Science.gov

Sample records for eustatic sea level

  1. Eustatic sea level fluctuations induced by polar wander

    NASA Technical Reports Server (NTRS)

    Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.

    1990-01-01

    It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.

  2. Effects of global eustatic sea level variations and tectonism on stratigraphy of Iraq

    SciTech Connect

    Gawarecki, S.L.; Schamel, S.

    1986-05-01

    The stratigraphy of Iraq is marked by complex vertical and lateral facies sequences controlled predominantly by two factors: (1) eustatic sea level variations, and (2) tectonic movements. Analysis of the sedimentary cycles provides a framework for evaluating the relative economic importance of transgressive versus regressive facies within the Iraq stratigraphic succession. Most reservoir rocks, principally reefal and neritic limestones and to a lesser extent deltaic facies, were deposited during relatively high sea level stands. Source rock depositional environments in Iraq were typically either deep subsiding or shallow restricted intrashelf basins. These environments were not controlled by sea level, but primarily by local tectonics. Applying modern theories of plate tectonics and sea level control of facies to this well-studied petroleum province allows new interpretations of the region's geologic evolution.

  3. The role of tectonics in the estimation of mid-Pliocene eustatic sea level history

    NASA Astrophysics Data System (ADS)

    Chandan, Deepak; Peltier, William Richard

    2014-05-01

    The availability of accurate records of sea-level history is important to the understanding of past climate conditions as eustatic sea level is strongly related to the extent of continental ice cover. Therefore, the possible contamination of proxy based local records of relative sea-level height by tectonic processes that have been active subsequent to the formation of the sea level indicator presents a significant challenge to the inference of eustatic level (eg. Rowley et al, 2013). The uncertainty introduced by tectonic processes has become a significant obstacle to the success of the PlioMIP program, which is an ongoing international collaboration devoted to understand the climate of the most recent period (~3 Mya - mid-Pliocene) when trace gas concentrations where essentially equal to modern. At this time it has nevertheless been suggested that eustatic sea level was significantly higher than present implying that slow feedbacks in the climate system, given sufficient time to operate, must have led to a significant diminution of polar land ice. The ongoing PlioMip program is devoted to understanding the climate of this era and the quantity of the constraints that can be brought to bear upon eustatic sea level are clearly important to the success of this program. The Orangeburg Scarp along the U.S. east coast is a palaeo-shoreline that is dated to have formed during the mid-Pliocene. Therefore it continues to be a significant source for the mid-Pliocene eustatic sea-level record. An initial estimate of local relative sea level was provided by Dowsett and Cronin (1990) who suggested on the basis of their analysis that sea-level was 35m higher than present at that time and this estimate has continued to play an important role in the ongoing "Pliocene Debate". Here we employ a nonlinear 3D mantle convection model (Shahnas and Peltier, 2010, 2011) to investigate the time-dependent change in the dynamic surface topography forced by mantle convection over the past 3

  4. Computer models for defining eustatic sea level fluctuations in carbonate rocks

    SciTech Connect

    Read, J.F.; Elrick, M.E.; Osleger, D.A. )

    1990-05-01

    One- and two-dimensional computer models of carbonate sequences help define the amplitudes and periods of 20,000 years to 1 m.y. and 1-3 m.y. sea level fluctuations that have affected carbonate rocks. The models show that with low-amplitude 20-100 k.y. sea level fluctuations, tidal flats are likely to extend across the platform during short-term regressions, and vadose diagenesis is limited because sea level rarely drops far below the platform surface. With high-amplitude 20-100 k.y., sea level fluctuations, tidal flats are confined to coastal locations, very deep-water facies are overlain by shallow-water beds, and during regression sea level falls far below the platform, leaving karstic surfaces. The models also allow testing of random vs. Milankovitch-driven sea level changes. The feasibility of cyclic sedimentation due to autocyclic processes under static sea level can be shown by the modeling to be less likely than Milankovich climatic forcing for developing cyclic carbonate sequences. Models also help define relative dominance of 100 k.y. vs. 20 or 40 k.y. sea level oscillations. The presence of shallow-ramp vs. deep ramp upward-shallowing cycles that are common on many platforms provides valuable constraints on the modeling in that the sea level fluctuations generating the shallow cycles also have to be able to generate the deeper ramp cycles. Sea level fluctuations of 1-3 m.y. are constrained by the modeling because overestimated amplitudes result in sequences and high-frequency cycles that are far too thick. Rate of long-term falls are constrained by the modeling because where fall rate exceeds driving subsidence, the outer platform becomes unconformable, whereas it remains conformable where fall rate is below driving subsidence rate. Quantitative modeling techniques thus provide the means of constraining amplitudes and frequencies of eustatic sea level fluctuations in ancient carbonate sequences.

  5. New constraints on late Holocene eustatic sea-level changes from Mahé, Seychelles

    NASA Astrophysics Data System (ADS)

    Woodroffe, Sarah A.; Long, Antony J.; Milne, Glenn A.; Bryant, Charlotte L.; Thomas, Alexander L.

    2015-05-01

    This study provides new estimates of globally integrated ice sheet melt during the late Holocene (since 4 ka BP) from Seychelles in the western Indian Ocean, a tectonically stable, far field location where the necessary Glacial-Isostatic Adjustment (GIA) correction is small and is relatively insensitive to predictions using different Earth viscosity profiles. We compare sea level data from Seychelles to estimates of eustasy from two GIA models, ICE-5G and EUST3, which represent end-members in the quantity of global melt during the late Holocene. We use data from a range of coastal environments including fringing reef, present day beaches, fossil plateau and mangrove deposits on the largest island of the Seychelles archipelago, Mahé to reconstruct relative sea-level changes. Our data suggest that extensive coastal deposits of carbonate-rich sands that fringe the west coast formed in the last 2 ka and the horizontal nature of their surface topography suggests RSL stability during this period. Mangrove sediments preserved behind these deposits and in river mouths date to c. 2 ka and indicate that RSL was between -2 m and present during this interval. Correcting the reconstructed sea level data using a suite of optimal GIA models based on the two ice models mentioned above and a large number (c. 350) of Earth viscosity models gives a result that is consistent with the sedimentological constraints. When uncertainties in both model results and data are considered, it is possible to rule out eustatic sea levels below c. 2 m and more than a few decimetres above present during the past two millennia. This uncertainty is dominated by error in the reconstructions rather than the model predictions. We note, however, that our estimates of eustasy are more compatible with the EUST3 model compared to the ICE-5G model during the late Holocene (2-1 ka BP). Our evidence from Seychelles shows that the timing of when eustatic sea level first rose close to present is between the

  6. Mid-Cretaceous Eustatic sea level fall: magnitude and timing in Gulf of Mexico

    SciTech Connect

    Vierbuchen, R.C.; Oestmann, M.A.; Greenlee, S.M.

    1987-05-01

    The magnitude and timing of a mid-Cretaceous sea level fall have been documented on the margins of the Gulf of Mexico in east Texas. Analysis of seismic, log, and paleontologic data from east Texas demonstrates that a fall of 60 to 100 m occurred at the end of Washita (mid-Cenomanian) time. This sea level fall has been identified elsewhere on the shelves of the Gulf of Mexico and is proposed to have caused the mid-Cretaceous unconformity of the deep sea and the termination of Washita carbonate deposition. They conclude that this sea level fall is of regional significance and eustatic origin. The magnitude and timing of the fall agree with those postulated by Vail and others, and Haq and others, who recognized a major sea level fall in mid-Cenomanian time. The magnitude of sea level fall is estimated from the difference in elevation between carbonate buildups on the Buda margin, which accumulated at or near sea level, and fluvial deposits in the lower Woodbine, which immediately overlie Buda carbonates and have been drilled up to 20 km basinward of the shelf margin. After constructing a datum along the preexisting Buda shelf, they measure the thickness of sediment from this datum to the onlapping fluvial, lower Woodbine siliciclastics. This measurement is then corrected for compaction, isostatic subsidence due to sediment loading, and thermotectonic subsidence. The result, 60 m, is considered a minimum estimate. A similar measurement to the lowest seismically identified coastal onlap in the lower Woodbine yields an estimate of 100 m.

  7. Ferrelo fan, California: Depositional system influenced by Eustatic sea level changes

    USGS Publications Warehouse

    Howell, D.G.; Vedder, J.G.

    1984-01-01

    Remnants of an Eocene fan system are preserved onshore at San Diego and in the central part of the southern California borderland. Even though faults and erosion have truncated its margins, geophysical data and exploratory wells indicate that remaining parts of the fan extend beneath an offshore area nearly 400-km long and 40- to 100-km wide. Environments representing fluvial, fan-delta, shelf-channel, overlapping inner- to outer-fan, and basin-plain facies are recognized or inferred. Three progradational cycles onshore and two distinct pulses of sand accumulation offshore are attributable to eustatic low sea-level stands rather than to tectonic uplift or shifts in depositional patterns. ?? 1984 Springer-Verlag New York Inc.

  8. Effects of tectonism, eustatic sea level fluctuations, and climatic changes on Paleogene sedimentation in California

    SciTech Connect

    Nilsen, T.H.

    1988-03-01

    Paleogene sedimentation in California was strongly influenced by syndepositional tectonism, eustatic sea level changes, and variations in climate. Tectonic activity was most important in controlling sedimentation in basins that developed in mobile areas such as the Salinian block, Coast Ranges, Transverse Ranges, southern California borderland, and along the continental slope adjacent to the trench that formed the California plate margin. Although plutonism had largely terminated in California by Paleogene time, continued uplift of the Mesozoic batholithic complexes of the Klamath Mountains, Sierra Nevada, Mojave Desert, and Salinian block yielded abundant plutoniclastic detritus to paleogene basins. Accretion of exotic terranes during the Paleocene and early eocene, major uplift of the Franciscan assemblage in various parts of California during the Eocene, syndepositional faulting in numerous areas, angular unconformities, and coarse clastic sequences that include alluvial-fan and fault-scarp breccias are features that indicate major tectonic control of sedimentation in Paleogene basins. Renewed volcanism, starting during the late Eocene in northern California in the ancestral Cascade volcanic arc, and in the late Oligocene in many other parts of California, began to supply abundant volcaniclastic sediments locally. In some relatively stable areas, such as the flanks of the Peninsular Ranges and parts of the San Joaquin and Sacramento basins, the effects of global sea level changes on the sedimentary record are easily discerned. Climatic cycles had significant control over Paleogene sedimentation in some of these stable areas.

  9. High eustatic sea level during the middle Pliocene: Evidence from the southeastern U. S. Atlantic Coastal Plain

    SciTech Connect

    Dowsett, H.J.; Cronin, T.M. )

    1990-05-01

    The middle Pliocene, {approximately}3.5-2.5 Ma, was a period of global warmth preceding the growth of major Northern Hemisphere ice sheets. The authors report on eustatic sea level for the middle Pliocene based on microspaleontologic study of marine deposits of the Duplin Formation of South Carolina and North Carolina. The Duplin was deposited during a middle Pliocene marine transgression that formed the Orangeburg scarp, a prominent wave-cut geomorphic paleoshoreline of the southeastern U.S. Atlantic Coastal Plain. They concluded that (1) the scarp in South Carolina was formed mostly during the middle Pliocene (3.5-3.0 Ma), (2) eustatic sea level was about 35 {plus minus} 18 m higher than modern sea level (the scarp has been uplifted about 50-65 m since the middle Pliocene), and (3) ocean-water temperatures along eastern North America were warmer when the scarp was formed that they are at present.

  10. The high tide of the warm Pliocene: Implications of ~20 m Peak Eustatic Sea-Levels for Antarctic Deglaciation

    NASA Astrophysics Data System (ADS)

    Miller, K. G.; Browning, J. V.; Kulpecz, A. A.; Kominz, M. A.; Naish, T.; Rosenthal, Y.; Peltier, W. R.; Sosdian, S. M.; Wright, J. D.

    2010-12-01

    The eustatic peak of the Pliocene (ca. 3 Ma) allows evaluation of sea-level response to conditions warmer than present and with atmospheric carbon dioxide levels similar to the early 21st century. We provide new eustatic estimates for the Pliocene from backstripping shallow-marine, siliciclastic sections in Virginia, U.S.A., and New Zealand, accounting for the effects of compaction, Airy loading, and thermal subsidence. We compare our backstripped eustatic estimates with previously published estimates from a carbonate atoll (Enewetak), deep sea benthic foraminiferal oxygen isotopes, Mg-Ca, and uplifted marine terraces in the Carolinas and Alaska and conclude that the peak was 19±5 m, significantly lower than previously published estimates of 30-40 m derived from uplifted terraces. The 19-m peak implies not only the loss of the total equivalent of Greenland and West Antarctic ice sheets, but suggests volume loss of the East Antarctic Ice Sheet (EAIS) of ~4 m of sea-level equivalent. Our estimates provide helps resolve the long-standing controversy of the stability of the EAIS during the warmer-than-present Pliocene climatic optimum. The sea-level fall at MIC 100 (ca. 2.7 Ma) associated with the growth of large northern hemisphere ice sheets was remarkably large (~100 m) and may have cause a glacial isotostatic adjustment the resulted in uplift of the otherwise tectonically stable New Jersey coastal plain. Despite uncertainties in pre-ice core CO2 and global temperature measurements, the Pliocene provides a critical sea level-atmospheric CO2 calibration point for climates significantly warmer than the last major interglacial, MIC 5e.

  11. Geochemical and mineralogical evidence for relative and eustatic sea levels changes in Eocene to Oligocene carbonates in Alabama

    SciTech Connect

    Baum, J.S.; Humphrey, J.D. ); Baum, G.R. ); Thompson, P.R. )

    1990-05-01

    Eocene to Oligocene marine shelf carbonates cored in Baldwin County, Alabama, were subdivided into a sequence stratigraphic framework and sampled at closely spaced intervals to determine characteristic geochemical and mineralogical responses to fluctuations in eustatic and relative sea level. Except for the Eocene/Oligocene boundary interval, the carbonates were deposited landward of their respective depositional shelf edges. Sequence boundaries, transgressive surfaces, and surfaces of maximum starvation were delineated by lithologic and textural variations and gamma logs. Comparison of the Baldwin County core data with correlative Deep Sea Drilling Project/Ocean Drilling Program (DSDWODP) records reveal more clearly defined stable isotopic data trends due to greater sampling density per unit time. In the sequence stratigraphic framework the {delta}{sup 13}C signature mimics relative sea level changes (paleobathymetry) and changes in the O{sub 2} minimum; whereas, the {delta}{sup 18}O signature records the eustatic sea level history. Because the stable isotopes are recording different aspects of sea level history, it is necessary to evaluate isotopic signatures independently. Although minor diagenetic perturbations in the stable isotopic signals are found, the depositional signal clearly dominates the diagenetic signal. The paleogeographic position of this core gives a more accurate sea level record than either more landward sections presently exposed in outcrop that have undergone intense subaerial alteration and erosion or DSDP/ODP records that may be so condensed that the record appears incomplete in conventional sampling schemes . Authigenic mineralization related to sea level changes can be used to characterize surfaces within the depositional sequence framework. Trace elemental data shows that hydrologic flow, porosity, and cementation trends are subsequently controlled by the sequence framework.

  12. Effect of eustatic sea-level changes on saltwater-freshwater relations in the Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Meisler, Harold; Leahy, P. Patrick; Knobel, LeRoy L.

    1984-01-01

    A finite-difference computer model was used to analyze the effect of eustatic sea-level changes on the development of the transition zone between fresh ground water and underlying saltwater in the northern Atlantic Coastal Plain. The model simulates, in cross section, the sedimentary wedge from the Delaware River estuary in New Jersey to the Continental Slope. Simulated steady-state freshwater flow is separated from static saltwater by a sharp interface. The model was used to test the sensitivity of the simulated interface position to anisotropy as well as to sea-level elevation. Increasing anisotropy causes the interface to be shallower and extend farther offshore. Lowering sea level causes the interface to be deeper and to extend farther offshore. Simulations using hydraulic conductivities based on available data suggest that the transition zone is not in equilibrium with present sea level. The position of the transition zone probably reflects a long-term average sea level of between 50 and 100 ft below present sea level. The cyclic movement of salty ground water in response to sea-level fluctuations during the Quaternary and Late Tertiary caused the saltwater to mix with freshwater, thus producing a broad transition zone. The freshwater is predominantly sodium bicarbonate in character. The saltwater, from New Jersey to Virginia, probably is a sodium calcium chloride brine. In North Carolina, it is primarily seawater.

  13. Glaciers dominate eustatic sea-level rise in the 21st century

    USGS Publications Warehouse

    Meier, Mark Frederick; Dyurgerov, M.B.; Rick, Ursula K.; Pfeffer, William Tad; Anderson, Suzanne P.; Glazovsky, Andrey F.

    2007-01-01

    Ice loss to the sea currently accounts for virtually all of the sea-level rise that is not attributable to ocean warming, and about 60% of the ice loss is from glaciers and ice caps rather than from the two ice sheets. The contribution of these smaller glaciers has accelerated over the past decade, in part due to marked thinning and retreat of marine-terminating glaciers associated with a dynamic instability that is generally not considered in mass-balance and climate modeling. This acceleration of glacier melt may cause 0.1 to 0.25 meter of additional sea-level rise by 2100.

  14. Tectonic imprints upon inferences of eustatic sea level history: the Pliocene warm period and the Orangeburg Scarp

    NASA Astrophysics Data System (ADS)

    Chandan, D.; Peltier, W. R.

    2013-12-01

    The issue of tectonic contamination of geological inferences of relative sea level history is an important one. The issue arises on timescales that range from the 21-26 kyrs that have passed since the Last Glacial Maximum, to the most recent time when periods as warm as the present are expected to have existed, such as the mid-Pliocene. The coral based record from Barbados, for example, is known to be contaminated by continuing tectonic uplift of the island at a rate of approximately 0.34 mm/yr. For the Pliocene warm period at ~3 Myr, records from geological sites, such as the Orangeburg Scarp in North Carolina, have played a prominent role in arguments underpinning the design of the ongoing international PlioMIP program. In connection with the latter site, Rowley et al (2013) have recently argued that this record is contaminated by a tectonic imprint sufficiently strong to suggest that the usual inferences of Pliocene eustatic sea level based upon it (eg. Miller et al, 2012) must be seen as highly suspect. Here we employ a tomographically constrained model of the mantle convection process to revisit the issue of the tectonic imprint on relative sea level at the Orangeburg site, as well as other similar locations. Our analysis is based upon the inferred time dependence of dynamic topography forced by the mantle's internal density heterogeneities delivered by the S20RTS seismic tomography model. We begin by comparing the static, present day dynamic topography predicted by the (linear) internal loading theory based on the formalism of Pari and Peltier (2000) with that predicted using using a full three dimensional version of the nonlinear time-dependent mantle convection model of Shahnas and Peltier (2010, 2011). We demonstrate first that these two methodologies produce extremely similar results for the static field. We then proceed to run the nonlinear convection model in data assimilation mode while continuously nudging the internal density field back towards the

  15. Monitoring Global Sea Level: Eustatic Variations, Local Variations, and Solid Earth Effects

    NASA Technical Reports Server (NTRS)

    Davis, James L.

    2000-01-01

    Project BIFROST (Baseline Inferences for Fennoscandian Rebound Observations. Sea-level and Tectonics) combines networks of continuously operating CPS receivers in Sweden and Finland to measure ongoing crustal deformation due to glacial isostatic adjustment, (CIA). We present an analysis of data collected in the years 1993-1998. We compare the CPS determinations of three-dimensional crustal motion to predictions calculated using the high resolution Fennoscandian deglaciation model recently proposed by Lambeck et al. We find that the the maximum observed uplift rate (approx. 10 mm/ yr) and the maximum predicted uplift rate agree to better than 1 mm/ yr. The patterns of uplift also agree quite well, although differences are discernible. The chi(exp 2) difference between predicted and GPS-observed radial rates is reduced by a factor of 5-6 compared to that for the "null" (no uplift) model, depending on whether a mean difference is first removed. The north components of velocity agree at about the same relative level. whereas the agreement for the east components is worse, a problem possibly related to the lack of bias fixing. We have also compared the values for the observed radial deformation rates to those based on sea-level rates from Baltic tide gauges. The weighted RMS difference between CPS and tide-gauge rates (after removing a mean) is 0.6 mm/ yr, giving an indication of the combined accuracy of the CPS and tide-gauge measurement systems. Spectral analysis of the time series of position estimates yields spectral indices in the range -1 to -2. An EOF analysis indicates, however, that much of this power is correlated among the sites. The correlation appears to be regional and falls off only slightly with distance. Some of this correlated noise is associated with snow accumulation on the antennas or, for those antennas with radomes, on the radomes. This problem has caused us to modify the radomes used several times, leading to one of our more significant sources

  16. Platform/foreslope facies and buildup geometry resulting from short-term and long-term eustatic sea level fluctuations: latemar buildup (Middle Triassic), Dolomites, northern Italy

    SciTech Connect

    Harris, M.T.; Goldhammer, R.

    1987-05-01

    Superimposed short-term and long-term eustatic sea level fluctuations directly controlled Latemar platform stratigraphy and indirectly influenced the deeper water facies and overall buildup geometry. Deeper water facies, the foreslope and toe of slope, are a function of platform submergence (highstand shedding) and subaerial exposure (lowstand lithification and erosion) and thus only indirectly reflect eustatic fluctuations. The Latemar consists of a platform core (3-4 km wide, 700 m thick) with a narrow margin, flanked by foreslope (30-35/sup 0/ dips), toe of slope, and basin deposits. The shallowing-upward platform sequence records a long-term (about 10 m.y.) eustatic sea level oscillation with an amplitude of about 150 m. The lower 250 m marks an initial catch-up phase (subtidal carbonates); the upper 450 m marks the sequential keep-up phase (meter-scale cyclic carbonates). These cycles record platform submergence and exposure caused by short-term (10/sup 4/-10/sup 5/ years) Milankovitch eustatic oscillations superimposed on the long-term trend. Platform submergence and exposure conditions result in contrasting foreslope deposits. During highstands, platform-derived sands bypass the foreslope, accumulating as toe-of-slope graded beds and basin turbidites. During lowstands, sand supply ceases, producing basin hard-grounds. Foreslope megabreccias contain margin-derived boundstone clasts, with only minor platform-derived sands (highstands) and lithified clasts (lowstands). As the platform margin/foreslope contact is nearly vertical, a progressively increasing volume of foreslope megabreccia was needed to maintain the depositional geometry. This coincides with the most commonly exposed platform interval, suggesting that platform exposure determines buildup flank geometry by controlling megabreccia clast production.

  17. Glacial-eustatic sea-level fluctuation curve for Carboniferous-Permian boundary strata based on outcrops in the North American Midcontinent and North-Central Texas

    SciTech Connect

    Boardman, D.R. . School of Geology)

    1993-02-01

    Based on lithologic and faunal analysis of uppermost Carboniferous through Lower Permian strata (Wabaunsee through lower Chase groups) exposed from southeastern Nebraska through north-central Oklahoma, a preliminary glacial-eustatic sea-level fluctuation curve is presented herein. In addition to the sea-level curve presented for the Midcontinent region, one for coeval outcropping strata (middle and upper Cisco Group) of the Eastern Shelf of the Midland Basin is also presented based on similar criteria. This sea-level curve is derived from new field studies as well as a refinement of earlier curves presented by Harrison (1973), and Boardman and Malinky (1985). The conclusion on the nature of the Carboniferous-Permian boundary strata cyclothems in the Midcontinent is mirrored by the results of that from North-Central Texas. Each of the primary biostratigraphically-based picks for the Carboniferous-Permian boundary coincide with either intermediate of major cycles in both study areas. Utilization of a glacial-eustatic maximum transgressive event for the Carboniferous-Permian boundary should result in a more correlatable level for intercontinental correlation.

  18. Limitations on lowstand meteoric diagenesis in the Pliocene-Pleistocene of Florida and Great Bahama Bank: Implications for eustatic sea-level models

    SciTech Connect

    Melim, L.A.

    1996-10-01

    Data from three Bahamian and South Floridan cores with deeper water facies show that, contrary to current models, there is no phreatic meteoric diagenesis that can be attributed to large-scale sea-level lowstands. Models of meteoric diagenesis in carbonate sediments commonly assume major phreatic alteration during glacio-eustatic sea-level lowstands. However, the diagenesis previously attributed to large-scale (> 80 m) lowstands is found in shallow-water facies that have been repetitively exposed. In order to document diagenesis from large-scale lowstands, an interval is needed that was deposited in deeper water and not immediately exposed to meteoric fluids. Three cores with such deeper-water facies indicate that the majority of phreatic meteoric diagenesis in Florida and the Bahamas happened during glacio-eustatic highstands, not during lowstands. The data also suggest that diagenetically active meteoric lenses in Florida and the Bahamas are restricted to within 60 m, and perhaps less, of the land surface. The most likely reasons deeper lenses are chemically inactive are (1) the greater percolation distance allows the water to reach saturation prior to entering the lens, and (2) the large distance exceeds the reach of soil-derived organic matter, known to drive diagenesis in meteorite lenses. Models that currently assume a constant rate for alteration in meteoric fluids need to accommodate this variation with thickness of the vadose zone. 29 refs., 5 figs.

  19. De-confounding of Relations Between Land-Level and Sea-Level Change, Humboldt Bay, Northern California: Uncertain Predictions of Magnitude and Timing of Tectonic and Eustatic Processes

    NASA Astrophysics Data System (ADS)

    Gilkerson, W.; Leroy, T. H.; Patton, J. R.; Williams, T. B.

    2010-12-01

    Humboldt Bay in Northern California provides a unique opportunity to investigate the effects of relative sea level change on both native flora and maritime aquiculture as influenced by both tectonic and eustatic sea-level changes. This combination of superposed influences makes quantitatively predicting relative sea-level more uncertain and consumption of the results for public planning purposes exceedingly difficult. Public digestion for practical purposes is confounded by the fact that the uncertainty for eustatic sea-level changes is a magnitude issue while the uncertainty associated with the tectonic land level changes is both a magnitude and timing problem. Secondly, the public is less well informed regarding how crustal deformation contributes to relative sea-level change. We model the superposed effects of eustatic sea-level rise and tectonically driven land-level changes on the spatial distribution of habitats suitable to native eelgrass (Zostera marina) and oyster mariculture operations in Humboldt Bay. While these intertidal organisms were chosen primarily because they have vertically restricted spatial distributions that can be successfully modeled, the public awareness of their ecologic and economic importance is also well developed. We employ easy to understand graphics depicting conceptual ideas along with maps generated from the modeling results to develop locally relevant estimates of future sea level rise over the next 100 years, a time frame consistent with local planning. We bracket these estimates based on the range of possible vertical deformation changes. These graphic displays can be used as a starting point to propose local outcomes from global and regional relative sea-level changes with respect to changes in the distribution of suitable habitat for ecologically and economically valuable species. Currently the largest sources of uncertainty for changes in relative sea-level in the Humboldt Bay area are 1) the rate and magnitude of tectonic

  20. Evaluating the fate of freshwater lenses on atoll islands after eustatic sea-level rise and cyclone-driven inundation: A modelling approach

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Chui, Ting Fong May

    2012-05-01

    Dispersed human populations inhabiting remote atolls across the tropical Pacific Ocean are reliant on the viability of thin freshwater lenses (FWLs) contained within the island coralline sediments for their survival. Yet FWLs are uniquely fragile and easily damaged by saline intrusion. Eustatic sea-level rise (SLR) and sea flooding generated by intense tropical cyclones therefore pose special perils for continued existence on atolls. In this work, mathematical modelling is used to examine the effects on an atoll freshwater lens of various projected long-term SLR scenarios (10, 20, and 40 cm). A cyclone-driven wave washover event is then simulated in order to observe the responses and recovery of the FWL, subsequent to the SLR scenarios imposed. A key attribute of our model design is the inclusion of a topographic depression containing a low-lying fresh swamp in the atoll islet interior (which is often ignored), where seawater accumulates during inundation. Results indicate that a 40 cm SLR produces a major impact: the FWL decreases in thickness by approximately 50%, develops a brackish centre and contracts to a shrunken 'doughnut' morphology. Following cyclone inundation, observed salinity profiles are illuminating. Steep salinity gradients show how a strong saline plume forms at shallow depths, but also reveal the existence of an undisturbed fresh horizon beneath the salt plume under both present conditions and the modest 10 cm SLR scenario. Within the preserved fresh horizon, salt concentrations are maintained below 1.5 g/L (i.e. within usable limits) for at least a year. In contrast, the diminished freshwater lenses that exist after 20 and 40 cm SLR then exhibit far less resilience to saline damage over comparable post-cyclone timeframes. The findings point towards Pacific atolls becoming increasingly uninhabitable long before their complete submergence by sea-level rise, owing to irrecoverable groundwater salinisation seriously reducing the availability of

  1. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely

  2. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    SciTech Connect

    Arvidson, R.; Becker, R.; Shanabrook, A.; Luo, W.; Sultan, M.; Sturchio, N.; Lotfy, Z.; Mahmood, A.M.; El Alfy, Z.

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.

  3. Glacial-eustatic sea-level curve for early Late Pennsylvanian sequence in north-central Texas and biostratigraphic correlation with curve for midcontinent North America

    SciTech Connect

    Boardman, D.R. II ); Heckel, P.H. )

    1989-09-01

    At least 30 transgressive-regressive cycles of deposition are recognized from the upper Desmoinesian East Mountain Shale to the mid-Virgilian Wayland Shale in north-central Texas. Maximum regressive deposits are typically paleosol mudstones and fluvial sandstones; maximum transgressive deposits are typically widespread, ammonoid-bearing, conodont-rich, dark phosphatic shales in more major cycles, and persistent fossiliferous shales or limestones overlying terrestrial deposits in more minor cycles. Delta complexes dominate the regressive sequences of many cycles. Using biostratigraphic criteria of first, last, sole, or acme occurrence of ammonoid, conodont, and fusulinid taxa, the authors correlate 17 cycles in the Texas sequence directly with 17 glacial-eustatic cycles of similar magnitude in the northern midcontinent. This correlation suggests that glacial eustacy was the basic control over the cyclic sequence in Texas, that tectonic masking of the eustatic signal by nearby orogenic movement in Texas was negligible, and that delta shifting, though conspicuous, was only a secondary control over the cyclicity there. Minor cycles recognized between the correlated cycles also match well enough between Texas and the midcontinent to further discount potential tectonic or deltaic masking of glacial-eustatic cyclicity. This strengthens the likelihood of correlating glacial-eustatic events across larger parts of North America, and perhaps with other parts of the world.

  4. Simulation of the response of carbonate sequences to Eustatic Sea level changes (Tertiary, northwest Great Bahama Bank): A scheme for enhancing seismic interpretation

    SciTech Connect

    Eberli, G.P.; Moore, P. ); Kendall, C.G.S.C.; Cannon, R. ); Perlmutter, M. ); Biswas, G. ); Bezdek, J.C. )

    1990-05-01

    Seismic lines across northwestern Great Bahama Bank (GBB) show Vograding sequences with patterns most likely controlled by prevailing currents and sea level. To test this interpretation computer simulations were made to obtain a visual match between the seismic line and the SEDPAK simulation output. The initial topography, unidirectional wind, and sea level curve defined by Haq et al. were used as fixed inputs, with carbonate accumulation rate and subsidence as variables. Progradation in a buried, fault-bounded trough (Straits of Andros) began in the middle Oligocene. Simulation produced aggradation from the Late Cretaceous until the middle Oligocene. Afterward, sea level fall shifted the depocenter onto the slopes. Progradation was triggered during the subsequent sea level rise because the upper slope and platform edge remained in the photic zone for an extended period of high carbonate production. This increased rate of sedimentation initiated progradation on the western margin and on the eastern margin sedimentation was damped by intense wave action. On the western margin of GBB, where progradation probably began after the middle Miocene, the best simulation was obtained by incorporating a subsiding normal fault block underlying the Straits of Florida. This subsidence from the Late Cretaceous through middle Oligocene kept the deep shelf in the lower photic zone, preventing progradation during the middle Oligocene sea level lowstand. Simulation produced ongoing infilling of the basin that first flattened the margin into a ramp-type geometry over which margin progradation occurred subsequent to the next major sea level drop in the middle Miocene. This is consistent with the time suggested by seismic stratigraphy.

  5. Paleo-surfaces of glacio-eustatically forced aggradational successions in the coastal area of Rome: Assessing interplay between tectonics and sea-level during the last ten interglacials

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Florindo, Fabio; Anzidei, Marco; Sepe, Vincenzo

    2016-09-01

    Recently acquired geochronological and stratigraphic data provide new information on the sedimentary successions deposited by the Paleo-Tiber River in the coastal and near-coastal area of Rome in consequence of the glacio-eustatic changes, allowing to better define their inner geometry and palaeogeographic spatial distribution. In the present work we use this revised sedimentary dataset to provide a geochronologically constrained and tectonically adjusted record of paleo sea-level indicators. Aimed at this scope, we review literature data acquired in the last 35 years and using the new geochronological constraints we pinpoint the coastal-to-fluvial terraces of MIS 5 and MIS 7, mapping their relic surfaces in an area of 30 km along the coast north and south of the Tiber River mouth, and 20 km inland of the fluvial valleys of Tiber and Aniene rivers. The geometry of these paleo-surfaces provides constraints on the relative elevation of the sea-level during the last interglacials and on the uplift rates in this region during the last 200 ka. In particular, we recognize the previously undetected terraces of MIS 5.3 and MIS 5.1 interstadials, and we assess their spatial relationship with respect to MIS 5.5, providing important information on sea-level oscillations during this time span. Comparison with sea-level indicators provided by previous aggradational successions deposited during past interglacials spanning MIS 9 through MIS 21 in the coastal area of Rome, also allows us to reconstruct the tectonic history and investigate its relationships with the Middle-Pleistocene volcanic activity of the Roman Comagmatic Region along the Tyrrhenian Sea margin of Italy in the last 900 ka.

  6. Effects of eustatic sea-level change, ocean dynamics, and iron fertilization on atmospheric pCO2 and seawater composition over the last 130 000 years

    NASA Astrophysics Data System (ADS)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2015-06-01

    We developed and employed an earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus, reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, they led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to reduced deep ocean dynamics, a shoaling of Atlantic meridional overturning circulation, and a rise in iron fertilization. The increased transit time of deep waters in the glacial ocean led to significant 14C depletions with respect to the atmosphere. The deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in dust-borne iron discharge to the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks

  7. Eustatic and climatic control on the Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central European Basin

    NASA Astrophysics Data System (ADS)

    Franz, M.; Kaiser, S. I.; Fischer, J.; Heunisch, C.; Kustatscher, E.; Luppold, F. W.; Berner, U.; Röhling, H.-G.

    2015-12-01

    The Upper Muschelkalk in the Central European Basin (CEB) is a key example of eustatic and climatic controls on inland seas. The late Anisian rapid transgression from Tethyan waters culminated in a large semi-enclosed inland sea stretching across the CEB. Subsequently, the slow but successive retreat in the early Ladinian resulted in a small remnant sea. The pronounced stratal pattern architectures are translated into a framework of 3rd- and 4th-order T-R sequences. The latest Illyrian 3rd-order maximum flooding surface corresponds to maximum abundances of carbonates and marine phytoplankton. An euryhaline marine ecology is indicated by prasinophycean algae dominating over acritarchs and δ18OP values of 18.9-22.4‰ VSMOW corresponding to Tethyan references. During the 3rd-order regressive phase successive freshening up to hyposaline conditions is indicated by up to 3‰ depleted δ18OP values, shifts to more radiogenic 87Sr/86Sr ratios and maximum abundances of terrestrial palynomorphs. Likewise, 4th-order T-R sequences are constrained by commutated stratal pattern architectures, palynofacies and geochemistry. The favourable correlation of middle Triassic 3rd-order sequences of Tethyan and peri-Tethyan basins demonstrate the principle control of circum-Tethyan eustatic cycles. 4th-order sequences are evident and, although not yet correlatable in detail, indicate 106-year scale eustatic cycles which may be attributed to glacioeustatic sea-level changes. The subordinated control of arid to semiarid low latitude and semihumid to humid temperate mid latitude climates affected the Upper Muschelkalk Sea in particular during 4th-order sea-level lowstands. Substantial fresh water input from Scandinavian sources caused temporal stratification leading to stagnant bottom waters and/or sediments as indicated by palynofacies and U/Th and Ni/Co redox indices. The herein reconstructed middle Triassic zonal climates are in agreement to previously published Late Triassic zonal

  8. Sea-level fluctuations and deep-sea sedimentation rates.

    PubMed

    Worsley, T R; Davies, T A

    1979-02-01

    Sediment accumulation rate curves from 95 drilled cores from the Pacific basin and sea-level curves derived from continental margin seismic stratigraphy show that high biogenous sediment accumulation rates correspond to low eustatic sea levels for at least the last 48 million years. This relationship fits a simple model of high sea levels producing lower land/sea ratios and hence slower chemical erosion of the continents, and vice versa. PMID:17734144

  9. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study

    NASA Astrophysics Data System (ADS)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2016-02-01

    We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level

  10. A "chaos" of Phanerozoic eustatic curves

    NASA Astrophysics Data System (ADS)

    Ruban, Dmitry A.

    2016-04-01

    The knowledge of eustasy has changed during the past two decades. Although there is not any single global sea-level curve for the entire Phanerozoic, new curves have been proposed for all periods. For some geological time intervals, there are two and more alternative reconstructions, from which it is difficult to choose. A significant problem is the available eustatic curves are justified along different geological time scales (sometimes without proper explanations), which permits to correlate eustatic events with the possible error of 1-3 Ma. This degree of error permits to judge about only substage- or stage-order global sea-level changes. Close attention to two geological time slices, namely the late Cambrian (Epoch 3‒Furongian) and the Late Cretaceous, implies that only a few eustatic events (6 events in the case of the late Cambrian and 9 events in the case of the Late Cretaceous) appear on all available alternative curves for these periods, and different (even opposite) trends of eustatic fluctuations are shown on these curves. This reveals significant uncertainty in our knowledge of eustasy that restricts our ability to decipher factors responsible for regional transgressions and regressions and relative sea-level changes. A big problem is also inadequate awareness of the geological research community of the new eustatic developments. Generally, the situation with the development and the use of the Phanerozoic eustatic reconstructions seems to be "chaotic". The example of the shoreline shifts in Northern Africa during the Late Cretaceous demonstrates the far-going consequences of this situation. The practical recommendations to avoid this "chaos" are proposed. Particularly, these claim for good awareness of all eustatic developments, their critical discussion, and clear explanation of the employed geological time scale.

  11. Record of glacial-eustatic sea-level fluctuations in complex middle to late Pennsylvanian facies in the Northern Appalachian Basin and relation to similar events in the Midcontinent basin

    NASA Astrophysics Data System (ADS)

    Belt, Edward S.; Heckel, Philip H.; Lentz, Leonard J.; Bragonier, William A.; Lyons, Timothy W.

    2011-06-01

    Pennsylvanian cycles in the Northern Appalachian Basin (NAB) were historically considered to result from delta-lobe switching, and more recently from sea-level fluctuation with sandy deltas prograding during highstand. These interpretations are revised using new data from cores and outcrop exposures. Thick (> 5 m) channel deposits with a marked erosion surface at their base cutting down across previous cycles are re-interpreted as incised valley fill (IVF) deposits in paleovalleys, because the basal erosion surfaces are widespread, and thus reflect a record of lowstand. Most common are simple paleovalleys that contain mainly sandy fluvial deposits. Compound paleovalleys with sequence boundaries above the basal erosion surface, contain terrestrial, estuarine, and marine deposits. Early to late highstand deposits in interfluvial parts of the cycles are dominated by shale and mudstone, with paleosols, coals, and local non-marine limestone, which reflect floodbasin to lacustrine conditions. These reinterpretations are applied to previously and newly recognized cycles in ascending order: Upper Kittanning, Lower Freeport, Upper Freeport Leader (new), Upper Freeport, Piedmont (new), Mahoning, Mason interval (locally includes Upper New Galilee in the north), and Brush Creek, across a 300-km arc in the Northern Appalachian Basin. These deposits accumulated in a 'high shelf' setting that experienced fewer marine transgressions, and were interrupted by more frequent exposure and downcutting, in contrast to the thicker and more complete succession with more numerous marine units in the Midcontinent. Magnitudes of highstand transgressions into this basin, deduced from the up-dip extent of marine and brackish fossil assemblages, were greatest for the Brush Creek, less so for the Upper Kittanning and Mahoning, and least for the Lower Freeport, Upper Freeport Leader, Piedmont, and Mason. The anomalous basin-wide fresh-water roofshales and equivalents of the Upper Freeport coal may

  12. Sea-Level Changes during the Tertiary.

    ERIC Educational Resources Information Center

    Vail, Peter R.; Hardenbol, Jan

    1979-01-01

    Discussed are research procedures undertaken to determine the magnitude and timing of eustatic sea-level changes during the Tertiary Period. Data now becoming available give scientists a knowledge of conditions that may have been conducive to the formation of petroleum. (BT)

  13. Two Sea-Level Challenges

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2008-12-01

    "No place on the sandy ocean shores of the world has been shown to be eroding because of sea level rise." This statement appeared nearly 19 years ago in bold print at the top of the page in a brief article published in Shore and Beach (Galvin,1990). The term "sea level rise" was defined in 1990 as follows: "In this statement, "sea level rise" has the meaning that the average person on the street usually attaches to that term. That is, sea level is rising; not, as in some places like the Mississippi River delta, land level is sinking." While still a subject of controversy, it is now (2008) increasingly plausible (Tornqvist et al,2008) that damage from Hurricane Katrina was significantly worse on the Mississippi River delta because floodwaters exploited wetlands and levees whose elevations had been lowered by decades of compaction in the underlying soil. (1) "Sea level" commonly appears in the literature as "relative sea level rise", occurring that way in 711 publications between 1980 and 2009 (GeoRef database on 8 Sep 08). "Relative sea level rise" does not appear in the 2005 AGI Glossary. The nearest Glossary term is "relative change in sea level", but that term occurs in only 12 publications between 1980 and 2009. The Glossary defines this term in a sequence stratigraphy sense, which infers that "relative sea level rise" is the sum of bottom subsidence and eustatic sea level rise. In plain English, "relative sea level rise" means "water depth increase". For present day coastal environments, "relative sea level rise" is commonly used where eustatic sea level rise is less than subsidence, that is, where the magnitude of actual sea level rise is smaller than the magnitude of subsidence. In that situation, "relative sea level rise" misleads both the average person and the scientist who is not a coastal geologist. Thus, the first challenge is to abandon "relative sea level rise" in favor of "water depth increase", in order that the words accurately descibe what happens

  14. Revisiting Tectonic Corrections Applied to Pleistocene Sea-Level Highstands

    NASA Astrophysics Data System (ADS)

    Creveling, J. R.; Mitrovica, J. X.; Hay, C.; Austermann, J.; Kopp, R. E.

    2015-12-01

    The robustness of stratigraphic- and geomorphic-based inferences of Quaternary peak interglacial sea levels — and equivalent minimum continental ice volumes — depends on the accuracy with which highstand markers can be corrected for vertical tectonic displacement. For sites that preserve a Marine Isotope Stage (MIS) 5e sea-level highstand marker, the customary method for estimating tectonic uplift/subsidence rate computes the difference between the local elevation of the highstand marker and a reference eustatic (i.e., global mean) MIS 5e sea-level height, typically assumed to be +6 m, and then divides this height difference by the age of the highstand marker. This rate is then applied to correct the elevation of other observed sea-level markers at that site for tectonic displacement. Subtracting a reference eustatic value from a local MIS 5e highstand marker elevation introduces two potentially significant errors. First, the commonly adopted peak eustatic MIS 5e sea-level value (i.e., +6 m) is likely too low; recent studies concluded that MIS 5e peak eustatic sea level was ~6-9 m. Second, local peak MIS 5e sea level was not globally uniform, but instead characterized by significant departures from eustasy due to glacial isostatic adjustment (GIA) in response to successive glacial-interglacial cycles and excess polar ice-sheet melt relative to present day. We present numerical models of GIA that incorporate both of these effects in order to quantify the plausible range in error of previous tectonic corrections. We demonstrate that, even far from melting ice sheets, local peak MIS 5e sea level may have departed from eustasy by 2-4 m, or more. Thus, adopting an assumed reference eustatic value to estimate tectonic displacement, rather than a site-specific GIA signal, can introduce significant error in estimates of peak eustatic sea level (and minimum ice volumes) during Quaternary highstands (e.g., MIS 11, MIS 5c and MIS 5a).

  15. Bajocian-Bathonian (Middle Jurassic) sea-level changes in northeastern Egypt: Synthesis and further implications

    NASA Astrophysics Data System (ADS)

    Ruban, Dmitry A.; Sallam, Emad S.

    2016-08-01

    The global eustatic developments can benefit significantly from properly acquired regional information. Summarizing the available interpretations of the relative sea-level changes from two areas in northeastern Egypt, namely Gebel Maghara and Khashm El-Galala, allows better understanding of the Middle Jurassic sea-level changes. It is established that the Bajocian-Bathonian relative sea-level changes in these areas were coherent. The magnitude of changes was lower in the Bajocian than in the Bathonian. Significant sea-level rises occurred at the Bajocian-Bathonian and middle-late Bathonian transitions, and there was a clear tendency toward sea-level rise throughout the studied time interval. This evidence favors one of the two alternative global eustatic reconstructions that implies "stable" position of the shoreline in the Bajocian and general tendency to eustatic rise throughout the Jurassic. The tectonic regime of northeastern Egypt in the Middle Jurassic provided for strong eustatic control of the relative sea-level changes. The possible influence of hotspot activity is questionable. Filling the accommodation space with materials derived from the eroded continent may explain some sea-level falls that are regionally documented.

  16. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Richter, A.; Groh, A.; Dietrich, R.

    Based on tide gauge observations spanning almost 200 years, homogeneous time series of the mean relative sea level were derived for nine sites at the southern coast of the Baltic Sea. Our regionally concentrated data were complemented by long-term relative sea-level records retrieved from the data base of the Permanent Service for Mean Sea Level (PSMSL). From these records relative sea-level change rates were derived at 51 tide gauge stations for the period between 1908 and 2007. A minimum observation time of 60 years is required for the determination of reliable sea-level rates. At present, no anthropogenic acceleration in sea-level rise is detected in the tide gauge observations in the southern Baltic. The spatial variation of the relative sea-level rates reflects the fingerprint of GIA-induced crustal uplift. Time series of extreme sea levels were also inferred from the tide gauge records. They were complemented by water level information from historic storm surge marks preserved along the German Baltic coast. Based on this combined dataset the incidence and spatial variation of extreme sea levels induced by storm surges were analysed yielding important information for hazard assessments. Permanent GPS observations were used to determine recent crustal deformation rates for 44 stations in the Baltic Sea region. The GPS derived height change rates were applied to reduce the relative sea-level changes observed by tide gauges yielding an estimate for the eustatic sea-level change. For 13 tide gauge-GPS colocation sites a mean eustatic sea-level trend of 1.3 mm/a was derived for the last 100 years.

  17. Land to sea record of the mega-eustatic cycle including the Messinian Salinity Crisis in the Mediterranean Andalusia

    NASA Astrophysics Data System (ADS)

    Jouannic, Gwénaël.; Gorini, Christian; Jolivet, Laurent; Clauzon, Georges; Suc, Jean-Pierre; Gargani, Julien; Melinte-Dobrinescu, Mihaela Carmen; Meyer, Bertrand

    2010-05-01

    The outstanding event of the Messinian Salinity Crisis is very well documented in the onshore Sorbas and Vera Andalusian basins where its process and chronology are now well-known (Gautier et al., 1994, Krijgsman et al., 1999; Clauzon et al., 2009). The detailed study of these basins was at the origin of the two-step scenario of the Messinian salinity crisis (Clauzon et al., 1996) which clarified several aspects of the "deep desiccated basin" model of Hsü et al. (1973). The scenario in two steps (first step: evaporite deposition in Mediterranean marginal basins between 5.96 and 5.60 Ma; second step: evaporites deposition between 5.60 and 5.46 Ma in the almost dried up Mediterranean central basins, and subaerial erosion and deep canyons formation on the margins; Clauzon et al., 1996, 2005, 2008) has now the broadest consensus within the scientific community (CIESM, 2008). The Sorbas and Vera basins present all the markers in terms of sequence stratigraphy whatever these events were caused by moderate or excessive sea-level changes: 1, coral reefs, showing the relative sea level before the crisis; 2, gypsum (120 m in thickness) deposited during the first sea level drop (about 150 m) between 5.96 and 5.60 Ma; 3, the widespread erosion surface during the maximum sea level fall(ca. -1500 m); 4, the re-flooding at 5.46 Ma These onshore markers have also been recorded in offshore seismic profiles, allowing a continuous mapping of the Messinian canyons from land to sea. These onshore and offshore areas (Mauffret et al., 2007; Ammar et al., 2008) have also undergone a tectonics according to their proximity to the Betic cordillera (the south of the Sorbas Basin was more affected for example). Stratigraphic markers of the messinian crisis are powerful tools to reconstruct the tectonic events since 5 Ma. This work has made possible the calibration of tectonic deformations on south Andalusia present-day onshore and offshore domains. Ammar, A., Mauffret, A., Gorini, C., Jabour

  18. Holocene sea level changes at the coast of dor, southeast mediterranean.

    PubMed

    Sneh, Y; Klein, M

    1984-11-16

    Geological, geomorphological, and archeological data of changes in sea level during the Holocene at the Mediterranean coast of Dor provide a eustatic curve of the region. This curve shows that sea level was approximately 2 meters below the present level 4000 years ago, rose to 1 meter below the present level 3000 years ago, and was 1 meter higher than the present level 1500 years ago. It then dropped to 1 meter below the present level about 800 years ago. PMID:17759891

  19. Lithologic prediction from the stratal architecture of Plio-Pleistocene Gulf of Mexico: Are the eustatic depositional systems tract models adequate

    SciTech Connect

    Butler, M.L.; Self, G.A. )

    1991-03-01

    Climatic/eustatic cycles of the Plio-Pleistocene have been defined in the northern Gulf of Mexico and precisely tied to their associated sequences and lithologies by means of graphic correlation. This framework has provided the data necessary for a detailed empirical evaluation of the eustatic depositional systems tract models. The key to this evaluation is a eustatic sea-level curve derived from fossil and isotope data. A curve of this type has been defined for several sequences. Using this eustatic curve the actual lithofacies and position of the various systems tracts were directly compared to those predicted by the models. The evaluation of the data with respect to eustatic sea level yielded conclusions that are significantly different from those predicted by the models. The evaluation of the data with respect to eustatic sea level yielded conclusions that are significantly different from those predicted by the model. The most significant of these differences are: (1) significant amounts of sand were deposited in deep water during transgressive and highstand intervals; (2) the observed vertical succession of eustatic depositional systems tracts within a given sequence are transgressive, highstand, and lowstand, and (3) factors other than eustacy have been the dominant influence on facies distribution within the Plio-Pleistocene sequences studied. These results demonstrate that depositional systems tracts and internal facies distribution could not be adequately described by a single model. Therefore, sequence stratigraphic analysis should be empirically based and conducted within the context of the basin, instead of being model driven.

  20. Sea level data and techniques for detecting vertical crustal movements

    NASA Technical Reports Server (NTRS)

    Lennon, G. W.

    1978-01-01

    An attempt is made to survey problems, requirements, and the outlook for the future in the study of sea level time series so as to determine the relative movement of land and sea levels. The basic aim is to eliminate from the record the contributions from whatever marine dynamic phenomena respond to treatment, allowing the secular element to be identified with optimum clarity. Nevertheless the concept of sea level perturbation varies according to regional experience. The recent work of the Permanent Service for Mean Sea Level helps to eliminate geodetic noise from the series and makes it possible, perhaps, to treat the global mean sea level data bank so as to define eustatic changes in ocean volume which, in the present context, may be regarded as the final goal, allowing the identification of vertical crustal motion itself.

  1. Sea-level highstand 81,000 years ago in Mallorca.

    PubMed

    Dorale, Jeffrey A; Onac, Bogdan P; Fornós, Joan J; Ginés, Joaquin; Ginés, Angel; Tuccimei, Paola; Peate, David W

    2010-02-12

    Global sea level and Earth's climate are closely linked. Using speleothem encrustations from coastal caves on the island of Mallorca, we determined that western Mediterranean relative sea level was approximately 1 meter above modern sea level approximately 81,000 years ago during marine isotope stage (MIS) 5a. Although our findings seemingly conflict with the eustatic sea-level curve of far-field sites, they corroborate an alternative view that MIS 5a was at least as ice-free as the present, and they challenge the prevailing view of MIS 5 sea-level history and certain facets of ice-age theory. PMID:20150501

  2. New evidence for the Holocene sea-level high from the inner shelf, central Great Barrier Reef, Australia

    SciTech Connect

    Beaman, R.; Larcombe, P.; Carter, R.M. . Marine Geophysical Lab.)

    1994-10-03

    Radiocarbon dates from fossil oyster beds of intertidal origin on Magnetic island, north Queensland indicate that the local Holocene maximum of relative sea level was attained no later than 5660 [+-] 50 B.P. (conventional uncorrected age) and remained at 1.6--1.7 m above modern levels until 4040 [+-] 50 B.P. Given the tectonic stability of the area, this implies that eustatic sea level remained at its Holocene peak for at least ca. 1600 yr. The new high-precision sea-level data indicate sea levels 1--5 m higher than those of the same age inferred from buried mangrove deposits on the inner shelf in north Queensland. Uncertainties in deriving relative sea level from such mangrove deposits may be a significant source of error in worldwide attempts to distinguish the eustatic and crustal warping components of relative sea-level change, especially in the tropics.

  3. Twentieth century sea level: An enigma

    PubMed Central

    Munk, Walter

    2002-01-01

    Changes in sea level (relative to the moving crust) are associated with changes in ocean volume (mostly thermal expansion) and in ocean mass (melting and continental storage): ζ(t) = ζsteric(t) + ζeustatic(t). Recent compilations of global ocean temperatures by Levitus and coworkers are in accord with coupled ocean/atmosphere modeling of greenhouse warming; they yield an increase in 20th century ocean heat content by 2 × 1023 J (compared to 0.1 × 1023 J of atmospheric storage), which corresponds to ζgreenhouse(2000) = 3 cm. The greenhouse-related rate is accelerating, with a present value ζ̇greenhouse(2000) ≈ 6 cm/century. Tide records going back to the 19th century show no measurable acceleration throughout the late 19th and first half of the 20th century; we take ζ̇historic = 18 cm/century. The Intergovernmental Panel on Climate Change attributes about 6 cm/century to melting and other eustatic processes, leaving a residual of 12 cm of 20th century rise to be accounted for. The Levitus compilation has virtually foreclosed the attribution of the residual rise to ocean warming (notwithstanding our ignorance of the abyssal and Southern Oceans): the historic rise started too early, has too linear a trend, and is too large. Melting of polar ice sheets at the upper limit of the Intergovernmental Panel on Climate Change estimates could close the gap, but severe limits are imposed by the observed perturbations in Earth rotation. Among possible resolutions of the enigma are: a substantial reduction from traditional estimates (including ours) of 1.5–2 mm/y global sea level rise; a substantial increase in the estimates of 20th century ocean heat storage; and a substantial change in the interpretation of the astronomic record. PMID:12011419

  4. Can eustatic charts go beyond first-order? Insights from the Permo-Triassic

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Monteux, Julien; Pochat, Stéphane; Husson, Laurent; Choblet, Gaël

    2016-04-01

    To the first order, eustatic charts are in accord with our understanding of the geodynamic processes that control sea level. By extrapolation, second-order features are also thought to obey to the same rules, and are thus often taken for granted. But this assumption may be jeopardized by a close examination of a characteristic example. The Permo-Triassic period is characteristic for both its purported eustatic signal and its geodynamic and climatic setting are well defined and contrasted. Both the fragmentation of the Pangean supercontinent and the late Paleozoic melting of ice sheets argue for a rise of the eustatic sea level (ESL) whereas eustatic charts show the opposite. Here we review the possible mechanisms that could explain the apparent sea level low, and find that some of them do lower the ESL while others instead only modify the referential, either uplifting continents or tilting the margins where the control points are located. In the first category, we find that (i) dynamic deflections of the Earth surface above subduction zones and their location with respect to continents primarily control absolute sea level while the Pangean supercontinent forms and breaks up, (ii) endorheism that ubiquitously developed at the time of Pangean aggregation also contributed to lowering the ESL by storing water out of the oceanic reservoir. In the second category, we show that (i) the thermal uplift associated to supercontinental insulation and (ii) the dynamic uplift associated with the emplacement of a superplume both give rates of change in the range of long-term changes of ESL. We also show that (iii) the dynamic tilting of continental margins not only produces apparent sea level changes, but also modifies the absolute sea level, which in turn may end up in the paradoxical situation wherein fingerprints of ESL drop are found in the geological record whereas ESL is actually rising. We conclude that the establishment of second to third order absolute sea level changes

  5. Global sea level rise

    SciTech Connect

    Douglas, B.C. )

    1991-04-15

    Published values for the long-term, global mean sea level rise determined from tide gauge records exhibit considerable scatter, from about 1 mm to 3 mm/yr. This disparity is not attributable to instrument error; long-term trends computed at adjacent sites often agree to within a few tenths of a millimeter per year. Instead, the differing estimates of global sea level rise appear to be in large part due to authors' using data from gauges located at convergent tectonic plate boundaries, where changes of land elevation give fictitious sea level trends. In addition, virtually all gauges undergo subsidence or uplift due to postglacial rebound (PGR) from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling PGR by the ICE-3G model of Tushingham and Peltier (1991) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. The value for mean sea level rise obtained from a global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 is 1.8 mm/yr {plus minus} 0.1. This result provides confidence that carefully selected long tide gauge records measure the same underlying trend of sea level and that many old tide gauge records are of very high quality.

  6. Sea level change: a philosophical approach

    NASA Astrophysics Data System (ADS)

    Leinfelder, R.; Seyfried, H.

    1993-07-01

    The present Cenozoic era is an ‘icehouse’ episode characterized by a low sea level. Since the beginning of the industrial revolution, the human race has been emitting greenhouse gases, increasing the global atmospheric temperature, and causing a rise in sea level. If emissions continue to increase at the present rate, average global temperatures may rise by 1.5°C by the year 2050, accompanied by a rise of about 30 cm in sea level. However, the prediction of future climatic conditions and sea level is hampered by the difficulty in modelling the interactions between the lithosphere, kryosphere, biosphere and atmosphere; in addition, the buffering capacity of our planet is still poorly understood. As scientists cannot offer unambiguous answers to simple questions, sorcerer's apprentices fill in the gaps, presenting plans to save planet without inconveniencing us. The geological record can help us to learn about the regulation mechanisms of our planet, many of which are connected with or expressed as sea level changes. Global changes in sea level are either tectono-eustatic or glacioeustatic. Plate tectonic processes strongly control sea levels and climate in the long term. There is a strong feed-back mechanism between sea level and climate; both can influence and determine each other. Although high sea levels are a powerful climatic buffer, falling sea levels accelerate climatic accentuation, the growth of the polar ice caps and will hence amplify the drop in sea level. Important sources of fossil greenhouse gases are botanic CO2 production, CO2 released by volcanic activity, and water vapour. The latter is particularly important when the surface area of the sea increases during a rise in sea level (‘maritime greenhouse effect’). A ‘volcanogenic greenhouse effect’ (release of volcanogenic CO2) is possibly not equally important, as intense volcanic activity may take place both during icehouse episodes as well as during greenhouse episodes. The hydrosphere

  7. Biostratigraphic correlation of eustatic cyclothems (basic Pennsylvanian sequence units) from Midcontinent to Texas and Illinois

    SciTech Connect

    Heckel, P.H.; Lambert, L.L. ); Barrick, J.E.; Boardman, D.R. ); Watney, W.L. ); Weibel, C.P. )

    1991-03-01

    The basic Midcontinent Pennsylvanian eustatic cyclothem (transgressive limestone, offshore shale, regressive limestone, nearshore/terrestrial shale/paleosol) has sequence stratigraphic counterparts (major eustatic cycles) in Texas and Illinois, in which the limestone members are poorly developed or localized because of proximity to detrital influx. The gray to black phosphatic facies of the offshore shales in all three areas, however, are characterized by abundant conodont faunas that not only are conspecific at each level across the entire region but also are diagnostic of individual cycles. These faunas, supplemented at several horizons by distinctive fusulinids and ammonoids, allow correlation of up to 16 of the major eustatic cycles at a time scale of about 400,000 years across a large area of North America. This correlation can be refined to perhaps 100,000 years when the intervening minor eustatic cycles are matched between the biostratigraphically diagnostic horizons. Similar successions of conodont faunas are reported in preliminary work on marine horizons in the Appalachians and in published work on the Russian platform augur well for eventual worldwide correlation of eustatic cycles on a time scale within the Milankovitch band of the Earth's orbital parameters during a period of time when glacial eustasy seems to have controlled inundation and withdrawal of the sea over large portions of the continents.

  8. Sea level variation

    NASA Technical Reports Server (NTRS)

    Douglas, Bruce C.

    1992-01-01

    Published values for the long-term, global mean sea level rise determined from tide gauge records range from about one to three mm per year. The scatter of the estimates appears to arise largely from the use of data from gauges located at convergent tectonic plate boundaries where changes of land elevation give fictitious sea level trends, and the effects of large interdecadal and longer sea level variations on short (less than 50+ years) or sappy records. In addition, virtually all gauges undergo subsidence or uplift due to isostatic rebound from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling rebound by the ICE-3G model of Tushingham and Peltier (1990) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. A global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 yields the global sea level rise value 1.8 mm/year +/- 0.1. Greenhouse warming scenarios commonly forecast an additional acceleration of global sea level in the next 5 or 6+ decades in the range 0.1-0.2 mm/yr2. Because of the large power at low frequencies in the sea level spectrum, very long tide gauge records (75 years minimum) have been examined for past apparent sea level acceleration. For the 80-year period 1905-1985, 23 essentially complete tide gauge records in 10 geographic groups are available for analysis. These yielded the apparent global acceleration -0.011 (+/- 0.012) mm/yr2. A larger, less uniform set of 37 records in the same 10 groups with 92 years average length covering the 141 years from 1850-1991 gave 0.001 (+/- 0.008) mm/yr2. Thus there is no evidence for an apparent acceleration in the past 100+ years that is significant either statistically, or in comparison to values associated with global warming. Unfortunately, the large interdecadal fluctuations of sea level severely affect

  9. Sea level change

    SciTech Connect

    Meier, M.F.

    1996-12-31

    The IPCC (Intergovernmental Panel on Climate Change) 1995 Scientific Assessment, Chapter 7. Sea Level Change, presents a modest revision of the similar chapter in the 1990 Assessment. Principal conclusions on observed sea-level change and the principal terms in the sea-level equation (ocean thermal expansion, glaciers, ice sheets, and land hydrology), including our knowledge of the present-day (defined as the 20th Century) components of sea-level rise, and projections of these for the future, are presented here. Some of the interesting glaciological problems which are involved in these studies are discussed in more detail. The emphasis here is on trends over decades to a century, not on shorter variations nor on those of the geologic past. Unfortunately, some of the IPCC projections had not been agreed at the time of writing of this paper, and these projections will not be given here. 15 refs., 2 figs.

  10. History of coral reefs and sea level

    SciTech Connect

    Fairbridge, R.W.

    1985-01-01

    Charles Darwin proposed crustal subsidence for atoll growth, on the Beagle, between England and Brazil, before even seeing a coral reef, on the basis of charts and discussions with Captain Fitzroy. Relative change of sea level due to crustal movements was then well-accepted from evidence of raised strandlines in Scandinavia and Scotland and sunken forests in England. Darwin added global change of sea level (tectonoeustasy) caused by remote tectonic activity, as explained by Robert Chambers (1848, p. 319). The glacioeustasy concept was mooted soon afterwards, though the term itself came later. When Suess in 1888 proposed eustatic change, he had in mind Archimedian displacement of water by sediment or lava accumulation on the sea floor. Integrated ideas of reef development also came in the 20th century. The powerful arguments against Darwin were led by Murray with his solution hypothesis, which can not be judged as good observation but from a narrow viewpoint. The Royal Society reef borings at Funafuti were heroic but at the same time misread. Subsequently came isotopic geochemistry, absolute dating, the Milankovitch insolation theory, and plate tectonics. And much more field work. The result is an integrated reef growth theory.

  11. Contemporary sea level rise.

    PubMed

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion. PMID:21141661

  12. Projecting future sea level

    USGS Publications Warehouse

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future

  13. Mid-Pliocene (~3 Ma) relative sea level markers around the world: searching for eustasy.

    NASA Astrophysics Data System (ADS)

    Rovere, Alessio; Raymo, Maureen; Hearty, Paul; MItrovica, Jerry; Austermann, Jacqueline; O'Leary, Michael; Sandstrom, Michael

    2014-05-01

    PLIOMAX (PLIOcene MAXimum sea level) is a five-year research project that aims to increase the accuracy of global sea level estimates for the mid-Pliocene warm period. To achieve its goals, PLIOMAX has organized several field expeditions to identify, measure and date relative sea level markers of mid-Pliocene age from around the globe, and built a network of collaborators expert in different geographic areas and disciplines. In this work we present field data obtained from South Africa, Australia, Italy, Argentina and the US East Coast. In these areas we sampled, measured and dated geological facies related to mid-Pliocene sea level. Most areas yield information on 3 Ma sea levels with an accuracy of few decimeters. In presenting our dataset, we will show how we address the following questions, including: how can we obtain accurate measurements in the field? What is the accuracy of the markers we measure in indicating past relative sea levels? To which point can we trust older literature data? We then show how the elevations of relative sea level markers obtained in the field must be corrected to obtain an estimate of eustatic sea level. These corrections use models of glacial isostatic adjustment and dynamic topography. We discuss uncertainties linked to these models as well as the main issues that are still separating us from obtaining a robust estimate of maximum eustatic sea level during the mid-Pliocene warm period.

  14. Evidence for sediment fan deposition on outer Texas shelf during Miocene eustatic sea level highstands

    SciTech Connect

    Riese, W.C.; Olsen, R.S.; Rosen, R.N.

    1988-02-01

    Four types of data were reviewed in an attempt to clearly define the environments of deposition for reservoir sands in the Matagorda 668 field: well log curve shapes, seismic amplitude responses, micropaleontology, and thin section sedimentary petrology. All four lines of evidence support the interpretation that these lower Miocene sands were deposited as fan complexes.

  15. Mediterranean sea level variations.

    NASA Astrophysics Data System (ADS)

    Vigo, I.; Sánchez Reales, J. M.; García, D.; Chao, B. F.

    2009-04-01

    In this work we report an updated study of the sea level variations for the Mediterranean sea for the period from October 1992 to January 2008. The study addresses two mayor issues: (i)The analysis of the spatial and temporal variability of sea surface height (SSH) from radar altimetry measurements (from TOPEX/Poseidon (T/P) + Jason-1, etc.). We use EOF analysis to explain most of its interannual variation, and how the different basins interact. (ii) The analysis of dynamics and balance of water mass transport for the whole period. We estimate the steric SSH by combining the steric SSH estimated from temperature and salt profiles simulated by the ECCO model with time-variable gravity (TVG) data (from GRACE) for the Mediterranean Sea. The estimated steric SSH together with the SSH obtained from altimetry allow for a more realistic estimation of the water mass variations in the Mediterranean for the whole period.

  16. Caribbean Sea Level Network

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Crespo Jones, H.

    2012-12-01

    Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other

  17. Understanding Sea Level Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Today more than 100 million people worldwide live on coastlines within one meter of mean sea level; any short-term or long-term sea level change relative to vertical ground motion is of great societal and economic concern. As palm-environment and historical data have clearly indicated the existence and prevalence of such changes in the past, new scientific information regarding to the nature and causes and a prediction capability are of utmost importance for the future. The 10-20 cm global sea-level rise recorded over the last century has been broadly attributed to two effects: (1) the steric effect (thermal expansion and salinity-density compensation of sea water) following global climate; (2) mass-budget changes due to a number of competing geophysical and hydrological processes in the Earth-atmosphere-hydrosphere-cryosphere system, including water exchange from polar ice sheets and mountain glaciers to the ocean, atmospheric water vapor and land hydrological variations, and anthropogenic effects such as water impoundment in artificial reservoirs and extraction of groundwater, all superimposed on the vertical motions of solid Earth due to tectonics, rebound of the mantle from past and present deglaciation, and other local ground motions. As remote-sensing tools, a number of space geodetic measurements of sea surface topography (e.g., TOPEX/Poseidon, Jason), ice mass (e.g., ICESat), time-variable gravity (e.g. GRACE), and ground motions (SLR, VLBI, GPS, InSAR, Laser altimetry, etc.) become directly relevant. Understanding sea level changes "anywhere, anytime" in a well-defined terrestrial reference frame in terms of climate change and interactions among ice masses, oceans, and the solid Earth, and being able to predict them, emerge as one of the scientific challenges in the Solid Earth Science Working Group (SESWG, 2003) conclusions.

  18. Evidence from the Seychelles of Last Interglacial Sea Level Oscillations

    NASA Astrophysics Data System (ADS)

    Vyverberg, K.; Dutton, A.; Dechnik, B.; Webster, J.; Zwartz, D.

    2014-12-01

    Several studies indicate that sea level oscillated during Marine Isotope Stage (MIS) 5e, but the details of these scenarios, including the number of sea level oscillations, are still debated. We lack a detailed understanding of the sensitivity of the large polar ice sheets to changes in temperature that could result in eustatic sea level oscillations. Because the Seychelles are located far from the margins of the Last Glacial Maximum northern hemisphere ice sheets, they have not been subjected to glacial isostatic adjustment, and have been tectonically stable since the Last Interglacial period; therefore, they provide a robust record of eustatic sea level during MIS 5e. All of the outcrops we examined contain unconformities and/or sharp transitions between facies, though the nature of these boundaries varies between sites. In some outcrops we observed a hardground comprising fine-grained, mollusc-rich sediment layer between distinct generations of in situ coralgal framework. In one outcrop, this succession was observed twice, where two generations of reef growth were each capped by a strongly indurated fine-grained, mollusc-rich sediment layer. At the site with the greatest vertical extent of outcrop, there is a marked difference in the taxonomic composition of the coral community above and below an unconformable surface, but the indurated fine-grained, sediment layer observed elsewhere was absent. Most of the other outcrops we studied contained a common succession of facies from in situ reef units overlain by cemented coral rubble. In two dated outcrops, the age of corals above and below the rubble layer are the same age. The hardgrounds and rubble layers may represent ephemeral exposure of the reef units during two drops in sea level. The inference of multiple meter-scale oscillations during the MIS 5e highstand indicates a more dynamic cryosphere than the present interglacial, although the climatic threshold for more volatile polar ice sheets is not yet clear.

  19. Changing Sea Levels

    NASA Astrophysics Data System (ADS)

    Pugh, David

    2004-04-01

    Flooding of coastal communities is one of the major causes of environmental disasters world-wide. This textbook explains how sea levels are affected by astronomical tides, weather effects, ocean circulation and climate trends. Based on courses taught by the author in the U.K. and the U.S., it is aimed at undergraduate students at all levels, with non-basic mathematics being confined to Appendices and a website http://publishing.cambridge.org/resources/0521532183/.

  20. Evolution of a Coupled Marine Ice Sheet - Sea Level Model

    NASA Astrophysics Data System (ADS)

    Gomez, N.; Pollard, D.; Mitrovica, J. X.; Huybers, P.; Clark, P. U.

    2012-04-01

    An instability mechanism is widely predicted for marine ice sheets resting upon reversed bed slopes whereby ice-sheet thinning or rising sea level is thought to lead to irreversible retreat of the grounding line. Previous analyses of marine ice-sheet stability have considered the influence of a sea-level perturbation on ice-sheet stability by assuming a geographically uniform, or eustatic, change in sea level. However, gravitational, deformational and rotational effects associated with changes in the volume of grounded ice lead to markedly non-uniform spatial patterns of sea-level change. In particular, a gravitationally self-consistent sea-level theory predicts a sea-level fall in the vicinity of a shrinking ice sheet that is an order of magnitude greater amplitude than the sea-level rise that would be predicted assuming eustasy. We highlight the stabilizing influence of local sea-level changes on marine ice sheets by incorporating gravitationally self-consistent sea-level changes into a steady state model of ice sheet stability (Gomez et. al., Nature Geoscience, 2010). In addition, we develop a dynamic coupled ice sheet - sea level model to consider the impact of this stabilizing mechanism on the timescale of ice sheet retreat. The coupled system combines a sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a 1D, dynamic marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small initial forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea-level change at the grounding line has an elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due to past ice and ocean load changes. When

  1. Late Quaternary sea-level changes of the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Lokier, Stephen W.; Bateman, Mark D.; Larkin, Nigel R.; Rye, Philip; Stewart, John R.

    2015-07-01

    Late Quaternary reflooding of the Persian Gulf climaxed with the mid-Holocene highstand previously variously dated between 6 and 3.4 ka. Examination of the stratigraphic and paleoenvironmental context of a mid-Holocene whale beaching allows us to accurately constrain the timing of the transgressive, highstand and regressive phases of the mid- to late Holocene sea-level highstand in the Persian Gulf. Mid-Holocene transgression of the Gulf surpassed today's sea level by 7100-6890 cal yr BP, attaining a highstand of > 1 m above current sea level shortly after 5290-4570 cal yr BP before falling back to current levels by 1440-1170 cal yr BP. The cetacean beached into an intertidal hardground pond during the transgressive phase (5300-4960 cal yr BP) with continued transgression interring the skeleton in shallow-subtidal sediments. Subsequent relative sea-level fall produced a forced regression with consequent progradation of the coastal system. These new ages refine previously reported timings for the mid- to late Holocene sea-level highstand published for other regions. By so doing, they allow us to constrain the timing of this correlatable global eustatic event more accurately.

  2. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding.

    PubMed

    Ohneiser, Christian; Florindo, Fabio; Stocchi, Paolo; Roberts, Andrew P; DeConto, Robert M; Pollard, David

    2015-01-01

    The Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ(18)O record to model relative sea-level changes. Antarctic sedimentary successions indicate AIS expansion at 6 Ma coincident with major MSC desiccation; relative sea-level modelling indicates a prolonged ∼50 m lowstand at the Strait of Gibraltar, which resulted from AIS expansion and local evaporation of sea water in concert with evaporite precipitation that caused lithospheric deformation. Our results reconcile MSC events and demonstrate that desiccation and refilling were timed by the interplay between glacio-eustatic sea-level variations, glacial isostatic adjustment and mantle deformation in response to changing water and evaporite loads. PMID:26556503

  3. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding

    NASA Astrophysics Data System (ADS)

    Ohneiser, Christian; Florindo, Fabio; Stocchi, Paolo; Roberts, Andrew P.; Deconto, Robert M.; Pollard, David

    2015-11-01

    The Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ18O record to model relative sea-level changes. Antarctic sedimentary successions indicate AIS expansion at 6 Ma coincident with major MSC desiccation; relative sea-level modelling indicates a prolonged ~50 m lowstand at the Strait of Gibraltar, which resulted from AIS expansion and local evaporation of sea water in concert with evaporite precipitation that caused lithospheric deformation. Our results reconcile MSC events and demonstrate that desiccation and refilling were timed by the interplay between glacio-eustatic sea-level variations, glacial isostatic adjustment and mantle deformation in response to changing water and evaporite loads.

  4. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding

    PubMed Central

    Ohneiser, Christian; Florindo, Fabio; Stocchi, Paolo; Roberts, Andrew P.; DeConto, Robert M.; Pollard, David

    2015-01-01

    The Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ18O record to model relative sea-level changes. Antarctic sedimentary successions indicate AIS expansion at 6 Ma coincident with major MSC desiccation; relative sea-level modelling indicates a prolonged ∼50 m lowstand at the Strait of Gibraltar, which resulted from AIS expansion and local evaporation of sea water in concert with evaporite precipitation that caused lithospheric deformation. Our results reconcile MSC events and demonstrate that desiccation and refilling were timed by the interplay between glacio-eustatic sea-level variations, glacial isostatic adjustment and mantle deformation in response to changing water and evaporite loads. PMID:26556503

  5. Quaternary climates and sea levels of the u.s. Atlantic coastal plain.

    PubMed

    Cronin, T M; Szabo, B J; Ager, T A; Hazel, J E; Owens, J P

    1981-01-16

    Uranium-series dating of corals from marine deposits of the U.S. Atlantic Coastal Plain coupled with paleoclimatic reconstructions based on ostracode (marine) and pollen (continent) data document at least five relatively warm intervals during the last 500,000 years. On the basis of multiple paleoenvironmental criteria, we determined relative sea level positions during the warm intervals, relative to present mean sea level, were 7 +/- 5 meters at 188,000 years ago, 7.5 +/- 1.5 meters at 120,000 years ago, 6.5 +/- 3.5 meters at 94,000 years ago, and 7 +/- 3 meters at 72,000 years ago. The composite sea level chronology for the Atlantic Coastal Plain is inconsistent with independent estimates of eustatic sea level positions during interglacial intervals of the last 200,000 years. Hydroisostatic adjustment from glacial-interglacial sea level fluctuations, lithospheric flexure, and isostatic uplift from sediment unloading due to erosion provide possible mechanisms to account for the discrepancies. Alternatively, current eustatic sea level estimates for the middle and late Quaternary may require revision. PMID:17748008

  6. Quaternary climates and sea levels of the U.S. atlantic coastal plain

    USGS Publications Warehouse

    Cronin, T. M.; Szabo, B. J.; Ager, T.A.; Hazel, J.E.; Owens, J.P.

    1981-01-01

    Uranium-series dating of corals from marine deposits of the U.S. Atlantic Coastal Plain coupled with paleodimatic reconstructions based on ostracode (marine) and pollen (continent) data document at least five relatively warm intervals during the last 500,000 years. On the basis of multiple paleoenvironmental criteria, we determined relative sea level positions during the warm intervals, relative to present mean sea level, were 7 ?? 5 meters at 188,000 years ago, 7.5 ??1.5 meters at 120,000 years ago, 6.5 ?? 3.5 meters at 94,000 years ago, and 7 ?? 3 meters at 72,000 years ago. The composite sea level chronology for the Atlantic Coastal Plain is inconsistent with independent estimates of eustatic sea level positions during interglacial intervals of the last 200,000 years. Hydroisostatic adjustment from glacial-interglacial sea level fluctuations, lithospheric flexure, and isostatic uplift from sediment unloading due to erosion provide possible mechanisms to account for the discrepancies. Alternatively, current eustatic sea level estimates for the middle and late Quaternary may require revision.

  7. Sea-level rise in New Jersey over the past 5000 years: Implications to anthropogenic changes

    USGS Publications Warehouse

    Miller, Kenneth G.; Sugarman, Peter J.; Browning, James V.; Horton, Benjamin P.; Stanley, Alissa; Kahn, Alicia; Uptegrove, Jane; Aucott, Michael

    2009-01-01

    We present a mid to late Holocene sea-level record derived from drilling the New Jersey coast that shows a relatively constant rise of 1.8??mm/yr from ~ 5000 to 500 calibrated calendar years before present (yrBP). This contrasts with previous New Jersey estimates that showed only 0.5??mm/yr rise since 2000??yrBP. Comparison with other Mid-Atlantic sea-level records (Delaware to southern New England) indicates surprising uniformity considering different proximities to the peripheral bulge of the Laurentide ice sheet, with a relative rise throughout the region of ~ 1.7-1.9??mm/yr since ~ 5000??yrBP. This regional sea-level rise includes both: 1) global sea-level (eustatic) rise; and 2) far-field geoidal subsidence (estimated as ~ 0.8-1.4??mm/yr today) due to removal of the Laurentide ice sheet and water loading. Correcting for geoidal subsidence, the U.S. east coast records suggest a global sea-level (eustatic) rise of ~ 0.4-1.0??mm/yr (with a best estimate of 0.7 ?? 0.3??mm/yr) since 5000??yrBP. Comparison with other records provides a best estimate of pre-anthropogenic global sea-level rise of < 1.0??mm/yr from 5000 until ~ 200??yrBP. Tide gauge data indicate a 20th century rate of eustatic rise of 1.8??mm/yr, whereas both tide gauge and satellite data suggest an increase in the rate of rise to ~ 3.3??mm/yr from 1993-2006 AD. This indicates that the modern rise (~ 3.3??mm/yr) is significantly higher than the pre-anthropogenic rise (0.7 ?? 0.3??mm/yr). ?? 2008 Elsevier B.V. All rights reserved.

  8. Eustatic control of gravity tectonics: Concept, mechanism and limits

    SciTech Connect

    Raillard, S.; Allix, P.; Guerin, G.; Lecanu, H. )

    1996-01-01

    Gravity tectonics over a ductile decollement characterizes deformation of the Albian to Recent section in the West African margin, from Gabon to Angola. Largely studied during the past 20 years as a prolific petroleum play, it is now well known that three mains factors will control gravity driven deformation: the ductile layer, the slope as a response to the crustal activity and the overlying sedimentary loading. For the West African passive margin, the slope effect at the first glance can be considered as constant and gravity driven deformation as a result of salt layer distribution (in time and space) and sedimentary loading. If previous papers have already shown that the type and distribution of the deposits control the development of the classical structural domains : updip extensional to downdip contractional, this study will focused on the factor which control the sedimentary loading. Based on several natural examples combining seismic stratigraphy, sequential stratigraphy and structural studies and also analogical modelling, it is demonstrated that: (1) as sediment distribution and then sedimentary loading is controlled by relative sea level changes, thus sea level changes can be directly related to gravity driven deformation : large sea level fall will provide an important increase of clastics supply which will enhanced gravity gliding. On the contrary, relative sea level high will stop the deformation because of the decreasing amount of detritics and their homogeneous distribution. (2) the salt downdip withdrawal during extension will enhance the eustatic effect. (3) episodic crustal activity, materialized by westward tilting of the margin will interfere on this mechanism.

  9. Eustatic control of gravity tectonics: Concept, mechanism and limits

    SciTech Connect

    Raillard, S.; Allix, P.; Guerin, G.; Lecanu, H.

    1996-12-31

    Gravity tectonics over a ductile decollement characterizes deformation of the Albian to Recent section in the West African margin, from Gabon to Angola. Largely studied during the past 20 years as a prolific petroleum play, it is now well known that three mains factors will control gravity driven deformation: the ductile layer, the slope as a response to the crustal activity and the overlying sedimentary loading. For the West African passive margin, the slope effect at the first glance can be considered as constant and gravity driven deformation as a result of salt layer distribution (in time and space) and sedimentary loading. If previous papers have already shown that the type and distribution of the deposits control the development of the classical structural domains : updip extensional to downdip contractional, this study will focused on the factor which control the sedimentary loading. Based on several natural examples combining seismic stratigraphy, sequential stratigraphy and structural studies and also analogical modelling, it is demonstrated that: (1) as sediment distribution and then sedimentary loading is controlled by relative sea level changes, thus sea level changes can be directly related to gravity driven deformation : large sea level fall will provide an important increase of clastics supply which will enhanced gravity gliding. On the contrary, relative sea level high will stop the deformation because of the decreasing amount of detritics and their homogeneous distribution. (2) the salt downdip withdrawal during extension will enhance the eustatic effect. (3) episodic crustal activity, materialized by westward tilting of the margin will interfere on this mechanism.

  10. Evolution of a Coupled Marine Ice Sheet - Sea Level Model

    NASA Astrophysics Data System (ADS)

    Gomez, N.; Pollard, D.; Mitrovica, J. X.; Huybers, P.; Clark, P. U.

    2011-12-01

    An instability mechanism is widely predicted for marine ice sheets resting upon reversed bed slopes. In this case, ice-sheet thinning or rising sea level is thought to lead to irreversible retreat of the grounding line. Previous analyses of marine ice-sheet stability have considered the influence of a sea-level perturbation on ice-sheet stability by assuming a geographically uniform, or eustatic, change in sea level. However, gravitational and deformational effects associated with changes in the volume of grounded ice lead to markedly non-uniform spatial patterns of sea-level change. In particular, a gravitationally self-consistent sea-level theory predicts a near-field sea-level change of opposite sign, and an order of magnitude greater amplitude, than would be predicted assuming eustasy. In recent work (Gomez et. al., Nature Geoscience, 2010), we highlighted the potential importance of this stabilizing sea-level mechanism by incorporating gravitationally self-consistent sea-level changes into a steady state ice sheet model. We extend this earlier analysis to investigate the influence of this stabilization mechanism on the timescale of ice-sheet retreat by coupling a sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a 1D, dynamic marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small initial forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea-level change at the grounding line has an elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due to past ice and ocean load changes. When the ice-sheet model is forced from steady state, on short timescales (< ~500 years), viscous

  11. Future sea-level rise in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Galassi, Gaia; Spada, Giorgio

    2014-05-01

    Secular sea level variations in the Mediterranean Sea are the result of a number of processes characterized by distinct time scales and spatial patterns. Here we predict the future sea level variations in the Mediterranean Sea to year 2050 combining the contributions from terrestrial ice melt (TIM), glacial isostatic adjustment (GIA), and the ocean response (OR) that includes the thermal expansion and the ocean circulation contributions. The three contributions are characterized by comparable magnitudes but distinctly different sea-level fingerprints across the Mediterranean basin. The TIM component of future sea-level rise is taken from Spada et al. (2013) and it is mainly driven by the melt of small glaciers and ice caps and by the dynamic ice loss from Antarctica. The sea-level fingerprint associated with GIA is studied using two distinct models available from the literature: ICE-5G(VM2) (Peltier, 2004) and the ice model progressively developed at the Research School of Earth Sciences (RSES) of the National Australian University (KL05) (see Fleming and Lambeck, 2004 and references therein). Both the GIA and the TIM sea-level predictions have been obtained with the aid of the SELEN program (Spada and Stocchi, 2007). The spatially-averaged OR component, which includes thermosteric and halosteric sea-level variations, recently obtained using a regional coupled ocean-atmosphere model (Carillo et al., 2012), vary between 2 and 7 cm according to scenarios adopted (EA1B and EA1B2, see Meehl at al., 2007). Since the sea-level variations associated with TIM mainly result from the gravitational interactions between the cryosphere components, the oceans and the solid Earth, and long-wavelength rotational variations, they are characterized by a very smooth global pattern and by a marked zonal symmetry reflecting the dipole geometry of the ice sources. Since the Mediterranean Sea is located in the intermediate far-field of major ice sources, TIM sea-level changes have sub-eustatic

  12. Effective sea-level rise and deltas: Causes of change and human dimension implications

    NASA Astrophysics Data System (ADS)

    Ericson, Jason P.; Vörösmarty, Charles J.; Dingman, S. Lawrence; Ward, Larry G.; Meybeck, Michel

    2006-02-01

    An assessment is made of contemporary effective sea-level rise (ESLR) for a sample of 40 deltas distributed worldwide. For any delta, ESLR is a net rate, defined by the combination of eustatic sea-level rise, the natural gross rate of fluvial sediment deposition and subsidence, and accelerated subsidence due to groundwater and hydrocarbon extraction. ESLR is estimated under present conditions using a digital data set of delta boundaries and a simple model of delta dynamics. The deltas in this study represent all major climate zones, levels of population density, and degrees of economic development. Collectively, the sampled deltas serve as the endpoint for river basins draining 30% of the Earth's landmass, and 42% of global terrestrial runoff. Nearly 300 million people inhabit these deltas. For the contemporary baseline, ESLR estimates range from 0.5 to 12.5 mm yr - 1 . Decreased accretion of fluvial sediment resulting from upstream siltation of artificial impoundments and consumptive losses of runoff from irrigation are the primary determinants of ESLR in nearly 70% of the deltas. Approximately 20% of the deltas show accelerated subsidence, while only 12% show eustatic sea-level rise as the predominant effect. Extrapolating contemporary rates of ESLR through 2050 reveals that 8.7 million people and 28,000 km 2 of deltaic area in the sample set of deltas could suffer from enhanced inundation and increased coastal erosion. The population and area inundated rise significantly when considering increased flood risk due to storm surge. This study finds that direct anthropogenic effects determine ESLR in the majority of deltas studied, with a relatively less important role for eustatic sea-level rise. Serious challenges to human occupancy of deltaic regions worldwide are thus conveyed by factors which to date have been studied less comprehensively than the climate change-sea-level rise question.

  13. Holocene sea level variations on the basis of integration of independent data sets

    SciTech Connect

    Sahagian, D.; Berkman, P. . Dept. of Geological Sciences and Byrd Polar Research Center)

    1992-01-01

    Variations in sea level through earth history have occurred at a wide variety of time scales. Sea level researchers have attacked the problem of measuring these sea level changes through a variety of approaches, each relevant only to the time scale in question, and usually only relevant to the specific locality from which a specific type of data are derived. There is a plethora of different data types that can and have been used (locally) for the measurement of Holocene sea level variations. The problem of merging different data sets for the purpose of constructing a global eustatic sea level curve for the Holocene has not previously been adequately addressed. The authors direct the efforts to that end. Numerous studies have been published regarding Holocene sea level changes. These have involved exposed fossil reef elevations, elevation of tidal deltas, elevation of depth of intertidal peat deposits, caves, tree rings, ice cores, moraines, eolian dune ridges, marine-cut terrace elevations, marine carbonate species, tide gauges, and lake level variations. Each of these data sets is based on particular set of assumptions, and is valid for a specific set of environments. In order to obtain the most accurate possible sea level curve for the Holocene, these data sets must be merged so that local and other influences can be filtered out of each data set. Since each data set involves very different measurements, each is scaled in order to define the sensitivity of the proxy measurement parameter to sea level, including error bounds. This effectively determines the temporal and spatial resolution of each data set. The level of independence of data sets is also quantified, in order to rule out the possibility of a common non-eustatic factor affecting more than one variety of data. The Holocene sea level curve is considered to be independent of other factors affecting the proxy data, and is taken to represent the relation between global ocean water and basin volumes.

  14. Postglacial change in sea level in the Western north atlantic ocean.

    PubMed

    Redfield, A C

    1967-08-11

    Radioactive carbon determinations of the age of peat indicate that at Bermuda, southern Florida, North Carolina, and Louisiana the relative sea level has risen at approximately the same rate, 2.5 x 10(-3) foot per year (0.76 x 10(-3) meter per year), during the past 4000 years. It is proposed tentatively that this is the rate of eustatic change in sea level. The rise in sea level along the northeastern coast of the United States has been at a rate much greater than this, indicating local subsidence of the land. Between Cape Cod and northern Virginia, coastal subsidence of 13 feet appears to have occurred between 4000 and 2000 years ago and has continued at a rate of about 1 x 10(-3) foot per year since then. On the northeastern coast of Massachusetts, subsidence of 6 feet occurred between 4000 and 3000 years ago; since then sea level has risen at about the eustatic rate. Between 12,000 and 4000 years ago, sea level rose at an average of about 11 x 10(-3) foot per year. The part played by local subsidence or temporary departures from the average rate during this period is uncertain. PMID:17792852

  15. Holocene Relative Sea-Level Changes from Near-, Intermediate-, and Far-Field Locations

    NASA Astrophysics Data System (ADS)

    Walker, J. S.; Khan, N.; Shaw, T.; Ashe, E.; Vacchi, M.; Peltier, W. R.; Kopp, R. E.; Horton, B.

    2015-12-01

    Holocene relative sea-level (RSL) records exhibit spatial and temporal variability that arises mainly from the interaction of eustatic (land ice volume and thermal expansion) and isostatic (glacio- and hydro-) factors. We fit RSL histories from near-, intermediate-, and far-field locations with noisy-input Gaussian process models to assess rates of RSL change from selected study areas. Records from near-field regions (e.g., Antarctica, Greenland, Canada, Sweden, and Scotland) reveal a complex pattern of RSL fall from a maximum marine limit due to the net effect of eustatic sea-level rise and glacial-isostatic uplift with rates of RSL fall as great as -69 ± 9 m/ka. Intermediate-field regions (e.g., mid-Atlantic and Pacific coasts of the United States, Netherlands, Southern France, St. Croix) display variable rates of RSL rise from the cumulative effect of isostatic and eustatic factors. Fast rates of RSL rise (up to 10 ± 1 m/ka) are found in the early Holocene in regions near the center of forebulge collapse. Far-field RSL records exhibit a mid-Holocene highstand, the timing (between 8 and 4 ka) and magnitude (between <1 and 6 m) of which varies across South America, Africa, Asia and Australia regions.

  16. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain

    USGS Publications Warehouse

    Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Olsson, R.K.; Feigenson, M.D.; Hernandez, J.C.

    2004-01-01

    We developed a Late Cretaceous sealevel estimate from Upper Cretaceous sequences at Bass River and Ancora, New Jersey (ODP [Ocean Drilling Program] Leg 174AX). We dated 11-14 sequences by integrating Sr isotope and biostratigraphy (age resolution ??0.5 m.y.) and then estimated paleoenvironmental changes within the sequences from lithofacies and biofacies analyses. Sequences generally shallow upsection from middle-neritic to inner-neritic paleodepths, as shown by the transition from thin basal glauconite shelf sands (transgressive systems tracts [TST]), to medial-prodelta silty clays (highstand systems tracts [HST]), and finally to upper-delta-front quartz sands (HST). Sea-level estimates obtained by backstripping (accounting for paleodepth variations, sediment loading, compaction, and basin subsidence) indicate that large (>25 m) and rapid (???1 m.y.) sea-level variations occurred during the Late Cretaceous greenhouse world. The fact that the timing of Upper Cretaceous sequence boundaries in New Jersey is similar to the sea-level lowering records of Exxon Production Research Company (EPR), northwest European sections, and Russian platform outcrops points to a global cause. Because backstripping, seismicity, seismic stratigraphic data, and sediment-distribution patterns all indicate minimal tectonic effects on the New Jersey Coastal Plain, we interpret that we have isolated a eustatic signature. The only known mechanism that can explain such global changes-glacio-eustasy-is consistent with foraminiferal ??18O data. Either continental ice sheets paced sea-level changes during the Late Cretaceous, or our understanding of causal mechanisms for global sea-level change is fundamentally flawed. Comparison of our eustatic history with published ice-sheet models and Milankovitch predictions suggests that small (5-10 ?? 106 km3), ephemeral, and areally restricted Antarctic ice sheets paced the Late Cretaceous global sea-level change. New Jersey and Russian eustatic estimates

  17. Sea-level changes and the Middle-Upper Devonian sequence in the Baltic basin

    NASA Astrophysics Data System (ADS)

    Lukševičs, E.; Stinkulis, Ä.¢.

    2012-04-01

    Lithostratigraphic succession of the Middle-Upper Devonian of Baltic, represented by siliciclastic and carbonate deposits of the wide shallow epeiric sea, is well-established. The sequence of biotic and sea-level changes has been studied in detail for about half a century. However, it was rarely tried to compare the sea-level curve for the Baltic with the curve of the global sea-level changes and correlate the succession with the sequence of the Devonian global events well established mainly in the marine record. New facies analysis and biostratigraphical and taphonomical studies together with the re-evaluation of signatures of the world-wide events using sedimentological and palaeontological data enables better understanding of the development of the Middle-Late Devonian basins of the Baltic area. Indications of such events as eustatic fall of the sea-level close to the Givetian-Frasnian and Frasnian-Famennian boundaries, several small-scale transgressions during Famennian interglacials are rather clearly traceable within the sequence. Distribution of deposits, biotas and facies suggests diminishing of the depositional area since the maximum transgression in the earliest Frasnian thus demonstrating good coincidence with the global sea level curve (Haq & Schutter 2008). The retreat of depocentre of the palaeobasin in westerly direction during the late Frasnian and the Famennian likely was caused by tectonic subsidence at the western part of the east Baltics. The most significant event levels identified within the section are the extended Taghanic onlap (middle Givetian) evidenced by dolocretes in the upper part of the Burtnieki Fm; significant drop of the sea level during the earliest Frasnian indicated by widely distributed dolocretes in the top of the Amata Fm that points to the possible position of the Givetian/Frasnian boundary below the Amata; level of the Dubnik RS with extensive gypsum deposits and non-oxidised organic matter of the Salaspils Fm evidencing

  18. Balancing regional sea level budgets

    NASA Astrophysics Data System (ADS)

    Leuliette, E. W.; Miller, L.; Tamisiea, M. E.

    2015-12-01

    Balancing the sea-level budget is critical to understanding recent and future climate change as well as balancing Earth's energy budget and water budget. During the last decade, advancements in the ocean observing system — satellite altimeters, hydrographic profiling floats, and space-based gravity missions — have allowed the global mean sea level budget to?be assessed with unprecedented accuracy from direct, rather than inferred, estimates. In particular, several recent studies have used the sea-level budget to bound the rate of deep ocean warming [e.g. Llovel et al. 2014]. On a monthly basis, the sum of the steric component estimated from Argo and the ocean mass (barostatic) component from GRACE agree total sea level from Jason within the estimated uncertainties with the residual difference having an r.m.s. of less than 2 mm [Leuliette 2014]. Direct measurements of ocean warming above 2000 m depth during January 2005 and July 2015 explain about one-third of the observed annual rate of global mean sea-level rise. Extending the understanding of the sea-level budget from global mean sea level to regional patterns of sea level change is crucial for identifying regional differences in recent sea level change. The local sea-level budget can be used to identify any systematic errors in the global ocean observing system. Using the residuals from closing the sea level budget, we demonstrate that systematic regional errors remain, in part due to Argo sampling. We also show the effect of applying revised geocentric pole-tide corrections for GRACE [Wahr et al. 2015] and altimetry [Desai et al., 2015].

  19. Probability of sea level rise

    SciTech Connect

    Titus, J.G.; Narayanan, V.K.

    1995-10-01

    The report develops probability-based projections that can be added to local tide-gage trends to estimate future sea level at particular locations. It uses the same models employed by previous assessments of sea level rise. The key coefficients in those models are based on subjective probability distributions supplied by a cross-section of climatologists, oceanographers, and glaciologists.

  20. Regional sea level change in the Thailand-Indonesia region

    NASA Astrophysics Data System (ADS)

    Fenoglio-Marc, L.; Becker, M. H.; Buchhaupt, C.

    2013-12-01

    It is expected that the regional sea level rise will strongly affect particular regions with direct impacts including submergence of coastal zones, rising water tables and salt intrusion into groundwaters. It can possibly also exacerbate other factors as floodings, associated to storms and hurricanes, as well as ground subsidence of anthropogenic nature. The Thailand-Vietnam-Indonesian region is one of those zones. On land, the Chao-Praya and Mekong Delta are fertile alluvial zones. The potential for sea level increases and extreme floodings due to global warming makes the Deltas a place where local, regional, and global environmental changes are converging. We investigate the relative roles of regional and global mechanisms resulting in multidecadal variations and inflections in the rate of sea level change. Altimetry and GRACE data are used to investigate the variation of land floodings. The land surface water extent is evaluated at 25 km sampling intervals over fifteen years (1993-2007) using a multisatellite methodology which captures the extent of episodic and seasonal inundations, wetlands, rivers, lakes, and irrigated agriculture, using passive and active (microwaves and visible observations. The regional sea level change is analysed during the period 1993-2012 using satellite altimetry, wind and ocean model data, tide gauge data and GPS. The rates of absolute eustatic sea level rise derived from satellite altimetry through 19-year long precise altimeter observations are in average higher than the global mean rate. Several tide gauge records indicate an even higher sea level rise relative to land. We show that the sea level change is closely linked to the ENSO mode of variability and strongly affected by changes in wind forcing and ocean circulation. We have determined the vertical crustal motion at a given tide gauge location by differencing the tide gauge sea level time-series with an equivalent time-series derived from satellite altimetry and by computing

  1. Late Holocene sea level variability and Atlantic Meridional Overturning Circulation

    USGS Publications Warehouse

    Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.

    2014-01-01

    Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.

  2. Carbonate-slope failures as indicators of sea-level lowerings

    SciTech Connect

    Cook, H.E. ); Taylor, M.E. )

    1991-03-01

    Occasionally, carbonate-slope failures of such a magnitude occur that immense volumes of material move downslope as submarine slides and boulder-bearing debris flows. These spectacular deposits can be triggered by earthquakes or tsunamis. However, when such deposits are regionally widespread or are on separate lithospheric plates, at times of sea-level lowering, trigger mechanism is most likely eustatic sea-level fluctuations. The authors propose that during the initial phases of a sea-level lowering, slope and/or platform-margin collapse can happen, owing to gravitational instability of partially cemented carbonates. Fragments of the margins of the early Paleozoic proto-Pacific Ocean are found in widely separated terranes, including western North America and southern Kazakhstan (USSR). Coeval carbonate-slope and platform-margin failures occurred in both areas during the Late Cambrian and Early Ordovician. Up to 75-km-long segments of these carbonate slopes and platform margins collapsed and were transported seaward as submarine slides and megabreccia debris flows. These catastrophic events contributed to the development of 500-m-thick carbonate submarine fans and aprons. Slope and platform-margin failures also correlate with solution breccia and faunal disconformities in platform-interior sites. They interpret these widely separated yet coeval mass-transport processes to have happened during rapid oceanward progradation of their respective carbonate margins, in combination with several eustatic sea-level lowerings.

  3. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    SciTech Connect

    Scott, R.W.

    1988-01-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences on the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.

  4. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    SciTech Connect

    Scott, R.W.

    1988-02-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences on the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.

  5. Relative sea level changes during the Cretaceous in Israel

    SciTech Connect

    Flexer, A.; Rosenfeld, A.; Lipson-Benitah, S.; Honigstein, A.

    1986-11-01

    Detailed lithologic, microfaunal, and biometric investigations, using relative abundances, diversity indexes, and duration charts of ostracods and foraminifera, allowed the recognition of sea level changes during the Cretaceous of Israel. Three major transgressive-regressive sedimentation cycles occur on the northwest margins of the Arabian craton. These cycles are the Neocomian-Aptian, which is mostly terrigenous sediments; the Albian-Turonian, which is basin marls and platform carbonates; and the Senonian, which is uniform marly chalks. The cycles are separated by two major regional unconformities, the Aptian-Albian and Turonian-Coniacian boundaries. The sedimentary cycles are related to regional tectonic and volcanic events and eustatic changes. The paleodepth curve illustrates the gradual sea level rise, reaching its maximum during the Late Cretaceous, with conspicuous advances during the late Aptian, late Albian-Cenomanian, early Turonian, early Santonian, and early Campanian. Major lowstands occur at the Aptian-Albian, Cenomanian-Turonian, Turonian-Coniacian, and Campanian-Maastrichtian boundaries. This model for Israel agrees well with other regional and global sea level fluctuations. Four anoxic events (black shales) accompanying transgressions correspond to the Cretaceous oceanic record. They hypothesize the presence of mature oil shales in the present-day eastern Mediterranean basin close to allochthonous reef blocks detached from the Cretaceous platform. 11 figures.

  6. Rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas M.

    2012-11-01

    Several global and regional factors contribute to observed sea-level change along any particular coast. Global processes include changes in ocean mass (glacio-eustasy from ice melt), ocean volume (steric effects), viscoelastic land movements (glacioisostatic adjustment GIA), and changes in terrestrial water storage. Regional processes, often connected to steric and glacial changes, include changes in ocean circulation (Meridional Overturning Circulation [MOC]), glacial melting, local GIA, regional subsidence and others. Paleoclimate, instrumental and modeling studies show that combinations of these factors can cause relatively rapid rates of sea-level rise exceeding 3 mm yr-1 over various timescales along particular coasts. This paper discusses patterns and causes of sea-level rise with emphasis on paleoclimatological records. It then addresses the hypothesis of late Holocene (pre-20th century) sea-level stability in light of paleoclimatic evidence, notably from reconstructions of sea-surface temperature and glacial activity, for significant climate and sea-level variability during this time. The practical difficulties of assessing regional sea-level (SL) patterns at submillennial timescales will be discussed using an example from the eastern United States.

  7. Late Holocene land- and sea-level changes in the British Isles: implications for future sea-level predictions

    NASA Astrophysics Data System (ADS)

    Gehrels, W. Roland

    2010-07-01

    Four decades of palaeosea-level research in the British Isles have produced a large dataset of age-altitude curves of postglacial sea-level changes. Patterns of late Holocene relative sea-level change reveal the persistent influence of the British/Irish Ice Sheet and the larger Scandinavian Ice Sheet on contemporary rates of vertical land movements. The Shennan and Horton (2002) map of late Holocene relative land movements has been used in future sea-level rise predictions by the United Kingdom Climate Impact Programme in their 2002 assessment (UKCIP02), but has been mistaken for a map of absolute land movements. In this paper, land-motion data for Britain are extracted from the Shennan and Horton (2002) relative sea-level data, and a new map of crustal land movements is presented which also includes Ireland. This procedure takes into account the regional 20th century sea-level rise (˜0.14 m) and the process of ocean syphoning ( i.e. a global fall in sea level of ˜0.3 mm/yr due to GIA induced ocean-floor lowering and re-distribution of ocean mass). The calculated land-motion rates also depend on the global late Holocene ice-equivalent sea-level change, given by the Intergovernmental Panel on Climate Change as 0.0-0.2 mm/yr. Accounting for these processes reduces the misfit between geological observations of vertical land motion and those independently derived from gravity-aligned Global Positioning System (AG GPS) measurements and shows that UKCIP02 has underestimated land subsidence in southern Britain and over-estimated land uplift in Scotland, both by 0.1-0.2 mm/yr. A best fit between GPS and geological estimates of land movements in Britain is achieved for a global long-term eustatic sea-level fall of ca 0.2 mm/yr, suggesting some global ice expansion in the late Holocene, rather than melt. If this is correct, uplift rates in Scotland would be lower and subsidence rates in southern Britain would be faster (by 0.4-0.5 mm/yr) than estimated by UKCIP02. More

  8. A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Rust, Kelly A.; Klein, George D.

    1993-01-01

    Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.

  9. The late Silurian-Middle Devonian long-term eustatic cycle as a possible control on the global generic diversity dynamics of bivalves and gastropods

    NASA Astrophysics Data System (ADS)

    Ruban, Dmitry A.

    2013-09-01

    A long-term eustatic cycle (fall and subsequent rise of the global sea level) embraced the late Silurian-Middle Devonian time interval. Potentially, these sea-level changes could drive global biodiversity. The stratigraphic ranges of 204 bivalve genera and 279 gastropod genera included into the famous Sepkoski database allow reconstructing changes in the total diversity and the number of originations and extinctions of these important groups of marine benthic macro- -invertebrates during this interval. None of the recorded parameters coincided with the long-term global sea-level cycle. It cannot be not excluded, however, that the global sea-level changes did not affect the regions favourable for bivalve and gastropod radiation because of regional tectonic mechanisms; neither can it be excluded that the eustatic control persisted together with many other extrinsic and intrinsic controls. Interestingly, the generic diversity of gastropods increased together with a cooling trend, and vice versa. Additionally, the Ludlow, Eifelian, and Givetian biotic crises affected, probably, both fossil groups under study. There was also a coincidence of the relatively high bivalve generic diversity, initial radiation of gastropods and the entire biota, and the diversification of brachiopods with the Early Devonian global sea-level lowstand, and this may be interpreted as evidence of a certain eustatic control on the marine biodiversity.

  10. Eustatic control of tertiary hydrocarbon deposits, Central California borderline basins

    SciTech Connect

    Cousminer, H.L. )

    1994-04-01

    In the central California borderland basins, the Vail-Haq Cenozoic Global Eustatic Cycle appears to have influenced depositional patterns that have fundamental significance in the present distribution of hydrocarbon source and reservoir beds. Coupled with tectonic events, traps were created that now control the distribution of hydrocarbon accumulations. Seismic data combined with subsurface lithostratigraphic, biostratigraphic, and log data from wells drilled on the central California outer continental shelf (OCS) were used to date and correlate Tertiary stratigraphic sequences in the Santa Maria, Bodega-La Honda, and Point Arena basins. Benthic foraminiferal assemblages also served to reconstruct each basin's paleobathymetric history. The west coast benthic foram stages, commerically used to solve subsurface stratigraphic problems for over 60 yr, occur with planktonic microfossil groups that now serve to calibrate the provincial stages with the absolute geologic time scale. The Miocene through Pliocene stratigraphic sequences in these three depocenters are markedly similar, and record a parallel marine onlap and offlap pattern that correlates closely with the Vail-Haq Cenozoic Global Eustatic Cycle. The highstand depositional cycles are generally dominated by organic-rich sediments of good to excellent are generally dominated by organic-rich sediments of good to excellent source-bed potential. Lowstand regressive to transgressive clastic deposits have good reservoir potential. The middle Miocene siliceous Monterey Formation was deposited during maximum Tertiary global sea levels and is present in all of these basins. In addition to being a prolific source bed, the Monterey is unique in that when diagnetically altered, it fractures and also becomes an excellent hydrocarbon reservoir.

  11. Sea Level Rise in Tuvalu

    NASA Astrophysics Data System (ADS)

    Lin, C. C.; Ho, C. R.; Cheng, Y. H.

    2012-04-01

    Most people, especially for Pacific Islanders, are aware of the sea level change which may caused by many factors, but no of them has deeper sensation of flooding than Tuvaluan. Tuvalu, a coral country, consists of nine low-lying islands in the central Pacific between the latitudes of 5 and 10 degrees south, has the average elevation of 2 meters (South Pacific Sea Level and Climate Monitoring Project, SPSLCMP report, 2006) up to sea level. Meanwhile, the maximum sea level recorded was 3.44m on February 28th 2006 that damaged Tuvaluan's property badly. Local people called the flooding water oozes up out of the ground "King Tide", that happened almost once or twice a year, which destroyed the plant, polluted their fresh water, and forced them to colonize to some other countries. The predictable but uncontrollable king tide had been observed for a long time by SPSLCMP, but some of the uncertainties which intensify the sea level rise need to be analyzed furthermore. In this study, a span of 18 years of tide gauge data accessed from Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) are compared with the satellite altimeter data accessed from Archiving Validation and Interpretation of Satellite Data in Oceanography (AVISO). All above are processed under the limitation of same time and spatial range. The outcome revealed a 9.26cm difference between both. After the tide gauge data shifted to the same base as altimeter data, the results showed the unknown residuals are always positive under the circumstances of the sea level rise above 3.2m. Apart from uncertainties in observing, the residual reflected unknown contributions. Among the total case number of sea level rise above 3.2m is 23 times, 22 of which were recorded with oceanic warm eddy happened simultaneously. The unknown residual seems precisely matched with oceanic warm eddies and illustrates a clear future approach for Tuvaluan to care for.

  12. Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran

    NASA Astrophysics Data System (ADS)

    Heydari, Ezat

    2008-04-01

    At least 12 km of strata ranging in age from the latest Precambrian to the Recent are exposed in the Zagros Mountains of Iran. This sedimentary cover is characterized by distinct stratal packages separated by major unconformities forming twelve supersequences. They are informally named as: (1) Late Precambrian - Cambrian Hakhamanesh Supersequence, (2) Ordovician Kourosh Supersequence, (3) Silurian Camboojiyeh Supersequence, (4) Devonian Darioush Supersequence, (5) Mississippian - Pennsylvanian Khashayar Supersequence, (6) Permian - Triassic Ashk Supersequence, (7) Jurassic Farhad Supersequence, (8) Early Cretaceous Mehrdad Supersequence, (9) Late Cretaceous Ardavan Supersequence, (10) Paleocene - Oligocene Sassan Supersequence, (11) Oligocene - Miocene Ardeshir Supersequence, and (12) Miocene - Pleistocene Shapour Supersequence. These supersequences and their correlatives in neighboring areas have been used to infer tectonic events. The dominant interpretation has been that local or regional epeirogenic movements were responsible for the formation of these supersequences. Unconformities are considered as indications that epeirogenic movements associated with tectonic events affected the area. The present investigation provides an alternative to the established view of the Phanerozoic supersequences of the Zagros Mountains. A good correlation exists between the lithofacies of supersequences in the Zagros Mountains and the second-order eustatic sea-level changes. Deposition of deep-water, marine shales occurred during periods of eustatic sea-level rise. Platform-wide unconformities coincided with eustatic sea-level lows. In fact, supersequences of the Zagros Mountains are nearly identical to those described from the North American Craton and the Russian Platform suggesting that these stratal packages are global. These observations suggest that supersequences of the Zagros Mountains formed by second order eustatic sea-level changes and not by local or regional

  13. Intermittent sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  14. The effects of artificially impounded water on tide gauge measurements of sea level over the last century

    NASA Astrophysics Data System (ADS)

    Haberling, S.; Zhang, Y.; Rothacher, M.; Geiger, A.; Clinton, J. F.

    2011-12-01

    Tide gauge measurements spanning the last century reveal global scale and regionally varying changes in sea level. These changes are comprised of signals from a number of natural and anthropogenically forced processes, including ongoing glacial isostatic adjustment, mass flux from polar ice sheets and glaciers, thermosteric effects, and variability in patterns of ocean circulation. We present a new analysis of sea-level changes arising from the impoundment over the last century of more than 6,100 km3 of water (plus estimates of seepage into surrounding soils) in ~6,800 reservoirs around the globe (Chao et al., Science, 2008; Fiedler & Conrad, Geophys. Res. Lett., 2010). In particular, we extend the analysis of Fiedler & Conrad (2010) by adopting a database that includes an additional ~30% of water impoundment. Our calculations are based on a gravitationally self-consistent theory that incorporates the full suite of gravitational, rotational and (elastic) deformational effects on sea level (Kendall et al., Geophys. J. Int., 2005). The signal associated with impoundment at each reservoir is characterized by a sea level fall that is ~30% higher than the globally averaged (eustatic) value of the impoundment. In contrast, in the near field, sea level rises in response to both deformational and gravitational effects with an amplitude that is roughly an order of magnitude greater than the eustatic amplitude. We present global maps of the total sea-level change associated with the reservoirs, and report on an effort to detect the impoundment signal at individual tide gauges.

  15. Mesozoic sea level fluctuations documented on Exmouth Plateau off northwestern Australia

    SciTech Connect

    Haq, B.U.; Blome, C.D.; Bralower, T.J.; Brenner, W.; Oda, M.; Siesser, W.; Wonders, A.A.H.

    1989-03-01

    The Exmouth Plateau is uniquely suited to the study of sea level changes because of the existence of an extensive seismic grid and industry well sites, an extended Mesozoic stratigraphic record punctuated with several major unconformities, and the relatively protected position of this high plateau. Thus, documenting sea level fluctuations was one of the major objectives of drilling on the Exmouth Plateau. This documentation depends on their ability to (1) isolate the tectonic overprint from the eustatic signal by retracing the subsidence histories of the drill sites and (2) accurately date the unconformities. Two transects of sites were drilled, one with four sites on the Wombat Plateau and the other with two sites on the central Exmouth Plateau, with one site located relatively proximally and another distally to the source of sediment supply. Preliminary shipboard work indicates that the age of Mesozoic unconformities can be accurately constrained and the subsidence-related tectonic events can be effectively isolated from sea level fluctuations. Sequence stratigraphic analysis of seismic, lithofacies, biofacies, and well-log data document important Upper Triassic sequence boundaries on the Wombat Plateau between the middle and upper Carnian (Norian-Rhaetian boundary) and in the upper most Rhaetian, whose timing and relative magnitude conform well with the eustatic cycle chart. The sequence boundary and systems tracts recognized in the central Exmouth Plateau Barrow Group equivalent strata (Berriasian-Valanginian) also correspond well with the global cycle chart. These preliminary results are of considerable importance in providing a test of the validity of the eustatic model.

  16. Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world

    USGS Publications Warehouse

    Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Hernandez, J.C.; Olsson, R.K.; Wright, J.D.; Feigenson, M.D.; Van Sickel, W.

    2003-01-01

    We provide a record of global sea-level (eustatic) variations of the Late Cretaceous (99-65 Ma) greenhouse world. Ocean Drilling Program Leg 174AX provided a record of 11-14 Upper Cretaceous sequences in the New Jersey Coastal Plain that were dated by integrating Sr isotopic stratigraphy and biostratigraphy. Backstripping yielded a Late Cretaceous eustatic estimate for these sequences, taking into account sediment loading, compaction, paleowater depth, and basin subsidence. We show that Late Cretaceous sea-level changes were large (>25 m) and rapid (??? m.y.), suggesting a glacioeustatic control. Three large ??18O increases are linked to sequence boundaries (others lack sufficient ??18O data), consistent with a glacioeustatic cause and with the development of small (<106 km3) ephemeral ice sheets in Antarctica. Our sequence boundaries correlate with sea-level falls recorded by Exxon Production Research and sections from northwest Europe and Russia, indicating a global cause, although the Exxon record differs from backstripped estimates in amplitude and shape.

  17. Post-glacial sea-level changes around the Australian margin: a review

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen E.; Sloss, Craig R.; Murray-Wallace, Colin V.; Woodroffe, Colin D.; Smithers, Scott G.

    2013-08-01

    It has been known since Rhodes Fairbridge's first attempt to establish a global pattern of Holocene sea-level change by combining evidence from Western Australia and from sites in the northern hemisphere that the details of sea-level history since the Last Glacial Maximum vary considerably across the globe. The Australian region is relatively stable tectonically and is situated in the 'far-field' of former ice sheets. It therefore preserves important records of post-glacial sea levels that are less complicated by neotectonics or glacio-isostatic adjustments. Accordingly, the relative sea-level record of this region is dominantly one of glacio-eustatic (ice equivalent) sea-level changes. The broader Australasian region has provided critical information on the nature of post-glacial sea level, including the termination of the Last Glacial Maximum when sea level was approximately 125 m lower than present around 21,000-19,000 years BP, and insights into meltwater pulse 1A between 14,600 and 14,300 cal. yr BP. Although most parts of the Australian continent reveals a high degree of tectonic stability, research conducted since the 1970s has shown that the timing and elevation of a Holocene highstand varies systematically around its margin. This is attributed primarily to variations in the timing of the response of the ocean basins and shallow continental shelves to the increased ocean volumes following ice-melt, including a process known as ocean siphoning (i.e. glacio-hydro-isostatic adjustment processes). Several seminal studies in the early 1980s produced important data sets from the Australasian region that have provided a solid foundation for more recent palaeo-sea-level research. This review revisits these key studies emphasising their continuing influence on Quaternary research and incorporates relatively recent investigations to interpret the nature of post-glacial sea-level change around Australia. These include a synthesis of research from the Northern

  18. Paleodepth variations on the Eratosthenes Seamount (Eastern Mediterranean): sea-level changes or subsidence?

    NASA Astrophysics Data System (ADS)

    Spezzaferri, S.; Tamburini, F.

    2007-09-01

    The Eratosthenes Seamount (Eastern Mediterranean) is interpreted as a crustal block in process of break up in response to subduction and incipient collision of the African and Eurasian Plates. Subsidence is considered to be the mechanism triggering the Messinian to Pleistocene water deepening above this unique structure. However, the application of a recently developed transfer equation of depth range distribution of benthic foraminifera indicates that sea-level changes may also have played a role, although it was generally minor. In particular, we suggest that across the Miocene/Pliocene boundary and during the Pliocene-Pleistocene, the eustatic signal is frequently coupled with uplifts and subsidence. The uplift of Cyprus across the Pliocene-Pleistocene transition is clearly recorded in the paleodepth curve. Micropaleontological studies and the use of this transfer equation based on the distribution of benthic foraminifera proves to be useful when studying the paleodepth history of complex sites, where tectonic and eustatic signals combine. We also show that marginal seas record global sea-level changes that can be identified even in tectonically active settings.

  19. Spatio-temporal variability of relative sea-level change across the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Pekar, Stephen; Houben, Alexander; DeConto, Robert; Escutia, Carlota; Vermeersen, Bert; Pollard, David; Bijl, Peter; Rugenstein, Maria; Brinkhuis, Henk; Wade, Bridget; Galeotti, Simone

    2013-04-01

    The first glaciation of Antarctica marks the Eocene-Oligocene transition (EOT; ~34 Myr ago) with a contrasting signal of relative sea-level (rsl) change between the ice-sheet proximal and the far-field marginal marine settings. The Northern Hemisphere sites (New Jersey, Alabama, Northern Italy) record, in fact, a 50 - 80 m rsl drop, which is in line with the eustatic trend. Conversely, the sedimentary facies in the proximity of the Antarctic ice-sheet show that rsl locally rose up to 150 m. Accounting for the mutual gravitational attraction between the Antarctic ice-sheet and the ocean is a necessary first requirement to solve this apparent paradox. The newly formed ice-sheet, in fact, would cause the sea level to rise in the proximity of the ice-sheet margins while poles apart the sea-level drop would be ~20% larger than the eustatic. Furthermore, the uneven redistribution of the surface load (ice and meltwater) between the continents and the oceans would cause the solid Earth to deform and consequently the equipotential surface of gravity (mean sea surface) to change. At last, but not least, the ice-sheet thickness variations and the consequent meltwater redistribution would cause the rotation pole to move, with a consequent effect on the sea level. In this work we account for these intimately related feedbacks which define the Glacial Isostatic Adjustment (GIA process by solving the gravitationally self-consistent Sea Level Equation (SLE) for a Maxwell viscoelastic and rotating earth model. We force the SLE with a new thermo-mechanical ice-sheet model for the EOT glaciation driven by the variations of atmospheric CO2 concentrations. We show that the geological data are sensitive to the strong latitude-dependent GIA process.

  20. Possible Evidence of Multiple Sea Level Oscillations in the Seychelles During the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Dutton, A. L.; Vyverberg, K.; Webster, J.; Dechnik, B.; Zwartz, D.; Lambeck, K.

    2013-12-01

    In search of a eustatic sea level signal on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its far-field location with respect to the former margins of Northern Hemisphere ice sheets, glacio-hydro-isostatic models predict that relative sea level in the Seychelles should lie within a few meters of the globally averaged eustatic signal during interglacial periods. We have surveyed and dated fossil coral reefs from the last interglacial period to determine the magnitude of peak sea level and to assess sedimentologic evidence of potential sea level oscillations. Numerous outcrops we studied in detail exhibit a stratigraphic sequence comprised of in situ coralgal framework at the base, capped by thick coralline algae crusts, and overlain by coral rubble deposits. We also observed a succession of three stacked coralgal reefs within a single outcrop, separated by hardgrounds that have been bored by molluscs. In general, the succession within each reef unit consists of interlayered corals and crusts of coralline algae-vermetid gastropods-encrusting foraminifera. The lower two reef units are capped by a well-cemented 5 to 10 cm thick carbonate mud layer that is heavily bored by molluscs. These two surfaces may represent exposure surfaces during brief sea level oscillations, where sea level fell and exposed the top of the reef sequence, which was subsequently bored when sea level rose again and reef growth resumed. The elevations of the corals in each reef unit provide minimum elevations of sea level during each of the three pulses of sea level highstands during the last interglacial period. Significantly, since many of these corals are capped by thick coralline algae layers that contain vermetid gastropods and encrusting foraminifera that are indicative of the intertidal zone, there is strong evidence that these corals grew in extremely shallow water, providing a robust indication of sea level position. These

  1. Constraining mid to late Holocene sea level change of Society Islands, French Polynesia

    NASA Astrophysics Data System (ADS)

    Juma Rashid, Rashid; Eisenhauer, Anton; Liebetrau, Volker; Fietzke, Jan; Dullo, Christian; Camoin, Gilbert; Hallmann, Nadine

    2013-04-01

    In global average rising eustatic sea level of several centimeters per decade is predicted for the near future as a consequence of seawater warming and partial melting of the Greenland ice cap (Milne et al., 2009). Beside CO2 induced ocean warming local sea-level amplitudes may also vary although no extra water has been added to or extracted from the ocean due to post-glacial geoid reorganization, as a consequence of the emergence of the once glaciated areas and the ocean siphoning effect (Milne et al., 2009; Mitrovica and Peltier, 1991; Mitrovica and Milne, 2002). However, previous research on sea level change was focused on sea-level rise that occurred between the "Last Glacial Maximum, LGM" ~18ka before present (BP) and the so called "Holocene Sea Level Maximum, HSLM" ~6ka BP. Information about sea-level change after the HSLM are rare because the Late Holocene was considered to be climatically stable with minor to negligible sea-level oscillations and amplitudes. Here we present U/Th dated fossil corals from conglomerate reef platforms of three islands (Moorea, Huahine and Bora Bora) of the Society Islands, French Polynesia. The fossil coral data constrain the timing and amplitude of sea-level variations after the HSLM. We found that sea level reached a subsidence corrected minimum position of ~1.5±0.2m above present sea level (apsl) at ~5.4ka. Sea level then remained at this position with probably minor amplitudinal variations for ~3ka and then dropped to the present position at ~1.9ka. Note, that our study does not provide any data on sea-level position from ~1.8ka to the Present. Theoretical predictions (Mitrovica and Milne, 2002) taking the ocean siphoning effect into account predicted a sea level of ~3m apsl at ~5ka and a constantly decreasing sea level from 5ka to the present. This is in contrast to our observations indicating a more or less constant sea level between 5ka and 1.9ka followed by a abrupt drop of sea level to the present position. Although

  2. Mid-Carboniferous eustatic event

    SciTech Connect

    Saunders, W.B.; Ramsbottom, W.H.C.

    1986-03-01

    Stratigraphic and paleontologic evidence from mid-Carboniferous (Namurian) basin and shelf successions in widely scattered parts of the world indicates that a major eustatic event occurred about 330 Ma. The event began with a regression that is recorded in most shelf sequences, the regression was followed by a brief transgression about 328 Ma, and the event ended with a transgression that flooded large shelf areas about 325 Ma. The Mississippian-Pennsylvanian unconformity in North America is a well-known product of this event, but equally prominent and contemporaneous unconformity surfaces are also present in Europe, North Africa, and elsewhere. The event is believed to have caused numerous extinctions, and it resulted in marked fluctuations in faunal diversity. 94 references, 2 figures.

  3. Changes in extreme sea levels in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dieterich, Christian; Gröger, Matthias; Andersson, Helén; Nerheim, Signild; Jönsson, Anette

    2016-04-01

    A newly developed shallow water model for the Baltic Sea and North Sea is presented. The model is validated by means of a comparison with hindcast simulations with observational data sets. The aim of the development is to provide and apply a modelling tool to model extreme sea levels in the Baltic Sea, Kattegat and Skagerrak. The model approach will support the direct analysis of extreme sea level observations in the past and provide the possibility to extend the statistical data base by producing very long time series or very large ensembles of coastal sea levels. This effort is intended to contribute to an assessment of risks due to storm surges and coastal flooding in the 21st century along the coast of Sweden. By using different RCP climate scenarios downscaled with a regional, coupled climate model atmospheric forcing is available to project possible changes in extreme sea levels into the future. Projected sea level rise, changes in dynamical sea level in the North East Atlantic and tidal forcing in the northern North Sea are applied as boundary condition which allows to investigate their impact on the dynamics of regional sea level variability. Initial experiments focus on the impact of model resolution, resolution in the atmospheric forcing and the amount of details necessary in the bathymetry to faithfully model coastal sea level in the Baltic Sea and North Sea.

  4. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America

    SciTech Connect

    Heckel, P.H.

    1986-04-01

    At least 55 cycles of marine inundation and withdrawal are recognized in the mid-Desmoinesian to mid-Virgilian Midcontinent outcrop sequence in North America. They range from widespread major cycles (classic cyclothems) with deep-water facies extending across the northern shelf, through intermediate cycles persisting as marine horizons across the shelf, to minor cycles developed on the lower shelf or as parts of major cycles. Biostratigraphic differentiation of the cycles should establish interbasinal correlation on a scale fine enough to allow evaluation of differential tectonics and sedimentation. Sequential groupings of cycles are more irregular than proposed megacyclothems or mesothems, but they may be obscured by the distinctness of the major cyclothems. Estimates of cycle periods range from about 40 to 120 x 10/sup 3/ yr for the minor cycles up to about 235 to 400 x 10/sup 3/ yr for the major cyclothems. The range for all cycles corresponds well to the range of periods of Earth's orbital parameters that constitute the Milankovitch insolation theory for the Pleistocene ice ages, and it further supports Gondwanan glacial control for the Pennsylvanian cycles. Even though the dominant period of the major Pennsylvanian cyclothems is up to four times longer than the dominant 100,000-yr period in the Pleistocene, the shapes of both curves display rapid marine transgression (rapid melting of ice caps) and slow interrupted regression (slow buildup of ice caps), which suggest similar linkages between the climatic effects of the orbital parameters and ice-cap formation and melting, at the two different scales, widely separated in time. 28 references, 3 figures.

  5. Paleogeographical evolution of Vigla western Naxos (Cyclades, Greece), depositional environment and sea level changes in Upper Holocene.

    NASA Astrophysics Data System (ADS)

    Evelpidou, Niki; Pavlopoulos, Kosmas; Vassilopoulos, Andreas; Triantafyllou, Maria; Vouvalidis, Konstantinos; Syrides, George

    2010-05-01

    The study area of Vigla coastal zone is located at the W coast of Naxos, the largest island of Cycladic plateau. The study of sea-land interactions during Holocene in relation to the eustatic sea level oscillations as well as the geomorphologic observations and analyses on deposited sediments, aims to reveal the paleogeographic evolution of the landscape and its impact to the overall cultural development of the area. A geomorphological mapping of the coastal area along with the drilling of three boreholes has been accomplished. Moreover, a micro faunal analysis has been performed. Five samples of plant material, chart coal and shells were dated using AMS and Conventional radiocarbon techniques providing temporal control of the sediments. Sea level rise along with sea-land interactions to the landscape evolution and the transgression of sea in 5000 BP have been verified.

  6. Steric Sea Level Trends in the Northeast Pacific Ocean: Possible Evidence of Global Sea Level Rise.

    NASA Astrophysics Data System (ADS)

    Thomson, Richard E.; Tabata, Susumu

    1989-06-01

    %. With the exception of stations 5 and 6, trends for line P' stations are no longer significant above the 70% level. The lower statistical reliability in the line P' trends is due, in part, to the sparse sampling rate relative to station P'. We conclude that steric sea levels in the northeast Pacific are rising, at approximately 1 mm yr1 and that this increase may be associated with a combined regional warming of the deeper waters and dilution of the surface waters. Although the observed trends appear to be linked to climate-induced eustatic changes in global sea level, the records are not of adequate length or spatial coverage to rule out effects of shifting regional circulation patterns.

  7. Regional sea level variability in the Bohai Sea, Yellow Sea, and East China Sea

    NASA Astrophysics Data System (ADS)

    Cheng, Yongcun; Plag, Hans-Peter; Hamlington, Benjamin D.; Xu, Qing; He, Yijun

    2015-12-01

    The regional sea level variability in the Bohai Sea (BS), Yellow Sea (YS) and East China Sea (ECS) is investigated based on tide gauge, satellite altimeter data and an independent oceanic general circulation model for the Earth Simulator (OFES) model outputs. It is found that atmospheric forcing significantly affects local sea level variability in the BS and YS and local sea level variability at the Southern ECS is highly correlated with along-shore currents. Particularly, the annual sea level fluctuations potentially change inundation risk and the frequency and magnitude of flooding in regions with high annual sea level. Hence, the cyclostationary empirical orthogonal function (CSEOF) analysis is carried out to investigate the variations of annual sea level cycle amplitude. Similar spatial distribution characteristics of annual sea level amplitude fluctuations are presented from satellite altimeter data and model outputs. The variability of annual sea level amplitude estimated from the satellite altimeter data agrees well with that from the tide gauge data, and positively (negatively) correlates with Southern Oscillation Index (Pacific Decadal Oscillation). The OFES model, however, underestimates the fluctuation of the annual cycle. After removing the annual signal, the low-passed (i.e., 13-month running mean) tide gauge data shows high correlations with SOI and PDO on time scales over 8 years in the BS and ECS.

  8. Dynamics of sea level variations in the coastal Red Sea

    NASA Astrophysics Data System (ADS)

    Churchill, James; Abulnaja, Yasser; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard; Lentz, Steven

    2016-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. While considerable scientific work has been directed at tidal and seasonal variations of Red Sea water level, very little attention has been given to elevation changes in an 'intermediate' frequency band, with periods of 2-30 d, even though motions in this band account for roughly half of the sea level variance in central Red Sea. We examined the sea level signal in this band using AVISO sea level anomaly (SLA) data, COARDAS wind data and measurements from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters. Empirical orthogonal function analysis of the SLA data indicates that longer-period (10-30 d) sea level variations in the intermediate band are dominated by coherent motions in a single mode that extends over most of the Red Sea axis. Idealized model results indicate that this large-scale mode of sea level motion is principally due to variations in the large-scale gradient of the along-axis wind. Our analysis indicates that coastal sea level motions at shorter periods (2-10 d) are principally generated by a combination of direct forcing by the local wind stress and forcing associated with large-scale wind stress gradients. However, also contributing to coastal sea level variations in the intermediate frequency band are mesoscale eddies, which are prevalent throughout the Red Sea basin, have a sea level signal of 10's of cm and produce relatively small-scale (order 50 km) changes in coastal sea level.

  9. Holocene Sea-Level Database For The Caribbean Region

    NASA Astrophysics Data System (ADS)

    Khan, N. S.; Horton, B.; Engelhart, S. E.; Peltier, W. R.; Scatena, F. N.; Vane, C. H.; Liu, S.

    2013-12-01

    Holocene relative sea-level (RSL) records from far-field locations are important for understanding the driving mechanisms controlling the nature and timing of the mid-late Holocene reduction in global meltwaters and providing background rates of late Holocene RSL change with which to compare the magnitude of 20th century RSL rise. The Caribbean region has traditionally been considered far-field (i.e., with negligible glacio-isostatic adjustment (GIA) influence), although recent investigations indicate otherwise. Here, we consider the spatial variability in glacio-isostatic, tectonic and local contributions on RSL records from the circum-Caribbean region to infer a Holocene eustatic sea-level signal. We have constructed a database of quality-controlled, spatially comprehensive, Holocene RSL observations for the circum-Caribbean region. The database contains over 500 index points, which locate the position of RSL in time and space. The database incorporates sea-level observations from a latitudinal range of 5°N to 25°N and longitudinal range of 55°W to 90°W. We include sea-level observations from 11 ka BP to present, although the majority of the index points in the database are younger than 8 ka BP. The database is sub-divided into 13 regions based on the distance from the former Laurentide Ice Sheet and regional tectonic setting. The index points were primarily derived from mangrove peat deposits, which in the Caribbean form in the upper half of the tidal range, and corals (predominantly Acropora palmata), the growth of which is constrained to the upper 5 m of water depth. The index points are classified on the basis of their susceptibility to compaction (e.g., intercalated, basal). The influence of temporal changes in tidal range on index points is also considered. The sea-level reconstructions demonstrate that RSL did not exceed the present height (0 m) during the Holocene in the majority of locations, except at sites in Suriname/Guayana and possibly Trinidad

  10. Late mid-Holocene sea-level oscillation: A possible cause

    NASA Astrophysics Data System (ADS)

    Scott, D. B.; Collins, E. S.

    Sea level oscillated between 5500 and 3500 years ago at Murrells Inlet, South Carolina, Chezzetcook and Baie Verte, Nova Scotia and Montmagny, Quebec. The oscillation is well constrained by foraminiferal marsh zonations in three locations and by diatoms in the fourth one. The implications are: (1) there was a eustatic sea-level oscillation of about 2-10 m in the late mid-Holocene on the southeast coast of North America (South Carolina to Quebec) that is not predicted by present geophysical models of relative sea-level change; (2) this oscillation coincides with oceanographic cooling on the east coast of Canada that we associate with melting ice; and (3) this sea- level oscillation/climatic event coincides exactly with the end of pyramid building in Egypt which is suggested to have resulted from a climate change (i.e. drought, cooling). This sea-level/climatic change is a prime example of feedback where climatic warming in the mid-Holocene promoted ice melt in the Arctic which subsequently caused climatic cooling by opening up Arctic channels releasing cold water into the Inner Labrador Current that continued to intensify until 4000 years ago. This sea-level event may also be the best way of measuring when the final ice melted since most estimates of the ages of the last melting are based on end moraine dates in the Arctic which may not coincide with when the last ice actually melted out, since there is no way of dating the final ice positions.

  11. Implications of accelerated sea-level rise on Louisiana coastal environments

    USGS Publications Warehouse

    Ramsey, Karen E.; Penland, Shea; Roberts, Harry H.

    1991-01-01

    Natural and human-induced processes have combined to produce high rates of relative sea-level rise and coastal land loss in Louisiana. This paper presents historical trends in sea-level rise and the implication of predicted accelerated rise scenarios on Louisiana's coastal environments. Mean eustatic sea-level in the Gulf of Mexico is 0.23 cm/yr. In Louisiana, relative sea-level rise, which combines eustacy and subsidence, averages from 0.50 cm/yr in the chenier plain to 1.0 cm/yr in the delta plain. Subsidence due to the compaction of Holocene sediments is believed to be the major component influencing these high rates of rise. Subsidence contributes up to 80% of the observed relative sea-level rise in coastal Louisiana. The Environmental Protection Agency (EPA) predicts the rate of sea-level rise to increase over the next century due to global climate change. If these predictions are accurate, a dramatic increase in the coastal land loss conditions in Louisiana can be expected.

  12. Sea level change since the Pliocene - a new formalism for predicting sea level in the presence of dynamic topography and isostasy

    NASA Astrophysics Data System (ADS)

    Austermann, Jacqueline; Rovere, Alessio; Moucha, Robert; Mitrovica, Jerry X.; Rowley, David B.; Forte, Alessandro M.; Raymo, Maureen E.

    2014-05-01

    Dynamic topography (DT), as reflected in local sea level change, provides a unique lens for studying the imprint of deep Earth dynamics on the Earth's surface. The elevation of paleo-shorelines over long time scales is, however, not only perturbed by DT but also by glacial isostatic adjustment (GIA) and eustatic changes in sea level. Isolating these contributions is essential for efforts to constrain past changes in ice volume or mantle convection models. Previous studies have performed this separation by modeling dynamic topography and superimposing the signal on the elevation of a GIA-corrected paleo-shoreline. However, this approach neglects deformation of the Earth in response to changes in the ocean load and geometry driven by DT. We describe a generalized, gravitationally self-consistent framework for computing sea-level changes that incorporates DT and GIA. The formalism is based on a sea-level theory developed within the GIA community that takes accurate account of viscoelastic deformation of the solid Earth, perturbations in the gravity field, migration of shorelines and the feedback into sea-level of contemporaneous (load-induced) changes in Earth rotation. Specifically, dynamic topography is introduced as a perturbation to the elevation of the solid surface that does not load the Earth because it is dynamically supported. However, water that is displaced by DT is allowed to redistribute, perturb the gravitational field and load (or unload) the ocean floor wherever the water column is increased (or decreased). The problem is complicated by plate tectonics, which (in a tectonic reference frame) leaves changes in topography and DT undefined in areas of the ocean floor where plates have been subducted. We interpolate these regions by imposing mass conservation of both the solid Earth and water on the reconstructed topography. We use the new formalism to calculate sea level change since the mid-Pliocene (3 Ma) using recent global simulations of dynamic

  13. Disentangling Middle Paleozoic sea level and tectonic events in cratonic margins and cratonic basins of North America

    NASA Astrophysics Data System (ADS)

    Bond, Gerard C.; Kominz, Michelle A.

    1991-04-01

    The cratonic margins and basins of North America contain evidence of distinct changes in relative sea level, one of the most intriguing of which occurred in middle Paleozoic time. The change in relative sea level began in Frasnian time (Late Devonian) and continued through Visean time (Middle Mississippian) in the Cordilleran miogeocline, in the Southern Oklahoma Aulacogen, in the Appalachian miogeocline and in the Michigan, Illinois, and Williston basins. The synchroneity and wide geographic distribution of this event are striking and would seem to argue for an eustatic mechanism. An estimate of the middle Paleozoic sea level rise relative to the stable craton in Iowa suggests that while a large sea level rise occurred, it is smaller than the magnitude of subsidence in the cratonic basins and margins. Flexural foreland basin models do not appear to account for the all of the events in the cratonic margins, and thermal subsidence mechanisms do not seem appropriate for the subsidence in the cratonic basins. The middle Paleozoic stratigraphic record from the North American craton and its margins, therefore, poses a basic problem of identifying a mechanism for producing a large-amplitude rise in sea level relative to the stable craton at the same time as a synchronous onset of tectonic subsidence in widespread basinal and marginal settings of diverse tectonic origin. One plausible mechanism for the tectonic subsidence in the basins and margins is a pulse of intraplate compressive stress. The origin of the large sea level rise relative to the stable craton could reflect an unusually large eustatic sea level change, but we cannot eliminate the possibility of a small component of subsidence or change in dynamic topography of the North American craton. The synchroneity of the sea level rise relative to the craton with the subsidence of basins and margins may be fortuitous, but it is also predicted by recent mantle convection models for the early stages of accretion of

  14. Large Deep-Ocean Impacts, Sea-Floor Hiatuses, and Apparent Short Term Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.

    2001-12-01

    Widespread discontinuities and unconformities in deep-sea sedimentary records (hiatuses) often correspond to rapid fluctuations in eustatic sea level. Such global paleoceanographic events have been attributed to vertical tectonic movements, to changes in ocean basin configuration and volume, and to glacial versus non-glacial climates. Alternatively, megatsunami waves generated by large deep-ocean impacts cause widespread erosion of the sea floor centered on the impact site. At the shoreline, run-up heights can exceed 1 km on a global scale. These high-energy events might be the source of some sea-floor hiatuses as well as stratigraphic intervals currently interpreted as short-term regression and transgression (r-t) pulses in sea level. A widespread hiatus, probable impact ejecta, ocean chemistry and sediment changes, and r-t pulse occurring at ~68-67 Ma indicate that a large oceanic impact might have preceded the Chicxulub impact by a few million years. The hiatus proximal to the Cretaceous-Tertiary (K-T) boundary is most pronounced in the northern Pacific basin and, because tsunami amplitude is proportional to water depth, could not have been caused by the shallow-water (<=100 m) Chicxulub impact at ~65 Ma. Thus K-T time likely experienced two large bolide impacts, one of which occurred in the deep ocean.

  15. The response of a high sediment yield depositional system to episodic rises in sea level: The record from the Brazos fluvial system, central Texas coast

    SciTech Connect

    Bartek, L.R.; Anderson, J.B.; Abdulah, K.C. )

    1991-03-01

    High resolution seismic data, cores, and platform borings have been utilized to investigate the response of the Brazos fluvial system, a high sediment yield depositional system, to late Pleistocene-Holocene episodic rises in sea level. This investigation was conducted in order to provide control for a related study of the Trinity-Sabine fluvial system, a low sediment yield depositional system. The Brazos incised valley, which was carved during the Wisconsin eustatic lowstand, was abandoned during an interval of rapid eustatic rise. The fluvial-deltaic system occupied the adjacent interfluve following abandonment of the incised valley. This behavior contrasts sharply with the responses of the Trinity-Sabine low sediment yield depositional system to rapid base level rises. Stream piracy, triggered by the episodic eustatic rises, played an important role in diverting the fluvial system of the high sediment yield system out of the lowstand entrenched valley and onto the interfluve. The research presented in this paper suggests that exploration geologists working with up-dip portions of high sediments yield depositional systems in the transgressive systems tract may find prospects (slightly modified wave-dominated delta deposits encased in marine shales) by searching along strike, away from the abandoned incised valley, at positions along depositional dip that correspond to eustatic stillstands. Accretionary structures observed in recently acquired seismic data indicate that the down-dip portion of the high sediment yield incised valley also contains a large volume of sand.

  16. A new Holocene sea-level database for the US Gulf Coast: Improving constraints for past and future sea levels

    NASA Astrophysics Data System (ADS)

    Hijma, M.; Tornqvist, T. E.; Hu, P.; Gonzalez, J.; Hill, D. F.; Horton, B. P.; Engelhart, S. E.

    2011-12-01

    The interpretation of present-day sea-level change, as well as the prediction of future relative sea-level (RSL) rise and its spatial variability, depend increasingly on the ability of glacial isostatic adjustment (GIA) models to reveal non-eustatic components of RSL change. GIA results from the redistribution of mass due to the growth and decay of ice sheets. As a consequence, formerly ice-covered areas are still rebounding and currently experience RSL fall, while in other areas the rate of RSL rise is enhanced due to glacial forebulge collapse. The development of GIA models relies to a large extent on the availability of quality-controlled Holocene RSL data. There is thus an urgent need for systematically compiled and publicly available databases of geological RSL data that can be used not only for the purposes mentioned above, but also can serve to underpin coastal management and policy decisions. We have focused our efforts to develop a Holocene sea-level database for the Atlantic and Gulf coasts of the US. Many of the research problems that can be addressed with this sea-level database revolve around the identification of crustal motions due to glacial forebulge collapse that affects the entire region and likely extends beyond South Florida. For the east coast, GIA-related subsidence rates have been calculated with unprecedented precision: <0.8 mm a-1 in Maine, increasing to rates of 1.7 mm a-1 in Delaware, and a return to rates <0.9 mm a-1 in the Carolinas. Here, we first define our methodology to reconstruct RSL, with particular reference to the quantification of age and elevation errors. Many sea-level indicators are related to a specific tide level (e.g., peat that formed between highest astronomical tide and mean high water level). We use paleotidal modeling to account for any changes during the Holocene. We furthermore highlight a number of errors associated with 14C dating that have rarely, if ever, been considered in previous studies of this nature

  17. Cold climate deglaciation prior to termination 2 implied by new evidence for high sea-levels at 132 KA

    SciTech Connect

    Johnson, R.G. . Dept. of Geology and Geophysics)

    1992-01-01

    Radioisotope dating of corals from reefs and beaches suggests a high sea stand just prior to termination 2. Lack of precision in the ages, stratigraphic uncertainties, and possible diagenetic alterations in the corals have prevented a widespread acceptance of this sea stand. These disadvantages can be avoided by an approach that uses differential uplift measurements to determine the duration of the interval of generally high sea-levels. The last interglacial terrace on Barbados has features indicating two intervals of constant sea-level: an older wave-cut at the inshore edge of the terrace, and a younger cut formed near present eustatic sea-level, below the crest, and just before the earliest Wisconsin glacial buildup. The differential uplift between these two features, measured at five locations having uplift rates between 0.18 and 0.39m/ka, yields a eustatic sea-level differences of 5.4m and a minimal duration of 12.1 [+-] 0.6ka between the two still stands. The assigned age of the younger wave-cut is 120 [+-] 0.5ka, based on sea-level regression due to ice sheet buildup implied by a Little Ice Age analog and rapidly falling Milankovitch summer insolation. The resulting minimal age of the first high sea-stand is 132.1 [+-] 1.1ka, about 7ka before termination 2. This age implies a major early deglaciation caused by a deficit of moisture transported to the great ice sheets, and occurring under relatively cold climate conditions.

  18. Delayed Postglacial Uplift and Synglacial Sea Levels in Coastal Central New England

    USGS Publications Warehouse

    Koteff, C.; Robinson, G.R.; Goldsmith, R.; Thompson, W.B.

    1993-01-01

    The postglacial uplift pattern indicated by elevations of ice-marginal glaciomarine deltas in coastal New England, deposited between approximately 15,000 and 14,000 yr B.P. during ice retreat from northeastern Massachusetts into southwestern Maine, is very similar to that previously recorded for glaciolacustrine deltas of similar age from inland areas of New England. Multiple regression analyses of elevations from both sets of deltas show an extremely close fit to tilted flat surfaces that rise 0.852 m/km to the N 28.5??W along the coast and 0.889 m/km to the N 20.5??W in western New England. The close similarity of uplift pattern in areas where elevation data are from different base-level media, along with additional shore-line evidence, indicates (1) that both areas are part of the same crustal postglacial uplift block, (2) that postglacial uplift was delayed until after 14,000 yr B.P., and (3) that little or no eustatic sea-level change occurred between 15,000 and 14,000 yr B.P., during which time the margin of the late Wisconsinan Laurentide ice sheet retreated about 100 km from Boston, Massachusetts, into southwestern Maine. Elevation data from even younger glaciomarine deltas in the coastal area indicate that soon after the ice margin reached southwestern Maine and adjacent New Hampshire (ca, 14,000 yr B.P.), eustatic sea level rose rapidly 7-10 m during the time that the ice margin retreated 5-10 km, which may have occurred during an interval of only 50-100 yr, Our new data not only confirm the delayed postglacial uplift model previously described for western New England, but also indicate that little or no eustatic sea-level change occurred during a substantial period of early deglaciation. However, at about 14,000 yr B.P., sea level rose rapidly. Postglacial uplift in the region apparently began between 14,000 and 13,300 yr B.P., before the retreating ice margin reached eastern Maine.

  19. Sea-Level Projections from the SeaRISE Initiative

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert

    2011-01-01

    SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.

  20. Seismic sequence stratigraphy of Miocene deposits related to eustatic, tectonic and climatic events, Cap Bon Peninsula, northeastern Tunisia

    NASA Astrophysics Data System (ADS)

    Gharsalli, Ramzi; Zouaghi, Taher; Soussi, Mohamed; Chebbi, Riadh; Khomsi, Sami; Bédir, Mourad

    2013-09-01

    The Cap Bon Peninsula, belonging to northeastern Tunisia, is located in the Maghrebian Alpine foreland and in the North of the Pelagian block. By its paleoposition, during the Cenozoic, in the edge of the southern Tethyan margin, this peninsula constitutes a geological entity that fossilized the eustatic, tectonic and climatic interactions. Surface and subsurface study carried out in the Cap Bon onshore area and surrounding offshore of Hammamet interests the Miocene deposits from the Langhian-to-Messinian interval time. Related to the basin and the platform positions, sequence and seismic stratigraphy studies have been conducted to identify seven third-order seismic sequences in subsurface (SM1-SM7), six depositional sequences on the Zinnia-1 petroleum well (SDM1-SDM6), and five depositional sequences on the El Oudiane section of the Jebel Abderrahmane (SDM1-SDM5). Each sequence shows a succession of high-frequency systems tract and parasequences. These sequences are separated by remarkable sequence boundaries and maximum flooding surfaces (SB and MFS) that have been correlated to the eustatic cycles and supercycles of the Global Sea Level Chart of Haq et al. (1987). The sequences have been also correlated with Sequence Chronostratigraphic Chart of Hardenbol et al. (1998), related to European basins, allows us to arise some major differences in number and in size. The major discontinuities, which limit the sequences resulted from the interplay between tectonic and climatic phenomena. It thus appears very judicious to bring back these chronological surfaces to eustatic and/or local tectonic activity and global eustatic and climatic controls.

  1. Deciphering the mid-Carboniferous eustatic event in the central Appalachian foreland basin, southern West Virginia, USA

    USGS Publications Warehouse

    Blake, B.M., Jr.; Beuthin, J.D.

    2008-01-01

    A prominent unconformity, present across shallow shelf areas of the Euramerican paleoequatorial basins, is used to demark the boundary between the Mississippian and Pennsylvanian subsystems. This unconformity, the mid-Carboniferous eustatic event, is generally attributed to a major glacio-eustatic sea-level fall. Although a Mississippian-Pennsylvanian unconformity is recognized throughout most of the Appalachian region, the record of the mid-Carboniferous eustatic event in the structurally deepest part of the basin has been controversial. Based on early reports that suggested the most complete Pennsylvanian section was present in southern West Virginia, various conceptual depositional models postulated continuous sedimentation between the youngest Mississippian Bluestone Formation and the oldest Penn-sylvanian Pocahontas Formation. In contrast, tabular-erosion models envisioned axial drainage systems that evolved in response to changing basin dynamics. These models predicted a Mississippian-Pennsylvanian unconformity. All these models suffered from a lack of biostratigraphic control. The presence of a sub-Pocahontas paleovalley, herein named the Lashmeet paleovalley, has been confirmed in southern West Virginia. The Lashmeet paleovalley was incised over 35 m into Bluestone strata and filled by lithic sands derived from the Appalachian orogen to the northeast and east. The polygenetic Green Valley paleosol complex marks the Bluestone-Pocahontas contact on associated interfluves. Together, these features indicate a substantial period of subaerial exposure and argue strongly in favor of a Mississippian-Pennsylvanian unconformity. Paleontologic data from the Bluestone Formation, including marine invertebrates and conodonts from the marine Bramwell Member and paleofloral data, support a late, but not latest, Arnsbergian age assignment. Marine fossils are not known from the Pocahontas Formation, but macrofloral and palynomorph taxa support a Langsettian age for most of

  2. Climatic-eustatic control of Holocene nearshore parasequence development, southeastern Texas coast

    USGS Publications Warehouse

    Morton, Robert A.; Kindinger, Jack G.; Flocks, James G.; Stewart, Laura B.

    1999-01-01

    Sediment cores, seismic profiles, radiocarbon dates, and faunal assemblages were used to interpret the depositional setting and geological evolution of the southeastern Texas coast during the last glacio-eustatic cycle. Discrete lithofacies and biofacies zones in the ebb-dominated Sabine Lake estuary and adjacent chenier plain record alternating periods of rapid marine flooding and gradual shoaling related to linked climatic/eustatic fluctuations. Monospecific zones of the mollusks Rangia cuneata and Crassostrea virginica, respectively, indicate high fresh water outflow followed by invasion of marine water, whereas intervening organic-rich zones record bayhead delta deposition. High-frequency parasequence stacking patterns within the valley fill and across the adjacent interfluve reflect an initial rapid rise in sea level about 9 ka that flooded abandoned alluvial terraces and caused onlap of Holocene marsh in the incised valley. The rapid rise was followed by slowly rising and oscillating sea level that filled the deepest portions of the incised valleys with fluvially dominated estuarine deposits, and then a maximum highstand (+1 m msl) about 5 ka that flooded the former subaerial coastal plain between the incised valleys and constructed the highest beach ridges. Between 3.5 and 1.5 ka, sea level oscillated and gradually fell, causing a forced regression and rapid progradation of both the chenier plain and accretionary barrier islands. The only significant sands in the valley fill are (1) falling-stage and lowstand-fluvial sediments between the basal sequence boundary and transgressive surface unconformity, and (2) highstand beach-ridge sediments of the chenier plain.

  3. Comment [on “Sea level rise shown to drive coastal erosion”

    NASA Astrophysics Data System (ADS)

    Pilkey, Orrin H.; Young, Robert S.; Bush, David M.

    Leatherman et al. [2000] (Eos, Trans., AGU, February 8, 2000, p.55) affirm that global eustatic sea-level rise is driving coastal erosion. Furthermore, they argue that the long-term average rate of shoreline retreat is 150 times the rate of sea-level rise. This rate, they say, is more than a magnitude greater than would be expected from a simple response to sea-level rise through inundation of the shoreline. We agree that sea-level rise is the primary factor causing shoreline retreat in stable coastal areas.This is intuitive. We also believe, however, that the Leatherman et al. [2000] study has greatly underestimated the rate of coastal recession along most low slope shorelines. Slopes along the North Carolina continental shelf/coastal plain approach 10,000:1. To us, this suggests that we should expect rates of shoreline recession 10,000 times the rate of sea-level rise through simple inundation of the shoreline.

  4. Clathrate eustasy: Methane hydrate melting as a mechanism for geologically rapid sea-level fall

    USGS Publications Warehouse

    Bratton, J.F.

    1999-01-01

    Although submarine methane hydrates or clathrates have been highlighted as potential amplifiers of modern global climate change and associated glacio-eustatic sea-level rise, their potential role in sea-level fall has not been appreciated Recent estimates of the total volume occupied by gas hydrates in marine sediments vary 20-fold, from 1.2 ?? 1014 to 2.4 ?? 1015 m3. Using a specific volume change on melting of-21%, dissociation of the current global inventory of hydrate would result in a decrease of submarine hydrate volume of 2.4 ?? 1013 to 5.0??1014 m3. Release of free gas bubbles present beneath hydrates would increase these volumes by 1.1-2.0 ?? 1013 m3. The combined effects of hydrate melting and subhydrate gas release would result conservatively in a global sea-level fall of 10-146 cm. Such a mechanism may offset some future sea-level rise associated with thermal expansion of the oceans. It could also explain anomalous sea-level drops during ice-free periods such as the early Eocene, the Cretaceous, and the Devonian.

  5. Comment [on “Sea level rise shown to drive coastal erosion”

    USGS Publications Warehouse

    Pilkey, Orrin H.; Young, Robert S.; Bush, David M.

    2000-01-01

    Leatherman et al. [2000] (Eos, Trans., AGU, February 8, 2000, p.55) affirm that global eustatic sea-level rise is driving coastal erosion. Furthermore, they argue that the long-term average rate of shoreline retreat is 150 times the rate of sea-level rise. This rate, they say, is more than a magnitude greater than would be expected from a simple response to sea-level rise through inundation of the shoreline. We agree that sea-level rise is the primary factor causing shoreline retreat in stable coastal areas.This is intuitive. We also believe, however, that the Leatherman et al. [2000] study has greatly underestimated the rate of coastal recession along most low slope shorelines. Slopes along the North Carolina continental shelf/coastal plain approach 10,000:1. To us, this suggests that we should expect rates of shoreline recession 10,000 times the rate of sea-level rise through simple inundation of the shoreline.

  6. Clathrate eustasy: Methane hydrate melting as a mechanism for geologically rapid sea-level fall

    SciTech Connect

    Bratton, J.F.

    1999-10-01

    Although submarine methane hydrates or clathrates have been highlighted as potential amplifiers of modern global climate change and associated glacio-eustatic sea-level rise, their potential role in sea-level fall has not been appreciated. Recent estimates of the total volume occupied by gas hydrates in marine sediments vary 20-fold, from 1.2 x 10{sup 14} to 2.4 x 10{sup 15} m{sup 3}. Using a specific volume change on melting of {minus}21%, dissociation of the current global inventory of hydrate would result in a decrease of submarine hydrate volume of 2.4 x 10{sup 13} to 5.0 x 10{sup 14} m{sup 3}. Release of free gas bubbles present beneath hydrates would increase these volumes by 1.1 --2.0 x 10{sup 13} m{sup 3}. The combined effects of hydrate melting and subhydrate gas release would result conservatively in a global sea-level fall of 10--146 cm. Such a mechanism may offset some future sea-level rise associated with thermal expansion of the oceans. It could also explain anomalous sea-level drops during ice-free periods such as the early Eocene, the Cretaceous, and the Devonian.

  7. Late Quaternary variations in relative sea level due to glacial cycle polar wander

    USGS Publications Warehouse

    Bills, B.G.; James, T.S.

    1996-01-01

    Growth and decay of continental ice sheets can excite significant motion of the Earth's rotation pole and cause a complex spatio-temporal pattern of changes in relative sea level. These two effects have generally been considered separately, but may interact in important ways. In particular, a simple model of the melting of the Laurentide ice sheet causes a uniform eustatic sea level rise of 55 m, and also induces a motion of the rotation pole by 0.1 to 1 degree, depending on viscosity structure in the mantle. This motion produces a secular pole tide, which is a spherical harmonic degree 2, order 1 component of the relative sea level pattern, with peak-to-peak amplitude of 20 to 40 m. The maximum effect is along the great circle passing through the path of the pole and at latitudes of ??45??. This secular pole tide has been ignored in most previous attempts to estimate ice sheet loading history and mantle viscosity from global patterns of relative sea level change. It has a large influence along the East coast of North America and the West coast of South America, and significantly contributes to present day rates of relative sea level change.

  8. Cyclostratigraphic correlation of Middle Pennsylvanian Milankovitch Band eustatic cycles between southeast Arizona and the Midcontinent

    SciTech Connect

    Connolly, W.M. . Dept. of Geology)

    1993-02-01

    The cyclic pattern of deposition of the Horquilla Limestone of SE Arizona resulted from glacio-eustatic fluctuations with average periodicities (4th Order) of 152--380 ka, depending upon the time scale employed. The depositional surface fluctuated from subaerial to below the depth of autochthonous carbonate production, on the order of 60--100+ m for the larger cycles. Cyclostratigraphic correlations, within the best available biostratigraphic framework, have been established between sections in the predominantly carbonate Pedregosa and the predominantly clastic Western Interior basins, a distance of [approximately]1,500 km. Desmoinesian - lower Missourian cycles were correlated on the basis of flooding surfaces. The correlations emphasize the eustatic component of relative sea-level fluctuations in widely spaced basins with different depositional settings. The stratigraphic distribution of 71 species of Desmoinesian fusulinids was evaluated to corroborate the cyclostratigraphic correlations and develop a provisional zonation of the Desmoinesian Stage. High resolution interbasinal correlations have the potential to more accurately evaluate the temporal distribution and biogeographic dispersal of biostratigraphically useful taxa from basin to basin. Cyclostratigraphy may be the best way to accurately locate stage boundaries in distant basins with poor biostratigraphic control near the boundary interval, e.g., the Desmoinesian - Missourian boundary has been problematic in SE Arizona; based on cyclostratigraphic correlations, the revised position is 18--36 m lower than previous estimates'. Other applications include the refinement of eustasy curves, the inference of undetected cycles, and times slice analysis of paleoclimatic gradients and long term climate change (Cecil, 1990).

  9. Eustatic and tectonic control of sedimentation in the Pennsylvanian strata of the Central Appalachian Basin

    SciTech Connect

    Chesnut, D.R. Jr. . Kentucky Geological Survey)

    1992-01-01

    Analysis of the Breathitt Group of the Central Appalachian Basin reveals three orders of depositional cycles or trends. The Breathitt coarsening-upward trend (20 million years (my)) represents increasing intensity of the Alleghenian Orogeny. The major transgression (MT) cycle (2.5 my) was controlled by an unknown eustatic or tectonic mechanism. The major coal beds and intervening strata make up the coal-clastic cycle (CC cycle) (=Appalachian cyclothem) which has a 0.4 my periodicity. This periodicity supports eustatic control of sedimentation modulated by an orbital periodicity. Extensive coastal peats deposited at lowstand (CC cycle) were preserved as coals, whereas highstand peats were eroded during the subsequent drop in sea level. Autocyclic processes such as delta switching and avulsion occurred within CC cycles. An Early Pennsylvanian unconformity represents uplift and erosion of mid-Carboniferous foreland basin deposits. Alluvial deposits (Breathitt Group) derived from the highlands were transported to the northwest toward the forebulge. During lowstand, the only outlet available to further sediment transport (Lee sandstones) was toward the southwest (Ouachita Trough), along the Black Warrior-Appalachian foreland basins. The Middle Pennsylvanian marks a period of intermittent overfilling of the foreland basin and cresting of the forebulge. Marine transgressions entered through the foreland basins and across saddles in the forebulge. After the Ouachita Trough was destroyed during the late Middle Pennsylvanian, marine transgressions migrated only across saddles in the forebulge. In the Late Pennsylvanian, marine waters entered the basin only across the diminished forebulge north of the Jessamine Dome.

  10. Diagenesis and porosity development associated with major sea level fluctuations, Upper Permian, Jameson land, east Greenland

    SciTech Connect

    Scholle, P.A.; Ulmer, D.S. ); Stemmerik, L. )

    1990-05-01

    The Upper Permian of Jameson Land includes two major carbonate sequences, represented by the Karstryggen and Wegener Halvoe formations. The initial Karstryggen transgression led to the development of a shallow marine platform with structurally controlled evaporite basins (salinas) separated by stromatolitic, peloidal, or micritic carbonate depositional areas. The Wegener Havloe sequence reflects more rapid and extensive transgression with the deposition of three subcycles of fully marine, platform, or biohermal carbonates containing minor evaporites near the basin margins. Bioherms (bryozoan-brachiopod-marine cement mounds) show > 100 m of relief, indicating that large relative sea level changes were involved. Both the Karstryggen and Wgener Havloe cycles were terminated by major regressions, which led to karstic and/or fluvial incision of the underlying sequences. Not surprisingly, carbonate and evaporite diagenesis was greatly affected by these regional or eustatic sea level fluctuations. Evaporites dissolved or were replaced by calcite and celestite under the influence of meteoric waters. Limestones show collapse brecciation, grain leaching, soil development, and characteristic vadose and phreatic cements. Most significantly meteoric flushing led to massive dissolution of botryoidal marine cements (aragonite and probable high-Mg calcite) within biohermal facies on the Wegener Peninsula. This early porosity resurrection led to the preservation of porous bioherm core zones until hydrocarbon migration. Only late (posthydrocarbon), probably hydrothermal fluid flow led to cementation of the bioherm cores while expelling most of the reservoired hydrocarbons. If the sea level changes affecting the Greenlandic Permian are eustatic, then this study may provide significant clues to porosity development throughout the largely unexplored northern Zechstein basin.

  11. Sea level anomalies exacerbate beach erosion

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.; Fegley, Stephen R.; Luettich, Richard A.

    2014-07-01

    Sea level anomalies are intra-seasonal increases in water level forced by meteorological and oceanographic processes unrelated to storms. The effects of sea level anomalies on beach morphology are unknown but important to constrain because these events have been recognized over large stretches of continental margins. Here, we present beach erosion measurements along Onslow Beach, a barrier island on the U.S. East Coast, in response to a year with frequent sea level anomalies and no major storms. The anomalies enabled extensive erosion, which was similar and in most places greater than the erosion that occurred during a year with a hurricane. These results highlight the importance of sea level anomalies in facilitating coastal erosion and advocate for their inclusion in beach-erosion models and management plans. Sea level anomalies amplify the erosive effects of accelerated sea level rise and changes in storminess associated with global climate change.

  12. Global change and relative sea level rise at Venice: what impact in term of flooding

    NASA Astrophysics Data System (ADS)

    Carbognin, Laura; Teatini, Pietro; Tomasin, Alberto; Tosi, Luigi

    2010-11-01

    Relative sea level rise (RSLR) due to climate change and geodynamics represents the main threat for the survival of Venice, emerging today only 90 cm above the Northern Adriatic mean sea level (msl). The 25 cm RSLR occurred over the 20th century, consisting of about 12 cm of land subsidence and 13 cm of sea level rise, has increased the flood frequency by more than seven times with severe damages to the urban heritage. Reasonable forecasts of the RSLR expected to the century end must be investigated to assess the suitability of the Mo.S.E. project planned for the city safeguarding, i.e., the closure of the lagoon inlets by mobile barriers. Here we consider three RSLR scenarios as resulting from the past sea level rise recorded in the Northern Adriatic Sea, the IPCC mid-range A1B scenario, and the expected land subsidence. Available sea level measurements show that more than 5 decades are required to compute a meaningful eustatic trend, due to pseudo-cyclic 7-8 year long fluctuations. The period from 1890 to 2007 is characterized by an average rate of 0.12 ± 0.01 cm/year. We demonstrate that linear regression is the most suitable model to represent the eustatic process over these 117 year. Concerning subsidence, at present Venice is sinking due to natural causes at 0.05 cm/year. The RSLR is expected to range between 17 and 53 cm by 2100, and its repercussions in terms of flooding frequency are associated here to each scenario. In particular, the frequency of tides higher than 110 cm, i.e., the value above which the gates would close the lagoon to the sea, will increase from the nowadays 4 times per year to a range between 20 and 250. These projections provide a large spread of possible conditions concerning the survival of Venice, from a moderate nuisance to an intolerable aggression. Hence, complementary solutions to Mo.S.E. may well be investigated.

  13. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis

    USGS Publications Warehouse

    Kominz, M.A.; Browning, J.V.; Miller, K.G.; Sugarman, P.J.; Mizintseva, S.; Scotese, C.R.

    2008-01-01

    Sea level has been estimated for the last 108 million years through backstripping of corehole data from the New Jersey and Delaware Coastal Plains. Inherent errors due to this method of calculating sea level are discussed, including uncertainties in ages, depth of deposition and the model used for tectonic subsidence. Problems arising from the two-dimensional aspects of subsidence and response to sediment loads are also addressed. The rates and magnitudes of sea-level change are consistent with at least ephemeral ice sheets throughout the studied interval. Million-year sea-level cycles are, for the most part, consistent within the study area suggesting that they may be eustatic in origin. This conclusion is corroborated by correlation between sequence boundaries and unconformities in New Zealand. The resulting long-term curve suggests that sea level ranged from about 75-110 m in the Late Cretaceous, reached a maximum of about 150 m in the Early Eocene and fell to zero in the Miocene. The Late Cretaceous long-term (107 years) magnitude is about 100-150 m less than sea level predicted from ocean volume. This discrepancy can be reconciled by assuming that dynamic topography in New Jersey was driven by North America overriding the subducted Farallon plate. However, geodynamic models of this effect do not resolve the problem in that they require Eocene sea level to be significantly higher in the New Jersey region than the global average. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.

  14. Analysis of sea level and sea surface temperature changes in the Black Sea

    NASA Astrophysics Data System (ADS)

    Betul Avsar, Nevin; Jin, Shuanggen; Kutoglu, Hakan; Erol, Bihter

    2016-07-01

    The Black Sea is a nearly closed sea with limited interaction with the Mediterranean Sea through the Turkish Straits. Measurement of sea level change will provide constraints on the water mass balance and thermal expansion of seawaters in response to climate change. In this paper, sea level changes in the Black Sea are investigated between January 1993 and December 2014 using multi-mission satellite altimetry data and sea surface temperature (SST) data. Here, the daily Maps of Sea Level Anomaly (MSLA) gridded with a 1/8°x1/8° spatial resolution from AVISO and the NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (OISST) Anomaly data set are used. The annual cycles of sea level and sea surface temperature changes reach the maximum values in November and January, respectively. The trend is 3.16±0.77 mm/yr for sea level change and -0.06±0.01°C/yr for sea surface temperature during the same 22-year period. The observed sea level rise is highly correlated with sea surface warming for the same time periods. In addition, the geographical distribution of the rates of the Black Sea level and SST changes between January 1993 and December 2014 are further analyzed, showing a good agreement in the eastern Black Sea. The rates of sea level rise and sea surface warming are larger in the eastern part than in the western part except in the northwestern Black Sea. Finally, the temporal correlation between sea level and SST time series are presented based on the Empirical Orthogonal Function (EOF) analysis.

  15. Climate-induced variations in lake levels: A mechanism for short-term sea level change during non-glacial times

    SciTech Connect

    Jacobs, D. ); Sahagian, D. . Dept of Geological Sciences)

    1992-01-01

    Variations in insolation due to periodic orbital parameters can cause climatic changes and associated variations in the intensity of monsoonal circulation. This can lead to significant variations in the levels of internally draining lakes on timescales of 10,000 to 100,000 years in regions affected by the monsoon (20,000 years for orbital precession). These variations may be responsible for small scale (few meters) eustatic sea level changes in an ice-free Earth, and may contribute to sea level changes in the presence of ice as well. The authors have estimated the volume of empty present lake basins in the regions of Asia and North Africa influenced by the monsoon. The surface water volume alone of these basins is equivalent to a two meter difference in sea level, but is considerably augmented by groundwater associated with an increase in lake level. The lake variation mechanism for sea level change has its basis in the Quaternary record of climate change and associated explanatory models. However, the argument also applies to earlier, non-glacial periods of geologic time. Clear evidence for the presence of ice in the Triassic is lacking. However, there is evidence for short-term periodic fluctuations of lake levels as well as sea level during that time. These sea level changes, as well as those in the Devonian, Jurassic, and Cretaceous, may be driven by periodic fluctuation in lacustrine and groundwater storage resulting from orbitally forced changes in monsoon intensity, even in the absence of significant glacial ice.

  16. Sonmicat: Sea Level Observation System of Catalonia

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, J. J.; Termens, A.; Ruiz, A.; Gonzalez Lopez, S.

    2014-12-01

    SONMICAT is the integrated sea level observation system of Catalonia. SONMICAT aims at providing high-quality continous measurements of sea- and land levels at the Catalan coast from tide gauges (relative sea levels) and from modern geodetic techniques (vertical land motion and absolute sea levels) for studies on long-term sea level trends, but also the calibration of satellite altimeters, for instance. This synergy is indeed the only way to get a clear and unambigous picture of what is actually going on at the coast of Catalonia. SONMICAT aims to be: - an integrated sea level monitoring system (different types of data, sources, time and space scales), - a sea level information system handling the data measured by different observation networks, - a local/regional component of international sea level observing systems (GLOSS, ESEAS, etc.), and - a local/regional interface for related European and Global projects and databases (PSML, TIGA, etc.) There is a gap of sea level data (GLOSS, PSML, TIGA) in the coast of Catalonia, although several groups and institutions have started to do some work. SONMICAT will fill it. Up to now, the system has started at l'Estartit and Barcelona harbours. A description of the actual SONMICAT infraestructure and campaigns - especially at Barcelona harbour - are presented. In June 2014, an airborne LiDAR campaign has been carrying on in Barcelona following two ICESat tracks. First results of the airborne survey will also be presented.

  17. Tectonic vs. eustatic controls on Ordovician deposition in the Alabama Appalachians

    SciTech Connect

    Benson, D.J. . Dept. of Geology)

    1992-01-01

    The Lower Ordovician section consists of a thick (> 1,500 ft.) sequence of peritidal to shallow subtidal carbonates deposited on a broad, stable platform. Initial Taconic orogenic activity during Late Canadian time downwarped the southeastern margin of the continent and resulted in deposition of a unique subtidal unit. A fall in eustatic sea level during Early Whiterockian time exposed the majority of the platform and produced the Post-Knox unconformity, a major regional unconformity that truncates Upper Cambrian-Lower Ordovician carbonates across the Alabama Appalachians. Middle Ordovician deposition began as a result of eustatic sea level rise and continued downwarping of the SE margin of the North American continent. Initial Middle Ordovician deposits are peritidal carbonates that onlap the Post-Knox unconformity from SE to NW. Continued loading of the margin of the continent led to formation of a deep-water basin to the SE and the concurrent development of a peripheral bulge in the vicinity of what is now the Birmingham anticlinorium. Peritidal carbonates to the SE pass upward into shallow ramp carbonates, deep-ramp mixed carbonate/clastic deposits, and, finally, basinal organic shales. As the deep-water basin evolved, shallow ramp carbonates onlapped the peripheral bulge to the NW. The rapidly evolving basin trapped terrigeneous deposits shed from tectonic highlands to the E and SE permitting deposition of shallow to deep ramp, skeletal carbonates to the NW. Continued tectonic loading led to migration and the ultimate inundation of the peripheral bulge. By Late Mohawkian time, filling of the basin allowed terrigeneous sediments derived from the tectonic highlands to prograde westward, onlap and carbonate ramp, and, finally, terminate carbonate deposition.

  18. Last interglacial (MIS5e) sea-levels and uplift along the north-east Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    BAR (KOHN), N.; Stein, M.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.

    2014-12-01

    An uplifted flight of coral reef terraces, extending along the north-east margin of the Gulf of Aqaba (GOA), provides evidence for uplift rates and sea level high stands. GOA fills a narrow and deep tectonic depression lying along the southern sector of the Dead Sea Transform where it meets the Red Sea. This special configuration of the GOA and its latitude turn it into a dependable paleo-sea level monitor, sensitive only to global eustatic changes and local tectonic movements. A sequence of five uplifted coral reef terraces were mapped and characterized on basis of morphology and reef-facies, and their elevation above the present sea level was determined. The fossil reefs studied comprise fringing reefs, some with clear reef-structure that includes a reef flat and a shallow back lagoon. Most outcrops in the study area represent a transgressive sequence in which, during its highest stand, formed fringing reef terraces. We use U-Th ages of fossil corals samples found in growth position at various terraces. Corals from three uplifted reef terraces, R1, R2, and R3 were dated to the last interglacial period particularly to marine isotope stage (MIS) 5e. These ages were achieved from mainly calcitic corals (recrystallized in a freshwater phreatic environment). A few ages were derived from aragonite corals. The three terraces represent three sub-stages within MIS5e: R3 formed during a short standstill at ~130 ka BP; R2 formed during a long and steady standstill between ~128 to ~121 ka BP; and R1 represents a short standstill at ~117 ka BP. Assuming that terrace reef flats represent past sea level high stands, we calculated the coast average uplift rate and constrained the original terraces elevations. The reconstructed eustatic sea level variation during MIS 5e at GOA resembles observations from reef terraces in other locations. Combined, all indicate a significant sea-level rise from the MIS 6 low stand at ~134-130 ka and followed by a long and stable sea level high

  19. Dynamic Earth Models: Sea Level and Vertical Motion of Continents since the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Spasojevic, S.; Gurnis, M.

    2010-12-01

    We show results from global dynamic earth models (DEMs) since the Late Cretaceous, which combine inverse and forward models of mantle convection, with viscosity that varies vertically and laterally. DEMs assimilate plate tectonic reconstructions, and account for the influence of the geoid and the evolving paleogeography of the sea floor self-consistently. Global DEMs are computed in the mantle frame, but we implement the integrated plate reconstruction-mantle convection system that enables linkage between geologic observations obtained in a plate frame of reference and dynamic topography, which is essential for sea-level studies. Since DEMs account for the most important factors controlling long-term sea-level change self-consistently, we present implications for the influence of the mantle on vertical motion of earth’s surface and regional and global sea-level change since Late Cretaceous. We find that neither dynamic topography nor eustasy dominant the global patterns of marine sedimentation on continents since the Late Cretaceous. Dynamic topography appears to be important in controlling the flooding patterns in North America, Australia and southern India since the Late Cretaceous, Sundaland since the Oligocene, and Arabia during Cenozoic. Eustasy has a larger role in controlling flooding in Eurasia and northern India. Mantle dynamics also seems to be an important factor contributing to Cenozoic long-wavelength tilting in Australia and Siberia. Interpretation of modeling results and the relative importance of eustatic versus dynamic factors is difficult in Africa and South America due to either unknown paleotopography or limited stratigraphic data.

  20. Long Term Sea Level Change in the Black Sea

    NASA Astrophysics Data System (ADS)

    Cokacar, Tulay; Emin, Özsoy

    2016-04-01

    Since 1992, altimeter missions have dramatically improved our knowledge and understanding of the oceans.This study investigates the long term sea level change during 1992-2015 in the Black Sea. The satellite altimeter data of the Topex-Poseidon, ERS-1 ands ERS-2 missions and sea level variations of 25 tide gauge stations and temperature/salinity data of 25 Argo float observed in the Black Sea are used for the analysis. The altimeter data are assessed and compared with the data from tide gauges and Argo floats in the Black Sea. First ARGO T/S profiles are used to assess the discrepancies observed between the altimeters. Then in situ measurements are compared with multiple altimeter data to detect in situ measurement anomalies and the corrections applied to improve the consistency of the data sets.

  1. Delta growth and river valleys: the influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Maselli, V.; Trincardi, F.; Asioli, A.; Ceregato, A.; Rizzetto, F.; Taviani, M.

    2014-09-01

    Incised valleys across continental margins represent the response of fluvial systems to changes in their equilibrium dynamics, mainly driven by base level fall forced by glacial-eustatic cycles. The Manfredonia Incised Valley formed during the last glacial sea level lowstand, when most of the southern Adriatic shelf was sub-aerially exposed but the outer shelf remained under water. The pronounced upstream deepening of the valley is ascribed to river incision of the MIS5e highstand coastal prism and related subaqueous clinoform under the influence of MIS5-4 sea level fluctuations, while the downstream shallowing and narrowing mainly reflects the impact of increased rates of sea level fall at the MIS3-2 transition on a flatter mid-outer shelf. Until 15 ka BP, the valley fed an asymmetric delta confined to the mid-outer shelf, testifying that continental and deep marine systems remained disconnected during the lowstand. Sea level rise reached the inner shelf during the Early Holocene, drowning the valley and leading to the formation of a sheltered embayment confined toward the land: at this time part of the incision remained underfilled with a marked bathymetric expression. This mini-basin was rapidly filled by sandy bayhead deltas, prograding from both the northern and southern sides of the valley. In this environment, protected by marine reworking and where sediment dispersal was less effective, the accommodation space was reduced and autogenic processes forced the formation of multiple and coalescing delta lobes. Bayhead delta progradations occurred in few centuries, between 8 and 7.2 ka cal BP, confirming the recent hypothesis that in this area the valley was filled during the formation of sapropel S1. This proximal valley fill, representing the very shallow-water equivalent of the cm-thick sapropel layers accumulated offshore in the deeper southern Adriatic basin, is of key importance in following the signature of the sapropel in a facies-tract ideally from the

  2. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval.

    PubMed

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul

    2016-01-01

    Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land. PMID:27587285

  3. Stratigraphic signature of sub-orbital climate and sea-level changes in the Gulf of Lions (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Berne, S. P.; Bassetti, M. A.; Baumann, J.; Dennielou, B.; Jouet, G.; Mauffrey, M.; Sierro, F. J.

    2014-12-01

    The Promess boreholes in the Gulf of Lions (NW Mediterranean) provide precise chrono-stratigraphic constraints of the last ca 500 ky, that were nicely preserved at the shelf edge due to high accommodation and important sediment supply from the Rhone River. The major stratigraphic elements in this physiographic domain are Falling Stage Systems Tracts (in the sense of SEPM) linked to 100-ky eustatic cycles. They form wedges pinching out on the middle shelf, and thickening seaward on the outer shelf/upper slope (about 30-40m thick on the outer shelf). Within the uppermost sequence, linked to the last Glacial-Interglacial cycle, internal discontinuities were long described, but they were assigned to autogenic processes such as lobe avulsion or bedform migration. However, careful interpretation of a dense grid of very high resolution seismic data, together with precise chronostratigraphic constraints from borehole data and long piston cores, reveal that distinct parasequences, correlable at the regional scale, correspond to relatively minor sea-level changes linked (a) to Bond Cycles during the end of the Last Glacial, and (b) to an early Melt Water Pulse at the onset of Deglacial sea-level rise. These regressive and transgressive (respectively) parasequences are particularly well preserved in canyon heads, due to better accommodation. We propose that such features are important building blocks of the stratigraphic record, that might be recognized elsewhere on modern continental margins, as well as in the rock record.

  4. Sea level and climate forcing of the Sr isotope composition of late Miocene Mediterranean marine basins

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Cosentino, D.; Frijia, G.; Castorina, F.; Dudas, F. Ö.; Iadanza, A.; Sampalmieri, G.; Cipollari, P.; Caruso, A.; Bowring, S. A.; Strecker, M. R.

    2014-07-01

    isotope records from marginal marine basins track the mixing between seawater and local continental runoff, potentially recording the effects of sea level, tectonic, and climate forcing in marine fossils and sediments. Our 110 new 87Sr/86Sr analyses on oyster and foraminifera samples from six late Miocene stratigraphic sections in southern Turkey, Crete, and Sicily show that 87Sr/86Sr fell below global seawater values in the basins several million years before the Messinian Salinity Crisis, coinciding with tectonic uplift and basin shallowing. 87Sr/86Sr from more centrally located basins (away from the Mediterranean coast) drop below global seawater values only during the Messinian Salinity Crisis. In addition to this general trend, 55 new 87Sr/86Sr analyses from the astronomically tuned Lower Evaporites in the central Apennines (Italy) allow us to explore the effect of glacio-eustatic sea level and precipitation changes on 87Sr/86Sr. Most variation in our data can be explained by changes in sea level, with greatest negative excursions from global seawater values occurring during relative sea level lowstands, which generally coincided with arid conditions in the Mediterranean realm. We suggest that this greater sensitivity to lowered sea level compared with higher runoff could relate to the inverse relationship between Sr concentration and river discharge. Variations in the residence time of groundwater within the karst terrain of the circum-Mediterranean region during arid and wet phases may help to explain the single (robust) occurrence of a negative excursion during a sea level highstand, but this explanation remains speculative without more detailed paleoclimatic data for the region.

  5. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation

    USGS Publications Warehouse

    McKee, K.L.; Cahoon, D.R.; Feller, Ilka C.

    2007-01-01

    Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical

  6. Modelling coastal marsh stability in response to sea level rise: a case study in coastal Louisiana, USA

    USGS Publications Warehouse

    Chmura, G.L.; Costanza, R.; Kosters, E.C.

    1992-01-01

    In some regions coastal marsh stability is threatened by high rates of sea level rise. The deltaic plain of the Mississippi River is a natural laboratory for the study of marsh stability under conditions of rising sea level because it has been experiencing high rates of local submergence which cause relatively high rates of apparent sea level rise. We constructed a dynamic simulation model to study the relationship of accretion to three components of relative sea level rise: compaction, eustatic rise and submergence. The model is then used to project marsh stability under various future scenarios of sea level rise as well as enhancement of sediment supplies and marsh accretion. The model was calibrated to a 14C-dated sediment deposit which provides a long-term record of sediment accretion. Results indicate that an equilibrium between relative sea level and accretion rates can be attained, but that in this region of coastal Louisiana only the most optimistic assumptions yield coastal marshes that are stable in the long term. ?? 1992.

  7. Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA

    USGS Publications Warehouse

    Brock, J.C.; Palaseanu-Lovejoy, M.; Wright, C.W.; Nayegandhi, A.

    2008-01-01

    A portion of the northern Florida Keys reef tract was mapped with the NASA Experimental Advanced Airborne Research Lidar (EAARL) and the morphology of patch reefs was related to variations in Holocene sea level. Following creation of a lidar digital elevation model (DEM), geospatial analyses delineated morphologic attributes of 1,034 patch reefs (reef depth, basal area, height, volume, and topographic complexity). Morphometric analysis revealed two morphologically different populations of patch reefs associated with two distinct depth intervals above and below a water depth of 7.7 m. Compared to shallow reefs, the deep reefs were smaller in area and volume and showed no trend in topographic complexity relative to water depth. Shallow reefs were more variable in area and volume and became flatter and less topographically complex with decreasing water depth. The knoll-like morphology of deep reefs was interpreted as consistent with steady and relatively rapidly rising early Holocene sea level that restricted the lateral growth of reefs. The morphology of shallow 'pancake-shaped' reefs at the highest platform elevations was interpreted as consistent with fluctuating sea level during the late Holocene. Although the ultimate cause for the morphometric depth trends remains open to interpretation, these interpretations are compatible with a recent eustatic sea-level curve that hindcasts fluctuating late Holocene sea level. Thus it is suggested that the morphologic differences represent two stages of reef accretion that occurred during different sea-level conditions. ?? 2008 Springer-Verlag.

  8. Mid Pliocene sea levels along the southeast US coastal plain

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Hearty, P. J.; Raymo, M. E.; Mitrovica, J. X.; Inglis, J.

    2012-12-01

    Proxy data suggest that during the Mid-Pliocene Warm Period (MPWP) atmospheric CO2 levels were roughly similar to today (between 350 and 450 ppmv) and that global average temperature was elevated by as much as 3°C with respect to preindustrial values. Estimates of sea level (SL) during the MPWP range from +10 m to >+40 m relative to present, reflecting uncertainties in our knowledge of the sensitivity to modest climate warming of the East Antarctic, West Antarctic and Greenland Ice Sheets. A primary objective of the PLIOMAX project (www.pliomax.org) is to combine models of paleosea-level signals with geological observations to significantly improve constraints on eustatic sea level during the MPWP. In this regard, the southeast US coastal plain is of strategic importance in MPWP sea level studies (Dowsett and Cronin, Geology, 1990). In fact, it is one of the few places where predicted glacio-isostatic effects are expected to exhibit a significant geographic variation (in this case, north-to-south). The coastal plain may also be influenced by dynamic topography driven by mantle convective flow. In this area, two factors drive the up-to-the-west dynamic tilting of the coast. The first is the descent of the Farallon slab, now located under the mid-part of the North American continent. The other is upwelling return flow under the east coast (Moucha et al., Earth Planet. Sci. Lett., 2008). That is, over the last few million years, dynamic topography is responsible for potentially tens of meters of uplift (sea-level fall) of the Pliocene shoreline along the southeast US coastal plain. We have mapped an almost continuous MPWP shoreline cut into Miocene and older formations. However, as a result of multiple inter-state investigations extending over the last century, both the geomorphic escarpment and the associated deposits have been named differently across the region. In Virginia, the Chippenham Thornburg scarp is associated with the Moore House formation; in North and

  9. Late Holocene Sea-Level Changes in French Polynesia, South-Central Pacific

    NASA Astrophysics Data System (ADS)

    Camoin, G.; Hallmann, N.; Eisenhauer, A.; Samankassou, E.; Milne, G. A.

    2013-12-01

    Camoin, G.1, Hallmann, N.1, Eisenhauer, A.2, Vella, C.1, Samankassou, E.3, Fietzke, J.2, Milne, G.A.4 1 Aix-Marseille Université, CNRS, IRD, CEREGE UM34, Europôle Méditerranéen de l'Arbois, BP80, 13545 Aix-en-Provence cedex 4, France 2 Helmholtz-Zentrum für Ozeanforschung GEOMAR, Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany 3 University of Geneva, Rue des Maraîchers 13, CH-1205 Geneva, Switzerland 4 University of Ottawa, Department of Earth Sciences, Ottawa, Ontario, K1N 6N5, Canada Knowledge of the timing and course of sea-level changes provides an essential framework for conceptual models aimed at understanding the dynamics of melting of large ice sheets and their effects on the isostasy of the Earth. The marked variability of local Holocene sea levels, responding both to ice-sheet unloading and the redistribution of water masses in the global ocean, demonstrates the need to constrain geophysical processes that include hydro-isostasy, equatorial ocean syphoning and tectonic movements affecting relative sea-level positions. A regional reconstruction of Late Holocene sea-level changes (i.e., the last 6,000 yrs) in French Polynesia is based on the accurate U-series dating of in situ sea-level indicators (coral colonies including microatolls; bivalves) and their precise vertical and horizontal GPS positioning in five atolls (Fakarava, Hao, Manihi, Rangiroa, Tikehau) from the Tuamotu Archipelago and six high islands (Bora Bora, Mangareva, Maupiti, Moorea, Raivavae, Rurutu) from the Society, Gambier and Austral Archipelagos. These islands provide the opportunity to reconstruct accurately Late Holocene sea-level changes that are well-suited to estimate eustatic and isostatic changes because : 1) they exhibit unique coral reef records including valuable sea-level indicators, such as corals and bivalves in growth position, emerged coral conglomerates and beachrocks, 2) their subsidence rates are negligible for the Late Holocene period, thus excluding any tectonic

  10. Sea-level changes over the past 6,000 years in the Society and Tuamotu Islands, French Polynesia

    NASA Astrophysics Data System (ADS)

    Hallmann, N.; Camoin, G.; Eisenhauer, A.; Vella, C.; Samankassou, E.; Fietzke, J.; Milne, G. A.

    2013-12-01

    Tropical coral reefs are unique recorders of sea-level and environmental changes. They are therefore of pivotal importance to resolving the rates of millennial-scale eustatic changes, to clarifying the mechanisms that drive glacial-interglacial cycles and to constraining geophysical models. A detailed regional study of Late Holocene (i.e., the past 6,000 years) relative sea-level changes is based on coral reef records of two high islands from the Society Islands (Bora Bora, Moorea) and two atolls from the Tuamotu Archipelago (Rangiroa, Tikehau), French Polynesia, South-Central Pacific. Different sea-level indicators, such as in situ coral colonies, bivalves and exposed coral conglomerates, were used in order to reconstruct relative sea-level changes. A special attention has been given to microatolls which are circular coral colonies that grow predominantly laterally as their upward growth is constrained by the water level, thus providing an accurate record of the low-tide level. The reconstruction of sea-level changes has been based on the accurate dating (U/Th (MC-ICPMS) dating with a 2σ error of 3-36 years) of pristine coral and bivalve samples and the precise measurement of their position (especially altitude) via GPS (vertical and horizontal precision of 1-3 cm and a few millimetres, respectively). Former studies have reported that sea level in French Polynesia was approximately 1 m higher than present between 5,000 and 1,250 yrs BP and that a highstand was reached between 2,000 and 1,500 yrs BP (Pirazzoli and Montaggioni, 1988) and persisted until 1,200 yrs BP in the Tuamotu Archipelago (Pirazzoli and Montaggioni, 1986). In contrast to these former studies, our study reveals that sea level reached its present level at around 5,000 yrs BP and continued to rise from at least 4,951 to 2,535 yrs BP when it was at least 1.3 m above the present level. These results will be integrated in a regional study of Late Holocene sea-level changes in various islands from

  11. Common Era Sea-Level Change

    NASA Astrophysics Data System (ADS)

    Horton, B.; Kemp, A.; Kopp, R. E., III

    2014-12-01

    The Atlantic coast of North America provides a sedimentary record of Common Era sea levels with the resolution to identify the mechanisms that cause spatial variability in sea-level rise. This coast has a small tidal range, improving the precision of sea-level reconstructions. Coastal subsidence (from glacial isostatic adjustment, GIA) creates accommodation space that is filled by salt-marsh peat and preserves accurate and precise sea-level indicators and abundant material for radiocarbon dating. In addition, the western North Atlantic Ocean is sensitive to spatial variability in sea-level change, because of static equilibrium effects from melting of the Greenland Ice Sheet, ocean circulation and wind-driven variability in the Gulf Stream and GIA induced land-level change from ongoing collapse of Laurentide forbuldge. We reveal three distinct patters in sea-level during the Common Era along the North American Atlantic coast, likely linked to wind-driven changes in the Gulf Stream: (1) Florida, sea level is essentially flat, with the record dominated by long-term geological processes; (2) North Carolina, sea level falls to a minimum near the beginning of the second millennium, climbing to an early Little Ice Age maximum in the fifteenth century, and then declining through most of the nineteenth century; and (3) New Jersey, a sea-level maximum around 900 CE, a sea-level minimum around 1500 CE, and a long-term sea-level rise through the second half of the second millennium. We combine the salt-marsh data from North American Atlantic coast with tide-gauge records and lower resolution proxies from the northern and southern hemispheres. We apply a noisy-input Gaussian process spatio-temporal modeling framework, which identifies a long-term falling global mean sea-level (GMSL), interrupted in the middle of the 19th century by an acceleration yielding a 20th century rate of rise extremely likely (probability P = 0:95) faster than any previous century in the Common Era.

  12. Ocean basin volume constraints on global sea level since the Jurassic

    NASA Astrophysics Data System (ADS)

    Seton, M.; Müller, R. D.

    2011-12-01

    Changes in the volume of the ocean basins, predominately via changes in the age-area distribution of oceanic lithosphere, have been suggested as the main driver for long-term eustatic sea-level change. As ocean lithosphere cools and thickens, ocean depth increases. The balance between the abundance of hot and buoyant crust along mid ocean ridges relative to abyssal plains is the primary driving force of long-term sea level changes. The emplacement of volcanic plateaus and chains as well as sedimentation contribute to raising eustatic sea level. Quantifying the average ocean basin depth through time primarily relies on the present day preserved seafloor spreading record, an analysis of the spatio-temporal record of plate boundary processes recorded on the continental margins adjacent to ocean basins as well as a consideration of the rules of plate tectonics, to reconstruct the history of seafloor spreading in the oceanic basins through time. This approach has been successfully applied to predict the magnitude and pattern of eustatic sea-level change since the Cretaceous (Müller et. al. 2008) but uncertainties in reconstructing mid ocean ridges and flanks increase back through time, given that we mainly depend on information preserved in preserved ocean crust. We have reconstructed the age-area distribution of oceanic lithosphere and the plate boundary configurations back to the Jurassic (200 Ma) in order to assess long-term sea-level change from amalgamation to dispersal of Pangaea. We follow the methodology presented in Müller et. al. (2008) but incorporate a new absolute plate motion model derived from Steinberger and Torsvik (2008) prior to 100 Ma, a merged Wessel et. al. (2006) and Wessel and Kroenke (2008) fixed Pacific hotspot reference frame, and a revised model for the formation of Panthalassa and the Cretaceous Pacific. Importantly, we incorporate a model for the break-up of the Ontong Java-Manihiki-Hikurangi plateaus between 120-86 Ma. We extend a

  13. Lowstand carbonate reservoirs: Upper Pennsylvanian sea level changes and reservoir development adjoining Horseshoe Atoll

    SciTech Connect

    Mazzullo, S.J. ); Reid, A.M.; Reid, S.T.

    1990-02-01

    The majority of carbonate reservoirs comprising the Horseshoe Atoll were deposited as reefs and skeletal sand banks during sea level highstands of glacio-eustatic origin, during Canyon (Missourian) and Cisco (Virgilian) deposition. During lowstands, previously deposited carbonate rocks were exposed subaerially to intense meteoric dissolution and karstification creating the pore systems typical of most Horseshoe Atoll fields. Detailed biostratigraphic and sedimentologic studies and recent discoveries adjoining the Horseshoe Atoll have documented the deposition of in-situ and associated intraclastic limestone reservoirs deposited in former slope and basin locations concomittant with periods of sea level lowstand. The authors data suggest that the deposition of such reservoirs occurred throughout the Late Pennsylvanian and accompanied sea level drops of as great as 200 m. To date, productive lowstand reservoirs have been identified in rocks of the middle lower, upper lower, and upper middle Missourian, and the lower lower Virgilian. These deposits are represented by porous reefs, skeletal sandstones, and porous-to-tight intraclastic limestones previously referred to as satellite or pinnacle reefs. These deposits, subsequently onlapped and buried by deepwater shales, comprise potentially prolific stratigraphic-trap reservoirs in basinal areas seaward of the Horseshoe Atoll.

  14. Contribution of climate-driven change in continental water storage to recent sea-level rise

    USGS Publications Warehouse

    Milly, P.C.D.; Cazenave, A.; Gennero, M.C.

    2003-01-01

    Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981-1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981-1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993-1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system.

  15. Sea level variations during snowball Earth formation: 1. A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Richard Peltier, W.

    2013-08-01

    A preliminary theoretical estimate of the extent to which the ocean surface could have fallen with respect to the continents during the snowball Earth events of the Late Neoproterozoic is made by solving the Sea Level Equation for a spherically symmetric Maxwell Earth. For a 720 Ma (Sturtian) continental configuration, the ice sheet volume in a snowball state is ~750 m sea level equivalent, but ocean surface lowering (relative to the original surface) is ~525 m due to ocean floor rebounding. Because the land is depressed by ice sheets nonuniformly, the continental freeboard (which may be recorded in the sedimentary record) at the edge of the continents varies between 280 and 520 m. For the 570 Ma (Marinoan) continental configuration, ice volumes are ~1013 m in eustatic sea level equivalent in a "soft snowball" event and ~1047 m in a "hard snowball" event. For this more recent of the two major Neoproterozoic glaciations, the inferred freeboard generally ranges from 530 to 890 m with most probable values around 620 m. The thickness of the elastic lithosphere has more influence on the predicted freeboard values than does the viscosity of the mantle, but the influence is still small (~20 m). We therefore find that the expected continental freeboard during a snowball Earth event is broadly consistent with expectations (~500 m) based upon the inferences from Otavi Group sediments.

  16. Global sea level linked to global temperature

    PubMed Central

    Vermeer, Martin; Rahmstorf, Stefan

    2009-01-01

    We propose a simple relationship linking global sea-level variations on time scales of decades to centuries to global mean temperature. This relationship is tested on synthetic data from a global climate model for the past millennium and the next century. When applied to observed data of sea level and temperature for 1880–2000, and taking into account known anthropogenic hydrologic contributions to sea level, the correlation is >0.99, explaining 98% of the variance. For future global temperature scenarios of the Intergovernmental Panel on Climate Change's Fourth Assessment Report, the relationship projects a sea-level rise ranging from 75 to 190 cm for the period 1990–2100. PMID:19995972

  17. Reconstruction of Late Holocene sea-level change in French Polynesia, South Pacific, based on coral reef records

    NASA Astrophysics Data System (ADS)

    Hallmann, Nadine; Camoin, Gilbert; Eisenhauer, Anton; Vella, Claude

    2013-04-01

    Fossil reefs provide valuable sea-level indicators, which help to improve the understanding of past sea-level fluctuations and the prediction of future changes. Recent sea-level changes were reconstructed from emerged reef platforms of two high islands from the Society Islands (Bora Bora, Moorea) and two atolls from the Tuamotu Archipelago (Rangiroa, Tikehau), French Polynesia. These mid-ocean islands can be regarded as tectonically stable for the past few thousand years. Therefore, they are well suited for sea-level studies because they register Holocene eustatic changes, which are not overprinted by tectonic changes. Furthermore, the study sites are located distant from former ice sheets (far field location), which reduces the influence of the glacio-isostatic rebound. Several sea-level indicators, such as in situ coral colonies, including coral microatolls (Porites sp.), bivalves (mainly Tridacna sp.), conglomerates, beachrock, and sediments were analyzed in order to reconstruct Late Holocene relative sea-level changes. Microatolls are discoid corals that develop laterally when upward growth is limited by sea-level. Therefore, they are very accurate recorders of past sea-level. This study provides a detailed sea-level history for French Polynesia using high-precision U/Th (TIMS) dating and GPS measurements with a vertical and horizontal precision of 1-3 cm and a few millimetres, respectively. All samples were analyzed by X-ray diffraction and examined petrographically to exclude diagenetically altered material. The Holocene mean sea level in French Polynesia was thought to have been higher than present (+0.8/+1.0 m) between 5000 and 1250 yr BP, reached a highstand between 2000 and 1500 yr BP and then decreased to the present level (Pirazzoli and Montaggioni, 1988). The highstand has been reported until 1200 yr BP in the Tuamotu Archipelago (Pirazzoli and Montaggioni, 1986). However, sea-level indicators analyzed in this study reveal a highstand of at least 1.5 m

  18. Future high sea levels in south Sweden

    SciTech Connect

    Blomgren, S.H.; Hanson, H.

    1997-12-31

    An estimation of future mean high water levels in Oeresund and the southwest Baltic Sea is presented together with a discussion of probable consequences for Falsterbo Peninsula, a trumpet-shaped sandy formation of some 25 km{sup 2} size situated in the very southwest corner of Sweden. A literature review coupled with sea-level measurements and observations made in the area every four hours since October 1945 are given and comprise the base for the present analysis.

  19. ESA Sea Level Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Larnicol, Gilles; Cazenave, Anny; Faugere, Yannice; Ablain, Michael; Johannessen, Johnny; Stammer, Detlef; Timms, Gary; Knudsen, Per; Cipollini, Paolo; Roca, Monica; Rudenko, Sergei; Fernandes, Joana; Balmaseda, Magdalena; Guinle, Thierry; Benveniste, Jerome

    2013-04-01

    Sea level is a very sensitive index of climate change and variability. As the ocean warms in response to global warming, sea waters expand and, as a result, sea level rises. When mountain glaciers melt in response to increasing air temperature, sea level rises because more freshwater glacial runoff discharges into the oceans. Similarly, ice mass loss from the ice sheets causes sea-level rise. Therefore, understanding the sea level variability and changes implies in addition to the understanding of the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere, an accurate monitoring of the sea level variable at climate scales. That is why Sea Level is one of the variables selected in the frame of the ESA Climate change Initiative (CCI) program initiated by ESA in July 2010. In overall, this program aims to provide an adequate, comprehensive, and timely response to the extremely challenging set of requirements for highly stable, long-term satellite-based products for climate, that have been addressed to Space Agencies via the Global Climate Observing System (GCOS) and the Committee on Earth Observation Satellites (CEOS). In order to achieve this global objective, the specific objectives of the sea level CCI project are: to involve the climate research community to collect their needs and feedbacks on product quality, to develop, test and select the best algorithms and standards to generate a climate time series (so called SL ECV products), and to provide a complete specification of the production system. After two of projects the first two objectives have been completed. Hereafter, we aim to provide an overview and the current status of the Sea Level project of the ESA Climate Change Initiative (CCI) that has started in july 2010. The main objective of this project is to produce and validate the Sea Level Essential Climate Variable (ECV) product. Two years after the project kick-off, the 20 Years of Progress in Radar Altimetry Symposium was

  20. As the sea level rises the Earth does not stand still

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.; Alizad, K.; Bilskie, M. V.; Hovenga, P. A.; Medeiros, S. C.; Passeri, D. L.; Wang, D.

    2015-12-01

    Global mean sea level rise was largely linear over the 20th century; however, according to global satellite altimetry, the rate of rise has increased from approximately 1.6 to 3.4 mm/year. It is clear that this eustatic sea level rise has been predominantly caused by thermal expansion of ocean water (i.e., it is a manifestation of an increase in the average annual global temperature). Future projections of increased global temperatures, among others, introduce additional contributions (e.g., land ice loss and changes in land water storage) resulting in higher sea level rise that can only be accommodated by accelerations in the rate of the rise. Increased temperatures lead to changes in evapotranspiration rates, precipitation rates and patterns, etc. As the sea level changes the Earth experiences many other directly or indirectly related processes (e.g., population growth and migration, local variation in subsidence, etc.). Proper assessment of the local, regional and global impacts of relative sea level rise should include as many of these linear and nonlinear processes as possible. This presentation will explain our approach to understanding the relationships between these processes and their impacts to better equip adaptation strategies and enhance coastal resiliency. References Bilskie, M. V., et al. "Dynamics of sea level rise and coastal flooding on a changing landscape." Geophys. Res. Lett., 41(3), 2014, 927-934, doi:10.1002/2013GL058759 Church, J. A. and N. J. White, "A 20th century acceleration in global sea-level rise." Geophys. Res. Lett., 33(1), 2006, L01602 Passeri, D.L., et al. "The dynamic effects of sea level rise on low-gradient coastal landscapes: a review." Earth's Future, Online, 2015. doi:10.1002/2015EF000298 Passeri, D.L., et al. "On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios." Nat. Haz., 75 (2), 2015, 1599-1617. doi:10.1007/s11069-014-1386-y Wang, D., et al. "Climate

  1. Tritium level along Romanian Black Sea Coast

    SciTech Connect

    Varlam, C.; Stefanescu, I.; Popescu, I.; Faurescu, I.

    2008-07-15

    Establishing the tritium level along the Romanian Black Sea Coast, after 10 years of exploitation of the nuclear power plant from Cernavoda, is a first step in evaluating its impact on the Black Sea ecosystem. The monitoring program consists of tritium activity concentration measurement in sea water and precipitation from Black Sea Coast between April 2005 and April 2006. The sampling points were spread over the Danube-Black Sea Canal - before the locks Agigea and Navodari, and Black Sea along the coast to the Bulgarian border. The average tritium concentration in sea water collected from the sampling locations had the value of 11.1 {+-} 2.1 TU, close to tritium concentration in precipitation. Although an operating nuclear power plant exists in the monitored area, the values of tritium concentration in two locations are slightly higher than those recorded elsewhere. To conclude, it could be emphasized that until now, Cernavoda NPP did not had any influence on the tritium concentration of the Black Sea Shore. (authors)

  2. Variability In The Solomon Sea From Altimetric Sea Level Data

    NASA Astrophysics Data System (ADS)

    Melet, A.; Gourdeau, L.; Kessler, W.; Verron, J.

    2007-12-01

    In the southwest tropical Pacific, subtropical waters from the SEC flow in the Solomon Sea, mainly through the western boundary New Guinea Coastal Undercurrent, and join the equatorial western Pacific by three narrow straits. The NGCU transports part of the spiciness anomalies generated in the South East Pacific and subducted in the thermocline. Because the NGCU is a primary source of the EUC, variations of its characteristics are expected to play a role in the equatorial thermocline features and more generally on decadal climate variability. Therefore, the study of the Solomon Sea is a key issue of the SPICE program. In this study, we focus on the variability of the Solomon Sea in term of sea level. The Solomon Sea is semi closed with a complex topography and numerous islands. Thus, the use of classical gridded altimetric products is inadequate. Consequently, this work is based on original along track Topex/Poseidon data. New data processing (CTOH/LEGOS) has been applied to recover proper data and to gain more information on the altimetric signal in this region. A track-by-track specific and customized post processing has been used to finalize the dataset. These new altimetric data have been assessed against tide gauge data. The analysis of the resulting sea level anomalies exhibits the highest variability observed in the tropical Pacific in an area centred near 8°S and expanding from each side of the Solomon Islands, outside of the WBC. Sea level variability presents a wide temporal spectrum, from intraseasonal to interannual ranges with the notable influence of the monsoon and of ENSO. In the Solomon Sea, three frequencies emerge : 60, 365 and 2000 days. The 60-days frequency seems particularly important in the Solomon Sea compared with the surrounding waters and an EOF analysis is used to understand its features. We also depict the signature of the New Guinea Coastal Current (NGCC), the western boundary current flowing north along the eastern coast of Papua

  3. Glacio-eustatic Control on Plio-Pleistocene Sedimentation Along the Northern California Ocean Margin

    NASA Astrophysics Data System (ADS)

    Green Nylen, N. M.; Zinniker, D. A.; Ingle, J. C.; Moldowan, J. M.

    2002-12-01

    Over the last 3.5 million years major climatic and tectonic changes have resulted in high frequency fluctuations in relative sea level adjacent to the northern California shoreline. A detailed record of these changes is preserved in two sedimentary sequences currently exposed along the coast: the neritic to nonmarine Merced Formation near San Francisco and the bathyal to neritic Rio Dell Formation north of Cape Mendocino. With the goal of deciphering the Plio-Pleistocene paleoenvironmental histories of these expanded ocean margin sequences, detailed stratigraphic sections were measured and described from the lower portion of the Merced Formation and from the Upper Rio Dell Formation. Samples are being analyzed for benthic foraminiferal assemblage, palynological assemblage, stable carbon and oxygen isotope composition of foraminiferal carbonate, and organic geochemistry. These data provide insight into paleo-water characteristics and paleobathymetry, global ice volume and climate, terrestrial and marine ecosystem composition and structure, specific sources of sedimentary organic material, the frequency and magnitude of wildfires on land during deposition, and redox conditions during early diagenesis. Variations in these climate and environmental proxies appear to demarcate glacial and interglacial cycles. These results generally support previous interpretations of glacio-eustatic control on the cyclicity of sedimentary facies within the Merced and Rio Dell formations. Ongoing work aims to explore the relationship between local and global climate proxies and to develop a more detailed model of northern California ocean margin sedimentary response to rapid Plio-Pleistocene sea-level change.

  4. Eustatic and tectonic control on localization of porosity and permeability, Mid-Permian, Bighorn Basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Scholle, P.A. )

    1990-05-01

    The Goose Egg Formation of the northeastern Bighorn basin was deposited in an arid shoreline (sabkha) environment during a time of global cyclic sea level variations and local tectonic uplift Eustatic sea level lows are represented by terrestrial red beds (seals), whereas highs resulted in the deposition of supratidal to shallow subtidal carbonates (reservoirs). Pennsylvanian and Permian differential uplift along the present basin margin localized a broken chain of barrier islands and shoals during deposition of the Ervay and earlier carbonate members, as recognized in outcrop at Sheep and Little Sheep Mountain anticlines. The Ervay Member on these paleohighs is typified by fenestral dolomite, containing abundant tepees and pisoids. This fabric is interpreted to have folded in the highest intertidal to supratidal sabkha environment which developed on the leeward shores of these islands. The fenestral carbonates grade basinward (westward) into narrow bioclastic grainstone beach deposits and then to open-shelf fossiliferous packstones and wackestone. To the east lie laminated lagoonal micritic limestones and dolomites. Outcrop and core study has shown the fenestral facies to be limited to areas coincident with present-day basin margin anticlines. Not only are these the locations of the most porous facies, but tight Laramide folding of the Goose Egg carbonates resulted in pervasive fracturing and thus very high permeabilities in the same structures. The close association of Laramide folds and productive Permian carbonate horizons in the northeast Bighorn basin could well be characteristic for other yet to be explored structures along the basin-margin trend.

  5. Eustatic and structural control of submarine-fan sedimentation, Conception fan, Santa Barbara basin, California

    SciTech Connect

    Thor, D.R.

    1984-04-01

    Eustatic sea level lows provide an opportunity for submarine-fan development; topography and structure, however, can control depositional-sequence geometry. Analysis of high-resolution seismic data provides a basis to evaluate to the evolution and geometry of the Pleistocene-Holocene Conception fan. The fan formed in the restricted, tectonically active Santo Barbara basin. It consists of 4 vertically stacked depositional sequences, each bounded by nondepositional unconformities. The unconformities are defined by seismic-sequence boundaries and were formed during sea-level falls that are related to Pleistocene glacioeustatic changes. Each depositional sequence consists of lowstand, sandrich facies (fan channel, levee, and lobe) topped by highstand, mud-rich facies. The geometry of the depositional sequences tends to be rectilinear, not arcuate, because lateral progradation is restricted by topographically high structures. The modern fan surface and the Holocene depositional sequence provide a good analog for the older, underlying depositional sequences. The fan surface is characterized by 4 main channels, 2 of which head into submarine canyons incised into the shelf. Submarine canyons that fed the other 2 channels are now filled and have no topographic expression. In addition, numerous partially buried channel segments occur in the interchannel areas. The Holocene depositional sequence consists of lenticular and sheet-drape deposits interpreted to be channel, levee, and lobe facies. The facies geometry suggests that Mutti's topographic compensation, channel migration, and avulsion were typical processes on Conception fan.

  6. Post-Cromerian rise in sea level

    SciTech Connect

    Olausson, E.

    1992-03-01

    The intensified cooling in the northern hemisphere during the Elsterian-Saalian ice ages (isotopic stages 22-6) resulted in a reduction of the Antarctic ice sheet by 10-15 x 106 km3, equal to a rise in sea level by about 40 m. This rise in sea level changed the hydrography of the Black Sea during the late Pleistocene warmer times, caused anoxic conditions in the eastern Mediterranean during the corresponding warming-up phases, and enhanced water transport of less saline water from the Pacific into the Arctic Ocean (the present sill depth of the Bering Strait is about 50 m). The increased supply of less saline water strengthened the halocline in the Arctic Ocean, increasing the sea ice there and, by higher albedo, its cooling effect on the adjacent continents.

  7. Solution notches, earthquakes, and sea level, Haiti

    NASA Astrophysics Data System (ADS)

    Schiffman, C. R.; Mildor, B. S.; Bilham, R. G.

    2010-12-01

    Shortly after the 12 January 2010 Haiti earthquake, we installed an array of five tide gauges to determine sea level and its variability in the region of uplifted corals on the coast SW of Leogane, Haiti, that had been uplift ≤30 cm during the earthquake. Each gauge consists of a pressure transducer bolted 50-80 cm below mean sea level, which samples the difference between atmospheric pressure and sea pressure every 10 minutes. The data are transmitted via the Iridium satellite and are publically available with a latency of 10 minutes to 2 hours. The measurements reveal a maximum tidal range of ≈50 cm with 2-4 week oscillations in mean sea level of several cm. Sea slope, revealed by differences between adjacent gauges, varies 2-5 cm per 10 km at periods of 2-5 weeks, which imposes a disappointing limit to the utility of the gauges in estimating post seismic vertical motions. A parallel study of the form and elevation of coastal notches and mushroom rocks (rocks notched on all sides, hence forming a mushroom shape), along the coast west of Petit Goave suggests that these notches may provide an uplift history of the region over the past several hundreds of years. Notch sections in two areas were contoured, digitized, and compared to mean sea level. The notches mimic the histogram of sea level, suggesting that they are formed by dissolution by acidic surface waters. Notches formed two distinct levels, one approximately 58 cm above mean sea level, and the other approximately 157 cm above mean sea level. Several landslide blocks fell into the sea during the 2010 earthquake, and we anticipate these are destined for conversion to future mushroom rocks. Surfaces have been prepared on these blocks to study the rate of notch formation in situ, and samples are being subjected to acid corrosion in laboratory conditions, with the hope that the depth of notches may provide an estimate of the time of fall of previous rocks to help constrain the earthquake history of this area

  8. Radiocarbon Ages from Two Submerged Strandline Features in the Western Gulf of Maine and a Sea-Level Curve for the Northeastern Massachusetts Coastal Region

    USGS Publications Warehouse

    Oldale, R.N.; Colman, Steven M.; Jones, Glenn A.

    1993-01-01

    New radiocarbon dates provide ages for two submerged strandline features on the Massachusetts inner shelf. These ages provide limited control on a relative sea-level (RSL) curve for the late Wisconsinan and Holocene. The curve indicates a late Wisconsinan high stand of RSL of +33 m about 14,000 yr ago and a very short-lived relative low stand of about -43 m at about 12,000 yr ago followed by a rise to present sea level. Rapid changes of RSL around 12,000 yr ago may be related to changes in global glacial meltwater discharge and eustatic sea-level change shown by dated corals off Barbados. Variations in the magnitude and timing of RSL change from south to north along the coast of the western Gulf of Maine are due to greater crustal depression and later deglaciation to the north.

  9. Holocene relative sea level rise and subsidence in northern Gulf of Mexico

    SciTech Connect

    Penland, S.; Suter, J.R.; Ramsey, K.E.; McBride, R.; Westphal, K.

    1988-02-01

    The analysis of more than 90 tidal gauge records, 10,000-km high resolution seismic profiles, 500 vibracores, and 250 radiocarbon dates led to the development of a new sea level history for the Louisiana coastal zone and adjacent continental shelf for the last 8000 years. Now re-interpreted, the original single delta plain is seen as actually two individual, imbricated shelf-phase delta plains deposited at different sea levels. Termed the modern and late Holocene, these two delta plains are separated by a regional shoreface refinement surface, which can be traced updip to the relict-transgressive Teche shoreline. The Late Holocene delta plain was deposited during a seal level stillstand 6 m below the present, 3000-7200 years ago. A 5 to 6-m eustatic-enhanced relative rise in sea level 2500-3000 years ago at a rate of 101.2 cm/yr led to the complete transgressive submergence of the lower late Holocene delta plain. Sea level reached its approximate position about 2500 years ago, and since then the Mississippi River has built the modern delta plain consisting of the abandoned St. Bernard and Lafourche delta complexes and the active Balize and Atchafalaya delta complexes. In the abandoned delta complexes, a subsidence-enhanced relative sea level rise between 0.60 and 0.65 cm/yr in young sediments (500-1000 years B.P.) and 0.30 and 0.35 cm/yr in older sediments (1000-2000 years B.P.) is occurring. These subsidence rates compare well to the relative sea level rise in rates of 0.25-0.55 cm/yr recorded by the Louisiana tide gauges between 1930 and 1960. Since 1960, these gauges have recorded a dramatic acceleration in the rate of relative sea level rise, on the order of 1.25-1.50 cm/yr. These rates are consistent with the EPA forecast of relative sea level rise acceleration due to global warming.

  10. Upper Limit for Regional Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  11. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, Rachel M.; Lisiecki, Lorraine E.

    2016-04-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  12. Eustatic implications of late Miocene depositional sequences in the Melilla Basin, northeastern Morocco

    NASA Astrophysics Data System (ADS)

    Cunningham, Kevin J.; Benson, Richard H.; Rakic-El Bied, Kruna; McKenna, Larry W.

    1997-01-01

    The age (˜5.78 Ma or lower chron C3r) of the major drawdown of the Paleo-Mediterranean Sea during the Messinian Salinity Crisis has been established by combining results from stratigraphy, paleontology, magnetostratigraphy, and argon dating for a late Miocene sedimentary succession in the Melilla Basin, NE Morocco. This event is inferred from a marine-to-continental series of carbonate and siliciclastic rocks that record the end of Messinian marine deposition in the Melilla Basin and presumably marks the final isolation of the Paleo-Mediterranean Sea. The evidence from the Melilla Basin is approximately coeval with an increase in benthic foraminiferal δ18O values from a deep-marine section in the Bou Regreg valley, NW Morocco (Hodell et al., 1994). This increase suggests that a glacio-eustatic lowering of sea level, at least, contributed to the final closure of the Mediterranean during the Messinian Salinity Crisis. The marine-to-continental succession onlaps a carbonate complex that contains evidence for multiple relative sea-level changes leading up to the main drawdown. From bottom to top, the carbonate complex is composed of: (1) an onlapping ramp; (2) a prograding bioclastic platform; (3) a prograding and, locally, downstepping Porites-reef complex; and (4) a topography-draping sequence composed of grainstones, Porites reefs, and stromatolites (terminal carbonate complex of Esteban, 1979). The transgressive ramp correlates to relatively low values of benthic foraminiferal δ18O values from a Tortonian-to-lower Messinian section at Bou Regreg (Hodell et al., 1994). This correlation indicates, at least in part, a link between rising sea level and a reduction in global ice volume during deposition of the ramp. A major fall in relative sea level (˜60 m) occurred near the demise of the reef complex during chron C3n.1n at 5.95 ± 0.10 Ma. This signals the initiation of drawdown and changing environmental conditions in the Melilla Basin (a marginal basin), and

  13. 3000 Years of Sea Level Change.

    NASA Astrophysics Data System (ADS)

    Tanner, William F.

    1992-03-01

    Sea level change is generally taken to indicate climate change, and may be more nearly global than what we perceive to be climate change. Close to the beach, even a small sea level change (such as 1-3 m) produces important changes in local depositional conditions. This effect can be deduced from a study of properly selected beach deposits.Various measures of beach-sand grain size indicate conditions of deposition. The best of these parameters is the kurtosis; it is a reliable indicator of surf-zone wave energy density. An abrupt energy-level shift, after centuries with little change, indicates sea level rise or drop. Kurtosis, within stated limits, shows this.Beach ridge systems (successive, distinct old beach deposits) span the last several thousand years. A sequence of sand samples across such a deposit provides grain-size evidence for alternating high and low sea level. Changes were 1 to 3 m vertically, and took place at rates of about 1 ern yr1. There were at least seven such events in the last 3000 years.The two most recent changes were the drop and subsequent rise that marked the Little Ice Age (starting about 1200 A.D.). One cannot say, from these data, that the planet has come fully out of the Little ice Age. Predictions about what sea level will do in the near future should be based on the many small changes (1 to 3 m) in the last few thousand years, rather than on the arbitrary, fictitious, and unrealistic absolute sea level that appears to underlie various popular forecasts.

  14. Extended Late Pleistocene Sea Level Record

    NASA Astrophysics Data System (ADS)

    Fairbanks, R. G.; Cao, L.; Mortlock, R. A.

    2006-12-01

    Several hundred new closed system 230Th/234U and radiocarbon dates and the addition of more cores and coral samples from the islands of Barbados, Kiritimati and Araki contribute to an enhanced sea level record for the late Pleistocene ranging from the present to 240,000 yrs BP. Application of more rigorous sample screening criteria, including redundant 231Pa/235U dates have resulted in more closed system ages and better sea level resolution. In addition, a multibeam survey has mapped an extensive glacial lowstand reef on a ridge south of Barbados that is capped by a set of pinnacle reefs that grew during the early deglaciation. Among our new observations, the more detailed Barbados sea level record now resolves a Younger Dryas still- stand and a sea level drop between 16,140 and 14,690, overlapping the timing of H1 by some age estimates. The coral ages bracketing melt water pulse 1A have been further refined to 14,082 +/- 28 yrs BP and 13,632 +/- 32 yrs BP (2-sigma). The Isotope Stage 3 interstadial ended with sea level near 87.5 meters below present at 29,500 years ago before dropping to full glacial levels. The last glacial sea level lowstand began as early as 26,000 yrs BP. Extensive dating of Marine Isotope Stage 3 interstadial reefs on the islands of Araki and Barbados have added considerable resolution to this time interval and reliably bracket lowstand intervals separating the interstadials. A new diagenesis model has improved our prospecting success for closed system ages from older reefs and added some critical dates to the sparse closed-system data set for MIS-5 and MIS-7 high stand reefs..

  15. Sea Level Rise in Santa Clara County

    NASA Technical Reports Server (NTRS)

    Milesi, Cristina

    2005-01-01

    Presentation by Cristina Milesi, First Author, NASA Ames Research Center, Moffett Field, CA at the "Meeting the Challenge of Sea Level Rise in Santa Clara County" on June 19, 2005 Santa Clara County, bordering with the southern portion of the San Francisco Bay, is highly vulnerable to flooding and to sea level rise (SLR). In this presentation, the latest sea level rise projections for the San Francisco Bay will be discussed in the context of extreme water height frequency and extent of flooding vulnerability. I will also present preliminary estimations of levee requirements and possible mitigation through tidal restoration of existing salt ponds. The examples will draw mainly from the work done by the NASA Climate Adaptation Science Investigators at NASA Ames.

  16. Visualizing Sea Level Rise with Augmented Reality

    NASA Astrophysics Data System (ADS)

    Kintisch, E. S.

    2013-12-01

    Looking Glass is an application on the iPhone that visualizes in 3-D future scenarios of sea level rise, overlaid on live camera imagery in situ. Using a technology known as augmented reality, the app allows a layperson user to explore various scenarios of sea level rise using a visual interface. Then the user can see, in an immersive, dynamic way, how those scenarios would affect a real place. The first part of the experience activates users' cognitive, quantitative thinking process, teaching them how global sea level rise, tides and storm surge contribute to flooding; the second allows an emotional response to a striking visual depiction of possible future catastrophe. This project represents a partnership between a science journalist, MIT, and the Rhode Island School of Design, and the talk will touch on lessons this projects provides on structuring and executing such multidisciplinary efforts on future design projects.

  17. The Sea Level Fingerprints of Global Change

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Hay, C.; Kopp, R. E., III; Morrow, E.

    2014-12-01

    It may be difficult to persuade those living in northern Europe that the sea level changes that their coastal communities face depends less on the total melting of polar ice sheets and glaciers than on the individual contributions to this total. In particular, melting of a specific ice sheet or mountain glacier drives deformational, gravitational and rotational perturbations to the Earth system that are manifest in a unique geometry, or fingerprint, of global sea level change. For example, melting from the Greenland Ice Sheet equivalent to 1 mm/yr of global mean sea level (GMSL) rise will lead to sea level rise of ~0 mm/yr in Dublin, ~0.2 mm/yr in Amsterdam, ~0.4 mm/yr in Boston and ~1.2 mm/yr in Cape Town. In contrast, if the same volume of ice melted from the West Antarctic Ice Sheet, all of the above sites would experience a sea level rise in the range 1.1-1.2 mm/yr. These fingerprints of modern ice melting, together with ocean thermal expansion and dynamic effects, and the ongoing signal from glacial isostatic adjustment in response to the last ice age, combine to produce a sea level field with significant geographic variability. In this talk I will highlight an analysis of global tide gauge records that takes full advantage of this variability to estimate both GMSL and the sources of meltwater over the last century, and to project GMSL to the end of the current century.

  18. Estimating the sources of global sea level rise with data assimilation techniques

    PubMed Central

    Hay, Carling C.; Morrow, Eric; Kopp, Robert E.; Mitrovica, Jerry X.

    2013-01-01

    A rapidly melting ice sheet produces a distinctive geometry, or fingerprint, of sea level (SL) change. Thus, a network of SL observations may, in principle, be used to infer sources of meltwater flux. We outline a formalism, based on a modified Kalman smoother, for using tide gauge observations to estimate the individual sources of global SL change. We also report on a series of detection experiments based on synthetic SL data that explore the feasibility of extracting source information from SL records. The Kalman smoother technique iteratively calculates the maximum-likelihood estimate of Greenland ice sheet (GIS) and West Antarctic ice sheet (WAIS) melt at each time step, and it accommodates data gaps while also permitting the estimation of nonlinear trends. Our synthetic tests indicate that when all tide gauge records are used in the analysis, it should be possible to estimate GIS and WAIS melt rates greater than ∼0.3 and ∼0.4 mm of equivalent eustatic sea level rise per year, respectively. We have also implemented a multimodel Kalman filter that allows us to account rigorously for additional contributions to SL changes and their associated uncertainty. The multimodel filter uses 72 glacial isostatic adjustment models and 3 ocean dynamic models to estimate the most likely models for these processes given the synthetic observations. We conclude that our modified Kalman smoother procedure provides a powerful method for inferring melt rates in a warming world. PMID:22543163

  19. Estimating the sources of global sea level rise with data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Hay, Carling C.; Morrow, Eric; Kopp, Robert E.; Mitrovica, Jerry X.

    2013-02-01

    A rapidly melting ice sheet produces a distinctive geometry, or fingerprint, of sea level (SL) change. Thus, a network of SL observations may, in principle, be used to infer sources of meltwater flux. We outline a formalism, based on a modified Kalman smoother, for using tide gauge observations to estimate the individual sources of global SL change. We also report on a series of detection experiments based on synthetic SL data that explore the feasibility of extracting source information from SL records. The Kalman smoother technique iteratively calculates the maximum-likelihood estimate of Greenland ice sheet (GIS) and West Antarctic ice sheet (WAIS) melt at each time step, and it accommodates data gaps while also permitting the estimation of nonlinear trends. Our synthetic tests indicate that when all tide gauge records are used in the analysis, it should be possible to estimate GIS and WAIS melt rates greater than ∼0.3 and ∼0.4 mm of equivalent eustatic sea level rise per year, respectively. We have also implemented a multimodel Kalman filter that allows us to account rigorously for additional contributions to SL changes and their associated uncertainty. The multimodel filter uses 72 glacial isostatic adjustment models and 3 ocean dynamic models to estimate the most likely models for these processes given the synthetic observations. We conclude that our modified Kalman smoother procedure provides a powerful method for inferring melt rates in a warming world.

  20. Biostratigraphic correlation of Pleistocene marine deposits and sea levels, Atlantic coastal plain of the southeastern United States

    USGS Publications Warehouse

    Cronin, T. M.

    1980-01-01

    Marine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2-10 m from Maryland to northern Florida; middle Pleistocene, 6-15 m in northern South Carolina; early Pleistocene, 4-22 m in central North Carolina, 13-35 m in southern North Carolina, and 6-27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record. ?? 1980.

  1. Aptian-Albian sea level history from Guyots in the western Pacific

    NASA Astrophysics Data System (ADS)

    RöHl, Ursula; Ogg, James G.

    1996-10-01

    Relative sea level fluctuations are an important control on patterns of sedimentation on continental margins and provide a valuable tool for regional correlations. One of the main objectives of combined Ocean Drilling Program Legs 143 and 144 was drilling the thick carbonate caps of a suite of seamounts, called guyots, scattered over the northwestern Pacific. The array of drowned Cretaceous banks includes four carbonate banks of Aptian-Albian age. These particular carbonate banks display emergent surfaces if regional sea level falls faster than the rate of guyot subsidence, or intervals of condensed parasequences and well-cemented peritidal crypto-algal flats if the rate of sea level fall is slightly less than guyot subsidence. Rapid rises of sea level following these sequence boundaries are recorded as drowning of the emergent horizons or as pronounced deepening of facies. The cored lithologies and downhole geophysical and geochemical logs were used to identify depositional sequences and surfaces of exceptional shallowing or deepening. A combination of biostratigraphic datums, carbon and strontium isotope curves, relative magnitude of surfaces of emergence, relative thicknesses of depositional sequences, sea level events, and counts of upward shallowing cycles or parasequences were used to correlate sequences among the four sites. After compensating for thermal subsidence rates at each guyot, an identical pattern of major Aptian-Albian eustatic sea level events is evident throughout this large portion of the Pacific Ocean. There are approximately 12 Aptian and 12 Albian significant sequence boundaries, of which a third were associated with major episodes of emergence. When these events are compared with Aptian-Albian relative sea level changes observed in European shelf successions, the major sequence boundaries and transgressive surges can be easily correlated, and it appears that both regions also display the same number of minor events. Therefore we can apply

  2. Tectono-eustatic controls on carbonate platform development, Permian basin outcrop-subsurface

    SciTech Connect

    Sarg, J.F.; Romine, K.; Vail, P.R.

    1987-05-01

    Integration of seismic stratigraphic concepts, detailed field studies, and geohistory analysis provides powerful interpretation leverage for deciphering the geologic history of the Permian carbonate platform complexes. The structural history of the Permian basin during the Permian shows two subsidence cycles of 10 to 20 m.y. duration. These subsidence cycles played a major role in the long-term (millions to tens of millions of years) development of the Permian carbonate platforms. During periods of relatively rapid subsidence, aggradation was dominant; during times of slow subsidence, major basinward platform progradation occurred. Superimposed on the long-term tectonic cycles are a series of third-order eustatic cycles (0.5-3 m.y.) which controlled development of 23 depositional sequences. Each sequence is composed of three depositional systems tracts: (1) a lower basin-restricted wedge interpreted to have been deposited during a relative fall and lowstand of sea level; (2) a transgressive systems tract of variable thickness; and (3) an upper aggradational to progradational carbonate platform system interpreted to have been deposited during a relative highstand in sea level. The lowstand systems tracts are composed dominantly of quartz sandstone, commonly intercalated with carbonate debris beds at the toe-of-slope. Two highstand depositional styles are differentiated here: (1) a keep-up system which maintains pace with periodic rises in relative sea level and displays a mounded-oblique stratal geometry at the platform margin and (2) a catch-up system which represents a relatively slow rate of accumulation and displays a sigmoid profile at the platform margin. Sequence boundaries display erosional truncation (subaerial on shelf or at shelf edge; subaqueous on slope) and/or subaerial exposure.

  3. Sea Grant Education at the University Level.

    ERIC Educational Resources Information Center

    Fiske, Shirley J.

    1998-01-01

    Sea Grant's investment in university-level education shows a diversity of avenues for supporting students from experience-based internships, merit scholarships, and fellowships to team-based multidisciplinary undergraduate education. Describes such programs as Undergraduate Research Opportunities in ocean engineering, graduate research…

  4. Sea Level Rise National Coastal Property Model

    EPA Science Inventory

    The impact of sea level rise on coastal properties depends critically on the human response to the threat, which in turn depends on several factors, including the immediacy of the risk, the magnitude of property value at risk, options for adapting to the threat and the cost of th...

  5. Trends in UK mean sea level revisited

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.; Teferle, F. N.; Bingley, R. M.; Shennan, I.; Williams, S. D. P.

    2009-01-01

    This paper presents estimates of rates of mean sea level (MSL) change around the UK, based on a larger tide gauge data set and more accurate analysis methods than have been employed so far. The spatial variation of the trend in MSL is found to be similar to that inferred from geological information and from advanced geodetic techniques, which is a similar conclusion to that arrived at in the previous studies. The tide gauge MSL trends for 1901 onwards are estimated to be 1.4 +/- 0.2 mm yr-1 larger than those inferred from geology or geodetic methods, suggesting a regional sea level rise of climate change origin several one-tenths of mm per year lower than global estimates for the 20th century. However, UK MSL change cannot be described in terms of a simple linear increase alone but includes variations on interannual and decadal timescales. The possible sources of variation in a `UK sea level index' are explored. Air pressure is clearly one such possible source but its direct local forcing through the `inverse barometer' accounts for only one-third of the observed variability. A number of larger scale atmospheric and ocean processes must also play important roles, but modelling them satisfactorily and separating the individual contributions present a major challenge. As regards future regional UK sea level changes, we conclude that there is no basis for major modification to existing projections for the 2080s included in the 2002 UK Climate Impacts Programme studies.

  6. Sea Level Rise Coastal Property Model

    EPA Science Inventory

    The impact of sea level rise on coastal properties depends critically on the human response to the threat, which in turn depends on several factors, including the immediacy of the risk, the magnitude of property value at risk, options for adapting to the threat and the cost of th...

  7. Arctic Sea Level Change From a Reprocessed 2 Decade Altimetric Sea Level Record

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Knudsen, P.; Cheng, Y.

    2014-12-01

    For ocean and climate research it is essential to get as accurate long-term altimetric sea level data as possible. However, the accuracy of the altimetric data is frequently degraded in the interior of the Arctic Ocean due to the presence of seasonal or permanent sea ice. We have reprocessed ERS-1/2/Envisat satellite altimetry to develop an improved 20-year sea level dataset for the Arctic Ocean adding in recent retracked Cryosat-2 to bring the record up to 2014 . We have developed both an along-track dataset and 3-day gridded sea level anomaly (SLA) maps from September 1992 to April 2014. A major improvement in data coverage was gained by tailoring the standard altimetric editing criteria to Arctic conditions. The new reprocessed data has significant increased data coverage with between 4 and 10 times the amount of data in regions like the Beaufort Gyre region compared with AVISO and RADS datasets. This allows for a more accurate estimation of sea level changes from satellite altimetry in the Arctic Ocean. The reprocessed dataset exhibit a mean sea level trend of 2.1±1.3 mm/year (without Glacial Isostatic Adjustment correction) covering the Arctic Ocean between 66°N and 82°N with significant higher trend in the Beaufort Gyre region showing an increase in sea level trend at the cm level up to 2011.

  8. Benchmarking and testing the "Sea Level Equation

    NASA Astrophysics Data System (ADS)

    Spada, G.; Barletta, V. R.; Klemann, V.; van der Wal, W.; James, T. S.; Simon, K.; Riva, R. E. M.; Martinec, Z.; Gasperini, P.; Lund, B.; Wolf, D.; Vermeersen, L. L. A.; King, M. A.

    2012-04-01

    The study of the process of Glacial Isostatic Adjustment (GIA) and of the consequent sea level variations is gaining an increasingly important role within the geophysical community. Understanding the response of the Earth to the waxing and waning ice sheets is crucial in various contexts, ranging from the interpretation of modern satellite geodetic measurements to the projections of future sea level trends in response to climate change. All the processes accompanying GIA can be described solving the so-called Sea Level Equation (SLE), an integral equation that accounts for the interactions between the ice sheets, the solid Earth, and the oceans. Modern approaches to the SLE are based on various techniques that range from purely analytical formulations to fully numerical methods. Despite various teams independently investigating GIA, we do not have a suitably large set of agreed numerical results through which the methods may be validated. Following the example of the mantle convection community and our recent successful Benchmark for Post Glacial Rebound codes (Spada et al., 2011, doi: 10.1111/j.1365-246X.2011.04952.x), here we present the results of a benchmark study of independently developed codes designed to solve the SLE. This study has taken place within a collaboration facilitated through the European Cooperation in Science and Technology (COST) Action ES0701. The tests involve predictions of past and current sea level variations, and 3D deformations of the Earth surface. In spite of the signi?cant differences in the numerical methods employed, the test computations performed so far show a satisfactory agreement between the results provided by the participants. The differences found, which can be often attributed to the different numerical algorithms employed within the community, help to constrain the intrinsic errors in model predictions. These are of fundamental importance for a correct interpretation of the geodetic variations observed today, and

  9. Late Cretaceous sea level from a paleoshoreline

    SciTech Connect

    McDonough, K.J.; Cross, T.A. )

    1991-04-10

    The contemporary elevation of a Late Cenomanian ({approx}93 Ma) shoreline was determined at five localities along the tectonically stable, eastern margin of the Cretaceous Western Interior Seaway, North America. This shoreline, represented by marine-to-nonmarine facies transitions in strata of the Greenhorn sequence (UZA-2 cycle of Haq et al. (1987)), was identified from outcrop and borehole data. Biostratigraphic zonations constrained the geologic age at each locality. Sequence stratigraphic correlations, based on identifying discrete progradational units and the surfaces that separate them, were used to refine age correlations to better than 100 kyr between localities. A single Cenomanian shoreline was correlated within a single progradational unit, and its elevation was determined at five localities. This paleostrandline occurs 265-286m above present-day sea level, at an average elevation of 276 m. Isostatic and flexural corrections were applied to remove the effects of postdepositional vertical movement, including sediment compaction by loading, uplift due to erosion, and glacial loading and rebound. Errors inherent in each measurement and each correction were estimated. Corrections and their cumulative error estimates yield a Late Cenomanian elevation of 269{plus minus}87 m above present sea level. The corrected elevation approximates sea level at 93 Ma and provides a measure of Late Cenomanian eustasy prior to the Early Turonian highstand. Establishing the absolute value for eustasy at a single point in geologic time provides a frame of reference for calibrating relative sea level curves, as well as constraining the magnitudes of tectonic subsidence, sediment flux, and other variables that controlled water depth and relative sea level.

  10. Diagenesis in limestone-dolostone successions after 1 million years of rapid sea-level fluctuations: A case study from Grand Cayman, British West Indies

    NASA Astrophysics Data System (ADS)

    Ren, Min; Jones, Brian

    2016-08-01

    Meteoric diagenesis in young marine carbonate sediments has commonly been linked to fluctuations in Quaternary glacio-eustatic sea levels. The extent to which these sea-level changes are recorded in these carbonate successions, however, remains questionable. This is amply demonstrated by the diagenetic record found in the limestones and dolostones of the Cayman Formation (Miocene) on the Cayman Islands. On the eastern part of Grand Cayman, dolomitization that ceased by 1 million years ago created an architecture whereby the limestones in the central part of the island were surrounded by dolostones in coastal areas of the island. Since then, the upper 90 m of the Cayman Formation has been repeatedly cycled through many different marine and meteoric diagenetic zones as large, rapid eustatic oscillations in sea level affected the island. The records of these diagenetic cycles in the dolostones and limestones are, however, different and impossible to match to the cyclic changes in sea level. In the peripheral dolostones, post-dolomitization diagenetic features are sparse. In contrast, the limestones in the interior of the island exhibit a wider variety of meteoric diagenetic features, including extensive dissolution and calcite cementation. The dolostones have low porosity (< 10%) and permeability, whereas the limestones are characterized by high porosity (up to 50%), especially in the lower and middle parts of the studied limestone succession. The different phases of diagenesis found in the limestones, however, cannot be specifically matched to any sea-level fluctuations that have affected these successions. This issue is further exemplified by the fact that that the last marine transgression over the last ~ 16,000 years ago appears to have left no tangible record. The analysis of this succession clearly demonstrates that not all diagenetic regimes will be recorded in the fabrics of limestones or dolostones.

  11. Inconsistencies in sea level pressure trends between different atmospheric products. Impact on sea level trend estimation

    NASA Astrophysics Data System (ADS)

    Gomis, D.; Jordà, G.

    2012-04-01

    Long term climate datasets are of great importance to understand the processes behind climate variability, to evaluate the performance of climate models and to identify signals of climate change. Among the different atmospheric variables, sea level pressure (SLP) is the basic dynamical variable and is the most widely analyzed quantity. From the ocean perspective, SLP is of crucial importance for a dynamical interpretation of sea level records. In order to isolate the contribution to sea level variability of circulation and heat and freshwater contents, a common practice is to remove the sea level fluctuations induced by SLP. At seasonal and longer time scales, sea level is expected to react as an inverted barometer (IB) to changes in SLP. Therefore, provided that accuracy of available SLP data is high enough, the atmospheric contribution to sea level variability can be isolated and removed from sea level records. This is routinely done for tide gauge records, altimetry or sea level reconstructions. Different atmospheric gridded products spanning the last decades are nowadays available. On the one hand, there are historical SLP datasets where observations from land stations and ocean observations have been interpolated into a regular grid. On the other hand, there are reanalyses where an atmospheric model is run assimilating the historical data. Both kind of products have been extensively used in recent years either directly (i.e. to analyse the SLP evolution) or indirectly (i.e. through the removal of IB effect on sea level records). However, it is well known that the quality of those products may not be homogeneous on time. In this contribution, we compare long term SLP trends from different atmospheric products (reanalysis and gridded historical datasets), and evaluate the uncertainties introduced by them in the sea level trend estimations. The results show that discrepancies between datasets can induce an uncertainty up to 0.5 mm/yr for the period 1958-2001 on

  12. Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa

    NASA Astrophysics Data System (ADS)

    Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.

    2011-12-01

    The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The

  13. Tectonic and glacio-eustatic influences on Late Cambrian-Early Devonian first-order stratigraphic and faunal suites in the Great Basin

    SciTech Connect

    Berry, W.B.N. )

    1991-02-01

    The Late Cambrian to middle Devonian stratigraphic and faunal record i the western United States may be divided into at least five first-order or primary depositional cycles delimited by tectonically controlled sea level changes. These tectonically controlled sea level changes essentially are changes in rate of platform subsidence. Rate of platform subsidence is reflected in changes in the succession of depositional environments. Tectonically controlled sea level changes are reflected in the succession of faunas as well as in the depositional environment record. The primary rate of subsidence-related sea level changes took place at the following times: latest Cambrian, latest Ibexian (Early Ordovician), and late Early Devonian. A prominent set of glacio-eustatic sea level changes occurred in the latest Ordovician-earliest Silurian. That glacial interval was one in which significant mass mortalities and subsequent re-radiations took place among marine invertebrates. Although the boundaries of the first-order cycles, both in the stratigraphic depositional cycles appear to be diachronous across the Great Basin, the rock suites comprising the cycles are delimited clearly. Second-order cycles may be recognized within the first-order cycles, both in the stratigraphic and faunal record. The second-order cycles also reflect sea level changes. Major oceanic surface water currents were deflected around plate and related platform margins during intervals of regression from the platform, enhancing upwelling along the plate margins during such intervals.

  14. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    NASA Astrophysics Data System (ADS)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  15. Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide?

    NASA Astrophysics Data System (ADS)

    Pedoja, Kevin; Husson, Laurent; Regard, Vincent; Cobbold, Peter Robert; Ostanciaux, Emilie; Johnson, Markes E.; Kershaw, Stephen; Saillard, Marianne; Martinod, Joseph; Furgerot, Lucille; Weill, Pierre; Delcaillau, Bernard

    2011-09-01

    The growing interest in quantification of vertical ground motion stems from the need to understand in detail how the Earth's crust behaves, for both scientific and social reasons. However, only recently has the refinement of dating techniques made possible the use of paleoshorelines as reliable tools for tectonic studies. Although there are many local studies of Quaternary vertical motions of coastlines, we know of no comprehensive worldwide synthesis. Here we provide a compilation of 890 records of paleoshoreline sequences, with particular emphasis on the last interglacial stage (Marine Isotopic Stage [MIS] 5e, ~ 122 ka). The quality of dating MIS 5e makes it a reliable marker to evaluate vertical ground motion rates during the late Quaternary on a global scale. The results show that most coastal segments have risen relative to sea-level with a mean uplift rate higher than 0.2 mm/yr, i.e. more than four times faster than the estimated eustatic drop in sea level. The results also reveal that the uplift rate is faster on average for active margins than for passive margins. Neither dynamic topography nor glacio-hydro-isostasy may explain sustained uplift of all continental margins, as revealed by the wide distribution of uplifted sequences of paleoshorelines. Instead, we suggest that only plate-tectonic processes reconcile all observations of Quaternary coastal uplift. We propose that long-term continental accretion has led to compression of continental plates and uplift of their margins. Therefore this study concludes that plate-tectonics processes impact all margins and emphasizes the fact that the notion of a stable platform is unrealistic. These results therefore seriously challenge the evaluation of past sea levels from the fossil shoreline record.

  16. Sea level changes in the Holocene

    SciTech Connect

    Tanner, W.F. )

    1993-03-01

    Beach ridge data provide much information on the history of sea level changes through all of Holocene time. Two data sets start at about 12,000 B.P., one of them essentially continuous to now with data every 40--50 yrs. Another starting at 7,600 B.P. is continuous to the present. Others span the last 3,200 years. These records agree reasonably closely, and show the Little Ice Age (since 1,200 A.D.). The sea level changes in these data include the following: (a) Early Holocene crisis, about 8,000 B.P. The Swedish (Baltic Sea) record ends about this time, the Hudson Bay record starts at roughly this time, and the Danish record has a 300--500-year gap at about this time. From the latter, it appears that sea level rose sharply, shortly before 8,000 B.P., and fell again shortly after 8,000 B.P. These were the largest changes in Holocene time. The vertical change may have been as much as 12--18 meters, and the rate of change as much as 5--8 cm/yr, perhaps the maximum possible. In stable areas, evidence for these changes are now 25--30 meters below sea level. (b) Early Holocene general rise, up to about 8,000 B.P. Evidence for this is now known only on uplifted coasts. (c) Middle Holocene high, 2 m above present MSL 7,000--5,500 B.P. (d) Middle Holocene low, 3--4 m below present MSL 5,000--3,500 B.P. (e) Several changes up to 2 meters, especially since 3,000 B.P. In general, rates of change have been close to 1 cm/yr (major exceptions noted above). The only persistent interval was that between beach ridges; each ridge and its associated swale seem to have been built by a sea-level rise-and-fall couplet, having dimensions so small (perhaps 5--30 cm) that they could be overlooked easily on tide-gauge records. The average apparent time interval was 35--50 years.

  17. Comparisons of various sea level reconstructions and sea level from data synthesis products: 1960-2012

    NASA Astrophysics Data System (ADS)

    Carson, Mark; Stammer, Detlef; Köhl, Armin; Meyssignac, Benoit; Church, John; Schröter, Jens; Wenzel, Manfred

    2016-04-01

    We investigate sea level trends and variability as reconstructed from tide gauge data and ocean data assimilations (ODA) over the last 60 years. Tide gauge reconstructions (TGR) are mostly based on statistical approaches using selected EOFs, or trained from variability patterns, from altimetric sea level and tide gauge data to extrapolate regional sea level evolution backward in time. Reconstructions also exist from dynamical ocean modeling approaches with and without data assimilation. We intercompare all results and provide ensemble mean and ensemble spreads to describe estimates of past regional sea level changes and their uncertainties. While tide gauge reconstructions match tide gauge data better than ODA, they exhibit less variability in the open ocean. TGRs match the trends and variability better during the satellite-altimetry era than for the entire period from 1960-2012, whereas the ODAs mostly do not. An average of all products produces the best statistics for comparing to the set of tide gauges. The results are mixed. The TGRs and ODAs can be useful in some respects, such as calculating a global sea-level signal, and matching altimetric data, and each other, well in the Pacific. But the regional open-ocean sea-level change and variability found from altimetric data are not well reproduced over substantial portions of the ocean. Over periods earlier than the satellite era, these reconstructed regional patterns may not be trustworthy, nor can they be verified.

  18. Geochronology and subsurface stratigraphy of Pukapuka and Rakahanga atolls, Cook Islands: Late Quaternary reef growth and sea level history

    USGS Publications Warehouse

    Gray, S.C.; Hein, J.R.; Hausmann, R.; Radtke, U.

    1992-01-01

    Eustatic sea-level cycles superposed on thermal subsidence of an atoll produce layers of high sea-level reefs separated by erosional unconformities. Coral samples from these reefs from cores drilled to 50 m beneath the lagoons of Pukapuka and Rakahanga atolls, northern Cook Islands give electron spin resonance (ESR) and U-series ages ranging from the Holocene to 600,000 yr B.P. Subgroups of these ages and the stratigraphic position of their bounding unconformities define at least 5 periods of reef growth and high sea-level (0-9000 yr B.P., 125,000-180,000 yr B.P., 180,000-230,000 yr B.P., 300,000-460,000 yr B.P., 460,000-650,000 yr B.P.). Only two ages fall within error of the last interglacial high sea-level stand (???125,000-135,000 yr B.P.). This paucity of ages may result from extensive erosion of the last intergracial reef. In addition, post-depositional isotope exchange may have altered the time ages of three coral samples to apparent ages that fall within glacial stage 6. For the record to be preserved, vertical accretion during rising sea-level must compensate for surface lowering from erosion during sea-level lowstands and subsidence of the atoll; erosion rates (6-63 cm/1000 yr) can therefore be calculated from reef accretion rates (100-400 cm/1000 yr), subsidence rates (2-6 cm/1000 yr), and the duration of island submergence (8-15% of the last 600,000 yr). The stratigraphy of coral ages indicates island subsidence rates of 4.5 ?? 2.8 cm/1000 yr for both islands. A model of reef growth and erosion based on the stratigraphy of the Cook Islands atolls suggests average subsidence and erosion rates of between 3-6 and 15-20 cm/1000 yr, respectively. ?? 1992.

  19. Understanding Sea-Level Rise and Variability

    NASA Astrophysics Data System (ADS)

    Anderson, John

    2011-05-01

    The debate about climate change lingers, fueled by the complexity of weather patterns around the Earth. The oceans filter spatial and temporal changes in temperature, yielding an undisputable record of warming and expansion that manifests as accelerated sea level rise. The rate of rise in historical time is nearly 6 times the average rate for the past 4000 years. Documentation of this accelerated rise, discussion of its causes and impacts, and descriptions of the methods used to measure sea level rise are provided in this compilation of 12 papers authored by some of the leading experts in the field. The book reads more like a textbook than an edited volume, a strategy seldom achieved in edited volumes.

  20. Coastal subsidence and relative sea level rise

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Galloway, Devin L.

    2014-01-01

    Subsurface fluid-pressure declines caused by pumping of groundwater or hydrocarbons can lead to aquifer-system compaction and consequent land subsidence. This subsidence can be rapid, as much as 30 cm per year in some instances, and large, totaling more than 13 m in extreme examples. Thus anthropogenic subsidence may be the dominant contributor to relative sea-level rise in coastal environments where subsurface fluids are heavily exploited. Maximum observed rates of human-induced subsidence greatly exceed the rates of natural subsidence of unconsolidated sediments (~0.1–1 cm yr−1) and the estimated rates of ongoing global sea-level rise (~0.3 cm yr−1).

  1. Hurricanes, sea level rise, and coastal change

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.

    2011-01-01

    Sixteen hurricanes have made landfall along the U.S. east and Gulf coasts over the past decade. For most of these storms, the USGS with our partners in NASA and the U.S. Army Corps of Engineers have flown before and after lidar missions to detect changes in beaches and dunes. The most dramatic changes occurred when the coasts were completely submerged in an inundation regime. Where this occurred locally, a new breach was cut, like during Hurricane Isabel in North Carolina. Where surge inundated an entire island, the sand was stripped off leaving marshy outcrops behind, like during Hurricane Katrina in Louisiana. Sea level rise together with sand starvation and repeated hurricane impacts could increase the probabilities of inundation and degrade coasts more than sea level rise alone.

  2. Reconstruction of Sea/Lake-Level Changes in an Active Strike-Slip Basin (Gulf of Cariaco, NE Venezuela)

    NASA Astrophysics Data System (ADS)

    van Daele, M.; Audemard, F.; Beck, C.; de Batist, M.; van Welden, A.; Moernaut, J.; 2006 Shipboard Party, G.

    2008-05-01

    In January 2006, 76 high-resolution reflection seismic profiles were acquired in the Gulf of Cariaco, Northeast Venezuela. In the upper 100 m of sedimentary infill, 17 unconformity-bounded sequences were identified and mapped throughout the basin. Up to now, no core or borehole information is available to provide age constraints on these units. The sedimentary infill is cut by several faults, Riedel faults in the central part and the El Pilar fault (one of the main faults of the South American-Caribbean plate boundary) in the southern part of the gulf. The connection of the Gulf of Cariaco with the adjacent Cariaco Basin occurs at a present-day water depth of ~ 55 m. This implies that the gulf was disconnected from the world ocean and functioned as a lake during a large part of the last glacial. The main rivers entering the gulf drain the coastal mountain ranges and tend to form pronounced deltas at their inlet. During times when the gulf was a lake, periods with a dry climate resulted in dramatic lake-level lowstands and even complete desiccation/evaporation. The present-day depths of delta offlap breaks and the presence of lowstand/evaporite deposits can thus be used to estimate sea/lake level at the time of their formation. Detailed analysis of these stratigraphic sea/lake-level indicators allowed reconstructing the sea/lake-level history for the period encompassed by the 17 identified sequences. This sea/lake-level reconstruction also needed to be corrected for tectonic subsidence, affecting different parts of the gulf with different intensity. The reconstructed sea/lake-level curve of the Gulf of Cariaco was compared with the eustatic sea-level curve and with results of previous paleoclimate studies in Venezuela. The striking coherence between the eustatic curve and the amplitudes and absolute heights of successive reconstructed lowstands and highstands compelled us to tune our record to the eustatic curve in order to achieve a rough age estimate for our units

  3. Rising Sea Levels: Truth or Scare?

    ERIC Educational Resources Information Center

    Peacock, Alan

    2007-01-01

    When "ITV News" ran an item that shocked the author, about rising sea levels that will have caused the entire evacuation of the islands by the end of this year, he began to wonder whether the Pacific Ocean is really rising as fast as this. The media reporting of such things can be a double-edged sword. On the one hand, it brought to the author's…

  4. Long-term sea level and the cycle of supercontinent formation and dispersal

    NASA Astrophysics Data System (ADS)

    Seton, M.; Muller, R. D.

    2012-04-01

    The main drivers of global long-term sea level fluctuations include changes in seafloor spreading, mid-ocean ridge length, continental area, sedimentation and large igneous provinces, which contribute to defining the volume of the ocean basins. Changes in the volume of ice-sheets affects the amount of water available to fill the ocean basins through time but its effect is smaller. In order to quantify the contribution of ocean volume change to global sea level, we build a plate motion model back through time based on the present day preserved seafloor spreading record, an interpretation of the spatio-temporal record of plate boundaries, simple assumptions regarding spreading symmetry and triple junction closure. We reconstruct the now subducted portions of oceanic lithosphere and compute grids of the age-area distribution of ocean lithosphere from the time of Pangea assembly to supercontinent break up and dispersal (200-0 Ma). Our model includes a merged moving hotspot and true polar-wander corrected reference frame, a revised history for the formation of Panthalassa, a model for the break-up of the Ontong Java-Manihiki-Hikurangi plateaus between 120-86 Ma and includes the seafloor spreading history in the Tethys and Mongol-Okhotsk Ocean. We estimate the contribution of deep-sea sedimentation to ocean basin volume using a predictive age-latitude-sedimentation relationship. The eruption and subduction/accretion of large igneous provinces based on a newly compiled age-coded large igneous province data set is incorporated in our workflow to estimate their relative input to sea level change. A similar approach was successfully applied to predict the magnitude and pattern of eustatic sea level change since the Cretaceous (Müller et. al. 2008) but this study was unable to capture the full cycle of supercontinent amalgamation and dispersal. Our results suggest that old mid-ocean ridge flanks in the proto-Pacific and the Tethys oceans were gradually destroyed during the

  5. Internal and external forcing of sea level variability in the Black Sea

    NASA Astrophysics Data System (ADS)

    Volkov, Denis L.; Landerer, Felix W.

    2015-11-01

    The variability of sea level in the Black Sea is forced by a combination of internal and external processes of atmospheric, oceanic, and terrestrial origin. We use a combination of satellite altimetry and gravity, tide gauge, river discharge, and atmospheric re-analysis data to provide a comprehensive up-to-date analysis of sea level variability in the Black Sea and to quantify the role of different environmental factors that force the variability. The Black Sea is part of a large-scale climatic system that includes the Mediterranean and the North Atlantic. The seasonal sea level budget shows similar contributions of fresh water fluxes (precipitation, evaporation, and river discharge) and the Black Sea outflow, while the impact of the net surface heat flux is smaller although not negligible. We find that the nonseasonal sea level time series in the Black and Aegean seas are significantly correlated, the latter leading by 1 month. This lag is attributed to the adjustment of sea level in the Black Sea to externally forced changes of sea level in the Aegean Sea and to the impact of river discharge. The nonseasonal sea level budget in the Black Sea is dominated by precipitation and evaporation over the sea itself, but external processes such as river discharge and changes in the outflow can also cause some large synoptic-scale sea level anomalies. Sea level is strongly coupled to terrestrial water storage over the Black Sea drainage basin, which is modulated by the North Atlantic Oscillation (NAO). We show that during the low/high NAO southwesterly/northeasterly winds near the Strait of Gibraltar and southerly/northerly winds over the Aegean Sea are able to dynamically increase/decrease sea level in the Mediterranean and Black seas, respectively.

  6. Influence of relative sea level on a marginal sea environment and its implication for reconstructing ice volume changes using IODP Expedition 346, Site U1427

    NASA Astrophysics Data System (ADS)

    Sagawa, T.; Tada, R.; Murray, R. W.; Alvarez Zarikian, C. A.

    2014-12-01

    Pleistocene climate is characterized by glacial-interglacial changes in the ice volume. Reconstruction of ice volume is essential for understanding past climate change and is usually based on variations in the oxygen isotope composition of benthic foraminifera shells, which in turn are influenced by bottom water temperature. Another approach is to use the oxygen isotope composition of planktonic foraminifer in semi-enclosed seas, where the surface environments are sensitive to sea level change. The oceanographic condition at the sea north of Japanese islands is also largely influenced by the eustatic change. The Japanese islands and inter island shallow straits (sill depth less than 130 m) limit seawater exchange between the North Pacific and the marginal seas. The oxygen isotope record in this area show a unique feature and is a candidate for reconstructing global sea level history. During the Integrated Ocean Drilling Program (IODP) Expedition 346 "Asian Monsoon" (29 July-27 September 2013), a shallow marine sediment sequence was recovered from the slope of north coast of western Japan, Site U1427. The shipboard data highlight the sediment contains well-preserved foraminifer and has high sedimentation rate of ~40 cm/kyr. A complete splice down to ~400 m provides the potential for a continuous record for the last ~1.4 Ma. Preliminary isotope results show isotopic variations correspond to lithological change and therefore show similar variation to physical properties of the sediment, such as bulk density, natural gamma ray, and so on. The result suggests that the oxygen isotope of foraminifer in this area may provide key information on past global ice volume changes.

  7. Holocene sea-level changes in Palau, West Caroline Islands*1

    NASA Astrophysics Data System (ADS)

    Easton, William H.; Ku, Teh-Lung

    1980-09-01

    14C ages supplemented by {230Th }/{234U } determinations have been obtained for calcareous deposits on Koror, Babelthuap, Auluptagel, and Adorius Islands in the Palau Group, West Caroline Islands. Test borings for a bridge between Koror and Babelthuap reveal shoreface terraces consisting largely of bioclastic sand, but resembling fringing reefs. The base of the shoreface terraces dates to between 7000 and 8000 14C yr B.P. and the upper surfaces are slightly younger than 4000 yr B.P. Spacing of the subsurface isochrons indicates that the rate of sedimentation increased up-section on Koror terrace and decreased up-section on Babelthuap terrace. The average rate of deposition in the terraces was 0.5 cm/yr. Isochrons in the Babelthuap shoreface terrace are 7 m higher than those in the Koror terrace. If deposition was sufficient to keep the surfaces of the terraces at low tide level, then the Babelthuap side was essentially stable and the Koror side was uplifted between about 8000 and 6300 yr ago, and then subsided until 4000 yr ago; since then there has been about 2 m of uplift. "Top hat" microatolls on Koror terrace indicate that relative sea level has dropped about 30 cm in the past 75 yr. In the absence of good evidence for changes of level in water ponded in a moat, it is likely that the microatolls indicate uplift of the terrace. On the other hand, if tectonic activity was minimal, then differences in the two terraces are due to differences in sedimentation with the Koror side of the channel being substantially subtidal between about 7000 and 5000 yr B.P. Taking the composite eustatic sea-level curve of Hawaii and elsewhere as a reference standard, it is deduced that Auluptagel Island has risen 0.8 m in the last 2900 yr, and Adorius Island has risen approximately 8 m in the last 5000-6000 yr.

  8. Sea level forecasts using neural networks

    NASA Astrophysics Data System (ADS)

    Röske, Frank

    1997-03-01

    In this paper, a new method for predicting the sea level employing a neural network approach is introduced. It was designed to improve the prediction of the sea level along the German North Sea Coast under standard conditions. The sea level at any given time depends upon the tides as well as meteorological and oceanographic factors, such as the winds and external surges induced by air pressure. Since tidal predictions are already sufficiently accurate, they have been subtracted from the observed sea levels. The differences will be predicted up to 18 hours in advance. In this paper, the differences are called anomalies. The prediction of the sea level each hour is distinguished from its predictions at the times of high and low tide. For this study, Cuxhaven was selected as a reference site. The predictions made using neural networks were compared for accuracy with the prognoses prepared using six models: two hydrodynamic models, a statistical model, a nearest neighbor model, which is based on analogies, the persistence model, and the verbal forecasts that are broadcast and kept on record by the Sea Level Forecast Service of the Federal Maritime and Hydrography Agency (BSH) in Hamburg. Predictions were calculated for the year 1993 and compared with the actual levels measured. Artificial neural networks are capable of learning. By applying them to the prediction of sea levels, learning from past events has been attempted. It was also attempted to make the experiences of expert forecasters objective. Instead of using the wide-spread back-propagation networks, the self-organizing feature map of Kohonen, or “Kohonen network”, was applied. The fundamental principle of this network is the transformation of the signal similarity into the neighborhood of the neurons while preserving the topology of the signal space. The self-organization procedure of Kohonen networks can be visualized. To make predictions, these networks have been subdivided into a part describing the

  9. Eustatic control on epicontinental basins: The example of the Stuttgart Formation in the Central European Basin (Middle Keuper, Late Triassic)

    NASA Astrophysics Data System (ADS)

    Franz, M.; Nowak, K.; Berner, U.; Heunisch, C.; Bandel, K.; Röhling, H.-G.; Wolfgramm, M.

    2014-11-01

    The deposition of the Stuttgart Formation ('Schilfsandstein'), commonly considered as a type-example of the Carnian Pluvial Event, was controlled by high frequent 4th order sequences that resulted in pre-, intra- and post-Schilfsandstein transgressions from Tethyan waters into the epicontinental Central European Basin (CEB). The pre-Schilfsandstein transgression flooded the CEB trough gates to the Southeast and resulted in a wide-spread inland sea that was characterised by increased biological productivity, predominantly oxic conditions and enabled the immigration of euryhaline marine fauna with plankton, ostracodes, fishes, bivalves and the gastropods Omphaloptychia suebica n. sp. and Settsassia stuttgartica n. sp. The rather short-term intra- and post-Schilfsandstein transgressions flooded the CEB from the Southwest and Southeast and established a shallow brackish inland sea that stretched up to North Germany. Both, the 4th and 3rd order sequences derived from the succession in the CEB correlate well with those derived from successions of Tethyan shelfs. Therefore pronounced circum-Tethyan eustatic cycles are evidenced and may have had considerable impact on prominent middle Carnian events: Reingraben turnover, Carnian Pluvial Event, Carnian Crisis and Mid Carnian Wet Intermezzo. The broad circum-Tethyan evidence of 106-year scale cycles suggests glacioeustatic sea-level changes even in the Triassic Greenhouse period.

  10. Synsedimentary tectonics, mud-mounds and sea-level changes on a Palaeozoic carbonate platform margin: a Devonian Montagne Noire example (France)

    NASA Astrophysics Data System (ADS)

    Bourrouilh, Robert; Bourque, Pierre-André; Dansereau, Pauline; Bourrouilh-Le Jan, Françoise; Weyant, Pierre

    1998-06-01

    The Devonian sedimentary succession of the southern flank of the Montagne Noire (France) was deposited along a divergent margin. This paper is a contribution to describe and evaluate biogenic, sedimentary, geochemical and micropalaeontological features as indicators of sea-level changes and global history of the Devonian in this area. Following transgression and shallow-water environments during Early Devonian time (Lochkovian to early Emsian), biogenic mud-rich mounds with stromatactis developed during latest Emsian at the platform margin. The depth of the Devonian sea was increasing and the seafloor passed below the photic zone and the lower limit of storm wave base during the Emsian. Growth and seismic faults affected the mounds and created Neptunian cracks and crevices, quickly filled with sedimentary material (pisoids) and cements (Neptunian dykes and veins). Light and CL-microscopy, and stable isotope geochemistry show that stromatactis, cements of Neptunian dykes, veins and pisoid cortices are early marine, whereas the red finely crystalline material that forms the bulk of the mound has been cemented in the near-surface diagenetic environment, after the early marine cementation of stromatactis and Neptunian dykes and veins, by meteoric or hydrothermal fluids. The sedimentary rocks overlying the stromatactis mounds exhibit regularly condensed iron and manganese-rich layers, interrupted by the Kellwasser hypoxic horizon. These condensed deposits developed up to the Famennian in a context of carbonate gravity sedimentation and became more and more rhythmic and frequent up section. The occurrence and irregular distribution of large-scale submarine mass flows during Frasnian and Famennian times can be related to block faulting on which Lower Devonian stromatactis mounds could have been uplifted by this block faulting to form seamounts. The sea-level fluctuations detected in the southern flank of Montagne Noire are compared to the Devonian eustatic sea-level curve

  11. The Cenomanian/Turonian carbon burial event, Bass River, NJ, USA: Geochemical, paleoecological, and sea-level changes

    USGS Publications Warehouse

    Sugarman, P.J.; Miller, K.G.; Olsson, R.K.; Browning, J.V.; Wright, J.D.; De Romero, L. M.; White, T.S.; Muller, F.L.; Uptegrove, J.

    1999-01-01

    The Bass River borehole (ODP Leg 174AX) recovered approximately 200 ft (61 m) of upper Cenomanian to lower Turonian strata from the New Jersey Coastal Plain, USA, including the expression of a global carbon burial event. The Cenomanian/Turonian (C/T) boundary is recognized at Bass River at ???1935.5 ft (589.9 m) based on the contact of nannofossil Microstaurus chiastius and Eiffellithus eximius Subzones of the Parhabdolithus asper Zone. Carbon isotopic records of both Gavelinella and Epistomina show a large (>2???) increase immediately below the C/T boundary, with maximum values of 6??? in Epistomina and 4.3??? in Gavelinella. The ??13C offset between these taxa is constant and we conclude that Epistomina, like Gavelinella, faithfully records seawater ??13C changes. Above the sharp ??13C increase, elevated ??13C and sedimentary organic carbon (>0.9%) values continue into the lower Turonian, culminating in a sharp ??13C decrease. High ??13C values in the uppermost Cenomanian-lower Turonian at Bass River correlate with a global carbon burial event recorded in Europe and the U.S. Western Interior; we estimate the duration of this event at Bass River as 400-500 k.y. Although the carbon burial event occurred during a long-term eustatic rise (10 m.y. scale), it occurs within a 1-2 m.y. long sequence at Bass River that indicates no relationship with sea-level lowering on the m.y. scale. The carbon burial event does not appear to be associated with maximum flooding either, indicating little correlation with sea-level rise on a m.y. scale. Within the sequence spanning the carbon event, there are at least 4 shallowing-upward parasequences (durations ???350-460 k.y.) indicated by changes in abundance and type of Epistomina species, ??18O variations, and minor lithologic variations. The highest occurrences of 6 Epistomina species and the origination of Epistomina sliteri Olsson n. sp. are associated with the parasequences and possibly with higher ??18O values. There is no

  12. Impact of sea-level rise assessed

    NASA Astrophysics Data System (ADS)

    Coastal erosion, flooding of low-lying coastal areas, disruption of ecosystems, probable population relocation, and economic loss are some consequences of projected relative sea-level rise. The term includes both the rise anticipated to result from global warming and other factors, and the rise from local tectonic subsidence. Some specific sites were discussed at the annual meeting of the American Association for the Advancement of Science, held in Washington, D.C., February 14-19.In comparing the New York City and eastern Mediterranean coasts, Victor Goldsmith of Hunter College, New York, presented a case for stabilization versus retreat of coastal areas, dependent on the geologic terrane and on the degree of development. The 578-mile New York City coastline is considered “hard,” meaning some sort of cement structure, such as roads, jetties, or piers, separates the water from the coast. It is also an area of many beaches that are not natural, but that have been built up and maintained by the process of sand nourishment over the past 50 years. The Rockaway peninsula, for example, has received more than 12 million cubic yards of sand between 1926 and 1962 in response to the measured sea-level rise of 30 cm in the last 100 years from downwarping of the wide continental shelf, said Goldsmith. Because land is highly developed and expensive in this area, retreat is not a practical option. Goldsmith suggests that the effects of on-going sea-level rise, at rates of about 1 foot per century, can be offset by continued hardening of the New York City coastline and beach nourishment where necessary.

  13. Impact of sea-level rise assessed

    NASA Astrophysics Data System (ADS)

    Coastal erosion, flooding of low-lying coastal areas, disruption of ecosystems, probable population relocation, and economic loss are some consequences of projected relative sea-level rise. The term includes both the rise anticipated to result from global warming and other factors, and the rise from local tectonic subsidence. Some specific sites were discussed at the annual meeting of the American Association for the Advancement of Science, held in Washington, D.C., February 14-19.In comparing the New York City and eastern Mediterranean coasts, Victor Goldsmith of Hunter College, New York, presented a case for stabilization versus retreat of coastal areas, dependent on the geologic terrane and on the degree of development. The 578-mile New York City coastline is considered "hard," meaning some sort of cement structure, such as roads, jetties, or piers, separates the water from the coast. It is also an area of many beaches that are not natural, but that have been built up and maintained by the process of sand nourishment over the past 50 years. The Rockaway peninsula, for example, has received more than 12 million cubic yards of sand between 1926 and 1962 in response to the measured sea-level rise of 30 cm in the last 100 years from downwarping of the wide continental shelf, said Goldsmith. Because land is highly developed and expensive in this area, retreat is not a practical option. Goldsmith suggests that the effects of on-going sea-level rise, at rates of about 1 foot per century, can be offset by continued hardening of the New York City coastline and beach nourishment where necessary.

  14. Subsidence of the Texas coast: inferences from historical and late Pleistocene sea levels

    NASA Astrophysics Data System (ADS)

    Paine, Jeffrey G.

    1993-07-01

    sea level at three tide gauges; and (4) comparing calculated rates of relative sea-level (RSL) rise along the lines with estimates of eustatic sea-level (ESL) rise. Rates of RSL rise for the Texas coast south of Galveston Bay were generally 4-8 mm/yr; locally, rates were as high as 23 mm/yr. These rates are significantly higher than global averages of ~ 1 mm/yr. Much of the difference is probably caused by subsidence of the Texas coastal zone at rates of 1-22 mm/yr, or 20-440 times the long-term average of 0.05 mm/yr. The highest subsidence rates were found locally where there has been historical water-level decline in shallow aquifers. Lower subsidence rates of 3-7 mm/yr occur regionally where groundwater decline is minimal or nonexistent. Increased subsidence over the long-term average in these areas may be caused by pressure decline in underlying oil and gas reseivoirs.

  15. Interannual and Interdecadal Variability in Sea Level.

    NASA Astrophysics Data System (ADS)

    Unal, Yurdanur Sezginer

    The observational data set archived by the Permanent Service for Mean Sea Level (PSMSL) consists of monthly means of sea-level heights at 846 stations. 213 of them are suitable for our purposes. We identified two dominant time scales of El Nino-Southern Oscillation (ENSO) signal, as quasi-biennial and low-frequency (LF) at almost all stations, with the highest amplitudes in the equatorial Pacific and along the west coast of North America. Global sea-level rise, after post-glacial rebound corrections, are 1.620.38 mm/yr. Propagation features of the interannual variability are studied along the coastal sea level stations in five regions: eastern, western, and equatorial Pacific; eastern and western Atlantic. Throughout the Pacific, three dominant spatio-temporal oscillatory patterns are found in the time scales of ENSO variability. In the eastern Pacific, the biennial mode and the 6-yr low-frequency mode propagate poleward. In the western Pacific, interannual oscillation propagates southward in the northern hemisphere but no clear propagation is observed in the southern hemisphere. Equatorward propagation of the biennial signal is very clear in each hemisphere. In the equatorial Pacific, both the quasi -quadrannial and quasi-biennial modes at 10^ circN propagate westward. Strong and weak El Nino years are evident in RSLH reconstructed from the biennial and low-frequency modes. Interannual variability with periods of 3 and 4-8 years is detected in the Atlantic RSLH data. In the eastern Atlantic region, we have found slow propagation of both modes northward and southward, away from 40-45^circN. Sufficiently long and continuous RSLH at 81 stations show interdecadal oscillations with the periods of 9-13 and 18 years. 11.6 and 12.8 years of oscillations are found in the eastern and western Atlantic ocean at latitudes 40^circN-70^ circN and 10^circN -50^circN, respectively. The aforementioned features are simulated with a wind driven ocean model for the periods of 1950 and

  16. The role of Argo steric sea level within the global sea level budget

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.; Sallée, J.-B.; Cabanes, C.; Le Traon, P.-Y.; Gaillard, F.; Speich, S.; Hamon, M.

    2012-04-01

    Precise estimations of global ocean indicators (GOIs) such as global ocean heat content (GOHC) and global steric sea level (GSSL) are necessary to observe the ocean's role in the Earth's climate system. To improve accuracy of these estimations, our knowledge of deep ocean and regional contributions to GOIs needs to be quantified. Data from the global Argo array are used here to analyze these contributionsduring the period 2005 to 2010. GOHC/GMSH rise increases by 25% /35% for the upper 2000m depth compared to the upper ocean 700m depth. A comparison of Argo steric sea level to total sea level from satellite altimetry (AVISO) and ocean mass (GRACE) is performed during this period. We could close the global and regional sea level budgets for 2005 to 2010 in terms of 6-year trends. Results show that largest correlation of global GSSL, ocean mass and global total sea level can be observed in the global tropical basin. Differences of the 6-year trend between global mean total sea level and GSSL in this basin are mostly explained by Argo sampling issues, especially in the - by Argo under sampled - Indonesian Archipelago. The differences of the 6-year trend in the Southern Ocean can be attributed to mass changes and deep ocean steric changes, whereas in the Northern Ocean mass changes clearly dominate decadal and longer-term variability. The results are only valid under the assumption that no systematic errors remain in either one of the global observing systems, although the comparison of all three observing systems indicates that these errors appear to be small during the years 2005 to 2010.

  17. Relative sea level change along the Italian coasts and projections for 2100 based on high resolution DTMs and geodetic data: implications for coastal impacts

    NASA Astrophysics Data System (ADS)

    Antonioli, Fabrizio; Alessandro, Amorosi; Marco, Anzidei; Fontolan, Giorgio; De Falco, Giovanni; Lambeck, Kurt; Lo Presti, Valeria; Mastronuzzi, Giuseppe; Serpelloni, Enrico; Vecchio, Antonio

    2015-04-01

    We provide projections of sea level change in Italy for the year 2100 by adding isostatic and tectonic components to the IPCC 2013 and Rahmstorf projections. We focus on 3 areas with different tectonic behaviour: the North Adriatic coast (including Venice, subsiding); the Oristano coastal Plain (Sardinia, tectonically stable) and the Mar Piccolo in the Taranto Gulf (Apulia, uplifting). For these areas are available high resolution DTMs based on LIDAR surveys, GPS and tidal data that we use to tentatively predict a detailed multitemporal flooding scenario for the year 2100. Data are compared against predicted sea level curves providing estimates of the contribution of vertical land motion to the relative sea level change. The results are based on the most recent ANU model for the ice sheets of both hemispheres, including an alpine deglaciation model. On the basis of the eustatic, tectonic and isostatic components to the sea level change, projections are provided for marine inundation scenarios for the Italian coastal plains for the year 2100, that today are at elevations close to current sea level.

  18. MIS 5e sea level: up to what point can we use literature reviews to answer the most pressing questions on the Last Interglacial ice sheets?

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Raymo, M. E.

    2014-12-01

    During MIS 5e (between ~128 and 116 kyr BP) greenhouse gas concentrations were comparable to pre-industrial levels, summer insolation was higher by ~10% at high latitudes and polar temperatures in both hemispheres were about 3-5 °C warmer than today. Sea level (SL) at this time has been a subject of numerous studies (and some debate) with ~1000 sites with MIS 5e sea level markers recognized worldwide. Recently, Kopp et al. (Nature, 2009) and Dutton & Lambeck (Science, 2012) analyzed worldwide datasets of sea level markers pertaining to the last interglacial. After accounting for GIA, they reached similar conclusions that eustatic (i.e., globally averaged) sea level (ESL) was between +5 and +9.4 m above modern during MIS 5e. Furthermore, Kopp et al. (Nature, 2009; GJI, 2013) suggest that sea level was not uniform during the LIG, but instead underwent at least two rapid oscillations including a rapid late 5e rise first proposed by Hearty et al. (QSR, 2007) and later by O'Leary et al. (Nat. Geo., 2013). Investigating the temporal and geographic variability of MIS 5e sea level opens new lines of research, in particular the possibility to fingerprint (Hay et al., QSR, 2014) the source of the proposed rapid ice sheet collapse near the end of the Last Interglacial. In this presentation we ask: can we use a database of published sea level estimates for this purpose? To answer this question, we built a relative sea level (RSL) database using RSLcalc 2.0; this is a relational database specifically designed to review relative sea level data points while keeping all the relevant information contained in the original publications. RSlcalc allows to estimate the measurement error (on the actual elevation of the SL feature), the error on the indicative range (the elevation range occupied by a sea level indicator) as well as the reference water level (the relationship between the marker and the former sea level). We show that the majority of published data have an accuracy of few

  19. Mid Pliocene sea levels: A combined analysis of field data, models of glacial isostasy and dynamic topography, and eustasy. (Invited)

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Raymo, M. E.; Hearty, P. J.; Austermann, J.; Mitrovica, J. X.; Michael, O.; Moucha, R.; Forte, A. M.; Rowley, D. B.

    2013-12-01

    Determining the eustatic elevation of former sea levels (SL), or equivalently ice volumes, is a central goal of paleoclimate research. SL estimates for the Mid-Pliocene warm period (MPWP, ˜3.3 to 2.9 Ma) are of particular interest as CO2 levels at that time (between 350 and 450 ppmv) were similar to today (> 400 ppmv as of May 2013). However, despite general agreement on other climate variables, SL estimates for the MPWP and the stability of polar ice sheets during this interval remain largely unconstrained. In this regard, inferring ice volumes from SL indicators of MPWP age is complicated by several factors. First, relatively few robust records of MPWP SL have been obtained from tectonically stable areas. Second, the potentially significant contaminating signals due to glacial isostatic adjustment (GIA) and dynamic topography associated with mantle convective flow (DT) have rarely, and only recently, been accounted for. Within the framework of PLIOMAX project, we are collecting accurate MPWP indicators at widely distributed sites using a combination of classic field methods, state of the art GPS and GIS techniques. Moreover, the analysis of the data involves the participation of both field geologists and geodynamic modelers. In this talk, we present data collected in three specific areas: Republic of South Africa, Western Australia and the southeastern United States. We will report on the present day elevation of MPWP shoreline indicators in each region. Moreover, we will combine this data set with a broad suite of numerical models of GIA and DT to establish current uncertainties on the estimate of eustatic SL during the MPWP, as well as comment on possible strategies for improving the accuracy of this estimate.

  20. Long term variations in global sea level extremes

    NASA Astrophysics Data System (ADS)

    Marcos, Marta; Calafat, Francisco M.; Berihuete, Ángel; Dangendorf, Sönke

    2016-04-01

    Decadal to multi-decadal variations in sea level extremes unrelated to mean sea level changes have been investigated using long tide gauge records distributed worldwide. A state space approach has been applied that provides robust solutions and uncertainties of the time evolving characteristics of extremes, allowing for data gaps and uneven sampling, both common features of historical sea level time series. Two different models have been formulated for the intensity and for the occurrence of extreme sea level events and have been applied independently to each tide gauge record. Our results reveal two key findings: first, the intensity and the frequency of occurrence of extreme sea levels unrelated to mean sea level vary coherently on decadal scales in most of the sites examined and, second, extreme sea level changes are regionally consistent, thus pointing towards a common large scale forcing. This variability of extremes associated with climate drivers should be considered in the framework of climate change studies.

  1. Long-term variations in global sea level extremes

    NASA Astrophysics Data System (ADS)

    Marcos, Marta; Calafat, Francisco M.; Berihuete, Ángel; Dangendorf, Sönke

    2015-12-01

    Decadal to multidecadal variations in sea level extremes unrelated to mean sea level changes have been investigated using long tide gauge records distributed worldwide. A state space approach has been applied that provides robust solutions and uncertainties of the time evolving characteristics of extremes, allowing for data gaps and uneven sampling, both common features of historical sea level time series. Two different models have been formulated for the intensity and for the occurrence of extreme sea level events and have been applied independently to each tide gauge record. Our results reveal two key findings: first, the intensity and the frequency of occurrence of extreme sea levels unrelated to mean sea level vary coherently on decadal scales in most of the sites examined (63 out of 77) and, second, extreme sea level changes are regionally consistent, thus pointing toward a common large-scale forcing. This variability of extremes associated with climate drivers should be considered in the framework of climate change studies.

  2. Long-term sea level trends: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.

    2014-08-01

    Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. We question whether the sea level changes (SLC) over the past century were natural in origin. SLC exhibit power law long-term correlations. By estimating Hurst exponent through Detrended Fluctuation Analysis and by applying statistics of Lennartz and Bunde, we search the lower bounds of statistically significant external sea level trends in longest tidal records worldwide. We provide statistical evidences that the observed SLC, at global and regional scales, is beyond its natural internal variability. The minimum anthropogenic sea level trend (MASLT) contributes to the observed sea level rise more than 50% in New York, Baltimore, San Diego, Marseille, and Mumbai. A MASLT is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century.

  3. Marl-limestone bedding and sea level change, Upper Cretaceous of Alabama coastal plain

    SciTech Connect

    King, D.T. Jr. )

    1990-05-01

    Primary Upper Cretaceous marl-limestone sequences in Alabama are superficially similar to sequences interpreted as orbitally forced (Milankovitch) cycles with apparent 100,000 yr periodicity. However, key petrographic and stratigraphic observations cast doubt on a Milankovitch interpretation of the Alabama sequences. These observations include (1) varying thickness from less than 1 m to several meters within marl-limestone sequences, (2) fining upward among the coarse clastic grain sizes within each marl-limestone sequence, and (3) switching the primary mode of biochemical deposition between the marl and limestone beds (e.g., the limestone bed in each marl-limestone sequence contains abundant benthic algal grains (over 50%), whereas the marl contains only pelagic nannofossils). Periodicity is not supported by observed thickness variations and the other petrographic and stratigraphic observations previously noted are inconsistent with cyclic (Milankovitch) productivity/dilution genesis of bedding. In Alabama, marl-limestone sequences and correlative coeval prograding clastic barrier-shoreline facies comprise the upper 20 m of a highstand systems tract within the lower Campanian Mooreville-Demopolis depositional sequence. A sequence-bounding (type 2) stratigraphic break, which has been biostratigraphically correlated with the global sea level drop at 80 Ma occurs at the top of the 20 m marl-limestone interval. Tectonic effects related to the early stages of the Laramide orogeny (about 80 Ma) affected short-term relative sea level thus producing the marlstone sequences. In this hypothesis, the marl-limestone sequences reflect either short-term buildup and relaxation of intraplate stresses or short-term eustatic changes that resulted from slight variations in Farallon spreading rates.

  4. Updating Maryland's sea-level rise projections

    USGS Publications Warehouse

    Boesch, Donald F.; Atkinson, Larry P.; Boicourt, William C.; Boon, John D.; Cahoon, Donald R.; Dalrymple, Robert A.; Ezer, Tal; Horton, Benjamin P.; Johnson, Zoe P.; Kopp, Robert E.; Li, Ming; Moss, Richard H.; Parris, Adam; Sommerfield, Christopher K.

    2013-01-01

    With its 3,100 miles of tidal shoreline and low-lying rural and urban lands, “The Free State” is one of the most vulnerable to sea-level rise. Historically, Marylanders have long had to contend with rising water levels along its Chesapeake Bay and Atlantic Ocean and coastal bay shores. Shorelines eroded and low-relief lands and islands, some previously inhabited, were inundated. Prior to the 20th century, this was largely due to the slow sinking of the land since Earth’s crust is still adjusting to the melting of large masses of ice following the last glacial period. Over the 20th century, however, the rate of rise of the average level of tidal waters with respect to land, or relative sea-level rise, has increased, at least partially as a result of global warming. Moreover, the scientific evidence is compelling that Earth’s climate will continue to warm and its oceans will rise even more rapidly. Recognizing the scientific consensus around global climate change, the contribution of human activities to it, and the vulnerability of Maryland’s people, property, public investments, and natural resources, Governor Martin O’Malley established the Maryland Commission on Climate Change on April 20, 2007. The Commission produced a Plan of Action that included a comprehensive climate change impact assessment, a greenhouse gas reduction strategy, and strategies for reducing Maryland’s vulnerability to climate change. The Plan has led to landmark legislation to reduce the state’s greenhouse gas emissions and a variety of state policies designed to reduce energy consumption and promote adaptation to climate change.

  5. Differences between mean tide level and mean sea level

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.

    2016-07-01

    This paper discusses the differences between mean tide level (MTL) and mean sea level (MSL) as demonstrated using information from a global tide gauge data set. The roles of the two main contributors to differences between MTL and MSL (the M4 harmonic of the M2 semidiurnal tide, and the combination of the diurnal tides K1 and O1) are described, with a particular focus on the spatial scales of variation in MTL-MSL due to each contributor. Findings from the tide gauge data set are contrasted with those from a state-of-the-art global tide model. The study is of interest within tidal science, but also has practical importance regarding the type of mean level used to define land survey datums. In addition, an appreciation of MTL-MSL difference is important in the use of the historical sea level data used in climate change research, with implications for some of the data stored in international databanks. Particular studies are made of how MTL and MSL might differ through the year, and if MTL is measured in daylight hours only, as has been the practice of some national geodetic agencies on occasions in the past.

  6. Palynological tracers of eustatic and climatic changes in the Late Ordovician on the North Gondwanan Margin

    NASA Astrophysics Data System (ADS)

    Le Hérissé, A.; Vecoli, M.

    2003-04-01

    The short-lived Hirnantian glacio-eustatic interval (1 My or less) caused about 60 per cent loss of total marine animal genera. This icehouse climate is also responsible for significant changes on the evolution of the plankton and the distribution of related microfossil assemblages, from pre-glacial to post-glacial episodes. This is clearly confirmed on different upper Ordovician sections from various paleogeographic location on the North Gondwanan margin. The effects of the glaciation did not correspond exactly to a cataclysmic event, because the palynomorphs do not show accelerated rates of extinction, in the inhospitable environment. It could also be noted that the origins of the Silurian communities are rooted in the upper Ordovician prior to the glaciation, with appearance of precursors (or -ahead of time-) forms, that diversified later in the Silurian. Nevertheless, the harsh climatic conditions associated to sea-level drop, caused a reduction in the number of taxa, with a scenario composed of three separate critical events: 1. a selective survival of ubiquitous taxa which are tolerant to the sea-level drawdown and of few taxa that appear specifically adapted to cold environments (Rawtheyan-early Hirnantian); 2. an adaptation of the sympagic microflora, to the variations of the sea-ice cover during deglaciation, including polymorphism and speciations (Hirnantian); 3. a slow recovery acompanying the climatic restoration and transgression in the latest Ordovician and early Silurian. Modifications in abundance and diversity of the microfossil assemblages, in the percentages of reworked elements and of amorphic organic matter are interpreted as evidence of a series of advances and retreats of the continental ice, of important changes of sea-surface conditions, of differences in the rate of melting of the icebergs during the deglaciation, as well as post-glacial isostatic rebounds. Our investigation demonstrates that the analysis of the evolution of palynomorph

  7. Holocene sea-level changes in King George Island, West Antarctica, by virtue of geomorphological coastal evidences and diatom assemblages of sediment sections.

    NASA Astrophysics Data System (ADS)

    Poleshchuk, Ksenia; Verkulich, Sergey; Pushina, Zina; Jozhikov, Ilya

    2015-04-01

    A new curve of relative sea-level change is presented for the Fildes peninsula, King George Island, West Antarctic. This work is based on renewed paleogeography data, including coastal geomorphological evidence, diatom assemblages of lakes bottom sediments and radiocarbon datings of organics. The new data were obtained in several sections of quaternary sediments and groups of terraces, and allows us to expand and improve relevant conception about relative sea level changes in the King George Island region. The new radiocarbon datings of organics (mosses and shells) allows reconstructing Holocene conditions that maintain and cause the sea-level changes. Sea diatom assemblages of Dlinnoye lake bottom sediment core (that complies period about 8000 years B.P.) mark altitude of marine water penetrated into the lake. The altitudes of shell remains, which have certain life habits and expect specific salinity and depth conditions, coupled with their absolute datings, indicate the probable elevation of the past sea level. The Mid-Holocene marine transgression reached its maximum level of 18-20 m by 5760 years B.P. The transgression influenced the deglaciation of the Fildes peninsula and environment conditions integrally. The ratio of glacio-isostatic adjustment velocity and Holocene transgression leaded to the decrease of relative sea level during the Late Holocene excluding the short period of rising between 2000 and 1300 years B.P. Comparing this data with the curve for Bunger oasis, East Antarctica, introduced earlier gives an interesting result. Despite the maximum altitudes of relative sea-level rise in King George region were higher and occurred later than in Bunger oasis region, the short-term period of Late Holocene sea-level rising contemporizes. Besides that, this work allow to realize a correlation between regions of Antarctica and adjacent territory. That, in turn, lets answer the question of tectonic and eustatic factors ratio and their contribution to the

  8. On how climate variability influences regional sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Rietbroek, Roelof; Forootan, Ehsan

    2016-04-01

    Regional trends in sea level change are strongly influenced by climate variations, such as ENSO (El-Nino Southern Oscillation), the IOD (Indian Ocean Dipole), or the PDO (Pacific Decadal Oscillation). Hence, before computing long term regional sea level change, these sea level variations need to be taken into account as they lead to strong dependencies of computed regional sea level trends on the time period of the investigation. In this study, sea level change during the years 1993 to 2013 is analysed to identify the dominant modes of sea level change caused by climate variations. Here, two different gridded altimetry products are analysed, namely ESA's combined CCI SeaLevel v1.1 ECV product (doi: 10.5270/esa-sea_level_cci-1993_2013-v_1.1-201412), and absolute dynamic topography produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/). Reconstructions using the different decomposition techniques including the standard principle component analysis (PCA), rotated empirical orthogonal functions (REOF) and independent component analysis (ICA) method are analysed. They are compared with sea level change modelled with the global finite-element sea-ice ocean model (FESOM). The results indicate that from the applied methods, ICA is most suitable to separate the individual climate variability signals in independent modes of sea level change. This especially holds for extracting the ENSO contribution in sea level changes, which was better separated by applying ICA, from both altimetry and modelled sea level products. In addition, it is presented how modelled sea level change reflects climate variations compared to that identified in the altimetry products.

  9. Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hordoir, Robinson; Axell, Lars; Löptien, Ulrike; Dietze, Heiner; Kuznetsov, Ivan

    2015-10-01

    The Baltic Sea is a marginal sea, located in a highly industrialized region in Central Northern Europe. Saltwater inflows from the North Sea and associated ventilation of the deep exert crucial control on the entire Baltic Sea ecosystem. This study explores the impact of anticipated sea level changes on the dynamics of those inflows. We use a numerical oceanic general circulation model covering both the Baltic and the North Sea. The model successfully retraces the essential ventilation dynamics throughout the period 1961-2007. A suite of idealized experiments suggests that rising sea level is associated with intensified ventilation as saltwater inflows become stronger, longer, and more frequent. Expressed quantitatively as a salinity increase in the deep central Baltic Sea, we find that a sea level rise of 1 m triggers a saltening of more than 1 PSU. This substantial increase in ventilation is the consequence of the increasing cross section in the Danish Straits amplified by a reduction of vertical mixing.

  10. Late Glacial to Holocene evolution and sea-level history of Gulf of Gemlik, Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Sabuncu, Asen; Kadir Eriş, K.; Kaslilar, Ayse; Namık Çaǧatay, M.; Gasperini, Luca; Filikçi, Betül

    2016-04-01

    The Gulf of Gemlik is an E-W elongated trans-tensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the south eastern part of the Sea of Marmara (SoM). While during the Holocene the sea level in the Gulf of Gemlik changed in tandem with the water level changes in the SoM, it may have been different in the late glacial when the Sea of Marmara was lacustrine. Beside the tectonic activity related to the NAFZ, eustatic sea level changes would have controlled the basin evolution and consequent sedimentary history during the different paleocanographic phases of the SoM. Considering the limited studies on the late glacial-Holocene stratigraph of the Gulf of Gemlik, this study aims to investigate the depositional units and their environments with respect to different allogenic and autogenic controls. For these purposes, we analyzed over 300 2 - 7 kHz bandwidth high-resolution gridded seismic sub-bottom CHIRP profiles together with 70 kHz high resolution multibeam bathymetry with backscatter data. Four seismic stratigraphic units were defined and correlated with chronstratigraphic units in five piston cores covering the last 15.8 ka BP according to radiocarbon ages (14C). The depth-scale accuracy of chronostratigraphic units in cores is of key importance for the precise calculation of sedimentation rates. Correlation between the seismic profiles and cores were made by matching Multi-Sensor Core-Logger (MSCL) data and seismic reflection coefficients and amplitudes for different stratigraphic units. The impedance data derived from the logger were used to generate a synthetic seismogram. We used an approach to display, estimate, and correct the depth-scale discrepancies due to oversampling affecting the upper part of sedimentary series during piston coring. The method is based on the resynchronization of synthetic seismograms computed from high-quality physical property logs to the corresponding CHIRP profiles. Each

  11. Sea level trends for all sections of the Baltic Sea coastline

    NASA Astrophysics Data System (ADS)

    Madsen, Kristine S.; Høyer, Jacob L.; Suursaar, Ülo; Knudsen, Per; She, Jun

    2016-04-01

    To better understand influence of sea level rise on societal vulnerability and coastal erosion processes, it is important to know the sea level trend. The coastline of the Baltic Sea is not uniformly exposed, and therefore we will determine the sea level trend of the last 10, 50 and 100 years for all sections of the coastline. The observational record of sea level in the Baltic Sea is quite unique with several records of more than 100 years of data. However, the information is confined to the tide gauge locations. Here, we utilize a statistical method based on least squares regression and originally developed for short term sea level variability (Madsen et al. 2015, JGR, doi:10.1002/2015JC011070) to spread out the sea level information from selected tide gauges to all sections of the Baltic Sea coast. Monthly mean tide gauge observations are retrieved from PSMSL and supplemented with Estonian observations. The spatial distribution of the sea level is obtained from model reanalysis from the Copernicus Marine Service and satellite altimetry observations and land rise information is taken into account. Results are validated against independent tide gauges, providing a consistent record of 20th century sea level trends and variability, including uncertainties, for the entire Baltic Sea coastline. This work is sponsored by the EMODnet project Baltic Checkpoint.

  12. Intraplate stresses and continental margin stratigraphy: New constraints on the relative contributions of tectonics and eustasy to the record of sea level changes

    SciTech Connect

    Cloetingh, S.; Kool, H. )

    1990-05-01

    Recent advances in modeling the tectonics of intraplate regions have established a causal relation between changes in plate-tectonic regimes and short-term changes in the orientation and magnitude of stress fields in the lithosphere. These temporal changes in stress produce vertical motions of the crust with a rate and magnitude consistent with magnitudes inferred from records of (apparent) sea level changes. Stress-induced vertical motions of the lithosphere could provide a tectonic explanation of short-term changes in sea level, such as the second-order and third-order Exxon cycles. The sea level record can be used as an independent source of information for the analysis of paleostress fields in the plates. Geodynamic modeling studies were conducted, therefore, to discriminate the relative contributions of tectonics and glacio-eustasy to the apparent sea level record and to discriminate global vs. regional tectonic components in the sea level record. Modeling strongly suggests that even in a passive margin tectonic setting, the effects of tectonics generally overwhelm eustatic contributions to the sea level record. The studies also show a close correlation between changes in intraplate-tectonic regimes in the North Atlantic caused in plate kinematics and plate interactions and the timing of changes in sea level shown in global Exxon charts. These results suggest that the charts, which are based primarily on data from the northern/central Atlantic and the North Sea reflect to a large extent the plate-tectonic evolution of this area. Apart from emphasizing the need to develop further rigorous stratigraphic criteria to separate of tectonics and eustasy on an intrabasinal scale, the studies emphasize the need to test the Vail concept in areas outside the North Atlantic. For this purpose, stratigraphic modeling for continental margins of other ocean basins based on recent ODP (Ocean Drilling Program).

  13. Global increasing of mean sea level and erroneous treatment of a role of thermal factors

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2009-04-01

    Satellite methods of studies of the ocean surface - methods of altimetry - have been obtained intensive development in the last decades (since 1993). However, altimetry studies with the help of special satellites such as TOPEX-Poseidon not only have not cleared up understanding of the phenomenon of increase of sea level (SLR), but have even more confused and without that a complex question on the reasons of increase of sea level. Appeared, that classical determinations of average velocity of increase of sea level on coastal observations (1.4-1.7 mm / yr) approximately for 0.8-1.0 mm / yr it is less, rather than by modern satellite determinations of satellites TOPEX - Poseidon etc. (2.5 - 2.8 mm / yr). On the basis of the data of altimetry observations of TOPEX-Poseidon and Jason for the period 1993-2003 for geocentric velocity of increase of sea level (of global ocean) the value 2.8+/-0.4 mm / yr [1] has been obtained. In the given report the full answer is actually is given to a question put by leading experts on research of the sea level: "The TOPEX/Poseidon and Jason satellite altimeter missions provided a 12 year record of sea level change, which show increase of global mean sea level of 2.8+/-0.4 mm/yr, with considerable geographic variation. An important question for climate studies is to determine the cause of this change - specifically how much of the change is due to steric (heating) versus eustatic (runoff, melting ice, etc.) contribution?" [1]. There is, a big value of average velocity of increase of the sea level on the satellite data, it is possible to explain only by kinematical effect in data of observations. The motion of the satellite "is concerned" to the centre of mass of our planet, and its position is determined by a geocentric radius - vector. Therefore northern drift of the centre of mass in the Earth body [2] as though results in reduction of distances from the satellite up to the sea surface in the southern hemisphere and to their reduction

  14. Impact of relative sea level and rapid climate changes on the architecture and lithofacies of the Holocene Rhone subaqueous delta (Western Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Fanget, Anne-Sophie; Berné, Serge; Jouet, Gwénaël; Bassetti, Maria-Angela; Dennielou, Bernard; Maillet, Grégoire M.; Tondut, Mathieu

    2014-05-01

    The modern Rhone delta in the Gulf of Lions (NW Mediterranean) is a typical wave-dominated delta that developed after the stabilization of relative sea level following the last deglacial sea-level rise. Similar to most other deltas worldwide, it displays several stacked parasequences and lobes that reflect the complex interaction between accommodation, sediment supply and autogenic processes on the architecture of a wave-dominated delta. The interpretation of a large set of newly acquired very high-resolution seismic and sedimentological data, well constrained by 14C dates, provides a refined three-dimensional image of the detailed architecture (seismic bounding surfaces, sedimentary facies) of the Rhone subaqueous delta, and allows us to propose a scenario for delta evolution during the last deglaciation and Holocene. The subaqueous delta consists of “parasequence-like” depositional wedges, a few metres to 20-30 m in thickness. These wedges first back-stepped inland toward the NW in response to combined global sea-level rise and overall westward oceanic circulation, at a time when sediment supply could not keep pace with rapid absolute (eustatic) sea-level rise. At the Younger Dryas-Preboreal transition, more rapid sea-level rise led to the formation of a major flooding surface (equivalent to a wave ravinement surface). After stabilization of global sea level in the mid-Holocene, accommodation became the leading factor in controlling delta architecture. An eastward shift of depocentres occurred, probably favoured by higher subsidence rate within the thick Messinian Rhone valley fill. The transition between transgressive (backstepping geometry) and regressive (prograding geometry) (para)sequences resulted in creation of a Maximum Flooding Surface (MFS) that differs from a “classical” MFS described in the literature. It consists of a coarse-grained interval incorporating reworked shoreface material within a silty clay matrix. This distinct lithofacies

  15. Sea-level rise and coastal wetlands.

    PubMed

    Blankespoor, Brian; Dasgupta, Susmita; Laplante, Benoit

    2014-12-01

    This paper seeks to quantify the impact of a1-m sea-level rise on coastal wetlands in 86 developing countries and territories. It is found that approximately 68 % of coastal wetlands in these countries are at risk. A large percentage of this estimated loss is found in Europe and Central Asia, East Asia, and the Pacific, as well as in the Middle East and North Africa. A small number of countries will be severely affected. China and Vietnam(in East Asia and the Pacific), Libya and Egypt (in the Middle East and North Africa), and Romania and Ukraine (in Europe and Central Asia) will bear most losses. In economic terms, the loss of coastal wetlands is likely to exceed $703 million per year in 2000 US dollars. PMID:24659473

  16. Sea Level Rise and Decadal Variations in the Ligurian Sea Inferred from the Medimaremetre Measurements.

    NASA Astrophysics Data System (ADS)

    Karpytchev, M.; Coulomb, A.; Vallee, M.

    2015-12-01

    Estimations of sea level rise over the last centuries are mostly based on the rare historical sea level records from tide gauge stations usually designed for navigational purposes. In this study, we examine the quality of sea level measurements performed by a mean sea level gauge operated in Nice from 1887 to 1909 and transferred to the nearby town of Villefranche-sur-Mer in 1913 where it stayed in operation untill 1974. The mean sea level gauges, called medimaremetres, were invented for geodetic studies and installed in many French ports since the end of the XIX century. By construction, the medimaremetre was connected to the sea through a porous porcelain crucible in order to filter out the tides and higher frequency sea level oscillations. Ucontrolled properties of the crucible and some systematic errors made the medimaremetre data to be ignored in the current sea level researches. We demonstrate that the Nice-Villefranche medimaremetre measurements are coherent with two available historical tide gauge records from Marseille and Genova and a new century-scale sea level series can be build up by combining the medimaremetre data with the those recorded by a tide gauge operating in Nice since the 1980s. We analyse the low frequency variabilities in Marseille, Nice-Villefranche and Genova and get new insights on the decadal sea level variations in the Ligurian Sea since the end of the XIX century.

  17. Late Holocene diffused interaction between a transform fault and nearby continental margin, extracted by comparing biological sea-level indicators and hydro-isostatic numerical predictions along the eastern Mediterranean coasts

    NASA Astrophysics Data System (ADS)

    Schattner, U.; Sivan, D.; Morhange, C.; Lambeck, K.; Boaretto, E.

    2009-04-01

    The Dendropoma petraeum are fixed vermitides that construct the abrasion platform rims. These endemic mollusks are considered good Relative Sea Level (RSL) indicators in the eastern and the southern Mediterranean, due to their narrow habitat at the sea surface (+/- 10cm). The observed RSL values recorded (submerged, uplifted or at present MSL) reflect a superposition of eustatic, isostatic, tectonic and possibly local sedimentary instabilities. The present study examines fossil Dendropoma samples gathered along the Levant coast, from northern Israel to eastern Turkey. Conventional radiocarbon dates (from Turkey, Syria and partly in Lebanon) and C14 AMS (from Lebanon and Israel) yields Dendropoma ages ranging through Late Holocene. A numerical model is used for calculating the change in sea level through the Holocene as a function of glacio-hydrology and isostasy of the eastern Mediterranean. Space-time dependent subtractions of the model values are used to eliminate the eustatic component of the RSL, in order to obtain the tectonic factor. Results show a general northward increase in tectonic uplift of the Levant coast. This differential uplift corresponds well to the major tectonic segments comprising the Levant continental margin since the Pleistocene, from the Carmel fault to the East Anatolian fault.

  18. Modeling future high-resolution dynamic sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Dijkstra, Henk A.; Kliphuis, Michael A.; van Werkhoven, Ben; Bal, Henri E.; van Meersbergen, Maarten; Seinstra, Frank; Maassen, Jason

    2015-04-01

    Different studies have shown that resolving ocean eddies and representing boundary currents are of major importance when simulating changes in dynamic sea level on regional scale. Therefore, we use the strongly eddying global model version of the Parallel Ocean Program to simulate high-resolution future (up to the year 2100) sea surface height variations (SSH) under the SRES-A1B atmospheric forcing scenario. Results show dynamic sea level changes in the Southern Ocean that are caused by the southward shift in the westerly winds. The warming ocean (global mean sea surface temperature rises by about 2°C over the period 2000-2100) leads to a strong reduction of the Atlantic Meridional Overturning Circulation (AMOC). The magnitude of this reduction is affected by a feedback involving the heat transport to the sub-polar gyre region and evaporation over the North Atlantic region. The ocean circulation changes cause regional deviations from global mean sea level change in the North Atlantic. At coastal regions of eastern North America, dynamic sea level change leads to a positive deviation from global mean sea level change in the order of several decimeters. In the sub-polar gyre region a negative deviation from global mean sea level occurs. In the western North Atlantic, not only mean regional sea level is changed but also its variability, caused by shifted eddy pathways. This leads to a change in the frequency distribution of SSH anomalies, which has important consequences for regional sea level extremes.

  19. Understanding processes contributing to regional sea level change

    NASA Astrophysics Data System (ADS)

    Stammer, Detlef; Gregory, Jonathan

    2011-09-01

    WCRP/IOC Workshop on Regional Sea-Level Change; Paris, France, 7-9 February 2011 . A joint World Climate Research Programme (WCRP)/Intergovernmental Oceanographic Commission (IOC) workshop was held to discuss regional changes of sea level. The workshop was attended by 41 experts from the world over who compared observed regional sea level changes with those inferred from numerical simulations and compared future predictions and their analyses in terms of processes. Satellite altimetry observations continue to be essential in revealing that sea level is changing prominently on a regional scale. However, existing climate models are largely in disagreement about patterns and magnitudes of observed sea level variability, and it is unclear how accurate they may be in predicting regional sea level.

  20. Timescales for detecting a significant acceleration in sea level rise

    PubMed Central

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  1. Timescales for detecting a significant acceleration in sea level rise.

    PubMed

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  2. Timescales for detecting a significant acceleration in sea level rise

    NASA Astrophysics Data System (ADS)

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-04-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  3. Relative sea level and coastal environments in arctic Alaska during Marine Isotope Stage 5

    NASA Astrophysics Data System (ADS)

    Farquharson, L. M.; Mann, D. H.; Jones, B. M.; Rittenour, T. M.; Grosse, G.; Groves, P.

    2015-12-01

    Marine Isotope Stage (MIS) 5 was characterized by marked fluctuations in climate, the warmest being MIS 5e (124-119 ka) when relative sea level (RSL) stood 2-10 m higher than today along many coastlines. In northern Alaska, marine deposits now 5-10 m above modern sea level are assigned to this time period and termed the Pelukian transgression (PT). Complicating this interpretation is the possibility that an intra-Stage 5 ice shelf extended along the Alaskan coast, causing isostatic depression along its grounded margins, which caused RSL highs even during periods of low, global RSL. Here we use optically stimulated luminescence (OSL) to date inferred PT deposits on the Beaufort Sea coastal plain. A transition from what we interpret to be lagoonal mud to sandy tidal flat deposits lying ~ 2.75 m asl dates to 113+/-18 ka. Above this, a 5-m thick gravelly barrier beach dates to 95 +/- 20 ka. This beach contains well-preserved marine molluscs, whale vertebrae, and walrus tusks. Pleistocene-aged ice-rich eolian silt (yedoma) blanket the marine deposits and date to 57.6 +/-10.9 ka. Our interpretation of this chronostratigraphy is that RSL was several meters higher than today during MIS 5e, and lagoons or brackish lakes were prevalent. Gravel barrier beaches moved onshore as local RSL rose further after MIS 5e. The error range of the OSL age of the barrier-beach unit spans the remaining four substages of MIS 5; however, the highstand of RSL on this arctic coastline appears to occurr after the warmest part of the last interglacial and appears not to be coeval with the eustatic maximum reached at lower latitudes during MIS 5. One possibility is that RSL along the Beaufort Sea coast was affected by isostatic depression caused by an ice shelf associated with widespread, intra-Stage 5 glaciation that was out of phase with lower latitude glaciation and whose extent and timing remains enigmatic.

  4. Evidence for post last-glacial-maximum punctuated sea level rise found on the eastern Mediterranean coast of Israel

    NASA Astrophysics Data System (ADS)

    Katz, Oded; Goodman-Tchernov, Beverly

    2015-04-01

    The eustatic sea level curve for the eastern Mediterranean presents a general trend characterized by rapid post last-glacial-maximum rise (20,000 years ago), slowing approximately 6000 years ago and stabilizing at current sea-level 4000 years ago. Sea level evidence from portions of the Israeli coastline, suggest minimal to no hydro-glacio-isostatic influence on the local relative sea level curve, and no tectonic offsets for at least the past two thousand years. Recently, a submerged series of relict wave cut notches and erosional pits were identified along a sequence of coastal sites located approximately 20 km from one another (Michmoret, Olga, Caesarea, Dor) at 3 m and 6 m water depths. The features were carved into an upper-Pleistocene to Holocene eolianite sandstone, the age of which was previously constrained by OSL measurements to MIS 1-3. Elsewhere, similar features are widely used as sea-level markers. In this study, at some of the sites, we found a coinciding 3 m to 6 m submerged cliff with overhanging upper part, morphology that is comparable to the morphology of the modern coastal cliff. These submerged features should either suggest a tectonic offset, which is not favorable for the study area, or they might suggest that sea level rise has not been gradual, but rather punctuated, exhibiting pulses of sea level rise followed by periods of sea level stagnation. For the study site, the last stagnation took place at a few meters below current sea-level and enabled the development of the observed wave induced morphology within the eolianite. At present sea level, similar features exist and are being actively formed within the same host rock. At some of the sites, artificially-cut archaeological features from about the last 2000 years present with notches or erosional pits thereby providing insight into the period of time required for their creation due to their archaeological associations. Sea level rise might impacts the coastline significantly, with

  5. Probabilistic surface reconstruction of relative sea-level rise

    NASA Astrophysics Data System (ADS)

    Choblet, Gael; Husson, Laurent; Bodin, Thomas; Capdeville, Yann

    2013-04-01

    Relative sea level is shaped by multiple processes (mantle dynamic topography, plate tectonics, glacio-isostatic adjustment, present day melting of continental ice, anthropogenic causes…), most of which induce spatial gradients in relative sea level fluctuations. The evaluation of the global mean sea level rise is a also a key variable to decipher sea level evolution. Tide gauges represent the only mean to monitor sea-level rise on the scale of the 20th century, while the high quality satellite altimetry era is too short to be immune from short-term fluctuations. Tide gauge data compiled by the Permanent Service for the Mean Sea Level (PSMSL) converts into local estimates of sea level rise. Classically, these in situ observations are averaged spatially in order to infer the global mean sea level trend. However, the strongly heterogeneous distribution of tide gauges (e.g. very sparse in the Southern hemisphere) makes this approach relatively prone to uncertainties, given that sea level rise strongly varies geographically. Last, the societal consequences for coastal communities raise the prominent need for local (rather than global) sea level estimates. An alternative is therefore to provide a global surface reconstruction of relative sea level leading to both local variations and a better constrained global average. Here, we propose such a model from tide gauge records using a probabilistic scheme based on the reversible jump Markov chain Monte Carlo algorithm (as described by Bodin et al., JGR, 2012 for the example of the Australian Moho). This method allows to infer both model and parameter space so that not only the functions within the model but also the number of functions itself are free to vary. This is particulalry relevant to the case of tide gauges that are unevenly distributed on the surface of the Earth and whose record lengths are strongly variable. In addition, Bayesian statistics leads to a probabilistic representation (rather than a best fitting

  6. Dinoflagellate cysts as indicators of palaeoenvironmental and sea-level change: the Late Cenomanian - Early Coniacian (Cretaceous) of Europe

    NASA Astrophysics Data System (ADS)

    Olde, Kate; Jarvis, Ian; Pearce, Martin; Tocher, Bruce

    2014-05-01

    The Late Cretaceous represented a period of greenhouse climate of Earth history, and was characterised by high temperatures, high atmospheric CO2 and high eustatic sea level, with large areas of shallow, warm, epicontinental sea. Understanding the dynamics of the Late Cretaceous climate is important for understanding the Earth System and the impact of modern climate change. The productive Late Cretaceous oceans led to the deposition of a large portion of the world's oil and gas resources, so reconstruction of depositional environments and refinement of stratigraphic correlation are important for the petroleum industry. Dinoflagellates were a prolific and diverse group within the phyto- and zooplankton throughout Late Cretaceous oceans, and their cysts display good preservation across different facies, and so are a good group for biostratigraphic and palaeoenvironmental study. Selected results from a high-resolution quantitative study of the palynology from 5 European Upper Cenomanian to the Lower Coniacian (Upper Cretaceous) sections are summarised, along with their carbon stable-isotope chemostratigraphy. The sections are from a range of palaeolatitudes and basins, including the North Sea Basin, the Anglo-Paris Basin, the Bohemian Basin, the Polish Trough and the Vocontian Basin. Palynological assemblages differ between sections in the concentration of palynomorphs, proportions of terrestrial and marine palynomorphs, and in the diversity and varying proportions of species of dinoflagellate cysts (dinocysts). Dinocyst distribution is considered to have been controlled largely by nutrient levels, but was also impacted by temperature, sea level, and water mass changes. Influxes of certain species are related to changes in salinity, changes in temperature, and water mass change, and increased communication between basins. High dinocyst abundance, and particularly a high proportion of peridinioid cysts (which are thought to be derived from eutrophy

  7. Monitoring sea level fluctuation in South Aegean

    NASA Astrophysics Data System (ADS)

    Zacharis, Vangelis; Paradissis, Demitris; Drakatos, George; Marinou, Aggeliki; Melis, Nicolaos; Anastasiou, Demitris; Alatza, Stavroula; Papanikolaou, Xanthos

    2015-04-01

    The complexity of the geological setting of the South Aegean is well-known, among the scientific community. The subduction zone coupled with the latest unrest of the Santorini volcano, as well as the particular morphology of the earth's surface and seabed pose a poorly understood source of tsunami hazard. A sparse network of tide gauges that operate in the area for varying periods of time is strengthened by the establishment of new sensors at carefully selected locations, by the Institute of Geodynamics of the National Observatory of Athens, and the Dionyssos Satellite Observatory and the Laboratory of Higher Geodesy of the National Technical University of Athens. These new instruments, aided by a rather dense network of GNSS receivers, provide a more concrete basis for the development, testing and evaluation of a near real-time model of the sea level changes in the area. Moreover, integration with various other sensors allows to understand and assess the level of tsunami risk in the area.

  8. More evidence for a glacial world prior to the middle Miocene oxygen-isotope enrichment event: resolution of early Miocene glacioeustatic sea-level cyclicity from North Carolina

    SciTech Connect

    Synder, S.W.; Synder, S.W.; Waters, V.J.; Steinmetz, J.C.; Hine, A.C.; Riggs, S.R.

    1985-01-01

    Benthic delta/sup 18/O analyses from DSDP sites worldwide have documented a positive excursion (similarly ordered + 1.5%) through the early-middle Miocene. These data are traditionally interpreted as marking the transition from an ice-free world to one that was extensively glaciated. Recently, however, this doctrine has been challenged, and an alternative hypothesis suggests the benthic delta/sup 18/O excursion primarily reflects a temperature drop within a previously glaciated world. Within the North Carolina continental margin, a chronostratigraphic framework consisting of 6 discrete early Miocene depositional sequences was established via stratigraphic interpretations from over 21,000 Km of high-resolution seismic reflection profiles. Each sequence is bound by unconformities which were mapped throughout the continental margin. Biostratigraphic analyses of 140 vibracores penetrating these sequences demonstrate that each sequence is a consequence of 4th-order (10/sup 5/yrs) sea-level cyclicity, similar in duration (100-300 Ka) and amplitude (100-150 m) to the glacioeustatic sea-level fluctuations of the Quaternary Epoch. Recognition of late Burdigalian high-frequency (4th-order) sea-level cyclicity demonstrates that continental ice-sheets were large enough during the early Miocene to drive eustatic sea-level fluctuations with Milankovitch-type periodicities. This further supports Matthews (1984) hypothesis that continental ice-caps existed on Antarctica PRIOR to the well-documented middle Miocene benthic delta/sup 18/O global enrichment event.

  9. Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago.

    PubMed

    Deschamps, Pierre; Durand, Nicolas; Bard, Edouard; Hamelin, Bruno; Camoin, Gilbert; Thomas, Alexander L; Henderson, Gideon M; Okuno, Jun'ichi; Yokoyama, Yusuke

    2012-03-29

    Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A. PMID:22460900

  10. The social values at risk from sea-level rise

    SciTech Connect

    Graham, Sonia; Barnett, Jon; Fincher, Ruth; Hurlimann, Anna; Mortreux, Colette; Waters, Elissa

    2013-07-15

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.

  11. Demographic responses to sea level rise in California

    SciTech Connect

    Constable, A. |; Van Arsdol, M.D. Jr.; Sherman, D.J.; Wang, J.; McMullin-Messier, P.A.; Rollin, L.

    1996-12-31

    Human consequences of sea level rise in California coastal counties reflect increasing population densities. Populations of coastal counties potentially affected by sea level rise are projected to increase from 26.2 million persons in 1990 to 63.3 million persons in 2040. Urbanization dominates Los Angeles and the South Coast and San Francisco Bay and Delta regions. California shoreline populations subject to potential disruption impacts of sea level rise are increasing rapidly. Enhanced risk zones for sea level rise are specified for the Oxnard Plain of Ventura County on the south coast of California. Four separate sea level rise scenarios are considered: (1) low (sea level rise only); (2) moderate (adding erosion); (3) high (adding erosion and storm surges); and (4) a maximum case, a 3 m enhanced risk zone. Population impacts are outlined for the 3 m zone. More serious impacts from storm surges are expected than from sea level rise and erosion. Stakeholders who support or oppose policies which may expose populations to sea level rise include energy, commercial, financial, industrial, public agency, private interest and governmental organizations. These organizations respond to extreme events from differing positions. Vested interests determine the degree of mitigation employed by stakeholders to defer impacts of sea level rise.

  12. Using δ18O of Conodont Apatite and Sequence Stratigraphy to Understand Early Triassic (Smithian) Sea-Level Change

    NASA Astrophysics Data System (ADS)

    Yurchyk, S.; Elrick, M.; Atudorei, V.

    2009-12-01

    The Early Triassic climate is conventionally interpreted to have been warm and ice-free. During this time, three globally recognized depositional sequences developed in response to My-scale eustatic sea-level changes. The rates of My-scale sea-level rise and fall are too fast to attribute to changes in mid-ocean ridge activity and too slow to attribute to typical ~20-400 ky orbital cycles that drive glacio-eustasy. Previous studies in the Middle Devonian, Late Cretaceous, and Middle Eocene greenhouse climates have suggested that significant glacio-eustatic sea-level changes were responsible for sequence development. This suggests that these particular greenhouse periods were not uniformly warm and ice-free. We are testing the hypothesis that My- and orbital-scale sea-level changes in the Early Triassic (Smithian) were driven by glacio- and/or thermo-eustasy. To test this hypothesis, Smithian marine successions from two localities in the western United States (Lower Thaynes Formation) were described on a bed-by-bed basis to provide facies and depositional environment interpretations, as well as put the sections into a sequence stratigraphic framework. Samples were collected from both locations for high-resolution (~1-10 m) oxygen isotopic analysis of conodont apatite. Conodont elements are excellent biostratigraphic indicators and the apatite is less susceptible to diagenetic alteration than carbonate minerals, making conodont apatite a reliable proxy for determining changes in ice volume and seawater temperatures in deep time. In northeastern Utah (Weber Canyon), the Smithian sequence (~240 m) is composed of a mixed carbonate-siliciclastic lowstand systems tract (>40 m) and transgressive systems tract (~110 m), a black shale maximum flooding zone (~15 m), and a carbonate-dominated highstand systems tract (~75 m). In western Utah (Confusion Range), the sequence is composed of a coarse-grained, carbonate-dominated transgressive systems tract (>40 m) and a mixed

  13. Eustatic curve for the middle Jurassic-Cretaceous based on Russian platform and Siberian stratigraphy: Zonal resolution

    SciTech Connect

    Sahagian, D.; Pinous, O.; Olferiev, A.; Zakharov, V.

    1996-09-01

    We have used the stratigraphy of the central part of the Russian platform and surrounding regions to construct a calibrated eustatic curve for the Bajocian through the Santonian. The study area is centrally located in the large Eurasian continental craton, and was covered by shallow seas during much of the Jurassic and Cretaceous. The geographic setting was a very low-gradient ramp that was repeatedly flooded and exposed. Analysis of stratal geometry of the region suggests tectonic stability throughout most of Mesozoic marine deposition. The paleogeography of the region led to extremely low rates of sediment influx. As a result, accommodation potential was limited and is interpreted to have been determined primarily by eustatic variations. The central part of the Russian platform thus provides a useful frame of reference for the quantification of eustatic variations throughout the Jurassic and Cretaceous. The biostratigraphy of the Russian platform provides the basis for reliably determining age and eustatic events. The Mesozoic section of the central part of the Russian platform is characterized by numerous hiatuses. In this study, we filled the sediment gaps left by unconformities in the central part of the Russian platform with data from stratigraphic information from the more continuous stratigraphy of the neighboring subsiding regions, such as northern Siberia. Although these sections reflect subsidence, the time scale of variations in subsidence rate is probably long relative to the duration of the stratigraphic gaps to be filled, so the subsidence rate can be calculated and filtered from the stratigraphic data. We thus have compiled a more complete eustatic curve than would be possible on the basis of Russian platform stratigraphy alone.

  14. Eustatic and tectonic effects in sequences stratigraphy of the paralic-shelfal marine section, upper cretaceous, Alabama

    SciTech Connect

    King, D.T. Jr. )

    1993-09-01

    In Alabama, sequence stratigraphic facies relations within the late Santonian to latest Maastrichtian (85-67 Ma) marine section have been strongly influenced by second-, third-, and fourth-order sea level changes related both to global eustasy and regional tectonics. Through detailed lithostratigraphic and biochronostratigraphic correlations, one can delineate the dictating mechanism (eustasy versus tectonics). In the outcrop region, the marine section is 450 m thick and is comprised to paralic and shelfal facies turn, make up the 13 genetic packages (i.e., stratigraphic sequences) of the total marine section. Second-order eustatic oscillations of 3.5-5.0-m.y. duration dictated the paleogeographic (depositional) strike and the characteristics of lateral and vertical facies relations along paleogeographic strike. Third-order sea level oscillations (0.5-3.5 m.y.) are related to either eustasy or regional tectonics. Oscillations driven by eustasy produced stratigraphic breaks with appreciable relief, significant regional paleogeographic reorganizations, increased lateral and vertical facies entropy, and notable faunal changes. Stratigraphy of tectonically induced third-order oscillations generally lacks most or all of these features. Fourth-order sea level oscillations (less than 0.5 m.y.) are related most closely to minor regional tectonic adjustments coeval with the onset of episodic, Farallon-North American plate interactions. the episodic (rather than periodic) nature of fourth-order shelfal parasequences in the area, their fining-upward textural signature, characteristic transitional benthic-to-pelagic fossil record, and stratigraphic correlations with thin, prograding clastic tongues (paralic facies) collectively demonstrate a non-Milankovitch origin of the shelfal parasequences.

  15. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change

    SciTech Connect

    Groecke, D.R.; Hesselbo, S.P.; Jenkyns, H.C.

    1999-02-01

    The carbon-isotope composition of fossil wood fragments, collected through a biostratigraphically well-constructed Aptian (Lower Cretaceous) shallow-marine siliciclastic succession on the Isle of Wight, southern Britain, shows distinct variations with time. The results indicate that the stratigraphic signature of {delta}{sup 13}C{sub wood} through the Aptian was influenced primarily by fluctuations in the isotopic composition of CO{sub 2} in the global ocean-atmosphere system, as registered in marine carbonates elsewhere, and was not governed by local paleoenvironmental and/or paleoecological factors. Negative and positive excursions in {delta}{sup 13}C{sub wood} through the lower Aptian occur in phase with inferred transgressions and regressions, respectively -- a pattern that contrasts with that observed in many previous studies for different time intervals. The relationship between {delta}{sup 13}C variations and relative sea-level change is tentatively interpreted as a response to various climatic and eustatic factors, relating to rapid sea-floor spreading, thermal uplift of ocean floor, emplacement of plateaus, volcanic CO{sub 2} emissions, weathering, and sedimentary rate.

  16. Sea-level fluctuations during the last glacial cycle.

    PubMed

    Siddall, M; Rohling, E J; Almogi-Labin, A; Hemleben, Ch; Meischner, D; Schmelzer, I; Smeed, D A

    2003-06-19

    The last glacial cycle was characterized by substantial millennial-scale climate fluctuations, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. Highstands of sea level can be reconstructed from dated fossil coral reef terraces, and these data are complemented by a compilation of global sea-level estimates based on deep-sea oxygen isotope ratios at millennial-scale resolution or higher. Records based on oxygen isotopes, however, contain uncertainties in the range of +/-30 m, or +/-1 degrees C in deep sea temperature. Here we analyse oxygen isotope records from Red Sea sediment cores to reconstruct the history of water residence times in the Red Sea. We then use a hydraulic model of the water exchange between the Red Sea and the world ocean to derive the sill depth-and hence global sea level-over the past 470,000 years (470 kyr). Our reconstruction is accurate to within +/-12 m, and gives a centennial-scale resolution from 70 to 25 kyr before present. We find that sea-level changes of up to 35 m, at rates of up to 2 cm yr(-1), occurred, coincident with abrupt changes in climate. PMID:12815427

  17. Detecting anthropogenic footprints in sea level rise

    PubMed Central

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  18. Stochastic secular trends in sea level rise

    NASA Astrophysics Data System (ADS)

    Ocaña, Victor; Zorita, Eduardo; Heimbach, Patrick

    2016-04-01

    Global mean sea level (GMSL) has been rising since (at least) the nineteenth century and the rate of rise may be increasing. Several studies that attempt to explain the long-term trend of GMSL during the instrumental record share the common assumption that this trend is deterministic in nature and different from natural variations. Here we show that the trend can alternatively be explained, at least in part, as being caused by random variations within the coupled ocean-atmosphere-cryosphere system, and hence not having a deterministic origin. These random trends, which add to externally forced changes (e.g., through anthropogenic climate change), are a consequence of the integrated character of GMSL, which is the cumulative addition of temporal contributions that exhibit random character, and whose integration results in GMSL variations with persistence on decadal-centennial time scales. The generation of trends by integration of random stationary noise (i.e., even in a constant climate) is a robust and fundamental feature of stochastically forced systems with memory. The integrated character of GMSL results in an intrinsic difficulty in distinguishing internal from externally forced trends.

  19. Detecting anthropogenic footprints in sea level rise.

    PubMed

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  20. Detecting anthropogenic footprints in sea level rise

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-07-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ~1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

  1. Wave transformation across coral reefs under changing sea levels

    NASA Astrophysics Data System (ADS)

    Harris, Daniel; Power, Hannah; Vila-Conejo, Ana; Webster, Jody

    2015-04-01

    The transformation of swell waves from deep water across reef flats is the primary process regulating energy regimes in coral reef systems. Coral reefs are effective barriers removing up to 99% of wave energy during breaking and propagation across reef flats. Consequently back-reef environments are often considered low energy with only limited sediment transport and geomorphic change during modal conditions. Coral reefs, and specifically reef flats, therefore provide important protection to tropical coastlines from coastal erosion and recession. However, changes in sea level could lead to significant changes in the dissipation of swell wave energy in coral reef systems with wave heights dependent on the depth over the reef flat. This suggests that a rise in sea level would also lead to significantly higher energy conditions exacerbating the transgressive effects of sea level rise on tropical beaches and reef islands. This study examines the potential implications of different sea level scenarios on the transformation of waves across the windward reef flats of One Tree Reef, southern Great Barrier Reef. Waves were measured on the reef flats and back-reef sand apron of One Tree Reef. A one-dimensional wave model was calibrated and used to investigate wave processes on the reef flats under different mean sea level (MSL) scenarios (present MSL, +1 m MSL, and +2 m MSL). These scenarios represent both potential future sea level states and also the paleo sea level of the late Holocene in the southern Great Barrier Reef. Wave heights were shown to increase under sea level rise, with greater wave induced orbital velocities affecting the bed under higher sea levels. In general waves were more likely to entrain and transport sediment both on the reef flat and in the back reef environment under higher sea levels which has implications for not only forecasted climate change scenarios but also for interpreting geological changes during the late Holocene when sea levels were 1

  2. Numerical study of the Azov Sea level seiche oscillations

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Inzhebeikin, Yu. I.

    2009-08-01

    Seiche oscillations of the Azov Sea level are studied on the basis of the developed two-dimensional numerical hydrodynamic model grounded on the shallow water theory and recent data on the morphometric characteristics of the Sea of Azov. Frequency and spatial characteristics of the first five modes corresponding to seiche oscillations of the Azov Sea level are computed. It is shown that the frequency and spatial characteristics of the first five modes obtained for the Sea of Azov level changes correspond to seiche oscillations. The calculated parameters are compared with the field observations, which show their realistic character.

  3. A search for scale in sea-level studies

    USGS Publications Warehouse

    Larsen, C.E.; Clark, I.

    2006-01-01

    Many researchers assume a proportional relationship among the atmospheric CO2 concentration, temperature, and sea level. Thus, the rate of sea-level rise should increase in concert with the documented exponential increase in CO2. Although sea surface temperature has increased in places over the past century and short-term sea level rose abruptly during the 1990s, it is difficult to demonstrate a proportional relationship using existing geologic or historic records. Tide gauge records in the United States cover too short a time interval to verify acceleration in the rate of sea-level rise, although multicentury tide gauge and staff records from the Netherlands and Sweden suggest a mid-19th-century acceleration in sea-level rise. Reconstructions of sea-level changes for the past 1000 years derived using benthic foraminifer data from salt marshes along the East Coast of the United States suggest an increased rate of relative sea-level rise beginning in the 1600s. Geologic records of relative sea-level rise for the past 6000 years are available for several sites along the US East Coast from 14C-dated basal peat below salt marshes and estuarine sediments. When these three scales of sea-level variation are integrated, adjusted for postglacial isostatic movement, and replotted, the range of variation in sea level suggested by basal peat ages is within ??1 meter of the long-term trend. The reconstruction from Long Island Sound data shows a linear rise in sea level beginning in the mid-1600s at a rate consistent with the historic record of mean high water. Long-term tide gauge records from Europe and North America show similar trends since the mid-19th century. There is no clear proportional exponential increase in the rate of sea-level rise. If proportionality exists among sea level, atmospheric CO2, and temperature, there may be a significant time lag before an anthropogenic increase in the rate of sea-level rise occurs.

  4. Sea Level Variability in the Central Region of the Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Limeburner, Richard; Farrar, J. Thomas; Beardsley, Robert

    2013-04-01

    An array of three bottom pressure/temperature/conductivity (PTC) instruments was deployed along the Saudi Arabian coast of the eastern Red Sea since 2008. These locations, represent the central region of the Red Sea; Al-Lieth (100km south of Jeddah), Thuwal (KAUST) and Arriyas (100km north of Rabigh). Surface sea level/height was calculated from the bottom pressure measurements using the hydrostatic equation. The data analysis displayed the sea level variability into three different scales: 1) On daily time scales: the data showed the most energetic component of sea level variability was the diurnal and semidiurnal tides dominated by the M2, N2, K1 and O1 tidal constituents. 2) On weekly time scales (~10 days): the sea level variability was wind driven with setup and set down up to 40 cm due to the local wind stress. 3) On yearly time scales: the sea level varied approximately 50 cm and was highest in winter (January-February) and lowest in summer (July-August). Barometric pressure also had an annual cycle of approximately 10mb and was highest in January, thus attenuating the amplitude of the annual sea level variability. The data analysis postulate that the only mechanism behind the higher sea level in the central Red Sea during winter months was due to a response to the convergent in the large-scale Red Sea wind stress associated with the Indian Monsoon, which is consisting of NNW winds in the northern part of the Red Sea and SSE winds in the southern part. The amplitude of the principal tidal and sub-tidal sea level variability was coherent at the three sites, but the direction of phase propagation could not be resolved with confidence.

  5. Timing and Estimates of Plio-Pleistocene Sea-Level Highstands from the Republic of South Africa (RSA)

    NASA Astrophysics Data System (ADS)

    Hearty, Paul; Raymo, Maureen; Sandstrom, Michael; Rovere, Alessio; O'Leary, Michael

    2016-04-01

    The rapid rise in atmospheric CO2 exceeding 400 ppmv is driving an urgent need to better understand past sea level, ice sheet dynamics, and climate change associated with past warmer geological intervals. The LR04 record reveals sustained intervals during the Pliocene (5.6-2.6 Ma) when δ18O exceeded the present levels, indicating a possible decrease in the volume of polar ice sheets. Other shorter intervals of likely decreased ice volume occur during Pleistocene interglacials including MIS 5e, 11, 31, and 37.Here we focus on the middle Pliocene warm period (MPWP; 3.3 to 2.9 Ma), an interval during which Earth experienced CO2 levels around 400 ppmv (Fedorov et al., 2013). The intra-plate coastal margin of western South Africa, a region of relative tectonic stability and relative insensitivity to uncertainty in mantle viscosity as is effects corrections for glacial isostatic adjustment, is a promising region for deriving estimates of eustatic sea level (ESL; thus ice volumes) at the end of the MPWP (Rovere et al., 2014). During a field expedition covering several thousand kilometres along coastlines of western and southern coasts of RSA, we documented the stratigraphy, geomorphology, and geochronology of Pliocene and Pleistocene shorelines with differential GPS providing decimeter scale accuracy to stratigraphic contacts and sea-level indicators. From about twenty sites, precise elevations (as yet uncorrected for GIA) of multiple sea stands were recorded. Strontium isotopes were used to date the shell material from many of the marine sites, but only three sites yielded reliable age data that passed screening criteria for diagenesis. The oldest shoreline evidence, from Cliffs Point on the west coast near the Olifants River, is observed at 34.9 ±0.2 m asl and yields an age 4.70 ± 0.20 Ma; a younger shoreline from the southern coast Bredasdorp site is observed at >24.0 ± 1.5 m asl and yields ages from 3.00 ± 0.45 to 3.55 ± 0.31 Ma, the interval of the MPWP. . A

  6. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges

    NASA Astrophysics Data System (ADS)

    Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G.

    2016-02-01

    Sea-level variability in the Mediterranean Sea was investigated by means of in-situ (tide-gauge) and satellite altimetry data over a period spanning two decades (from 1993 to 2012). The paper details the sea-level variations during this time period retrieved from the two data sets. Mean sea-level (MSL) estimates obtained from tide-gauge data showed root mean square differences (RMSDs) in the order of 40-50 % of the variance of the MSL signal estimated from satellite altimetry data, with a dependency on the number and quality of the in-situ data considered. Considering the individual time-series, the results showed that coastal tide-gauge and satellite sea-level signals are comparable, with RMSDs that range between 2.5 and 5 cm and correlation coefficients up to the order of 0.8. A coherence analysis and power spectra comparison showed that two signals have a very similar energetic content at semi-annual temporal scales and below, while a phase drift was observed at higher frequencies. Positive sea-level linear trends for the analysis period were estimated for both the mean sea-level and the coastal stations. From 1993 to 2012, the mean sea-level trend (2.44± 0.5 mm year^{-1} ) was found to be affected by the positive anomalies of 2010 and 2011, which were observed in all the cases analysed and were mainly distributed in the eastern part of the basin. Ensemble empirical mode decomposition showed that these events were related to the processes that have dominant periodicities of ˜ 10 years, and positive residual sea-level trend were generally observed in both data-sets. In terms of mean sea-level trends, a significant positive sea-level trend (> 95 %) in the Mediterranean Sea was found on the basis of at least 15 years of data.

  7. Upper limit for sea level projections by 2100

    NASA Astrophysics Data System (ADS)

    Jevrejeva, S.; Grinsted, A.; Moore, J. C.

    2014-10-01

    We construct the probability density function of global sea level at 2100, estimating that sea level rises larger than 180 cm are less than 5% probable. An upper limit for global sea level rise of 190 cm is assembled by summing the highest estimates of individual sea level rise components simulated by process based models with the RCP8.5 scenario. The agreement between the methods may suggest more confidence than is warranted since large uncertainties remain due to the lack of scenario-dependent projections from ice sheet dynamical models, particularly for mass loss from marine-based fast flowing outlet glaciers in Antarctica. This leads to an intrinsically hard to quantify fat tail in the probability distribution for global mean sea level rise. Thus our low probability upper limit of sea level projections cannot be considered definitive. Nevertheless, our upper limit of 180 cm for sea level rise by 2100 is based on both expert opinion and process studies and hence indicates that other lines of evidence are needed to justify a larger sea level rise this century.

  8. Sea level oscillations over minute timescales: a global perspective

    NASA Astrophysics Data System (ADS)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  9. Does Sea Level Change when a Floating Iceberg Melts?

    ERIC Educational Resources Information Center

    Lan, Boon Leong

    2010-01-01

    On the answer page to a recent "Figuring Physics" question, the cute mouse asks another question: "Does the [sea] water level change if the iceberg melts?" The conventional answer is "no." However, in this paper I will show through a simple analysis involving Archimedes' principle that the sea level will rise. The analysis shows the wrong…

  10. Future extreme sea level seesaws in the tropical Pacific

    PubMed Central

    Widlansky, Matthew J.; Timmermann, Axel; Cai, Wenju

    2015-01-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño–Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño–related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise. PMID:26601272

  11. Future extreme sea level seesaws in the tropical Pacific.

    PubMed

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise. PMID:26601272

  12. Estuaries May Face Increased Parasitism as Sea Levels Rise

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-12-01

    Invertebrates in estuaries could be at a greater risk of parasitism as climate change causes sea levels to rise. A new paper published 8 December in Proceedings of the National Academy of Sciences of the United States of America (doi:10.1073/pnas.1416747111) describes how rapid sea level rise in the Holocene affected the population of parasitic flatworms called trematodes.

  13. Late Holocene sea-level change in Arctic Norway

    NASA Astrophysics Data System (ADS)

    Barnett, Robert L.; Gehrels, W. Roland; Charman, Dan J.; Saher, Margot H.; Marshall, William A.

    2015-01-01

    Relative sea-level data from the pre-industrial era are required for validating geophysical models of glacio-isostatic adjustment as well as for testing models used to make sea-level predictions based on future climate change scenarios. We present the first late Holocene (past ˜3300 years) relative sea-level reconstruction for northwestern Norway based on investigations in South Hinnøya in the Vesterålen - Lofoton archipelago. Sea-level changes are reconstructed from analyses of salt-marsh and estuarine sediments and the micro-organisms (foraminifera and testate amoebae) preserved within. The 'indicative meaning' of the microfauna is established from their modern distributions. Records are dated by radiocarbon, 201Pb, 137Cs and chemostratigraphical analyses. Our results show a continuous relative sea-level decline of 0.7-0.9 mm yr-1 for South Hinnøya during the late Holocene. The reconstruction extends the relative sea-level trend recorded by local tide gauge data which is only available for the past ˜25 years. Our reconstruction demonstrates that existing models of shoreline elevations and GIA overpredict sea-level positions during the late Holocene. We suggest that models might be adjusted in order to reconcile modelled and reconstructed sea-level changes and ultimately improve understanding of GIA in Fennoscandia.

  14. The partition of regional sea level variability

    NASA Astrophysics Data System (ADS)

    Forget, Gaël; Ponte, Rui M.

    2015-09-01

    The existing altimetric record offers an unprecedented view of sea level (ζ) variability on a global scale for more than 2 decades. Optimal inference from the data involves appropriate partition of signal and noise, in terms of relevant scales, physical processes and forcing mechanisms. Such partition is achieved here through fitting a general circulation model to altimeter and other datasets to produce a "best" estimate of ζ variability directly forced by the atmosphere-the signal of primary interest here. In this context noise comes primarily from instrument errors and meso-scale eddies, as expected, but spatial smoothing effectively reduces this noise. A separate constraint is thus formulated to measure the fit to monthly, large-scale altimetric variability that unlike the daily, pointwise constraint shows a high signal-to-noise ratio. The estimate is explored to gain insight into dynamics, forcing, and other factors controlling ζ variability. Contributions from thermo-steric, halo-steric and bottom pressure terms are all important depending on region, but slopes of steric spectra (red) and bottom pressure spectra (white) are nearly invariant with latitude. Much ζ variability can be represented by a seasonal cycle and linear trend, plus a few EOFs that can be associated with known modes of climate variability and/or with topographic controls. Both wind and buoyancy forcing are important. The response is primarily basin-bound in nature, but uneven patterns of propagation across basin boundaries are clearly present, with the Pacific being able to affect large portions of the Indian and Atlantic basins, but the Atlantic affecting mostly the Arctic.

  15. Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California

    USGS Publications Warehouse

    Atwater, Brian F.; Hedel, Charles W.; Helley, Edward J.

    1977-01-01

    tectonic subsidence in less than 1.5 million years (<0.07 mm/yr) relative to the likely elevation of the lowest Pleistocene land surface; (2) the deepest Sangamon estuarine deposits subsided tectonically about 20–40 m in about 0.1 million years (0.2±0.1–0.4±0.1 mm/yr) relative to the assumed initial elevations of the thalwegs buried by these sediments; and (3) Holocene salt-marsh deposits have undergone about 5 m of tectonic and possibly isostatic subsidence in about 6,000 years (0.8±.0.7 mm/yr) relative to elevations which might be expected from eustatic sea-level changes alone.

  16. Global sea-level change during the next 10,000 years: the end of an icehouse?

    NASA Astrophysics Data System (ADS)

    Van Breedam, Jonas; Huybrechts, Philippe; Goelzer, Heiko; Loutre, Marie-France; Fichefet, Thierry

    2015-04-01

    Because of the long life-time of atmospheric CO2, any realized future warming is likely to persist for many centuries to millennia. As a consequence, sea-level rise will continue on a multi-millennial timescale, especially from the slower components such as oceanic thermal expansion and above all, from melting of the Greenland and Antarctic ice sheets. The two polar ice sheets have the potential to produce a global eustatic sea-level rise of about 65 m, at least an order of magnitude larger than thermal expansion under extreme forcing scenarios. Other components contributing to sea-level change are the melting of glaciers and ice caps and haline contraction of the ocean from fresh water delivery from land ice, but are less important. We have made projections of future sea-level rise over the next 10,000 years with the Earth System Model of Intermediate Complexity LOVECLIM, which includes high resolution models of the Greenland and Antarctic ice sheets. Four different model parameter sets are considered to explore the model uncertainty. The climate forcing is based on prolonged Radiative Concentration Pathway (RCP) scenarios with an assumed exponential falloff for carbon dioxide concentrations according to global carbon cycle simulations. Six different forcing scenarios are constructed where the highest scenario includes a positive feedback due to the destabilization of methane hydrates and the subsequent emission of methane. By far the largest contribution in the global sea-level projections arises from the polar ice sheets. For the Greenland ice sheet, the ablation is larger than the accumulation for all forcing scenarios shortly after the start of the experiments. The ice sheet continuously melts and nearly disappears in all cases. The Antarctic ice sheet grows during the first decades under low to intermediate forcing scenarios due to increased accumulation. However, the spread between the different scenarios is very large. Under the highest prolonged RCP

  17. Non-linear response of the Golo River system, Corsica, France, to Late Quaternary climatic and sea level variations

    NASA Astrophysics Data System (ADS)

    Forzoni, Andrea; Storms, J. E. A.; Reimann, Tony; Moreau, Julien; Jouet, Gwenael

    2015-08-01

    Disentangling the impact of climatic and sea level variations on fluvio-deltaic stratigraphy is still an outstanding question in sedimentary geology and geomorphology. We used the Golo River system, Corsica, France, as a natural laboratory to investigate the impact of Late Quaternary climate and sea level oscillations on sediment flux from a catchment and on fluvio-deltaic stratigraphy. We applied a numerical model, PaCMod, which calculates catchment sediment production and transport and compared modeling output to the sedimentary record of the Golo alluvial-coastal plain, whose chronology was reinterpreted using new optical stimulated luminescence (OSL) ages on feldspars. Our modeling, OSL ages, and geomorphological results indicate that the two main phases of braidplain development in the Golo alluvial-coastal plain occurred during the cold-dry phases of MIS5 and during the late MIS4-early MIS3, as a consequence of high catchment erosion rates and low water discharge. Incision and sediment reworking occurred during sea level low stand periods (MIS4 and late MIS3-MIS2). High sediment flux pulses from the catchment outlet were generated during the Lateglacial and early Holocene, as a result of the release of sediments previously stored within the catchment and enhanced snowmelt. Our results suggest a non-linear response of the Golo River system to climatic and eustatic changes, caused by sediment storage within the catchment and geomorphological thresholds. This indicates that a direct comparison between palaeo-climate and stratigraphy is not possible without considering catchment sediment storage and sediment transport delays out of the catchment.

  18. Inter-annual sea level variability in the southern South China Sea

    NASA Astrophysics Data System (ADS)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    2015-10-01

    The South China Sea (SCS) is the largest marginal sea in the western Pacific Basin. Sea level anomalies (SLAs) in the southern South China Sea (SSCS) are assumed to be governed by various phenomena associated with the adjacent parts of the Indian Ocean and the Pacific Ocean. We have used monthly sea level anomalies obtained from 12 tide gauge stations of PSMSL and UHSLC and merged and gridded AVISO products of SLAs (sea level anomalies) derived from satellite altimeter. We find that IOD-influenced inter-annual variations are found only in the southwestern and southeastern coastal regions of SSCS. Our analysis reveals that inter-annual regional sea level drops are associated with positive phase of the IOD, and the rises with negative phase of the IOD. SLA variations at decadal scale in the southeastern and northern Gulf of Thailand correlate with Pacific Decadal Oscillations (PDO). Multiple linear regression analysis of inter-annual SLAs and climate indices shows that IOD induced inter-annual variations dominate in the southwestern SCS and it contributes to about ~ 40% of inter-annual sea level variation. Meanwhile, ENSO contributes to around ~ 30% variation in sea level in the southwestern and ~ 40% variation in the southeastern SSCS. The present study also suggests that inter-annual SLA variations in the SSCS can occur by ENSO and IOD induced changes in wind stress curl and volume transport variations.

  19. The influence of uncertainty in past sea level reconstructions on 21st century mean sea level projections

    NASA Astrophysics Data System (ADS)

    Phillips, T. P.; Hamlington, B. D.; Nerem, R.; Leben, R. R.

    2010-12-01

    Currently, in most sea-level rise projections computed using semi-empirical models, the well-established Church and White sea-level reconstruction (data 1880-2009) is used. Numerous papers have focused on the variation of the projections for sea level rise by 2100, which ranges between 20 cm (the lower limit of the Intergovernmental Panel on Climate Change, IPCC 4th assessment report) and 210 cm. In this study we focus on the sea level reconstruction and the accompanying error bars. We use the Church and White data set and its error bars as well as our own sea level reconstruction for 1950-2010. The sensitivity of the mean sea level reconstruction depends on the selection of the tide gages, the construction of the basis functions as well as the weighting (e.g. latitudinal). We used a Monte Carlo simulation in order to establish the errors in the reconstruction. We used the Vermeer and Rahmstorf semi-empirical sea level rise projection model, and simulated four different initial conditions: a) using the Church and White’s and Hamlington and Leben’s reconstructions, b) using the different error estimates suggested by the two groups c) using various time periods to train the model for the projections d) testing the model’s sensitivity to outliers. Our preliminary results show that all simulations indicate higher sea level rise projections by 2100 than suggested by the 4th IPCC assessment report in 2007 and are therefore in agreement with current projections made with the Rahmstorf or Grinsted models. Our preliminary results suggest that the range of sea level rise projections by 2100 depends strongly on the error estimate of the sea level reconstruction, the number of years included as well as its trend. This underlines the importance of understanding the sensitivity of sea level reconstruction and hence the selection of the most realistic approach for sea level projection. Hamlington and Leben’s mean projection for each of the IPCC scenarios lie within the

  20. Monitoring coastal sea level using reflected GNSS signals

    NASA Astrophysics Data System (ADS)

    Löfgren, Johan S.; Haas, Rüdiger; Johansson, Jan M.

    2011-01-01

    A continuous monitoring of coastal sea level changes is important for human society since it is predicted that up to 332 million people in coastal and low-lying areas will be directly affected by flooding from sea level rise by the end of the 21st century. The traditional way to observe sea level is using tide gauges that give measurements relative to the Earth’s crust. However, in order to improve the understanding of the sea level change processes it is necessary to separate the measurements into land surface height changes and sea surface height changes. These measurements should then be relative to a global reference frame. This can be done with satellite techniques, and thus a GNSS-based tide gauge is proposed. The GNSS-based tide gauge makes use of both GNSS signals that are directly received and GNSS signals that are reflected from the sea surface. An experimental installation at the Onsala Space Observatory (OSO) shows that the reflected GNSS signals have only about 3 dB less signal-to-noise-ratio than the directly received GNSS signals. Furthermore, a comparison of local sea level observations from the GNSS-based tide gauge with two stilling well gauges, located approximately 18 and 33 km away from OSO, gives a pairwise root-mean-square agreement on the order of 4 cm. This indicates that the GNSS-based tide gauge gives valuable results for sea level monitoring.

  1. Links between Sea Level in the northern Adriatic sea and large scale patterns

    NASA Astrophysics Data System (ADS)

    Scarascia, L.; Lionello, P.

    2012-04-01

    The study analyzes the link between Northern Adriatic sea level (SL) and three variables: sea level pressure over European and North-Atlantic area (SLP), Mediterranean sea surface temperature (SST) and Mediterranean sea surface salinity (SSS). Sea level data are provided by monthly values recorded at 7 tide gauges stations distributed along the north-Italian and Croatian coasts (available at the PSMSL Permanent Service of Mean Sea Level). SLP data are provided by the EMULATE data set. Mediterranean SST and SSS data are extracted from the MEDATLAS/2002 database. The study shows that annual sea level variations at Northern Adriatic stations are very coherent so that the northern Adriatic sea level can be reconstructed since 1905 on the basis of only two stations: Venice and Trieste, whose data cover almost the entire 20th century (whereas Croatian data cover only the second half of the century). The inverse barometric, thermosteric and halosteric effects provide the physical basis for a local relation of SL with SLP, SST, SSS implying, if other effects are absent, a sea level increase for increasing temperature and decreasing atmospheric pressure and salinity. However, the statistical model used to quantify the link between SL and these three forcings shows that they have produced no important trend and they cannot explain the observed trend of Northern Adriatic Sea level during the second half of the 20th century. The observed trend can therefore be interpreted as the superposition of land movement and a remote cause. Using SLP, SST and SSS from climate model simulations, no trend is obtained during the 20th century, as well. The same model simulations, considering their continuations for the 21st century show that local effects (mainly warming of water masses) are likely to produce an increase of about 10cm (with a large uncertainty) at the end of the century. The global signal and the regional land movements have to be added to this result to obtain the actual

  2. Sea level rise and variability around Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single

  3. Satellite Altimeter Observations of Black Sea Level Variations

    NASA Technical Reports Server (NTRS)

    Korotaev, G. K.; Saenko, O. A.; Koblinsky, C. J.

    1998-01-01

    Satellite altimeter data from TOPEX/POSEIDON and ERS-1 are used to examine seasonal and mesoscale variability of the Black Sea level. Consistent processing procedures of the altimeter measurements make it possible to determine the dynamical Black Sea level with an rms accuracy about 3 cm. It is shown that the Black Sea circulation intensifies in the winter-spring seasons and attenuates in summer-autumn. The seasonal variability of sea level is accompanied by a radiation of Rossby waves from the eastern coast of the basin. Mesoscale oscillations of the dynamical sea level are found to vary spatially and temporarily. Usually, strong eddy intensity is associated with instabilities of the Rim Current. Away from this circulation feature, in the deep basin, mesoscale variability is much smaller. Mesoscale variability has a strong seasonal signal, which is out of phase with the strength of the Rim Current.

  4. Using Sea Level Change as a Climate Indicator

    NASA Astrophysics Data System (ADS)

    Masters, D. S.; Nerem, R. S.

    2014-12-01

    Sea level rise is one the more important risks due to climate change. Multiple satellite altimeters flying on the same repeating ground track have allowed estimation of global and regional sea level for the past 20 years, and the time series has yielded information about how sea level is responding to climate change. Due to the duration, consistency, and inter-calibration of the altimeter measurements, the time series is now considered a climate data record. The time series has also shown the strong dependence of sea level on interannual signals such as the ENSO and PDO. Global mean sea level change as estimated by the altimeters is arguably one of the most sensitive indicators of climate change because it varies almost entirely due to thermal expansion/contraction and the exchange of water between the land and oceans. Contributions to the latter include melting land ice and changes in the hydrologic cycle. While thermal expansion does not vary greatly on interannual time-scales, variations in the global hydrologic cycle and land ice melt can contribute to large variations in the sea level record. Isolating and understanding the causes and scales of these variations is important in interpreting the observed global and regional sea level change, especially for decision-makers assessing risk and planning for adaptation and/or mitigation. Since 1992, satellite altimeter measurements from the TOPEX/Poseidon and Jason missions, have been providing precise estimates of sea level change between ±66° latitude every 10 days. We have been using these measurements to monitor both global average and regional sea level change. The GRACE mission has provided monthly estimates of the time-varying gravity field for the last 10 years. These measurements can estimate variations in global ocean mass, mass changes in the polar ice sheets and mountain glaciers, as well as changes in the land surface water storage. These data sets can be used to inform us about the sea level change

  5. Sea-Level Rise Impacts on Hudson River Marshes

    NASA Astrophysics Data System (ADS)

    Hooks, A.; Nitsche, F. O.

    2015-12-01

    The response of tidal marshes to increasing sea-level rise is uncertain. Tidal marshes can adapt to rising sea levels through vertical accretion and inland migration. Yet tidal marshes are vulnerable to submergence if the rate of sea-level rise exceeds the rate of accretion and if inland migration is limited by natural features or development. We studied how Piermont and Iona Island Marsh, two tidal marshes on the Hudson River, New York, would be affected by sea-level rise of 0.5m, 1m, and 1.5m by 2100. This study was based on the 2011-2012 Coastal New York LiDAR survey. Using GIS we mapped sea-level rise projections accounting for accretion rates and calculated the submerged area of the marsh. Based on the Hudson River National Estuarine Research Reserve Vegetation 2005 dataset, we studied how elevation zones based on vegetation distributions would change. To evaluate the potential for inland migration, we assessed land cover around each marsh using the National Land Cover Database 2011 Land Cover dataset and examined the slope beyond the marsh boundaries. With an accretion rate of 0.29cm/year and 0.5m of sea-level rise by 2100, Piermont Marsh would be mostly unchanged. With 1.5m of sea-level rise, 86% of Piermont Marsh would be flooded. For Iona Island Marsh with an accretion rate of 0.78cm/year, sea-level rise of 0.5m by 2100 would result in a 4% expansion while 1.5m sea-level rise would cause inundation of 17% of the marsh. The results indicate that Piermont and Iona Island Marsh may be able to survive rates of sea-level rise such as 0.5m by 2100 through vertical accretion. At rates of sea-level rise like 1.5m by 2100, vertical accretion cannot match sea-level rise, submerging parts of the marshes. High elevations and steep slopes limit Piermont and Iona Island Marsh's ability to migrate inland. Understanding the impacts of sea-level rise on Piermont and Iona Island Marsh allows for long-term planning and could motivate marsh conservation programs.

  6. Improved estimates of global sea level change from Ice Sheets, glaciers and land water storage using GRACE

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Hsu, C. W.; Ciraci, E.; Sutterley, T. C.

    2015-12-01

    We use observations of time variable gravity from GRACE to estimate mass changes for the Antarctic and Greenland Ice Sheets, the Glaciers and Ice Caps (GIC) and land water storage for the time period 2002-2015 and evaluate their total contribution to sea level. We calculate regional sea level changes from these present day mass fluxes using an improved scaling factor for the GRACE data that accounts for the spatial and temporal variability of the observed signal. We calculate a separate scaling factor for the annual and the long-term components of the GRACE signal. To estimate the contribution of the GIC, we use a least square mascon approach and we re-analyze recent inventories to optimize the distribution of mascons and recover the GRACE signal more accurately. We find that overall, Greenland controls 43% of the global trend in eustatic sea level rise, 16% for Antarctica and 29% for the GIC. The contribution from the GIC is dominated by the mass loss of the Canadian Arctic Archipelago, followed by Alaska, Patagonia and the High Mountains of Asia. We report a marked increase in mass loss for the Canadian Arctic Archipelago. In Greenland, following the 2012 high summer melt, years 2013 and 2014 have slowed down the increase in mass loss, but our results will be updated with summer 2015 observations at the meeting. In Antarctica, the mass loss is still on the rise with increased contributions from the Amundsen Sea sector and surprisingly from the Wilkes Land sector of East Antarctica, including Victoria Land. Conversely, the Queen Maud Land sector experienced a large snowfall in 2009-2013 and has now resumed to a zero mass gain since 2013. We compare sea level changes from these GRACE derived mass fluxes after including the atmospheric and ocean loading signal with sea level change from satellite radar altimetry (AVISO) corrected for steric signal of the ocean using Argo measurements and find an excellent agreement in amplitude, phase and trend in these estimates

  7. Recent and projected changes in Dead Sea level and effects on mineral production from the sea

    USGS Publications Warehouse

    Sauer, Stanley P.

    1978-01-01

    Hydrologic data for the Dead Sea area were reviewed to assess the probable magnitude and rate of change of the water level of the Sea. Historical average annual Dead Sea levels range from a minimum of 399.4 meters below sea level in about 1818 to a maximum of 388.6 meters below in 1896. Present levels are rapidly approaching the historical low. There is a close correlation between Dead Sea level and accumulated departure from the mean of long-term rainfall except for the most recent period since 1964. During that period rainfall has been near the long-term average but water levels have continued to decline, in part due to abstractions for irrigation in the Jordan River basin. The dissolved-solids concentration of Dead Sea water presently is approximately 322,000 milligrams per liter and is generally well mixed. The increase in dissolved solids to the present high concentration has resulted in an evaporation rate less than that estimated in previous reports. An average annual inflow to the Sea of 900 cubic hectometers from all sources is required to stabilize the Sea at the present level. (Woodard-USGS)

  8. Interannual-to-decadal variability and trends of sea level in the South China Sea

    NASA Astrophysics Data System (ADS)

    Cheng, Xuhua; Xie, Shang-Ping; Du, Yan; Wang, Jing; Chen, Xiao; Wang, Juan

    2016-05-01

    Interannual-to-decadal variability and trends of sea level in the South China Sea (SCS) are studied using altimetric data during 1993-2012 and reconstructed sea level data from 1950-2009. The interannual variability shows a strong seasonality. Surface wind anomalies associated with El Niño-Southern Oscillation explain the sea-level anomaly pattern in the interior SCS, while Rossby waves radiated from the eastern boundary dominate the sea-level variability in the eastern SCS. Decadal variability of sea level in the SCS follows that in the western tropical Pacific, with large variance found west of Luzon Island. Local atmospheric forcing makes a negative contribution to decadal variability in the central SCS, and Rossby waves radiated from the eastern boundary appear to be important. During 1993-2012, decadal sea level averaged in the SCS is significantly correlated with the Pacific Decadal Oscillation (PDO) ( r = -0.96). The decadal variability associated with the PDO accounts for most part of sea-level trends in the SCS in the last two decades.

  9. Sea Level Data Archaeology for the Global Sea Level Observing System (GLOSS)

    NASA Astrophysics Data System (ADS)

    Bradshaw, Elizabeth; Matthews, Andy; Rickards, Lesley; Jevrejeva, Svetlana

    2015-04-01

    The Global Sea Level Observing System (GLOSS) was set up in 1985 to collect long term tide gauge observations and has carried out a number of data archaeology activities over the past decade, including sending member organisations questionnaires to report on their repositories. The GLOSS Group of Experts (GLOSS GE) is looking to future developments in sea level data archaeology and will provide its user community with guidance on finding, digitising, quality controlling and distributing historic records. Many records may not be held in organisational archives and may instead by in national libraries, archives and other collections. GLOSS will promote a Citizen Science approach to discovering long term records by providing tools for volunteers to report data. Tide gauge data come in two different formats, charts and hand-written ledgers. Charts are paper analogue records generated by the mechanical instrument driving a pen trace. Several GLOSS members have developed software to automatically digitise these charts and the various methods were reported in a paper on automated techniques for the digitization of archived mareograms, delivered to the GLOSS GE 13th meeting. GLOSS is creating a repository of software for scanning analogue charts. NUNIEAU is the only publically available software for digitising tide gauge charts but other organisations have developed their own tide gauge digitising software that is available internally. There are several other freely available software packages that convert image data to numerical values. GLOSS could coordinate a comparison study of the various different digitising software programs by: Sending the same charts to each organisation and asking everyone to digitise them using their own procedures Comparing the digitised data Providing recommendations to the GLOSS community The other major form of analogue sea level data is handwritten ledgers, which are usually observations of high and low waters, but sometimes contain higher

  10. Upper Limit for Sea Level Projections by 2100

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2015-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. We construct the probability density function of global sea level at 2100, estimating that sea level rises larger than 180 cm are less than 5% probable. An upper limit for global sea level rise of 190 cm is assembled by summing the highest estimates of individual sea level rise components simulated by process based models with the RCP8.5 scenario. The agreement between the methods may suggest more confidence than is warranted since large uncertainties remain due to the lack of scenario-dependent projections from ice sheet dynamical models, particularly for mass loss from marine-based fast flowing outlet glaciers in Antarctica.

  11. Lower bounds to future sea-level rise

    NASA Astrophysics Data System (ADS)

    Zecca, Antonio; Chiari, Luca

    2012-12-01

    Sea-level rise is among the most important changes expected as a consequence of anthropogenic global warming. Climate model-based projections made until the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) yield a 21st century rise spanning nearly 20-60 cm. However, it is known that current climate models are likely to underestimate sea-level change in response to rapid climatic variations. Recent alternative semi-empirical approaches predict a much higher sea-level rise than the IPCC AR4 projections. Nevertheless, the underway depletion of conventional fossil fuels might, at least in principle, constrain future fossil CO2 emissions and, in turn, affect also the extent of sea-level rise. Here we project 2000-2200 sea-level rise with a semi-empirical method coupled to a simple climate model that is run under a range of fossil-fuel exhaustion scenarios. We find that, in spite of fossil-fuel depletion, sea level is predicted to rise by at least ~ 80 cm at the end of this century and is expected to continue rising for at least the next two hundred years. The present results support the need for prompt and substantial emission cuts in order to slow down future sea-level rise and implement adaptation measures.

  12. Precise mean sea level measurements using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  13. Subsidence and Relative Sea-level Rise in Threatened Deltas

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Higgins, S.

    2014-12-01

    In determining the risk lowland deltaic topography, as threatened by sea level rise and land subsidence, a number of important processes must be evaluated. Sea level rise is a global process but with local manifestations. Asian deltas have been experiencing higher rates of sea level rise due to the steric impact on dynamic (ocean) topography. Other large scale geophysical impacts on relative sea level at the local scale include the isostatic and flexural response to Holocene sea level history, Holocene sediment loads, and in former ice sheet zones --- glacial rebound. Tectonism does play a role on relative sea level rise, particularly in South America where the Eastern coastline, particularly Argentina, is rising relative to regional sea levels. Subsidence is impacted by both natural ground compaction, and accelerated compaction due to, for example, peat oxidation that often has a human driver (e.g. swamp reclammation). Subsidence is also impacted by the extraction of deeper deposits of petroleum and water. Rates of delta subsidence vary widely, depending on the magnitude of the anthropogenic driver, from a few mm/y to 100's of mm/y. Ground water withdrawal is the dominant reason behind much of the world's coastal subsidence, with important exceptions. On average subsidence rates (all causes) now contribute to local sea level innundations at rates four times faster then sea level is rising. New technologies, particularly InSAR and GPS methods, can often pin point the local cause (e.g. water withdrawl for agriculture versus for aquaculture). Subsurface soil or rock heterogeneity, and other very local geological patterns such as historical river pathways, also influence the temporal and spatial patterns associated with delta subsidence.

  14. Nonlinear trends and multiyear cycles in sea level records

    NASA Astrophysics Data System (ADS)

    Jevrejeva, S.; Grinsted, A.; Moore, J. C.; Holgate, S.

    2006-09-01

    We analyze the Permanent Service for Mean Sea Level (PSMSL) database of sea level time series using a method based on Monte Carlo Singular Spectrum Analysis (MC-SSA). We remove 2-30 year quasi-periodic oscillations and determine the nonlinear long-term trends for 12 large ocean regions. Our global sea level trend estimate of 2.4 ± 1.0 mm/yr for the period from 1993 to 2000 is comparable with the 2.6 ± 0.7 mm/yr sea level rise calculated from TOPEX/Poseidon altimeter measurements. However, we show that over the last 100 years the rate of 2.5 ± 1.0 mm/yr occurred between 1920 and 1945, is likely to be as large as the 1990s, and resulted in a mean sea level rise of 48 mm. We evaluate errors in sea level using two independent approaches, the robust bi-weight mean and variance, and a novel "virtual station" approach that utilizes geographic locations of stations. Results suggest that a region cannot be adequately represented by a simple mean curve with standard error, assuming all stations are independent, as multiyear cycles within regions are very significant. Additionally, much of the between-region mismatch errors are due to multiyear cycles in the global sea level that limit the ability of simple means to capture sea level accurately. We demonstrate that variability in sea level records over periods 2-30 years has increased during the past 50 years in most ocean basins.

  15. Eastern tropical Pacific vegetation response to rapid climate change and sea level rise: A new pollen record from the Gulf of Tehuantepec, southern Mexico

    NASA Astrophysics Data System (ADS)

    Hendy, I. L.; Minckley, T. A.; Whitlock, C.

    2016-08-01

    A 30,000-year-long pollen record from the Gulf of Tehuantepec, southern Mexico shows the varying influence of air temperature, precipitation and eustatic sea-level rise on changes in coastal and upland vegetation patterns. During the late-glacial period, pine-juniper forests grew in the Sierra Madre del Sur along the Pacific Slope with broadleaf forests present at low elevations. Coastal wetland and riparian vegetation were limited in distribution. Significant cooling associated with Heinrich 1 (17,000-15,000 cal yr BP) resulted in an expansion of pine-juniper woodland. By the time of Bølling-Allerød warming (14,700-13,000 cal yr BP), extensive mangrove forest development was assisted by sea-level rise and reduced precipitation associated with a more southerly position of the Intertropical Convergence Zone (ITCZ) than at present. Concurrently, the expansion of oak into pine woodlands was promoted by warmer conditions than before. Increased summer precipitation in the early Holocene and stabilizing sea levels limited mangrove forests along the coast and allowed mixed conifer and hardwood forest to become more widespread inland. The onset of a more seasonal climate, driven by a weakening of the Mexican monsoon and a southerly shift in ITCZ position led to the establishment of modern open forests of pine and oak after 4300 cal yr BP.

  16. Sea level trend and variability around Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2015-08-01

    Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5-25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian-Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian-western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Nino-Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Nino events and positive phases of IOD, whilst rises are correlated with La Nina episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986-2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr-1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr-1), their corresponding geocentric sea level rise rates

  17. An alternative to reduction of surface pressure to sea level

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.

    1982-01-01

    The pitfalls of the present method of reducing surface pressure to sea level are reviewed, and an alternative, adjusted pressure, P, is proposed. P is obtained from solution of a Poisson equation over a continental region, using the simplest boundary condition along the perimeter or coastline where P equals the sea level pressure. The use of P would avoid the empiricisms and disadvantages of pressure reduction to sea level, and would produce surface pressure charts which depict the true geostrophic wind at the surface.

  18. Coastal Impact Underestimated From Rapid Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Anderson, John; Milliken, Kristy; Wallace, Davin; Rodriguez, Antonio; Simms, Alexander

    2010-06-01

    A primary effect of global warming is accelerated sea level rise, which will eventually drown low-lying coastal areas, including some of the world's most populated cities. Predictions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) suggest that sea level may rise by as much as 0.6 meter by 2100 [Solomon et al., 2007]. However, uncertainty remains about how projected melting of the Greenland and Antarctic ice sheets will contribute to sea level rise. Further, considerable variability is introduced to these calculations due to coastal subsidence, especially along the northern Gulf of Mexico (see http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml).

  19. Explaining trends and variability in coastal relative sea level

    NASA Astrophysics Data System (ADS)

    Frederikse, Thomas; Riva, Riccardo

    2016-04-01

    Comprehensive understanding of trends and variability in coastal mean sea level is vital for protecting shores under a changing climate. To understand the behavior of coastal relative sea level (RSL), it is crucial to identify all relevant processes. We combine data from various geophysical models and observations to determine whether the trends and decadal variability observed in relative sea level at tide gauges can be explained by the sum of all known contributors. A key contributor to RSL is vertical land motion, which is caused by glacial isostatic adjustment (GIA), solid earth response to surface loading, tectonics, and local effects. We explicitly model low-frequency loading effects to correct GPS records, which leads to a more consistent trend than only using GIA models. Secondly, we create sea level fingerprints based on estimates of ice melt and changes in land hydrology, which provide the RSL contribution due to large-scale mass transport. Since coastal areas are often located on shallow continental shelves, steric effects will generally be small, and a large fraction of the decadal sea level variability will have a remote steric origin. Therefore, we determine a relation between coastal sea level and deep sea steric variability. For the period 1950-2012, we find that for many locations, including the European coast, the observed and modeled RSL time series agree well on decadal and secular scales.

  20. Developing a Coastal Risk Indicator for Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Masters, D. S.; Nerem, R.

    2012-12-01

    Coastal sea level rise is one the most important potential environmental risks. Multiple satellite altimeters flying on the same repeat orbit track have allowed estimation of global mean sea level for the past 20 years, and the time series has yielded information about the average rate of sea level increase over that time. Due to the duration, consistency, and inter-calibration of the altimeter measurements, the time series is now considered a climate record. The time series has also shown the strong dependence of sea level on interannual signals such as the ENSO and the NAO. But the most important sea level effects of climate change will be felt on the regional and local scales. At these smaller scales, local effects due to topography, tides, earth deformation (glacial isostatic adjustment (GIA), subsidence, etc.), and storm surges must also be considered when estimating the risks of sea level change to coastal communities. Recently, work has begun to understand the methods applicable to estimating the risks of expected sea level change to coastal communities (Strauss et al., 2012; Tebaldi et al., 2012). Tebaldi et al (2012) merged the expected global mean sea level increase from the semi-empirical model of Vermeer and Rahmstorf (2009) with historical local tide gauges to predict increases in storm surge risk posed by increasing sea level. In this work, we will further explore the currently available data and tools that can potentially be used to provide a sea level climate change indicator and local risk assessment along US coasts. These include global and regional sea level trends from the satellite altimetry climate record, in situ tide gauge measurements and the historical extremes at each location, local tide and storm surge models, topographic surveys of vulnerable coastlines, GIA models, and measurements of local subsidence and crustal deformation rates. We will also evaluate methods to estimate the increased risk to communities from sea level change

  1. Long Term Sea Level Changes in the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.; Pugh, D. T.

    2009-04-01

    In 1842, James Clark Ross measured sea levels at Port Louis, 30 km NW of Port Stanley in the Falkland Islands, over a period of 8 months. The benchmarks with respect to which the levels were measured have been perfectly preserved, and in 2009 a new series of sea level measurements was made at the same site. In addition, a set of GPS measurements was made at Port Louis and Port Stanley, where there is a permanent modern tide gauge. The collected measurements enable us to estimate the average rate of sea level change in the area since 1842 with an accuracy of approximately 0.4 mm/year. This is one of the few estimates of long term sea level change in the southern hemisphere. This poster will describe how the measurements were made and will present some of the first results.

  2. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  3. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.

    2015-12-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.

  4. The multimillennial sea-level commitment of global warming.

    PubMed

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. PMID:23858443

  5. The multimillennial sea-level commitment of global warming

    PubMed Central

    Levermann, Anders; Clark, Peter U.; Marzeion, Ben; Milne, Glenn A.; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-01-01

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C−1 and 1.2 m °C−1 of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C−1 within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. PMID:23858443

  6. Climate And Sea Level: It's In Our Hands Now

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Bell, R. E.; Ryan, W. B. F.

    2014-12-01

    Changes in sea level are measurable on both a local and a global scale providing an accessible way to connect climate to education, yet engaging teachers and students with the complex science that is behind the change in sea level can be a challenge. Deciding how much should be included and just how it should be introduced in any single classroom subject area can be an obstacle for a teacher. The Sea Level Rise Polar Explorer App developed through the PoLAR CCEP grant offers a guided tour through the many layers of science that impact sea level rise. This map-based data-rich app is framed around a series of questions that move the user through map layers with just the level of complexity they chose to explore. For a quick look teachers and students can review a 3 or 4 sentence introduction on how the given map links to sea level and then launch straight into the interactive touchable map. For a little more in depth look they can listen to (or read) a one-minute recorded background on the data displayed in the map prior to launching in. For those who want more in depth understanding they can click to a one page background piece on the topic with links to further visualizations, videos and data. Regardless of the level of complexity selected each map is composed of clickable data allowing the user to fully explore the science. The different options for diving in allow teachers to differentiate the learning for either the subject being taught or the user level of the student group. The map layers also include a range of complexities. Basic questions like "What is sea level?" talk about shorelines, past sea levels and elevations beneath the sea. Questions like "Why does sea level change?" includes slightly more complex issues like the role of ocean temperature, and how that differs from ocean heat content. And what is the role of the warming atmosphere in sea level change? Questions about "What about sea level in the past?" can bring challenges for students who have

  7. Two Decades of Global and Regional Sea Level Observations from the ESA Climate Change Initiative Sea Level Project

    NASA Astrophysics Data System (ADS)

    Legeais, JeanFrancois; Larnicol, Gilles; Cazenave, Anny; Ablain, Michael; Benveniste, Jérôme; Lucas, BrunoManuel; Timms, Gary; Johannessen, Johnny; Knudsen, Per; Cipollini, Paolo; Roca, Monica; Rudenko, Sergei; Fernandes, Joana; Balmaseda, Magdalena; Quartly, Graham; Fenoglio-Marc, Luciana; Scharfennberg, Martin; Meyssignac, Benoit; Guinle, Thierry; Andersen, Ole

    2015-04-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV with regular updates, as required for climate studies. After a first phase (2011-2013), the program has started in 2014 a second phase of 3 years. The objectives of this second phase are to involve the climate research community, to refine their needs and collect their feedbacks on product quality, to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. To this extent, the ECV time series has been extended and it now covers the period 1993-2013. We will firstly present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 21 years climate time series are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product validation, performed by several groups of the ocean and climate modeling community. At last, the work plan and key challenges of the second phase of the project are described.

  8. Late Holocene sea level changes and tectonic movements inferred from fossil diatom assemblages in Tainohama, Tokushima prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Chiba, T.; Fujino, S.; Kobori, E.

    2014-12-01

    freshwater species, suggesting paleo-sea level changes. The sea level in this area declined gradually to modern sea level from +50cm higher level than modern by eustatic sea level fall during the late Holocene (Sato 2014), thus the fluctuations suggest co-seismic or inter-seismic crustal movements of the past interplate earthquakes along the Nankai Trough.

  9. Hazard Risk to Near Sea-Level Populations due to Tropical Cyclone Intensification and Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Montain, J.; Byrne, J. M.; Elsner, J.

    2010-12-01

    Tropical cyclone (TC) intensification has been well documented in the science literature. TC intensification combined with sea-level rise contributes to an enhanced risk to huge populations living near sea level around the world. This study will apply spatial analysis techniques to combine the best available TC intensification data on storm surge, wave height and wind speeds; with digital elevation models and global population density estimates, to provide a first level evaluation of the increasing risk to human life and health.

  10. The importance of sea-level research (Plinius Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Horton, Benjamin

    2016-04-01

    200 million people worldwide live in coastal regions less than 5 meters above sea level. By the end of the 21st century, this figure is estimated to increase to 500 million. These low-lying coastal regions are vulnerable to changes in sea level brought about by climate change, storms or earthquakes. But the historic and instrumental record is too short to fully understand the climate relationships and capture the occurrence of the rare, but most destructive events. The coastal sedimentary record provides a long-term and robust paleo perspective on the rates, magnitudes and spatial variability of sea-level rise and the frequency (recurrence interval) and magnitude of destructive events. Reconstructions of paleo sea level are important for identifying the meltwater contributions, constraining parameters in Earth-Ice models, and estimating past and present rates of spatially variable sea-level change associated glacial isostatic adjustment, sediment compaction and tidal range variability. Sea-level reconstructions capture multiple phases of climate and sea-level behavior for model calibration and provide a pre-anthropogenic background against which to compare recent trends. Pre-historic earthquakes (Mw>8.0) are often associated with abrupt and cyclical patterns of vertical land-motion that are manifest in coastal sedimentary archives as abrupt changes in relative sea level. Geologic evidence of paleoearthquakes elucidates characteristic and repeated pattern of land-level movements associated with the earthquake-deformation cycle. Tsunamis and storms leave behind anomalous and characteristic sediment that is incorporated into the coastal sedimentary record often as evidence of a high-energy event affecting a low-energy, depositional environment. Records of tsunamis developed from the sedimentary deposits they leave behind improve understanding of tsunami processes and frequency by expanding the age range of events available for study. Reconstructions of paleo storms

  11. Low frequency Sea Level Variability: correlation between altimetry and tide gauges in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonaduce, A.; Pinardi, N.

    2012-04-01

    Sea level variability in the Mediterranean Sea over the decadal time scale is studied using a combination of sea level and in-situ observations. A method to decompose the different sea level signals for tide gauges and altimetry is proposed, so that a coherent comparison between the two measurements is possible. The steric component and the atmospheric pressure contribution (inverse barometer) are filtered in order to look at sea level changes over decadal time scales. Low frequency sea level from tide gauges data is found to be representative of a large scale signal and results to be comparable, along all the basin, with satellite altimetry data. In particular the two signals are better correlated in the areas where the continental shelf is extended, such as the northern Adriatic. The same occurs in the case where the tide gauge station is located on an island, such as Malta, where the station is representative of the open ocean sea level signal. Moving towards the Levantin basin, the shelves extension generally decrease and the two data sets tend to be less correlated even if still correlated positively with a root mean square error lower than 5 cm (Hadera, Israel). Looking at the sea level trend, a positive trend of 2.15 ± 0.7 mm yr -1 is observed in the Mediterranean basin considering satellite altimetry during the period from 1993 to 2010 . Glacial Isostatic Adjustment (GIA) has been considered correcting sea level data with ICE-5G model data. This value represent just and index of the sea level changes occurring at basin scale. The basin presents a marked trend spatial variability, mainly characterized by strong positive trends in the shelves areas and negative trends in the Ionian sea, due to a strong change in the circulation in this basin. The variability of the trend values as a function of the number of years considered is such that at least 15 years of data are needed in order to obtain a significant and stable positive trend. The total lack of in

  12. Characterization of extreme sea level at the European coast

    NASA Astrophysics Data System (ADS)

    Elizalde, Alberto; Jorda, Gabriel; Mathis, Moritz; Mikolajewicz, Uwe

    2015-04-01

    Extreme high sea levels arise as a combination of storm surges and particular high tides events. Future climate simulations not only project changes in the atmospheric circulation, which induces changes in the wind conditions, but also an increase in the global mean sea level by thermal expansion and ice melting. Such changes increase the risk of coastal flooding, which represents a possible hazard for human activities. Therefore, it is important to investigate the pattern of sea level variability and long-term trends at coastal areas. In order to analyze further extreme sea level events at the European coast in the future climate projections, a new setup for the global ocean model MPIOM coupled with the regional atmosphere model REMO is prepared. The MPIOM irregular grid has enhanced resolution in the European region to resolve the North and the Mediterranean Seas (up to 11 x 11 km at the North Sea). The ocean model includes as well the full luni-solar ephemeridic tidal potential for tides simulation. To simulate the air-sea interaction, the regional atmospheric model REMO is interactively coupled to the ocean model over Europe. Such region corresponds to the EuroCORDEX domain with a 50 x 50 km resolution. Besides the standard fluxes of heat, mass (freshwater), momentum and turbulent energy input, the ocean model is also forced with sea level pressure, in order to be able to capture the full variation of sea level. The hydrological budget within the study domain is closed using a hydrological discharge model. With this model, simulations for present climate and future climate scenarios are carried out to study transient changes on the sea level and extreme events. As a first step, two simulations (coupled and uncoupled ocean) driven by reanalysis data (ERA40) have been conducted. They are used as reference runs to evaluate the climate projection simulations. For selected locations at the coast side, time series of sea level are separated on its different

  13. A global reanalysis of storm surges and extreme sea levels

    PubMed Central

    Muis, Sanne; Verlaan, Martin; Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2016-01-01

    Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood. PMID:27346549

  14. Overestimation of marsh vulnerability to sea level rise

    NASA Astrophysics Data System (ADS)

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-03-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  15. Overestimation of marsh vulnerability to sea level rise

    USGS Publications Warehouse

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-01-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  16. Chronology of fluctuating sea levels since the triassic.

    PubMed

    Haq, B U; Hardenbol, J; Vail, P R

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented. PMID:17818978

  17. Chronology of Fluctuating Sea Levels since the Triassic

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  18. A global reanalysis of storm surges and extreme sea levels

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Verlaan, Martin; Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2016-06-01

    Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood.

  19. Twenty-two Years of Sea Level Rise

    NASA Video Gallery

    This visualization shows total sea level change between the beginning of 1993 and the end of 2014, based on data collected from the TOPEX/Poisedon, Jason-1, and Jason-2 satellites. Blue regions are...

  20. A global reanalysis of storm surges and extreme sea levels.

    PubMed

    Muis, Sanne; Verlaan, Martin; Winsemius, Hessel C; Aerts, Jeroen C J H; Ward, Philip J

    2016-01-01

    Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood. PMID:27346549

  1. Seasonal coastal sea level prediction using a dynamical model

    NASA Astrophysics Data System (ADS)

    McIntosh, Peter C.; Church, John A.; Miles, Elaine R.; Ridgway, Ken; Spillman, Claire M.

    2015-08-01

    Sea level varies on a range of time scales from tidal to decadal and centennial change. To date, little attention has been focussed on the prediction of interannual sea level anomalies. Here we demonstrate that forecasts of coastal sea level anomalies from the dynamical Predictive Ocean Atmosphere Model for Australia (POAMA) have significant skill throughout the equatorial Pacific and along the eastern boundaries of the Pacific and Indian Oceans at lead times out to 8 months. POAMA forecasts for the western Pacific generally have greater skill than persistence, particularly at longer lead times. POAMA also has comparable or greater skill than previously published statistical forecasts from both a Markov model and canonical correlation analysis. Our results indicate the capability of physically based models to address the challenge of providing skillful forecasts of seasonal sea level fluctuations for coastal communities over a broad area and at a range of lead times.

  2. Island biogeography: Shaped by sea-level shifts

    NASA Astrophysics Data System (ADS)

    Fernández-Palacios, José María

    2016-04-01

    An analysis of changes in island topography and climate that have occurred since the last glacial maximum 21,000 years ago shows how sea-level change has influenced the current biodiversity of oceanic islands. See Letter p.99

  3. Chronology of fluctuating sea levels since the triassic

    SciTech Connect

    Haq, B.U.; Hardenbol, J.; Vail, P.R.

    1987-03-06

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  4. North Atlantic sea-level variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Gehrels, Roland; Long, Antony; Saher, Margot; Barlow, Natasha; Blaauw, Maarten; Haigh, Ivan; Woodworth, Philip

    2014-05-01

    Climate modelling studies have demonstrated that spatial and temporal sea-level variability observed in North Atlantic tide-gauge records is controlled by a complex array of processes, including ice-ocean mass exchange, freshwater forcing, steric changes, changes in wind fields, and variations in the speed of the Gulf Stream. Longer records of sea-level change, also covering the pre-industrial period, are important as a 'natural' and long-term baseline against which to test model performance and to place recent and future sea-level changes and ice-sheet change into a long-term context. Such records can only be reliably and continuously reconstructed from proxy methods. Salt marshes are capable of recording decimetre-scale sea-level variations with high precision and accuracy. In this paper we present four new high-resolution proxy records of (sub-) decadal sea-level variability reconstructed from salt-marsh sediments in Iceland, Nova Scotia, Maine and Connecticut that span the past 400 to 900 years. Our records, based on more than 100 new radiocarbon analyses, Pb-210 and Cs-137 measurements as well as other biological and geochemical age markers, together with hundreds of new microfossil observations from contemporary and fossil salt marshes, capture not only the rapid 20th century sea-level rise, but also small-scale (decimetre, multi-decadal) sea-level fluctuations during preceding centuries. We show that in Iceland three periods of rapid sea-level rise are synchronous with the three largest positive shifts of the reconstructed North Atlantic Oscillation (NAO) index. Along the North American east coast we compare our data with salt-marsh records from New Jersey, North Carolina and Florida and observe a trend of increased pre-industrial sea-level variability from south to north (Florida to Nova Scotia). Mass changes and freshwater forcing cannot explain this pattern. Based on comparisons with instrumental sea-level data and modelling studies we hypothesise that

  5. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    PubMed

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. PMID:26160951

  6. Sea level differences across the Gulf Stream and Kuroshio extension

    NASA Technical Reports Server (NTRS)

    Zlotnicki, Victor

    1991-01-01

    The sea level differences between the Sargasso Sea and the slope waters across the Gulf Stream region, averaged between 73 and 61 deg W, and the comparable areas across the Kuroshio extension region, averaged between 143 and 156 deg E, were estimated using the Geosat altimeter data obtained between November 1986 and December 1988. The sea-level differences between the two regions showed a strong correlation between the northwest Atlantic and Pacific, dominated by annual cycles that peak in late-September to mid-October, with about 9 cm (the Gulf Stream region) and about 6.9 cm (Kuroshio region) amplitudes.

  7. A unified sea-level response function to global warming

    NASA Astrophysics Data System (ADS)

    Winkelmann, Ricarda; Mengel, Matthias; Reese, Ronja; Levermann, Anders

    2015-04-01

    Linear response functions provide an alternative to process-based models to project future sea-level rise. They are designed to capture the sea-level response to a certain forcing in a comprehensive manner without relying on the full understanding but comprising all processes involved. Here, we propose one unified sea-level response function to global warming as a synthesis of different response functions of the major contributors: oceanic thermal expansion, ice loss from mountain glaciers as well as ice loss from the two ice-sheets on Greenland and Antarctica both through changes in the surface mass balance and dynamic discharge. Except for surface mass balance changes of the ice sheets which occur instantaneously, each response function is inherently time-dependent and accounts for the fact that past climate change will continue to influence sea-level rise in the future. The proposed functions separately estimate the contributions from the main sea-level components on a centennial time scale. The validity of the approach is assessed by comparing the sea-level estimates obtained via the response functions to observations as well as projections from comprehensive models. Total sea level rise and the observed contributions in the past decades are reasonably well reproduced by our approach. Provided that the underlying dynamic mechanisms do not undergo a qualitative change within the 21st century, the response functions found for the individual components can therefore be merged into a single response function in order to project global sea-level rise for a given global mean temperature anomaly.

  8. Holocene sequence stratigraphy and sea level rise, south Florida margin

    SciTech Connect

    Locker, S.D.; Hine, A.C.; Toscano, M.A. ); Shinn, E.A. )

    1993-03-01

    Fluctuation of late Quaternary sea level has been an important factor controlling erosional and depositional patterns on portions of the outer shelf and slope seaward of the lower-most Florida Keys. Studies in this area using high-resolution seismic, side scan sonar, bottom grab sampling, and submersible dives document a Holocene succession of lowstand wedge, transgressive, and highstand systems tract facies which have formed in response to sea level flooding the margin. The last lowstand of sea level is recorded by widespread scallop-like erosion along the slope front, occurring as deep as 150 m. Upslope from the erosional cuts, the transgressive systems tract includes a series of drowned shoreline (and reef) accumulations in the depth range 60--110 meters. Rocks recovered form paleoshorelines near 100 m water depth were submarine-cemented grainstones composed of early Holocene shallow-water carbonates. This transgressive section is partially buried by weakly laminated to reflection free fined-grained deposits of the highstand systems tract. These recent muddy silts reflect a sediment source initiated by flooding of the inner shelf platform and subsequent alongslope transport of fines exported offbank. Two very continuous, linear, and thin (< 5 m thick) paleoshorelines at 60--62 m and 66--68 m reflect a response to a change in rate of sea-level rise across a low gradient surface. The deeper shoreline deposits, ranging from 75--110 m below sea level are isolated features and occur on steeper slopes. The character of preserved transgressive deposits suggests the Holocene rate of rise is punctuated. The lowest stand of sea level produced distinctive erosional features. Accretional transgressive deposits formed during the sea-level rise. Interactions between antecedent topography, bottom currents, and changes in sediment supply, slope gradients, and rate of sea-level rise are key factors controlling facies patterns, accumulation rates, and depositional geometries.

  9. Adapting to Rising Sea Level: A Florida Perspective

    NASA Astrophysics Data System (ADS)

    Parkinson, Randall W.

    2009-07-01

    Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.

  10. Future sea-level rise due to projected ocean warming beneath the Filchner Ronne Ice Shelf: A coupled model study

    NASA Astrophysics Data System (ADS)

    Thoma, Malte; Determann, Jürgen; Grosfeld, Klaus; Goeller, Sebastian; Hellmer, Hartmut H.

    2015-12-01

    A general ocean circulation model is coupled with a 3D-thermodynamical ice-sheet/shelf model to simulate the response of the Filchner-Ronne Ice Shelf (FRIS, Antarctica) and coastal parts of its catchment basin to a postulated inflow of Warm Deep Water into the ice-shelf cavity on a 1000-yr timescale. Prescribed ocean warming (based on climate projections) enters the ice-shelf cavity in the up to 1500 m deep Filchner Trough and penetrates deep into the sub-ice cavity. Increasing basal melt rates induce geometry changes of the cavity, which in turn have an impact on the ocean circulation and therefore the modelled melt rates. Highest melt rates of about 20 m yr-1 follow the (up to 180 km) retreating grounding line. Basal mass loss reaches about 250 km3 yr-1, doubling the present-day value. The most vulnerable areas below the FRIS are the Bailey Ice Stream and the area between the Institute and Moeller Ice Streams, where the increased melting accounts for about 80 km of the modelled grounding line retreat on the backward sloping bedrock. The potential additional contribution to the eustatic sea level rise due to the grounded-ice loss, simulated in an ensemble approach against a transient control experiment, is about 0.05 mm yr-1 during the first 500 yr and about 0.17 mm yr-1 thereafter.

  11. The effect of global climate change on sea level variations along the Bulgarian Black Sea shore

    SciTech Connect

    Mungov, G.; Vesselinov, V.

    1996-12-31

    Data of long-time sea level records along the Bulgarian Black Sea shore are analyzed from the point of view of the global climate change. The analysis of the extreme levels discovers an increase of their appearance during the last 15 years. Two different periods are studied and the recent increases imply the possibility of changes in the regime of the extreme marine events in the Western Black Sea. The cycles in the mean sea levels and the statistical characteristics of the interannual (seasonal) variations are determined. Trends in the sea level records are studied for three basic periods, according the periods in the annual temperature anomalies of the northern hemisphere: 1924--1943; 1944--1973; 1974--1991. The mean sea level rise has maximum value during the first period and minimum during the last third one. This is explained with the decrease of the water inflow into the sea and some initial disturbances in its water balance due to the global climate change. The influence of the global climate change is studied using multiple regression on global environmental data.

  12. Sea level Variability and Juan de Fuca Bathymetry

    NASA Astrophysics Data System (ADS)

    Huybers, P. J.; Boulahanis, B.; Proistosescu, C.; Langmuir, C. H.; Carbotte, S. M.; Katz, R. F.

    2015-12-01

    That deglaciation influences mid-ocean ridge volcanism is well established for Iceland, where depressurization associated with melting a ~2 km ice cap led to order of magnitude increases in volcanism during the last deglaciation. The case was also made that the more subtle ~100 m changes in sea level that accompany glacial cycles have identifiable implications for undersea mid-ocean ridge systems using both models and data from the Australian-Antarctic Ridge (Crowley et al., 2015). Sea level rising at ~1 cm/year during deglaciation leads to an expectation of ~10% decreases in melt production at ridges, given mantle upwelling rates of ˜3 cm/yr at intermediate spreading ridges and mantle density being ~3 times that of seawater. The implications of variations in melt production for bathymetry, however, involve numerous considerations, including whether melt signals are cancelled within the melt column, appreciably alter accretionary or fault processes, and have identifiable surface expressions. Further empirical assessment of bathymetry is thus useful for purposes of confirming patterns and constraining processes. Here we report on spectral analyses of bathymetry recently acquired from the Juan de Fuca ridge between 44°30'N and 45°15'N during the SeaVOICE expedition. Multibeam swath sonar data were acquired with an EM122 sonar insonfiying seafloor to crustal ages of ˜2 ma with 35 m spatial resolution. We examine (1.) the statistical significance of concentrations of bathymetric variability at the 100 ky, 41 ky, and 23 ky periods characteristic of late-Pleistocene sea level variability; (2.) whether sea level responses are primarily at 41 ky periods in crust accreted during the early Pleistocene, when global sea level variations were primarily at this period; and (3.) if sea level responses are superimposed on bathymetry variations or, instead, align with fault features. We also note that Juan de Fuca's proximity to the Cordilleran Ice Sheet implies that regional

  13. Improvements of sea level anomaly maps in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cheng, Yongcun; Baltazar Andersen, Ole; Knudsen, Per

    2013-04-01

    Obtaining satellite data at high latitude regions is generally very problematic. In the Arctic Ocean (For this investigation defined as 65°N-82°N), the ERS and ENVISAT sun-synchronous satellite altimetry measurements are nearly always affected by the presence of sea ice. Consequently, it is difficult to get accurate altimetric data for oceanography and climatology and this affect i.e., determination of the linear sea level trend over the regions. The objective of our study is to develop a new 3 days sea level anomaly maps in the Arctic Ocean. Multi-satellite (i.e., ERS-1, ERS-2 and ENVISAT) along track sea level anomaly data is extracted by applying adjusted editing criteria. Initially, the removal of orbit errors in sun-synchronous satellite altimetry is performed. A joint crossover with simultaneous TOPEX/Jason satellite altimetry, are used to adjust the long wavelength bias and tilt of the ERS-1, ERS-2 and ENVISAT. Subsequently, the adjusted sea level anomalies are gridded to a normal 0.5°×0.5°grid using collocation with a second-order Markov covariance function using spatial temporal interpolation which takes into account data from nearby periods in case of missing data. The data is then combined with tide gauge data and model outputs, the new data is used to study the sea level variability in Arctic Ocean. The contributors (for example, thermosteric, ice sheets and water mass) to the sea level change in the region are investigated. Moreover, significant decadal signal in sea level variation is found from tide gauge data and its comparison with AO index. The presentation is a contribution to the EU 7th FW supported projects MONARCH-A.

  14. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  15. Experiments in Reconstructing Twentieth-Century Sea Levels

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Douglas, Bruce C.

    2011-01-01

    One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.

  16. Local Sea Level Derived from Reflected GNSS Signals

    NASA Astrophysics Data System (ADS)

    Löfgren, J. S.; Haas, R.; Scherneck, H.; Bos, M. S.

    2011-12-01

    The traditional way to observe sea level is to use tide gauges, resulting in measurements relative to the Earth's crust. However, in order to measure the sea-level change due to changes in ocean water volume and/or other oceanographic phenomena, all types of crustal motion at the measurement site need to be known. We present a remote sensing technique for measuring local sea level using standard geodetic-type Global Navigation Satellite System (GNSS) receivers. The installation consists of a zenith-looking Right Hand Circular Polarized (RHCP) antenna, receiving the direct signals, and a nadir-looking Left Hand Circular Polarized antenna, receiving the signals reflected of the sea surface. Each antenna is connected to a receiver and the antenna pair is deployed back-to-back at a coastal site. Estimating the vertical baseline between the two antennas, using standard geodetic analysis, the local sea level and its temporal variations can be determined. The advantage of this technique is that it allows to measure both sea surface height changes with relative positioning and land surface height changes, e.g., by precise point positioning of the RHCP antenna. Furthermore, the combined measurements of local sea level are automatically corrected for land motion, meaning that this installation could provide continuously reliable sea-level estimates in tectonic active regions. This GNSS-based tide gauge has been operating continuously at the Onsala Space Observatory (OSO) on the west coast of Sweden since September 2010. We present results from several months of operations and compare them to sea-level measurements from two stilling well gauges about 18 km south and 33 km north of OSO. We find a high degree of agreement between the time series with correlation coefficients of larger than 0.95. The root-mean-square differences between the GNSS-derived sea level and the stilling well gauge measurements are 5.9 cm and 5.5 cm, which is lower than between the two stilling well (6

  17. Extending the Instrumental Record of Sea-Level Change: A 1300-Year Sea-Level Record From Eastern Connecticut

    NASA Astrophysics Data System (ADS)

    Donnelly, J. P.; Cleary, P.

    2002-12-01

    The instrumental record of sea-level change in the northeastern United States extends back to the early 20th century and at New York City (NYC) extends back to 1856. These tide gauge records indicate that sea level has risen at a rate of 2.5 to 4 mm/year over the last 100-150 years. Geologic evidence of sea-level change in the region over the last 2,000 years indicates rates of sea-level rise of about 1 mm/year or less. The discordance between the instrumental and geologic records is frequently cited as potentially providing evidence that anthropogenic warming of the climate system has resulted in an increase in the rate of sea-level rise. In order to begin to test the hypothesis that acceleration in the rate of sea-level rise has occurred in the last 150 years due to anthropogenic climate warming, accurate and precise information on the timing of the apparent acceleration in sea-level rise are needed. Here we construct a high-resolution relative sea-level record for the past 1350 years by dating basal salt marsh peat samples above a glacial erratic in a western Connecticut salt marsh. Preservation of marsh vegetation remains in the sediment record that has a narrow vertical habitat range at the upper end of the tidal range provides information on past sea levels. { \\it Spartina patens} (marsh hay) and { \\it Juncus gerardi} (black rush) dominate both the modern marsh and their remains are the major constituent of the marsh sediments and occur in the modern marsh between mean high water (MHW) and mean highest high water. We use the elevation distribution of modern plant communities to estimate the relationship of sediment samples to paleo-mean high water. The chronology is based on 15 radiocarbon ages, supplemented by age estimates derived from the horizons of industrial Pb pollution and pollen indicative of European land clearance. Thirteen of the radiocarbon ages and the Pb and pollen data come from samples taken along a contact between marsh peat and a glacial

  18. Orthogonal stack of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  19. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt; Clemmensen, Lars B.; Pejrup, Morten; Noe-Nygaard, Nanna

    2014-11-01

    Relative sea level curves contain coupled information about absolute sea level change and vertical lithospheric movement. Such curves may be constructed based on, for example tide gauge data for the most recent times and different types of geological data for ancient times. Correct account for vertical lithospheric movement is essential for estimation of reliable values of absolute sea level change from relative sea level data and vise versa. For modern times, estimates of vertical lithospheric movement may be constrained by data (e.g. GPS-based measurements), which are independent from the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality of the obtained results. The two tested inversion schemes result in estimated absolute sea level rise of ˜1.2/1.3 mm yr-1 and vertical uplift rates ranging from approximately -1.4/-1.2 mm yr-1 (subsidence) to about 5.0/5.2 mm yr-1 if an a priori value of 1 mm yr-1 is used for the vertical lithospheric movement throughout the study area. In case the studied time interval is broken into two time intervals (before and after 1970), absolute sea level rise values of ˜0.8/1.2 mm yr-1 (before

  20. Sea level: measuring the bounding surfaces of the ocean

    PubMed Central

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  1. Sea level: measuring the bounding surfaces of the ocean.

    PubMed

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  2. Analysis of the sea levels in Kiribati A Rising Sea of Misrepresentation Sinks Kiribati

    NASA Astrophysics Data System (ADS)

    Parker, Albert

    2016-03-01

    The sea levels of Kiribati have been stable over the last few decades, as elsewhere in the world. The Australian government funded Pacific Sea Level Monitoring (PSLM) project has adjusted sea level records to produce an unrealistic rising trend. Some information has been hidden or neglected, especially from sources of different management. The measured monthly average mean sea levels suffer from subsidence or manipulation resulting in a tilting from the about 0 (zero) mm/year of nearby tide gauges to 4 (four) mm/year over the same short time window. Real environmental problems are driven by the increasing local population leading to troubles including scarcity of water, localized sinking and localised erosion.

  3. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling

    USGS Publications Warehouse

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.

    1998-01-01

    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (<20 m) in this supposedly ice-free world because Eocene sequence boundaries also appear to correlate with minor ??18O increases. Subsidence estimates (backstripping) indicate amplitudes of short-term (million-year scale) lowerings that are consistent with estimates derived from ??18O studies (25-50 m in the Oligocene-middle Miocene and 10-20 m in the Eocene) and a long-term lowering of 150-200 m over the past 65 myr, consistent with estimates derived from volume changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist

  4. How Does the Morphology of Shelf-Margin Deltas Relate to Sea-Level Elevation? Clues From the Modern Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Bart, P. J.

    2005-12-01

    Scientists have attempted to precisely determine eustatic changes using various techniques. One of these is the sequence stratigraphic technique which relies on vertical changes in the position of coastal onlap (Vail et al, 1977). In subsequent years, several authors have recognized many limitations in this approach (Christie-Blick et al., 1990). Our ongoing study focuses on the possibility of using the morphology of modern and ancient shelf-margin deltas as sea-level indicators to determine past sea-level elevations. The Mississippi River Delta provides an excellent opportunity to study the precise relationship between shelf-edge delta morphology and sea-level elevation. A morphological analysis of the modern Mississippi River Delta suggests that there may be a direct relationship between the sea-level and the offlap break features of the delta. The offlap break is defined at the intersection of topset and foreset at the location of a marked increase in slope. At this point, the bathymetric curvature (i.e. second derivative of sea-floor) is highest. This is analogous to O'Grady and Syvitski (2002) definition of shelf break offshore Greenland. More than a hundred bathymetric cross sections were made across the modern Balize lobe of the Mississippi River Delta using Rivertools software. The geomorphic analysis showed that there were two distinct morphologic types of the delta. In one type, there is a sharp transition from the topset to the foreset, whereas in a second type, the topset-foreset transition is gradual. It was observed that sharp offlap breaks characterize the eastern part of the delta at water depths of 1 ± 0.3 m. The southern and southwestern parts of the delta are characterized by gradual offlap breaks at water depths of 4 ± 2 m.

  5. Two Decades of Global and Regional Sea Level Observation from the ESA Climate Change Initiative Sea Level Project

    NASA Astrophysics Data System (ADS)

    Larnicol, Gilles; Cazenave, Anny; Ablain, Michael; Legeais, JeanFrancois; Faugere, Yannice; Benveniste, Jerome; Lucas, Bruno; Dinardo, Salvatore; Johannessen, Johnny; Stammer, Detlef; Timms, Gary; Knudsen, Per; Cipollini, Paolo; Roca, Monica; Rudenko, Sergei; Fernandes, Joana; Balmaseda, Magdalena; Guinle, Thierry

    2014-05-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. This program aims at providing long-term satellite-based products for climate (ECV products), that should be used by the climate research community. This program has just completed its first phase (Oct. 2010 to Dec. 2013) and will start in February 2014 the second phase of 3 years. The objective of the second phase are similar: to involve the climate research community to refine their needs and collect their feedbacks on product quality, to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. We will firstly present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 18 years climate time series (delivered in Sept. 2012) are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product validation, performed by several groups of the ocean and climate modeling community. At last, the work plan and key challenges of the second phase of the project are described.

  6. Quantitative constraints on the sea-level fall that terminated the Littorina Sea Stage, southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Clemmensen, Lars B.; Murray, Andrew S.; Nielsen, Lars

    2012-04-01

    The island of Anholt in the Kattegat sea (southern Scandinavia) is made up largely of an extensive beach-ridge plain. As a result of post-glacial uplift, the earliest beach-ridge and swale deposits are now raised 8-9 m above present mean sea level. It appears that growth of the plain has been almost uninterrupted over the past 7500 years; here we constrain the evolution of this plain between 6300 and 1300 years ago using optically stimulated luminescence dates. The topography and internal architecture of the fossil shoreline deposits were measured on high-resolution maps and in ground-penetrating radar (GPR) reflection data with a vertical resolution of ˜0.25 m. Shoreline topography shows significant changes with time, and it appears that one of the most striking changes took place between 4300 and 3600 years ago; in the shoreline deposits corresponding to this time interval the surface drops by around 3.5 m suggesting a marked fall in relative sea-level. Assuming a constant uplift rate of 1.2 mm/yr, the corresponding drop in absolute sea-level is estimated to be around 2.6 m. This marked sea-level fall in 700 years took place at the transition from the Middle Holocene Thermal Maximum to the Late Holocene Thermal Decline or at the end of the Littorina Sea stage in the Baltic Sea region.

  7. Measuring Sea Level Change (Vening Meinesz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.

    2010-05-01

    For over 75 years, the Permanent Service for Mean Sea Level (PSMSL) at the Proudman Oceanographic Laboratory has maintained the global data bank for long term sea level change information from tide gauges. This data set has in recent years received most attention in studies of sea level rise related to climate change. However, it is also valuable in research into ocean circulation variability (oceanography), vertical land movements (geology) and geodetic datums (geodesy). This presentation will review some of the main applications of mean sea level information so far. In addition, it will point to the role of tide gauges within what is becoming a powerful combination of gauges, GPS, absolute gravity, satellite altimetry and space gravity for the study of sea and land level variations on a global basis. However, changes in mean levels are only one part of sea level research. Other topics include changes in extreme sea levels which are of practical importance as well as being interesting scientifically. Recent studies have begun to investigate changes in extremes worldwide, identifying those areas where secular changes in extremes tend to be determined by those in mean values, and areas where they are not. In addition, intriguing recent work has identified regional changes in ocean tides which are larger than expected from secular change in the tidal potential. Such tidal changes are also important within studies of extremes. This presentation will attempt to show the wide range of studies possible with a copious globally-distributed tide gauge data set, many of which are very relevant to the understanding of a changing world.

  8. Sea-level and the `Stage 11 Problem`

    NASA Astrophysics Data System (ADS)

    Bowen, D. Q.

    2003-12-01

    Estimating an approximate relative sea level for oxygen isotope stage 11 may have a critical bearing on a solution to the `stage 11 problem` that identifies the mismatch between low eccentricity forcing and the disproportionate ice volume response - that also includes a relative sea level response. The perennial problem of separating ice volume from temperature effects has hampered attempts to estimate sea level from delta 18O data sets, even for younger odd numbered stages when comparisons with U-series ages on corals are available. Stage 11 sea levels on `stable` and uplifting coasts are recognised from geomorphic features such as terraces and shoreline angles, sediments and corals, and yield a range of estimates from over 20 m to just below present sea level. Given that the 413 ka Milankovitch pacing provides similar orbital configurations for stage 11 and the Holocene some interest attaches to the potential sea-level similarity between them, especially for the future Holocene. Attempts to derive a stage 11 sea level from coasts uplifting at different rates have used `uplift correction graphs` or uplift correction equations, but a major handicap is the dearth of appropriate geochronologic ages both for stage 11 and substage 5e (5.5) - the base line for estimating average uplift rates. Different estimates for the age of stage 11 and 5e (5.5), and the duration of 5e, have yielded a range of estimates. Earlier estimates relied on single locations or regional evidence, but it is probably misleading to rely on these. To combat this several world-wide locations are assembled and, using locality-specific data, provide a mean estimate for the stage 11 sea level of 11 m, plus-minus 10 m. But by applying a set of standardised parameters (including the peak sea level at 402 ka - event 11.3 of the Bassinott time scale) the mean sea level for stage 11 emerges as 2 m plus-minus 7 m. This closes the gap between inferences from delta 18O variability, the latest of which point

  9. Nordic Sea Level - Analysis of PSMSL RLR Tide Gauge data

    NASA Astrophysics Data System (ADS)

    Knudsen, Per; Andersen, Ole

    2015-04-01

    Tide gauge data from the Nordic region covering a period of time from 1920 to 2000 are evaluated. 63 stations having RLR data for at least 40 years have been used. Each tide gauge data record was averaged to annual averages after the monthly average seasonal anomalies were removed. Some stations lack data, especially before around 1950. Hence, to compute representative sea level trends for the 1920-2000 period a procedure for filling in estimated sea level values in the voids, is needed. To fill in voids in the tide gauge data records a reconstruction method was applied that utilizes EOF.s in an iterative manner. Subsequently the trends were computed. The estimated trends range from about -8 mm/year to 2 mm/year reflecting both post-glacial uplift and sea level rise. An evaluation of the first EOFs show that the first EOF clearly describes the trends in the time series. EOF #2 and #3 describe differences in the inter-annual sea level variability with-in the Baltic Sea and differences between the Baltic and the North Atlantic / Norwegian seas, respectively.

  10. Modeling Floodplain Dynamics: Can the Ganges-Brahmaputra Delta keep pace with 21st Century Sea Level Rise?

    NASA Astrophysics Data System (ADS)

    Rogers, K. G.; Overeem, I.

    2013-12-01

    The low-lying Ganges-Brahmaputra (G-B) Delta in Bangladesh is densely populated (~1200 people/km2) and could be flooded within the next century by rapid sea level rise and increased monsoonal rains. The G-B Rivers currently transport 1*109 tons of sediment from their basins in the Himalaya Mountains to the delta each year, with ~90% of the annual sediment load delivered during the Asian summer monsoon. Sediment distribution across the delta's surface by floods and coastal storms has kept pace with the rate of relative sea level rise along the Bengal coast, enabling the delta to maintain a positive elevation. However, ensemble Community Climate System Model experiments predict 11% higher monsoonal rainfall for the next century, potentially leading to extreme flooding events in the delta. Stratigraphic reconstructions show that sedimentation in the upper G-B floodplain was more than doubled under the Early Holocene enhanced monsoonal regime, suggesting that the delta may withstand an increase in monsoon intensity, flooding, and tropical cyclones that are currently predicted. Whether the G-B floodplains and coastal areas will ultimately drown under predicted sea level rise and monsoon intensification depends on a balance of aggradation, eustatic sea level rise and subsidence. To improve predictions of climatic forcing on aggradation rates in the lower G-B floodplain and coastal plain, direct sedimentation measurements collected in 2008 and 2012 in the lower delta are paired with a series of model components coupled within the Community Surface Dynamics Modeling System (CSDMS) Modeling Tool (CMT). We use three separate numerical models to simulate river basin sediment flux, floodplain sedimentation, and tidal-plain aggradation. The model inputs are based on available 20Th century climate and river gauge data, and outputs are compared to modern sedimentation rates within the G-B tidal delta and highly cultivated central coastal plain. The models are then used to test

  11. Global Sea-level Changes Revealed in the Sediments of the Canterbury Basin, New Zealand: IODP Expedition 317

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Fulthorpe, C.; Blum, P.; Rios, J.; Chow, Y.; Mishkin, K.

    2012-12-01

    Continental margins are composed of thick sedimentary sections that preserve the record of local processes modulated by global sea-level (eustatic) changes and climate. Understanding this regional variability permits us to extract the eustatic record. Integrated Ocean Drilling Program Expedition 317 drilled four sites in the offshore Canterbury Basin, eastern South Island of New Zealand, in water depths of 85 m to 320 m. One of the objectives of the expedition was to understand the influence of eustasy on continental margins sedimentation and to test the concepts of sequence stratigraphy. A high-resolution multiproxy approach that involves geochemical elemental analyses, lithostratigraphy and biostratigraphy is applied to understand the margin's sedimentation for the past ~5 million years. Multichannel seismic data (EW00-01 survey) provide a seismic sequence stratigraphic framework against which to interpret the multiproxy data. The mid- to late Pleistocene sedimentation is characterized by variable lithologies and changing facies. However, elemental compositions and facies follow predictable patterns within seismic sequences. Oxygen isotope measurements for the latest Pleistocene indicate that 100 ky Milankovich astronomical forcing controlled this variability. In contrast, Pliocene and early Pleistocene sediments are composed of repetitive siliciclastic and carbonate mud lithologies with less facies variability. Results of our analyses suggest that repetitive alternations of green and gray mud were deposited during warmer and cooler periods, respectively. Oxygen isotopes suggest that this cyclicity may reflect 40 ky Milankovich forcing. Ocean Drilling Program Legs 150 and 174A drilled on the New Jersey continental margin with similar objectives to those of Expedition 317. Results from this northern and southern hemisphere drilling reveal that eustasy, controlled by Milankovich forcing, strongly influences margin sedimentation and the formation of basin

  12. A nonstationary analysis for the Northern Adriatic extreme sea levels

    NASA Astrophysics Data System (ADS)

    Masina, Marinella; Lamberti, Alberto

    2013-09-01

    The historical data from the Trieste, Venice, Porto Corsini, and Rimini tide gauges have been used to investigate the spatial and temporal changes in extreme high water levels in the Northern Adriatic. A detailed analysis of annual mean sea level evolution at the three longest operating stations shows a coherent behavior both on a regional and global scale. A slight increase in magnitude of extreme water elevations, after the removal of the regularized annual mean sea level necessary to eliminate the effect of local subsidence and sea level rise, is found at the Venice and Porto Corsini stations. It seems to be mainly associated with a wind regime change occurred in the 1990s, due to an intensification of Bora wind events after their decrease in frequency and intensity during the second half of the 20th century. The extreme values, adjusted for the annual mean sea level trend, are modeled using a time-dependent GEV distribution. The inclusion of seasonality in the GEV parameters considerably improves the data fitting. The interannual fluctuations of the detrended monthly maxima exhibit a significant correlation with the variability of the large-scale atmospheric circulation represented by the North Atlantic Oscillation and Arctic Oscillation indices. The different coast exposure to the Bora and Sirocco winds and their seasonal character explain the various seasonal patterns of extreme sea levels observed at the tide gauges considered in the present analysis.

  13. New data on the Holocenic sea-level rise in NW Sicily (Central Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Antonioli, F.; Cremona, G.; Immordino, F.; Puglisi, C.; Romagnoli, C.; Silenzi, S.; Valpreda, E.; Verrubbi, V.

    2002-09-01

    The emerged and submerged coastal tracts of selected areas in NW Sicily (San Vito Lo Capo Promontory and Marettimo Island in the Egadi Archipelago) have been studied by means of an interdisciplinary approach (geomorphological and neotectonic surveys, palaeontological, depositional and petrographical observations) with the aim to characterize the coastal evolution of the sector over a wide time frame (Late Pleistocene and Holocene) and to recognize the geological indicators of relative sea-level fluctuations. Neotectonic studies performed all along the coastal sector through the check of the present-day height of marine notches and of the inner margin of marine terraces of Eutyrrhenian age allowed to assess the entity of post-Tyrrhenian differential crustal movements in the area. The calculated rates of uplift confirm the relative stability of the area in the last 125 ka and that the relative corrections introduced can be considered negligible in the reconstruction of sea-level rise in the last thousand years. On the base of these considerations, the sea-level rise curve which has been drawn for the Holocene through the radiometric dating ( 14C and U/Th) of submerged speleothems and Vermetid reefs is assumed to gain a regional significance and to represent a good reference datum for the Central-Southern Mediterranean Sea. In addition, the sea-level rise data are in good agreement with the predicted sea-level curves based on geophysical models previously applied to the same study areas.

  14. History of Aral Sea level variability and current scientific debates

    NASA Astrophysics Data System (ADS)

    Cretaux, Jean-François; Letolle, René; Bergé-Nguyen, Muriel

    2013-11-01

    The Aral Sea has shrunk drastically over the past 50 years, largely due to water abstraction from the Amu Darya and Syr Darya rivers for land irrigation. Over a longer timescale, Holocene palaeolimnological reconstruction of variability in water levels of the Aral Sea since 11,700 BP indicates a long history of alternating phases of regression and transgression, which have been attributed variously to climate, tectonic and anthropogenic forcing. The hydrological history of the Aral Sea has been investigated by application of a variety of scientific approaches, including archaeology, palaeolimnological palaeoclimate reconstruction, geophysics, sedimentology, and more recently, space science. Many issues concerning lake level variability over the Holocene and more recent timescales, and the processes that drive the changes, are still a matter for active debate. Our aim in this article is to review the current debates regarding key issues surrounding the causes and magnitude of Aral Sea level variability on a variety of timescales from months to thousands of years. Many researchers have shown that the main driving force of Aral Sea regressions and transgressions is climate change, while other authors have argued that anthropogenic forcing is the main cause of Aral Sea water level variations over the Holocene. Particular emphasis is made on contributions from satellite remote sensing data in order to improve our understanding of the influence of groundwater on the current hydrological water budget of the Aral Sea since 2005. Over this period of time, water balance computation has been performed and has shown that the underground water inflow to the Aral Sea is close to zero with an uncertainty of 3 km3/year.

  15. Contribution of climate forcing to sea level variations in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Natsiopoulos, Dimitrios A.; Vergos, Georgios S.; Tziavos, Ilias N.

    2016-04-01

    With the availability of an abundance of earth observation data from satellite altimetry missions as well as those from the ENVISAT and CRYOSAT-2 satellites, monitoring of the sea level variations is gaining increased importance. In this work, altimetric data sets from the satellite remote sensing missions of ENVISAT and CRYOSAT-2 have been used to study the variations of the Mediterranean sea level. Alongside, a correlation analysis of Sea Level Anomalies (SLAs) with global and regional climatic indexes that influence the ocean state, has been carried out as well. The raw data used were SLAs from the respective altimetric missions, acquired by the on-board altimeters from the ENVISAT satellite for seven consecutive years (2003-2009) and from the CRYOSAT-2 satellite for six consecutive years (2010-2015). Three oscillation indexes have been investigated, as representative of climate-change and seasonal forcing on the sea level. The first one was the well-known Southern Oscillation Index (SOI), the next one the North Atlantic Oscillation (NAO) index and the third, being primarily more representative of the Mediterranean sea state, was the Mediterranean Oscillation Index (MOI). The possible correlation is investigated in both monthly and annual scales, while a regional multiple regression and a principal component analysis (PCA) between the SLAs and oscillation indexes is carried out. Multiple regression and PCA have been used as tools in order to deduce possible correlations between the Mediterranean sea level variations and the aforementioned oscillation indexes, under the assumption that SLA variations are driven by steric forcing. Finally, evidence of the sea level cyclo-stationarity in the Mediterranean Sea is deduced from the analysis of empirically derived covariance functions at monthly intervals from the available SLA data.

  16. Sea level trend and variability around the Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2014-06-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. Resulting sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); while long-term sea level trend is related to global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability around the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 1.6 mm yr-1 and 2.7 ± 1.0 mm yr-1, respectively. Allowing for corresponding vertical land movements (VLM; 0.8 ± 2.6 mm yr-1 and 0.9 ± 2.2 mm yr-1), their absolute SLR rates are 3.2 ± 4.2 mm yr-1 and 3.6 ± 3.2 mm yr-1, respectively. For the common period 1993-2009, absolute SLR rates obtained from both tide gauge and satellite altimetry in Peninsular Malaysia are similar; and they are slightly higher than the global tendency. It further underlines that VLM should be taken into account to get better estimates of SLR observations. At interannual scale, ENSO affects sea level over the Malaysian coast in the range of ±5 cm with a very high correlation. Meanwhile, IOD modulates sea level anomalies mainly in the Malacca Strait in the range of ±2 cm with a high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index

  17. Global mean sea level - Indicator of climate change

    NASA Technical Reports Server (NTRS)

    Robock, A.; Hansen, J.; Gornitz, V.; Lebedeff, S.; Moore, E.; Etkins, R.; Epstein, E.

    1983-01-01

    A critical discussion is presented on the use by Etkins and Epstein (1982) of combined surface air temperature and sea level time series to draw conclusions concerning the discharge of the polar ice sheets. It is objected by Robock that they used Northern Hemisphere land surface air temperature records which are unrepresentative of global sea surface temperature, and he suggests that externally imposed volcanic dust and CO2 forcings can adequately account for observed temperature changes over the last century, with global sea level changing in passive response to sea change as a result of thermal expansion. Hansen et al. adduce evidence for global cooling due to ice discharge that has not exceeded a few hundredths of a degree centigrade in the last century, precluding any importance of this phenomenon in the interpretation of global mean temperature trends for this period. Etkins and Epstein reply that since their 1982 report additional evidence has emerged for the hypothesis that the polar ice caps are diminishing. It is reasserted that each of the indices discussed, including global mean sea surface temperature and sea level, polar ice sheet mass balance, water mass characteristics, and the spin rate and axis of rotation displacement of the earth, are physically linked and can be systematically monitored, as is currently being planned under the auspices of the National Climate Program.

  18. Widespread and Accelerated Glacier Thinning in the Svalbard Archipelago: a New Estimate of Sea-Level Contributions

    NASA Astrophysics Data System (ADS)

    James, T. D.; Murray, T.; Barrand, N.; Fox, A.; Luckman, A. J.; Sykes, H. J.

    2009-12-01

    Quantifying glacier contribution to sea-level rise is difficult due largely to a scarcity of long-term mass balance observations. Of more than 160,000 glaciers worldwide only about 40 have mass balance records longer than 20 years. We have developed a new method that will significantly increase the distribution and spatial/temporal resolution of mass balance records by combining historical aerial photographs and contemporary, high resolution laser altimetry. Because of their sensitivity to changes in climate, we focused initially on the land-terminating glaciers of the Svalbard archipelago. Also, while small mountain glaciers like those in Svalbard constitute only about 3% of the glacierized area on Earth, of all the world’s ice masses, they are currently thought to be the greatest contributors to eustatic sea-level rise. We produced a high-quality (±0.25 m vertical), high-resolution (10 m grid) digital elevation time series for a distributed sample of Svalbard glaciers dating back to the early 1960s from historical stereo aerial photography. The archive, controlled with laser altimetry, provides the first long-term mass balance record for Svalbard of this quality, spatial resolution and areal distribution. Significant thinning was observed at all locations, with western Svalbard glaciers showing the highest acceleration of mass loss during the last 15 years. These changes were dominated not by accelerated thinning at the glacier termini but by changes at higher elevations in former accumulation zones that appear to be driven by changes in albedo. Given that most of the archipelago’s ice is already at or close to the current equilibrium line altitude, this high altitude acceleration in thinning will have significant consequences on the archipelago’s net balance. The high local and regional variability in mass change on individual glaciers and between adjacent glaciers raises doubt as to the validity of point and profile change data to represent glacier

  19. The hazard of Sea Level Rise (SLR) in Greece: from scientific knowledge towards risk awareness of main actors

    NASA Astrophysics Data System (ADS)

    Dandoulaki, Miranda; Karymbalis, Efthimios; Yorgos, Melissourgos; Skordili, Sophia; Valkanou, Kanella

    2014-05-01

    A natural hazard that is expected to affect coastal areas in the near future is Sea-Level Rise (SLR) due to climate change. According to recent reports the eustatic sea-level rise caused by global warming will reach approximately 18-59 cm by the year 2100. Potential impacts of future sea-level rise include coastal erosion, frequent and intensified cyclonic activity and associated storm surge flooding that may affect the coastal zones, saltwater intrusion into groundwater aquifers, the inundation of ecologically significant wetlands, and threats to cultural and historical resources, as well as to infrastructure. The identification of sensitive sections of coasts and the assessment of potential impacts of SLR on these is therefore a fundamental, yet initial, step towards their protection. Greece has the most extensive coastline among all Mediterranean countries with most of the socio-economic activities concentrated along the coastal zone. Almost all big urban centres are coastal ones and the same stands for a great part of infrastructure (ports, airports, roads, electricity and telecommunications network etc). As a result, the impacts of a potential rise of the sea level are expected to seriously affect the entire country. The paper examines the vulnerability to SLR of coastal zones in Greece; however its main focus is how knowledge can lead to policy making and the protection of coastal areas. The main actors in respect to protection from SLR in Greece are identified and there is an attempt to pin point how the knowledge is communicated and shared between them. Barriers, bridges and gaps are detected as regards how information and knowledge lead to risk awareness and finally to the implementation of protection policies. A main finding of the paper is that SLR risk is far from becoming a policy priority in Greece, although steps are taken for addressing impacts attributed to SLR such as coastal erosion. In order to address this risk, there are many potential

  20. How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?

    NASA Astrophysics Data System (ADS)

    Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J. Walter; Bossick, Matthew

    2016-01-01

    Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between 42 and 57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.

  1. Long-period sea-level variations in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Zerbini, Susanna; Raicich, Fabio; Bruni, Sara; del Conte, Sara; Errico, Maddalena; Prati, Claudio; Santi, Efisio

    2016-04-01

    Since the beginning of its long-lasting lifetime, the Wegener initiative has devoted careful consideration to studying sea-level variations/changes across the Mediterranean Sea. Our study focuses on several long-period sea-level time series (from end of 1800 to 2012) acquired in the Mediterranean by tide gauge stations. In general, the analysis and interpretation of these data sets can provide an important contribution to research on climate change and its impacts. We have analyzed the centennial sea-level time series of six fairly well documented tide gauges. They are: Marseille, in France, Alicante in Spain, Genoa, Trieste, Venice and Marina di Ravenna (formerly Porto Corsini), in Italy. The data of the Italian stations of Marina di Ravenna and Venice clearly indicate that land subsidence is responsible for most of the observed rate of relative sea level rise. It is well known that, in the two areas, subsidence is caused by both natural processes and human activities. For these two stations, using levelling data of benchmarks at, and/or close to, the tide gauges, and for the recent years, also GPS and InSAR height time series, modelling of the long-period non-linear behavior of subsidence was successfully accomplished. After removing the land vertical motions, the estimate of the linear long-period sea-level rise at all six stations yielded remarkably consistent values, between +1,2 and +1,3 mm/yr, with associated errors ranging from ±0,2 to ±0,3 mm/yr (95% confidence interval), which also account for the statistical autocorrelation of the time series. These trends in the Mediterranean area are lower than the global mean rate of 1,7±0,2 mm/yr (1901-2010) presented by the IPCC in its 5th Assessment Report; however, they are in full agreement with a global mean sea-level rise estimate, over the period 1901-1990, recently published by Hay et al. (2015, doi:10.1038/nature14093) and obtained using probabilistic techniques that combine sea-level records with physics

  2. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tang, Q.; Jin, X.

    2007-09-01

    A total of 2759 stomachs collected from a bottom trawl survey carried out by R/V "Bei Dou" in the Yellow Sea between 32°00 and 36°30N in autumn 2000 and spring 2001 were examined. The trophic levels (TL) of eight dominant fish species were calculated based on stomach contents, and trophic levels of 17 dominant species in the Yellow Sea and the Bohai Sea reported in later 1950s and mid-1980s were estimated so as to be comparable. The results indicated that the mean trophic level at high trophic levels declined from 4.06 in 1959-1960 to 3.41 in 1998-1999, or 0.16-0.19·decade - 1 (mean 0.17·decade - 1 ) in the Bohai Sea, and from 3.61 in 1985-1986 to 3.40 in 2000-2001, or 0.14·decade - 1 in the Yellow Sea; all higher than global trend. The dominant species composition in the Yellow Sea and the Bohai Sea changed, with the percentage of planktivorous species increases and piscivorous or omnivorous species decreases, and this was one of the main reasons for the decline in mean trophic level at high tropic levels. Another main reason was intraspecific changes in TL. Similarly, many factors caused decline of trophic levels in the dominant fish species in the Yellow Sea and the Bohai Sea. Firstly, TL of the same prey got lower, and anchovy ( Engraulis japonicus) as prey was most representative. Secondly, TLs of diet composition getting lower resulted in not only decline of trophic levels but also changed feeding habits of some species, such as spotted velvetfish ( Erisphex pottii) and Trichiurus muticus in the Yellow Sea. Thirdly, species size getting smaller also resulted in not only decline of trophic levels but also changed feeding habits of some species, such as Bambay duck ( Harpodon nehereus) and largehead hairtail ( Trichiurus haumela). Furthermore, fishing pressure and climate change may be interfering to cause fishing down the food web in the China coastal ocean.

  3. Seasonal variations of the sea level in the central part of the Red Sea

    NASA Astrophysics Data System (ADS)

    Sultan, S. A. R.; Ahmad, F.; El-Hassan, A.

    1995-01-01

    Seasonal sea-level changes at two coastal stations, Jeddah and Port Sudan, display higher levels in winter and lower levels in summer, showing a coherence over a distance of 300 km. The amplitude of these changes is slightly higher at Jeddah compared with that of Port Sudan. Analysis of wind stress indicates that the cross-shore component plays a dominant role in the sea-level changes at Port Sudan in contrast to Jeddah where a major part of the changes can be accounted for by the long-shore component.

  4. Impact of sea level rise on tide gate function.

    PubMed

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America. PMID:23379951

  5. Sea Level Rise and Subsidence in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Niemnil, Sommart

    In the Thailand -EC GEO2TECDI-SONG Project we investigate the sea level change and vertical land motion in Thailand. First, Bangkok is situated in river delta and average height is closed to sea level. Second, it is subsiding due to ground water extraction. Third, it is experiencing post-seismic motion due to nearby mega thrust earthquakes and fourth, it suffers from rising of sea levels due to global climate change. This poses a serious threat on Thai society and economy. Before mitigation methods can be devised we aim at charting, qualifying and quantifying all contributing effects by the use of satellite altimetry, GNSS, InSAR techniques and combining results with the in situ observations like tide gauge and with geophysical modeling. Adding GPS based vertical land motion to the tide gauge sea level registration reveals the absolute sea level change, which is nicely confirmed by altimetry. We find an average absolute rise of 3.5 mm/yr + 0.7, but nears mouth of Chao Praya River (Bangkok) and the Mekong delta (Ho Chi Min City), this mounts to 4 to 5 mm/yr, faster than global average. This is reinforced when accounting for the tectonic subsidence that resulted from 2004 9.1Mw Sumatra/Andaman earthquake; from 2005 onwards we find downfall in the order of 10 mm/yr. RADARSAT InSAR analyses show subsidence rates up to 25 mm/yr at many places along coastal Bangkok.

  6. Global sea level trend during 1993-2012

    NASA Astrophysics Data System (ADS)

    Chen, Xianyao; Feng, Ying; Huang, Norden E.

    2014-01-01

    Projection of future sea level change relies on the understanding of present sea-level trend and how it has varied in the past. Here we investigate the global-mean sea level (GMSL) change during 1993-2012 using Empirical Mode Decomposition, in an attempt to distinguish the trend over this period from the interannual variability. It is found that the GMSL rises with the rate of 3.2 ± 0.4 mm/yr during 1993-2003 and started decelerating since 2004 to a rate of 1.8 ± 0.9 mm/yr in 2012. This deceleration is mainly due to the slowdown of ocean thermal expansion in the Pacific during the last decade, as a part of the Pacific decadal-scale variability, while the land-ice melting is accelerating the rise of the global ocean mass-equivalent sea level. Recent rapid recovery of the rising GMSL from its dramatic drop during the 2011 La Niña introduced a large uncertainty in the estimation of the sea level trend, but the decelerated rise of the GMSL appears to be intact.

  7. Changes in Sea Levels around the British Isles Revisited (Invited)

    NASA Astrophysics Data System (ADS)

    Teferle, F. N.; Hansen, D. N.; Bingley, R. M.; Williams, S. D.; Woodworth, P. L.; Gehrels, W. R.; Bradley, S. L.; Stocchi, P.

    2009-12-01

    Recently a number of new and/or updated sources for estimates of vertical land movements for the British Isles have become available allowing the relative and average changes in sea levels for this region to be revisited. The geodetic data set stems from a combination of re-processed continuous Global Positioning System (GPS) measurements from stations in the British Isles and from a global reference frame network, and absolute gravity (AG) measurements from two stations in the British Isles. The geologic data set of late Holocene sea level indicators has recently been updated, now applying corrections for the 20th century sea level rise, syphoning effect and late Holocene global ice melt, and expanded to Northern Ireland and Ireland. Several new model predictions of the glacial isostatic adjustment (GIA) process active in this region form the modelling data set of vertical land movements for the British Isles. Correcting the updated revised local reference (RLR) trends from the Permanent Service for Mean Sea Level (PSMSL) with these vertical land movement data sets, regional and averaged changes in sea levels around the British Isles have been investigated. Special focus is thereby also given to the coastal areas that have recently been identified within the UK Climate Projections 2009.

  8. Spectrum of mesoscale sea level oscillations in the northern Black Sea: Tides, seiches, and inertial oscillations

    NASA Astrophysics Data System (ADS)

    Medvedev, I. P.; Kulikov, E. A.

    2016-01-01

    Long-term data from 23 tide gauges were used to analyze the spectrum of mesoscale sea level variability of the Black Sea. The tides have sharp spectral peaks, and they are detected at diurnal and semidiurnal frequencies for all stations. A local wide spectral peak associated with inertial oscillations is located between the diurnal and semidiurnal tidal peaks. This peak is well known in the spectra of the current velocity variations of the Black Sea, but in the sea level spectrum it has been identified for the first time. At frequencies of >3 cpd, sea level spectra of the Black Sea have (1) wide maxima in the continuous spectrum, which correspond to the main eigenmodes of the sea with periods of 5.6, 4.8, 4.1, and 3.1 h, and (2) sharp peaks of radiational harmonics S3, S4, S5, and S6. The periods of seiches calculated in this study are close to the periods of eigenmodes of the Black Sea, obtained by the numerical modeling of other authors. The main factors influencing the formation of radiational tides in the Black Sea are presumably breezes and runoff from large rivers. The significant predominance of a harmonic with frequency of 5 cpd (S5) over other radiational harmonics is caused by the influence of an eigenmode, with a frequency of about 5 cpd. The proximity of the periods of these oscillations leads to resonant amplification and to a corresponding increase in amplitude of the radiational harmonic S5.

  9. Ice2sea - tackling uncertainty in projections of sea-level rise

    NASA Astrophysics Data System (ADS)

    Vaughan, David

    2013-04-01

    The future security and prosperity of our growing coastal cities and survival of many unique coastal habitats requires scientists to deliver reliable sea-level projections, which will form the basis of protection and adaptation planning for vulnerable coastal regions. Most contributions to sea-level rise can now be predicted with some confidence; the greatest remaining uncertainty lies in the contribution of ice-loss from Antarctica and Greenland. An EU Framework-7 programme, ice2sea, is working to inform the IPCC Fifth Assessment, and provide policy-makers with reliable sea-level projections, taking account of the long response-times of ice sheets and the complex atmospheric and oceanic changes that impact them. The collective efforts of 24 partners in Europe and overseas to the ice2sea have produced projections of the contribution of global glaciers and ice sheets to sea-level rise, using process-based models tied to specific emissions scenarios. These projections are synthesised here, with identification of geographical areas and processes where uncertainty is significantly reduced, and others where potential for future reduction remain urgently required.

  10. NASA Now: Climate Change: Sea Level Rise

    NASA Video Gallery

    Dr. Josh Willis discusses the connection between oceans and global climate change. Learn why NASA measures greenhouse gases and how we detect ocean levels from space. These are crucial vital signs ...

  11. Improving sea level record in arctic using ENVISAT altimeter measurements

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Poisson, Jean-Christophe; Hoang, Duc; Quartly, Graham; Kurekin, Andrey

    2015-04-01

    The Arctic is an important component of the climate system whose exact influence on ocean circulation is still poorly understood today. This region is also very sensitive to global warming and some direct consequences like melting ice are particularly visible. In this context, extending the knowledge of the sea level variability as far as possible in the Arctic Ocean is a valuable contribution to the understanding of rapid changes occurring in this region. Due to a particularly complex and unstable environment, ocean observation is challenging considering that sea level measurements can be widely corrupted by the presence of sea ice in the altimeter footprint. In the framework of the ESA Sea Level Climate Change Initiative project, new algorithms have been developed and implemented to process 10 years of ENVISAT altimeter data over the Arctic Ocean and to improve the sea level measurement in this region. The new processing chain contains three main steps. The first task consists in identifying altimetric returns for which a standard proven estimation processing may be used, and in flagging those requiring more sophisticated processing. This will include introducing a novel approach that uses the relationship with neighbouring waveforms to aid in the identification of key reflecting surfaces. The second task consists in applying estimators that performs better in situations where sea-ice covers partially or totally the observed surface. The last task consists in investigating the transition zones to make sure that no artificial discontinuities are introduced by the different processing and to reduce these discontinuities. We propose in this talk, to explain and illustrate the different steps of this study and to show important figures of improvement regarding the estimation of sea level variability in the Arctic Ocean.

  12. Sea Level Change, A Fundamental Process When Interpreting Coastal Geology and Geography.

    ERIC Educational Resources Information Center

    Zeigler, John M.

    1985-01-01

    Discusses the meaning of sea level change and identifies the major factors responsible for this occurrence. Elaborates on the theory and processes involved in indirect measurement of changes in sea volume. Also explains how crustal movement affects sea level. (ML)

  13. Relationship between sea-level pressure and sea-level height in the Camargue (French Mediterranean coast)

    NASA Astrophysics Data System (ADS)

    Moron, V.; Ullmann, A.

    2005-09-01

    A statistical study of daily maximum sea-level height at one station (Grau de la Dent) in the Camargue (Rhône delta, French Mediterranean coast) and daily sea-level pressure (SLP) at 12 h UTC over the eastern North Atlantic is used to identify the meteorological conditions associated with sea-level variations in the Camargue for the winters 1974-75 to 2000-01. Mean SLP composites during and 5 days before major surge events (defined as those with a daily maximum sea-level height >80 cm) suggest the dominant influence of storms, moving northwest to southeast across the North Atlantic and strengthening as they approach the Bay of Biscay. During such storms, strong onshore winds may persist for up to 4-5 days. These winds tend to strengthen from 3 days to 1 day before the surge events. The mean October-March correlation between daily maximum sea-level height in the Camargue and SLP averaged over the Bay of Biscay (10°W-0°, 40-50°N) is strong (r = 0.69). A methodology is developed for assessing the low-frequency SLP variability impact on sea-level height in the Camargue. A cross-validated linear regression is used to hindcast the interannual and intraseasonal variability of the monthly 75th and 90th percentiles of the daily maximum sea-level height from the monthly mean SLP over the Bay of Biscay. The linear correlation between the cross-validated hindcast and observed time series is 0.83 (0.77) for the 75th (90th) percentile on the 1974-75 to 2000-01 period. The mean bias error, reflecting systematic errors in predicting the monthly percentiles, is close to zero.

  14. The sea-level fingerprint of a Snowball Earth deglaciation

    NASA Astrophysics Data System (ADS)

    Creveling, Jessica R.; Mitrovica, Jerry X.

    2014-08-01

    Cap dolostones are thought to represent deposition from seas transgressing over formerly glaciated continental margins during Marinoan Snowball deglaciation. Nevertheless, facies associations within some cap dolostones indicate that an episode of regional regression punctuated these transgressive sequence tracts. To date, inferences of sea-level change during and after the Marinoan Snowball deglaciation have been interpreted using simple, qualitative arguments. In the present study, we explore the full spatio-temporal variability of sea-level change during Snowball deglaciation and its aftermath using a gravitationally self-consistent theory that accounts for the deformational, gravitational and rotational perturbations to sea level on a viscoelastic Earth model. The theory is applied to model Marinoan Snowball deglaciation on a generalized Ediacaran paleogeography with a synthetic continental ice-sheet distribution. We find that sea-level change following a synchronous, rapid (2 kyr) collapse of Snowball ice cover will exhibit significant geographic variability, including site-specific histories that are characterized by syn-deglacial sea-level fall or stillstand. Moreover, some sites that experience syn-deglacial transgression will continue to experience transgression in the post-deglacial phase. Taken together, these results suggest that sea-level change recorded by strata capping Snowball glaciogenic units may reflect a more complicated trajectory than previously thought, including deposition that was not limited to the deglaciation phase. These simulations, as well as others that explore the response to asynchronous melting and deglaciation phases of longer duration, demonstrate that an episode of regional regression interrupting a cap dolostone transgressive sequence tract may reflect one of several processes (or their combination): (1) near field adjustment associated with rapid local melting during an otherwise global hiatus in deglaciation; (2) post

  15. Holocene sea-level changes in the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  16. Sea-Level Anomalies Facilitate Beach Erosion and Increase Barrier Island Vulnerability to Storms and Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Theuerkauf, E. J.; Rodriguez, A. B.; Fegley, S. R.; Luettich, R. A., Jr.

    2014-12-01

    Sea-level anomalies are intra-seasonal (weeks to months) periods of high water level induced by oceanographic and meteorological processes, such as reduced Gulf Stream transport strength or persistent northeasterly winds. Although flooding associated with sea-level anomalies has been documented along continental coastlines (e.g. U.S. East Coast), these phenomena are not presently included in coastal models and management plans. We present the first measurements of beach erosion after a year with frequent sea-level anomalies. Erosion during this year, which was not impacted by large storms, was similar to a year with a hurricane, indicating that sea-level anomalies are important facilitators of coastal erosion. Beach erosion was measured at Onslow Beach, NC (OB) in a year with frequent sea-level anomalies (2009-2010) and compared to erosion during a year with no major events (2010-2011) and the year with Hurricane Irene (2011-2012). Sea-level anomalies were identified in water level data from a NOAA tide gauge in Wrightsville Beach, NC. From 2009-2010 anomalously high sea level occurred ~40% of the time, compared to ~8% from 2010-2011 and ~10% from 2011-2012. Significant wave heights, measured from an acoustic wave and current profiler and NOAA buoys offshore of OB, were not statistically different among these 3 years. The average backshore, high intertidal, and mid intertidal maximum depth of erosion for all sites along OB in the year with frequent sea-level anomalies were ~25, 50, and 55 cm, respectively. These values are greater than those measured after the year with no major events (~13, 29, and 32 cm) and similar to those measured after the year with Hurricane Irene (~27, 49, and 40 cm). OB has high along-strike variability in barrier island morphology, thus results apply to many beaches and barrier islands. Our results suggest that anomalies are important mechanisms of coastal change and likely amplify erosion in response to accelerated sea-level rise and

  17. Concerns--High Sea Levels and Temperatures Seen Next Century.

    ERIC Educational Resources Information Center

    Ryan, Paul R.

    1984-01-01

    A National Research Council committee recently concluded that atmospheric carbon dioxide levels will "most likely" double by late in the next century, causing an increase in the earth's average temperature. Effects of the increase on sea levels, global climate, and other parameters are discussed. (JN)

  18. Trends in Plio-Pleistocene southwest Pacific stable isotope stratigraphy: Implications for orbital forcing of ice sheets and mid-Pliocene sea level estimates

    NASA Astrophysics Data System (ADS)

    Patterson, M. O.; Mckay, R. M.; Naish, T.; Wilson, G. S.; Ohneiser, C.; Woodard, S. C.; Bostock, H. C.; Caballero-Gill, R. P.

    2015-12-01

    We present a new high resolution Early to mid-Pliocene (4.3 to 3.0 Ma) benthic stable isotope record (δ18O and δ13C), a revised magnetostratigraphy and an orbitally tuned age model extending the Early Pliocene to Early Pleistocene (4.3 to 1.2 Ma) record for ODP Site 1123. Placing the δ18O and δ13C time series on an orbital-scale age model provides the chronological basis for high-resolution proxy records spanning the Early Pliocene to Early Pleistocene. By comparison with previous published records (DSDP 607, ODP 1090/704, ODP 849, MV0502-AJC), we examine long-term changes in intra and inter-basinal benthic δ13C records in order to trace the ventilation history of deep-water masses. These comparisons highlight that during the warm Early to mid-Pliocene (3.6 to 2.7 Ma) South Atlantic and southwest Pacific gradients where much larger than during the Pleistocene. These findings are not consistent with Late Pleistocene and modern reconstructions in which South Atlantic δ13C values are slightly lower than south Pacific values at depths bathed by LCDW. Thus, indicating that while LCDW bathing the South Atlantic may have had an enhanced NADW signature, such a situation in the southwest Pacific did not exist during the warm mid-Pliocene. Furthermore, while the δ18O record from Site 1123 demonstrates an overall agreement with the global benthic δ18O stack LR04 exhibiting 40-kyr oscillations in ice volume/temperature, the mid to Late Pliocene interval (~3.3 to 2.8 Ma) demonstrates low frequency ice volume/temperature variability consistent with 100-kyr eccentricity. Eustatic sea-level estimates from δ18O values are consistent with all higher-end (22±10 m compared to modern) values for peak interglacial highstands between 2.9-3.2 Ma. Thus, inferring 100-kyr Antarctic ice sheet variability from marine based margins of the East Antarctic Ice Sheet (EAIS) during the mid to Late Pliocene contributed to sea level, whereas after ~2.9 Ma (post interglacial G17) ODP Site

  19. Tracking multidecadal trends in sea level using coral microatolls

    NASA Astrophysics Data System (ADS)

    Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David

    2015-04-01

    Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated

  20. Rising sea level may cause decline of fringing coral reefs

    NASA Astrophysics Data System (ADS)

    Field, Michael E.; Ogston, Andrea S.; Storlazzi, Curt D.

    2011-08-01

    Coral reefs are major marine ecosystems and critical resources for marine diversity and fisheries. These ecosystems are widely recognized to be at risk from a number of stressors, and added to those in the past several decades is climate change due to anthropogenically driven increases in atmospheric concentrations of greenhouse gases. Most threatening to most coral reefs are elevated sea surface temperatures and increased ocean acidity [e.g., Kleypas et al., 1999; Hoegh-Guldberg et al., 2007], but sea level rise, another consequence of climate change, is also likely to increase sedimentary processes that potentially interfere with photosynthesis, feeding, recruitment, and other key physiological processes (Figure 1). Anderson et al. [2010] argue compellingly that potential hazardous impacts to coastlines from 21st-century sea level rise are greatly underestimated, particularly because of the rapid rate of rise. The Intergovernmental Panel on Climate Change estimates that sea level will rise in the coming century (1990-2090) by 2.2-4.4 millimeters per year, when projected with little contribution from melting ice [Meehl et al., 2007]. New studies indicate that rapid melting of land ice could substantially increase the rate of sea level rise [Grinsted et al., 2009; Milne et al., 2009].

  1. A sea-level recorder for tectonic studies

    NASA Technical Reports Server (NTRS)

    Bilham, R.

    1977-01-01

    In the past tide gauges have provided valuable information concerning the vertical ground deformation associated with major earthquakes. Although tide-gauge data contains numerous sources of noise, a spacing of less than 40 km between gauges is indicated for a useful study of dilatant behavior, and a spacing of less than 80 km may be adequate for the study of crustal downwarping in island arcs. An inexpensive tide gauge which is designed to provide a continuous record of sea level with a measurement precision of 1 mm is described. Hydraulic filtering is incorporated into the instrument to attenuate daily tides relative to longer period variations of sea level. The instrument is designed to operate from flashlight batteries for a year unattended and to withstand temporary submersion as might be caused by tsunamis. Several of these sea-level recorders have been installed in seismic gaps in the Aleutians and in the Caribbean.

  2. A new perspective on global mean sea level (GMSL) acceleration

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-06-01

    The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.

  3. Global Sea Level Rise and the Earth's Energy Balance

    NASA Astrophysics Data System (ADS)

    Willis, J.; Hobbs, W. R.

    2012-12-01

    As the oceans warm due to human-caused climate change, they contribute to both global and regional sea level rise. But the uptake of heat by the ocean also reflects the net radiative imbalance of the planet due to human interference with the climate. Global sea level rise and its components therefore provide a constraint on the Earth's Energy Balance, and vice versa. We will present an assessment of the sea level and energy budgets and their implications for the magnitude of deep ocean warming and net radiative forcing over the past decade. Observations from satellite altimeters and the GRACE gravity mission will be compared with in situ observations of ocean warming. In addition, we will consider observations from the Clouds and the Earth's Radiant Energy System (CERES) instruments to assess the Earth's net radiation balance. Finally, a new estimate of bias corrections for the XBT observations will be assessed and presented.

  4. Geosat observations of sea level response to barometric pressure forcing

    NASA Technical Reports Server (NTRS)

    Hoar, Timothy J.; Wilson, Clark R.

    1994-01-01

    Altimeter and sea level pressure data from the Geosat mission are analyzed for evidence of inverted barometer responses of sea level to atmospheric pressure forcing. Estimates of the inverted barometer coefficient are given for a variety of geographic regions and time scales using various orbit error removal strategies. There is some sensitivity to the orbit error removal method, but the estimated coefficients show a clear latitudinal dependence and are generally between -0.5 cm/mbar and -0.9 cm/mbar. The southern oceans respond slightly more like an inverted barometer than the northern oceans for similar latitudes. The regression exhibits significant geographic variability, particularly near major circulation features and in the northern hemisphere. The results suggest that the inverted barometer approximation is resonable over much of the oceans, but that some sea level variability may be correlated with barometric pressure by means other than the inverted barometer effect.

  5. The Significance of Rising Sea Levels.

    ERIC Educational Resources Information Center

    Conway, Gregory J.

    1989-01-01

    Describes an activity in which students graph changes in tides and ocean levels over a period in order to obtain a visual representation of the changes taking place and their effects upon the Earth. Provides questions for students to answer after construction of the graphs. (RT)

  6. Modal recovery of sea-level variability in the South China Sea using merged altimeter data

    NASA Astrophysics Data System (ADS)

    Jiang, Haoyu; Chen, Ge

    2015-09-01

    Using 20 years (1993-2012) of merged data recorded by contemporary multi-altimeter missions, a variety of sea-level variability modes are recovered in the South China Sea employing three-dimensional harmonic extraction. In terms of the long-term variation, the South China Sea is estimated to have a rising sea-level linear trend of 5.39 mm/a over these 20 years. Among the modes extracted, the seven most statistically significant periodic or quasi-periodic modes are identified as principal modes. The geographical distributions of the magnitudes and phases of the modes are displayed. In terms of intraannual and annual regimes, two principal modes with strict semiannual and annual periods are found, with the annual variability having the largest amplitudes among the seven modes. For interannual and decadal regimes, five principal modes at approximately 18, 21, 23, 28, and 112 months are found with the most mode-active region being to the east of Vietnam. For the phase distributions, a series of amphidromes are observed as twins, termed "amphidrome twins", comprising rotating dipole systems. The stability of periodic modes is investigated employing joint spatiotemporal analysis of latitude/longitude sections. Results show that all periodic modes are robust, revealing the richness and complexity of sea-level modes in the South China Sea.

  7. Adapting coastal structures to a moving relative sea level: Roman Time geoarchaeological evidence from Posillipo promontory (Naples, Italy).

    NASA Astrophysics Data System (ADS)

    Aucelli, Pietro; Cinque, Aldo; Giordano, Francesco; Mattei, Gaia; Pappone, Gerardo; Rizzo, Angela

    2016-04-01

    precisely measuring the present submersion of all remains, two paleo-sea levels has been detected: one for the 1st century BC at -4 / -5 m and another for the 1st century AD at -3 + -0.50 m. In conclusion, by comparing the relative palaeo-sea level we have found with the eustatic curve (Lambeck et al 2011), it appears that Posillipo area suffered 2 +/- 0.3m of subsidence after the 1st century AD. Moreover, the new interpretations we present here, strongly suggest that Posillipo area was also affected by subsidence between the 1st century BC and the 1st century AD, when the landmass sank about 1.5/2.5 m. Eventhough these movements appear less strong than those recognized in the Campi Flegrei central caldera, our results prove that volcano-tectonic movements of at least metrical magnitude have occurred also outside the caldera. In terms of human adaptation to the subsidence-induced rise of sea level during Roman times, the archaeological remains of Marechiaro e Rosbery indicate that the villas were restructured closing the rooms submerged by the sea.

  8. Estimations of a global sea level trend: limitations from the structure of the PSMSL global sea level data set

    NASA Astrophysics Data System (ADS)

    Gröger, M.; Plag, H.-P.

    1993-08-01

    Among the possible impacts on environmental conditions of a global warming expected as a consequence of the increasing release of CO 2 and various other greenhouse gases into the atmosphere, a predicted rise in global sea level is considered to be of high importance. Thus, quite a number of recent studies have focused on detecting the "global sea level rise" or even an acceleration of this trend. A brief review of these studies is presented, showing, however, that the results are not conclusive, though most of the studies have been based on a single global data set of coastal tide gauge data provided by the Permanent Service for Mean Sea Level (PSMSL). A detailed discussion of a thoroughly revised subset reveals that the PSMSL data set suffers from three severe limitations: (1) the geographical distribution of reliable tide gauge stations is rather uneven with pronounced concentrations in some areas of the northern hemisphere (Europe, North America, Japan), and much fewer stations on the southern hemisphere where particularly few stations are located in Africa and in Antarctica; (2) the number of stations recording simultaneously at any time is far less than the total number of stations with the maximum within the interval between 1958 and 1988; (3) the number of long records is extremely small and almost all of them originate from a few regions of the northern hemisphere. The sensitivity of the median of the local trends to these temporal and spatial limitations is discussed by restricting the data set in both the spatial and temporal distribution. It is shown that the data base is insufficient for determining an integral value of the global rise in relative sea level. The effect of polar motion on sea level is modelled and it turns out to be locally of the order of 0.5 mm/yr, affecting regional trends to an order of 0.1 mm/yr. Thus, this effect can be neglected on time scale of decades to a hundred years. Though the data set is insufficient for determining an

  9. Two Decades of Global and Regional Sea Level Observations from the ESA Climate Change Initiative Sea Level Project

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Gilles, G.; Cazenave, A. A.; Ablain, M.; Legeais, J. F.; Faugère, Y.; Lucas, B.; Dinardo, S.; Johannessen, J. A.; Stammer, D.; Timms, G.; Knudsen, P.; Cipollini, P.; Roca, M.; Rudenko, S.; Fernandes, J.; Balmaseda, M.; Quartly, G.; Fenoglio-Marc, L.; Guinle, T.

    2014-12-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV with regular updates, as required for climate studies. The program has just completed its first phase (Oct. 2010 to Dec. 2013) and has started in February 2014 the second phase of 3 years. The objectives of the second phase are to involve the climate research community, to refine their needs and collect their feedbacks on product quality, to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. To this extent, a temporal extension of the ECV will be delivered at the end of 2014 so that the covered period becomes 1993-2013. We will firstly present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 18 years climate time series (delivered in Sept. 2012) are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product validation, performed by several groups of the ocean and climate modeling community. At last, the work plan and key challenges of the second phase

  10. Attribution of Annual Maximum Sea Levels to Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Khouakhi, A.; Villarini, G.

    2015-12-01

    Tropical cyclones (TCs) can cause catastrophic storm surges with major social, economic, and ecological impacts in coastal areas. Understanding the contribution of TCs to extreme sea levels is therefore essential. In this work we examine the contribution of TCs to annual maximum sea levels at the global scale, including potential climate controls and temporal changes. Complete global coverage (1842-2014) of historical 6-hour best track TC records are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) data set. Hourly tide gauge data are obtained from the Joint Archive for Sea Level Research Quality Data Set. There are 177 tide gauge stations with at least 25 complete years of data between 1970 and 2014 (a complete year is defined as having more than 90% of all the hourly measurements in a year). We associate an annual maximum sea level at a given station with a TC if the center of circulation of the storm passed within a certain distance from the station within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (6h, 12h) and buffer zones (200km and 500km) around the tide gauge stations. Results highlight large regional differences, with some locations experiencing almost ¾ of their annual maxima during the passage of a TC. The attribution of annual maximum sea level to TCs is particularly high along the coastal areas of the eastern United States, the Gulf of Mexico, China, Japan, Taiwan and Western Australia. Further analyses will examine the role played by El Niño - Southern Oscillation and the potential temporal changes in TC contributions to annual maximum sea levels.

  11. Continental Shelf Morphology and Stratigraphy Offshore San Onofre, CA: The Interplay Between Rates of Eustatic Change and Sediment Supply

    USGS Publications Warehouse

    Klotsko, Shannon; Driscoll, Neal W.; Kent, Graham; Brothers, Daniel

    2016-01-01

    New high-resolution CHIRP seismic data acquired offshore San Onofre, southern California reveal that shelf sediment distribution and thickness are primarily controlled by eustatic sea level rise and sediment supply. Throughout the majority of the study region, a prominent abrasion platform and associated shoreline cutoff are observed in the subsurface from ~ 72 to 53 m below present sea level. These erosional features appear to have formed between Melt Water Pulse 1A and Melt Water Pulse 1B, when the rate of sea-level rise was lower. There are three distinct sedimentary units mapped above a regional angular unconformity interpreted to be the Holocene transgressive surface in the seismic data. Unit I, the deepest unit, is interpreted as a lag deposit that infills a topographic low associated with an abrasion platform. Unit I thins seaward by downlap and pinches out landward against the shoreline cutoff. Unit II is a mid-shelf lag deposit formed from shallower eroded material and thins seaward by downlap and landward by onlap. The youngest, Unit III, is interpreted to represent modern sediment deposition. Faults in the study area do not appear to offset the transgressive surface. The Newport Inglewood/Rose Canyon fault system is active in other regions to the south (e.g., La Jolla) where it offsets the transgressive surface and creates seafloor relief. Several shoals observed along the transgressive surface could record minor deformation due to fault activity in the study area. Nevertheless, our preferred interpretation is that the shoals are regions more resistant to erosion during marine transgression. The Cristianitos fault zone also causes a shoaling of the transgressive surface. This may be from resistant antecedent topography due to an early phase of compression on the fault. The Cristianitos fault zone was previously defined as a down-to-the-north normal fault, but the folding and faulting architecture imaged in the CHIRP data are more consistent with a

  12. Comparison of TOPEX sea surface heights and tide gauge sea levels

    NASA Technical Reports Server (NTRS)

    Mitchum, Gary T.

    1994-01-01

    TOPEX sea surface height data from the first 300 days of the mission are compared to sea level data from 71 tide gauges. The initial comparison uses sea surface height data processed according to standard procedures as defined in the users handbook. It is found that the median correlations for island and for coastal tide gauges are 0.53 and 0.42, respectively. The analogous root mean square (RMS) differences between the two data sets are 7.9 and 10.4 cm. The comparisons improve significantly when a 60-day harmonic is fit to the differences and removed. This period captures aliased M(sub 2) and S(sub 2) tidal energy that is not removed by the tide model. Making this correction and smoothing the sea surface height data over 25-km along-track segments results in median correlations of 0.58 and 0.46 for the islands and coastal stations, and median RMS differences of 5.8 and 7.7 cm, respectively. Removing once per revolution signals from the sea surface heights results in degraded comparisons with the sea levels. It is also found that a number of stations have poor comparisons due to propagating signals that introduce temporal lags between the altimeter and tide gauge time series. A final comparison is made by eliminating stations where this propagation effect is large, discarding two stations that are suspected to have problems with the sea level data, smoothing over 10-day intervals, and restricting attention to islands gauges. This results in a set of 552 data pairs that have a correlation of 0.66 and a RMS difference of 4.3 cm. The conclusion is that on timescales longer than about 10 days the RMS sea surface height errors are less than or of the order of several centimeters.

  13. Coastal flooding by tropical cyclones and sea-level rise.

    PubMed

    Woodruff, Jonathan D; Irish, Jennifer L; Camargo, Suzana J

    2013-12-01

    The future impacts of climate change on landfalling tropical cyclones are unclear. Regardless of this uncertainty, flooding by tropical cyclones will increase as a result of accelerated sea-level rise. Under similar rates of rapid sea-level rise during the early Holocene epoch most low-lying sedimentary coastlines were generally much less resilient to storm impacts. Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones. These impacts can be mitigated partly with adaptive strategies, which include careful stewardship of sediments and reductions in human-induced land subsidence. PMID:24305147

  14. Understanding sea-level variations in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    de Juan, J.; Davis, J. L.; Hill, E. M.; Tamisiea, M. E.; Ponte, R. M.; Vinogradova, N. T.

    2012-12-01

    Sea level is affected by a wide range of processes, resulting in a response that varies on seasonal, interannual, and decadal time scales, and that has clear regional variations. Understanding such variability is important in order to quantify and interpret global trends in long-term sea level. One cause of this variability, of many, is the seasonal exchange of water between the continents and the ocean, which induces changes in the shape and gravity field of the Earth. This so-called 'self-attraction and loading' (SAL) causes a spatial and temporal variation of sea level, with an annual amplitude that ranges from ~2 mm to >18 mm. Previous studies show that the effect of SAL on the annual cycle of sea level is larger in the Bay of Bengal than anywhere else on Earth. In addition, tide-gauge measurements of the annual cycle in sea level show among the largest disagreements with ocean model predictions and near-coastal altimeter measurements in this region. The study of sea level in the Bay of Bengal is important, both socially and scientifically. Three rivers converge in Bangladesh, with one of the world's highest annual discharge, of ~1300 GT/yr. The large delta covers the highly populated regions of southern Bangladesh and West Bengal. River flow is highly seasonal, with almost all discharge taking place during the summer monsoon. These conditions result in widespread flooding over Bangladesh every summer, with ~100 GT of water stored within Bangladesh during these events, as observed with GRACE and in-situ measurements. This large hydrological load is the cause for the observed large annual SAL effect in this region, and may account for at least part of the discrepancy between tide-gauge measurements and ocean-model predictions. Furthermore, comparison with measurements suggests that the hydrology models used to estimate the global SAL effect on the annual sea-level cycle may be underestimating the water load over this region. The problem is compounded by the fact

  15. Uncertainties in sea level projections on twenty-year timescales

    NASA Astrophysics Data System (ADS)

    Vinogradova, Nadya; Davis, James; Landerer, Felix; Little, Chris

    2016-04-01

    Regional decadal changes in sea level are governed by various processes, including ocean dynamics, gravitational and solid earth responses, mass loss of continental ice, and other local coastal processes. In order to improve predictions and physical attribution in decadal sea level trends, the uncertainties of each processes must be reflected in the sea level calculations. Here we explore uncertainties in predictions of the decadal and bi-decadal changes in regional sea level induced by the changes in ocean dynamics and associated redistribution of heat and freshwater (often referred to as dynamic sea level). Such predictions are typically based on the solutions from coupled atmospheric and oceanic general circulation models, including a suite of climate models participating in phase 5 of the Coupled Model Intercompasion Project (CMIP5). Designed to simulate long-term ocean variability in response to warming climate due to increasing green-house gas concentration ("forced" response), CMIP5 are deficient in simulating variability at shorter time scales. In contrast, global observations of sea level are available during a relatively short time span (e.g., twenty-year altimetry records), and are dominated by an "unforced" variability that occurs freely (internally) within the climate system. This makes it challenging to examine how well observations compare with model simulations. Therefore, here we focus on patterns and spatial characteristics of projected twenty-year trends in dynamic sea level. Based on the ensemble of CMIP5 models, each comprising a 240-year run, we compute an envelope of twenty-year rates, and analyze the spread and spatial relationship among predicted rates. An ensemble root-mean-square average exhibits large-scale spatial patterns, with the largest uncertainties found over mid and high latitudes that could be attributed to the changes in wind patterns and buoyancy forcing. To understand and parameterize spatial characteristics of the

  16. Accurately Determining the Risks of Rising Sea Level

    NASA Astrophysics Data System (ADS)

    Marbaix, Philippe; Nicholls, Robert J.

    2007-10-01

    With the highest density of people and the greatest concentration of economic activity located in the coastal regions, sea level rise is an important concern as the climate continues to warm. Subsequent flooding may potentially disrupt industries, populations, and livelihoods, particularly in the long term if the climate is not quickly stabilized [McGranahan et al., 2007; Tol et al., 2006]. To help policy makers understand these risks, a more accurate description of hazards posed by rising sea levels is needed at the global scale, even though the impacts in specific regions are better known.

  17. The Impact of Sea Level Rise on Florida's Everglades

    NASA Astrophysics Data System (ADS)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  18. Lowstand versus highstand eustatic models for peat preservation: The coal-bearing rocks of the Breathitt Group, Eastern Kentucky

    SciTech Connect

    Chesnut, D.R. Jr.; Greb, S.F. . Kentucky Geological Survey)

    1992-01-01

    Stratigraphic and chronologic studies suggest that the alternation between major coal beds and clastic rocks of the Lower and Middle Pennsylvanian Breathitt Group (Central Appalachian Basin) resulted from glacial eustacy. The typical Coal-Clastic cycle starts at the top of a major coal bed and consists of a coarsening-upward sequence of marine or brackish-water strata which is commonly truncated and overlain by a fining-upward sequence. The fining-upward sequence is overlain by a rooted paleosol which is overlain by a coal bed. In one scenario, the peat is deposited during the stable highstand period. Because of subsidence, the highstand peat deposit is drowned and covered by marine sediments. During the subsequent lowstand the marine strata are eroded to varying degrees and bare channels are developed, causing an erosional unconformity surface on the marine strata. During transgression, the rise in base-level causes sediments to aggrade within the channels, creating fining-upward sequences above the marine strata. Paleosol development and peat deposition begin again at the next highstand. In another scenario peats are deposited in a coastal setting during lowstand. As transgression proceeds from lowstand, channels backfill and all low-lying areas including peat are covered by coarsening-upward sequences. Peats are then deposited on exposed platforms during highstand. During the subsequent drop in sea level, channels are incised and highstand peats and part of the coarsening-upward sediment package is eroded. The second scenario implies a preservation bias to cyclothems caused by eustatic rates being greater than subsidence rates. Peats are probably deposited during both lowstand and highstand, but lowstand peats are more likely to be preserved.

  19. Mean and extreme sea level changes in the southwestern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Schmidt, Jessica; Patzke, Justus; Dangendorf, Sönke; Arns, Arne; Jensen, Jürgen; Fröhle, Peter

    2016-04-01

    In this contribution an overview over the BMBF project AMSeL_Ostsee (2015-2018) for the assessment of mean and extreme sea level changes over the past 150 years in the southwestern Baltic Sea is presented. We compile several high resolution tide gauge records provided by the Water and Shipping Administration (WSV) along the German Baltic Sea coastline and merge them in internationally available data bases (UHSLC, PSMSL, and data officially available at national authorities). In addition, we make efforts in digitizing historical records to expand the number of available data sets in this complex and vulnerable coastal region. To separate absolute from relative long-term changes in sea level the vertical land motion (VLM) at specific sites is assessed. Possible sources of VLM are independently assessed by using different state-of-the-art approaches, that is: Glacial Isostatic Adjustment (GIA) modelled by viscoelastic Earth models, GPS derived VLM, and the difference between tide gauge and nearby satellite altimetry. The VLM corrected tide gauge records are further assessed for linear and non-linear trends as well as possible acceleration/deceleration patterns by applying advanced time series models such as Singular System Analysis (SSA) combined with a Monte-Carlo-Autoregressive-Padding approach (Wahl et al., 2010). These trend assessments are applied to mean and extreme sea levels independently to prove whether observed changes in extremes are either due to an underlying trend on mean sea levels or changes in storminess. References: Wahl, T., Jensen, J., Frank, T. (2011): On analysing sea level rise in the German Bight since 1844, NHESS, 10, 171-179.

  20. Spectroscopic analysis of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly global tide-gage sea-level data are fitted to numerically generated tidal data in order to search for the 18.6-yr lunar nodal tide and 14-month pole tide. Both of these tides are clearly evident, with amplitudes and phases that are consistent with a global equilibrium response. The ocean's response to atmospheric pressure is studied with the least-squares fit technique. Consideration is given to the global rise in sea level, the effects of postglacial rebound, and the possible causes of the enhanced pole tides in the North Sea, the Baltic Sea, and the Gulf of Bothnia. The results support O'Connor's (1986) suggestion that the enhanced pole tide in these regions is due to meteorological forcing rather than a basin-scale resonance. Also, the global average of the tide-gage data show an increase in sea level over tha last 80 yr of between 1.1 and 1.9 mm/yr.

  1. Accelerated sea level rise and Florida Current transport

    NASA Astrophysics Data System (ADS)

    Park, J.; Sweet, W.

    2015-04-01

    The Florida Current is the headwater of the Gulf Stream and is a component of the North Atlantic western boundary current from which a geostrophic balance between sea surface height and mass transport directly influence coastal sea levels along the Florida Straits. A linear regression of daily Florida Current transport estimates does not find a significant change in transport over the last decade, however, a nonlinear trend extracted from empirical mode decomposition suggests a 3 Sv decline in mean transport. This decline is consistent with observed tide gauge records in Florida Bay and the Straits, all exhibiting an acceleration of mean sea level rise over the decade. It is not known whether this recent change represents natural variability or the onset of the anticipated secular decline in Atlantic meridional overturning circulation, nonetheless, such changes have direct impacts on the sensitive ecological systems of the Everglades as well as the climate of western Europe and eastern North America.

  2. Accelerated sea level rise and Florida Current transport

    NASA Astrophysics Data System (ADS)

    Park, J.; Sweet, W.

    2015-07-01

    The Florida Current is the headwater of the Gulf Stream and is a component of the North Atlantic western boundary current from which a geostrophic balance between sea surface height and mass transport directly influence coastal sea levels along the Florida Straits. A linear regression of daily Florida Current transport estimates does not find a significant change in transport over the last decade; however, a nonlinear trend extracted from empirical mode decomposition (EMD) suggests a 3 Sv decline in mean transport. This decline is consistent with observed tide gauge records in Florida Bay and the straits exhibiting an acceleration of mean sea level (MSL) rise over the decade. It is not known whether this recent change represents natural variability or the onset of the anticipated secular decline in Atlantic meridional overturning circulation (AMOC); nonetheless, such changes have direct impacts on the sensitive ecological systems of the Everglades as well as the climate of western Europe and eastern North America.

  3. Sea-level rise: towards understanding local vulnerability

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan

    2012-06-01

    Projections of global sea-level rise into the future have become more pessimistic over the past five years or so. A global rise by more than one metre by the year 2100 is now widely accepted as a serious possibility if greenhouse gas emissions continue unabated. That is witnessed by the scientific assessments that were made since the last IPCC report was published in 2007. The Delta Commission of the Dutch government projected up to 1.10 m as a 'high-end' scenario (Vellinga et al 2009). The Scientific Committee on Antarctic Research (SCAR) projected up to 1.40 m (Scientific Committee on Antarctic Research 2009), and the Arctic Monitoring and Assessment Programme (AMAP) gives a range of 0.90-1.60 m in its 2011 report (Arctic Monitoring and Assessment Programme 2011). And recently the US Army Corps of Engineers recommends using a 'low', an 'intermediate' and a 'high' scenario for global sea-level rise when planning civil works programmes, with the high one corresponding to a 1.50 m rise by 2100 (US Army Corps of Engineers 2011). This more pessimistic view is based on a number of observations, most importantly perhaps the fact that sea level has been rising at least 50% faster in the past decades than projected by the IPCC (Rahmstorf et al 2007, IPCC 2007). Also, the rate of rise (averaged over two decades) has accelerated threefold, from around 1 mm yr-1 at the start of the 20th century to around 3 mm yr-1 over the past 20 years (Church and White 2006), and this rate increase closely correlates with global warming (Rahmstorf et al 2011). The IPCC projections, which assume almost no further acceleration in the 20th century, thus look less plausible. And finally the observed net mass loss of the two big continental ice sheets (Van den Broeke et al 2011) calls into question the assumption that ice accumulation in Antarctica would largely balance ice loss from Greenland in the course of further global warming (IPCC 2007). With such a serious sea-level rise on the horizon

  4. Sea level pressure variability in the Amundsen Sea region inferred from a West Antarctic glaciochemical record

    NASA Astrophysics Data System (ADS)

    Kreutz, K. J.; Mayewski, P. A.; Pittalwala, I. I.; Meeker, L. D.; Twickler, M. S.; Whitlow, S. I.

    2000-02-01

    Using European Center for Medium-Range Weather Forecasts (ECMWF) numerical operational analyses, sea ice extent records, and station pressure data, we investigate the influence of sea level pressure variability in the Amundsen Sea region on a West Antarctic (Siple Dome) glaciochemical record. Empirical orthogonal function analysis of the high-resolution Siple Dome multivariate ice core chemical time series record (SDEOF1) documents lower tropospheric transport of sea-salt aerosols to the site. During 1985-1994 the SDEOF1 record of high (low) aerosol transport corresponds to anomalously low (high) sea level pressure (SLP) in the Amundsen Sea region. Spatial correlation patterns between ECMWF monthly SLP fields and the annual SDEOF1 record suggest that a majority of sea-salt aerosol is transported to Siple Dome during spring (September, October, and November). Analysis of zonal and meridional wind fields supports the SLP/SDEOF1 correlation and suggests the SDEOF1 record is sensitive to changes in regional circulation strength. No relationship is found between sea ice extent and the SDEOF1 record for the period 1973-1994. To investigate the SDEOF1 record prior to ECMWF coverage, a spring transpolar index (STPI) is created, using normalized SLP records from the New Zealand and South America/Antarctic Peninsula sectors, and is significantly correlated (at least 95% c.l.) with the SDEOF1 record on an annual (r = 0.32, p < 0.001) and interannual (3 years; r = 0.51, p < 0.001) basis. Dominant periodicities (3.3 and 7.1 years) in the annual SDEOF1 record (1890-1994 A.D.) suggest that a portion of the recorded interannual variability may be related tropical/extratropical ENSO teleconnections. Changes in the periodic structure of the full (850-1994 A.D.) Siple Dome record suggests a shift in SLP forcing during the Little Ice Age (˜1400-1900 A.D.) interval.

  5. Tidal level response to sea-level rise in the yangtze estuary

    NASA Astrophysics Data System (ADS)

    Gong, Zheng; Zhang, Chang-kuan; Wan, Li-ming; Zuo, Jun-cheng

    2012-03-01

    The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary. This paper focuses on the variations of tidal level response along the tidal reaches in the Yangtze Estuary, as well as the impacts of upstream discharge on tidal level response, due to the sea-level rise of the East China Sea. Based on the Topex/Poseidon altimeter data obtained during the period 1993˜2005, a stochastic dynamic analysis was performed and a forecast model was run to predict the sea-level rise of the East China Sea. Two-dimensional hydrodynamic numerical models downscaling from the East China Sea to estuarine areas were implemented to analyze the rise of tidal level along the tidal reaches. In response to the sea-level rise, the tidal wave characteristics change slightly in nearshore areas outside the estuaries, involving the tidal range and the duration of flood and ebb tide. The results show that the rise of tidal level in the tidal reaches due to the sea-level rise has upstream decreasing trends. The step between the stations of Zhangjiagang and Shiyiwei divides the tidal reaches into two parts, in which the tidal level response declines slightly. The rise of tidal level is 1˜2.5 mm/a in the upper part, and 4˜6 mm/a in the lower part. The stations of Jiangyin and Yanglin, as an example of the upper part and the lower part respectively, are extracted to analyze the impacts of upstream discharge on tidal level response to the sea-level rise. The relation between the rise of tidal level and the upstream discharge can be fitted well with a quadratic function in the upper part. However, the relation is too complicated to be fitted in the lower part because of the tide dominance. For comparison purposes, hourly tidal level observations at the stations of Xuliujing and Yanglin during the period 1993˜2009 are adopted. In order to uniform the influence of upstream discharge on tidal level for a

  6. The Offlap Break Position Vs Sea Level: A Discussion

    NASA Astrophysics Data System (ADS)

    Tropeano, M.; Pieri, P.; Pomar, L.; Sabato, L.

    Sedimentary lithosomes with subhorizontal topsets, basinward prograding foresets and subhorizontal bottomsets are common in the geologic record, and most of them display similar bedding architectures and/or seismic reflection patterns (i.e. Gylbert- type deltas and shelf wedges). Nevertheless, in shallow marine settings these bodies may form in distinct sedimentary environments and they result from different sed- imentary processes. The offlap break (topset edge) occurs in relation to the posi- tion of baselevel and two main groups of lithosomes can be differentiated with re- spect to the position of the offlap break within the shelf profile. The baselevel of the first group is the sea level (or lake level); the topsets are mainly composed by continental- or very-shallow-water sedimentary facies and the offlap break practi- cally corresponds to the shoreline. Exemples of these lithosomes are high-constructive deltas (river-dominated deltas) and prograding beaches. For the second group, base- level corresponds to the base of wave/tide traction, and their topsets are mostly composed by shoreface/nearshore deposits. Examples of these lithosomes are high- destructive deltas (wave/tide-dominated deltas) and infralittoral prograding wedges (i.e Hernandez-Molina et al., 2000). The offlap break corresponds to the shelf edge (shoreface edge), which is located at the transition between nearshore and offshore set- tings, where a terrace prodelta- or transition-slope may develop (Pomar &Tropeano, 2001). Two main problems derive from these alternative interpretations of shallow- marine seaward prograding lithosomes: 1) both in ancient sedimentary shallow-marine successios (showing seaward prograding foresets) and in high resolution seismic pro- files (showing shelf wedges), the offlap break is commonly considered to correspond to the sea-level (shoreline) and used to inferr paleo sea-level positions and to construct sea-level curves. Without a good facies control, this use of

  7. Monitoring Sea Level At L'Estartit, Spain

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, J.; Ortiz Castellon, M.; Martinez-Garcia, M.; Talaya, J.; Rodriguez Velasco, G.; Perez, B.

    2007-12-01

    Sea level is an environmental variable which is widely recognised as being important in many scientific disciplines as a control parameter for coastal dynamical processes or climate processes in the coupled atmosphere-ocean systems, as well as engineering applications. A major source of sea-level data are the national networks of coastal tide gauges, in Spain belonging to different institutions as the Instituto Geográfico Nacional (IGN), Puertos del Estado (PE), Instituto Hidrográfico de la Marina (IHM), Ports de la Generalitat, etc. Three Begur Cape experiences on radar altimeter calibration and marine geoid mapping made on 1999, 2000 and 2002 are overviewed. The marine geoid has been used to relate the coastal tide gauge data from l'Estartit harbour to off-shore altimetric data. The necessity to validate and calibrate the satellite's altimeter due to increasing needs in accuracy and long term integrity implies establishing calibration sites with enhanced ground based methods for sea level monitoring. A technical Spanish contribution to the calibration experience has been the design of GPS buoys and GPS catamaran taking in account the University of Colorado at Boulder and Senetosa/Capraia designs. Altimeter calibration is essential to obtain an absolute measure of sea level, as are knowing the instrument's drifts and bias. Specially designed tidegauges are necessary to improve the quality of altimetric data, preferably near the satellite track. Further, due to systematic differences a month instruments onboard different satellites, several in-situ calibrations are essentials to tie their systematic differences. L'Estartit tide gauge is a classical floating tide gauge set up in l'Estartit harbour (NE Spain) in 1990. It provides good quality information about the changes in the sea heights at centimetre level, that is the magnitude of the common tides in theMediterranean. In the framework of a Spanish Space Project, ref:ESP2001- 4534-PE, the instrumentation of sea

  8. Sea Level Station Metadata for Tsunami Detection, Warning and Research

    NASA Astrophysics Data System (ADS)

    Stroker, K. J.; Marra, J.; Kari, U. S.; Weinstein, S. A.; Kong, L.

    2007-12-01

    The devastating earthquake and tsunami of December 26, 2004 has greatly increased recognition of the need for water level data both from the coasts and the deep-ocean. In 2006, the National Oceanic and Atmospheric Administration (NOAA) completed a Tsunami Data Management Report describing the management of data required to minimize the impact of tsunamis in the United States. One of the major gaps defined in this report is the access to global coastal water level data. NOAA's National Geophysical Data Center (NGDC) and National Climatic Data Center (NCDC) are working cooperatively to bridge this gap. NOAA relies on a network of global data, acquired and processed in real-time to support tsunami detection and warning, as well as high-quality global databases of archived data to support research and advanced scientific modeling. In 2005, parties interested in enhancing the access and use of sea level station data united under the NOAA NCDC's Integrated Data and Environmental Applications (IDEA) Center's Pacific Region Integrated Data Enterprise (PRIDE) program to develop a distributed metadata system describing sea level stations (Kari et. al., 2006; Marra et.al., in press). This effort started with pilot activities in a regional framework and is targeted at tsunami detection and warning systems being developed by various agencies. It includes development of the components of a prototype sea level station metadata web service and accompanying Google Earth-based client application, which use an XML-based schema to expose, at a minimum, information in the NOAA National Weather Service (NWS) Pacific Tsunami Warning Center (PTWC) station database needed to use the PTWC's Tide Tool application. As identified in the Tsunami Data Management Report, the need also exists for long-term retention of the sea level station data. NOAA envisions that the retrospective water level data and metadata will also be available through web services, using an XML-based schema. Five high

  9. Anomalous secular sea-level acceleration in the Baltic Sea caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio; Galassi, Gaia; Olivieri, Marco

    2014-05-01

    Observations from the global array of tide gauges show that global sea-level has been rising at an average rate of 1.5-2 mm/yr during the last ˜ 150 years (Spada & Galassi, 2012). Although a global sea-level acceleration was initially ruled out, subsequent studies have coherently proposed values of ˜1 mm/year/century (Olivieri & Spada, 2012). More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, they could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise, while locally they result from ocean circulation anomalies, steric effects and wind stress (Bromirski et al. 2011). Although isostatic readjustment affects the local rates of secular sea-level change, a possible impact on regional acceleration have been so far discounted (Woodworth et al., 2009) since the process evolves on a millennium scale. Here we report a previously unnoticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration. In response to glacial isostatic adjustment (GIA), tide gauge records located along the coasts of the Baltic Sea exhibit a small - but significant - long-term sea-level acceleration in excess to those in the far field of previously glaciated regions. The sign and the amplitude of the anomaly is consistent with the post-glacial rebound theory and with realistic numerical predictions of GIA models routinely employed to decontaminate the tide gauges observations from the GIA effects (Peltier, 2004). Model computations predict the existence of anomalies of similar amplitude in other regions of the globe where GIA is still particularly vigorous at present, but no long-term instrumental observations are available to

  10. Mechanisms for Sea Level Change During Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Clark, P. U.; Hostetler, S. W.

    2007-12-01

    A number of climate proxies indicate that a ~7-kyr oscillation occurred during Marine Isotope Stage (MIS) 3, of which change in the Atlantic meridional overturning circulation (AMOC) and attendant change in cross-equatorial ocean heat transport played an integral role. The timing of MIS-3 sea-level changes is clearly linked to this climate oscillation. We applied the GENESIS (V2.2, GEN2) AGCM in a series of sensitivity tests to evaluate the response of the mass balances of the Northern Hemisphere ice sheets to changes in the tropical Pacific and North Atlantic SSTs that are part of this climate oscillation. To evaluate the sensitivity of ice-sheet mass balance to changes in SSTs during MIS 3, we use the Byrd temperature record as a proxy for establishing the timing of tropical SST changes, and the GISP2 ¿¡¨ record as a proxy for establishing the timing of well-established changes in North Atlantic SSTs. On this basis, we identify four primary combinations of tropical and North Atlantic SSTs during each of the MIS 3 oscillations that we used to prescribe global SST fields in our simulations: (i) cold tropics, cold North Atlantic, (ii) warm tropics, cold North Atlantic, (iii) cold tropics, warm North Atlantic, and (iv) warm tropics, warm North Atlantic. Our modeled sea-level history is characterized by four fluctuations that are remarkably similar to those inferred from several other proxies of sea level change, including the New Guinea coral-reef record, benthic ¡¨¿ records, and the Siddall-03 Red Sea ¡¨¿ record. Our record also shares a similar structure, within dating uncertainties, to the Arz-07 Red Sea sea-level reconstruction. Our modeled sea-level changes (order of 10 m) are similar to those derived from the New Guinea coral record (10-15 m), are comparable, within error, to those inferred from the Red Sea records, but are substantially less than needed to explain the benthic ¡¨¿ records, suggesting either a greater ice-sheet contribution than we

  11. Mechanisms of long-term mean sea level variability in the North Sea

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen

    2015-04-01

    We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.

  12. Revisiting sea level changes in the North Sea during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Jensen, Jürgen; Dangendorf, Sönke; Wahl, Thomas; Niehüser, Sebastian

    2016-04-01

    The North Sea is one of the best instrumented ocean basins in the world. Here we revisit sea level changes in the North Sea region from tide gauges, satellite altimetry, hydrographic profiles and ocean reanalysis data from the beginning of the 19th century to present. This includes an overview of the sea level chapter of the North Sea Climate Change Assessment (NOSCCA) complemented by results from more recent investigations. The estimates of long-term changes from tide gauge records are significantly affected by vertical land motion (VLM), which is related to both the large-scale viscoelastic response of the solid earth to ice melting since the last deglaciation and local effects. Removing VLM (estimated from various data sources such as GPS, tide gauge minus altimetry and GIA) significantly reduces the spatial variability of long-term trends in the basin. VLM corrected tide gauge records suggest a transition from relatively moderate changes in the 19th century towards modern trends of roughly 1.5 mm/yr during the 20th century. Superimposed on the long-term changes there is a considerable inter-annual to multi-decadal variability. On inter-annual timescales this variability mainly reflects the barotropic response of the ocean to atmospheric forcing with the inverted barometer effect dominating along the UK and Norwegian coastlines and wind forcing controlling the southeastern part of the basin. The decadal variability is mostly remotely forced and dynamically linked to the North Atlantic via boundary waves in response to long-shore winds along the continental slope. These findings give valuable information about the required horizontal resolution of ocean models and the necessary boundary conditions and are therefore important for the dynamical downscaling of sea level projections for the North Sea coastlines.

  13. Measuring progress of the global sea level observing system

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  14. Global sea level record from satellite altimetry: accomplishments and challenges

    NASA Astrophysics Data System (ADS)

    Fu, L.

    2013-12-01

    The trend of sea level change and its geographic pattern present a powerful indicator of the overall extent of climate change as well as pose a long-term threat to the world's heavily populated coastal zones. The global and direct measurement of sea level from satellite altimetry over the past two decades, as a key part of a global observing system, has enabled quantitative determination of sea level change and its relation to natural and human-induced causes. Major results from the data record will be reviewed to highlight the challenges in distinguishing between natural variability and long-term trends from human activities. As long-term climate data records from satellite observations are inevitably to be built from successive missions with progressively changing technologies, a major challenge is concerted effort in cross-calibration to ensure consistency between new measurements with existing records. As the desire of increasing spatial resolution to resolve energetic small-scale variability dictates the development of high-resolution wide-swath altimeter, the need for thoughtful design of a system that is able to demonstrate proper transition of technologies in terms of providing consistent global sea level data record will be discussed.

  15. Fluctuating Mesozoic and Cenozoic sea levels and implications for stratigraphy

    SciTech Connect

    Haq, B.U. )

    1988-12-01

    Sequence stratigraphy encompasses depositional models of genetically related packages of sediments deposited during various phases of cycle of sea level change, i.e., from a lowstand to highstand to the subsequent lowstand. The application of these models to marine outcrops around the world and to subsurface data led to the construction of Mesozoic-Cenozoic sea level curves with greater event resolution than the earlier curves based on seismic data alone. Construction of these better resolution curves begins with an outline of the principles of sequence-stratigraphic analysis and the reconstruction of the history of sea level change from outcrop and subsurface data for the past 250 Ma. Examples of marine sections from North America, Europe, and Asia can be used to illustrate sequence analysis of outcrop data and the integration of chronostratigraphy with sea level history. Also important are the implications of sequence-stratigraphic methodology and the new cycle charts to various disciplines of stratigraphy, environmental reconstruction, and basin analysis. The relationship of unconformities along the continental margins to hiatuses and dissolution surfaces in the deep basins must also be explored, as well as the relevance of sequence-stratigraphic methodology to biofacies and source rock prediction.

  16. Milankovitch tuning of deep-sea records: Implications for maximum rates of change of sea level

    NASA Astrophysics Data System (ADS)

    Berger, Wolfgang H.

    2013-02-01

    The analysis of several stacked and tuned records from the deep-sea floor yields two rather different sets of values for rates of sea-level rise. One of these reflects "regular" growth and decay and the other represents rapid decay of polar ice. Typical rise rates during rapid decay are near 1.2 m per century; with higher values seemingly following an abundance distribution that may be described by a standard deviation of 0.4 m per century (one third of the typical value). Distributions are based on a millennium resolution, leaving room for higher values for selected centuries within any millennium. Nevertheless, rise values beyond 5 m per century seem highly unusual. The quality of the match between deep-sea record (taken as differential) and Milankovitch forcing is excellent for the last 400,000 years (that is, the time since the "mid-Brunhes Event," a period that may be referred to as the "Emiliani Chron") but is poor in certain time spans before that. Difficulties associated with precise dating and a changing level of instability of polar ice prevent identification of trigger events for deglaciation. What is observable is that during periods of rapid decay, once sea level started to rise, it kept doing so for millennia (presumably till suitable ice masses were used up). Thus, it seems that a rise of sea level is itself a positive feedback on rapid melting of ice. Negative feedback, if real (as assumed in certain hypotheses about the origin of the Younger Dryas) is an unexpected exception that presumably relies on a high threshold value of sea-level rise.

  17. Variability in Solomon Sea circulation derived from altimeter sea level data

    NASA Astrophysics Data System (ADS)

    Melet, Angélique; Gourdeau, Lionel; Verron, Jacques

    2010-08-01

    The Solomon Sea is a key region in the Pacific Ocean where equatorial and subtropical circulations are connected. The region exhibits the highest levels in sea level variability in the entire south tropical Pacific Ocean. Altimeter data was utilized to explore sea level and western boundary currents in this poorly understood portion of the ocean. Since the geography of the region is extremely intricate, with numerous islands and complex bathymetry, specifically reprocessed along-track data in addition to standard gridded data were utilized in this study. Sea level anomalies (SLA) in the Solomon Sea principally evolve at seasonal and interannual time scales. The annual cycle is phased by Rossby waves arriving in the Solomon Strait, whereas the interannual signature corresponds to the basin-scale ENSO mode. The highest SLA variability are concentrated in the eastern Solomon Sea, particularly at the mouth of the Solomon Strait, where they are associated with a high eddy kinetic energy signal that was particularly active during the phase transition during the 1997-1998 ENSO event. Track data appear especially helpful for documenting the fine structure of surface coastal currents. The annual variability of the boundary currents that emerged from altimetry compared quite well with the variability seen at the thermocline level, as based on numerical simulations. At interannual time scales, western boundary current transport anomalies counterbalance changes in western equatorial Pacific warm water volume, confirming the phasing of South Pacific western boundary currents to ENSO. Altimetry appears to be a valuable source of information for variability in low latitude western boundary currents and their associated transport in the South Pacific.

  18. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  19. How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?

    PubMed

    Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J Walter; Bossick, Matthew

    2016-01-01

    Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay. PMID:26319030

  20. Bipolar seesaw control on last interglacial sea level.

    PubMed

    Marino, G; Rohling, E J; Rodríguez-Sanz, L; Grant, K M; Heslop, D; Roberts, A P; Stanford, J D; Yu, J

    2015-06-11

    Our current understanding of ocean-atmosphere-cryosphere interactions at ice-age terminations relies largely on assessments of the most recent (last) glacial-interglacial transition, Termination I (T-I). But the extent to which T-I is representative of previous terminations remains unclear. Testing the consistency of termination processes requires comparison of time series of critical climate parameters with detailed absolute and relative age control. However, such age control has been lacking for even the penultimate glacial termination (T-II), which culminated in a sea-level highstand during the last interglacial period that was several metres above present. Here we show that Heinrich Stadial 11 (HS11), a prominent North Atlantic cold episode, occurred between 135 ± 1 and 130 ± 2 thousand years ago and was linked with rapid sea-level rise during T-II. Our conclusions are based on new and existing data for T-II and the last interglacial that we collate onto a single, radiometrically constrained chronology. The HS11 cold episode punctuated T-II and coincided directly with a major deglacial meltwater pulse, which predominantly entered the North Atlantic Ocean and accounted for about 70 per cent of the glacial-interglacial sea-level rise. We conclude that, possibly in response to stronger insolation and CO2 forcing earlier in T-II, the relationship between climate and ice-volume changes differed fundamentally from that of T-I. In T-I, the major sea-level rise clearly post-dates Heinrich Stadial 1. We also find that HS11 coincided with sustained Antarctic warming, probably through a bipolar seesaw temperature response, and propose that this heat gain at high southern latitudes promoted Antarctic ice-sheet melting that fuelled the last interglacial sea-level peak. PMID:26062511

  1. Probabilistic reanalysis of twentieth-century sea-level rise.

    PubMed

    Hay, Carling C; Morrow, Eric; Kopp, Robert E; Mitrovica, Jerry X

    2015-01-22

    Estimating and accounting for twentieth-century global mean sea level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 ± 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records.The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise. PMID:25629092

  2. Probabilistic reanalysis of twentieth-century sea-level rise

    NASA Astrophysics Data System (ADS)

    Hay, Carling C.; Morrow, Eric; Kopp, Robert E.; Mitrovica, Jerry X.

    2015-01-01

    Estimating and accounting for twentieth-century global mean sea-level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 +/- 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 +/- 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records. The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise.

  3. Low-frequency oscillations of the level of enclosed sea

    NASA Astrophysics Data System (ADS)

    Korotaev, G. K.

    2015-07-01

    This work studies the variable surface level of a small enclosed basin that is related to the problem of interpreting satellite altimetric data, which assist in observations only of a deviation of a marine basin from unknown average condition needed to be calculated for the reconstruction of the sea-level topography. The reconstruction of unknown average condition becomes especially uncertain for the enclosed basins with significant level oscillations due to a variable water balance and requires the attraction of a priori physical concepts. This work reveals the general principles of response of the sea level to the low-frequency changes of the water exchange through the boundary of the basin with a rather arbitrary morphology.

  4. Coastal sea level measurements using a single geodetic GPS receiver