in marine elasmobranchs: the example of the South American skate Zapteryx brevirostris (Elasmobranchii, Rajiformes, Rhinobatidae).

    PubMed

    Wosnick, Natascha; Freire, Carolina A

    2013-09-01

    Elasmobranchs are essentially marine, but ~15% of the species occur in brackish or freshwater. The Brazilian marine coastal skate Zapteryx brevirostris, non-reported in nearby estuaries, was submitted to 35, 25, 15, and 5 psu, for 6 or 12h (n=6). Plasma was assayed for osmolality, urea, and ions (Na(+), Cl(-), K(+), Mg(2+)). Muscle water content was determined, and the rectal gland, kidney and gills were removed for carbonic anhydrase (CA) and Na(+),K(+)-ATPase (NKA) activities. The skate survived to all treatments. Plasma osmolality and urea levels decreased respectively by 27% and 38% after 12h in 5 psu (with respect to levels when in seawater), but plasma Na(+), Cl(-), and Mg(2+) were well regulated. Plasma K(+) showed some conformation after 12h. Muscle hydration was maintained. Branchial CA and NKA did not respond to salinity. Rectal gland NKA decreased upon seawater dilution, while renal NKA increased. This skate was shown to be partially euryhaline. The analysis of plasma urea of elasmobranchs in brackish and freshwater versus salinity and time-allied to the widespread occurrence of some euryhalinity in the group-led us to revisit the hypothesis of a brackish water habitat for elasmobranch ancestors. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. SURROGATE SPECIES IN ASSESSING CONTAMINANT RISK FOR ENDANGERED FISHES

    EPA Science Inventory

    Rainbow trout, fathead minnows, and sheepshead minnows were tested as surrogate species to assess contaminant risk for 17 endangered fishes and one toad species. Acute toxicity tests were conducted with carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin in accord...

  12. Trace metals health risk appraisal in fish species of Arabian Sea.

    PubMed

    Yasmeen, Kousar; Mirza, Muhammad Aslam; Khan, Namra A; Kausar, Nazish; Rehman, Atta-Ur; Hanif, Muddasir

    2016-01-01

    Fish is a vital food for humans and many animals. We report an environmental monitoring study to assess the trace metals in fish species caught from Arabian Sea and commercially available in the coastal city Karachi, Pakistan. Heavy metals such as copper, iron, lead and cadmium were determined in the skin, fillet and heart of the fish species Pampus argenteus, Epinephelus chlorostigma, Rachycentron canadum, Scomberomorus commerson, Johnius belangerii, Labeo rohita, Lutjanus argentimaculatus, Trachinotus blochii, Pomadsys olivaceum and Acanthopagrus berda by the atomic absorption spectrophotometer. The concentration (mg kg(-1), dry weight) range was: Cd (0.00-0.041), Cu (0.006-0.189), Fe (0.413-4.952) and Pb (0.00-0.569). Cadmium, copper and iron levels were below the tolerable limits whereas concentration of lead in the skins of S. commerson, E. chlorostigma, J. belangerii, A. berda; L. argentimaculatus, fillets of J. belangerii, E. chlorostigma and in the heart of J. belangerii exceeded the recommended limits. Therefore fish skin should be discouraged as food for humans or animals. The results indicate that a number of fish species have higher concentration of heavy metals dangerous for human health. Since the fish P. olivaceum (Dhotar) has the lowest level of trace metals therefore we recommend it for breeding and human consumption.

  13. Observations of the distributions of five fish species in a small Appalachian stream

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; Moore, S.E.

    2002-01-01

    The notion has been growing that resident stream fishes exhibit a greater capacity for movement than was previously thought. In this study, we recorded the distributions of four resident fish species (longnose dace Rhinichthys cataractae, blacknose dace R. atratulus, mottled sculpin Cottus bairdi, and rainbow trout Oncorhynchus mykiss) and one nonresident species (central stoneroller Campostoma anomalum) in Rock Creek, a small tributary of Cosby Creek in Great Smoky Mountains National Park, over the period 1979a??1995. During this study, 1,998 individuals of resident species were collected from stream sections considered to be within a common area of distribution for each species. Forty-five individuals of resident and nonresident species were captured upstream of these areas, and eight of these fish were considered to be larger than individuals considered typical for each species. Small mammal dispersal theory concepts were used to classify and describe fish movements outside of common areas of distribution. These movements were identified as important in maintaining population connectivity within stream drainages, contributing to reducing the potential for local extinctions of populations and to the recolonization of unoccupied habitats. This study highlights the need for continued study of fish movements in stream drainages and for development of appropriate resource management strategies based partly on the spatial dynamics of fish populations and communities.

  14. 75 FR 76400 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service, National.... 1531-1543) and regulations governing listed fish and wildlife permits (50 CFR parts 222-226). NMFS.... In the four studies described below, researchers do not expect to kill any listed fish but a small...

  15. 75 FR 50746 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS.... 1531 et seq.) and regulations governing listed fish and wildlife permits (50 CFR Parts 222-226). NMFS... is to evaluate factors limiting fish distribution and water quality in streams owned by PBF. The...

  16. 77 FR 63294 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Klallam Tribe and the Washington Department of Fish and Wildlife have submitted five Hatchery and Genetic... programs are currently operating, and all five hatchery programs raise fish native to the Elwha River basin...

  17. 76 FR 20956 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... 1973 (16 U.S.C. 1531-1543) and regulations governing listed fish and wildlife permits (50 CFR Parts 222... the two projects described below, Dr. Bartholomew and her co-investigators will utilize fish obtained...

  18. 75 FR 56986 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... regulations governing listed fish and wildlife permits (50 CFR 222-226). NMFS issues permits based on findings.... Applications Received Permit 15549 The Columbia River Inter-Tribal Fish Commission (CRITFC) is seeking a five...

  19. 75 FR 14134 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., CA (14685, 14688), and California Department of Fish and Game (CDFG), North Central Region 2, in... to the ESA and NMFS regulations governing listed fish and wildlife permits (50 CFR parts 222-226...

  20. 76 FR 61344 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... to the ESA and NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits... fish captured. Permit 15824 does not authorize any non- lethal or lethal take of adult ESA-listed...

  1. 76 FR 8713 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... (16 U.S.C. 1531-1543) and regulations governing listed fish and wildlife permits (50 CFR parts 222-226... handling of fish is already covered under the Incidental Take Statement associated with the Biological...

  2. 75 FR 78226 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... accordance with and are subject to the ESA and NMFS regulations governing listed fish and wildlife permits... steelhead while conducting fish monitoring surveys in lower Putah Creek, a tributary in the Sacramento River...

  3. Reef Fishes in Biodiversity Hotspots Are at Greatest Risk from Loss of Coral Species

    PubMed Central

    Holbrook, Sally J.; Schmitt, Russell J.; Messmer, Vanessa; Brooks, Andrew J.; Srinivasan, Maya; Munday, Philip L.; Jones, Geoffrey P.

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems. PMID:25970588

  4. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    PubMed

    Holbrook, Sally J; Schmitt, Russell J; Messmer, Vanessa; Brooks, Andrew J; Srinivasan, Maya; Munday, Philip L; Jones, Geoffrey P

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  5. Composition and diversity of fish species in seagrass bed ecosystem at Muara Binuangeun, Lebak, Banten

    NASA Astrophysics Data System (ADS)

    Kholis, N.; Patria, M. P.; Soedjiarti, T.

    2017-07-01

    Research of composition and diversity of fish species in seagrass bed ecosystem at Muara Binuangeun, Lebak, Banten, had been conducted in May and November 2015. Catch per Unit of Effort (CPUE) was used as a method with push net and boat net as fishing gear. Fishing was conducted during low tide. Collected samples were preserved with 10 % Formalin Solution and then being identified in the laboratory. In total, 286 fishes were collected from 17 families and 38 species. Moolgarda sp. was the most relative abundant species (17,13 %) and Istiblennius edentulus was a fish species with the highest relative frequency. Diversity index value of seagrass bed ecosystem was 2,973. Different sampling time showed the different composition of fish, in an example of Arothron immaculatus.

  6. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for the...

  7. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for the...

  8. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for the...

  9. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for the...

  10. Fish introductions reveal the temperature dependence of species interactions

    PubMed Central

    Hein, Catherine L.; Öhlund, Gunnar; Englund, Göran

    2014-01-01

    A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity. PMID:24307673

  11. 77 FR 76001 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... regulations governing listed fish and wildlife permits(50 CFR parts 222-226). NMFS issues permits based on... described below, researchers do not expect to kill any listed fish but a small number may die as an...

  12. 76 FR 27016 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... governing listed fish and wildlife permits (50 CFR 222-226). NMFS issues permits based on findings that such... Received Permit 15611 The Washington Department of Fish and Wildlife (WDFW) is seeking a 5-year permit to...

  13. 76 FR 78242 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS.... 1531 et. seq) and regulations governing listed fish and wildlife permits (50 CFR 222-226). NMFS issues... (USGS) is seeking to renew for five years a research permit that would allow them to take all fish...

  14. 76 FR 15946 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS.... 1531-1543) and regulations governing listed fish and wildlife permits (50 CFR parts 222-226). NMFS... do not expect to kill any listed fish but a small number may die as an unintended result of the...

  15. Genetic assessment of ornamental fish species from North East India.

    PubMed

    Dhar, Bishal; Ghosh, Sankar Kumar

    2015-01-25

    Ornamental fishes are traded with multiple names from various parts around the world, including North East India. Most are collected from the wild, due to lack of species-specific culture or breeding, and therefore, such unmanaged collection of the wild and endemic species could lead to severe threats to biodiversity. Despite many regulatory policies, trade of threatened species, including the IUCN listed species have been largely uncontrolled, due to species identification problems arising from the utilization of multiple trade names. So, the development of species-specific DNA marker is indispensable where DNA Barcoding is proved to be helpful in species identification. Here, we investigated, through DNA Barcoding and morphological assessment, the identification of 128 ornamental fish specimens exported from NE India from different exporters. The generated sequences were subjected to similarity match in BOLD-IDS as well as BLASTN, and analysed using MEGA5.2 for species identification through Neighbour-Joining (NJ) clustering, and K2P distance based approach. The analysis revealed straightforward identification of 84 specimens into 35 species, while 44 specimens were difficult to distinguish based on CO1 barcode alone. However, these cases were resolved through morphology, NJ and distanced based method and found to be belonging to 16 species. Among the 51 identified species, 14 species represented multiple trade names; 17 species belonged to threatened category. Species-level identification through DNA Barcoding along with traditional morphotaxonomy reflects its efficacy in regulating ornamental fish trade and therefore, appeals for their conservation in nature. The use of trade names rather than the zoological name created the passage for trafficking of the threatened species and demands immediate attention for sustaining wildlife conservation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. 76 FR 2663 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Conservation Bank on the Sacramento River in the Central Valley, California. Permit 13675 authorizes indirect... species, taking of length measurements), tissue sampling, release of moribund fish or fish carcasses back...

  17. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species.

    PubMed

    Toppe, Jogeir; Albrektsen, Sissel; Hope, Britt; Aksnes, Anders

    2007-03-01

    The chemical composition, content of minerals and the profiles of amino acids and fatty acids were analyzed in fish bones from eight different species of fish. Fish bones varied significantly in chemical composition. The main difference was lipid content ranging from 23 g/kg in cod (Gadus morhua) to 509 g/kg in mackerel (Scomber scombrus). In general fatty fish species showed higher lipid levels in the bones compared to lean fish species. Similarly, lower levels of protein and ash were observed in bones from fatty fish species. Protein levels differed from 363 g/kg lipid free dry matter (dm) to 568 g/kg lipid free dm with a concomitant inverse difference in ash content. Ash to protein ratio differed from 0.78 to 1.71 with the lowest level in fish that naturally have highest swimming and physical activity. Saithe (Pollachius virens) and salmon (Salmo salar) were found to be significantly different in the levels of lipid, protein and ash, and ash/protein ratio in the bones. Only small differences were observed in the level of amino acids although species specific differences were observed. The levels of Ca and P in lipid free fish bones were about the same in all species analyzed. Fatty acid profile differed in relation to total lipid levels in the fish bones, but some minor differences between fish species were observed.

  18. 76 FR 39856 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... accordance with and are subject to the ESA and NMFS regulations (50 CFR parts 222-226) governing listed fish... unintentional lethal take of: juvenile CCC steelhead not to exceed 3 percent of the total number of fish...

  19. Experimental study to control the upstream migration of invasive alien fish species by submerged weir

    NASA Astrophysics Data System (ADS)

    Sakuma, Masami; Kunimatsu, Fumihiro; Tsuchiya, Taku; Kawamura, Makiko; Fujita, Hiroshi

    Largemouth bass and Bluegill, major invasive alien fish species in Japan, have been extending their habitat ranges over not only Lake Biwa and the lagoons but also surrounding waters connected to them through small rivers and canals. Their increasing number is bringing about the reduction in the number of native fish species. To prevent the spread of these alien species through small rivers and canals during breeding season of the native fish (crucian carp), this study experimentally examined the effect of a submerged weir on controlling upstream migration of the alien species and the native fish. As a result of the experiment, the ratio of the alien species migrating upstream decreased as the weir height rose, whereas the ratio did not show the same trend in the case of the native fish. The ratio of the alien species also decreased as the overflow velocity over the weir rose. On the other hand, the ratio of the native fish increased as the overflow velocity rose up to 1.0m/s and decreased thereafter. These results suggest that the submerged weir may control upstream migration of the alien species to surrounding waters through small rivers and canals without interfering with the reproductive migration of the native fish.

  20. Acute toxicity and effects analysis of endosulfan sulfate to freshwater fish species.

    PubMed

    Carriger, John F; Hoang, Tham C; Rand, Gary M; Gardinali, Piero R; Castro, Joffre

    2011-02-01

    Endosulfan sulfate is a persistent environmental metabolite of endosulfan, an organochlorine insecticide-acaricide presently registered by the United States Environmental Protection Agency. There is, however, limited acute fish toxicity data for endosulfan sulfate. This study determines the acute toxicity (LC₅₀s and LC₁₀s) of endosulfan sulfate to three inland Florida native fish species (mosquitofish [Gambusia affinis]; least killifish [Heterandria formosa]; and sailfin mollies [Poecilia latipinna]) as well as fathead minnows (Pimephales promelas). Ninety-six-h acute toxicity tests were conducted with each fish species under flow-through conditions. For all of the above-mentioned fish species, 96-h LC₅₀ estimates ranged from 2.1 to 3.5 μg/L endosulfan sulfate. The 96-h LC₁₀ estimates ranged from 0.8 to 2.1 μg/L endosulfan sulfate. Of all of the fish tested, the least killifish appeared to be the most sensitive to endosulfan sulfate exposure. The above-mentioned data were combined with previous acute toxicity data for endosulfan sulfate and freshwater fish for an effects analysis. The effects analysis estimated hazardous concentrations expected to exceed 5, 10, and 50% of the fish species' acute LC₅₀ or LC₁₀ values (HC₅, HC₁₀, and HC₅₀). The endosulfan sulfate freshwater-fish acute tests were also compared with the available freshwater-fish acute toxicity data for technical endosulfan. Technical endosulfan is a mixture of α- and β-endosulfan. The LC₅₀s had a wider range for technical endosulfan, and their distribution produced a lower HC₁₀ than for endosulfan sulfate. The number of freshwater-fish LC₅₀s for endosulfan sulfate is much smaller than the number available for technical endosulfan, reflecting priorities in examining the toxicity of the parent compounds of pesticides. The toxicity test results and effects analyses provided acute effect values for endosulfan sulfate and freshwater fish that might be applied

  1. [Seasonal changes of fish species composition and diversity in mudflat wetlands of Hangzhou Bay].

    PubMed

    Jia, Xing-huan; Zhang, Heng; Jiang, Ke-yi; Wu, Ming

    2010-12-01

    In order to understand the spatiotemporal variation of fish species composition and biodiversity in the mudflat wetlands of Hangzhou Bay, thirty six surveys were conducted in the mudflat area, inning area, and aquaculture area in the south bank of the Bay in. March (early spring), May (spring), July (summer), and October (autumn), 2009. A total of 41 species belonging to 9 orders and 16 families were observed, among which, Cyprinid had the largest species number (14 species, 33.3% of the total), followed by Gobiidae (8 species, 19.1%). According to the lifestyle of fish, these 41 species could be divided into five ecological types, i.e., freshwater type (21 species), brackish-water type (16 species), inshore type (2 species), anadromous type (Coilia ectenes), and catadromios type (Anguilla japonica). The fish abundance was the highest (54. 5 fish per net) in summer, followed by in spring and autumn, and the lowest (17.7 fish per net) in early spring. In the three habitats, mudflat area and inning area had the similar seasonal change of fish abundance, i.e., the lowest in early spring, the highest in summer, and then decreased in autumn. Only two or three species were the dominant species in different seasons. In mudflat area, the dominant species were Mugil cephalus and Liza carinatus; while in inning and aquaculture areas, the dominant species were Carassius auratus, Hemiculter leucisculus, and Pseudorasbora parva. The values of Margalef's richness index (D), Pielou's evenness index (J), and Shannon index (H) were lower in March than in other months, but had no significant differences among May, July, and October (P > 0.05). The H value ranged in 0. 27-2. 13, being the lowest in March and higher in May and October (1.66 and 1.63, respectively). Overall, the fish abundance and biodiversity in the mudflat wetlands of Hangzhou Bay had apparent seasonal changes.

  2. FXYD8, a Novel Regulator of Renal Na+/K+-ATPase in the Euryhaline Teleost, Tetraodon nigroviridis

    PubMed Central

    Wang, Pei-Jen; Yang, Wen-Kai; Lin, Chia-Hao; Hwang, Hau-Hsuan; Lee, Tsung-Han

    2017-01-01

    FXYD proteins are important regulators of Na+/K+-ATPase (NKA) activity in mammals. As an inhabitant of estuaries, the pufferfish (Tetraodon nigroviridis) responds to ambient salinity changes with efficient osmoregulation, including alterations in branchial, and renal NKA activities. Previous studies on teleostean FXYDs have mainly focused on the expression and potential functions of FXYD proteins in gills. The goal of the present study was to elucidate the potential role of FXYD8, a member of the fish FXYD protein family, in the modulation of NKA activity in the kidneys of this euryhaline pufferfish by using molecular, biochemical, and physiological approaches. The results demonstrate that T. nigroviridis FXYD8 (TnFXYD8) interacts with NKA in renal tubules. Meanwhile, the protein expression of renal TnFXYD8 was found to be significantly upregulated in hyperosmotic seawater-acclimated pufferfish. Moreover, overexpression of TnFXYD8 in Xenopus oocytes decreased NKA activity. Our results suggest the FXYD8 is able to modulate NKA activity through inhibitory effects upon salinity challenge. The present study further extends our understanding of the functions of FXYD proteins, the regulators of NKA, in vertebrates. PMID:28848450

  3. 77 FR 33717 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... section 10(a)(1)(A) of the ESA of 1973 (16 U.S.C. 1531-1543) and regulations governing listed fish and... any listed fish, but a small number may die as an unintended result of the research activities...

  4. Effect of outflow on spring and summertime distribution and abundance of larval and juvenile fishes in the upper San Francisco Estuary

    USGS Publications Warehouse

    Dege, M.; Brown, L.R.

    2004-01-01

    We analyzed data on spring and summertime larval and juvenile fish distribution and abundance in the upper San Francisco Estuary (SFE), California between 1995 and 2001. The upper SFE includes the tidal freshwater areas of the Sacramento-San Joaquin Delta downstream to the euryhaline environment of San Pablo Bay. The sampling period included years with a variety of outflow conditions. Fifty taxa were collected using a larval tow net. Two common native species, delta smelt Hypomesus transpacifucus and longfin smelt Spirinchus thaleichthys, and four common alien taxa, striped bass Morone saxatilis, threadfin shad Dorosoma petenense, gobies of the genus Tridentiger, and yellowfin goby Acanthogobins flavimanus, were selected for detailed analysis. Outflow conditions had a strong influence on the geographic distribution of most of the species, but distribution with respect to the 2 psu isohaline (X2) was not affected. The distribution patterns of delta smelt, longfin smelt, and striped bass were consistent with larvae moving from upstream freshwater spawning areas to down-stream estuarine rearing areas. There were no obvious relationships of outflow with annual abundance indices. Our results support the idea of using X2 as an organizing principle in understanding the ecology of larval fishes in the upper SFE. Additional years of sampling will likely lead to additional insights into the early life history of upper SFE fishes. ?? Copyright by the American Fisheries Society 2004.

  5. [Dietary composition and food competition of six main fish species in rocky reef habitat off Gouqi Island].

    PubMed

    Wang, Kai; Zhang, Shou-Yu; Wang, Zhen-Hua; Zhao, Jing; Xu, Min; Lin, Jun

    2012-02-01

    Based on the monthly investigation data of fish resources in the rocky reef habitat off Gouqi Island from March 2009 to February 2010, this paper studied the dietary composition of three native fish species (Sebasticus marmoratus, Hexagrammos otakii and Hexagrammos agrammus) and three non-native fish species (Lateolabrax japonica, Nibea albiflora and Larimichthys polyactis). The analysis of gut content indicated that the main prey items of these six dominant fish species were Caprellidae, Gammaridea, juvenile S. marmoratus, Engraulis japonicas and Acetes chinensis and the dietary composition of each of the 6 fish species had obvious seasonal variation. There was an intense food competition between native species H. otakii and H. agrammus in autumn, between non-native species N. albiflora and L. polyactis in summer, between non-native species N. albiflora and native species S. marmoratus in autumn, and between non-native species N. albiflora and native species H. otakii in winter. It was suggested the non-native species N. albiflora was the key species in the food competition among the six dominant fish species in this rocky reef habitat, and thus the feeding behaviors of these six fish species could have definite effects on the resource capacity of juvenile S. marmoratus.

  6. Seasonal variation of assemblage and feeding guild structure of fish species in a boreal tidal basin

    NASA Astrophysics Data System (ADS)

    Kellnreitner, Florian; Pockberger, Moritz; Asmus, Harald

    2012-08-01

    Species composition, abundance, feeding relationships and guild structure of the fish assemblage in the Sylt-Rømø bight, a tidal basin in the northern Wadden Sea, were investigated to show seasonal differences and the importance of functional groups in this area. The tidal flats and in shallow subtidal areas were sampled using a beach seine and a bottom trawl net was used for deeper subtidal areas and tidal gullies. Species richness of fish was highest in summer where 26 species were caught, while the lowest richness was recorded in winter (17 species). Clear differences in species richness and abundance were found between shallow areas and deeper parts of the bight. Clupea harengus and Ammodytes tobianus were the most abundant species in deeper areas, while Pomatoschistus microps and Pomatoschistus minutus dominated shallower waters. Gut contents of 27 fish species were identified and the guild structure analyzed by UPGMA clustering of niche overlaps. Calanoid copepods (19.9%), Crangon crangon (18.2%) and mysid shrimps (8.4%) were the most abundant prey items of all fish species combined. Seven feeding guilds were present in the fall and winter, and eight and six in spring and summer, respectively. Fish feeding on calanoid copepods and C. crangon were present year round, whereas the occurrence of other guilds varied between seasons. Species composition of prey changed through seasons and, for some fish species, even the feeding mode itself varied with season. Most noticeable, 11 fish species changed guilds between seasons. We found a convergence in summer towards abundant prey items, whereas in winter diet overlap was lower. This is the first investigation of guild structure of almost all fish species present in a Wadden Sea area, and shows that consideration of seasonal differences is essential when determining feeding relationships of fish in temperate areas.

  7. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Barnett, David; Flather, Curtis; Fuller, Pamela L.; Peterjohn, Bruce G.; Kartesz, John; Master, Lawrence L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31,P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled

  8. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    USGS Publications Warehouse

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  9. Species- and tissue-specific mercury bioaccumulation in five fish species from Laizhou Bay in the Bohai Sea of China

    NASA Astrophysics Data System (ADS)

    Liu, Jinhu; Cao, Liang; Huang, Wei; Dou, Shuozeng

    2013-05-01

    Mercury (Hg) concentrations in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five fish species (mullet Liza ha em atocheil us, flathead fish Platycephalus indicus, sea bass Lateolabrax japonic u s, mackerel Scomberomorus niphonius and silver pomfret Pampus argenteus) collected from Laizhou Bay in the Bohai Sea of China were investigated. The results indicate that Hg bioaccumulation in the five fish was tissue-specific, with the highest levels in the muscle and liver, followed by the stomach and gonads. The lowest levels were found in the gills and skin. Fish at higher trophic levels (flathead fish and sea bass) exhibited higher Hg concentrations than consumers at lower trophic levels. Mercury bioaccumulation tended to be positively correlated with fish length in mullet, silver pomfret, mackerel, and flathead fish, but was negatively correlated with fish length in sea bass. The Hg concentrations in the muscles of all fish species in Laizhou Bay were within the permissible limits of food safety set by national and international criteria. However, the suggesting maximum consumption of sea bass is 263 g per week for human health.

  10. Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes

    PubMed Central

    Pittman, Simon J.; Brown, Kerry A.

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support

  11. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    PubMed

    Pittman, Simon J; Brown, Kerry A

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation

  12. Accumulation features of arsenic species in various fishes collected from coastal cities in Korea

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Deuk; Son, Hee-Sik; Choi, Minkyu; Park, Min-Kyu

    2015-12-01

    In this study, 36 fish species were collected from three coastal cities in Korea to investigate levels and patterns of six arsenicals (arsenite: As (III), arsenate: As (V), arsenocholine: AsC, arsenobetaine: AsB, monomethylarsonic acid: MMA, and dimethylarsinic acid: DMA). The levels of ∑6 As in the different fish species varied substantially, ranging from 0.02 μg As/g ww (Islaeli carp) to 9.65 μg As/g ww (Skate ray) with a median of 0.40 μg As/g ww. All the arsenicals in marine fishes showed higher levels than those in freshwater fishes due to fish feed living in saline water. Overall, marine carnivorous fishes seem to be more contaminated with arsenic. For all the fish samples, AsB (mean fraction: 90.6%) was dominant among the six arsenicals, indicating biomethylation of inorganic arsenic and accumulation of AsB. Fish species with high water contents showed elevated levels of As (III), but there was no further significant correlations between arsenicals and water/lipid contents. Concentrations of As (V) were significantly lower than those of As (III), which implies that As (V) is reduced during biomethylation of inorganic arsenic. Consequently, we hypothesize that the toxicity of arsenic (mainly derived from As (III)) can be increased by the reduction of As (V), especially for the fish species with higher water contents.

  13. 9 CFR 83.3 - Interstate movement of live VHS-regulated fish species from VHS-regulated areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-regulated fish species from VHS-regulated areas. 83.3 Section 83.3 Animals and Animal Products ANIMAL AND...-regulated fish species from VHS-regulated areas. (a) Except as provided in paragraphs (b) through (e) of this section, live VHS-regulated fish, including fish moved to live fish markets, may only be moved...

  14. 9 CFR 83.3 - Interstate movement of live VHS-regulated fish species from VHS-regulated areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-regulated fish species from VHS-regulated areas. 83.3 Section 83.3 Animals and Animal Products ANIMAL AND...-regulated fish species from VHS-regulated areas. (a) Except as provided in paragraphs (b) through (e) of this section, live VHS-regulated fish, including fish moved to live fish markets, may only be moved...

  15. 9 CFR 83.3 - Interstate movement of live VHS-regulated fish species from VHS-regulated areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-regulated fish species from VHS-regulated areas. 83.3 Section 83.3 Animals and Animal Products ANIMAL AND...-regulated fish species from VHS-regulated areas. (a) Except as provided in paragraphs (b) through (e) of this section, live VHS-regulated fish, including fish moved to live fish markets, may only be moved...

  16. 9 CFR 83.3 - Interstate movement of live VHS-regulated fish species from VHS-regulated areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-regulated fish species from VHS-regulated areas. 83.3 Section 83.3 Animals and Animal Products ANIMAL AND...-regulated fish species from VHS-regulated areas. (a) Except as provided in paragraphs (b) through (e) of this section, live VHS-regulated fish, including fish moved to live fish markets, may only be moved...

  17. 9 CFR 83.3 - Interstate movement of live VHS-regulated fish species from VHS-regulated areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-regulated fish species from VHS-regulated areas. 83.3 Section 83.3 Animals and Animal Products ANIMAL AND...-regulated fish species from VHS-regulated areas. (a) Except as provided in paragraphs (b) through (e) of this section, live VHS-regulated fish, including fish moved to live fish markets, may only be moved...

  18. [Species composition, diversity and density of small fishes in two different habitats in Niushan Lake].

    PubMed

    Ye, Shao-Wen; Li, Zhong-Jie; Cao, Wen-Xuan

    2007-07-01

    This paper studied the spatial distribution of small fishes in a shallow macrophytic lake, Niushan Lake in spring 2003, and its relations with habitat heterogeneity. Based on the macrophyte cover condition, distance from lake shore and water depth, two representative habitat types in the lake were selected. Habitat A was near the shore with dense submersed macrophyte, while habitat B was far from the shore with sparse submersed macrophyte. Small fishes were sampled quantitatively by block net (180 m2), and their densities within the net area were estimated by multiple mark-recapture or Zippin's removal method. The results showed that there were some differences in species composition, biodiversity measurement, and estimated density of small fishes between the two habitats: 1) the catches in habitat A consisted of 14 small fish species from 5 families, among which, benthopelagic species Rhodeus ocellatus, Paracheilognathus imberbis and Pseudorasbora parva were considered as dominant species, while those in habitat B consisted of 9 small fish species from 3 families, among which, bottom species Rhinogobius giurinus and Micropercops swinhonis were dominant; 2) the Bray-Curtis index between the two small fish communities was 0.222, reflecting their low structure similarity, and no significant difference was observed between their rank/ abundance distributions, both of which belonged to log series distribution; 3) the total density of 9 major species in habitat A was 8.71 ind x m(-2), while that of 5 major species in habitat B was only 3.54 ind x m(-2). The fact that the spatial distribution of the small fishes differed with habitats might be related to their habitat need for escaping predators, feeding, and breeding, and thus, aquatic macrophyte habitat should be of significance in the rational exploitation of small fish resources as well as the conservation of fish resource diversity.

  19. Quantifying tolerance indicator values for common stream fish species of the United States

    USGS Publications Warehouse

    Meador, M.R.; Carlisle, D.M.

    2007-01-01

    The classification of fish species tolerance to environmental disturbance is often used as a means to assess ecosystem conditions. Its use, however, may be problematic because the approach to tolerance classification is based on subjective judgment. We analyzed fish and physicochemical data from 773 stream sites collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program to calculate tolerance indicator values for 10 physicochemical variables using weighted averaging. Tolerance indicator values (TIVs) for ammonia, chloride, dissolved oxygen, nitrite plus nitrate, pH, phosphorus, specific conductance, sulfate, suspended sediment, and water temperature were calculated for 105 common fish species of the United States. Tolerance indicator values for specific conductance and sulfate were correlated (rho = 0.87), and thus, fish species may be co-tolerant to these water-quality variables. We integrated TIVs for each species into an overall tolerance classification for comparisons with judgment-based tolerance classifications. Principal components analysis indicated that the distinction between tolerant and intolerant classifications was determined largely by tolerance to suspended sediment, specific conductance, chloride, and total phosphorus. Factors such as water temperature, dissolved oxygen, and pH may not be as important in distinguishing between tolerant and intolerant classifications, but may help to segregate species classified as moderate. Empirically derived tolerance classifications were 58.8% in agreement with judgment-derived tolerance classifications. Canonical discriminant analysis revealed that few TIVs, primarily chloride, could discriminate among judgment-derived tolerance classifications of tolerant, moderate, and intolerant. To our knowledge, this is the first empirically based understanding of fish species tolerance for stream fishes in the United States.

  20. The differentiation of common species in a coral-reef fish assemblage for recreational scuba diving.

    PubMed

    Chen, Tsen-Chien; Ho, Cheng-Tze; Jan, Rong-Quen

    2016-01-01

    Recreational scuba diving is a popular activity of the coral reef tourism industry. In practice, local diving centers recommend interesting sites to help visiting divers make their plans. Fish are among the major attractions, but they need to be listed with care because the temporal occurrence of a fish species is difficult to predict. To address this issue, we propose methods to categorize each fish species based on its long-term occurrence and likelihood of being seen. We assume that there are K categories of occurrence of a fish assemblage and propose two methods [an arithmetic-mean method (AM) and a geometric-mean method (GM)] to define the range of species in each category. Experiments based on long term datasets collected at three underwater stations (each having 51-53 surveys and totals of 262-284 fish species) on coral reefs in southern Taiwan showed that when K = 4 (rare, occasional, frequent and common categories), 11-14 species were concurrently assigned to the common category by AM for data sets based on surveys 10, 15, 20, 25, 30, 35, 40, 45, or 51-53 in contrast to the 18-26 species assigned as common by GM. If a similarity index of 0.7 (compared to the total pool of fish species) was the minimum threshold for diver satisfaction, then 20-25 surveys provide sufficient data for listing the common species at a given dive spot. Common fish species, are the most temporally stable, and thus are more appropriate for attracting divers. These can be effectively differentiated by either AM or GM with at least 25 surveys. We suggest regular updating of each fish's category through periodic surveys to assure the accuracy of information at a particular dive spot.

  1. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits.

    PubMed

    Li, J; Ni, J; Li, J; Wang, C; Li, X; Wu, S; Zhang, T; Yu, Y; Yan, Q

    2014-12-01

    To reveal the effects of fish genotype, feeding habits and serum physiological index on the composition of gastrointestinal microbiota, eight fish species with four different feeding habits were investigated. The V1 to V3 regions of 16S rRNA gene were analysed by high-throughput sequencing (454 platform) to compare the gut microbiota of different fish species. A total of 551 995 high-quality sequences with an average length of 463 bp were obtained from the 48 samples. No significant difference was observed among the detected sequences obtained from fishes with different feeding habits (One-way anova, F = 1·003, P = 0·400), but the number of OTUs among different feeding habits was significantly different (One-way anova, F = 7·564, P < 0·001). Additionally, significant correlations were detected between the fish genotype and microbial composition (partial Mantel test, all P values = 0·001) in the stomach, foregut and hindgut. Moreover, different core intestinal microbiota was also noticed in the eight fish species with different feeding habits. Feeding habits and genotype clearly affected the gastrointestinal microbiota of fish. Moreover, the evolutionary process shaped the serum physiological indexes of fish. This study provided much important information for developing commercial fish feeds. © 2014 The Society for Applied Microbiology.

  2. Comparative study of infection with Tetrahymena of different ornamental fish species.

    PubMed

    Sharon, G; Pimenta Leibowitz, M; Chettri, J Kumar; Isakov, N; Zilberg, D

    2014-01-01

    Tetrahymena is a ciliated protozoan that can infect a wide range of fish species, although it is most commonly reported in guppies (Poecilia reticulata). The aim of this study was to compare the susceptibility to infection with Tetrahymena of five different ornamental fish species from two different super orders. The species examined were platy (Xiphophorus), molly (Poecilia sphenops) and angelfish (Pterophyllum scalare) of the Acanthopterygii super order (which also includes guppies) and goldfish (Carassius auratus auratus) and koi carp (Cyprinus carpio) of the Ostariophysi super order. These two super orders are phylogenetically distant from each other. Infection with Tetrahymena resulted in parasite invasion of internal organs, skin and muscle in all fish species. A relatively strong inflammatory response was observed in infected goldfish and koi, with negligible response in fish species of the Acanthopterygii super order. Guppies were the most susceptible to Tetrahymena infection, exhibiting a mortality rate of 87% and 100% in two separate experiments. A high mortality rate was also observed in platy (77%), while that of molly and angelfish was significantly lower (23% and 33%, respectively). Goldfish and koi carp were less susceptible to infection compared with guppies (24% and 59% mortality, respectively). Immunization studies revealed that the Tetrahymena are immunogenic, since infection of koi carp increased their Tetrahymena immobilization response by approximately three-fold at 3 weeks post infection, while immunization with Tetrahymena plus adjuvant increased their immobilization response by approximately 30-fold. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mercury concentration in the muscle of seven fish species from Chagan Lake, Northeast China.

    PubMed

    Zhu, Lilu; Yan, Baixing; Wang, Lixia; Pan, Xiaofeng

    2012-03-01

    Chagan Lake is located downstream of the Second Songhua River basin in Northeast China. It is one of the top ten inland freshwater lakes, and an important aquatic farm in China. The lake has been receiving large amounts (currently at 1.5 × 10(8) m(3)/a) of water from the river since 1984. This would pose a threat to the aquatic system of the lake because the river was seriously polluted with mercury in 1970s-1980s. The current study is the first to report the total mercury concentrations in fish found in the lake. Mercury concentrations in seven fish species collected from the lake in January 2009 were determined. The related human health risk from fish consumption was also assessed. The average concentration of mercury in the fish was 18.8 μg/kg of wet weight, ranging from 4.5 to 37.6 μg/kg of wet weight. A large difference in the mercury concentrations among the fish species was found. The mercury concentration was found to be higher in carnivorous species and lower in omnivorous and herbivorous species. This demonstrates greater mercury bioaccumulation in fish species at higher trophic levels. Mercury concentrations in fish showed significant positive correlations with age, length, and weight. No significant relationship was found between mercury concentrations in fish and the habitat preferences. Mercury concentrations in fish from the lake were within the limits of the international and national standards of China established for mercury. According to the reference doses established by the United States Environmental Protection Agency, the maximum safe consuming quantity considering all the fish was 297.3 g/day/person, which was more than five times as much as the current quantity (50 g/day/person) consumed by the local residents. This investigation indicates that the historical pollution of the Second Songhua River has not caused mercury bioaccumulation in fish muscle tissue of Chagan Lake. The present consumption of fish from the lake in the local area

  4. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  5. 76 FR 5338 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA183 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. [[Page 5339

  6. 75 FR 82212 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA110 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Fish and Wildlife submitted to NMFS, pursuant to the protective regulations promulgated for Puget Sound...

  7. 76 FR 6401 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA110 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... and the Washington Department of Fish and Wildlife submitted to NMFS, pursuant to the protective...

  8. 77 FR 67796 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC342 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... NMFS regulations governing listed fish and wildlife permits (50 CFR parts 222-226). Those individuals...

  9. Small-sized euryhaline fish as intermediate hosts of the digenetic trematode Cryptocotyle concavum

    NASA Astrophysics Data System (ADS)

    Zander, C. D.; Kollra, H.-G.; Antholz, B.; Meyer, W.; Westphal, D.

    1984-03-01

    Cercariae of the trematode Cryptocotyle concavum, which encyst in skin and/or kidney of sticklebacks and gobies, were studied in the Schlei Fjord (western Baltic Sea). Mean incidence of dermal cysts was 48 % in Gasterosteus aculeatus and 37 % in Pungitius pungitius. No cysts were found in the kidneys of sticklebacks. While 97 % of Pomatoschistus microps had encysted metacercariae in the kidneys, only 2 % had cysts in the skin. Pomatoschistus minutus, however, showed hardly any cyst infestation of either skin or kidney. In P. microps the intensity of infestation by metacercariae was frequently more than 50 cysts; in contrast, sticklebacks rarely exhibited more than 5 dermal cysts. Infested fish were larger than 10 mm in total length, the incidence rate increasing with growth. Parasitic infestation depends on ambient salinity: C. concavum was not found at salinities below 4 ‰. In contrast to the high incidence in fish, the first hosts — the snails Hydrobia stagnalis and H. neglecta — showed remarkably low infection rates (3 to 5 %). The findings reported are related to the distribution of C. concavum, the mode of life of infested fish, the feeding habits of the final hosts and the infestation of P. microps by other parasites. Evidently, P. microps represents an optimal second host for C. concavum.

  10. Testing the influence of environmental heterogeneity on fish species richness in two biogeographic provinces.

    PubMed

    Massicotte, Philippe; Proulx, Raphaël; Cabana, Gilbert; Rodríguez, Marco A

    2015-01-01

    Environmental homogenization in coastal ecosystems impacted by human activities may be an important factor explaining the observed decline in fish species richness. We used fish community data (>200 species) from extensive surveys conducted in two biogeographic provinces (extent >1,000 km) in North America to quantify the relationship between fish species richness and local (grain <10 km(2)) environmental heterogeneity. Our analyses are based on samples collected at nearly 800 stations over a period of five years. We demonstrate that fish species richness in coastal ecosystems is associated locally with the spatial heterogeneity of environmental variables but not with their magnitude. The observed effect of heterogeneity on species richness was substantially greater than that generated by simulations from a random placement model of community assembly, indicating that the observed relationship is unlikely to arise from veil or sampling effects. Our results suggest that restoring or actively protecting areas of high habitat heterogeneity may be of great importance for slowing current trends of decreasing biodiversity in coastal ecosystems.

  11. Comparisons of fish species traits from small streams to large rivers

    USGS Publications Warehouse

    Goldstein, R.M.; Meador, M.R.

    2004-01-01

    To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors

  12. 75 FR 14132 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XV38 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Fish and Game (IDFG) for a modification to an existing incidental take permit pursuant to the...

  13. 76 FR 5339 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA182 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... are issued in accordance with and are subject to the ESA and NMFS regulations governing listed fish...

  14. 76 FR 20956 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA350 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... plans and request for comment. SUMMARY: Notice is hereby given that the Idaho Department of Fish and...

  15. Methylmercury in fish from the southern Baltic Sea and coastal lagoons as a function of species, size, and region.

    PubMed

    Polak-Juszczak, Lucyna

    2017-06-01

    Methylmercury (MeHg) is a highly toxic compound that traverses the blood-brain barrier with deleterious effects to the central nervous system. Exposure is generally through the ingestion of contaminated fish. Fish are a main source of MeHg. Goals and methods: The aim of this study was to determine the dependence of MeHg concentrations on fish species and age, the percentage of MeHg in total mercury (THg) and risk assessment depending on the size of fish. Assays of THg and MeHg were performed on the muscle tissues of 18 species of fish. The investigations indicated there were differences in the mercury concentrations depending on fish size. THg and MeHg concentrations in the muscles of fish species that have a wide length distribution were strongly, positively correlated with fish length. However, concentrations of MeHg were strongly, positively correlated with those of THg in all the fish species investigated. Variation in the percentage share of MeHg in THg in the muscles of fish of large sizes was also noted within species, but this correlation was not noted in small-sized fish. The dose of MeHg in small-sized fish species was estimated and the risk posed to consumer health was assessed using mean MeHg concentrations determined for different fish species. For species of fish that occur within a wide length distribution, the dose of MeHg should be assessed separately in different length classes. Fish consumption of small-sized species poses no health risk.

  16. Dispersal capacity predicts both population genetic structure and species richness in reef fishes.

    PubMed

    Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A

    2014-07-01

    Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.

  17. Trophic niche partitioning of littoral fish species from the rocky intertidal of Helgoland, Germany

    NASA Astrophysics Data System (ADS)

    Hielscher, N. N.; Malzahn, A. M.; Diekmann, R.; Aberle, N.

    2015-12-01

    During a 3-year field study, interspecific and interannual differences in the trophic ecology of littoral fish species were investigated in the rocky intertidal of Helgoland island (North Sea). We investigated trophic niche partitioning of common coexisting littoral fish species based on a multi-tracer approach using stable isotope and fatty acids in order to show differences and similarities in resource use and feeding modes. The results of the dual-tracer approach showed clear trophic niche partitioning of the five target fish species, the goldsinny wrasse Ctenolabrus rupestris, the sand goby Pomatoschistus minutus, the painted goby Pomatoschistus pictus, the short-spined sea scorpion Myoxocephalus scorpius and the long-spined sea scorpion Taurulus bubalis. Both stable isotopes and fatty acids showed distinct differences in the trophic ecology of the studied fish species. However, the combined use of the two techniques added an additional resolution on the interannual scale. The sand goby P. minutus showed the largest trophic plasticity with a pronounced variability between years. The present data analysis provides valuable information on trophic niche partitioning of fish species in the littoral zones of Helgoland and on complex benthic food webs in general.

  18. Quantitative determination of rarity of freshwater fishes and implications for imperiled-species designations.

    PubMed

    Pritt, Jeremy J; Frimpong, Emmanuel A

    2010-10-01

    Conserving rare species and protecting biodiversity and ecosystem functioning depends on sound information on the nature of rarity. Rarity is multidimensional and has a variety of definitions, which presents the need for a quantitative classification scheme with which to categorize species as rare or common. We constructed such a classification for North American freshwater fishes to better describe rarity in fishes and provide researchers and managers with a tool to streamline conservation efforts. We used data on range extents, habitat specificities, and local population sizes of North American freshwater fishes and a variety of quantitative methods and statistical decision criteria, including quantile regression and a cost-function algorithm to determine thresholds for categorizing a species as rare or common. Species fell into eight groups that conform to an established framework for rarity. Fishes listed by the American Fisheries Society (AFS) as endangered, threatened, or vulnerable were most often rare because their local population sizes were low, ranges were small, and they had specific habitat needs, in that order, whereas unlisted species were most often considered common on the basis of these three factors. Species with large ranges generally had few specific habitat needs, whereas those with small ranges tended to have narrow habitat specificities. We identified 30 species not designated as imperiled by AFS that were rare along all dimensions of rarity and may warrant further study or protection, and we found three designated species that were common along all dimensions and may require a review of their imperilment status. Our approach could be applied to other taxa to aid conservation decisions and serve as a useful tool for future revisions of listings of fish species. © 2010 Society for Conservation Biology.

  19. Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species.

    PubMed

    Trotta, Michele; Schönhuth, Susana; Pepe, Tiziana; Cortesi, M Luisa; Puyet, Antonio; Bautista, José M

    2005-03-23

    Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.

  20. Quantitative analysis of species specificity of two anti-parvalbumin antibodies for detecting southern hemisphere fish species demonstrating strong phylogenetic association.

    PubMed

    Liang, Ji; Tan, Chui Choo; Taylor, Steve L; Baumert, Joseph L; Lopata, Andreas L; Lee, N Alice

    2017-12-15

    This study aimed to develop a novel approach to determine the correlation between the parvalbumin (PAV) contents and their corresponding immunoreactivity (detectability) in southern hemisphere fish species. The immuno-detected PAV contents of the test fish species were estimated by a quantitative SDS-PAGE. A quantitative Enzyme-Linked ImmunoSorbent Assay (ELISA) was formatted to assess relative immunoreactivity of PAV. Sixteen species (forty-three percent) displayed a positive correlation with the anti-cod PAV polyclonal antibody, but no correlation with the anti-carp PAV monoclonal antibody. There was a strong phylogenetic association of the PAV immunoreactivity. Species from the order of Perciformes showed strong binding with both antibodies; whereas species from Salmoniformes, Ophidiiformes, Scombriformes, Scorpaeniformes, and Tetraodontiformes showed weak or no binding. This approach showed for the first time a statistical correlation between the PAV content and the immunoreactivity and allowed to rank the relative species/order specificity of the two antibodies for the southern hemisphere fish PAV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. DNA barcoding commercially important fish species of Turkey.

    PubMed

    Keskın, Emre; Atar, Hasan H

    2013-09-01

    DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654-bp-long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2-parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour-joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries. © 2013 John Wiley & Sons Ltd.

  2. DISTRIBUTIONS OF LAKE FISHES OF THE NORTHEAST USA--III. SALMONIDAE AND ASSOCIATED COLDWATER SPECIES

    EPA Science Inventory

    We present distributional maps and discuss native status for fish species characteristic of coldwater lakes, sampled from 203 randomly selected lakes in the northeastern USA (New England, New York, New Jersey). Eleven coldwater fish species from four families (Salmonidae, Osmeri...

  3. 75 FR 14133 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XV39 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Fish and Wildlife (WDFW) is identified as a co-permit applicant in each of these HGMPs. The duration of...

  4. 75 FR 25205 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XW33 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: NOAA's National Marine Fisheries Service (NMFS... are issued in accordance with and are subject to the ESA and NMFS regulations governing listed fish...

  5. 77 FR 2037 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA928 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... advises the public that a direct take permit has been issued to the Washington Department of Fish and...

  6. Current status of non-native fish species in the St. Louis River estuary

    EPA Science Inventory

    The fish community of the St. Louis River estuary is well characterized, thanks to fishery assessment and invasive species early detection monitoring by federal, state, and tribal agencies. This sampling includes long-standing adult/juvenile fish surveys, larval fish surveys beg...

  7. The Importance of the Regional Species Pool, Ecological Species Traits and Local Habitat Conditions for the Colonization of Restored River Reaches by Fish

    PubMed Central

    Stoll, Stefan; Kail, Jochem; Lorenz, Armin W.; Sundermann, Andrea; Haase, Peter

    2014-01-01

    It is commonly assumed that the colonization of restored river reaches by fish depends on the regional species pools; however, quantifications of the relationship between the composition of the regional species pool and restoration outcome are lacking. We analyzed data from 18 German river restoration projects and adjacent river reaches constituting the regional species pools of the restored reaches. We found that the ability of statistical models to describe the fish assemblages established in the restored reaches was greater when these models were based on ‘biotic’ variables relating to the regional species pool and the ecological traits of species rather than on ‘abiotic’ variables relating to the hydromorphological habitat structure of the restored habitats and descriptors of the restoration projects. For species presence in restored reaches, ‘biotic’ variables explained 34% of variability, with the occurrence rate of a species in the regional species pool being the most important variable, while ’abiotic’ variables explained only the negligible amount of 2% of variability. For fish density in restored reaches, about twice the amount of variability was explained by ‘biotic’ (38%) compared to ‘abiotic’ (21%) variables, with species density in the regional species pool being most important. These results indicate that the colonization of restored river reaches by fish is largely determined by the assemblages in the surrounding species pool. Knowledge of species presence and abundance in the regional species pool can be used to estimate the likelihood of fish species becoming established in restored reaches. PMID:24404187

  8. Species-specific patterns of hyperostosis in marine teleost fishes

    USGS Publications Warehouse

    Smith-Vaniz, William F.; Kaufman, L.S.; Glowacki, J.

    1995-01-01

    The occurrence of swollen or hyperostotic bones in skeletal preparations, preserved museum material or whole fresh specimens of marine teleost fishes was identified in 92 species belonging to 22 families. Patterns of hyperostotic skeletal growth were typically consistent and often species-specific in all individuals larger than a certain size. The taxonomic distribution of hyperostosis in diverse phylogenetic groups suggests that it has arisen independently many times. Selected bones from two species of the family Carangidae, horse-eye jack Caranx latus Agassiz and crevalle jackCaranx hippos (Linnaeus), were examined in detail by light and electron microscopy. Nonhyperostotic bone contained osteoid-producing osteoblasts, resorbing osteoclasts, occasional osteocytes, and a rich vascular network, all characteristics of cellular bone. Thus, these fishes have a spatial juxtaposition of cellular and acellular bone tissues in adjacent and often serially homologous bone sites. The functional significance of hyperostosis is unknown, but it is a predictable manifestation of bone growth and development for the many taxa in which it occurs.

  9. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos)

    PubMed

    Swanson

    1998-12-01

    demonstrate that investigations of salinity adaptation in euryhaline fishes should take into account the interactive effects of salinity on physiology and behavior.

  10. Identification of tetrodotoxin and fish species in a dried dressed fish fillet implicated in food poisoning.

    PubMed

    Hwang, Deng-Fwu; Hsieh, Yu-Wen; Shiu, Yu-Cheng; Chen, Shu-Kong; Cheng, Chao-An

    2002-02-01

    There were five victims of neurotoxic food poisoning from a dried dressed fish fillet in Changhua County, Taiwan, in February 2000. The toxicity of the dried dressed fish fillets was 243 mouse units per g according to a tetrodotoxin bioassay. The partially purified toxin was identified as tetrodotoxin and anhydrotetrodotoxin. The sequence of the 376-nucleotide region in the cytochrome b gene of the mitochondrial DNA exhibited the same genotype as that of the toxic puffer fish Lagocephalus lunaris. The same single restriction site for Hinfl was found in the polymerase chain reaction (PCR) products from the dried dressed fish fillet and the muscle of L. lunaris, yielding two DNA fragments of 170 and 206 bp. However, no restriction site for Hinfl was found in the PCR products from other toxic puffer fishes, including Takifugu niphobles, Takifugu oblongus, and Takifugu rubripes. Therefore, the species of the dried dressed fish fillet was identified as L. lunaris and its causative agent was identified as tetrodotoxin.

  11. Osmotic/ionic status of body fluids in the euryhaline cephalopod suggest possible parallel evolution of osmoregulation

    PubMed Central

    Sakamoto, Tatsuya; Ogawa, Satoshi; Nishiyama, Yudai; Akada, Chiaki; Takahashi, Hideya; Watanabe, Taro; Minakata, Hiroyuki; Sakamoto, Hirotaka

    2015-01-01

    Acclimation from marine to dilute environments constitutes among the dramatic evolutionary transitions in the history of life. Such adaptations have evolved in multiple lineages, but studies of the blood/hemolymph homeostasis mechanisms are limited to those using evolutionarily advanced Deuterostome (chordates) and Ecdysozoa (crustaceans). Here, we examined hemolymph homeostasis in the advanced Lophotrochozoa/mollusc, the other unexplored taxa, and its possible regulation by the vasopressin/oxytocin superfamily peptides known to be implicated in fluid homeostasis in Chordata and Arthropoda. The hemolymph osmotic and ionic status in the euryhaline cephalopod (Octopus ocellatus) following transfer from 30-ppt normal seawater to 20 ppt salinity indicate hyperosmo- and hyperionoregulatory abilities for more than 1 week, as in crustaceans and teleost fish. While ventilation frequency decreased by 1 day, Na+/K+-ATPase activity, which has been generally implicated in ion transport, was induced in two of the eight posterior gills after 1 week. In addition, the octopuses were intravenously injected with 1 or 100 ng/g octopressin or cephalotocin, which are Octopus vasopressin/oxytocin orthologs. After 1 day, octopressin, but not cephalotocin, decreased the hemolymph osmolality and Ca concentrations, as well as urinary Na concentrations. These data provide evidence for possible parallel evolution in hyperionoregulatory mechanisms and coordination by conserved peptides. PMID:26403952

  12. Investigation of sensory profiles and hedonic drivers of emerging aquaculture fish species.

    PubMed

    Alexi, Niki; Byrne, Derek V; Nanou, Evangelia; Grigorakis, Kriton

    2018-02-01

    The aquaculture sector needs to increase the diversity fish species and their processed products to cover rising consumer demands. Candidates for this diversification have been identified to be meagre, greater amberjack, pikeperch and wreckfish. Yet scientific knowledge on their sensory profiles and consumer hedonic responses is scarce. The aim of the current study was to investigate these aspects, since they are essential for product development and market targeting. Species exhibited different sensory profiles with the exception of the odor/flavor profiles of meagre and greater amberjack, which were similar. Texture was more important than odor/flavor in explaining interspecies differences. Yet the hedonic responses were equally related to texture and odor/flavor. None of the species received negative hedonic scores. Both positive and negative hedonic drivers were identified within the odor/flavor and texture modalities. The distinct profiles of meagre, greater amberjack, pikeperch and wreckfish make these fish species valuable first materials for new product development and for covering markets with different sensory preferences. Differences in fish texture are more easily perceivable, yet small variations in fish odor/flavor can have a great impact on consumers' hedonic responses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories☆

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium’s protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single “protective” ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium–mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. PMID:22405995

  14. Helminth communities of four commercially important fish species from Chetumal Bay, Mexico.

    PubMed

    Aguirre-Macedo, M L; Vidal-Martínez, V M; González-Solís, D; Caballero, P I

    2007-03-01

    The relative importance of ecology and evolution as factors determining species richness and composition of the helminth communities of fish is a matter of current debate. Theoretical studies use host-parasite lists, but these do not include studies on a temporal or spatial scale. Local environmental conditions and host biological characteristics are shown to influence helminth species richness and composition in four fish species (Eugerres plumieri, Hexanematichthys assimilis, Oligoplites saurus, and Scomberomorus maculatus) in Chetumal Bay, Mexico. With the exception of H. assimilis, the helminth communities had not been previously studied and possible associations between environmental and host biological characteristics as factors determining helminth species richness and composition using redundancy analysis (RDA) are described. Thirty-four helminth species are identified, with the highest number of species (19 total (mean = 6.3 +/- 2.1)) and the lowest (9 (4.0 +/- 1.0)) occurring in H. assimilis and S. maculatus, respectively. The larval nematodes Contracaecum sp. and Pseudoterranova sp. were not only the helminth species shared by all four host species but also were the most prevalent and abundant. Statistical associations between helminth community parameters and local ecological variables such as host habitat use, feeding habits, mobility, and time of residence in coastal lagoons are identified. Phylogeny is important because it clearly separates all four host species by their specialist parasites, although specific habitat and feeding habits also significantly influence the differentiation between the four fish species.

  15. Small Changes in Gene Expression of Targeted Osmoregulatory Genes When Exposing Marine and Freshwater Threespine Stickleback (Gasterosteus aculeatus) to Abrupt Salinity Transfers

    PubMed Central

    Taugbøl, Annette; Arntsen, Tina; Østbye, Kjartan; Vøllestad, Leif Asbjørn

    2014-01-01

    Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges. PMID:25265477

  16. Small changes in gene expression of targeted osmoregulatory genes when exposing marine and freshwater threespine stickleback (Gasterosteus aculeatus) to abrupt salinity transfers.

    PubMed

    Taugbøl, Annette; Arntsen, Tina; Ostbye, Kjartan; Vøllestad, Leif Asbjørn

    2014-01-01

    Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges.

  17. Feeding ecology of some fish species occurring in artisanal fishery of Socotra Island (Yemen).

    PubMed

    Hassan Ali', Mohammed Kaed; Belluscio, Andrea; Ventura, Daniele; Ardizzone, Giandomenico

    2016-04-30

    The demersal species Lethrinus borbonicus, Lethrinus mahsena, Lethrinus microdon, Lethrinus nebulosus, Lutjanus bohar, Lutjanus gibbus, Lutjanus kasmira, Epinephelus fasciatus, Epinephelus stoliczkae, Carangoides gymnostethus and Euthynnus affinis are important coastal fishes species of the northern coast of Socotra (Yemen), exploited by local fishery. The biology and feeding ecology of these species are poorly known in the area. A total of 1239 specimens were sampled from the main fishing landing site of the island (Hadibo). Total length and weight were measured, stomach contents were analyzed, diet overlap, Fulton's Condition index, and trophic levels were estimated. C. gymnostethus, L. microdon and L. kasmira occupied the highest position (T=4.50), L. nebulosus occupied the lower one (TL=3.41). The role of the increasing abundance of small pelagic fish in the diet of many species after the upwelling event is evident, but also different feeding strategies are reported, according to fish ecology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fatty acid metabolism in fish species as a biomarker for environmental monitoring.

    PubMed

    Olivares-Rubio, Hugo F; Vega-López, Armando

    2016-11-01

    Pollution by Organic Contaminants (OC) in aquatic environments is a relevant issue at the global scale. Lipids comprised of Fatty Acids (FA) play many important roles in the physiology and life history of fishes. Toxic effects of OC are partly dependent on its bioaccumulation in the lipids of aquatic organisms due its physicochemical properties. Therefore, there is an increasing interest to investigate the gene expression as well as the presence and activity of proteins involved in FA metabolism. The attention on Peroxisome Proliferation Activate Receptors (PPARs) also prevails in fish species exposed to OC and in the transport, biosynthesis and β-oxidation of FA. Several studies have been conducted under controlled conditions to evaluate these biological aspects of fish species exposed to OC, as fibrates, endocrine disrupting compounds, perfluoroalkyl acids, flame retardants, metals and mixtures of organic compounds associated with a polluted area. However, only fibrates, which are agonists of PPARs, induce biological responses suitable to be considered as biomarkers of exposure to these pollutants. According to the documented findings on this topic, it is unlikely that these physiological aspects are suitable to be employed as biomarkers with some noticeable exceptions, which depend on experimental design. This emphasises the need to investigate the responses in fish treated with mixtures of OC and in wild fish species from polluted areas to validate or refute the suitability of these biomarkers for environmental or fish health monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species.

    PubMed

    Ruethers, T; Raith, M; Sharp, M F; Koeberl, M; Stephen, J N; Nugraha, R; Le, T T K; Quirce, S; Nguyen, H X M; Kamath, S D; Mehr, S S; Campbell, D E; Bridges, C R; Taki, A C; Swoboda, I; Lopata, A L

    2018-04-01

    Fish is a well-recognized cause of food allergy and anaphylaxis. The evolutionary and taxonomic diversity of the various consumed fish species pose a challenge in the identification and characterization of the major fish allergens critical for reliable diagnostics. Globally, fish is a rising cause of food allergy complicated by a large under-investigated variety of species as well as increasing global tourism and trade. This is the first comprehensive study on allergen profiles of heat-processed fish from Vietnam. The aim of this study was to identify the major heat-stable allergens from frequently exported Asia-Pacific freshwater and marine fish and to characterize the major allergen parvalbumin (PV) from one of the most consumed and exported fish species from Asia, the Indian mackerel (Rastrelliger kanagurta). Heated protein extracts from 33 fish species were separated by gel electrophoresis. PV isoforms were identified by immunoblotting utilizing 3 different PV-specific monoclonal and polyclonal antibodies and further characterized by mass spectrometry. IgE reactivity was investigated using sera from 21 patients with confirmed fish allergy. Heat-stable IgE-reactive PVs, with up to 5 isoforms per species, were identified in all 33 analysed fish species. In the Indian mackerel, 7 PV isoforms were identified by 2D-gel electrophoresis combined with mass spectrometric analyses. The amino acid sequence deduced from cDNA of the most expressed isoform showed a high identity (>90%) to PVs from 2 other mackerel species. Different PVs were identified as the major heat-stable allergens in all 33 analysed freshwater and marine fish species from Vietnam, many of which are exported world-wide and 21 species that have never been investigated before. The Indian mackerel PV represents a novel fish allergen, now officially registered as Ras k 1. Improved diagnostics for fish allergy against Asia-Pacific species should be developed with focus on PV. © 2017 John Wiley & Sons Ltd.

  20. 76 FR 67121 - Atlantic Highly Migratory Species; 2012 Atlantic Shark Commercial Fishing Season

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    .... 110913585-1625-01] RIN 0648-BB36 Atlantic Highly Migratory Species; 2012 Atlantic Shark Commercial Fishing... establish opening dates and adjust quotas for the 2012 fishing season for the Atlantic commercial shark... 2011 Atlantic commercial shark fishing seasons. In addition, NMFS proposes season openings based on...

  1. Vast assembly of vocal marine mammals from diverse species on fish spawning ground.

    PubMed

    Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima

    2016-03-17

    Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.

  2. Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2012-04-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium's protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single "protective" ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium-mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Fatty acid profiles of five farmed Brazilian freshwater fish species from different families

    PubMed Central

    Canto, Anna Carolina Vilhena da Cruz Silva; da Costa, Marion Pereira; da Silva, Flávio Alves; Mársico, Eliane Teixeira; Conte-Junior, Carlos Adam

    2017-01-01

    The proximate composition and fatty acid (FA) profiles of five Brazilian freshwater fish species, namely Brycon cephalus (BC), Cichla ocellaris (CO), Prochilodus lineatus (PL), Leporinus friderici (LF) and Pseudoplatystoma corruscans (PCO), were investigated. CO and LF exhibited the highest (p < 0.05) moisture content, as well as one of the lowest (p < 0.05) lipid values, whereas BC presented the lowest (p < 0.05) moisture and, alongside PL, the highest (p < 0.05) lipid content. The predominant FAs in the evaluated fish species were palmitic, oleic, linoleic and docosahexaenoic acids. BC and CO presented high n-3 PUFA content, especially DHA, and demonstrated superior nutritional quality indices compared to the other evaluated fish species. Furthermore, a significant relationship was observed among these species, suggesting they possess similar nutritional lipid values. Thus, BC and CO were proven to be an excellent matrix with relevant lipid quality, desirable for human health. PMID:28614390

  4. Mayfly and fish species identification and sex determination in bleak (Alburnus alburnus) by MALDI-TOF mass spectrometry.

    PubMed

    Maasz, G; Takács, P; Boda, P; Varbiro, G; Pirger, Z

    2017-12-01

    Besides food quality control of fish or cephalopods, the novel mass spectrometry (MS) approaches could be effective and beneficial methods for the investigation of biodiversity in ecological research. Our aims were to verify the applicability of MALDI-TOF MS in the rapid identification of closely related species, and to further develop it for sex determination in phenotypically similar fish focusing on the low mass range. For MALDI-TOF MS spectra analysis, ClinProTools software was applied, but our observed classification was also confirmed by Self Organizing Map. For verifying the wide applicability of the method, brains from invertebrate and vertebrate species were used in order to detect the species related markers from two mayflies and eight fish as well as sex-related markers within bleak. Seven Ephemera larvae and sixty-one fish species related markers were observed and nineteen sex-related markers were identified in bleak. Similar patterns were observed between the individuals within one species. In contrast, there were markedly diverse patterns between the different species and sexes visualized by SOMs. Two different Ephemera species and male or female fish were identified with 100% accuracy. The various fish species were classified into 8 species with a high level of accuracy (96.2%). Based on MS data, dendrogram was generated from different fish species by using ClinProTools software. This MS-based dendrogram shows relatively high correspondence with the phylogenetic relationships of both the studied species and orders. In summary, MALDI-TOF MS provides a cheap, reliable, sensitive and fast identification tool for researchers in the case of closely related species using mass spectra acquired in a low mass range to define specific molecular profiles. Moreover, we presented evidence for the first time for determination of sex within one fish species by using this method. We conclude that it is a powerful tool that can revolutionize ecological and

  5. Predicting assemblages and species richness of endemic fish in the upper Yangtze River.

    PubMed

    He, Yongfeng; Wang, Jianwei; Lek-Ang, Sithan; Lek, Sovan

    2010-09-01

    The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Species composition and biomasses of fishes in tropical seagrasses at Groote Eylandt, northern Australia

    NASA Astrophysics Data System (ADS)

    Blaber, S. J. M.; Brewer, D. T.; Salini, J. P.; Kerr, J. D.; Conacher, C.

    1992-12-01

    The species composition and biomasses of fishes in the tropical seagrasses of Groote Eylandt, northern Australia, were studied in 1989 and 1990. A total of 156 species was recorded. Tall dense seagrass, short seagrass and control (no seagrass) sites in different depths were compared. Shallow (<1 m) sites were dominated by small resident species and juveniles of non-resident species, while deeper waters (to 7 m) were dominated by larger species. Species composition was not significantly different between sites, but species diversity ( H) and evenness ( E) were higher in non-vegetated areas. In slightly deeper water (<2 m) species composition was different between habitats and species diversity was highest in tall seagrass and least in open areas. Most species were more abundant in tall seagrass and least abundant in open areas. Most of the larger fishes, including 11 species of sharks, are piscivores, and most move into shallow sea-grass areas at night, irrespective of tide height. Only five species showed abundance patterns related to tide height and there were no significant seasonal patterns of abundance in any of the communities. The biomasses for all sites and sampling methods were mostly from 1 to 2 g m -2, which is low relative to other inshore tropical areas. The possible causes—the characteristics of adjacent habitats (coral reefs and mangroves) and the role of seagrasses in the life cycle of fishes are discussed. It is suggested that habitat structure is a major determinant of the species composition of fish in tropical seagrass areas, primarily because it affects food availability, both for small residents and juveniles, and for visiting predators.

  7. Analysis of endangered Kansas fish species distribution during historical and contemporary periods (pre- and post-1969)

    EPA Science Inventory

    Background/Question/Methods Kansas has more freshwater fish species than other states in the west and northern US. More than 140 fishes have recently been documented in Kansas rivers; of these, at least five are categorized as endangered species in Kansas (and threatened species ...

  8. Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments.

    PubMed

    Yuan, Zihao; Liu, Shikai; Zhou, Tao; Tian, Changxu; Bao, Lisui; Dunham, Rex; Liu, Zhanjiang

    2018-02-13

    Repetitive elements make up significant proportions of genomes. However, their roles in evolution remain largely unknown. To provide insights into the roles of repetitive elements in fish genomes, we conducted a comparative analysis of repetitive elements of 52 fish species in 22 orders in relation to their living aquatic environments. The proportions of repetitive elements in various genomes were found to be positively correlated with genome sizes, with a few exceptions. More importantly, there appeared to be specific enrichment between some repetitive element categories with species habitat. Specifically, class II transposons appear to be more abundant in freshwater bony fish than in marine bony fish when phylogenetic relationship is not considered. In contrast, marine bony fish harbor more tandem repeats than freshwater species. In addition, class I transposons appear to be more abundant in primitive species such as cartilaginous fish and lamprey than in bony fish. The enriched association of specific categories of repetitive elements with fish habitats suggests the importance of repetitive elements in genome evolution and their potential roles in fish adaptation to their living environments. However, due to the restriction of the limited sequenced species, further analysis needs to be done to alleviate the phylogenetic biases.

  9. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, Theresa M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  10. Molecular and morphological evidence for three species of Diplostomum (Digenea: Diplostomidae), parasites of fishes and fish-eating birds in Spain.

    PubMed

    Pérez-del-Olmo, Ana; Georgieva, Simona; Pula, Héctor J; Kostadinova, Aneta

    2014-11-12

    Recent molecular studies have revealed high species diversity of Diplostomum in central and northern Europe. However, our knowledge of the distribution of Diplostomum spp. in the southern distributional range in Europe of the snail intermediate hosts (Lymnaea stagnalis and Radix spp.) is rather limited. This study aims to fill this gap in our knowledge using molecular and morphological evidence. Nineteen fish species and six fish-eating bird species were sampled opportunistically in three regions (Catalonia, Extremadura and Aragon) in Spain. All isolates of Diplostomum spp. were characterised morphologically and molecularly. Partial sequences of the barcode region of the cox1 mitochondrial gene and complete sequences of the ribosomal ITS1-5.8S-ITS2 gene cluster were used for molecular identification of the isolates. Integrated morphological and molecular analyses demonstrated the presence of three species among the larval and adult isolates of Diplostomum spp. sampled in Spain: Diplostomum spathaceum (in fish and birds), D. pseudospathaceum (in birds) and Diplostomum sp. (in fish) referred to as Clade Q sensu Georgieva et al. (Int J Parasitol, 43:57-72, 2013). We detected ten cox1 haplotypes among the isolates of D. spathaceum with only one haplotype shared with adult isolates from central and northern Europe. No specific geographic pattern of the distribution of the novel haplotypes was found. This first molecular exploration of the diversity of Diplostomum spp. in southern Europe indicates much lower species richness compared with the northern regions of Europe.

  11. Role of self-caught fish in total fish consumption rates for recreational fishermen: Average consumption for some species exceeds allowable intake.

    PubMed

    Burger, Joanna

    2013-01-01

    Studies of fish consumption focus on recreational or subsistence fishing, on awareness and adherence to advisories, consumption patterns, and contaminants in fish. Yet the general public obtains their fish from commercial sources. In this paper I examine fish consumption patterns of recreational fishermen in New Jersey to determine: 1) consumption rates for self-caught fish and for other fish, 2) meals consumed per year, 3) average meal size, and average daily intake of mercury, and 4) variations in these parameters for commonly-consumed fish, and different methods of computing intake. Over 300 people were interviewed at fishing sites and fishing clubs along the New Jersey shore. Consumption patterns of anglers varied by species of fish. From 2 to 90 % of the anglers ate the different fish species, and between 9 and 75 % gave fish away to family or friends. Self-caught fish made up 7 to 92 % of fish diets. On average, self-caught fish were eaten for only 2 to 6 months of the year, whereas other fish (commercial or restaurant) were eaten up to 10 months a year. Anglers consumed from 5 to 36 meals of different fish a year, which resulted in intake of mercury ranging from 0.01 to 0.22 ug/kg/day. Average intake of Mako shark, swordfish, and tuna (sushi, canned tuna, self-caught tuna) exceeded the U.S. Environmental Protection Agency's oral, chronic reference dose for mercury of 0.1 ug/kg/day. However, computing intake using consumption for the highest month results in average mercury intake exceeding the reference dose for striped bass and bluefish as well. These data, and the variability in consumption patterns, have implications for risk assessors, risk managers, and health professionals.

  12. Role of self-caught fish in total fish consumption rates for recreational fishermen: Average consumption for some species exceeds allowable intake

    PubMed Central

    Burger, Joanna

    2013-01-01

    Studies of fish consumption focus on recreational or subsistence fishing, on awareness and adherence to advisories, consumption patterns, and contaminants in fish. Yet the general public obtains their fish from commercial sources. In this paper I examine fish consumption patterns of recreational fishermen in New Jersey to determine: 1) consumption rates for self-caught fish and for other fish, 2) meals consumed per year, 3) average meal size, and average daily intake of mercury, and 4) variations in these parameters for commonly-consumed fish, and different methods of computing intake. Over 300 people were interviewed at fishing sites and fishing clubs along the New Jersey shore. Consumption patterns of anglers varied by species of fish. From 2 to 90 % of the anglers ate the different fish species, and between 9 and 75 % gave fish away to family or friends. Self-caught fish made up 7 to 92 % of fish diets. On average, self-caught fish were eaten for only 2 to 6 months of the year, whereas other fish (commercial or restaurant) were eaten up to 10 months a year. Anglers consumed from 5 to 36 meals of different fish a year, which resulted in intake of mercury ranging from 0.01 to 0.22 ug/kg/day. Average intake of Mako shark, swordfish, and tuna (sushi, canned tuna, self-caught tuna) exceeded the U.S. Environmental Protection Agency’s oral, chronic reference dose for mercury of 0.1 ug/kg/day. However, computing intake using consumption for the highest month results in average mercury intake exceeding the reference dose for striped bass and bluefish as well. These data, and the variability in consumption patterns, have implications for risk assessors, risk managers, and health professionals. PMID:23914136

  13. Genome analysis of Betanodavirus from cultured marine fish species in Malaysia.

    PubMed

    Ransangan, Julian; Manin, Benny Obrain

    2012-04-23

    Betanodavirus is the causative agent of the viral nervous necrosis (VNN) or viral encephalopathy and retinopathy disease in marine fish. This disease is responsible for most of the mass mortalities that occurred in marine fish hatcheries in Malaysia. The genome of this virus consists of two positive-sense RNA molecules which are the RNA1 and RNA2. The RNA1 molecule contains the RdRp gene which encodes for the RNA-dependent RNA polymerase and the RNA2 molecule contains the Cp gene which encodes for the viral coat protein. In this study, total RNAs were extracted from 32 fish specimens representing the four most cultured marine fish species in Malaysia. The fish specimens were collected from different hatcheries and aquaculture farms in Malaysia. The RNA1 was successfully amplified using three pairs of overlapping PCR primers whereas the RNA2 was amplified using a pair of primers. The nucleotide analysis of RdRp gene revealed that the Betanodavirus in Malaysia were 94.5-99.7% similar to the RGNNV genotype, 79.8-82.1% similar to SJNNV genotype, 81.5-82.4% similar to BFNNV genotype and 79.8-80.7% similar to TPNNV genotype. However, they showed lower similarities to FHV (9.4-14.2%) and BBV (7.2-15.7%), respectively. Similarly, the Cp gene revealed that the viruses showed high nucleotide similarity to RGNNV (95.9-99.8%), SJNNV (72.2-77.4%), BFNNV (80.9-83.5%), TPNNV (77.2-78.1%) and TNV (75.1-76.5%). However, as in the RdRp gene, the coat protein gene was highly dissimilar to FHV (3.0%) and BBV (2.6-4.1%), respectively. Based on the genome analysis, the Betanodavirus infecting cultured marine fish species in Malaysia belong to the RGNNV genotype. However, the phylogenetic analysis of the genes revealed that the viruses can be further divided into nine sub-groups. This has been expected since various marine fish species of different origins are cultured in Malaysia. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Threats posed by artisanal fisheries to the reproduction of coastal fish species in a Mediterranean marine protected area

    NASA Astrophysics Data System (ADS)

    Lloret, J.; Muñoz, M.; Casadevall, M.

    2012-11-01

    Artisanal fisheries are frequently considered as a sustainable activity compatible with the conservation objectives of marine protected areas (MPAs). Few studies have examined the impacts of these fisheries on the reproductive potential of exploited fish species within the marine reserves. This study evaluated the potential impact of artisanal fishing on the reproduction of coastal fish species in a Mediterranean MPA through onboard sampling from January 2008 to December 2010. Eleven sex-changing fish species constituted an important part of the catch (20% overall and up to 60% of the total gill net catch) and, in five of them, most individuals were of one sex. Artisanal fishing can negatively affect the sustainability of those coastal fishes showing sex reversal, particularly the protogynous ones such as Diplodus cervinus and Epinephelus marginatus, as well as the species with complex mating systems (e.g. some sparids, labrids and scorpaenids). In all species the average size for the individuals captured was above the minimum landing size (where this exists), but in four species (Conger conger, Diplodus puntazzo, Sphyraena spp. and Sparus aurata) it was below the size of first maturity (L50). Results show that sex and size selection by artisanal fishing not only can have an impact on the reproduction of coastal fish species but may also be exacerbating rather than reducing the impact of fishing on coastal resources. Thus, new management actions need to be urgently implemented in the MPAs where artisanal fisheries are allowed to operate in order to protect the reproductive potential of these species, particularly those showing a complicated reproductive strategy.

  15. DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts.

    PubMed

    Lara, Ariagna; Ponce de León, José Luis; Rodríguez, Rodet; Casane, Didier; Côté, Guillaume; Bernatchez, Louis; García-Machado, Erik

    2010-05-01

    Despite ongoing efforts to protect species and ecosystems in Cuba, habitat degradation, overuse and introduction of alien species have posed serious challenges to native freshwater fish species. In spite of the accumulated knowledge on the systematics of this freshwater ichthyofauna, recent results suggested that we are far from having a complete picture of the Cuban freshwater fish diversity. It is estimated that 40% of freshwater Cuban fish are endemic; however, this number may be even higher. Partial sequences (652 bp) of the mitochondrial gene COI (cytochrome c oxidase subunit I) were used to barcode 126 individuals, representing 27 taxonomically recognized species in 17 genera and 10 families. Analysis was based on Kimura 2-parameter genetic distances, and for four genera a character-based analysis (population aggregation analysis) was also used. The mean conspecific, congeneric and confamiliar genetic distances were 0.6%, 9.1% and 20.2% respectively. Molecular species identification was in concordance with current taxonomical classification in 96.4% of cases, and based on the neighbour-joining trees, in all but one instance, members of a given genera clustered within the same clade. Within the genus Gambusia, genetic divergence analysis suggests that there may be at least four cryptic species. In contrast, low genetic divergence and a lack of diagnostic sites suggest that Rivulus insulaepinorum may be conspecific with Rivulus cylindraceus. Distance and character-based analysis were completely concordant, suggesting that they complement species identification. Overall, the results evidenced the usefulness of the DNA barcodes for cataloguing Cuban freshwater fish species and for identifying those groups that deserve further taxonomic attention. © 2009 Blackwell Publishing Ltd.

  16. Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey.

    PubMed

    Mendil, Durali; Demirci, Zafer; Tuzen, Mustafa; Soylak, Mustafa

    2010-03-01

    Fish species (Sarda sarda, Mulus barbatus ponticus, Trachurus trachurus and Merlangius merlangus) were collected from the Black sea, Turkey between 2008 and 2009 (spring, summer, autumn and winter). The samples were analyzed using flame and graphite furnace atomic absorption spectrometry after microwave digestion. The maximum metal concentrations were found to be as 25.5-41.4 microg/g (Fe), 17.8-25.7 microg/g (Zn), 0.28-0.64 microg/g (Pb), 0.64-0.99 microg/g (Cr), 1.3-3.6 microg/g (Mn), 1.4-1.9 microg/g (Cu), 0.18-0.35 microg/g (Cd) and 0.25-0.42 microg/g (Co) for fish species. The concentration of trace metals in samples is depended on fish species. Some species is accumulated trace metals at high ratio. Trace element levels in analyzed fish species were acceptable to human consumption at nutritional and toxic levels. The levels of lead and cadmium in fish samples were higher than the recommended legal limits. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Baseline concentration of 210Po in Kuwait's commercial fish species.

    PubMed

    Uddin, S; Al-Ghadban, A N; Behbehani, M; Aba, A; Al Mutairi, A; Karam, Q

    2012-11-01

    This baseline study highlights the (210)Po variation in whole fishes with different feeding habits. Whole-body (210)Po concentrations were determined in ten important commercial fish species found in the northern Arabian Gulf to serve as baseline data. Primarily, (210)Po is absorbed from water, concentrated by phytoplankton and microzooplankton, and then transferred to the next trophic level along the marine food chain. The lowest concentration of (210)Po was measured in larger carnivorous fishes like hamoor (0.089 Bq kg(-1)), while the highest was found in the fishes that feed on algae, zooplanktons and detritus, like battan (3.30 Bq kg(-1)). The baseline data can be used to understand both the trophic transfer of (210)Po in the marine food chain and the (210)Po concentration factors in fish from the Arabian Gulf. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modeling the relations between flow regime components, species traits, and spawning success of fishes in warmwater streams

    USGS Publications Warehouse

    Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.

    2010-01-01

    Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.

  19. Latitudinal variation in the shape of the species body size distribution: an analysis using freshwater fishes.

    PubMed

    Knouft, Jason H

    2004-05-01

    Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.

  20. 78 FR 69992 - Guidance for Industry on Purchasing Reef Fish Species Associated With the Hazard of Ciguatera...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    .... FDA-2013-D-0269] Guidance for Industry on Purchasing Reef Fish Species Associated With the Hazard of Ciguatera Fish Poisoning; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice of... guidance for industry entitled ``Guidance for Industry: Purchasing Reef Fish Species Associated with the...

  1. 78 FR 18273 - Draft Guidance for Industry on Purchasing Reef Fish Species Associated With the Hazard of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    .... FDA-2013-D-0269] Draft Guidance for Industry on Purchasing Reef Fish Species Associated With the Hazard of Ciguatera Fish Poisoning; Availability AGENCY: Food and Drug Administration, HHS. ACTION... availability of a draft guidance entitled ``Guidance for Industry: Purchasing Reef Fish Species Associated With...

  2. Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle

    PubMed Central

    Wiens, Lilian; Banh, Sheena; Sotiri, Emianka; Jastroch, Martin; Block, Barbara A.; Brand, Martin D.; Treberg, Jason R.

    2017-01-01

    Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria. PMID:28966595

  3. Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh.

    PubMed

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md

    2017-01-02

    Six heavy metals (chromium [Cr], nickel [Ni], copper [Cu], arsenic [As], cadmium [Cd], and lead [Pb]) were measured in sediments and soft tissues of eleven commonly consumed fish species collected from an urban river in the northern part of Bangladesh. The abundance of heavy metals in sediments varied in the decreasing order of Cr > Ni > Cu > Pb > As > Cd. The ranges of mean metal concentrations in fish species, in mg/kg wet weight (ww), were as follows: Cr, 0.11-0.46; Ni, 0.77-2.6; Cu, 0.57-2.1; As, 0.43-1.7; Cd, 0.020-0.23; and Pb, 0.15-1.1. Target hazard quotients (THQs) and target carcinogenic risk (TR) showed the intake of As and Pb through fish consumption were higher than the recommended values, indicating the consumption of these fish species is associated with noncarcinogenic and carcinogenic health risks.

  4. Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean.

    PubMed

    Ory, Nicolas; Chagnon, Catherine; Felix, Fernando; Fernández, César; Ferreira, Joana Lia; Gallardo, Camila; Garcés Ordóñez, Ostin; Henostroza, Aida; Laaz, Enrique; Mizraji, Ricardo; Mojica, Hermes; Murillo Haro, Vladimir; Ossa Medina, Luis; Preciado, Mercy; Sobral, Paula; Urbina, Mauricio A; Thiel, Martin

    2018-02-01

    The gut contents of 292 planktivorous fish, from four families (Atherinopsidae, Clupeidae, Engraulidae and Scombridae) and seven species, captured along the coast of the southeast Pacific, were examined for microplastic contamination. Only a small fraction of all studied fish (2.1%; 6 individuals) contained microplastic particles in their digestive tract. Microplastics found were degraded hard fragments and threads, ranging from 1.1 to 4.9 (3.8±SD 2.4) mm in length, and of various colours, which suggests that the planktivorous fish species examined herein did not capture microplastics on the basis of their colour. The low prevalence of microplastic contamination in planktivorous fishes found in this study suggests that the risk of accidental ingestion by these species might be limited in the coastal upwelled waters of the southeast Pacific, perhaps due to small human population and highly dynamic oceanographic processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  6. Effects of processing on the proximate and metal contents in three fish species from Nigerian coastal waters

    PubMed Central

    Bassey, Francisca I; Oguntunde, Fehintola C; Iwegbue, Chukwujindu M A; Osabor, Vincent N; Edem, Christopher A

    2014-01-01

    The effects of culinary practices such as boiling, frying, and grilling on the proximate compositions and concentrations of metals (Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg) in commonly consumed fish species from the Nigerian coastal waters were investigated. The selected fish species were Polydactylus quadratifilis, Chrysicthys nigrodigitatus and Cynoglossus senegalensis. The culinary practices lead to increased protein, fat, and ash contents and decreased moisture contents of these fish species. The culinary practices resulted significant increase in the concentrations of most of the studied metals and decrease in the concentrations of Fe, Cr, and Pb in some fish types. The concentrations and estimated dietary intakes of Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg from consumption of the processed fish were within their statutory safe limits. The individual metal target hazard quotient (THQ) values and the total THQs were less than 1 which indicates that no health risks would arise from the long-term consumption of these fish species. PMID:24936297

  7. Cortisol receptor blockade and seawater adaptation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Marshall, W.S.; Cozzi, R.R.F.; Pelis, Ryan M.; McCormick, S.D.

    2005-01-01

    To examine the role of cortisol in seawater osmoregulation in a euryhaline teleost, adult killifish were acclimated to brackish water (10???) and RU486 or vehicle was administered orally in peanut oil daily for five days at low (40 mg.kg-1) or high dose (200 mg.kg-1). Fish were transferred to 1.5 x seawater (45???) or to brackish water (control) and sampled at 24 h and 48 h after transfer, when Cl- secretion is upregulated. At 24 h, opercular membrane Cl- secretion rate, as Isc, was increased only in the high dose RU486 group. Stimulation of membranes by 3-isobutyl-1-methylxanthine and cAMP increased Isc in vehicle treated controls but those from RU486-treated animals were unchanged and membranes from brackish water animals showed a decrease in Isc. At 48 h, Isc increased and transepithelial resistance decreased in vehicle and RU486 groups, compared to brackish water controls. Plasma cortisol increased in all groups transferred to high salinity, compared to brackish water controls. RU486 treated animals had higher cortisol levels compared to vehicle controls. Vehicle treated controls had lower cortisol levels than untreated or RU486 treated animals, higher stimulation of Isc, and lower hematocrit at 24 h, beneficial effects attributed to increased caloric intake from the peanut oil vehicle. Chloride cell density was significantly increased in the high dose RU486 group at 48 hours, yet Isc was unchanged, suggesting a decrease in Cl- secretion per cell. Thus cortisol enhances NaCl secretion capacity in chloride cells, likely via glucocorticoid type receptors. ?? 2005 Wiley-Liss, Inc.

  8. Bioaccumulation of PCB Contaminants in Five Fish Species in Utah Lake as Affected by Carp Removal

    NASA Astrophysics Data System (ADS)

    Sanjinez-Guzmán, V. A.; Cadet, E. L.; Crandall, T.; Chamberlain, T.; Rakotoarisaona, H.; Morris, P.

    2017-12-01

    State reports published by the Utah Department of Health (2005) and the Utah Department of Water Quality (2008) determined that there were elevated levels of PCBs (Polychlorinated biphenyls) that exceeded the EPA's cancer (0.02 𝑚𝑔 𝑘𝑔-1) and non-cancer screening levels (0.08 𝑚𝑔 𝑘𝑔-1) in two fish species from Utah Lake, the Common Carp (Cyprinus carpio) and the Channel Catfish (Ictalurus punctatus). Fish consumption advisories were issued for both of these fish species due to their health effects of PCBs. The Common Carp is a non-native predatory species that comprise 90% of the biomass in Utah Lake. As of September 2009, an extensive carp removal program was instituted by the Department of Natural Resources and began the removal of 75% of the carp population. The purpose of this study is to assess the impact of carp removal on PCB levels in five sport fish species consumed by Utah citizens. The fish being analyzed are the Common Carp (Cyprinus carpio), Channel Catfish (Ictalurus punctatus), Black Bullhead (Ameiurus melas), Walleye (Sander vitreus), and White Bass (Morone chrysops). One-hundred twenty (120) fish were collected from Utah Lake and subcategorized by their gender, tissue type (fillet and offal), weight, and size: small (under 33 cm), medium (33 cm - 43 cm), and large (greater than 43 cm). This was done in order to determine the variation of contaminant levels in each subcategory. PCB analysis was performed by Utility Testing Laboratory in Salt Lake City, Utah. Results show there has been a significant increase in PCB levels in all fish species in comparison with the state reports (2008). All fish species have exceeded the EPA cancer screening level, except for the fillet tissue of the White Bass species. In Common Carp fillet, and offal decreased concentrations of 11.80% and 23.72%, respectively. In Channel catfish: the PCB levels in the fillet increase by 87.93%, however, the offal levels

  9. 75 FR 76302 - Atlantic Highly Migratory Species; 2011 Commercial Fishing Season and Adaptive Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... fish for sharks in the summer presents a safety-at-sea issue as it is dangerous in the Florida summer... shark fishermen who do not want to fish in the heat of the summer, or who fish for other species in the summer, an opportunity to fish during the cooler months. Gulf of Mexico Region Comment 7: Shark meat is...

  10. Large but uneven reduction in fish size across species in relation to changing sea temperatures.

    PubMed

    van Rijn, Itai; Buba, Yehezkel; DeLong, John; Kiflawi, Moshe; Belmaker, Jonathan

    2017-09-01

    Ectotherms often attain smaller body sizes when they develop at higher temperatures. This phenomenon, known as the temperature-size rule, has important consequences for global fisheries, whereby ocean warming is predicted to result in smaller fish and reduced biomass. However, the generality of this phenomenon and the mechanisms that drive it in natural populations remain unresolved. In this study, we document the maximal size of 74 fish species along a steep temperature gradient in the Mediterranean Sea and find strong support for the temperature-size rule. Importantly, we additionally find that size reduction in active fish species is dramatically larger than for more sedentary species. As the temperature dependence of oxygen consumption depends on activity levels, these findings are consistent with the hypothesis that oxygen is a limiting factor shaping the temperature-size rule in fishes. These results suggest that ocean warming will result in a sharp, but uneven, reduction in fish size that will cause major shifts in size-dependent interactions. Moreover, warming will have major implications for fisheries as the main species targeted for harvesting will show the most substantial declines in biomass. © 2017 John Wiley & Sons Ltd.

  11. Evaluation of phosphorus, protein, and n-3 fatty-acid content in 15 marine fish species identifies the species most beneficial to renal patients.

    PubMed

    Castro-Gonzalez, Isabel; Miranda-Becerra, Daniela; Montano-Benavides, Sara

    2009-11-01

    Among 15 marine fish species, we sought to identify those most beneficial to renal patients by evaluating their phosphorus (P), protein (PC), and n-3 fatty-acid (n-3 PUFA) content. These 15 species are all edible. They were obtained and sampled randomly, and were filleted to obtain 100g, enabling us to perform the analysis in triplicate. Crude protein was analyzed with a Kjeltec, and minerals were analyzed using atomic absorption spectrophotometry. The PC values (g/100g) ranged from 14.3 (blue runner; BR) to 22.8 (California butterfly ray). The fish with the highest P (mg/100g) content were spotted sea trout (ST), gafftopsail fish (CF) (289), and BR (274), followed by smalltail shark (272). The species with the lowest ratio of P:n-3 PUFA was dollar fish (DF) (0.28), followed by BR, ST, and vermilion snapper (range, 0.28 to 0.67). The highest ratio of P:n-3 PUFA was found in the small-tail shark (11.6). Fish with a high n-3 PUFA/g PC content were DF (41.7), BR (38.05), ST (34.8), and CF (22.5). There was a tendency of P to increase as muscle fat increased (mg P/100g), i.e., lean fish (194), semifatty fish (239), and fatty fish (262). The regular inclusion in the diet, at least three times a week, of the species DF, BR, CF, ST, caitipa mojarra, vermillion snapper, and pot snapper can be considered beneficial to the general health status of renal patients.

  12. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Mandrak, Nicholas E; Heath, Daniel D

    2018-01-01

    The extraction and characterization of DNA from aquatic environmental samples offers an alternative, noninvasive approach for the detection of rare species. Environmental DNA, coupled with PCR and next-generation sequencing ("metabarcoding"), has proven to be very sensitive for the detection of rare aquatic species. Our study used a custom-designed group-specific primer set and next-generation sequencing for the detection of three species at risk (Eastern Sand Darter, Ammocrypta pellucida; Northern Madtom, Noturus stigmosus; and Silver Shiner, Notropis photogenis), one invasive species (Round Goby, Neogobius melanostomus) and an additional 78 native species from two large Great Lakes tributary rivers in southern Ontario, Canada: the Grand River and the Sydenham River. Of 82 fish species detected in both rivers using capture-based and eDNA methods, our eDNA method detected 86.2% and 72.0% of the fish species in the Grand River and the Sydenham River, respectively, which included our four target species. Our analyses also identified significant positive and negative species co-occurrence patterns between our target species and other identified species. Our results demonstrate that eDNA metabarcoding that targets the fish community as well as individual species of interest provides a better understanding of factors affecting the target species spatial distribution in an ecosystem than possible with only target species data. Additionally, eDNA is easily implemented as an initial survey tool, or alongside capture-based methods, for improved mapping of species distribution patterns. © 2017 John Wiley & Sons Ltd.

  13. Species-specific preferences of German recreational anglers for freshwater fishing experiences, with emphasis on the intrinsic utilities of fish stocking and wild fishes.

    PubMed

    Arlinghaus, R; Beardmore, B; Riepe, C; Meyerhoff, J; Pagel, T

    2014-12-01

    To answer the question, whether anglers have an intrinsic preference for stocking or a preference for catch outcomes (e.g. catch rates) believed to be maintained by stocking, a discrete choice experiment was conducted among a sample of anglers (n = 1335) in Lower Saxony, Germany. After controlling for catch aspects of the fishing experience, no significant influence of two stocking attributes (stocking frequency and composition of the catch in terms of wild v. hatchery fishes) on the utility gained from fishing was found for any of the freshwater species that were studied. It was concluded that the previously documented large appreciation of fish stocking by anglers may be indicative of an underlying preference for sufficiently high catches rather than reflect an intrinsic preference for stocking or the catching of wild fishes per se. © 2014 The Fisheries Society of the British Isles.

  14. Spatial variability in fish species assemblage and community structure in four subtropical lagoons of the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Mosepele, K.; Mosepele, B.; Bokhutlo, T.; Amutenya, K.

    The species assemblage and community structure of four lagoons was assessed through time series data collected between 2001 and 2005 in the Okavango Delta. The main aim of this study was to evaluate the importance of lagoons as fish habitats in the Delta. Therefore, this study assessed the importance of these habitats through determining fish species diversity, composition, relative abundance, and community structure between the lagoons. Forty six species belonging to 11 families and five orders were collected over the study period. Main results showed that Cichlidae was the most important family and had the highest species richness in the lagoons. Significant differences ( p < 0.05) were observed in species richness, faunal composition, and diversity among some of the lagoons. Moreover, there were also variations in species composition, and also significant differences in mean length and weight of some selected fish species in the four lagoons. This study showed that lagoons are important repositories of food fish to local communities. Moreover, a management of the fish stocks based on restricting fishing in some lagoons as protected areas is not feasible because of these significant differences in species assemblages between lagoons. Furthermore, lagoons are subject to multiple where most of the lodges are constructed, which makes subsequently makes them vulnerable to pollution. Therefore, the integrity of lagoon habitats needs to be maintained so that their ecosystem functioning (i.e. fish repositories) is maintained.

  15. 76 FR 21858 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... and policy of section 2 of the ESA. The authority to take listed species is subject to conditions set... extend their 2-year scientific research permit that currently authorizes them to take juvenile and adult...

  16. Spatio-temporal dynamics of species richness in coastal fish communities

    USGS Publications Warehouse

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  17. Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species.

    PubMed

    Potts, Warren M; Henriques, Romina; Santos, Carmen V; Munnik, Kate; Ansorge, Isabelle; Dufois, Francois; Booth, Anthony J; Kirchner, Carola; Sauer, Warwick H H; Shaw, Paul W

    2014-09-01

    Despite increasing awareness of large-scale climate-driven distribution shifts in the marine environment, no study has linked rapid ocean warming to a shift in distribution and consequent hybridization of a marine fish species. This study describes rapid warming (0.8 °C per decade) in the coastal waters of the Angola-Benguela Frontal Zone over the last three decades and a concomitant shift by a temperature sensitive coastal fish species (Argyrosomus coronus) southward from Angola into Namibia. In this context, rapid shifts in distribution across Economic Exclusive Zones will complicate the management of fishes, particularly when there is a lack of congruence in the fisheries policy between nations. Evidence for recent hybridization between A. coronus and a congener, A. inodorus, indicate that the rapid shift in distribution of A. coronus has placed adults of the two species in contact during their spawning events. Ocean warming may therefore revert established species isolation mechanisms and alter the evolutionary history of fishes. While the consequences of the hybridization on the production of the resource remain unclear, this will most likely introduce additional layers of complexity to their management. © 2014 John Wiley & Sons Ltd.

  18. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    PubMed

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  19. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship

    PubMed Central

    Pickering, Emily A.; Adler, Alyssa M.; Taylor, J. Christopher; Peterson, Charles H.

    2017-01-01

    Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor

  20. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    PubMed

    Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H

    2017-01-01

    Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor

  1. CONDITIONS FOR COEXISTENCE OF FRESHWATER MUSSEL SPECIES VIA PARTITIONING OF FISH HOST RESOURCES

    EPA Science Inventory

    Riverine freshwater mussel species can be found in highly diverse communities where many similar species coexist. Mussel species potentially compete for food and space as adults, and for fish host resources during the larval (glochidial) stage. Resource partitioning at the larv...

  2. Universal primers for amplification of the complete mitochondrial control region in marine fish species.

    PubMed

    Cheng, Y Z; Xu, T J; Jin, X X; Tang, D; Wei, T; Sun, Y Y; Meng, F Q; Shi, G; Wang, R X

    2012-01-01

    Through multiple alignment analysis of mitochondrial tRNA-Thr and tRNA-Phe sequences from 161 fishes, new universal primers specially targeting the entire mitochondrial control region were designed. This new primer set successfully amplified the expected PCR products from various kinds of marine fish species, belonging to various families, and the amplified segments were confirmed to be the control region by sequencing. These primers provide a useful tool to study the control region diversity in economically important fish species, the possible mechanism of control region evolution, and the functions of the conserved motifs in the control region.

  3. 77 FR 67794 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... placed in Cemetery Creek. Fish would be identified by species and measured, have a tissue sample taken..., identified by species, checked for CWTs, sampled for stomach contents and scale and fin tissues, and released.... All captured ESA-listed rockfish would have a small portion of their fin tissue removed for genetics...

  4. A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species.

    PubMed

    Free, Christopher M; Jensen, Olaf P; Mendsaikhan, Bud

    2015-01-01

    Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake's fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.

  5. A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species

    PubMed Central

    Free, Christopher M.; Jensen, Olaf P.; Mendsaikhan, Bud

    2015-01-01

    Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake’s fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3–4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009–2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11–15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas. PMID:26625154

  6. Context-dependent interactions and the regulation of species richness in freshwater fish.

    PubMed

    MacDougall, Andrew S; Harvey, Eric; McCune, Jenny L; Nilsson, Karin A; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B; Kelly, Jocelyn; Tunney, Tyler D; McMeans, Bailey; Matsuzaki, Shin-Ichiro S; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S

    2018-03-06

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11 o latitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently 'scale-up' to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  7. Context-dependent interactions and the regulation of species richness in freshwater fish

    USGS Publications Warehouse

    MacDougall, Andrew S.; Harvey, Eric; McCune, Jenny L.; Nilsson, Karin A.; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B.; Kelly, Jocelyn; Tunney, Tyler D.; McMeans, Bailey; Matsuzaki, Shin-Ichiro S.; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S.

    2018-01-01

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11olatitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently ‘scale-up’ to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  8. Dioxin-like Compounds in Lake Fish Species: Evaluation by DR-CALUX Bioassay.

    PubMed

    Sciuto, S; Prearo, M; Desiato, R; Bulfon, C; Burioli, E A V; Esposito, G; Guglielmetti, C; Dell'atti, L; Ru, G; Volpatti, D; Acutis, P L; Martucci, F

    2018-05-01

    Fish consumption is the principal source of intake of organochlorinated compounds in humans. Compared with other types of foods of animal origin, fish contain the highest levels of polychlorinated biphenyls (PCBs), polychlorinated dibenzo- p-dioxins, and polychlorinated dibenzofurans, all of which are classified as highly toxic organochlorine compounds. Currently, lakes and fish farms in northern Italy are not regularly monitored for PCBs and dioxins in areas contaminated by industrial sources, partially because of the high costs of traditional analytical methods that limit the number of samples to be analyzed. The DR-CALUX cell bioassay is based on the uptake of the cellular aryl hydrocarbon receptor (AhR) for dioxins and dioxin-like compounds. The aim of this study was to assess the levels of dioxins and dioxin-like PCB contamination in Lake Maggiore and Lake Como, two lakes in northwestern Italy, and in nearby areas. The levels were quantified using the cell bioassay DR-CALUX and reference controls in two wild fish species, perch ( Perca fluviatilis) and roach ( Rutilus rutilus), and in a farmed species, rainbow trout ( Oncorhynchus mykiss). Tissue samples collected from the farmed rainbow trout were also submitted to immunohistochemical analysis of CYP1A expression as a marker for environmental pollutant-induced liver damage. The levels of dioxins, furans, and dioxin-like PCBs were all below the maximum levels and action limits set by European Union Regulation, suggesting no risk for human health associated with the consumption of the fish species caught or farmed in these areas.

  9. Toxicity and accumulation of mercury in three species of crabs with different osmoregulatory capacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, A.; Gilles, R.

    1996-07-01

    Synergism between mercury and salinity has been shown in invertebrates. Two authors have tied to correlate salinity effects with a higher or lower accumulation of mercury. Zauke, demonstrated lower mercury levels in several benthic invertebrates from limnic regions of the Elbe estuary when compared to those from Marine regions. On the other hand, Kendall did not report any significant difference in mercury concentrations in benthic macroinvertebrates throughout a salinity gradient in two estuaries from Georgia. In species hyperosmoregulating in diluted media, it could, however, be considered that the high water turnover would favor mercury accumulation. In this context, one couldmore » also expect a relationship between environmental salinity and mercury toxicity in different euryhaline species depending on their osmoregulatory capacities. We have tested this hypothesis analyzing the toxic effects and accumulation of mercury in three euryhaline crabs presenting different osmoregulatory capacities: Eriocheir sinensis (strong hyperosmoregulator), Carcinus maenas (weak hyperosmoregulator) and Cancer pagurus (osmoconformer). 16 refs., 4 figs., 1 tab.« less

  10. Terrestrial fungi inhabiting certain species of Nile fishes in Egypt.

    PubMed

    Bagy, M M; Hemida, S K; Mahmoud, U M

    1993-06-01

    Twenty specimens of six species of Nile fishes were examined for the presence of fungi. Of which 2 were from Alestes nurse; 3 from Bagrus docmac; 4 from Barbus bynni; 6 from Chrysichthys auratus; 4 from Lates niloticus and 1 from Malapterurus electricus. Forty-three fungal species in addition to 1 variety appertaining to fifteen genera were recovered from skin (15 genera and 34 species + 1 variety); gills, kidney (12 genera and 30 species + 1 variety, each); liver (11 genera and 30 species + 1 variety) and intestine (13 genera and 30 species + 1 variety) of all specimens, using glucose Czapek-Dox medium at 28 degrees C. The most common genera were Aspergillus, Penicillium and Trichoderma.

  11. Identification of Cryptosporidium Species in Fish from Lake Geneva (Lac Léman) in France.

    PubMed

    Certad, Gabriela; Dupouy-Camet, Jean; Gantois, Nausicaa; Hammouma-Ghelboun, Ourida; Pottier, Muriel; Guyot, Karine; Benamrouz, Sadia; Osman, Marwan; Delaire, Baptiste; Creusy, Colette; Viscogliosi, Eric; Dei-Cas, Eduardo; Aliouat-Denis, Cecile Marie; Follet, Jérôme

    2015-01-01

    Cryptosporidium, a protozoan parasite that can cause severe diarrhea in a wide range of vertebrates including humans, is increasingly recognized as a parasite of a diverse range of wildlife species. However, little data are available regarding the identification of Cryptosporidium species and genotypes in wild aquatic environments, and more particularly in edible freshwater fish. To evaluate the prevalence of Cryptosporidiumspp. in fish from Lake Geneva (Lac Léman) in France, 41 entire fish and 100 fillets (cuts of fish flesh) were collected from fishery suppliers around the lake. Nested PCR using degenerate primers followed by sequence analysis was used. Five fish species were identified as potential hosts of Cryptosporidium: Salvelinus alpinus, Esox lucius, Coregonus lavaretus, Perca fluviatilis, and Rutilus rutilus. The presence of Cryptosporidium spp. was found in 15 out of 41 fish (37%), distributed as follows: 13 (87%) C. parvum, 1 (7%) C. molnari, and 1 (7%) mixed infection (C. parvum and C. molnari). C. molnari was identified in the stomach, while C. parvum was found in the stomach and intestine. C. molnari was also detected in 1 out of 100 analyzed fillets. In order to identify Cryptosporidium subtypes, sequencing of the highly polymorphic 60-kDa glycoprotein (gp60) was performed. Among the C. parvum positive samples, three gp60 subtypes were identified: IIaA15G2R1, IIaA16G2R1, and IIaA17G2R1. Histological examination confirmed the presence of potential developmental stages of C. parvum within digestive epithelial cells. These observations suggest that C. parvum is infecting fish, rather than being passively carried. Since C. parvum is a zoonotic species, fish potentially contaminated by the same subtypes found in terrestrial mammals would be an additional source of infection for humans and animals, and may also contribute to the contamination of the environment with this parasite. Moreover, the risk of human transmission is strengthened by the

  12. Identification of Cryptosporidium Species in Fish from Lake Geneva (Lac Léman) in France

    PubMed Central

    Certad, Gabriela; Dupouy-Camet, Jean; Gantois, Nausicaa; Hammouma-Ghelboun, Ourida; Pottier, Muriel; Guyot, Karine; Benamrouz, Sadia; Osman, Marwan; Delaire, Baptiste; Creusy, Colette; Viscogliosi, Eric; Aliouat-Denis, Cecile Marie; Follet, Jérôme

    2015-01-01

    Cryptosporidium, a protozoan parasite that can cause severe diarrhea in a wide range of vertebrates including humans, is increasingly recognized as a parasite of a diverse range of wildlife species. However, little data are available regarding the identification of Cryptosporidium species and genotypes in wild aquatic environments, and more particularly in edible freshwater fish. To evaluate the prevalence of Cryptosporidiumspp. in fish from Lake Geneva (Lac Léman) in France, 41 entire fish and 100 fillets (cuts of fish flesh) were collected from fishery suppliers around the lake. Nested PCR using degenerate primers followed by sequence analysis was used. Five fish species were identified as potential hosts of Cryptosporidium: Salvelinus alpinus, Esox lucius, Coregonus lavaretus, Perca fluviatilis, and Rutilus rutilus. The presence of Cryptosporidium spp. was found in 15 out of 41 fish (37%), distributed as follows: 13 (87%) C. parvum, 1 (7%) C. molnari, and 1 (7%) mixed infection (C. parvum and C. molnari). C. molnari was identified in the stomach, while C. parvum was found in the stomach and intestine. C. molnari was also detected in 1 out of 100 analyzed fillets. In order to identify Cryptosporidium subtypes, sequencing of the highly polymorphic 60-kDa glycoprotein (gp60) was performed. Among the C. parvum positive samples, three gp60 subtypes were identified: IIaA15G2R1, IIaA16G2R1, and IIaA17G2R1. Histological examination confirmed the presence of potential developmental stages of C. parvum within digestive epithelial cells. These observations suggest that C. parvum is infecting fish, rather than being passively carried. Since C. parvum is a zoonotic species, fish potentially contaminated by the same subtypes found in terrestrial mammals would be an additional source of infection for humans and animals, and may also contribute to the contamination of the environment with this parasite. Moreover, the risk of human transmission is strengthened by the

  13. Biota monitoring under the Water Framework Directive: On tissue choice and fish species selection.

    PubMed

    Fliedner, Annette; Rüdel, Heinz; Lohmann, Nina; Buchmeier, Georgia; Koschorreck, Jan

    2018-04-01

    The study addresses the topic of suitable matrices for chemical analysis in fish monitoring and discusses the effects of data normalization in the context of the European Water Framework Directive (WFD). Differences between species are considered by comparing three frequently monitored species of different trophic levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama, n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German Danube. The WFD priority substances dioxins, furans and dioxin-like polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as non-dioxin-like (ndl)-PCB were analyzed separately in fillet and carcass and whole body concentrations were calculated. Hg was analyzed in individual fish fillets and carcasses, all other substances were determined in pool samples, which were compiled on the basis of fish size (3 chub pools, 1 bream pool, 2 perch pools). The data were normalized to 5% lipid weight (or 26% dry mass in the case of Hg and PFOS) for comparison between matrices and species. Hg concentrations were generally higher in fillet than in whole fish (mean whole fish-to-fillet ratio: 0.7) whereas all other substances were mostly higher in whole fish. In the case of lipophilic substances these differences leveled after lipid normalization. Significant correlations (p ≤ .05) were detected between Hg and fish weight and age. Hg concentrations varied least among younger fish. PCDD/F, dl-PCB, ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with lipid concentrations. Fillet-to-whole fish conversion equations and/or conversion factors were derived for all substances except α-HCBDD. Although more data also for individual fish would be desirable the results are nevertheless a step on the way to translate fillet concentrations of priority

  14. OCCURRENCE OF TWO LEECH SPECIES (ANNELIDA: HIRUDINEA) ON FISHES IN THE KENTUCKY RIVER

    EPA Science Inventory

    Little is known specifically on the feeding relationships between parasitic leeches and fish in North America. During an electrofishing survey conducted on the main stem of the Kentucky River in the summer of 2000, the presence of leeches was documented on six species of fish. ...

  15. Salinity and temperature tolerance of an emergent alien species, the Amazon fish Astronotus ocellatus

    USGS Publications Warehouse

    Gutierrel, Silvia M M; Schofield, Pam; Prodocimo, Viviane

    2016-01-01

    Astronotus ocellatus (oscar), is native to the Amazon basin and, although it has been introduced to many countries, little is known regarding its tolerances for salinity and temperature. In this report, we provide data on the tolerance of A. ocellatus to abrupt and gradual changes in salinity, its high and low temperature tolerance, and information on how salinity, temperature, and fish size interact to affect survival. Fish were able to survive abrupt transfer to salinities as high as 16 ppt with no mortality. When salinity change was gradual (2 ppt/day), fish in the warm-temperature experiment (28°C) survived longer than fish in the cool-temperature experiment (18°C). Larger fish survived longer than smaller ones at the higher salinities when the temperature was warm, but when the temperature was cool fish size had little effect on survival. In the temperature-tolerance experiments, fish survived from 9 to 41°C for short periods of time. Overall, the species showed a wide range of temperature and salinity tolerance. Thus, in spite of the tropical freshwater origin of this species, physiological stress is not likely to hinder its dispersal to brackish waters, especially when temperatures are warm.

  16. Hazardous impact of arsenic on tissues of same fish species collected from two ecosystem.

    PubMed

    Shah, Abdul Qadir; Kazi, Tasneem Gul; Arain, Mohammad Balal; Baig, Jameel Ahmed; Afridi, Hassan Imran; Kandhro, Ghulam Abbas; Khan, Sumaira; Jamali, Mohammad Khan

    2009-08-15

    The purpose of this paper is to develop a database of fish tissues and to evaluate concentration of arsenic (As) in five tissues of fish species collected from Manchar Lake Pakistan and to compare concentration of As in fish tissues of same fish species collected from the Indus River, Pakistan. A sensitive and precise, hydride generation atomic absorption spectrometry (HG AAS) method is presented for the determination of total Arsenic (As). Microwave acid-assisted digestion (MAD) procedure based on the mixture HNO(3)/H(2)O(2) was evaluated. The method was successfully validated against CRM DORM-2 (dogfish muscle). Quantitative As recovery in CRM (DORM-2) was obtained and no statistical differences were found at 95% level by applying the t-test. The limit of detection (LOD) and limit of quantitation (LOQ), for As were established as 0.022 and 0.063 microg g(-1), respectively. The results of this study indicated that As concentration in fish tissues from the Indus River are generally lower than in tissues of fishes from Manchar Lake. Arsenic concentrations in fish tissues of Indus River are although above the respective human health-based concentrations.

  17. Seasonal dynamics in community structure, abundance, body size and sex ratio in two species of Neotropical annual fishes.

    PubMed

    Lanés, L E K; Godoy, R S; Maltchik, L; Polačik, M; Blažek, R; Vrtílek, M; Reichard, M

    2016-11-01

    Seven ephemeral pools on the coastal plain of southern Brazil were found to be inhabited by three annual and 22 non-annual fish species. Two common annual species (Austrolebias minuano and Cynopoecilus fulgens) exhibited clear seasonal dynamics, with the appearance of young fishes in the austral autumn (May to June) and a decline in abundance over the seasonal cycle. The third annual species, Austrolebias wolterstorffii, was rare. No seasonal dynamics were observed in non-annual fishes. The relative abundance of non-annual fishes compared with annual fishes increased over the seasonal cycle, but they coexisted widely. The size structure of annual fishes suggested the presence of a single age cohort in most pools though a second age cohort was registered in one pool in August, coinciding with a large flooding. Strong sexual dimorphism in body size was found in C. fulgens throughout the seasonal cycle, while no sexual dimorphism in body size was found in A. minuano. Female-biased sex ratios were recorded in both common annual fish species in the last three sampling dates (in spring), but not during the first two sampling dates (in winter). The natural lifespan of annual fishes was <8 months. Annual fishes disappeared before habitat desiccation in half of the pools, while non-annual fishes were still present. © 2016 The Fisheries Society of the British Isles.

  18. Reach and catchment-scale characteristics are relatively uninfluential in explaining the occurrence of stream fish species.

    PubMed

    Wuellner, M R; Bramblett, R G; Guy, C S; Zale, A V; Roberts, D R; Johnson, J

    2013-05-01

    The objectives of this study were (1) to determine whether the presence or absence of prairie fishes can be modelled using habitat and biotic characteristics measured at the reach and catchment scales and (2) to identify which scale (i.e. reach, catchment or a combination of variables measured at both scales) best explains the presence or absence of fishes. Reach and catchment information from 120 sites sampled from 1999 to 2004 were incorporated into tree classifiers for 20 prairie fish species, and multiple criteria were used to evaluate models. Fewer than six models were considered significant when modelling individual fish occurrences at the reach, catchment or combined scale, and only one species was successfully modelled at all three scales. The scarcity of significant models is probably related to the rigorous criteria by which these models were evaluated as well as the prevalence of tolerant, generalist fishes in these stochastic and intermittent streams. No significant differences in the amount of reduced deviance, mean misclassification error rates (MER), and mean improvement in MER metrics was detected among the three scales. Results from this study underscore the importance of continued habitat assessment at smaller scales to further understand prairie-fish occurrences as well as further evaluations of modelling methods to examine habitat relationships for tolerant, ubiquitous species. Incorporation of such suggestions in the future may help provide more accurate models that will allow for better management and conservation of prairie-fish species. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  19. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest), Pacific Oyster

    DTIC Science & Technology

    1988-09-01

    Requirements of Coastal Fishes o and Invertebrates (Pacific Northwest) LEICT o PACIFIC OYSTER E2I 8 Coastal Ecology Group Fish and Wildlife Service Waterways...Profiles-: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific N rthwest) PACIFIC OYSTER by Gilbert B. Pauley...Fish and Wildlife Service. 1983-19. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates . U.S. Fish

  20. Genome analysis of 7 Kengyilia (Triticeae Poaceae) species with FISH and GISH

    USDA-ARS?s Scientific Manuscript database

    Genome composition of and genetic relationships among seven Kengyilia species were assessed using a technique of sequential FISH (fluorescence in situ hybridization) and GISH (genomic in situ hybridization). Five of these 7 species, K. kokonorica, K. rigidula, K. hirsula, K. grandiglumis, and K. th...

  1. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  2. DNA barcoding of freshwater fishes and the development of a quantitative qPCR assay for the species-specific detection and quantification of fish larvae from plankton samples.

    PubMed

    Loh, W K W; Bond, P; Ashton, K J; Roberts, D T; Tibbetts, I R

    2014-08-01

    The barcoding of mitochondrial cytochrome c oxidase subunit 1 (coI) gene was amplified and sequenced from 16 species of freshwater fishes found in Lake Wivenhoe (south-eastern Queensland, Australia) to support monitoring of reservoir fish populations, ecosystem function and water health. In this study, 630-650 bp sequences of the coI barcoding gene from 100 specimens representing 15 genera, 13 families and two subclasses of fishes allowed 14 of the 16 species to be identified and differentiated. The mean ± s.e. Kimura 2 parameter divergence within and between species was 0.52 ± 0.10 and 23.8 ± 2.20% respectively, indicating that barcodes can be used to discriminate most of the fish species accurately. The two terapontids, Amniataba percoides and Leiopotherapon unicolor, however, shared coI DNA sequences and could not be differentiated using this gene. A barcoding database was established and a qPCR assay was developed using coI sequences to identify and quantify proportional abundances of fish species in ichthyoplankton samples from Lake Wivenhoe. These methods provide a viable alternative to the time-consuming process of manually enumerating and identifying ichthyoplankton samples. © 2014 The Fisheries Society of the British Isles.

  3. Osmoregulation and muscle water control in vitro facing salinity stress of the Amazon fish Oscar Astronotus ocellatus (Cichlidae)

    USGS Publications Warehouse

    Gutierre, Silvia M. M.; Schulte, Jessica M.; Schofield, Pam; Prodocimo, Viviane

    2017-01-01

    Specimens of Oscar Astronotus ocellatus from a fish farm were abruptly submitted to salt stress of 14 ppt and 20 ppt, for 3 and 8 h to determine their plasma osmolality. Muscle wet body mass change in vitro was analyzed from control freshwater animals. Fish in 14 ppt presented no osmolality distress even after 8 h. In 20 ppt, a slight increase (10%) in plasma osmolality was observed for both times of exposure when compared to control fish. Muscle slices submitted in vitro to hyper-osmotic saline displayed decreased body mass after 75 min, and slices submitted to hypo-osmotic saline displayed increased body mass after 45 min when compared to control (isosmotic saline). These results reinforce A. ocellatus’s euryhalinity. The fish were able to regulate its internal medium and tolerate 14 ppt, but presented an intense osmotic challenge and low muscle hydration control when facing salinities of 20 ppt.

  4. Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae)

    PubMed Central

    2013-01-01

    Background One of the most widely accepted ecomorphological relationships in vertebrates is the negative correlation between intestinal length and proportion of animal prey in diet. While many fish groups exhibit this general pattern, other clades demonstrate minimal, and in some cases contrasting, associations between diet and intestinal length. Moreover, this relationship and its evolutionary derivation have received little attention from a phylogenetic perspective. This study documents the phylogenetic development of intestinal length variability, and resultant correlation with dietary habits, within a molecular phylogeny of 28 species of terapontid fishes. The Terapontidae (grunters), an ancestrally euryhaline-marine group, is the most trophically diverse of Australia’s freshwater fish families, with widespread shifts away from animal-prey-dominated diets occurring since their invasion of fresh waters. Results Description of ontogenetic development of intestinal complexity of terapontid fishes, in combination with ancestral character state reconstruction, demonstrated that complex intestinal looping (convolution) has evolved independently on multiple occasions within the family. This modification of ontogenetic development drives much of the associated interspecific variability in intestinal length evident in terapontids. Phylogenetically informed comparative analyses (phylogenetic independent contrasts) showed that the interspecific differences in intestinal length resulting from these ontogenetic developmental mechanisms explained ~65% of the variability in the proportion of animal material in terapontid diets. Conclusions The ontogenetic development of intestinal complexity appears to represent an important functional innovation underlying the extensive trophic differentiation seen in Australia’s freshwater terapontids, specifically facilitating the pronounced shifts away from carnivorous (including invertebrates and vertebrates) diets evident across the

  5. Locational differences in mercury and selenium levels in 19 species of saltwater fish from New Jersey.

    PubMed

    Burger, Joanna; Jeitner, Christian; Gochfeld, Michael

    2011-01-01

    Individuals who fish, and their families that ingest self-caught fish, make decisions about where to fish, what type of fish to eat, and the quantity of fish to eat. While federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, advisories seldom provide the actual metal levels to the general public. There are few data for most saltwater fish, and even less information on variations in Hg levels in fish within a state or geographical region. The objective of this study was to provide Hg concentrations from 19 species of fish caught in different locations in New Jersey to (1) test the hypothesis that mean metal levels vary geographically, (2) provide this information to individuals who fish these coastal waters, and (3) provide a range of values for risk assessors who deal with saltwater fish exposure in the Northeastern United States. Selenium (Se) was also examined because of its purported moderating effect on the toxicity of Hg. Hg levels showed significant geographical variation for 10 of 14 species that were caught in more than one region of New Jersey, but there were significant locational differences for Se in only 5 of the fish. Mercury levels were significantly lower in fish collected from northern New Jersey (except for ling, Molva molva), compared to other regions. As might be expected, locational differences in Hg levels were greatest for fish species with the highest Hg concentrations (shark, Isurus oxyrinchus; tuna, Thunnus thynnus and T. albacares; striped bass, Morone saxatilis; bluefish, Pomatomus saltatrix). Fishers and their families might reduce their risk from Hg exposure not only by selecting fish generally lower in Hg, but by fishing predominantly in some regions over others, further lowering the potential risk. Health professionals might use these data to advise patients on which fish are safest to consume (in terms of Hg exposure) from particular geographical regions.

  6. LOCATIONAL DIFFERENCES IN MERCURY AND SELENIUM LEVELS IN 19 SPECIES OF SALTWATER FISH FROM NEW JERSEY

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Gochfeld, Michael

    2014-01-01

    Individuals who fish, and their families that ingest self-caught fish, make decisions about where to fish, what type of fish to eat, and the quantity of fish to eat. While federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, advisories seldom provide the actual metal levels to the general public. There are few data for most saltwater fish, and even less information on variations in Hg levels in fish within a state or geographical region. The objective of this study was to provide Hg concentrations from 19 species of fish caught in different locations in New Jersey to (1) test the hypothesis that mean metal levels vary geographically, (2) provide this information to individuals who fish these coastal waters, and (3) provide a range of values for risk assessors who deal with saltwater fish exposure in the Northeastern United States. Selenium (Se) was also examined because of its purported moderating effect on the toxicity of Hg. Hg levels showed significant geographical variation for 10 of 14 species that were caught in more than one region of New Jersey, but there were significant locational differences for Se in only 5 of the fish. Mercury levels were significantly lower in fish collected from northern New Jersey (except for ling, Molva molva), compared to other regions. As might be expected, locational differences in Hg levels were greatest for fish species with the highest Hg concentrations (shark, Isurus oxyrinchus; tuna, Thunnus thynnus and T. albacares; striped bass, Morone saxatilis; bluefish, Pomatomus saltatrix). Fishers and their families might reduce their risk from Hg exposure not only by selecting fish generally lower in Hg, but by fishing predominantly in some regions over others, further lowering the potential risk. Health professionals might use these data to advise patients on which fish are safest to consume (in terms of Hg exposure) from particular geographical regions. PMID:21598171

  7. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach.

    PubMed

    Brind'Amour, Anik; Boisclair, Daniel; Dray, Stéphane; Legendre, Pierre

    2011-03-01

    Understanding the relationships between species biological traits and the environment is crucial to predicting the effect of habitat perturbations on fish communities. It is also an essential step in the assessment of the functional diversity. Using two complementary three-matrix approaches (fourth-corner and RLQ analyses), we tested the hypothesis that feeding-oriented traits determine the spatial distributions of littoral fish species by assessing the relationship between fish spatial distributions, fish species traits, and habitat characteristics in two Laurentian Shield lakes. Significant associations between the feeding-oriented traits and the environmental characteristics suggested that fish communities in small lakes (displaying low species richness) can be spatially structured. Three groups of traits, mainly categorized by the species spatial and temporal feeding activity, were identified. The water column may be divided in two sections, each of them corresponding to a group of traits related to the vertical distribution of the prey coupled with the position of the mouth. Lake areas of low structural complexity were inhabited by functional assemblages dominated by surface feeders while structurally more complex areas were occupied by mid-water and benthic feeders. A third group referring to the time of feeding activity was observed. Our work could serve as a guideline study to evaluate species traits x environment associations at multiple spatial scales. Our results indicate that three-matrix statistical approaches are powerful tools that can be used to study such relationships. These recent statistical approaches open up new research directions such as the study of spatially based biological functions in lakes. They also provide new analytical tools for determining, for example, the potential size of freshwater protected areas.

  8. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    PubMed

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Susceptibility of Japanese Cyprininae fish species to cyprinid herpesvirus 2 (CyHV-2).

    PubMed

    Ito, Takafumi; Maeno, Yukio

    2014-03-14

    Cyprinid herpesvirus 2 (CyHV-2) is known as the causative agent of herpesviral haematopoietic necrosis (HVHN) of goldfish (Carassius auratus). Recently, the virus has also been detected from Prussian carp (C. gibelio) and crucian carp (C. carassius) from European and Asian countries. To analyze the risk of spreading to new host species, the susceptibility of other fish species to the virus is essential. In this study experimental infections of indigenous Cyprininae species in Japan were performed by immersion in and intraperitoneal injection of a CyHV-2 isolate. Although Edonishiki, a variety of goldfish, immersed with the virus showed a cumulative mortality of 90%, no mortality was observed in ginbuna C. auratus langsdorfii, nagabuna C. auratus buergeri, nigorobuna C. auratus grandoculis and common carp Cyprinus carpio. Cumulative mortality was 100, 20 and 10% in intraperitoneally injected Edonishiki, ginbuna and nagabuna, respectively. Furthermore all Edonishiki immersed with the virus died. However, even after stimuli of sudden temperature changes, the immersed ginbuna and nagabuna did not die. Moreover no mortality was observed in co-reared Ranchu, another variety of goldfish, with immersed ginbuna and nagabuna although all three Ranchu co-reared with immersed Edonishiki died. CyHV-2 DNA was detected and the virus was re-isolated from all dead fish. Moreover CyHV-2 DNA was detected from some of the surviving Carassius spp. These results revealed that susceptibility of Japanese indigenous Cyprininae fish species to CyHV-2 is much lower than for goldfish. In addition, ability of replication of CyHV-2 might be different among Carassius fish species. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Selenium:Mercury Molar Ratios in Freshwater Fish from Tennessee: Individual, Species, and Geographical Variations have Implications for Management

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, C.; Donio, M.; Pittfield, T.

    2014-01-01

    Vertebrates, including humans, can experience adverse effects from mercury consumed in fish. Humans often prefer large predatory fish that bioaccumulate high mercury levels. Recent attention has focused on the role of selenium countering mercury toxicity, but there is little research on the selenium:mercury molar ratios in freshwater fish. We examine selenium:mercury molar ratios in freshwater fish from Tennessee at Poplar Creek which receives ongoing inputs of mercury from the Department of Energy’s Oak Ridge Y-12 facility. Our objective was to determine variation of the ratios within species that might affect the protectiveness of selenium against mercury toxicity. Within species, the ratio was correlated significantly and positively with fish length only for two species. There was great individual variation in the selenium:mercury molar ratio within each species, except striped bass. The lack of a clear relationship between the selenium:mercury molar ratio and fish length, and the intraspecific variation, suggests that it would be difficult to use the molar ratio in predicting either the risk from mercury toxicity or in devising consumption advisories. PMID:22456727

  11. Fish-allergic patients may be able to eat fish.

    PubMed

    Mourad, Ahmad A; Bahna, Sami L

    2015-03-01

    Reported fish allergy prevalence varies widely, with an estimated prevalence of 0.2% in the general population. Sensitization to fish can occur by ingestion, skin contact or inhalation. The manifestations can be IgE or non-IgE mediated. Several fish allergens have been identified, with parvalbumins being the major allergen in various species. Allergenicity varies among fish species and is affected by processing or preparation methods. Adverse reactions after eating fish are often claimed to be 'allergy' but could be a reaction to hidden food allergen, fish parasite, fish toxins or histamine in spoiled fish. Identifying such causes would allow free consumption of fish. Correct diagnosis of fish allergy, including the specific species, might provide the patient with safe alternatives. Patients have been generally advised for strict universal avoidance of fish. However, testing with various fish species or preparations might identify one or more forms that can be tolerated.

  12. Fish and wildlife species as sentinels of environmental endocrine disruption

    USGS Publications Warehouse

    Sheffield, S.R.; Matter, J.M.; Rattner, B.A.; Guiney, P.D.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    This chapter provides an overview of the history and criteria for use of captive and free-ranging fish and wildlife (amphibians, reptiles, birds, and mammals) species as sentinels of potential environmental endocrine disruption. Biochemical, behavioral, physiological, immunological, genetic, reproductive, developmental, and ecological correlates of endocrine disruption in these sentinels are presented and reviewed. In addition, data needs to promote better use of sentinel species in the assessment of endocrine disruption are discussed.

  13. Relation between species assemblages of fishes and water quality in salt ponds and sloughs in South San Francisco Bay

    USGS Publications Warehouse

    Mejia, F.; Saiki, M.K.; Takekawa, John Y.

    2008-01-01

    This study was conducted to characterize fishery resources inhabiting salt-evaporation ponds and sloughs in South San Francisco Bay, and to identify key environmental variables that influence distribution of fishes. The ponds, which were originally constructed and operated for commercial production of salt, have undergone preliminary modifications (installation of culverts, gates, and other water-control structures) in preparation for full restoration to mostly tidal wetlands over the next 2 decades. We sampled fish from two salt-pond complexes (Alviso complex and Eden Landing complex), each consisting of several pond systems and their associated sloughs. Cluster analysis of species of fish indicated that at least two species assemblages were present, one characteristic of ponds and the other characteristic of sloughs and slough-like ponds. The slough-like ponds exhibited water-quality conditions (especially salinity) that resembled conditions found in the sloughs. Pond fishes were represented by 12 species, whereas slough fishes were represented by 22 species. Except for bay pipefish (Syngnathus leptorhynchus), which was unique to ponds, all species present in ponds also were in sloughs and slough-like ponds. These results indicated that species of fish in ponds originated from the sloughs. According to canonical-discriminant analysis, four environmental variables were useful for discriminating between the two species assemblages. Most discriminatory power was contributed by the index of habitat connectivity, a measure of minimum distance that a fish must travel to reach a particular pond from the nearest slough. Apparently, as fish from sloughs enter and move through interconnected salt ponds, environmental stress factors increase in severity until only the more tolerant species remain. The most likely source of stress is salinity, because this variable was second in importance to the index of habitat connectivity in discriminating between the two species

  14. Trace elements in muscle of three fish species from Todos os Santos Bay, Bahia State, Brazil.

    PubMed

    de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, William Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso

    2017-03-01

    In this study, an analysis was performed on the concentrations of the trace elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in muscle of two carnivorous and one planktivorous fish species collected at Todos os Santos Bay (BTS). The accumulation order of the trace elements in Lutjanus analis was Al >Zn >Fe >Cr >Ba >Ni. In Cetengraulis edentulus, the order was Al >Fe >Zn >Cr >Ni >Mn >As. In the species Diapterus rhombeus, the order was Al >Fe >Zn >Cr >Ni >Mn >Cd. To determine the risk related to the consumption of fish, toxicity guidelines were used as standard references. It was observed that the species C. edentulus contained concentrations of As exceeding WHO limits, but these concentrations were acceptable according to the Agência Nacional de Vigilância Sanitária (ANVISA) guidelines. Cd levels were found only in D. rhombeus and in low concentrations according to the determinations of WHO and ANVISA. Pb levels were not detected in any of the three fish species. The analyzed elements did not differ statistically according to the species and feeding habits. The results point to possible risks of human contamination by As related to the consumption of the fish species C. edentulus from the BTS.

  15. Cleaner fish drives local fish diversity on coral reefs.

    PubMed

    Grutter, Alexandra S; Murphy, Jan Maree; Choat, J Howard

    2003-01-08

    Coral reefs are one of the most diverse habitats in the world, yet our understanding of the processes affecting their biodiversity is limited. At the local scale, cleaner fish are thought to have a disproportionate effect, in relation to their abundance and size, on the activity of many other fish species, but confirmation of this species' effect on local fish diversity has proved elusive. The cleaner fish Labroides dimidiatus has major effects on fish activity patterns and may indirectly affect fish demography through the removal of large numbers of parasites. Here we show that small reefs where L. dimidiatus had been experimentally excluded for 18 months had half the species diversity of fish and one-fourth the abundance of individuals. Only fish that move among reefs, however, were affected. These fish include large species that themselves can affect other reef organisms. In contrast, the distribution of resident fish was not affected by cleaner fish. Thus, many fish appear to choose reefs based on the presence of cleaner fish. Our findings indicate that a single small and not very abundant fish has a strong influence on the movement patterns, habitat choice, activity, and local diversity and abundance of a wide variety of reef fish species.

  16. New host record of five Flavobacterium species associated with tropical fresh water farmed fishes from North India

    PubMed Central

    Verma, Dev Kumar; Rathore, Gaurav

    2015-01-01

    Abstract Yellow pigmented, filamentous, Gram-negative bacteria belonging to genus Flavobacterium are commonly associated with infections in stressed fish. In this study, inter-species diversity of Flavobacterium was studied in apparently healthy freshwater farmed fishes. For this, ninety one yellow pigmented bacteria were isolated from skin and gill samples (n = 38) of three farmed fish species i.e. Labeo rohita, Catla catla and Cyprinus carpio. Among them, only twelve bacterial isolates (13.18%) were identified as Flavobacterium spp. on the basis of morphological, biochemical tests, partial 16S rDNA gene sequencing and phylogenetic analysis. On the basis of 16S rDNA gene sequencing, all the 12 isolates were 97.6-100% similar to six different formally described species of genus Flavobacterium. The 16S rDNA based phylogenetic analysis grouped these strains into six different clades. Of the 12 isolates, six strains (Fl9S1-6) grouped with F. suncheonense, two strains (Fl6I2, Fl6I3) with F. indicum and the rest four strains (Fl1A1, Fl2G1, Fl3H1 and Fl10T1) clustered with F. aquaticum, F. granuli, F. hercynium and F. terrae, respectively. None of these species except, F. hercynium were previously reported from fish. All the isolated Flavobacterium species possessed the ability of adhesion and biofilm formation to colonize the external surface of healthy fish. The present study is the first record of tropical freshwater farmed fishes as hosts to five environmentally associated species of the Flavobacterium. PMID:26691454

  17. Bioaccumulation of trace mercury in trophic levels of benthic, benthopelagic, pelagic fish species, and sea birds from Arvand River, Iran.

    PubMed

    Hosseini, Mehdi; Nabavi, Seyed Mohammad Bagher; Parsa, Yaghob

    2013-12-01

    In this study, concentration of mercury was determined in the trophic levels of benthic, benthopelagic, pelagic fish species, and river birds from Arvand River, located in the Khuzestan province in the lowlands of southwestern Iran at the head of the Persian Gulf. The order of mercury concentrations in tissues of the fish species was as follows: liver>gill>muscle and in tissues of the kingfisher species was as follows: feather>liver>kidney>muscle. Therefore, liver in fish and feather in kingfisher exhibited higher mercury concentration than the other tissues. There was a positive correlation between mercury concentrations in fish and kingfisher species with size of its food items. We expected to see higher mercury levels in tissues of female species because they are larger and can eat larger food items. The results of this study show that the highest mean mercury level were found in the kingfisher (Anas crecca), followed by benthic (Epinephelus diacanthus), benthopelagic (Chanos chanos), and pelagic fish (Strongylura strongylura). Mean value of mercury in fish species, S. strongylura were (0.61 μg g(-1) dry weight), C. chanos (0.45 μg g(-1) dry weight), E. diacanthus (0.87 μg g(-1) dry weight), and in kingfisher species A. crecca was (2.64 μg g(-1) dry weight). Significant correlation between mercury concentration in fish and kingfisher may be related to high variability of mercury in the fish.

  18. Testing for synchrony in recruitment among four Lake Michigan fish species

    USGS Publications Warehouse

    Bunnell, David B.; Höök, Tomas O.; Troy, Cary D.; Liu, Wentao; Madenjian, Charles P.; Adams, Jean V.

    2017-01-01

    In the Great Lakes region, multiple fish species display intra-specific spatial synchrony in 28 recruitment success, with inter-annual climate variation hypothesized as the most likely driver. 29 In Lake Michigan, we evaluated whether climatic or other physical variables could also induce 30 spatial synchrony across multiple species, including bloater (Coregonus hoyi), rainbow smelt 31 (Osmerus mordax), yellow perch (Perca flavescens), and alewife (Alosa pseudoharengus). The 32 residuals from stock-recruitment relationships revealed yellow perch recruitment to be correlated 33 with recruitment of both rainbow smelt (r = 0.37) and alewife (r = 0.36). Across all four species, 34 higher than expected recruitment occurred in 5 years between 1978 and 1987 and then switched 35 to lower than expected recruitment in 5 years between 1996 and 2004. Generalized additive 36 models revealed warmer spring and summer water temperatures and lower wind speeds 37 corresponded to higher than expected recruitment for the nearshore-spawning species, and 38 overall variance explained ranged from 14% (yellow perch) to 61% (alewife). For all species 39 but rainbow smelt, higher recruitment also occurred in extremely high or low years of the North 40 Atlantic Oscillation index. Future development of indices that describe the physical Great Lakes 41 environment could improve understanding of how climate can synchronize fish populations 42 within and across species.

  19. Genetic diversity and species diversity of stream fishes covary across a land-use gradient.

    PubMed

    Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.

  20. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  1. Linking human nutrition and fisheries: incorporating micronutrient-dense, small indigenous fish species in carp polyculture production in Bangladesh.

    PubMed

    Roos, Nanna; Wahab, M Abdul; Hossain, Mostafa Ali Reza; Thilsted, Shakuntala Haraksingh

    2007-06-01

    Fish and fisheries are important for the livelihoods, food, and income of the rural population in Bangladesh. Increased rice production and changing agricultural patterns have resulted in a large decline in inland fisheries. Implementation of carp pond polyculture has been very successful, whereas little focus has been given to the commonly consumed small indigenous fish species, some of which are rich in vitamin A and minerals, such as calcium, iron, and zinc, and are an integral part of the rural diet. The overall objective of the research and capacity-building activities described in this paper is to increase the production, accessibility, and intake of nutrient-dense small indigenous fish species, in particular mola (Amblypharyngodon mola), in order to combat micronutrient deficiencies. The large contribution from small indigenous fish species to recommended intakes of vitamin A and calcium and the perception that mola is good for or protects the eyes have been well documented. An integrated approach was conducted jointly by Bangladeshi and Danish institutions, linking human nutrition and fisheries. Activities included food-consumption surveys, laboratory analyses of commonly consumed fish species, production trials of carp-mola pond polyculture, teaching, training, and dissemination of the results. No decline in carp production and thus in income was found with the inclusion of mola, and increased intake of mola has the potential to combat micronutrient deficiencies. Teaching and training of graduates and field staff have led to increased awareness of the role of small indigenous fish species for good nutrition and resulted in the promotion of carp-mola pond polyculture and research in small indigenous fish species. The decline in accessibility, increase in price, and decrease in intake of small indigenous fish species by the rural poor, as well as the increased intake of silver carp (Hypophthalmichthys molitrix), the most commonly cultured fish species, which

  2. Place versus response learning in fish: a comparison between species.

    PubMed

    McAroe, Claire L; Craig, Cathy M; Holland, Richard A

    2016-01-01

    Place learning is thought to be an adaptive and flexible facet of navigation. Due to the flexibility of this learning, it is thought to be more complex than the simpler strategies such as learning a particular route or navigating through the use of cues. Place learning is crucial in a familiar environment as it allows an individual to successfully navigate to the same endpoint, regardless of where in the environment the journey begins. Much of the research to date focusing on different strategies employed for navigation has used human subjects or other mammals such as rodents. In this series of experiments, the spatial memory of four different species of fish (goldfish, killifish, zebrafish and Siamese fighting fish) was analysed using a plus maze set-up. Results suggest that three of the species showed a significant preference for the adoption of a place strategy during this task, whereas zebrafish showed no significant preference. Furthermore, zebrafish took significantly longer to learn the task than the other species. Finally, results suggest that zebrafish took the least amount of time (seconds) to complete trials both during training and probe.

  3. Electrocommunication behaviour during social interactions in two species of pulse-type weakly electric fishes (Mormyridae).

    PubMed

    Gebhardt, K; Böhme, M; von der Emde, G

    2012-12-01

    This study compares electrocommunication behaviour in groups of freely swimming weakly electric fishes of two species, Marcusenius altisambesi and Mormyrus rume. Animals emitted variable temporal sequences of stereotyped electric organ discharges (EOD) that served as communication signals. While the waveform of individual signals remained constant, the inter-discharge interval (IDI) patterns conveyed situation-specific information. Both species showed different types of group behaviour, e.g. they engaged in collective (group) foraging. The results show that in each species, during different behavioural conditions (resting, foraging and agonistic encounters), certain situation-specific IDI patterns occurred. In both species, neighbouring fishes swimming closely together interacted electrically by going in and out of synchronization episodes, i.e. periods of temporally correlated EOD production. These often resulted in echo responses between neighbours. During group foraging, fishes often signalled in a repetitive fixed order (fixed-order signalling). During foraging, EOD emission rates of M. altisambesi were higher and more regular than those of M. rume. The two species also differed in the quantity of group behaviours with M. altisambesi being more social than M. rume, which was reflected in the lack of specific agonistic IDI patterns, more fixed-order signalling and more communal resting behaviour in M. altisambesi. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Target strengths of two abundant mesopelagic fish species.

    PubMed

    Scoulding, Ben; Chu, Dezhang; Ona, Egil; Fernandes, Paul G

    2015-02-01

    Mesopelagic fish of the Myctophidae and Sternoptychidae families dominate the biomass of the oceanic deep scattering layers and, therefore, have important ecological roles within these ecosystems. Interest in the commercial exploitation of these fish is growing, so the development of techniques for estimating their abundance, distribution and, ultimately, sustainable exploitation are essential. The acoustic backscattering characteristics for two size classes of Maurolicus muelleri and Benthosema glaciale are reported here based on swimbladder morphology derived from digitized soft x-ray images, and empirical (in situ) measurements of target strength (TS) derived from an acoustic survey in a Norwegian Sea. A backscattering model based on a gas-filled prolate spheroid was used to predict the theoretical TS for both species across a frequency range between 0 and 250 kHz. Sensitivity analyses of the TS model to the modeling parameters indicate that TS is rather sensitive to the viscosity, swimbladder volume ratio, and tilt, which can result in substantial changes to the TS. Theoretical TS predictions close to the resonance frequency were in good agreement (±2 dB) with mean in situ TS derived from the areas acoustically surveyed that were spatially and temporally consistent with the trawl information for both species.

  5. Occurrence of three leech species (Annelida: Hirudinida) on fishes in the Kentucky River

    EPA Science Inventory

    Leeches were collected from six fish species distributed among four of ten sites sampled. The leech species observed were Myzobdella reducta (Meyer, 1940) and Myzobdella lugubris Leidy, 1851 of the family Piscicolidae and Placobdella pediculata Hemingway, 1908 of the family Gloss...

  6. Longitudinal zonation of Pacific Northwest (USA) fish assemblages and the species-discharge relationship

    EPA Science Inventory

    Fish ecologists often use species-discharge relationships (SDRs) to understand how species richness varies with aquatic habitat availability, but few SDR studies have considered whether the reported SDRs are scale-dependent, or attributed the SDR to a specific causal mechanism. ...

  7. Mercury and selenium in fish from the Savannah river: species, trophic level, and locational differences.

    PubMed

    Burger, J; Gaines, K F; Boring, C S; Stephens, W L; Snodgrass, J; Gochfeld, M

    2001-10-01

    Levels of contaminants in fish are of considerable interest because of potential effects on the fish themselves, as well as on other organisms that consume them. In this article we compare the mercury levels in muscle tissue of 11 fish species from the Savannah River, as well as selenium levels because of its known protective effect against mercury toxicity. We sampled fish from three stretches of the river: upstream, along, and downstream the Department of Energy's Savannah River Site, a former nuclear material production facility. We test the null hypothesis that there were no differences in mercury and selenium levels in fish tissue as a function of species, trophic level, and location along the river. There were significant interspecific differences in mercury levels, with bowfin (Amia calva) having the highest levels, followed by largemouth bass (Micropterus salmoides) and pickerel (Esox niger). Sunfish (Lepomis spp.) had the lowest levels of mercury. As expected, these differences generally reflected trophic levels. There were few significant locational differences in mercury levels, and existing differences were not great, presumably reflecting local movements of fish between the sites examined. Selenium and mercury concentrations were positively correlated only for bass, perch (Perca flavescens), and red-breasted sunfish (Lepomis auritus). Mercury levels were positively correlated with body mass of the fish for all species except American eel (Anguilla rostrata) and bluegill sunfish (L. macrochirus). The mercury and selenium levels in fish tissue from the Savannah River are similar to or lower than those reported in many other studies, and in most cases pose little risk to the fish themselves or to other aquatic consumers, although levels in bowfin and bass are sufficiently high to pose a potential threat to high-level consumers. Copyright 2001 Academic Press.

  8. A genetically distinct hybrid zone occurs for two globally invasive mosquito fish species with striking phenotypic resemblance.

    PubMed

    Wilk, Rebecca J; Horth, Lisa

    2016-12-01

    Hybrid zones allow for the investigation of incipient speciation and related evolutionary processes of selection, gene flow, and migration. Interspecific dynamics, like competition, can impact the size, shape, and directional movement of species in hybrid zones. Hybrid zones contribute to a paradox for the biological species concept because interbreeding between species occurs while parental forms remain distinct. A long-standing zone of intergradation or introgression exists for eastern and western mosquito fish ( Gambusia holbrooki and G. affinis ) around Mobile Bay, AL. The region has been studied episodically, over decades, making it perfect for addressing temporal dynamics and for providing a deeper understanding of the genetics of these periodically reclassified fishes (as species or subspecies). We used six microsatellite markers to assess the current population structure and gene flow patterns across 19 populations of mosquito fish and then compared our results with historical data. Genetic evidence demonstrates that the current hybrid zone is located in a similar geographic region as the historical one, even after three decades. Hybrid fish, however, demonstrate relatively low heterozygosity and are genetically distinct from western and eastern mosquito fish populations. Fin ray counts, sometimes used to distinguish the two species from one another, demonstrate more eastern ( G. holbrooki) phenotype fish within the molecular genetic hybrid zone today. Mosquito fish are globally invasive, often found on the leading edge of flooded waters that they colonize, so the impact of hurricanes in the wake of climate change was also evaluated. An increase in the frequency and intensity of hurricanes in the hybrid region has occurred, and this point warrants further attention since hurricanes are known to move these aggressive, invasive species into novel territory. This work contributes to our classical understanding of hybrid zone temporal dynamics, refines our

  9. Prey selection by two benthic fish species in a Mato Grosso stream, Rio de Janeiro, Brazil.

    PubMed

    Rezende, Carla Ferreira; Mazzoni, Rosana; Caramaschi, Erica Pellegrini; Rodrigues, Daniela; Moraes, Maíra

    2011-12-01

    Key to understand predator choice is the relationship between predator and prey abundance. There are few studies related to prey selection and availability. Such an approach is still current, because the ability to predict aspects of the diet in response to changes in prey availability is one of the major problems of trophic ecology. The general objective of this study was to evaluate prey selection by two species (Characidium cf. vidali and Pimelodella lateristriga) of the Mato Grosso stream, in Saquarema, Rio de Janeiro, Brazil. Benthos and fishes were collected in June, July and September of 2006 and January and February of 2007. Fish were collected with electric fishing techniques and benthos with a surber net. Densities of benthic organisms were expressed as the number of individuals per/m2. After sampling, the invertebrates were fixed in 90% ethanol, and, in the laboratory, were identified to the lowest taxonomical level. Approximately, seventy individuals from each species were selected randomly in each month. Fishes were fixed in 10% formalin in the field and transferred to 70 degrees GL ethanol in the laboratory. Fishes had their stomachs removed for subsequent analysis. Fish diet was described according to the numeric frequency method. The Manly Electivity Index was applied in order to verify prey selection. The most abundant families in both benthos and diet of both fish species were the same, indicating that these species consume mainly most abundant prey in the environment. We concluded that prey selection occurs even for preys that had small abundance in the environment. However, it is the availability of the macroinvertebrate resources that determines the major composition of items in diet of fish, demonstrating that the abundance is the factor that most influences the choice of prey.

  10. Novel approach for the simultaneous detection of DNA from different fish species based on a nuclear target: quantification potential.

    PubMed

    Prado, Marta; Boix, Ana; von Holst, Christoph

    2012-07-01

    The development of DNA-based methods for the identification and quantification of fish in food and feed samples is frequently focused on a specific fish species and/or on the detection of mitochondrial DNA of fish origin. However, a quantitative method for the most common fish species used by the food and feed industry is needed for official control purposes, and such a method should rely on the use of a single-copy nuclear DNA target owing to its more stable copy number in different tissues. In this article, we report on the development of a real-time PCR method based on the use of a nuclear gene as a target for the simultaneous detection of fish DNA from different species and on the evaluation of its quantification potential. The method was tested in 22 different fish species, including those most commonly used by the food and feed industry, and in negative control samples, which included 15 animal species and nine feed ingredients. The results show that the method reported here complies with the requirements concerning specificity and with the criteria required for real-time PCR methods with high sensitivity.

  11. Mineral Element Contents in Commercially Valuable Fish Species in Spain

    PubMed Central

    Peña-Rivas, Luis; Ortega, Eduardo; López-Martínez, Concepción; Olea-Serrano, Fátima; Lorenzo, Maria Luisa

    2014-01-01

    The aim of this study was to measure selected metal concentrations in Trachurus trachurus, Trachurus picturatus, and Trachurus mediterraneus, which are widely consumed in Spain. Principal component analysis suggested that the variable Cr was the main responsible variable for the identification of T. trachurus, the variables As and Sn for T. mediterraneus, and the rest of variables for T. picturatus. This well-defined discrimination between fish species provided by mineral element allows us to distinguish them on the basis of their metal content. Based on the samples collected, and recognizing the inferential limitation of the sample size of this study, the metal concentrations found are below the proposed limit values for human consumption. However, it should be taken into consideration that there are other dietary sources of these metals. In conclusion, metal contents in the fish species analyzed are acceptable for human consumption from a nutritional and toxicity point of view. PMID:24895678

  12. Otolith shape analysis and mitochondrial DNA markers distinguish three sand smelt species in the Atherina boyeri species complex in western Mediterranean

    NASA Astrophysics Data System (ADS)

    Boudinar, A. S.; Chaoui, L.; Quignard, J. P.; Aurelle, D.; Kara, M. H.

    2016-12-01

    Atherina boyeri is a common euryhaline teleost fish in the Mediterranean and adjacent areas, which inhabits coastal and estuarine waters, including coastal lagoons and more rarely inland waters. Several recent studies have pointed the possible existence of three distinct groups or species, one lagoon/freshwater group and two 'punctuated and unpunctuated on the flanks' marine groups, within an A. boyeri species complex. This study is a combined approach using otolith shape and molecular markers to better define the structure of the species in the western Mediterranean. Genetic differentiation and species delimitation among nine Atherina boyeri populations from several marine and lagoon/brakish habitat sites in Algeria, Tunisia and France were investigated using three mitochondrial (control region, Cyt b and 16S) and one nuclear markers (2nd intron of S7). For further phylogenetic and phylogeographic study, we added sequences from Genbank covering more areas (Ionian Sea, Adriatic Sea, Tyrrhenian Sea, Black Sea, Atlantic). Five groups were found. Two of them perfectly corresponded to two species already recognized Atherina presbyter and Atherina hepsetus, both living in marine waters; and three additional, including Atherina boyeri (brackish and freshwater environments) and two independent groups of marine punctated and unpunctated individuals. Those findings are corroborated by the study of the otolith contour shape of 362 individuals of seven populations from different habitats using Fourier analysis. Individuals could be discriminated into five groups based on the first two functions (Wilk's lambda = 0.07, p < 0.001). Samples from Ziama inlet, marine punctuated individuals and unpunctuated marine specimens from Annaba's Gulf formed three well separated groups. Specimens from Mellah and Mauguio lagoons formed another group. The last one includes individuals from Bizerte and Thau lagoons. The divergences between them strongly support the potential species within the

  13. [Species and size composition of fishes in Barra de Navidad lagoon, Mexican central Pacific].

    PubMed

    González-Sansón, Gaspar; Aguilar-Betancourt, Consuelo; Kosonoy-Aceves, Daniel; Lucano-Ramírez, Gabriela; Ruiz-Ramírez, Salvador; Flores-Ortega, Juan Ramón; Hinojosa-Larios, Angel; de Asís Silva-Bátiz, Francisco

    2014-03-01

    Coastal lagoons are considered important nursery areas for many coastal fishes. Barra de Navidad coastal lagoon (3.76km2) is important for local economy as it supports tourism development and artisanal fisheries. However, the role of this lagoon in the dynamics of coastal fish populations is scarcely known. Thus, the objectives of this research were: to characterize the water of the lagoon and related weather conditions, to develop a systematic list of the ichthyofauna, and to estimate the proportion of juveniles in the total number of individuals captured of most abundant species. Water and fish samples were collected between March 2011 and February 2012. Physical and chemical variables were measured in rainy and dry seasons. Several fishing gears were used including a cast net, beach purse seine and gillnets of four different mesh sizes. Our results showed that the lagoon is most of the time euhaline (salinity 30-40ups), although it can be mixopolyhaline (salinity 18-30ups) during short periods. Chlorophyll and nutrients concentrations suggested eutrophication in the lagoon. Mean water temperature changed seasonally from 24.9 degrees C (April, high tide) to 31.4 degrees C (October, low tide). Considering ichthyofauna species, a total of 36 448 individuals of 92 species were collected, 31 of them adding up to 95% of the total of individuals caught. Dominant species were Anchoa spp. (44.6%), Diapterus peruvianus (10.5%), Eucinostomus currani (8.1%), Cetengraulis mysticetus (7.8%), Mugil curema (5.2%) and Opisthonema libertate (4.5%). The lagoon is an important juvenile habitat for 22 of the 31 most abundant species. These included several species of commercial importance such as snappers (Lutjanus argentiventris, L. colorado and L. novemfasciatus), snook (Centropomus nigrescens) and white mullet (Mugil curema). Other four species seem to use the lagoon mainly as adults. This paper is the first contribution on the composition of estuarine ichthyofauna in Jalisco

  14. Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf.

    PubMed

    Keshavarzi, Behnam; Hassanaghaei, Mina; Moore, Farid; Rastegari Mehr, Meisam; Soltanian, Siyavash; Lahijanzadeh, Ahmad Reza; Sorooshian, Armin

    2018-04-01

    Five heavy metals/metalloids and related potential health risks were investigated in three commercially important fish species (Anodontostoma chacunda, Belangerii, and Cynoglossurs arel) in Musa Estuary and Mahshahr Harbour of the Persian Gulf. A total of 116 fish samples were collected, and their liver and muscle organs were separately analyzed using ICP-MS. Results revealed that studied metals concentrations (with some exceptions) varied among sampling stations, fish species and their organs. Human health risk is evaluated using different indices. The results indicated that arsenic and mercury are the most hazardous elements. Estimated daily intake (EDI) for the metals exceeded the provisional tolerable daily intake (PTDI) for all studied fish species. Also, target risk (TR) of arsenic indicated that consumption over a long period of time may result in a carcinogenic effect. The results are expected to create awareness among the public on the safety of consuming food products grown in particular areas. Copyright © 2018. Published by Elsevier Ltd.

  15. Characterization, specificity and sensibility of produced anti-Rhamdia quelen vitellogenin in Brazilian fish species.

    PubMed

    Moura Costa, Daniele Dietrich; Bozza, Dandie Antunes; Rizzo, Luiz Eduardo; Garcia, Juan; Costa, Michele Dietrich Moura; de Oliveira Ribeiro, Ciro Alberto

    2016-12-01

    Endocrine-disrupting chemicals (EDCs) are widespread used and can interfere on hormone regulation with adverse consequences for both biota and human. Vitellogenin (vtg) is a yolk precursor protein synthesized by the liver in response to estrogen. In order to characterize the vtg of tropical fish Rhamdia quelen and establish a molecular biomarker, adult male individuals were exposed to 17-β-estradiol (E 2 ) for vtg induction and anti-R. quelen vtg polyclonal antibodies production. Vitellogenic female fish were used as positive control group. E 2 -induced vtg was characterized as a glycolipophosphoprotein of high molecular mass with peptide mass fingerprint very similar in E 2 -exposed male and vitellogenic female fish. A polyclonal serum containing anti-R. quelen vtg antibodies was produced and showed high specificity and sensibility to detect the vtg of three fish species: R. quelen, Piaractus mesopotamicus and Prochilodus lineatus. Wildlife and laboratory studies reported that EDCs released into the environment may alter the levels of plasma vtg in male fish, making this protein a valuable biomarker of xenoestrogens exposure. Then, we propose the use of anti-R. quelen vtg as a tool for biomonitoring studies and water quality assessment in Brazil and South American countries where the three fish species occur.

  16. Metals in Some Edible Fish and Shrimp Species Collected in Dry Season from Subarnarekha River, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2015-08-01

    The concentration of As, Cd, Cu, Fe, Pb, Ni, Zn, Cr, Co and Sr were determined in five fish and one shrimp species collected from the Subarnarekha River during pre-monsoon season using inductively coupled plasma-mass spectrometry for a risk assessment and source apportionment study. Concentrations of metals in the fish and shrimp exceeded the recommended food standards for As, Cu, Ni, Cd and Zn in many samples. Principal component analysis suggested both innate and anthropogenic activities as contributing sources of metal in the fish and shrimp. The calculated target hazard quotients and hazard indices indicated that high concentrations of metals in some species at some locations present an appreciable risk to the health of consumers of these species.

  17. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin.

    PubMed

    Gomes, Laís Carvalho; Pessali, Tiago Casarim; Sales, Naiara Guimarães; Pompeu, Paulo Santos; Carvalho, Daniel Cardoso

    2015-10-01

    The great freshwater fish diversity found in the neotropical region makes management and conservation actions challenging. Due to shortage of taxonomists and insufficient infrastructure to deal with such great biodiversity (i.e. taxonomic impediment), proposed remedies to accelerate species identification and descriptions include techniques that combine DNA-based identification and concise morphological description. The building of a DNA barcode reference database correlating meristic and genetic data was developed for 75 % of the Mucuri River basin's freshwater fish. We obtained a total of 141 DNA barcode sequences from 37 species belonging to 30 genera, 19 families, and 5 orders. Genetic distances within species, genera, and families were 0.74, 9.5, and 18.86 %, respectively. All species could be clearly identified by the DNA barcodes. Divergences between meristic morphological characteristics and DNA barcodes revealed two cryptic species among the Cyphocharax gilbert and Astyanax gr. bimaculatus specimens, and helped to identify two overlooked species within the Gymnotus and Astyanax taxa. Therefore, using a simplified model of neotropical biodiversity, we tested the efficiency of an integrative taxonomy approach for species discovery, identification of cryptic diversity, and accelerating biodiversity descriptions.

  18. Review of fish species introduced into the Great Lakes, 1819-1974

    USGS Publications Warehouse

    Emery, Lee

    1985-01-01

    This review is based on an extensive literature search, combined with updated information obtained from biologists, and unpublished reports from private, state, and federal organizations throughout the Great Lakes basin. The chronological review lists 34 species of fishes in 13 families that were introduced into the basin from 1819 to 1974. The Salmonidae and Cyprinidae are best represented, contributing 14 and 5 of the species, respectively. The list is divided into successful and unsuccessful introductions; each species is briefly described and information about its entry into the basin and present status is given. About half of the introductions have been successful (i.e., the fish have reproduced and created viable, self-sustaining populations). Some of the successful introductions were disastrous in terms of damage inflicted on native populations (e.g., the effect of the sea lamprey, Petromyzon marinus, on populations of lake trout, Salvelinus namaycush, and lake whitefish, Coregonus clupeaformis), but others yielded highly favorable results (e.g., the extraordinary sport fisheries created by introductions of coho salmon, Oncorhynchus kisutch, and chinook salmon, Oncorhynchus tshawytscha).

  19. 50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...

  20. 50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...

  1. 50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...

  2. 50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...

  3. 50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...

  4. 77 FR 31835 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC049 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; availability of tribal...

  5. 78 FR 43145 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC767 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration, Commerce. ACTION: Notice of availability. SUMMARY: This...

  6. USE OF SURROGATE SPECIES IN ASSESSING CONTAMINANT RISK TO ENDANGERED AND THREATENED FISHES

    EPA Science Inventory

    Surrogate species used in toxicity assessments must be carefully selected in order to be protective of listed species. At present, the rainbow trout is considered to be an acceptable surrogate for coldwater fishes. Similarly, the fathead minnow is considered to be an acceptable s...

  7. Characterizing fish responses to a river restoration over 21 years based on species' traits.

    PubMed

    Höckendorff, Stefanie; Tonkin, Jonathan D; Haase, Peter; Bunzel-Drüke, Margret; Zimball, Olaf; Scharf, Matthias; Stoll, Stefan

    2017-10-01

    Understanding restoration effectiveness is often impaired by a lack of high-quality, long-term monitoring data and, to date, few researchers have used species' trait information to gain insight into the processes that drive the reaction of fish communities to restoration. We examined fish-community responses with a highly resolved data set from 21 consecutive years of electrofishing (4 years prerestoration and 17 years postrestoration) at multiple restored and unrestored reaches from a river restoration project on the Lippe River, Germany. Fish abundance peaked in the third year after the restoration; abundance was 6 times higher than before the restoration. After 5-7 years, species richness and abundance stabilized at 2 and 3.5 times higher levels relative to the prerestoration level, respectively. However, interannual variability of species richness and abundance remained considerable, illustrating the challenge of reliably assessing restoration outcomes based on data from individual samplings, especially in the first years following restoration. Life-history and reproduction-related traits best explained differences in species' responses to restoration. Opportunistic short-lived species with early female maturity and multiple spawning runs per year exhibited the strongest increase in abundance, which reflected their ability to rapidly colonize new habitats. These often small-bodied and fusiform fishes typically live in dynamic and ephemeral instream and floodplain areas that river-habitat restorations often aim to create, and in this case their increases in abundance indicated successful restoration. Our results suggest that a greater consideration of species' traits may enhance the causal understanding of community processes and the coupling of restoration to functional ecology. Trait-based assessments of restoration outcomes would furthermore allow for easier transfer of knowledge across biogeographic borders than studies based on taxonomy. © 2017 Society for

  8. 78 FR 34653 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC717 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration, Commerce. ACTION: Notice of decision and availability of...

  9. Digenean species diversity in teleost fishes from the Gulf of Gabes, Tunisia (Western Mediterranean)

    PubMed Central

    Derbel, H.; Châari, M.; Neifar, L.

    2012-01-01

    This study is the first attempt to survey the diversity of fish digeneans in the Gulf of Gabes (southern coast of Tunisia). A total of 779 fishes belonging to 32 species were sampled. 53 species of Digenea belonging to 15 families were recorded. Among these species, 24 are reported for the first time from the coast of Tunisia. We report one new host record, Lecithochirium sp. from Sardinella aurita. The Hemiuridae is the dominant family. A host-parasite list is presented with the information on the prevalence, abundance and mean intensity of each species collected. The diversity of Digenea is compared with other localities in the Mediterranean Sea and the northern east of Tunisia. The Gulf of Gabes shows the lowest diversity linked to the anthropogenic activities and impact of exotic species. The use of Digenea as indicators of the state of the ecosystem is discussed. PMID:22550623

  10. Distribution and status of five non-native fish species in the Tampa Bay drainage (USA), a hot spot for fish introductions

    USGS Publications Warehouse

    Lawson, Katelyn M.; Tuckett, Quenton M.; Ritch, Jared L.; Nico, Leo; Fuller, Pam; Matheson, Richard E.; Hill, Jeffrey E.

    2017-01-01

    The Tampa Bay region of Florida (USA) is a hot spot for non-native freshwater fishes. However, published information on most non-native fishes in the basin is not current. Systematic sampling efforts targeting non-native fishes in the region were conducted from 2013–2015 by the University of Florida Tropical Aquaculture Laboratory. Data from these recent surveys were analyzed, along with historic and new data from published and unpublished sources, to assess current fish distributions and determine status. We focus on five of the non-native species sampled: pike killifish Belonesox belizanus Kner, 1860, green swordtail Xiphophorus hellerii Heckel, 1848, southern platyfish Xiphophorus maculatus (Günther, 1866), Mayan cichlid Mayaheros urophthalmus (Günther, 1862), and Jack Dempsey Rocio octofasciata (Regan, 1903). All five were found to have reproducing populations in the basin, each showing broader distributions than previously indicated. Non-native populations of four of the species have persisted in the Tampa Bay region since at least the 1990s. In contrast, the presence of Mayan cichlid in the basin was not confirmed until 2004. Based on numbers, distributions, and years of persistence, these five species all maintain established populations. Pike killifish and Mayan cichlid are established and spreading throughout multiple habitat types, while green swordtail, southern platyfish, and Jack Dempsey are localized and found primarily in more marginal habitats (e.g., small ditches and first order tributary streams). Factors affecting continued existence and distributions likely include aquaculture, biotic resistance, and thermal and salinity tolerances. We also clarify non-native species status determination using a multi-agency collaborative approach, and reconcile differences in terminology usage and interpretation.

  11. Prolactin and growth hormone in fish osmoregulation

    USGS Publications Warehouse

    Sakamoto, T.; McCormick, S.D.

    2006-01-01

    Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids. ?? 2005 Elsevier Inc. All rights reserved.

  12. Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei).

    PubMed

    Sullivan, John P; Lavoué, Sébastien; Hopkins, Carl D

    2002-03-01

    The evolution of species-specific mate recognition signals is of particular interest within speciose monophyletic groups with restricted distributions (known as "species flocks"). However, the explosive nature of speciation in these clades makes difficult the reconstruction of their phylogenetic history. Here we describe a species flock of riverine mormyrid fishes from west-central Africa in which electric signals may play a role in the reproductive isolation of sympatric species. In our recent field collections, totaling more than 1400 specimens from many localities, we recognize 38 forms that are distinct in their morphologies and electric organ discharge (EOD) characteristics. Of these 38, only four clearly correspond to described species. Here we treat these forms as operational taxonomic units (OTUs) in a phylogenetic analysis of cytochrome b sequence data from a sample of 86 specimens. We examined support in the molecular data for the monophyly of these 38 OTUs considered together, the monophyly of each phenotypically delimited OTU considered individually, and for relationships among OTUs congruent with those inferred from the distribution of morphological and EOD character states. Trees obtained by both maximum-parsimony and maximum-likelihood analyses, rooted with sequence data from outgroup taxa, provide evidence for the monophyly of these 38 OTUs with respect to other mormyrid fishes. The small genetic distances between many distinct forms suggest their recent divergence. However, in many instances the cytochrome b tree topology fails to support the monophyly of individual OTUs and close relationships between OTUs that are similar in morphology and EOD characteristics. In other cases, individuals from distinct OTUs share identical or nearly identical haplotypes. Close examination of these cases suggests that unnatural OTU definition is not the sole cause of this pattern, and we infer an incongruence between the mitochondrial gene tree and the organismal

  13. A new fish species of the subfamily Serraninae (Perciformes, Serranidae) from the Philippines.

    PubMed

    Williams, Jeffrey T; Carpenter, Kent E

    2015-01-19

    A new species of serranine fish is described from the Philippine Islands. A single specimen of a new species, Chelidoperca santosi, captured by fishermen working in Palawan waters was discovered in the public fish market in Iloilo City, Panay, Philippines. Two additional specimens of the new species, also from the Philippines, were subsequently discovered in the collections of the Museum Victoria, Australia. The new species is currently known only from the Philippines and is characterized by its distinctive coloration with a row of four small dark spots on the snout (two in front of each eye) and two dark spots on the chin (one on each side of the symphysis of the dentaries), a white anal fin with six large yellow spots separated by broad white interspaces and a narrow yellow distal border, caudal fin with narrow yellow bars and a yellowish distal margin and no dark spots, and a combination of meristic and morphological characters. 

  14. Infection experiments with Aphanomyces invadans in four species of estuarine fish

    USGS Publications Warehouse

    Johnson, R.A.; Zabrecky, J.; Kiryu, Y.; Shields, J.D.

    2004-01-01

    Along the eastern seaboard of the US, Atlantic menhaden, Brevoortia tyrannus, develop characteristic ulcerative lesions, a condition termed ulcerative mycosis. These lesions are identical to those seen across Asia in fish affected by epizootic ulcerative syndrome, a condition caused by the fungus-like oomycete Aphanomyces Invadans. Young-of-the-year menhaden inhabiting estuarine environments are the primary species affected in the USA and little is known about the factors involved in the initiation of the lesions, or why menhaden are predominantly infected. Atlantic menhaden, hogchoker, Trinectus maculatus, striped killifish, Fundulus majalis, and mummichog, Fundulus heteroclitus, were inoculated with A. invadans (80 zoospores per fish) to explore species differences in infection and lesion development. All four species developed lesions. Killifish developed frank lesions similar to those observed in menhaden but the gross lesions occurred later, approximately 5-10 days after those on menhaden. Hogchoker and mummichog did not develop gross skin ulcers; rather, their lesions appeared as reddened areas under the epidermis. Mummichogs also showed evidence of significant healing with a well-developed granuloma and significant myocyte regeneration. These experiments show that species barriers as well as ecological barriers can explain some of the factors involved in the development of lesions in, and specificity of the water mould for, menhaden.

  15. Three new species of Clinostomum Leidy, 1856 (Trematoda) from Middle American fish-eating birds.

    PubMed

    Sereno-Uribe, Ana L; García-Varela, Martín; Pinacho-Pinacho, Carlos D; Pérez-Ponce de León, Gerardo

    2018-05-05

    We recently engaged in a two-part study of Clinostomum Leidy, 1856 across a geographic range comprising central Mexico southwards to Costa Rica, in Central America. In the first study, we investigated the species boundaries by using DNA sequences of mitochondrial and nuclear molecular markers, implementing several analytical tools and species delimitation methods. The result of that approach revealed five highly divergent genetic lineages that were interpreted as independent evolutionary units, or species. Here, we present the second part of the study, where we describe three of the five species for which we have sexually mature adult specimens obtained from the mouth cavity of fish-eating birds. Additionally, we characterise morphologically the metacercariae of the other two species, collected from freshwater fishes; these species cannot be formally described since no adults were found in their definitive hosts. We further discuss the characters that are more reliable for species identification within Clinostomum, such as the cirrus sac shape and relative position with respect to testes and ovary, the shape of the reproductive organs, and the diverticulated condition of the caeca.

  16. The campaign to DNA barcode all fishes, FISH-BOL.

    PubMed

    Ward, R D; Hanner, R; Hebert, P D N

    2009-02-01

    FISH-BOL, the Fish Barcode of Life campaign, is an international research collaboration that is assembling a standardized reference DNA sequence library for all fishes. Analysis is targeting a 648 base pair region of the mitochondrial cytochrome c oxidase I (COI) gene. More than 5000 species have already been DNA barcoded, with an average of five specimens per species, typically vouchers with authoritative identifications. The barcode sequence from any fish, fillet, fin, egg or larva can be matched against these reference sequences using BOLD; the Barcode of Life Data System (http://www.barcodinglife.org). The benefits of barcoding fishes include facilitating species identification, highlighting cases of range expansion for known species, flagging previously overlooked species and enabling identifications where traditional methods cannot be applied. Results thus far indicate that barcodes separate c. 98 and 93% of already described marine and freshwater fish species, respectively. Several specimens with divergent barcode sequences have been confirmed by integrative taxonomic analysis as new species. Past concerns in relation to the use of fish barcoding for species discrimination are discussed. These include hybridization, recent radiations, regional differentiation in barcode sequences and nuclear copies of the barcode region. However, current results indicate these issues are of little concern for the great majority of specimens.

  17. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels.

    PubMed

    Goutte, Aurélie; Cherel, Yves; Churlaud, Carine; Ponthus, Jean-Pierre; Massé, Guillaume; Bustamante, Paco

    2015-12-15

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N=132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ(13)C and δ(15)N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ(13)C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hierarchical faunal filters: An approach to assessing effects of habitat and nonnative species on native fishes

    USGS Publications Warehouse

    Quist, M.C.; Rahel, F.J.; Hubert, W.A.

    2005-01-01

    Understanding factors related to the occurrence of species across multiple spatial and temporal scales is critical to the conservation and management of native fishes, especially for those species at the edge of their natural distribution. We used the concept of hierarchical faunal filters to provide a framework for investigating the influence of habitat characteristics and normative piscivores on the occurrence of 10 native fishes in streams of the North Platte River watershed in Wyoming. Three faunal filters were developed for each species: (i) large-scale biogeographic, (ii) local abiotic, and (iii) biotic. The large-scale biogeographic filter, composed of elevation and stream-size thresholds, was used to determine the boundaries within which each species might be expected to occur. Then, a local abiotic filter (i.e., habitat associations), developed using binary logistic-regression analysis, estimated the probability of occurrence of each species from features such as maximum depth, substrate composition, submergent aquatic vegetation, woody debris, and channel morphology (e.g., amount of pool habitat). Lastly, a biotic faunal filter was developed using binary logistic regression to estimate the probability of occurrence of each species relative to the abundance of nonnative piscivores in a reach. Conceptualising fish assemblages within a framework of hierarchical faunal filters is simple and logical, helps direct conservation and management activities, and provides important information on the ecology of fishes in the western Great Plains of North America. ?? Blackwell Munksgaard, 2004.

  19. Fish species of greatest conservation need in wadeable Iowa streams: current status and effectiveness of Aquatic Gap Program distribution models

    USGS Publications Warehouse

    Sindt, Anthony R.; Pierce, Clay; Quist, Michael C.

    2012-01-01

    Effective conservation of fish species of greatest conservation need (SGCN) requires an understanding of species–habitat relationships and distributional trends. Thus, modeling the distribution of fish species across large spatial scales may be a valuable tool for conservation planning. Our goals were to evaluate the status of 10 fish SGCN in wadeable Iowa streams and to test the effectiveness of Iowa Aquatic Gap Analysis Project (IAGAP) species distribution models. We sampled fish assemblages from 86 wadeable stream segments in the Mississippi River drainage of Iowa during 2009 and 2010 to provide contemporary, independent fish species presence–absence data. The frequencies of occurrence in stream segments where species were historically documented varied from 0.0% for redfin shiner Lythrurus umbratilis to 100.0% for American brook lampreyLampetra appendix, with a mean of 53.0%, suggesting that the status of Iowa fish SGCN is highly variable. Cohen's kappa values and other model performance measures were calculated by comparing field-collected presence–absence data with IAGAP model–predicted presences and absences for 12 fish SGCN. Kappa values varied from 0.00 to 0.50, with a mean of 0.15. The models only predicted the occurrences of banded darterEtheostoma zonale, southern redbelly dace Phoxinus erythrogaster, and longnose daceRhinichthys cataractae more accurately than would be expected by chance. Overall, the accuracy of the twelve models was low, with a mean correct classification rate of 58.3%. Poor model performance probably reflects the difficulties associated with modeling the distribution of rare species and the inability of the large-scale habitat variables used in IAGAP models to explain the variation in fish species occurrences. Our results highlight the importance of quantifying the confidence in species distribution model predictions with an independent data set and the need for long-term monitoring to better understand the

  20. Heavy metals in wild marine fish from South China Sea: levels, tissue- and species-specific accumulation and potential risk to humans.

    PubMed

    Liu, Jin-Ling; Xu, Xiang-Rong; Ding, Zhen-Hua; Peng, Jia-Xi; Jin, Ming-Hua; Wang, You-Shao; Hong, Yi-Guo; Yue, Wei-Zhong

    2015-10-01

    Heavy metal pollution in marine fish has become an important worldwide concern, not only because of the threat to fish in general, but also due to human health risks associated with fish consumption. To investigate the occurrence of heavy metals in marine fish species from the South China Sea, 14 fish species were collected along the coastline of Hainan China during the spring of 2012 and examined for species- and tissue-specific accumulation. The median concentrations of Cd, Cr, Cu, Zn, Pb and As in muscle tissue of the examined fish species were not detectable (ND), 2.02, 0.24, 2.64, 0.025, and 1.13 mg kg(-1) wet weight, respectively. Levels of Cu, Zn, Cd and Cr were found to be higher in the liver and gills than in muscle, while Pb was preferentially accumulated in the gills. Differing from other heavy metals, As did not exhibit tissue-specific accumulation. Inter-species differences of heavy metal accumulation were attributed to the different habitat and diet characteristics of marine fish. Human dietary exposure assessment suggested that the amounts of both Cr and As in marine wild fish collected from the sites around Hainan, China were not compliant with the safety standard of less than 79.2 g d(-1) for wild marine fish set by the Joint FAO/WHO Expert Committee on Food Additives. Further research to identify the explicit sources of Cr and As in marine fish from South China Sea should be established.

  1. Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts?

    PubMed

    Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity.

  2. Development of DNA-based Identification methods to track the species composition of fish larvae within nearshore areas of the Great Lakes

    EPA Science Inventory

    The ability to track the identity and abundance of larval fish, which are ubiquitous during spawning season, may lead to a greater understanding of fish species distributions in Great Lakes nearshore areas including early-detection of invasive fish species before they become esta...

  3. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    USGS Publications Warehouse

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  4. Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary.

    PubMed

    Oliva, Ana L; La Colla, Noelia S; Arias, Andrés H; Blasina, Gabriela E; Lopez Cazorla, Andrea; Marcovecchio, Jorge E

    2017-08-01

    The aim of this study is to assess-for the first time-the concentration of the 16 polycyclic aromatic hydrocarbons (PAHs) in the muscle tissues of four fish species (Micropogonias furnieri, Cynoscion guatucupa, Ramnogaster arcuata, and Mustelus schmitti) from Bahía Blanca estuary, Argentina and to evaluate their sources, distribution, and the human health risks implicated. Considering the four species under study, mean total PAH concentrations showed the following decreasing accumulation trend: M. schmitti, R. arcuata, C. guatucupa, and M. furnieri. Low molecular weight PAHs, such as naphthalene and phenanthrene, were generally predominant, displaying properties of PAH mixtures generated from petrogenic pollution. Of the four fish species analyzed, M. furnieri was the only one that did not raise any human consumption warning. In the case of the other species, exceeding values were found above the safety human consumption guidelines. Nevertheless, the screening criteria for carcinogenic PAHs proposed by the USEPA indicated a good quality status for these fish species.

  5. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water.

    PubMed

    Lin, Y M; Chen, C N; Lee, T H

    2003-07-01

    Juvenile milkfish Chanos chanos (Forsskål, 1775) were transferred from a local fish farm to fresh water (FW; 0 per thousand ), brackish water (BW; 10 per thousand, 20 per thousand ) and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. The blood and gill of the fish adapted to various salinities were analyzed to determine the osmoregulatory ability of this euryhaline species. No significant difference was found in plasma osmolality, sodium or chloride concentrations of milkfish adapted to various salinities. In FW, the fish exhibited the highest specific activity of Na, K-ATPase (NKA) in gills, while the SW group was found to have the lowest. Relative abundance of branchial NKA alpha-subunit revealed similar profiles. However, in contrary to other euryhaline teleosts, i.e. tilapia, salmon and eel, the naturally SW-dwelling milkfish expresses higher activity of NKA in BW and FW. Immunocytochemical staining has shown that most Na, K-ATPase immunoreactive (NKIR) cells in fish adapted to BW and SW were localized to the filaments with very few on the lamellae. Moreover, in FW-adapted milkfish, the number of NKIR cells found on the lamellae increased significantly. Such responses as elevated NKIR cell number and NKA activity are thought to improve the osmoregulatory capacity of the milkfish in hyposaline environments.

  6. Assessing Historical Fish Community Composition Using Surveys, Historical Collection Data, and Species Distribution Models

    PubMed Central

    Labay, Ben; Cohen, Adam E.; Sissel, Blake; Hendrickson, Dean A.; Martin, F. Douglas; Sarkar, Sahotra

    2011-01-01

    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of

  7. Assessing historical fish community composition using surveys, historical collection data, and species distribution models.

    PubMed

    Labay, Ben; Cohen, Adam E; Sissel, Blake; Hendrickson, Dean A; Martin, F Douglas; Sarkar, Sahotra

    2011-01-01

    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of

  8. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River.

    PubMed

    Yi, Yu-Jun; Zhang, Shang-Hong

    2012-11-01

    The objective of this paper is to assess the regulation of the accumulation of heavy metals in the aquatic environment and different fish species. Water and fish samples were collected from upper to lower reaches of the Yangtze River. The heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in the muscle tissue of seven fishes were measured. Additionally, the relationships between heavy metal concentrations in fish tissue and fish size (length and weight), condition factor, water layer distribution, and trophic level were investigated. Metal concentrations (milligrams per kilogram wet weight) were found to be distributed differently among different fish species. The highest concentrations of Cu (1.22 mg/kg) and Zn (7.55 mg/kg) were measured in Pelteobagrus fulvidraco, the highest concentrations of Cd (0.115 mg/kg) and Hg (0.0304 mg/kg) were measured in Silurus asotus, and the highest concentrations of Pb (0.811 mg/kg) and Cr (0.239 mg/kg) were measured in Carassius auratus and Cyprinus carpio. A positive relationship was found between fish size and metal level in most cases. The variance of the relationships may be the result of differences in habitat, swimming behavior, and metabolic activity. In this study, fishes living in the lower water layer and river bottom had higher metals concentrations than in upper and middle layers. Benthic carnivorous and euryphagous fish had higher metals concentrations than phytoplankton and herbivorous fish. Generally, fish caught from the lower reach had higher metals concentrations than those from the upper reach. Cadmium and lead concentrations in several fishes exceeded the permissible food consumption limits, this should be considered to be an important warning signal.

  9. Philometrids (Nematoda: Philometridae) in carangid and serranid fishes off New Caledonia, including three new species

    PubMed Central

    2014-01-01

    A recent examination of newly obtained specimens of philometrid nematodes (Philometridae) parasitising carangid and serranid fishes off New Caledonia, South Pacific, revealed the presence of several nematodes of the genus Philometra Costa, 1845, including three new species: P. austropacifica n. sp. (males and females) from the ovary of Alepes vari (Carangidae), P. piscaria n. sp. (males) from the ovary of Epinephelus coioides (Serranidae), and P. selaris n. sp. (males) probably from the abdominal cavity (found in washings) of Selar crumenophthalmus (Carangidae). The new species are characterised mainly by the length and structure of the spicules and gubernaculum, body size, their location in the host and the type of host. Philometra austropacifica n. sp. is the first known nominal gonad-infecting species of Philometra parasitising a carangid fish. In addition, the gravid female of P. fasciati Moravec & Justine, 2008 from the ovary of Epinephelus fasciatus (Serranidae) is described for the first time. Carangid host fish were identified by both morphology and DNA barcoding. PMID:24836940

  10. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    Treesearch

    Thomas J. Stohlgren; David T. Barnett; Curtis H. Flather; Pam L. Fuller; Bruce G. Peterjohn; John T. Kartesz; Lawrence L. Master

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following...

  11. Paternal identity impacts embryonic development for two species of freshwater fish.

    PubMed

    Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir; Żarski, Daniel; Pitcher, Trevor E; Politis, Sebastian Nikitas; Butts, Ian Anthony Ernest

    2017-05-01

    Paternal, compared to maternal, contributions were believed to have only a limited influence on embryonic development and larval fitness traits in fishes. Therefore, the perspective of male influence on early life history traits has come under scrutiny. This study was conducted to determine parental effects on the rate of eyed embryos of Ide Leuciscus idus and Northern pike Esox lucius. Five sires and five dams from each species were crossed using a quantitative genetic breeding design and the resulting 25 sib groups of each species were reared to the embryonic eyed stage. We then partition variation in embryonic phenotypic performance to maternal, paternal, and parental interactions using the Restricted Maximum Likelihood (REML) model. Results showed that paternal, maternal, and the paternal×maternal interaction terms were highly significant for both species; clearly demonstrating that certain family combinations were more compatible than others. Paternal effects explained 20.24% of the total variance, which was 2-fold higher than the maternal effects (10.73%) in Ide, while paternal effects explained 18.9% of the total variance, which was 15-fold higher than the maternal effects (1.3%) in Northern pike. Together, these results indicate that male effects are of major importance during embryonic development for these species. Furthermore, this study demonstrates that genetic compatibility between sires and dams plays an important role and needs to be taken into consideration for reproduction of these and likely other economically important fish species. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species

    NASA Astrophysics Data System (ADS)

    Hatzenbuhler, Chelsea; Kelly, John R.; Martinson, John; Okum, Sara; Pilgrim, Erik

    2017-04-01

    High-throughput DNA metabarcoding has gained recognition as a potentially powerful tool for biomonitoring, including early detection of aquatic invasive species (AIS). DNA based techniques are advancing, but our understanding of the limits to detection for metabarcoding complex samples is inadequate. For detecting AIS at an early stage of invasion when the species is rare, accuracy at low detection limits is key. To evaluate the utility of metabarcoding in future fish community monitoring programs, we conducted several experiments to determine the sensitivity and accuracy of routine metabarcoding methods. Experimental mixes used larval fish tissue from multiple “common” species spiked with varying proportions of tissue from an additional “rare” species. Pyrosequencing of genetic marker, COI (cytochrome c oxidase subunit I) and subsequent sequence data analysis provided experimental evidence of low-level detection of the target “rare” species at biomass percentages as low as 0.02% of total sample biomass. Limits to detection varied interspecifically and were susceptible to amplification bias. Moreover, results showed some data processing methods can skew sequence-based biodiversity measurements from corresponding relative biomass abundances and increase false absences. We suggest caution in interpreting presence/absence and relative abundance in larval fish assemblages until metabarcoding methods are optimized for accuracy and precision.

  13. Host population density as the major determinant of endoparasite species richness in floodplain fishes of the upper Paraná River, Brazil.

    PubMed

    Takemoto, R M; Pavanelli, G C; Lizama, M A P; Luque, J L; Poulin, R

    2005-03-01

    A comparative analysis of parasite species richness was performed across 53 species of fish from the floodplain of the upper Paraná River, Brazil. Values of catch per unit effort, CPUE (number of individuals of a given fish species captured per 1000 m(2) of net during 24 h) were used as a rough measure of population density for each fish species in order to test its influence on endoparasite species richness. The effects of several other host traits (body size, social behaviour, reproductive behaviour, spawning type, trophic category, feeding habits, relative position in the food web, preference for certain habitats and whether the fish species are native or exotic) on metazoan endoparasite species richness were also evaluated. The CPUE was the sole significant predictor of parasite species richness, whether controlling for the confounding influences of host phylogeny and sampling effort or not. The results suggest that in the floodplain of the upper Paraná River (with homogeneous physical characteristics and occurrence of many flood pulses), population density of different host species might be the major determinant of their parasite species richness.

  14. Global patterns and predictors of fish species richness in estuaries.

    PubMed

    Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N

    2015-09-01

    1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these

  15. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species.

    PubMed

    Nwani, Christopher D; Becker, Sven; Braid, Heather E; Ude, Emmanuel F; Okogwu, Okechukwu I; Hanner, Robert

    2011-10-01

    Fishes are the main animal protein source for human beings and play a vital role in aquatic ecosystems and food webs. Fish identification can be challenging, especially in the tropics (due to high diversity), and this is particularly true for larval forms or fragmentary remains. DNA barcoding, which uses the 5' region of the mitochondrial cytochrome c oxidase subunit I (COI) as a target gene, is an efficient method for standardized species-level identification for biodiversity assessment and conservation, pending the establishment of reference sequence libraries. In this study, fishes were collected from three rivers in southeastern Nigeria, identified morphologically, and imaged digitally. DNA was extracted, PCR-amplified, and the standard barcode region was bidirectionally sequenced for 363 individuals belonging to 70 species in 38 genera. All specimen provenance data and associated sequence information were recorded in the barcode of life data systems (BOLD; www.barcodinglife.org ). Analytical tools on BOLD were used to assess the performance of barcoding to identify species. Using neighbor-joining distance comparison, the average genetic distance was 60-fold higher between species than within species, as pairwise genetic distance estimates averaged 10.29% among congeners and only 0.17% among conspecifics. Despite low levels of divergence within species, we observed river system-specific haplotype partitioning within eight species (11.4% of all species). Our preliminary results suggest that DNA barcoding is very effective for species identification of Nigerian freshwater fishes.

  16. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species

    PubMed Central

    Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river. PMID:26339622

  17. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species.

    PubMed

    Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river.

  18. Short-term seaward fish migration in the Messolonghi Etoliko lagoons (Western Greek coast) in relation to climatic variables and the lunar cycle

    NASA Astrophysics Data System (ADS)

    Katselis, George; Koukou, Katerina; Dimitriou, Evagelos; Koutsikopoulos, Constantin

    2007-07-01

    In the present study we analysed the daily seaward migratory behaviour of four dominant euryhaline fish species (Mugilidae: Liza saliens, Liza aurata, Mugil cephalus and Sparidae: Sparus aurata) in the Messolonghi Etoliko lagoon system (Western Greek coast) based on the daily landings' time series of barrier traps and assessed the relationship between their migratory behaviour and various climatic variables (air temperature and atmospheric pressure) and the lunar cycle. A 2-year time series of daily fish landings (1993 and 1994), a long time series of daily air temperature and daily temperature range (1991 1998) as well as a 4-year time series of the daily atmospheric pressure (1994 1997) and daily pressure range were used. Harmonic models (HM) consisting of annual and lunar cycle harmonic components explained most (R2 > 0.80) of the mean daily species landings and temperature variations, while a rather low part of the variation (0.18 < R2 < 0.27) was explained for pressure, daily pressure range and daily temperature range. In all the time series sets the amplitude of the annual component was highest. The model values of all species revealed two important migration periods (summer and winter) corresponding to the spawning and refuge migrations. The lunar cycle effect on species' daily migration rates and the short-term fluctuation of daily migration rates were rather low. However, the short-term fluctuation of some species' daily migration rates during winter was greater than during summer. In all species, the main migration was the spawning migration. The model lunar components of the species landings showed a monthly oscillation synchronous to the full moon (S. aurata and M. cephalus) or a semi-monthly oscillation synchronous to the new and full moon (L. aurata and L. saliens). Bispectral analysis of the model values and the model residuals' time series revealed that the species daily migration were correlated (coherencies > 0.6) to the daily fluctuations of the

  19. Differences in shoaling behavior in two species of freshwater fish (Danio rerio and Hyphessobrycon herbertaxelrodi).

    PubMed

    Gimeno, Elisabet; Quera, Vicenç; Beltran, Francesc S; Dolado, Ruth

    2016-11-01

    Fish can gain significant adaptive advantages when living in a group and they exhibit a wide variety of types of collective motion. The scientific literature recognizes 2 main patterns: shoals (aggregations of individuals that remain close to each other), and schools (aggregations of aligned, or polarized, individuals). We analyzed the collective motion of 2 social fish species, zebrafish (Danio rerio) and black neon tetra (Hyphessobrycon herbertaxelrodi), and compared their patterns of movement and the effect of group size and environmental constraints such as water column height and tank geometry on the collective motion of both species. We recorded the movement of groups of fish (n = 10 and n = 20) using 2 tank geometries: a rectangular shape and a rectangular shape with rounded corners; and we also manipulated the water column height (15 and 25 cm). We extracted the individual fish trajectories and calculated indices of cohesion, coordination, group density and group shape. The results showed that the 2 species had different types of collective motion: the zebrafish's global motion matched that of a shoal, while the black neon tetra's motion matched that of a school. Indirect evidence indicated that the 2 species tended to occupy the vertical space differently while swimming in a group. Finally, we found that tank geometry did not affect group polarization, whereas group size had an effect on black neon tetra density, which was higher in small group sizes than in large ones. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, nematoda: ascaridoidea) in fishes from Patagonia, Argentina.

    PubMed

    Hernández-Orts, Jesús S; Aznar, Francisco J; Blasco-Costa, Isabel; García, Néstor A; Víllora-Montero, María; Crespo, Enrique A; Raga, Juan A; Montero, Francisco E

    2013-08-29

    Third-stage larvae of the Pseudoterranova decipiens species complex (also known as sealworms) have been reported in at least 40 marine fish species belonging to 21 families and 10 orders along the South American coast. Sealworms are a cause for concern because they can infect humans who consume raw or undercooked fish. However, despite their economic and zoonotic importance, morphological and molecular characterization of species of Pseudoterranova in South America is still scarce. A total of 542 individual fish from 20 species from the Patagonian coast of Argentina were examined for sealworms. The body cavity, the muscles, internal organs, and the mesenteries were examined to detect nematodes. Sealworm larvae were removed from their capsules and fixed in 70% ethanol. For molecular identification, partial fragments of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) were amplified for 10 isolates from 4 fish species. Morphological and morphometric data of sealworms were also obtained. A total of 635 larvae were collected from 12 fish species. The most infected fish was Prionotus nudigula, followed by Percophis brasiliensis, Acanthistius patachonicus, Paralichthys isosceles, and Pseudopercis semifasciata. Sequences obtained for the cox1 of sealworms from A. patachonicus, P. isosceles, P. brasiliensis and P. nudigula formed a reciprocally monophyletic lineage with published sequences of adult specimens of Pseudoterranova cattani from the South American sea lion Otaria flavescens, and distinct from the remaining 5 species of Pseudoterranova. A morphological description, including drawings and scanning electron microscopy photomicrographs of these larvae is provided. Sealworms collected from Argentinean fishes did not differ in their diagnostic traits from the previously described larvae of P. cattani. However a discriminant analysis suggests that specimens from P. nudigula were significantly larger than those from other fishes. Most of the sealworms were

  1. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, nematoda: ascaridoidea) in fishes from Patagonia, Argentina

    PubMed Central

    2013-01-01

    Background Third-stage larvae of the Pseudoterranova decipiens species complex (also known as sealworms) have been reported in at least 40 marine fish species belonging to 21 families and 10 orders along the South American coast. Sealworms are a cause for concern because they can infect humans who consume raw or undercooked fish. However, despite their economic and zoonotic importance, morphological and molecular characterization of species of Pseudoterranova in South America is still scarce. Methods A total of 542 individual fish from 20 species from the Patagonian coast of Argentina were examined for sealworms. The body cavity, the muscles, internal organs, and the mesenteries were examined to detect nematodes. Sealworm larvae were removed from their capsules and fixed in 70% ethanol. For molecular identification, partial fragments of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) were amplified for 10 isolates from 4 fish species. Morphological and morphometric data of sealworms were also obtained. Results A total of 635 larvae were collected from 12 fish species. The most infected fish was Prionotus nudigula, followed by Percophis brasiliensis, Acanthistius patachonicus, Paralichthys isosceles, and Pseudopercis semifasciata. Sequences obtained for the cox1 of sealworms from A. patachonicus, P. isosceles, P. brasiliensis and P. nudigula formed a reciprocally monophyletic lineage with published sequences of adult specimens of Pseudoterranova cattani from the South American sea lion Otaria flavescens, and distinct from the remaining 5 species of Pseudoterranova. A morphological description, including drawings and scanning electron microscopy photomicrographs of these larvae is provided. Sealworms collected from Argentinean fishes did not differ in their diagnostic traits from the previously described larvae of P. cattani. However a discriminant analysis suggests that specimens from P. nudigula were significantly larger than those from other fishes

  2. Fishes of the Cusiana River (Meta River basin, Colombia), with an identification key to its species

    PubMed Central

    Urbano-Bonilla, Alexander; Ballen, Gustavo A.; Herrera-R, Guido A.; Jhon Zamudio; Herrera-Collazos, Edgar E.; DoNascimiento, Carlos; Saúl Prada-Pedreros; Maldonado-Ocampo, Javier A.

    2018-01-01

    Abstract The Cusiana River sub-basin has been identified as a priority conservation area in the Orinoco region in Colombia due to its high species diversity. This study presents an updated checklist and identification key for fishes of the Cusiana River sub-basin. The checklist was assembled through direct examination of specimens deposited in the main Colombian ichthyological collections. A total of 2020 lots from 167 different localities from the Cusiana River sub-basin were examined and ranged from 153 to 2970 m in elevation. The highest number of records were from the piedmont region (1091, 54.0 %), followed by the Llanos (878, 43.5 %) and Andean (51, 2.5 %). 241 species distributed in 9 orders, 40 families, and 158 genera were found. The fish species richness observed (241), represents 77.7 % of the 314 estimated species (95 % CI=276.1–394.8). The use of databases to develop lists of fish species is not entirely reliable; therefore taxonomic verification of specimens in collections is essential. The results will facilitate comparisons with other sub-basins of the Orinoquia, which are not categorized as areas of importance for conservation in Colombia. PMID:29416408

  3. Population and biological parameters of selected fish species from the middle Xingu River, Amazon Basin.

    PubMed

    Camargo, M; Giarrizzo, T; Isaac, V J

    2015-08-01

    This study estimates the main biological parameters, including growth rates, asymptotic length, mortality, consumption by biomass, biological yield, and biomass, for the most abundant fish species found on the middle Xingu River, prior to the construction of the Belo Monte Dam. The specimens collected in experimental catches were analysed with empirical equations and length-based FISAT methods. For the 63 fish species studied, high growth rates (K) and high natural mortality (M) were related to early sexual maturation and low longevity. The predominance of species with short life cycles and a reduced number of age classes, determines high rates of stock turnover, which indicates high productivity for fisheries, and a low risk of overfishing.

  4. Species sensitivity distribution evaluation for selenium in fish eggs: considerations for development of a Canadian tissue-based guideline.

    PubMed

    DeForest, David K; Gilron, Guy; Armstrong, Sarah A; Robertson, Erin L

    2012-01-01

    A freshwater Se guideline was developed for consideration based on concentrations in fish eggs or ovaries, with a focus on Canadian species, following the Canadian Council of Ministers of the Environment protocol for developing guideline values. When sufficient toxicity data are available, the protocol recommends deriving guidelines as the 5th percentile of the species sensitivity distribution (SSD). When toxicity data are limited, the protocol recommends a lowest value approach, where the lowest toxicity threshold is divided by a safety factor (e.g., 10). On the basis of a comprehensive review of the current literature and an assessment of the data therein, there are sufficient egg and ovary Se data available for freshwater fish to develop an SSD. For most fish species, Se EC10 values (10% effect concentrations) could be derived, but for some species, only no-observed-effect concentrations and/or lowest-observed-effect concentrations could be identified. The 5th percentile egg and ovary Se concentrations from the SSD were consistently 20 µg/g dry weight (dw) for the best-fitting distributions. In contrast, the lowest value approach using a safety factor of 10 would result in a Se egg and ovary guideline of 2 µg/g dw, which is unrealistically conservative, as this falls within the range of egg and ovary Se concentrations in laboratory control fish and fish collected from reference sites. An egg and ovary Se guideline of 20 µg/g dw should be considered a conservative, broadly applicable guideline, as no species mean toxicity thresholds lower than this value have been identified to date. When concentrations exceed this guideline, site-specific studies with local fish species, conducted using a risk-based approach, may result in higher egg and ovary Se toxicity thresholds. Copyright © 2011 SETAC.

  5. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands

    NASA Astrophysics Data System (ADS)

    Zgliczynski, B. J.; Williams, I. D.; Schroeder, R. E.; Nadon, M. O.; Richards, B. L.; Sandin, S. A.

    2013-09-01

    Widespread declines among many coral reef fisheries have led scientists and managers to become increasingly concerned over the extinction risk facing some species. To aid in assessing the extinction risks facing coral reef fishes, large-scale censuses of the abundance and distribution of individual species are critically important. We use fisheries-independent data collected as part of the NOAA Pacific Reef Assessment and Monitoring Program from 2000 to 2009 to describe the range and density across the US Pacific of coral reef fishes included on The International Union for the Conservation of Nature's (IUCN) 2011 Red List of Threatened Species. Forty-five species, including sharks, rays, groupers, humphead wrasse ( Cheilinus undulatus), and bumphead parrotfish ( Bolbometopon muricatum), included on the IUCN List, were recorded in the US Pacific Islands. Most species were generally rare in the US Pacific with the exception of a few species, principally small groupers and reef sharks. The greatest diversity and densities of IUCN-listed fishes were recorded at remote and uninhabited islands of the Pacific Remote Island Areas; in general, lower densities were observed at reefs of inhabited islands. Our findings complement IUCN assessment efforts, emphasize the efficacy of large-scale assessment and monitoring efforts in providing quantitative data on reef fish assemblages, and highlight the importance of protecting populations at remote and uninhabited islands where some species included on the IUCN Red List of Threatened Species can be observed in abundance.

  6. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction.

    PubMed

    Webb, Jena; Coomes, Oliver T; Mainville, Nicolas; Mergler, Donna

    2015-09-01

    Elevated mercury (Hg) concentrations in fish from Amazonia have been associated with gold-mining, hydroelectric dams and deforestation but few studies consider the role of petroleum extraction. Hg levels were determined in fish samples collected in three river basins in Ecuador and Peru with contrasting petroleum exploitation and land-use characteristics. The non-migratory, piscivorous species, Hoplias malabaricus, was used as a bioindicator. The rate of Hg increase with body weight for this species was significantly higher on the Corrientes River, near the site of a recent oil spill, than on the other two rivers. In the absence of substantial deforestation and other anthropogenic sources in the Corrientes River basin, this finding suggests that oil contamination in Andean Amazonia may have a significant impact on Hg levels in fish.

  7. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  8. Fish Ontology framework for taxonomy-based fish recognition

    PubMed Central

    Ali, Najib M.; Khan, Haris A.; Then, Amy Y-Hui; Ving Ching, Chong; Gaur, Manas

    2017-01-01

    Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users. PMID:28929028

  9. Quantitative approach for incorporating methylmercury risks and omega-3 fatty acid benefits in developing species-specific fish consumption advice.

    PubMed

    Ginsberg, Gary L; Toal, Brian F

    2009-02-01

    Despite general agreement about the toxicity of methylmercury (MeHg), fish consumption advice remains controversial. Concerns have been raised that negative messages will steer people away from fish and omega-3 fatty acid (FA) benefits. One approach is to provide advice for individual species that highlights beneficial fish while cautioning against riskier fish. Our goal in this study was to develop a method to quantitatively analyze the net risk/benefit of individual fish species based on their MeHg and omega-3 FA content. We identified dose-response relationships for MeHg and omega-3 FA effects on coronary heart disease (CHD) and neurodevelopment. We used the MeHg and omega-3 FA content of 16 commonly consumed species to calculate the net risk/benefit for each species. Estimated omega-3 FA benefits outweigh MeHg risks for some species (e.g., farmed salmon, herring, trout); however, the opposite was true for others (swordfish, shark). Other species were associated with a small net benefit (e.g., flounder, canned light tuna) or a small net risk (e.g., canned white tuna, halibut). These results were used to place fish into one of four meal frequency categories, with the advice tentative because of limitations in the underlying dose-response information. Separate advice appears warranted for the neurodevelopmental risk group versus the cardiovascular risk group because we found a greater net benefit from fish consumption for the cardiovascular risk group. This research illustrates a framework for risk/benefit analysis that can be used to develop categories of consumption advice ranging from "do not eat" to "unlimited," with the caveat that unlimited may need to be tempered for certain fish (e.g., farm-raised salmon) because of other contaminants and end points (e.g., cancer risk). Uncertainties exist in the underlying dose-response relationships, pointing in particular to the need for more research on the adverse effects of MeHg on cardiovascular end points.

  10. Quantitative Approach for Incorporating Methylmercury Risks and Omega-3 Fatty Acid Benefits in Developing Species-Specific Fish Consumption Advice

    PubMed Central

    Ginsberg, Gary L.; Toal, Brian F.

    2009-01-01

    Background Despite general agreement about the toxicity of methylmercury (MeHg), fish consumption advice remains controversial. Concerns have been raised that negative messages will steer people away from fish and omega-3 fatty acid (FA) benefits. One approach is to provide advice for individual species that highlights beneficial fish while cautioning against riskier fish. Objectives Our goal in this study was to develop a method to quantitatively analyze the net risk/benefit of individual fish species based on their MeHg and omega-3 FA content. Methods We identified dose–response relationships for MeHg and omega-3 FA effects on coronary heart disease (CHD) and neurodevelopment. We used the MeHg and omega-3 FA content of 16 commonly consumed species to calculate the net risk/benefit for each species. Results Estimated omega-3 FA benefits outweigh MeHg risks for some species (e.g., farmed salmon, herring, trout); however, the opposite was true for others (swordfish, shark). Other species were associated with a small net benefit (e.g., flounder, canned light tuna) or a small net risk (e.g., canned white tuna, halibut). These results were used to place fish into one of four meal frequency categories, with the advice tentative because of limitations in the underlying dose–response information. Separate advice appears warranted for the neurodevelopmental risk group versus the cardiovascular risk group because we found a greater net benefit from fish consumption for the cardiovascular risk group. Conclusions This research illustrates a framework for risk/benefit analysis that can be used to develop categories of consumption advice ranging from “do not eat” to “unlimited,” with the caveat that unlimited may need to be tempered for certain fish (e.g., farm-raised salmon) because of other contaminants and end points (e.g., cancer risk). Uncertainties exist in the underlying dose–response relationships, pointing in particular to the need for more research on

  11. Non-indigenous species in Mediterranean fish assemblages: Contrasting feeding guilds of Posidonia oceanica meadows and sandy habitats

    NASA Astrophysics Data System (ADS)

    Kalogirou, S.; Wennhage, H.; Pihl, L.

    2012-01-01

    Quantitative sampling in combination with classification of fish species into six major feeding guilds revealed the position and contribution of non-indigenous species (NIS) in the food web of Posidonia oceanica and sandy habitats in an area of the eastern Mediterranean. In P. oceanica beds and on sandy bottoms 10 and five species, respectively, were non-indigenous fish of Indo-Pacific origin. The proportional contribution of NIS individuals on P. oceanica beds was lower than that of sandy bottoms (12.7 vs. 20.4%) a pattern that also followed for biomass (13.6 vs. 23.4%), indicating that low diverse systems may be more liable to introductions than species-rich communities. The two habitats had similar fish feeding guilds, but the biomass contribution from NIS varied within each guild, indicating different degrees of impact on the available resources. This study showed that only few non-indigenous fish species contributed to the differences in biomass between habitats. No support could be found in postulating that taxonomic affiliation could predict invasion success. Size was considered highly important due to habitat shift of species with increased size. Two of the aspects considered in this study, the chance of establishing vs. the chance of being very dominant will depend upon competitive abilities strongly coupled to size and grounds for habitat shift. However, success of establishment will also depend on appropriate food resources in the recipient community as well as competitive abilities and level of competition in the food web within habitats.

  12. Evaluation of Trace Metal Levels in Tissues of Two Commercial Fish Species in Kapar and Mersing Coastal Waters, Peninsular Malaysia

    PubMed Central

    Bashir, Fathi Alhashmi; Shuhaimi-Othman, Mohammad; Mazlan, A. G.

    2012-01-01

    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards. PMID:22046193

  13. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Atlantic). BLUE CRAB,

    DTIC Science & Technology

    1984-03-01

    Coastal Fishes and Invertebrates (South Atlantic) LW -’vasrK ’ras ben c,,BLUE RAB Li s and saits BLUE CRAB - fL4 is unkmitod. Coastal Ecology Group...1984 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Atlantic) BLUE CRAB by Michael J. Van...fishes and invertebrates . U.S. Fish Wildl. Serv. FVS/OBS-82/11. U.S. Army Corps of Engineers, TR EL-82-4. This profile should be cited as follows: t

  14. Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress*

    PubMed Central

    Kültz, Dietmar; Li, Johnathon; Gardell, Alison; Sacchi, Romina

    2013-01-01

    A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into

  15. Two gonad-infecting species of Philometra (Nematoda: Philometridae) from marine fishes off the northern coast of Australia

    PubMed Central

    Moravec, František; Barton, Diane P.

    2015-01-01

    Two different gonad-infecting species of Philometra Costa, 1845 were collected from the ovary of marine perciform fishes, the blackspotted croaker Protonibea diacanthus (Sciaenidae) and the John’s snapper Lutjanus johnii (Lutjanidae), from off the northern coast of Australia. Nematodes (males and females) from P. diacanthus represent a new taxon, Philometra protonibeae n. sp., which is mainly characterized by the body length of the males (3.37–3. 90 mm), broad, equally long spicules (length 126–141 μm) and the shape and structure of the gubernaculum with a dorsally lamellate distal tip. The nematodes (only females) from L. johnii may represent an undescribed species, but, because of the absence of conspecific males, they could not be specifically identified. Philometra protonibeae is the fifth nominal gonad-infecting species of this genus recorded from marine fishes in Australian waters and the seventh species of these parasites described from fishes of the family Sciaenidae. PMID:25654578

  16. Cyanobacteria blooms induce embryonic heart failure in an endangered fish species.

    PubMed

    Zi, Jinmei; Pan, Xiaofu; MacIsaac, Hugh J; Yang, Junxing; Xu, Runbing; Chen, Shanyuan; Chang, Xuexiu

    2018-01-01

    Cyanobacterial blooms drive water-quality and aquatic-ecosystem deterioration in eutrophic lakes worldwide, mainly owing to their harmful, secondary metabolites. The response of fish exposed to these cyanobacterial chemicals, however, remains largely unknown. In this paper, we employed an endangered fish species (Sinocyclocheilus grahami) in Dianchi Lake, China to evaluate the risks of cell-free exudates (MaE) produced by a dominant cyanobacterium (Microcystis aeruginosa) on embryo development, as well as the molecular mechanisms responsible. MaE (3d cultured) caused a reduction of fertilization (35.4%) and hatching (15.5%) rates, and increased mortality rates (≤90.0%) and malformation rate (27.6%), typically accompanied by heart failure. Proteomics analysis revealed that two greatest changed proteins - protein S100A1 (over-expressed 26 times compared with control) and myosin light chain (under-expressed 25 fold) - are closely associated with heart function. Further study revealed that heart failure was due to calcium ion imbalance and malformed cardiac structure. We conclude that harmful secondary metabolites from cyanobacteria may adversely affect embryo development in this endangered fish, and possibly contribute to its disappearance and unsuccessful recovery in Dianchi Lake. Hazardous consequences of substances released by cyanobacteria should raise concerns for managers addressing recovery of this and other imperiled species in affected lakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Using remote underwater video to estimate freshwater fish species richness.

    PubMed

    Ebner, B C; Morgan, D L

    2013-05-01

    Species richness records from replicated deployments of baited remote underwater video stations (BRUVS) and unbaited remote underwater video stations (UBRUVS) in shallow (<1 m) and deep (>1 m) water were compared with those obtained from using fyke nets, gillnets and beach seines. Maximum species richness (14 species) was achieved through a combination of conventional netting and camera-based techniques. Chanos chanos was the only species not recorded on camera, whereas Lutjanus argentimaculatus, Selenotoca multifasciata and Gerres filamentosus were recorded on camera in all three waterholes but were not detected by netting. BRUVSs and UBRUVSs provided versatile techniques that were effective at a range of depths and microhabitats. It is concluded that cameras warrant application in aquatic areas of high conservation value with high visibility. Non-extractive video methods are particularly desirable where threatened species are a focus of monitoring or might be encountered as by-catch in net meshes. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  18. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, J.

    1989-08-01

    Species profiles are literature summaries of the taxonomy, life history, and environmental requirements of coastal fishes and aquatic invertebrates. They are designed to assist with environmental impact assessments. The rainbow smelt is an abundant forage fish for commercially and recreationally valuable fishes such as striped bass and bluefish on the East Coast and several species of salmon and trout in the Great Lakes. The rainbow smelt also supports an important sportfishery throughout most of its range. In 1976, the total smelt harvest in the coastal waters of New England was 105,000 lb. Coastal rainbow smelt are anadromous, spawning in freshwatermore » and maturing in saline water. Spawning peaks in spring. Salinities above 12 ppt were fatal to eggs. Reported fecundities are 7,000 to 44,000 eggs per female. Smelt are always found in shallow water (<6 m deep) and within 2 km of the shore. Larval and juvenile smelt along the coast feed on planktonic crustaceans. Larger juveniles and adults feed on euphausiids, amphipods, on planktonic crustaceans. Larger juveniles and adults feed on euphausiids, amphipods, polychaetes, and fish. Smelt move locally to search for optimum water temperatures. 46 refs., 2 figs., 1 tab.« less

  19. 78 FR 6298 - Endangered and Threatened Species; Take of Anadromous Fish; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC424 Endangered and Threatened Species; Take of Anadromous Fish; Correction AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of receipt of a...

  20. Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species.

    PubMed

    Mladineo, Ivona; Poljak, Vedran

    2014-02-01

    Consumption of raw or thermally inadequately treated fishery products represents a public health risk, with the possibility of propagation of live Anisakis larvae, the causative agent of the zoonotic disease anisakidosis, or anisakiasis. We investigated the population dynamics of Anisakis spp. in commercially important fish-anchovies (Anisakis), sardines (Sardina pilchardus), European hake (Merluccius merluccius), whiting (Merlangius merlangus), chub mackerel (Scomber japonicus), and Atlantic bluefin tuna (Thunnus thynnus)-captured in the main Adriatic Sea fishing ground. We observed a significant difference in the numbers of parasite larvae (1 to 32) in individual hosts and between species, with most fish showing high or very high Anisakis population indices. Phylogenetic analysis confirmed that commercial fish in the Adriatic Sea are parasitized by Anisakis pegreffii (95.95%) and Anisakis simplex sensu stricto (4.05%). The genetic structure of A. pegreffii in demersal, pelagic, and top predator hosts was unstructured, and the highest frequency of haplotype sharing (n = 10) was between demersal and pelagic fish.

  1. Amino acid and proximate composition of fish bone gelatin from different warm-water species: A comparative study

    NASA Astrophysics Data System (ADS)

    Atma, Y.

    2017-03-01

    Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.

  2. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map.

    PubMed

    Tsai, Wen-Ping; Huang, Shih-Pin; Cheng, Su-Ting; Shao, Kwang-Tsao; Chang, Fi-John

    2017-02-01

    The steep slopes of rivers can easily lead to large variations in river water quality during typhoon seasons in Taiwan, which may poses significant impacts on riverine eco-hydrological environments. This study aims to investigate the relationship between fish communities and water quality by using artificial neural networks (ANNs) for comprehending the upstream eco-hydrological system in northern Taiwan. We collected a total of 276 heterogeneous datasets with 8 water quality parameters and 25 fish species from 10 sampling sites. The self-organizing feature map (SOM) was used to cluster, analyze and visualize the heterogeneous datasets. Furthermore, the structuring index (SI) was adopted to determine the relative importance of each input variable of the SOM and identify the indicator factors. The clustering results showed that the SOM could suitably reflect the spatial characteristics of fishery sampling sites. Besides, the patterns of water quality parameters and fish species could be distinguishably (visually) classified into three eco-water quality groups: 1) typical upstream freshwater fishes that depended the most on dissolved oxygen (DO); 2) typical middle-lower reach riverine freshwater fishes that depended the most on total phosphorus (TP) and ammonia nitrogen; and 3) low lands or pond (reservoirs) freshwater fishes that depended the most on water temperature, suspended solids and chemical oxygen demand. According to the results of the SI, the representative indicators of water quality parameters and fish species consisted of DO, TP and Onychostoma barbatulum. This grouping result suggested that the methodology can be used as a guiding reference to comprehensively relate ecology to water quality. Our methods offer a cost-effective alternative to more traditional methods for identifying key water quality factors relating to fish species. In addition, visualizing the constructed topological maps of the SOM could produce detailed inter-relation between water

  3. Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea.

    PubMed

    Gu, Yang-Guang; Lin, Qin; Huang, Hong-Hui; Wang, Liang-Gen; Ning, Jia-Jia; Du, Fei-Yan

    2017-01-30

    The concentrations of heavy metals (Cd, Pb, Cr, Ni, Cu and Zn) were determined in four commercially valuable fish species (Thunnus obesus, Decapterus lajang, Cubiceps squamiceps and Priacanthus macracanthus), collected in the western continental shelf of the South China Sea. Concentrations of Cd, Pb, Cr, Ni, Cu, and Zn in fish muscles were 0.006-0.050, 0.13-0.68, 0.18-0.85, 0.11-0.25, 0.12-0.77, and 2.41-4.73μg/g, wet weight, respectively. Concentrations of heavy metals in all species were below their acceptable daily upper limit, suggesting human consumption of these wild fish species may be safe, with health risk assessment based on the target hazard quotients (THQ) and total THQ, indicating no significant adverse health effects with consumption. The average concentrations of Zn were higher in gills than in stomach contents, backbones or muscle, while conversely, the other heavy metals had higher concentrations in stomach contents than in other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss.

    PubMed

    Hermoso, Virgilio; Clavero, Miguel; Blanco-Garrido, Francisco; Prenda, José

    2011-01-01

    Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives' decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions.

  5. Comparison of species composition and richness of fish assemblages in altered and unaltered littoral habitats

    USGS Publications Warehouse

    Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.

    1986-01-01

    Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.

  6. Foraging preferences influence microplastic ingestion by six marine fish species from the Texas Gulf Coast.

    PubMed

    Peters, Colleen A; Thomas, Peyton A; Rieper, Kaitlyn B; Bratton, Susan P

    2017-11-15

    This study evaluated the influence of foraging preferences on microplastic ingestion by six marine fish species from the Texas Gulf Coast. A total of 1381 fish were analyzed and 42.4% contained ingested microplastic, inclusive of fiber (86.4%), microbead (12.9% %), and fragment (<1.0%) forms. Despite a substantial overlap in diet, ordination of ingested prey items clustered samples into distinctive species groupings, reflective of the foraging gradient among species. Orthopristis chrysoptera displayed the lowest overall frequency of microplastic ingestion and the most distinctive ordination grouping, indicating their selective invertebrate foraging preferences. Cluster analysis of O. chrysoptera most closely classified microplastic with the ingestion of benthic invertebrates, whereas the ingestion of microplastic by all other species most closely classified with the ingestion of vegetation and shrimp. O. chrysoptera, as selective invertebrate foragers, are less likely to ingest microplastics than species exhibiting generalist foraging preferences and methods of prey capture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Abundance and species richness of fish associated to Thalassia testudinum at Cariaco Gulf, Venezuela].

    PubMed

    Peña, Thays Allen; Jiménez, Mayré; Villafranca, Sioliz

    2004-12-01

    Fish are among the most abundant and diverse groups in Thalassia testudinum communities, in turn considered among the most productive and important ecosystems in marine environments. Three stations were sampled in the southern shore of Cariaco gulf (northwestern Venezuela) to quantify fish associated with T. testudinum, from December 1996 to November 1997. We used a 50 m long beach net ("chinchorro playero", height 1.50 m, mesh opening 0.7 cm. A total of 15 509 individuals were collected: 27 families, 38 genera and 44 specie were identified. The most abundant, in descending order, were Haemulon boschmae, Nicholsina usta, Orthopristis ruber, Xenomelaniris brasiliensis and Diplodus argenteus. Thirty three species were occasional visitors (75.0%) and ten were recurrent visitors (22.7%). The permanent resident, N. usta, is a characteristic species that uses T. testudinum throughout its life cycle.

  8. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin).

    PubMed

    Régine, Maury-Brachet; Gilles, Durrieu; Yannick, Dominique; Alain, Boudou

    2006-09-01

    Within a multidisciplinary research programme set up in French Guiana (Amazonian basin), twelve fish species from six food regimes were collected from the upper part of the Maroni River in order to analyze mercury (Hg) distribution in six organs (gills, liver, kidneys, skeletal muscle, stomach, and intestine) and to look for a relationship between Hg organotropism and food regimes. As many studies have shown, mercury biomagnification leads to extremely marked differences in muscle accumulation levels: the average ratio between extreme concentrations measured in piscivorous and herbivorous species was almost 500. A first principal component analysis on primary Hg concentration variables showed that biomagnification had a marked effect, masking differences between Hg distribution in the organs according to fish species and their food regimes. In order to avoid this, we determined ratios between Hg concentrations measured in the different organs and in the skeletal muscle, considered as the reference tissue for biomagnification effects. A new principal component analysis using these normalized values, in conjunction with a Ward's hierarchical clustering method, revealed that there is a link between Hg organotropism and the food regimes, with comparatively high [Hg]gills/[Hg]muscle ratios for the herbivorous species; high [Hg]intestine-liver-kidneys/[Hg]muscle ratios for the benthivorous and periphytophagous species, and, in contrast, ratios of less than 1 in the different organs for the piscivorous and omnivorous species. Our determinations of methylmercury (MMHg) percentages in the food consumed by the fish (aquatic macrophytes, terrestrial material from the river banks, biofilms, benthic invertebrates, fish muscle tissues), according to the different food regimes (herbivorous, periphytophagous, benthivorous, omnivorous, carnivorous, piscivorous), showed that this criterion can account for the differences in Hg distribution in the fish organs. For instance, the

  9. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromisniloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts.

  10. Experimental infection of several fish species with the causative agent of Kuchijirosho (snout ulcer disease) derived from the tiger puffer Takifugu rubripes.

    PubMed

    Miyadai, T; Kitamura, S I; Uwaoku, H; Tahara, D

    2001-12-05

    Kuchijirosho (snout ulcer disease) is a fatal epidemic disease which affects the tiger puffer, Takifugu rubripes, a commercial fish species in Japan and Korea. To assess the possibility that non-tiger puffer fish can serve as reservoirs of infection, 5 fish species were challenged by infection with the extracts of Kuchijirosho-affected brains from cultured tiger puffer: grass puffer T. niphobles, fine-patterned puffer T. poecilonotus, panther puffer T. pardalis, red sea bream Pagrus major, and black rockfish Sebastes schlegeli. When slightly irritated, all these species, especially the puffer fish, exhibited typical signs of Kuchijirosho, i.e., erratic swimming, biting together and bellying out (swelling of belly), as generally observed in tiger puffers affected by Kuchijirosho. Although the mortalities of the 2 non-puffer species were lower, injection of the extracts prepared from the brains of both inoculated fish into tiger puffer resulted in death, indicating that the inoculated fish used in this experiment have the potential to be infected with the Kuchijirosho agent. Condensations of nuclei or chromatin in the large nerve cells, which is a major characteristic of Kuchijirosho, were histopathologically observed to some extent in the brains of all kinds of puffer fish species infected. These findings suggest that the virus can spread horizontally among wild and cultured puffers and even among fishes belonging to different orders.

  11. 29 CFR 1917.73 - Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo, material, substance or atmosphere). 1917... facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo...

  12. [Spatio-temporal dynamics of fishing effort in a multi-species artisanal diving fishery and its effects on catch variability: insights for sustainable management].

    PubMed

    Naranjo Madrigall, Helven; Salas Marquez, Silvia

    2014-12-01

    Artisanal diving fisheries are a source of income, employment and food security of coastal areas in many countries. Understanding the dynamics of these fisheries, including the spatial and temporal dynamics of fishing effort, gears and species can help to address the challenges involved in fisheries management. We aimed to analyze the differences in fishing strategies undertaken by fishers that use two different diving methods (hookah and free diving), the conditions and their potential impacts on catches when adjustments to those strategies are applied over time. For this, detailed information of fishing operations from artisanal boats in the North Pacific coast of Costa Rica was analyzed in two fishing seasons (2007-2008 and 2011-2012). Data were collected by onboard observers (fishing site, fishing time, species composition, depth and visibility). Additionally, interviews with divers were applied to obtain information of price per species, species volume and fishing operations. From the total number of trips during both seasons, hookah diving was represented by a sample size of 69.3%, while free diving, with a sample of 41.9%. More than 15 species were identified in each fishing season. Nevertheless, three categories had substantial contributions in both seasons with differences in the proportions for each case: green lobster (Panulirus gracilis), octopus (Octopus sp.) and parrotfish (Scarus perrico and S. ghobban). It is worth noting that an important proportion of catch was retained by fishers for personal consumption purposes, including species of high commercial value. Additional night diving activity, increased the number of dives from one season to another. Besides, cooperation processes in free diving fishing operations, and changes in fishing effort between seasons, defined important changes in fishing strategies. Potential causes of changes in fishing strategies and the implications for management to ensure the sustainability of these fisheries in the

  13. An economic analysis of private incentives to adopt DNA barcoding technology for fish species authentication in Canada.

    PubMed

    Ugochukwu, Albert I; Hobbs, Jill E; Phillips, Peter W B; Gray, Richard

    2015-12-01

    The increasing spate of species substitution and mislabelling in fish markets has become a concern to the public and a challenge to both the food industry and regulators. Species substitution and mislabelling within fish supply chains occurs because of price incentives to misrepresent products for economic gain. Emerging authenticity technologies, such as the DNA barcoding technology that has been used to identify plants and animal (particularly fish) species through DNA sequencing, offer a potential technological solution to this information problem. However, the adoption of these authenticity technologies depends also on economic factors. The present study uses economic welfare analysis to examine the effects of species substitution and mislabelling in fish markets, and examines the feasibility of the technology for a typical retail store in Canada. It is assumed that increased accuracy of the technology in detecting fraud and enforcement of legal penalties and other associated costs would be likely to discourage cheating. Empirical results suggest that DNA barcoding technology would be feasible presently for a typical retail store only if authentication is done in a third party laboratory, as it may not be feasible on an individual retail store level once fixed and other associated costs of the technology are considered.

  14. Predicting the spatiotemporal distributions of marine fish species utilizing earth system data in a maximum entropy modeling framework

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kerr, L. A.; Bridger, E.

    2016-12-01

    Changes in species distributions have been widely associated with climate change. Understanding how ocean conditions influence marine fish distributions is critical for elucidating the role of climate in ecosystem change and forecasting how fish may be distributed in the future. Species distribution models (SDMs) can enable estimation of the likelihood of encountering species in space or time as a function of environmental conditions. Traditional SDMs are applied to scientific-survey data that include both presences and absences. Maximum entropy (MaxEnt) models are promising tools as they can be applied to presence-only data, such as those collected from fisheries or citizen science programs. We used MaxEnt to relate the occurrence records of marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) from NOAA Northeast Fisheries Observer Program to environmental conditions. Environmental variables from earth system data, such as sea surface temperature (SST), sea bottom temperature (SBT), Chlorophyll-a, bathymetry, North Atlantic oscillation (NAO), and Atlantic multidecadal oscillation (AMO), were matched with species occurrence for MaxEnt modeling the fish distributions in Northeast Shelf area. We developed habitat suitability maps for these species, and assessed the relative influence of environmental factors on their distributions. Overall, SST and Chlorophyll-a had greatest influence on their monthly distributions, with bathymetry and SBT having moderate influence and climate indices (NAO and AMO) having little influence. Across months, Atlantic herring distribution was most related to SST 10th percentile, and Atlantic mackerel and butterfish distributions were most related to previous month SST. The fish distributions were most affected by previous month Chlorophyll-a in summer months, which may indirectly indicate the accumulative impact of primary productivity. Results highlighted the importance of spatial and temporal scales when using

  15. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species

    PubMed Central

    McGraw, Joseph E.; Jensen, Brittany J.; Bishop, Sydney S.; Lokken, James P.; Dorff, Kellen J.; Ripley, Michael P.; Munro, James B.

    2015-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  16. Species-specific patterns of aggregation of wild fish around fish farms

    NASA Astrophysics Data System (ADS)

    Dempster, T.; Sanchez-Jerez, P.; Uglem, I.; Bjørn, P.-A.

    2010-01-01

    Fish-farming structures are widespread in coastal waters and are highly attractive to wild fish. Several studies have estimated that tons to tens of tons of wild fish aggregate around fish farms. These estimates assumed that the majority of wild fish are concentrated immediately beneath farms, although this assumption has never been explicitly tested. We tested the hypothesis that abundances of wild fish would be greatest immediately beneath farms and progressively diminish with distance at 4 full-scale coastal salmon ( Salmo salar) farms in Norway. At each farm, fish were counted with a video-camera system at 5 different distances from the cages (farm = 0 m, 25, 50, 100 and 200 m) throughout the water column on three separate days. Combined across all locations and times, the total abundance of wild fish was 20 times greater at the farm than at the 200 m sampling distance. Saithe ( Pollachius virens) dominated assemblages at all 4 farms and were consistently significantly more abundant at the farm than at the 25-200 m distances. This 'tight aggregation' around farms corresponds to the reliance of saithe on waste feed when they school near farms. In contrast, patterns of distribution of both cod ( Gadus morhua) and poor cod ( Trisopterus minutus) varied among farms, with either highest abundances at the farm or a more even distribution of abundance across all 5 distances sampled. No specific pattern of aggregation was evident for the bottom-dwelling haddock ( Melanogrammus aeglefinus). Our results suggest that the present 100 m no-fishing zone around salmon farms protects the greatest proportion of farm-aggregated saithe and cod from fishing during the daytime. However, whether this reduces their overall susceptibility to fishing requires further research regarding nighttime distribution and movements.

  17. Hepatic retinoid levels in seven fish species (teleosts) from a tropical coastal lagoon receiving effluents from iron-ore mining and processing.

    PubMed

    Pereira, Adriana A; van Hattum, Bert; Brouwer, Abraham

    2012-02-01

    The present study was undertaken to investigate the possible effects of Fe and trace element exposure on hepatic levels of retinoids in seven fish species. Concentrations of retinoids were measured in fish collected from a coastal lagoon in Brazil that receives effluents from an iron-ore mining and processing plant. Fish from nearby coastal lagoons were also included to assess possible differences related to chemical exposure. Results indicated considerable differences in hepatic retinoid composition among the various species investigated. The most striking differences were in retinol and derivative-specific profiles and in didehydro retinol and derivative-specific profiles. The Perciformes species Geophagus brasiliensis, Tilapia rendalli, Mugil liza, and Cichla ocellaris and the Characiforme Hoplias malabaricus were characterized as retinol and derivative-specific, while the Siluriformes species Hoplosternum littorale and Rhamdia quelen were didehydro retinol and derivative-specific fish species. A negative association was observed between Al, Pb, As, and Cd and hepatic didehydro retinoid levels. Fish with higher levels of hepatic Fe, Cu, and Zn showed unexpectedly significant positive correlations with increased hepatic retinol levels. This finding, associated with the positive relationships between retinol and retinyl palmitate with lipid peroxidation, may suggest that vitamin A is mobilized from other tissues to increase hepatic antioxidant levels for protection against oxidative damage. These data show significant but dissimilar associations between trace element exposure and hepatic retinoid levels in fish species exposed to iron-ore mining and processing effluents, without apparent major impacts on fish health and condition. Copyright © 2011 SETAC.

  18. Quantitative Cross-Species Extrapolation between Humans and Fish: The Case of the Anti-Depressant Fluoxetine

    PubMed Central

    Margiotta-Casaluci, Luigi; Owen, Stewart F.; Cumming, Rob I.; de Polo, Anna; Winter, Matthew J.; Panter, Grace H.; Rand-Weaver, Mariann; Sumpter, John P.

    2014-01-01

    Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the

  19. Relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae).

    PubMed

    Blasina, Gabriela; Molina, Juan; Lopez Cazorla, Andrea; Díaz de Astarloa, Juan

    This study explores the relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae) that are known to differ in their trophic habits. Only adult specimens were analyzed: 103 Cynoscion guatucupa, 77 Pogonias cromis, 61 Micropogonias furnieri, and 48 Menticirrhus americanus. The four species presented divergent ecomorphological traits related to swimming agility, prey spotting and capture, and the potential size of prey they were able to swallow. Results suggest that these sciaenid species can partition the food resources, even though they completely overlap in space. Differences in their ecomorphological traits appear to correlate closely with the diet and consequently could explain the trophic differentiation observed. Arguably, these ecomorphological differences play a significant role in the coexistence of the adults of these sympatric fish species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern.

    PubMed

    Monroy, Mario; Maceda-Veiga, Alberto; de Sostoa, Adolfo

    2014-07-15

    Although intensive mining activity and urban sewage discharge are major sources of metal inputs to Lake Titicaca, the risk posed by metal pollution to wildlife and human populations has been poorly studied. In this study we compared the concentrations of Cu, Zn, Cd, Hg, Pb, Co, and Fe in water, sediment, and two tissues (liver and muscle) of four fish species (Odontesthes bonariensis, Orestias luteus, Orestias agassii, and Trichomycterus rivulatus) across important fishery areas in Lake Titicaca. The concentration of Pb in water at the discharge sites of the main rivers and of most elements, with the exception of Co and Fe, in all fish collected in this study exceeded the safety thresholds established by international legislation. The highest metal concentrations were observed in benthopelagic species, and liver tissue was identified as the main depository for all metals with the exception of mercury. The metal bioaccumulation pattern in fish was weakly related to the metal concentrations in the environment with the exception of Hg at the most polluted location, partly explained by the different metabolic role of essential and non-essential elements and the influence of other factors such as species' ecology and individual traits in the bioaccumulation of most metals. As metal pollution extended across the study area and high metal concentrations were detected in all four fish species, we urge the authorities to enforce legislation for water and fish consumption and to evaluate the effects of metal pollution on fish health. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Species Interactions Drive Fish Biodiversity Loss in a High-CO2 World.

    PubMed

    Nagelkerken, Ivan; Goldenberg, Silvan U; Ferreira, Camilo M; Russell, Bayden D; Connell, Sean D

    2017-07-24

    Accelerating climate change is eroding the functioning and stability of ecosystems by weakening the interactions among species that stabilize biological communities against change [1]. A key challenge to forecasting the future of ecosystems centers on how to extrapolate results from short-term, single-species studies to community-level responses that are mediated by key mechanisms such as competition, resource availability (bottom-up control), and predation (top-down control) [2]. We used CO 2 vents as potential analogs of ocean acidification combined with in situ experiments to test current predictions of fish biodiversity loss and community change due to elevated CO 2 [3] and to elucidate the potential mechanisms that drive such change. We show that high risk-taking behavior and competitive strength, combined with resource enrichment and collapse of predator populations, fostered already common species, enabling them to double their populations under acidified conditions. However, the release of these competitive dominants from predator control led to suppression of less common and subordinate competitors that did not benefit from resource enrichment and reduced predation. As a result, local biodiversity was lost and novel fish community compositions were created under elevated CO 2 . Our study identifies the species interactions most affected by ocean acidification, revealing potential sources of natural selection. We also reveal how diminished predator abundances can have cascading effects on local species diversity, mediated by complex species interactions. Reduced overfishing of predators could therefore act as a key action to stall diversity loss and ecosystem change in a high-CO 2 world. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ecological conversion efficiency and its influencers in twelve species of fish in the Yellow Sea Ecosystem

    NASA Astrophysics Data System (ADS)

    Tang, Qisheng; Guo, Xuewu; Sun, Yao; Zhang, Bo

    2007-09-01

    The ecological conversion efficiencies in twelve species of fish in the Yellow Sea Ecosystem, i.e., anchovy ( Engraulis japonicus), rednose anchovy ( Thrissa kammalensis), chub mackerel ( Scomber japonicus), halfbeak ( Hyporhamphus sajori), gizzard shad ( Konosirus punctatus), sand lance ( Ammodytes personatus), red seabream ( Pagrus major), black porgy ( Acanthopagrus schlegeli), black rockfish ( Sebastes schlegeli), finespot goby ( Chaeturichthys stigmatias), tiger puffer ( Takifugu rubripes), and fat greenling ( Hexagrammos otakii), were estimated through experiments conducted either in situ or in a laboratory. The ecological conversion efficiencies were significantly different among these species. As indicated, the food conversion efficiencies and the energy conversion efficiencies varied from 12.9% to 42.1% and from 12.7% to 43.0%, respectively. Water temperature and ration level are the main factors influencing the ecological conversion efficiencies of marine fish. The higher conversion efficiency of a given species in a natural ecosystem is acquired only under the moderate environment conditions. A negative relationship between ecological conversion efficiency and trophic level among ten species was observed. Such a relationship indicates that the ecological efficiency in the upper trophic levels would increase after fishing down marine food web in the Yellow Sea ecosystem.

  3. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    USGS Publications Warehouse

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  4. Geographic variation in species richness, rarity, and the selection of areas for conservation: An integrative approach with Brazilian estuarine fishes

    NASA Astrophysics Data System (ADS)

    Vilar, Ciro C.; Joyeux, Jean-Christophe; Spach, Henry L.

    2017-09-01

    While the number of species is a key indicator of ecological assemblages, spatial conservation priorities solely identified from species richness are not necessarily efficient to protect other important biological assets. Hence, the results of spatial prioritization analysis would be greatly enhanced if richness were used in association to complementary biodiversity measures. In this study, geographic patterns in estuarine fish species rarity (i.e. the average range size in the study area), endemism and richness, were mapped and integrated to identify regions important for biodiversity conservation along the Brazilian coast. Furthermore, we analyzed the effectiveness of the national system of protected areas to represent these regions. Analyses were performed on presence/absence data of 412 fish species in 0.25° latitudinal bands covering the entire Brazilian biogeographical province. Species richness, rarity and endemism patterns differed and strongly reflected biogeographical limits and regions. However, among the existing 154 latitudinal bands, 48 were recognized as conservation priorities by concomitantly harboring high estuarine fish species richness and assemblages of geographically rare species. Priority areas identified for all estuarine fish species largely differed from those identified for Brazilian endemics. Moreover, there was no significant correlation between the different aspects of the fish assemblages considered (i.e. species richness, endemism or rarity), suggesting that designating reserves based on a single variable may lead to large gaps in the overall protection of biodiversity. Our results further revealed that the existing system of protected areas is insufficient for representing the priority bands we identified. This highlights the urgent need for expanding the national network of protected areas to maintain estuarine ecosystems with high conservation value.

  5. Identification of fish species after cooking by SDS-PAGE and urea IEF: a collaborative study.

    PubMed

    Etienne, M; Jérôme, M; Fleurence, J; Rehbein, H; Kündiger, R; Mendes, R; Costa, H; Pérez-Martín, R; Piñeiro-González, C; Craig, A; Mackie, I; Malmheden Yman, I; Ferm, M; Martínez, I; Jessen, F; Smelt, A; Luten, J

    2000-07-01

    A collaborative study, to validate the use of SDS-PAGE and urea IEF, for the identification of fish species after cooking has been performed by nine laboratories. By following optimized standard operation procedures, 10 commercially important species (Atlantic salmon, sea trout, rainbow trout, turbot, Alaska pollock, pollack, pink salmon, Arctic char, chum salmon, and New Zealand hake) had to be identified by comparison with 22 reference samples. Some differences in the recoveries of proteins from cooked fish flesh were noted between the urea and the SDS extraction procedures used. Generally, the urea extraction procedure appears to be less efficient than the SDS extraction for protein solubilization. Except for some species belonging to the Salmonidae family (Salmo, Oncorhynchus), both of the analytical techniques tested (urea IEF, SDS-PAGE) enabled identification of the species of the samples to be established. With urea IEF, two laboratories could not differentiate Salmo salar from Salmo trutta. The same difficulties were noted for differentiation between Oncorhynchus gorbuscha and Oncorhynchus keta samples. With SDS-PAGE, three laboratories had some difficulties in identifying the S. trutta samples. However, in the contrast with the previous technique, SDS-PAGE allows the characterization of most of the Oncorhynchus species tested. Only Oncorhynchus mykiss was not clearly recognized by one laboratory. Therefore, SDS-PAGE (Excel gel homogeneous 15%) appears to be better for the identification, after cooking, of fish such as the tuna and salmon species which are characterized by neutral and basic protein bands, and urea IEF (CleanGel) is better for the gadoid species, which are characterized by acid protein bands (parvalbumins). Nevertheless, in contentious cases it is preferable to use both analytical methods.

  6. The putative mechanism of Na(+) absorption in euryhaline elasmobranchs exists in the gills of a stenohaline marine elasmobranch, Squalus acanthias.

    PubMed

    Choe, Keith P; Edwards, Susan L; Claiborne, James B; Evans, David H

    2007-02-01

    We recently cloned an NHE3 orthologue from the gills of the euryhaline Atlantic stingray (Dasyatis sabina), and generated a stingray NHE3 antibody to unequivocally localize the exchanger to the apical side of epithelial cells that are rich with Na(+)/K(+)-ATPase (A MRC). We also demonstrated an increase in NHE3 expression when stingrays are in fresh water, suggesting that NHE3 is responsible for active Na(+) absorption. However, the vast majority of elasmobranchs are only found in marine environments. In the current study, immunohistochemistry with the stingray NHE3 antibody was used to localize the exchanger in the gills of the stenohaline marine spiny dogfish shark (Squalus acanthias). NHE3 immunoreactivity was confined to the apical side of cells with basolateral Na(+)/K(+)-ATPase and was excluded from cells with high levels of vacuolar H(+)-ATPase. Western blots detected a single protein of 88 kDa in dogfish gills, the same size as NHE3 in stingrays and mammals. These immunological data demonstrate that the putative cell type responsible for active Na(+) absorption in euryhaline elasmobranchs is also present in stenohaline marine elasmobranchs, and suggest that the inability of most elasmobranchs to survive in fresh water is not due to a lack of the gill ion transporters for Na(+) absorption.

  7. Can species traits predict the susceptibility of riverine fish to water resource development? An Australian case study.

    PubMed

    Rolls, Robert J; Sternberg, David

    2015-06-01

    Water resource developments alter riverine environments by disrupting longitudinal connectivity, transforming lotic habitats, and modifying in-stream hydraulic conditions. Effective management of anthropogenic disturbances therefore requires an understanding of the range of potential ecosystem effects and the inherent traits symptomatic of elevated vulnerability to disturbance. Using 42 riverine fish native to South Eastern Australia as a case study, we quantified six morphological, behavioral, and life-history traits to classify species into groups reflecting potential differences in their response to ecosystem changes as a result of water resource development. Classification analysis identified five strategies based on fish life-history dispersal requirements, climbing potential, and habitat preference. These strategies in turn highlight the potential species at risk from the separate impacts of water resource development and inform management decisions to mitigate those risks. Swimming ability did not contribute to distinguishing species into functional groups, likely due to methodological inconsistencies in quantifying swimming performance that may ultimately hinder the ability of fish passage facilities to function within the physical capabilities of species at risk of habitat fragmentation. This study improves our ability to predict the performance of groups of species at risk from the multiple environmental changes imposed by humans and goes beyond broad-scale dispersal requirements as a predictor of individual species response.

  8. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    PubMed Central

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  9. Feeding habits of four species of mesopelagic fishes from the Northern Chilean.

    PubMed

    Oliva A, Eduardo; Ulloa H, Raúl; Bleck Z, Jorge

    2006-06-01

    The feeding habits of four species of mesopelagic fishes from northern Chile are described: Triphoturus mexicanus, Diogenichtys atlanticus, Vinciguerria lucetia and Cyclothone acclinidens. Samples were captured in September 1988 between 18 degrees 25' and 19 degrees 09'S in the South West Pacific. The quantitative and qualitative analyses of the stomach content showed that the species have a zooplanktophagous opportunistic behavior, mainly predating on Crustaceans, especially on Copepods. The evaluation of the trophic spectrum and diversity of T. mexicanus and C. acclinidens suggests that these are nictoepipelagic species, while D. atlanticus and V. lucetia would be typical mesopelagic.

  10. Characterization of chitin extracted from fish scales of marine fish species purchased from local markets in North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Rumengan, I. F. M.; Suptijah, P.; Wullur, S.; Talumepa, A.

    2017-10-01

    Chitin is a biodegradable biopolymer with a variety of commercial applications, including in the food food-supplement industries as a marine-derived nutraceutical. The purpose of this study was to characterize the molecular structure of chitin extracted from fish scales of important marine fish purchased from local markets in North Sulawesi. Chitin compound material was obtained from a specific fish scale, and then sequentially carrying out a boiling treatment to separate it from a complex with collagen. From the scales of two fish species, parrotfish (Chlorurus sordidus) and red snapper (Lutjanus argentimaculatus), the rendemen of chitin obtained were 45 % and 33%, respectively. Structural characteristics of the chitin were discussed by FTIR (Fourier Transform Infrared) analysis data. FTIR analysis was done using infrared spectroscopy, which is the resulting spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample. The molecular structure of chitin, C18H26N2O10, where the hydroxyl group on the second carbon replaced by acetyl amide, was shown by the infrared spectra. In the infrared spectra, chitin from parrot fish scales indicated the amide band at 1627.13 cm-1, and chitin from red snapper fish scales the amide band at 1648.09 cm-1 which are a typical one for marine chitin. The hydroxyl and amino bands at the ranged spectra up to 3500 cm-1. The yields of chitin isolated from fish scale were relatively huge. Some treatments are necessary to confirm the molecular conformation and deacetylation behavior. All products from the extraction of fish scales could be more accessible for structural modifications to develop biocompatible materials for pharmaceutical purposes.

  11. Passive integrated transponder tags: Review of studies on warmwater fishes with notes on additional species

    USGS Publications Warehouse

    Musselman, W. Chris; Worthington, Thomas A.; Mouser, Joshua; Williams, Desiree M.; Brewer, Shannon K.

    2017-01-01

    Although numerous studies have assessed retention and survival of passive integrated transponder (PIT) tags, data are scattered and information gaps remain for many diminutive fishes. Our study objectives were to 1) systematically review PIT tag studies and summarize retention, growth, and survival data for warmwater fishes; and 2) conduct a laboratory study to evaluate the retention, survival, and growth effects of intracoelomic-placed, half duplex PIT tags on six small-bodied species common to warmwater streams. Our systematic review suggested small sample sizes were common within PIT tag retention and survival studies (39% with n ≤ 20) and that many experiments (15%, 14 of 97) failed to use control fish as part of their evaluations. Studies focused primarily on short-term changes (15 d to 2 y) in tag retention and survival. Tag retention was equal to or greater than 90% in 85% of the experiments reviewed and median survival was 92%. Growth was reported by fishes in the majority of reviewed studies. We found similar results after PIT tagging (peritoneum tagging using 12- or 23-mm half duplex tags) adult Cardinal Shiner Luxilus cardinalis, Central Stoneroller Campostoma annomalum, Greenside Darter Etheostoma blennioides, Orangethroat Darter Etheostoma spectabile, Slender Madtom Noturus exilis, and juvenile Smallmouth Bass Micropterus dolomieu. Tag retention for all species was high, with only one tag loss recorded after 60 d. Survival was also high (≥88%) for all of our species with the exception of Orangethroat Darter (56% survival). No significant difference in mean growth between treatment and control groups was found. Both our results and the findings of the literature review suggested generally high tag retention and low mortality in tagged fishes (across 31 species reviewed). However, within our study (e.g., Orangethroat Darter) and from the literature, examples of negative effects of PIT tagging on fishes were apparent, suggesting methodological

  12. Method- and species-specific detection probabilities of fish occupancy in Arctic lakes: Implications for design and management

    USGS Publications Warehouse

    Haynes, Trevor B.; Rosenberger, Amanda E.; Lindberg, Mark S.; Whitman, Matthew; Schmutz, Joel A.

    2013-01-01

    Studies examining species occurrence often fail to account for false absences in field sampling. We investigate detection probabilities of five gear types for six fish species in a sample of lakes on the North Slope, Alaska. We used an occupancy modeling approach to provide estimates of detection probabilities for each method. Variation in gear- and species-specific detection probability was considerable. For example, detection probabilities for the fyke net ranged from 0.82 (SE = 0.05) for least cisco (Coregonus sardinella) to 0.04 (SE = 0.01) for slimy sculpin (Cottus cognatus). Detection probabilities were also affected by site-specific variables such as depth of the lake, year, day of sampling, and lake connection to a stream. With the exception of the dip net and shore minnow traps, each gear type provided the highest detection probability of at least one species. Results suggest that a multimethod approach may be most effective when attempting to sample the entire fish community of Arctic lakes. Detection probability estimates will be useful for designing optimal fish sampling and monitoring protocols in Arctic lakes.

  13. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    PubMed

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  14. Predicting invasiveness of species in trade: Climate match, trophic guild and fecundity influence establishment and impact of non-native freshwater fishes

    USGS Publications Warehouse

    Howeth, Jennifer G.; Gantz, Crysta A.; Angermeier, Paul; Frimpong, Emmanuel A.; Hoff, Michael H.; Keller, Reuben P.; Mandrak, Nicholas E.; Marchetti, Michael P.; Olden, Julian D.; Romagosa, Christina M.; Lodge, David M.

    2016-01-01

    AimImpacts of non-native species have motivated development of risk assessment tools for identifying introduced species likely to become invasive. Here, we develop trait-based models for the establishment and impact stages of freshwater fish invasion, and use them to screen non-native species common in international trade. We also determine which species in the aquarium, biological supply, live bait, live food and water garden trades are likely to become invasive. Results are compared to historical patterns of non-native fish establishment to assess the relative importance over time of pathways in causing invasions.LocationLaurentian Great Lakes region.MethodsTrait-based classification trees for the establishment and impact stages of invasion were developed from data on freshwater fish species that established or failed to establish in the Great Lakes. Fishes in trade were determined from import data from Canadian and United States regulatory agencies, assigned to specific trades and screened through the developed models.ResultsClimate match between a species’ native range and the Great Lakes region predicted establishment success with 75–81% accuracy. Trophic guild and fecundity predicted potential harmful impacts of established non-native fishes with 75–83% accuracy. Screening outcomes suggest the water garden trade poses the greatest risk of introducing new invasive species, followed by the live food and aquarium trades. Analysis of historical patterns of introduction pathways demonstrates the increasing importance of these trades relative to other pathways. Comparisons among trades reveal that model predictions parallel historical patterns; all fishes previously introduced from the water garden trade have established. The live bait, biological supply, aquarium and live food trades have also contributed established non-native fishes.Main conclusionsOur models predict invasion risk of potential fish invaders to the Great Lakes region and could help managers

  15. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.

    PubMed

    Bignami, Sean; Enochs, Ian C; Manzello, Derek P; Sponaugle, Su; Cowen, Robert K

    2013-04-30

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.

  16. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function

    PubMed Central

    Bignami, Sean; Enochs, Ian C.; Manzello, Derek P.; Sponaugle, Su; Cowen, Robert K.

    2013-01-01

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing. PMID:23589887

  17. Can Mixed-Species Groups Reduce Individual Parasite Load? A Field Test with Two Closely Related Poeciliid Fishes (Poecilia reticulata and Poecilia picta)

    PubMed Central

    Dargent, Felipe; Torres-Dowdall, Julián; Scott, Marilyn E.; Ramnarine, Indar; Fussmann, Gregor F.

    2013-01-01

    Predation and parasitism are two of the most important sources of mortality in nature. By forming groups, individuals can gain protection against predators but may increase their risk of being infected with contagious parasites. Animals might resolve this conflict by forming mixed-species groups thereby reducing the costs associated with parasites through a relative decrease in available hosts. We tested this hypothesis in a system with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta) and their host-specific monogenean ectoparasites (Gyrodactylus spp.) in Trinidad. Fish from three different rivers were sampled from single and mixed-species groups, measured and scanned for Gyrodactylus. The presence and abundance of Gyrodactylus were lower when fish of both species were part of mixed-species groups relative to single-species groups. This is consistent with the hypothesis that mixed-species groups provide a level of protection against contagious parasites. We discuss the importance of potentially confounding factors such as salinity and individual fish size. PMID:23437237

  18. Diastereoisomer- and species-specific distribution of hexabromocyclododecane (HBCD) in fish and marine invertebrates.

    PubMed

    Son, Min-Hui; Kim, Jongchul; Shin, Eun-Su; Seo, Sung-Hee; Chang, Yoon-Seok

    2015-12-30

    The levels and distributional characteristics of hexabromocyclododecane (HBCD) diastereoisomers have been largely reported for various fish and select shellfish. In this study, we reclassified a number and variety of marine invertebrates, including shellfish, to further contribute to the comprehensive understanding of the effects and assessment of human exposure to HBCD. Overall, 30 marine invertebrate species (n=188) were investigated and the following order of ∑2HBCD (α- and γ-HBCD) was observed: fish>chordata>cephalopoda>echinodermata>bivalve>crustacea. The marine invertebrates that were reclassified into nektonic and benthic organisms showed similar concentration of ∑2HBCD. The feeding habits and modes of the marine organisms were considered to compare the degree of bioaccumulation and diastereoisomer-specific distribution of HBCD due to the effects of the environment in and around pollution sources, as well as the organisms' metabolic capacities. To the best of our knowledge, this is the first study to examine the species-specific distribution patterns of HBCD for both fish and marine invertebrates. We expect to significantly expand the understanding of the environmental fate of HBCD for marine organisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea.

    PubMed

    Kocatepe, Demet; Turan, Hülya

    2012-06-01

    The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series.

  20. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    PubMed

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2016-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Tropical fishes dominate temperate reef fish communities within western Japan.

    PubMed

    Nakamura, Yohei; Feary, David A; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic

  2. Respiration of four species of deep-sea demersal fishes measured in situ in the eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Drazen, Jeffrey C.; Yeh, John

    2012-01-01

    The lack of data on the metabolism of deep-sea demersal fishes is a major gap in our ecological knowledge of the deep ocean. Metabolism influences individual rate processes such as resource utilization, growth, and reproduction. It also correlates with an animal's ability to accommodate ocean acidification. Here we describe an autonomous in situ respirometry system that is deployed autonomously from a ship to capture fishes attracted to bait, and measure their rate of oxygen consumption. This instrument is multi-chambered and relies on the fish to actuate the capture mechanism and start the experiments. Although capture rates were low, data on five fishes were obtained including Eptatretus deani, two Coryphaenoides acrolepis, Antimora microlepis, and Pachycara gymninium. The metabolisms of the latter two species were measured for the first time. The metabolic rates were low (0.09-0.40 μmols O 2 g -1 h -1 at temperatures of 1.8-4.0 °C) in comparison to shallow water species. After taking temperature differences into account only the metabolic rates of benthopelagic species, C. acrolepis and A. microlepis, were substantially lower, by an order of magnitude, than shallow water relatives such as cod and pollock. The metabolic rate of the deep-sea fishes varied considerably clearly warranting further experiments to ascertain which factors are likely to explain the differences.

  3. Multilevel assessment of fish species traits to evaluate habitat degradation in streams of the upper midwest

    USGS Publications Warehouse

    Goldstein, R.M.; Meador, M.R.

    2005-01-01

    We used species traits to examine the variation in fish assemblages for 21 streams in the Northern Lakes and Forests Ecoregion along a gradient of habitat disturbance. Fish species were classified based on five species trait-classes (trophic ecology, substrate preference, geomorphic preference, locomotion morphology, and reproductive strategy) and 29 categories within those classes. We used a habitat quality index to define a reference stream and then calculated Euclidean distances between the reference and each of the other sites for the five traits. Three levels of species trait analyses were conducted: (1) a composite measure (the sum of Euclidean distances across all five species traits), (2) Euclidean distances for the five individual species trait-classes, and (3) frequencies of occurrence of individual trait categories. The composite Euclidean distance was significantly correlated to the habitat index (r = -0.81; P = 0.001), as were the Euclidean distances for four of the five individual species traits (substrate preference: r = -0.70, P = 0.001; geomorphic preference: r = -0.69, P = 0.001; trophic ecology: r = -0.73, P = 0.001; and reproductive strategy: r = -0.64, P = 0.002). Although Euclidean distances for locomotion morphology were not significantly correlated to habitat index scores (r = -0.21; P = 0.368), analysis of variance and principal components analysis indicated that Euclidean distances for locomotion morphology contributed to significant variation in the fish assemblages among sites. Examination of trait categories indicated that low habitat index scores (degraded streams) were associated with changes in frequency of occurrence within the categories of all five of the species traits. Though the objectives and spatial scale of a study will dictate the level of species trait information required, our results suggest that species traits can provide critical information at multiple levels of data analysis. ?? Copyright by the American Fisheries

  4. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A

    2013-04-23

    Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing.

  5. The Species and Origin of Shark Fins in Taiwan's Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis.

    PubMed

    Chuang, Po-Shun; Hung, Tzu-Chiao; Chang, Hung-An; Huang, Chien-Kang; Shiao, Jen-Chieh

    2016-01-01

    The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.

  6. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics

    NASA Astrophysics Data System (ADS)

    Salzburger, Walter; Meyer, Axel

    With more than 3,000 species, the fish family Cichlidae is one of the most species-rich families of vertebrates. Cichlids occur in southern and central America, Africa, Madagascar, and India. The hotspot of their biodiversity is East Africa, where they form adaptive radiations composed of hundreds of endemic species in several lakes of various sizes and ages. The unparalleled species richness of East African cichlids has been something of a conundrum for evolutionary biologists and ecologists, since it has been in doubt whether these hundreds of species arose by allopatric speciation or whether it is necessary to invoke somewhat less traditional models of speciation, such as micro-allopatric, peripatric, or even sympatric speciation or evolution through sexual selection mediated by female choice. Ernst Mayr's analyses of these evolutionary uniquely diverse species assemblages have contributed to a more direct approach to this problem and have led to a deeper understanding of the patterns and processes that caused the formation of these huge groups of species. We review here recent molecular data on population differentiation and phylogenetics, which have helped to unravel, to some extent, the patterns and processes that led to the formation and ecological maintenance of cichlid species flocks. It is becoming apparent that sexually selected traits do play an important role in speciation in micro-allopatric or even sympatric settings. Species richness seems to be roughly correlated with the surface area, but not the age, of the lakes. We observe that the oldest lineages of a species flock of cichlids are often less species-rich and live in the open water or deepwater habitats. While the species flocks of the Lake Malawai and the Lake Victoria areas were shown to be monophyletic, the cichlid assemblage of Lake Tanganyika seems to consist of several independent species flocks. Cichlids emerge as an evolutionary model system in which many fundamental questions in

  7. Physical factors affecting the abundance and species richness of fishes in the shallow waters of the southern Bothnian Sea (Sweden)

    NASA Astrophysics Data System (ADS)

    Thorman, Staffan

    1986-03-01

    The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.

  8. Using hierarchical Bayesian multi-species mixture models to estimate tandem hoop-net based habitat associations and detection probabilities of fishes in reservoirs

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.

    2015-01-01

    Species distribution models are useful tools to evaluate habitat relationships of fishes. We used hierarchical Bayesian multispecies mixture models to evaluate the relationships of both detection and abundance with habitat of reservoir fishes caught using tandem hoop nets. A total of 7,212 fish from 12 species were captured, and the majority of the catch was composed of Channel Catfish Ictalurus punctatus (46%), Bluegill Lepomis macrochirus(25%), and White Crappie Pomoxis annularis (14%). Detection estimates ranged from 8% to 69%, and modeling results suggested that fishes were primarily influenced by reservoir size and context, water clarity and temperature, and land-use types. Species were differentially abundant within and among habitat types, and some fishes were found to be more abundant in turbid, less impacted (e.g., by urbanization and agriculture) reservoirs with longer shoreline lengths; whereas, other species were found more often in clear, nutrient-rich impoundments that had generally shorter shoreline length and were surrounded by a higher percentage of agricultural land. Our results demonstrated that habitat and reservoir characteristics may differentially benefit species and assemblage structure. This study provides a useful framework for evaluating capture efficiency for not only hoop nets but other gear types used to sample fishes in reservoirs.

  9. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage.

    PubMed

    Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

  10. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species.

    PubMed

    Fragoso-Moura, E N; Oporto, L T; Maia-Barbosa, P M; Barbosa, F A R

    2016-02-01

    The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil) comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD). Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010) of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length) seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass) and Pygocentrus nattereri (red piranha) are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  11. Size, time, and asynchrony matter: the species-area relationship for parasites of freshwater fishes.

    PubMed

    Zelmer, Derek A

    2014-10-01

    The tendency to attribute species-area relationships to "island biogeography" effectively bypasses the examination of specific mechanisms that act to structure parasite communities. Positive covariation between fish size and infrapopulation richness should not be examined within the typical extinction-based paradigm, but rather should be addressed from the standpoint of differences in colonization potential among individual hosts. Although most mechanisms producing the aforementioned pattern constitute some variation of passive sampling, the deterministic aspects of the accumulation of parasite individuals by fish hosts makes untenable the suggestion that infracommunities of freshwater fishes are stochastic assemblages. At the component community level, application of extinction-dependent mechanisms might be appropriate, given sufficient time for colonization, but these structuring forces likely act indirectly through their effects on the host community to increase the probability of parasite persistence. At all levels, the passive sampling hypothesis is a relevant null model. The tendency for mechanisms that produce species-area relationships to produce nested subset patterns means that for most systems, the passive sampling hypothesis can be addressed through the application of appropriate null models of nested subset structure.

  12. Modelling the growth of Listeria monocytogenes in Mediterranean fish species from aquaculture production.

    PubMed

    Bolívar, Araceli; Costa, Jean Carlos Correia Peres; Posada-Izquierdo, Guiomar D; Valero, Antonio; Zurera, Gonzalo; Pérez-Rodríguez, Fernando

    2018-04-02

    Over the last couple of decades, several studies have evaluated growth dynamics of L. monocytogenes in lightly processed and ready-to-eat (RTE) fishery products mostly consumed in Nordic European countries. Other fish species from aquaculture production are of special interest since their relevant consumption patterns and added value in Mediterranean countries, such as sea bream and sea bass. In the present study, the growth of L. monocytogenes was evaluated in fish-based juice (FBJ) by means of optical density (OD) measurements in a temperature range 2-20 °C under different atmosphere conditions (i.e. reduced oxygen and aerobic). The Baranyi and Roberts model was used to estimate the maximum growth rate (μ max ) from the observed growth curves. The effect of storage temperature on μ max was modelled using the Ratkowsky square root model. The developed models were validated using experimental growth data for L. monocytogenes in sea bream and sea bass fillets stored under static and dynamic temperature conditions. Overall, models developed in FBJ provided fail-safe predictions for L. monocytogenes growth. For the model generated under reduced oxygen conditions, bias and accuracy factor for growth rate predictions were 1.15 and 1.25, respectively, showing good performance to adequately predict L. monocytogenes growth in Mediterranean fish products. The present study provides validated predictive models for L. monocytogenes growth in Mediterranean fish species to be used in microbial risk assessment and shelf-life studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    ERIC Educational Resources Information Center

    Taylor, Tamra Faris

    This publication contains a detailed list of the birds, mammals, fish, amphibians, reptiles, and invertebrates found in Alaska. Part I lists the species by geographical regions. Part II lists the species by the ecological regions of the state. (CO)

  14. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    EPA Science Inventory

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  15. Using multiple gears to assess acoustic detectability and biomass of fish species in lake superior

    USGS Publications Warehouse

    Yule, D.L.; Adams, J.V.; Stockwell, J.D.; Gorman, O.T.

    2007-01-01

    Recent predator demand and prey supply studies suggest that an annual daytime bottom trawl survey of Lake Superior underestimates prey fish biomass. A multiple-gear (acoustics, bottom trawl, and midwater trawl) nighttime survey has been recommended, but before abandoning a long-term daytime survey the effectiveness of night sampling of important prey species must be verified. We sampled three bottom depths (30, 60, and 120 m) at a Lake Superior site where the fish community included all commercially and ecologically important species. Day and night samples were collected within 48 h at all depths during eight different periods (one new and one full moon period during both early summer and late summer to early fall over 2 years). Biomass of demersal and benthic species was higher in night bottom trawl samples than in day bottom trawl samples. Night acoustic collections showed that pelagic fish typically occupied water cooler than 15°C and light levels less than 0.001 lx. Using biomass in night bottom trawls and acoustic biomass above the bottom trawl path, we calculated an index of acoustic detectability for each species. Ciscoes Coregonus artedi, kiyis C. kiyi, and rainbow smeltOsmerus mordax left the bottom at night, whereas bloaters C. hoyi stayed nearer the bottom. We compared the biomass of important prey species estimated with two survey types: day bottom trawls and night estimates of the entire water column (bottom trawl biomass plus acoustic biomass). The biomass of large ciscoes (>200 mm) was significantly greater when measured at night than when measured during daylight, but the differences for other sizes of important species did not vary significantly by survey type. Nighttime of late summer is a period when conditions for biomass estimation are largely invariant, and all important prey species can be sampled using a multiple-gear approach.

  16. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic): Bluefish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J.D.; Van Den Avyle, M.J.; Bozeman, E.L. Jr.

    1989-04-01

    Species profiles are literature summaries of the life history, distribution, and environmental requirements of coastal fishes and invertebrates. Profiles are prepared to assist with environmental impact assessment. The bluefish (Pomatomus saltatrix) is a valuable recreational and commercial fish on the Atlantic coast. In the South Atlantic Region the recreational catch exceeds the commercial catch. The bluefish is a migratory pelagic fish that generally travels northward in spring and summer and southward in fall and winter along the Atlantic seaboard. In the South Atlantic Region, spawning occurs primarily during spring waters just shoreward of the Gulf Stream form southern North Carolinamore » to Florida. Most larvae are carried northward by the Gulf Stream and are dispersed over the continental slope of the Middle Atlantic Region. Adult bluefish inhabit nearshore areas in the South Atlantic Region during their southerly migration in fall and winter. Larval bluefish eat mostly copepods, cladocerans, and invertebrate eggs; juveniles eat larger invertebrates and fishes. Adult bluefish eat fishes and seem to prefer schooling coastal species. Bluefish have been reported to avoid areas of low dissolved oxygen. Water turbidity may affect feeding because bluefish rely on vision to locate prey. Environmental disturbances which affect the dissolved oxygen concentration or turbidity of estuarine and nearshore waters may, therefore, affect bluefish distribution and feeding. 40 refs., 4 figs., 2 tabs.« less

  17. Liquid chromatographic determination of florfenicol in the plasma of multiple species of fish

    USGS Publications Warehouse

    Vue, C.; Schmidt, L.J.; Stehly, G.R.; Gingerich, W.H.

    2002-01-01

    A simple method was developed for determining florfenicol concentration in a small volume (250 mul) of plasma from five phylogenetically diverse species of freshwater fish. Florfenicol was isolated from the plasma matrix through C-18 solid-phase extraction and quantified by reversed-phase high-performance liquid chromatography with UV detection. The accuracy (84-104%), precision (%RSDless than or equal to8), and sensitivity (quantitation limit <30 ng/ml) of the method indicate its usefulness for conducting pharmacokinetic studies on a variety of freshwater fish. Published by Elsevier Science B.V.

  18. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (North Atlantic): Rainbow Smelt

    DTIC Science & Technology

    1989-08-01

    gravel, with water depths at low tide bluefish , POmatomus saltatrix (Smith of 0.1 to 1.3 m (Murawski et a]. and Wells 1977). In the Great Lakes 1980...fish for commercially and recreationally valuable fishes such as striped bass and bluefish on the east coast and several species of salmon and trout in

  19. Occurrence and distribution of fish species in the Great and Little Miami River basins, Ohio and Indiana, pre-1900 to 1998

    USGS Publications Warehouse

    Harrington, Stephanie

    1999-01-01

    Historically, 133 fish species representing 25 families have been documented in the Great and Little Miami River Basins. Of these, 132 species have been reported in the basins since 1901, 123 since 1955, 117 since 1980, and 113 post-1990. Natural processes and human activities have both been shown to be major factors in the alteration of fish-community structure and the decrease in species diversity. In the late 1800's, dam construction and the removal of riparian zones restricted fish migration and altered habitat. Industrialization and urbanization increased considerably in the 1900's, further degrading stream habitat and water quality. Species requiring riffles and clean, hard stream bottoms were the most adversely affected. The use of agricultural and industrial chemicals prompted fish-consumption advisories and an increase in studies reporting the occurrence of external fish anomalies. Over the last 20 years, water quality has improved in part because of the upgrading of wastewater-treatment facilities; and, as a result, many streams of the Great and Little Miami River Basins generally meet or exceed existing water-quality standards. Although significant improvements have occurred in the basins, continued efforts to improve water quality and restore the physical habitat of streams will be necessary to increase fish abundance and biodiversity

  20. The evolution of aryl hydrocarbon signaling proteins: diversity of ARNT isoforms among fish species.

    PubMed

    Powell, W H; Hahn, M E

    2000-01-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) mediates aryl hydrocarbon signaling and toxicity by dimerizing with the ligand-activated aryl hydrocarbon receptor (AHR), forming a complex that binds specific DNA elements and alters transcription of target genes. Two genes encode different forms of ARNT in rodents: ARNT1, which is widely expressed, and ARNT2, which exhibits a very restricted expression pattern. In an effort to characterize aryl hydrocarbon signaling mechanisms in fishes, we previously isolated an ARNT cDNA from Fundulus heteroclitus and discovered that this species expresses ARNT2 ubiquitously. This situation differs not only from mammals, but also from rainbow trout, which expresses a divergent ARNT gene that we hypothesized was peculiar to salmonids (rtARNTa/b). In this communication, we examine the ARNT sequences of multiple fish species, including a newly isolated cDNA from scup (Stenotomus chrysops). Our phylogenetic analysis demonstrates that zebrafish ARNT, like the Fundulus protein, is an ARNT2. Contrary to expectations, the scup ARNT is closely related to the rainbow trout protein, demonstrating that the existence of this ARNT isoform predates the divergence of salmonids from the other teleosts. Thus, different species of fish express distinct and highly conserved isoforms of ARNT. The number, type, and expression pattern of ARNT proteins may contribute to interspecies differences in aryl hydrocarbon toxicity, possibly through distinct interactions with additional PAS-family proteins.

  1. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish.

    PubMed

    Nearing, J; Betka, M; Quinn, S; Hentschel, H; Elger, M; Baum, M; Bai, M; Chattopadyhay, N; Brown, E M; Hebert, S C; Harris, H W

    2002-07-09

    To determine whether calcium polyvalent cation-sensing receptors (CaRs) are salinity sensors in fish, we used a homology-based cloning strategy to isolate a 4.1-kb cDNA encoding a 1,027-aa dogfish shark (Squalus acanthias) kidney CaR. Expression studies in human embryonic kidney cells reveal that shark kidney senses combinations of Ca(2+), Mg(2+), and Na(+) ions at concentrations present in seawater and kidney tubules. Shark kidney is expressed in multiple shark osmoregulatory organs, including specific tubules of the kidney, rectal gland, stomach, intestine, olfactory lamellae, gill, and brain. Reverse transcriptase-PCR amplification using specific primers in two teleost fish, winter flounder (Pleuronectes americanus) and Atlantic salmon (Salmo salar), reveals a similar pattern of CaR tissue expression. Exposure of the lumen of winter flounder urinary bladder to the CaR agonists, Gd(3+) and neomycin, reversibly inhibit volume transport, which is important for euryhaline teleost survival in seawater. Within 24-72 hr after transfer of freshwater-adapted Atlantic salmon to seawater, there are increases in their plasma Ca(2+), Mg(2+), and Na(+) that likely serve as a signal for internal CaRs, i.e., brain, to sense alterations in salinity in the surrounding water. We conclude that CaRs act as salinity sensors in both teleost and elasmobranch fish. Their tissue expression patterns in fish provide insights into CaR functions in terrestrial animals including humans.

  2. A hepatic metabolomics-based diagnostic approach to assess lethal toxicity of dithiocarbamate fungicide polycarbamate in three marine fish species.

    PubMed

    Hano, Takeshi; Ohkubo, Nobuyuki; Mochida, Kazuhiko

    2017-04-01

    The present study was performed to evaluate the toxic effect of the dithiocarbamate fungicide polycarbamate (PC) on the hepatic metabolic profiles of three marine fish species, red sea bream (Pagrus major), spotted halibut (Verasper variegatus), and marbled flounder (Pleuronectes yokohamae). First, juvenile fish were exposed to graded concentrations of PC for 96h; the 96-h LC 50 values obtained were 22-29, 239-553, and 301-364µgL -1 for red sea bream, spotted halibut, and marbled flounder, respectively, indicating that red sea bream possessed higher sensitivity to PC than the two benthic species. Second, the fish were exposed to lethal-equivalent concentration (H group) or sub-lethal (one-tenth of the H group concentrations; L group) for 24 and 96h and gas-chromatography based metabolomics approach was employed to explore the crucial biomarker metabolite associated with lethal toxicity. Of the 53 metabolites identified, only reduced glutathione (GSH) was consistently elevated in the H group for the three fish species at 96h. The calculated cut-off value of GSH (mM) based on receiver operating curve analysis between H group and the other treatment groups (control, solvent control, and L group) was obtained at 0.56mM, which allowed to distinguish between the groups with high confidence for the three fish species. These results are the first to demonstrate the potential of using GSH as a possible biomarker metabolite and its usefulness of threshold cut-off value for diagnosing life-threatening health conditions of fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Gimme shelter: The importance of crevices to some fish species inhabiting a deeper-water rocky outcrop in Southern California

    USGS Publications Warehouse

    Love, M.S.; Schroeder, D.M.; Lenarz, B.; Cochrane, G.R.

    2006-01-01

    Federal law governing fisheries management recognizes the role habitat plays in structuring fish assemblages and achieving sustainable fisheries. However, in most instances it is not known which aspects of habitat are important to the lives of fish species. In 2004, we examined the importance of sheltering sites (crevices) to fishes living along low ledges in deeper waters off Anacapa Island, southern California. We found that patterns of fish-habitat relationships varied among the eight most abundant species. Three species, bocaccio (Sebastes paucispinis), vermilion (S. miniatus), and flag (S. rubrivinctus) rockfishes, had densities one to three orders of magnitude greater in the deep crevice habitat compared to low relief rock or shallow crevice habitats. Density and mean size of the two most abundant fishes, halfbanded (S. semicinctus) and squarespot (S. hopkinsi) rockfishes, generally increased as complexity of rock habitat increased. Not all species had the highest densities in deep crevice habitat. Greenspotted rockfish (S. chlorostictus) and blackeye goby (Rhinogobiops nicholsii) showed no significant difference in density among rock habitats. Pink seaperch (Zalembius rosaceus) were absent in the deep crevice habitat and abundant only in low relief rock habitats. Our study implies that it is not sufficient to distinguish only between soft and hard bottom types when using habitat to guide fisheries management strategies. Finer-scale investigations of fish-habitat relationships, paired with habitat mapping and groundtruthing, aid in the design and positioning of Marine Park Areas (MPAs) and are necessary to facilitate understanding of how a particular MPA may contribute to fisheries management.

  4. Evaluating changes in stream fish species richness over a 50-year time-period within a landscape context

    USGS Publications Warehouse

    Midway, Stephen R.; Wagner, Tyler; Tracy, Bryn H.; Hogue, Gabriela M.; Starnes, Wayne C.

    2015-01-01

    Worldwide, streams and rivers are facing a suite of pressures that alter water quality and degrade physical habitat, both of which can lead to changes in the composition and richness of fish populations. These potential changes are of particular importance in the Southeast USA, home to one of the richest stream fish assemblages in North America. Using data from 83 stream sites in North Carolina sampled in the 1960’s and the past decade, we used hierarchical Bayesian models to evaluate relationships between species richness and catchment land use and land cover (e.g., agriculture and forest cover). In addition, we examined how the rate of change in species richness over 50 years was related to catchment land use and land cover. We found a negative and positive correlation between forest land cover and agricultural land use and average species richness, respectively. After controlling for introduced species, most (66 %) stream sites showed an increase in native fish species richness, and the magnitude of the rate of increase was positively correlated to the amount of forested land cover in the catchment. Site-specific trends in species richness were not positive, on average, until the percentage forest cover in the network catchment exceeded about 55 %. These results suggest that streams with catchments that have moderate to high (>55 %) levels of forested land in upstream network catchments may be better able to increase the number of native species at a faster rate compared to less-forested catchments.

  5. Complementarity of Rotating Video and Underwater Visual Census for Assessing Species Richness, Frequency and Density of Reef Fish on Coral Reef Slopes

    PubMed Central

    Mallet, Delphine; Wantiez, Laurent; Lemouellic, Soazig; Vigliola, Laurent; Pelletier, Dominique

    2014-01-01

    Estimating diversity and abundance of fish species is fundamental for understanding community structure and dynamics of coral reefs. When designing a sampling protocol, one crucial step is the choice of the most suitable sampling technique which is a compromise between the questions addressed, the available means and the precision required. The objective of this study is to compare the ability to sample reef fish communities at the same locations using two techniques based on the same stationary point count method: one using Underwater Visual Census (UVC) and the other rotating video (STAVIRO). UVC and STAVIRO observations were carried out on the exact same 26 points on the reef slope of an intermediate reef and the associated inner barrier reefs. STAVIRO systems were always deployed 30 min to 1 hour after UVC and set exactly at the same place. Our study shows that; (i) fish community observations by UVC and STAVIRO differed significantly; (ii) species richness and density of large species were not significantly different between techniques; (iii) species richness and density of small species were higher for UVC; (iv) density of fished species was higher for STAVIRO and (v) only UVC detected significant differences in fish assemblage structure across reef type at the spatial scale studied. We recommend that the two techniques should be used in a complementary way to survey a large area within a short period of time. UVC may census reef fish within complex habitats or in very shallow areas such as reef flat whereas STAVIRO would enable carrying out a large number of stations focused on large and diver-averse species, particularly in the areas not covered by UVC due to time and depth constraints. This methodology would considerably increase the spatial coverage and replication level of fish monitoring surveys. PMID:24392126

  6. Fish Karyome: A karyological information network database of Indian Fishes.

    PubMed

    Nagpure, Naresh Sahebrao; Pathak, Ajey Kumar; Pati, Rameshwar; Singh, Shri Prakash; Singh, Mahender; Sarkar, Uttam Kumar; Kushwaha, Basdeo; Kumar, Ravindra

    2012-01-01

    'Fish Karyome', a database on karyological information of Indian fishes have been developed that serves as central source for karyotype data about Indian fishe