NASA Astrophysics Data System (ADS)
Chu, Hsu-hsin; Wang, Jyhpyng
2018-05-01
Nonlinear optics in the extreme-ultraviolet (EUV) has been limited by lack of transparent media and small conversion efficiency. To overcome this problem we explore the advantage of using multiply charged ion plasmas as the interacting media between EUV and intense near-infrared (NIR) pulses. Such media are transparent to EUV and can withstand intense NIR driving pulses without damage. We calculate the third-order nonlinear polarizabilities of Ar2 + and Ar3 + ions for EUV and NIR four-wave mixing by using the well-proven Cowan code and find that the EUV-to-EUV conversion efficiency as high as 26% can be expected for practical experimental configurations using multi-terawatt NIR lasers. Such a high efficiency is possible because the driving pulse intensity can be scaled up to several orders of magnitude higher than in conventional nonlinear media, and the group-velocity and phase mismatch are insignificant at the experimental plasma densities. This effective scheme of wave mixing can be utilized for ultrafast EUV waveform measurement and control as well as wavelength conversion.
Increasing EUV source efficiency via recycling of radiation power
NASA Astrophysics Data System (ADS)
Hassanein, Ahmed; Sizyuk, Valeryi; Sizyuk, Tatyana; Johnson, Kenneth C.
2018-03-01
EUV source power is critical for advanced lithography, for achieving economical throughput performance and also for minimizing stochastic patterning effects. Power conversion efficiency can be increased by recycling plasma-scattered laser radiation and other out-of-band radiation back to the plasma via retroreflective optics. Radiation both within and outside of the collector light path can potentially be recycled. For recycling within the collector path, the system uses a diffractive collection mirror that concomitantly filters all laser and out-of-band radiation out of the EUV output. In this paper we review the optical design concept for power recycling and present preliminary plasma-physics simulation results showing a potential gain of 60% in EUV conversion efficiency.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi
2006-03-01
We demonstrated a debris-free, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO II) nano-particles. By using a low SnO II concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi
2006-05-01
We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.
A double-stream Xe:He jet plasma emission in the vicinity of 6.7 nm
NASA Astrophysics Data System (ADS)
Chkhalo, N. I.; Garakhin, S. A.; Golubev, S. V.; Lopatin, A. Ya.; Nechay, A. N.; Pestov, A. E.; Salashchenko, N. N.; Toropov, M. N.; Tsybin, N. N.; Vodopyanov, A. V.; Yulin, S.
2018-05-01
We present the results of investigations of extreme ultraviolet (EUV) light emission in the range from 5 to 10 nm. The light source was a pulsed "double-stream" Xe:He gas jet target irradiated by a laser beam with a power density of ˜1011 W/cm2. The radiation spectra were measured with a Czerny-Turner monochromator with a plane diffraction grating. The conversion efficiency of the laser energy into EUV radiation caused by Xe+14…+16 ion emission in the range of 6-8 nm was measured using a calibrated power meter. The conversion efficiency of the laser radiation into EUV in the vicinity of 6.7 nm was (2.17 ± 0.13)% in a 1 nm spectral band. In the spectral band of the real optical system (0.7% for La/B multilayer mirrors) emitted into the half-space, it was (0.1 ± 0.006)%. The results of this study provide an impetus for further research on laser plasma sources for maskless EUV lithography at a wavelength of 6.7 nm.
Enhancement of EUV emission from a liquid microjet target by use of dual laser pulses
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Rajyaguru, Chirag; Koga, Masato; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi; Kikuchi, Takashi; Yugami, Noboru; Kawata, Shigeo; Andreev, Alexander A.
2005-03-01
Extreme ultraviolet (EUV) radiation at the wavelength of around 13nm waws observed from a laser-produced plasma using continuous water-jet. Strong dependence of the conversion efficiency (CE) on the laser focal spot size and jet diameter was observed. The EUV CE at a given laser spot size and jet diameter was further enhanced using double laser pulses, where a pre-pulse was used for initial heating of the plasma.
LPP-EUV light source for HVM lithography
NASA Astrophysics Data System (ADS)
Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.
2017-01-01
We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.
Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi
2007-03-01
A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 microm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2 x 10(11) Wcm(2) with a spot diameter of 175 microm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi
2007-03-01
A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2×1011 W/cm2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.
NASA Astrophysics Data System (ADS)
Sizyuk, V.; Sizyuk, T.; Hassanein, A.; Johnson, K.
2018-01-01
We have developed comprehensive integrated models for detailed simulation of laser-produced plasma (LPP) and laser/target interaction, with potential recycling of the escaping laser and out-of-band plasma radiation. Recycling, i.e., returning the escaping laser and plasma radiation to the extreme ultraviolet (EUV) generation region using retroreflective mirrors, has the potential of increasing the EUV conversion efficiency (CE) by up to 60% according to our simulations. This would result in significantly reduced power consumption and/or increased EUV output. Based on our recently developed models, our High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) computer simulation package was upgraded for LPP devices to include various radiation recycling regimes and to estimate the potential CE enhancement. The upgraded HEIGHTS was used to study recycling of both laser and plasma-generated radiation and to predict possible gains in conversion efficiency compared to no-recycling LPP devices when using droplets of tin target. We considered three versions of the LPP system including a single CO2 laser, a single Nd:YAG laser, and a dual-pulse device combining both laser systems. The gains in generating EUV energy were predicted and compared for these systems. Overall, laser and radiation energy recycling showed the potential for significant enhancement in source efficiency of up to 60% for the dual-pulse system. Significantly higher CE gains might be possible with optimization of the pre-pulse and main pulse parameters and source size.
NASA Astrophysics Data System (ADS)
Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.
2017-01-01
The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.
NASA Astrophysics Data System (ADS)
Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.
In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.
Studies on cryogenic Xe capillary jet target for laser-produced plasma EUV-light source
NASA Astrophysics Data System (ADS)
Inoue, T.; Nica, P. E.; Kaku, K.; Shimoura, A.; Amano, S.; Miyamoto, S.; Mochizuki, T.
2006-03-01
In this paper, characterizations of a cryogenic Xe capillary jet target for a laser-produced plasma extreme ultraviolet (EUV) light source are reported. The capillary jet target is a candidate of fast-supplying targets for mitigating debris generation and target consumption in a vacuum chamber without reducing the EUV conversion efficiency. Xe capillary jets (jet velocity ~ 0.4 m/s) were generated in vacuum by using annular nozzles chilled to ~ 170 K at a Xe backing pressure of ~ 0.7 MPa. Forming mechanisms of the capillary jet targets were studied by using numerical calculations. Furthermore, laser-produced plasma EUV generation was performed by irradiating a Nd:YAG laser (1064 nm, ~ 0.5 J, 10 ns, 120 μmφ, ~ 4×10 11 W/cm2) on a Xe capillary jet target (outer / inner diameter = 100 / 70 μmφ). The angular distribution of EUV generation was approximately uniform around the Xe capillary jet target, and the peak kinetic energy of the fast-ions was evaluated to be ~ 2 keV.
NASA Astrophysics Data System (ADS)
Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly
2007-05-01
We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.
NASA Astrophysics Data System (ADS)
Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.
2011-04-01
In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Yamaguchi, Mami; Otsuka, Takamitsu
2014-09-15
Emission spectra from multiply charged potassium ions ranging from K{sup 3+} to K{sup 5+} have been obtained in the extreme ultraviolet (EUV) spectral region. A strong emission feature peaking around 38 nm, corresponding to a photon energy of 32.6 eV, is the dominant spectral feature at time-averaged electron temperatures in the range of 8−12 eV. The variation of this emission with laser intensity and the effects of pre-pulses on the relative conversion efficiency (CE) have been explored experimentally and indicate that an enhancement of about 30% in EUV CE is readily attainable.
Performance of 100-W HVM LPP-EUV source
NASA Astrophysics Data System (ADS)
Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi
2015-08-01
At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, `GL200E'. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.
Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki
Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn{sup 5+} to Sn{sup 13+} are investigated, because of their importance for determining themore » conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 10{sup 18} cm{sup -3} and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.« less
NASA Astrophysics Data System (ADS)
Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro
2016-03-01
Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.
NASA Astrophysics Data System (ADS)
Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji
2017-03-01
With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.
Su, M. G.; Min, Q.; Cao, S. Q.; Sun, D. X.; Hayden, P.; O’Sullivan, G.; Dong, C. Z.
2017-01-01
One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging. PMID:28332621
CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology
NASA Astrophysics Data System (ADS)
Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.
2013-12-01
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.
EUV efficiency of a 6000-grooves per mm diffraction grating
NASA Technical Reports Server (NTRS)
Hurwitz, Mark; Bowyer, Stuart; Edelstein, Jerry; Harada, Tatsuo; Kita, Toshiaki
1990-01-01
In order to explore whether grooves ruled mechanically at a density of 6000 per mm can perform well at EUV wavelengths, a sample grating is measured with this density in an EUV calibration facility. Measurements are presented of the planar uniform line-space diffraction grating's efficiency and large-angle scattering.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Sasaki, Wataru; Kubodera, Shoichi
2006-10-01
We realized a low-debris laser-produced plasma extreme ultraviolet (EUV) source by use of a colloidal microjet target, which contained low-concentration (6 wt%) tin-dioxide nanoparticles. An Nd:YAG laser was used to produce a plasma at the intensity on the order of 10^11 W/cm^2. The use of low concentration nanoparticles in a microjet target with a diameter of 50 μm regulated the neutral debris emission from a target, which was monitored by a silicon witness plate placed 30 cm apart from the source in a vacuum chamber. No XPS signals of tin and/or oxygen atoms were observed on the plate after ten thousand laser exposures. The low concentration nature of the target was compensated and the conversion efficiency (CE) was improved by introducing double pulses of two Nd:YAG lasers operated at 532 and 1064 nm as a result of controlling the micro-plasma characteristics. The EUV CE reached its maximum of 1.2% at the delay time of approximately 100 ns with the main laser intensiy of 2 x10^11 W/cm^2. The CE value was comparable to that of a tin bulk target, which, however, produced a significant amount of neutral debris.
Sensitizers in EUV chemically amplified resist: mechanism of sensitivity improvement
NASA Astrophysics Data System (ADS)
Vesters, Yannick; Jiang, Jing; Yamamoto, Hiroki; De Simone, Danilo; Kozawa, Takahiro; De Gendt, Stefan; Vandenberghe, Geert
2018-03-01
EUV lithography utilizes photons with 91.6 eV energy to ionize resists, generate secondary electrons, and enable electron driven reactions that produce acid in chemically amplified photoresist. Efficiently using the available photons is of key importance. Unlike DUV lithography, where photons are selectively utilized by photoactive compounds, photons at 13.5nm wavelength ionize almost all materials. Nevertheless, specific elements have a significantly higher atomic photon-absorption cross section at 91.6 eV. To increase photon absorption, sensitizer molecules, containing highly absorbing elements, can be added to photoresist formulations. These sensitizers have gained growing attention in recent years, showing significant sensitivity improvement. But there are few experimental evidences that the sensitivity improvement is due to the higher absorption only, as adding metals salts into the resist formulation can induce other mechanisms, like modification of the dissolution rate, potentially affecting patterning performance. In this work, we used different sensitizers in chemically amplified resist. We measured experimentally the absorption of EUV light, the acid yield, the dissolution rate and the patterning performance of the resists. Surprisingly, the absorption of EUV resist was decreased with addition of metal salt sensitizers. Nevertheless, the resist with sensitizer showed a higher acid yield. Sensitizer helps achieving higher PAG conversion to acid, notably due to an increase of the secondary electron generation. Patterning data confirm a significant sensitivity improvement, but at the cost of roughness degradation at high sensitizer loading. This can be explained by the chemical distribution of the sensitizer in the resist combined with a modification of the dissolution contrast, as observed by Dissolution Rate Monitor.
High reflectance coatings for space applications in the EUV
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Gum, Jeffrey S.; Osantowski, John F.; Fleetwood, Charles M.
1993-01-01
Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency and made possible to consider more complex optical designs in the EUV. The importance of recent developments in chemical vapor deposited silicon carbide (CVD-SiC), SiC films and multilayer coatings is discussed in the context of EUV instrumentation design. The EUV performance of these coatings as well as some strengths and problem areas for their use in space will be addressed.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Tyler; Kuznetsov, Ilya; Willingham, David
The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less
ESH assessment of advanced lithography materials and processes
NASA Astrophysics Data System (ADS)
Worth, Walter F.; Mallela, Ram
2004-05-01
The ESH Technology group at International SEMATECH is conducting environment, safety, and health (ESH) assessments in collaboration with the lithography technologists evaluating the performance of an increasing number of new materials and technologies being considered for advanced lithography such as 157nm photresist and extreme ultraviolet (EUV). By performing data searches for 75 critical data types, emissions characterizations, and industrial hygiene (IH) monitoring during the use of the resist candidates, it has been shown that the best performing resist formulations, so far, appear to be free of potential ESH concerns. The ESH assessment of the EUV lithography tool that is being developed for SEMATECH has identified several features of the tool that are of ESH concern: high energy consumption, poor energy conversion efficiency, tool complexity, potential ergonomic and safety interlock issues, use of high powered laser(s), generation of ionizing radiation (soft X-rays), need for adequate shielding, and characterization of the debris formed by the extreme temperature of the plasma. By bringing these ESH challenges to the attention of the technologists and tool designers, it is hoped that the processes and tools can be made more ESH friendly.
Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.
1991-01-01
The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.
Performance of multilayer coated diffraction gratings in the EUV
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Gum, Jeffrey S.; Condor, Charles E.
1990-01-01
The effect of multilayer coating application on the performance of a diffraction grating in the EUV spectral region was evaluated by examining the performance of a 3600-line/mm and a 1200-line/mm replica blazed gratings, designed for operation in the 300-A spectral region in first order. A ten-layer IrSi multilayer optimized for 304 A was deposited using electron-beam evaporation. The grating efficiency was measured on the SURF II calibration beamline in a chamber designed for calibrating the solar EUV rocket telescope and spectrograph multilayer coatings. A significant (by a factor of about 7) enhancement in grating efficiency in the 300-A region was demonstrated.
Creating space plasma from the ground
NASA Astrophysics Data System (ADS)
Carlson, H. C.; Djuth, F. T.; Zhang, L. D.
2017-01-01
We have performed an experiment to compare as directly as realizable the ionization production rate by HF radio wave energy versus by solar EUV. We take advantage of the commonality that ionization production by both ground-based high-power HF radio waves and by solar EUV is driven by primary and secondary suprathermal electrons near and above 20 eV. Incoherent scatter radar (ISR) plasma-line amplitudes are used as a measure of suprathermal electron fluxes for ISR wavelengths near those for 430 MHz and are indeed a clean measure of such for those fluxes sufficiently weak to have negligible self-damping. We present data from an HF heating experiment on November 2015 at Arecibo, which even more directly confirm the only prior midlatitude estimate, of order 10% efficiency for conversion of HF energy to ionospheric ionization. We note the theoretical maximum possible is 1/3, while 1% or less reduces the question to near practical irrelevance. Our measurements explicitly confirm the prediction that radio-frequency production of artificial ionospheres can be practicable, even at midlatitudes. Furthermore, that this midlatitude efficiency is comparable to efficiencies measured at high latitudes (which include enhancements unique to high latitudes including magnetic zenith effect, gyrofrequency multiples, and double resonances) requires reexamination of current theoretical thinking about soft-electron acceleration processes in weakly magnetized plasmas. The implications are that electron acceleration by any of a variety of processes may be a fundamental underpinning to energy redistribution in space plasmas.
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Kim, Jinsu; Lowe, Jeff; Dattilo, Davide; Koh, Soowan; Choi, Jun Yeol; Dietze, Uwe; Shoki, Tsutomu; Kim, Byung Gook; Jeon, Chan-Uk
2015-10-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. SPM (Sulfuric acid peroxide mixture) which has been extensively used for acid cleaning of photomask and wafer has serious drawback for EUV mask cleaning. It shows severe film loss of tantalum-based absorber layers and limited removal efficiency of EUV-generated carbon contaminants on EUV mask surface. Here, we introduce such novel cleaning chemicals developed for EUV mask as almost film loss free for various layers of the mask and superior carbon removal performance. Combinatorial chemical screening methods allowed us to screen several hundred combinations of various chemistries and additives under several different process conditions of temperature and time, eventually leading to development of the best chemistry selections for EUV mask cleaning. Recently, there have been many activities for the development of EUV pellicle, driven by ASML and core EUV scanner customer companies. It is still important to obtain film-loss free cleaning chemicals because cleaning cycle of EUV mask should be much faster than that of optic mask mainly due to EUV pellicle lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality changes and film losses during 50 cleaning cycles using new chemicals as well as particle and carbon contaminant removal characteristics. We have observed that the performance of new chemicals developed is superior to current SPM or relevant cleaning chemicals for EUV mask cleaning and EUV mask lifetime elongation.
Carbon contamination topography analysis of EUV masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Y.-J.; Yankulin, L.; Thomas, P.
2010-03-12
The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.
NASA Astrophysics Data System (ADS)
Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas
2009-10-01
This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.
EUV laser produced and induced plasmas for nanolithography
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2017-10-01
EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.
Study on photochemical analysis system (VLES) for EUV lithography
NASA Astrophysics Data System (ADS)
Sekiguchi, A.; Kono, Y.; Kadoi, M.; Minami, Y.; Kozawa, T.; Tagawa, S.; Gustafson, D.; Blackborow, P.
2007-03-01
A system for photo-chemical analysis of EUV lithography processes has been developed. This system has consists of 3 units: (1) an exposure that uses the Z-Pinch (Energetiq Tech.) EUV Light source (DPP) to carry out a flood exposure, (2) a measurement system RDA (Litho Tech Japan) for the development rate of photo-resists, and (3) a simulation unit that utilizes PROLITH (KLA-Tencor) to calculate the resist profiles and process latitude using the measured development rate data. With this system, preliminary evaluation of the performance of EUV lithography can be performed without any lithography tool (Stepper and Scanner system) that is capable of imaging and alignment. Profiles for 32 nm line and space pattern are simulated for the EUV resist (Posi-2 resist by TOK) by using VLES that hat has sensitivity at the 13.5nm wavelength. The simulation successfully predicts the resist behavior. Thus it is confirmed that the system enables efficient evaluation of the performance of EUV lithography processes.
Novel EUV photoresist for sub-7nm node (Conference Presentation)
NASA Astrophysics Data System (ADS)
Furukawa, Tsuyoshi; Naruoka, Takehiko; Nakagawa, Hisashi; Miyata, Hiromu; Shiratani, Motohiro; Hori, Masafumi; Dei, Satoshi; Ayothi, Ramakrishnan; Hishiro, Yoshi; Nagai, Tomoki
2017-04-01
Extreme ultraviolet (EUV) lithography has been recognized as a promising candidate for the manufacturing of semiconductor devices as LS and CH pattern for 7nm node and beyond. EUV lithography is ready for high volume manufacturing stage. For the high volume manufacturing of semiconductor devices, significant improvement of sensitivity and line edge roughness (LWR) and Local CD Uniformity (LCDU) is required for EUV resist. It is well-known that the key challenge for EUV resist is the simultaneous requirement of ultrahigh resolution (R), low line edge roughness (L) and high sensitivity (S). Especially high sensitivity and good roughness is important for EUV lithography high volume manufacturing. We are trying to improve sensitivity and LWR/LCDU from many directions. From material side, we found that both sensitivity and LWR/LCDU are simultaneously improved by controlling acid diffusion length and efficiency of acid generation using novel resin and PAG. And optimizing EUV integration is one of the good solution to improve sensitivity and LWR/LCDU. We are challenging to develop new multi-layer materials to improve sensitivity and LWR/LCDU. Our new multi-layer materials are designed for best performance in EUV lithography system. From process side, we found that sensitivity was substantially improved maintaining LWR applying novel type of chemical amplified resist (CAR) and process. EUV lithography evaluation results obtained for new CAR EUV interference lithography. And also metal containing resist is one possibility to break through sensitivity and LWR trade off. In this paper, we will report the recent progress of sensitivity and LWR/LCDU improvement of JSR novel EUV resist and process.
Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses
NASA Astrophysics Data System (ADS)
Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.
2018-06-01
In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.
Shot noise, LER, and quantum efficiency of EUV photoresists
NASA Astrophysics Data System (ADS)
Brainard, Robert L.; Trefonas, Peter; Lammers, Jeroen H.; Cutler, Charlotte A.; Mackevich, Joseph F.; Trefonas, Alexander; Robertson, Stewart A.
2004-05-01
The shot noise, line edge roughness (LER) and quantum efficiency of EUV interaction with seven resists related to EUV-2D (SP98248B) are studied. These resists were identical to EUV-2D except were prepared with seven levels of added base while keeping all other resist variables constant. These seven resists were patterned with EUV lithography, and LER was measured on 100-200 nm dense lines. Similarly, the resists were also imaged using DUV lithography and LER was determined for 300-500 nm dense lines. LER results for both wavelengths were plotted against Esize. Both curves show very similar LER behavior-the resists requiring low doses have poor LER, whereas the resists requiring high doses have good LER. One possible explanation for the observed LER response is that the added base improves LER by reacting with the photogenerated acid to control the lateral spread of acid, leading to better chemical contrast at the line edge. An alternative explanation to the observed relationship between LER and Esize is that shot-noise generated LER decreases as the number of photons absorbed at the line edge increases. We present an analytical model for the influence of shot noise based on Poisson statistics that preidicts that the LER is proportional to (Esize)-1/2. Indeed, both sets of data give straight lines when plotted this way (DUV r2 = 0.94; EUV r2 = 0.97). We decided to further evaluate this interpretation by constructing a simulation model for shot noise resulting from exposure and acid diffusion at the mask edge. In order to acquire the data for this model, we used the base titration method developed by Szmanda et al. to determine C-parameters and hence the quantum efficiency for producing photogenerated acid. This information, together with film absorptivity, allows the calculation of number and location of acid molecules generated at the mask edgte by assuming a stochastic distribution of individual photons corresponding to the aerial image function. The edge "roughness" of the acid molecule distribution in the film at the mask edge is then simulated as a function of acid diffusion length and compared to the experimental data. In addition, comparisoins between of the number of acid molecules generated and photons consumed leads to values of quantum efficiencies for these EUV resists.
NASA Technical Reports Server (NTRS)
Stern, Alan S.
1996-01-01
During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).
Rocket flight of a multilayer coated high-density EUV toroidal grating
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.
1992-01-01
A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.
High-efficiency spectral purity filter for EUV lithography
Chapman, Henry N [Livermore, CA
2006-05-23
An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.
Protection efficiency of a standard compliant EUV reticle handling solution
NASA Astrophysics Data System (ADS)
He, Long; Lystad, John; Wurm, Stefan; Orvek, Kevin; Sohn, Jaewoong; Ma, Andy; Kearney, Patrick; Kolbow, Steve; Halbmaier, David
2009-03-01
For successful implementation of extreme ultraviolet lithography (EUVL) technology for late cycle insertion at 32 nm half-pitch (hp) and full introduction for 22 nm hp high volume production, the mask development infrastructure must be in place by 2010. The central element of the mask infrastructure is contamination-free reticle handling and protection. Today, the industry has already developed and balloted an EUV pod standard for shipping, transporting, transferring, and storing EUV masks. We have previously demonstrated that the EUV pod reticle handling method represents the best approach in meeting EUVL high volume production requirements, based on then state-of-the-art inspection capability at ~53nm polystyrene latex (PSL) equivalent sensitivity. In this paper, we will present our latest data to show defect-free reticle handling is achievable down to 40 nm particle sizes, using the same EUV pod carriers as in the previous study and the recently established world's most advanced defect inspection capability of ~40 nm SiO2 equivalent sensitivity. The EUV pod is a worthy solution to meet EUVL pilot line and pre-production exposure tool development requirements. We will also discuss the technical challenges facing the industry in refining the EUV pod solution to meet 22 nm hp EUVL production requirements and beyond.
High performance EUV multilayer structures insensitive to capping layer optical parameters.
Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L
2008-09-15
We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.
NASA Technical Reports Server (NTRS)
Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.
1992-01-01
New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.
Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in; HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague; Murtaza Hassan, Syed
2014-05-15
We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm, Nd:YAG laser pulses with varying pulse duration (5–15 ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ∼0.5 T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasmamore » show that the ion flux reduces by a factor of ∼5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ∼1.2 cm/μs and reduced to ∼0.75 cm/μs with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5 T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.« less
NASA Astrophysics Data System (ADS)
Schmidtke, G.; Nikutowski, B.; Jacobi, C.; Brunner, R.; Erhardt, C.; Knecht, S.; Scherle, J.; Schlagenhauf, J.
2014-05-01
SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to > 8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.
Ultraviolet out-of-band radiation studies in laser tin plasma sources
NASA Astrophysics Data System (ADS)
Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin
2017-11-01
Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.
Optical element for full spectral purity from IR-generated EUV light sources
NASA Astrophysics Data System (ADS)
van den Boogaard, A. J. R.; Louis, E.; van Goor, F. A.; Bijkerk, F.
2009-03-01
Laser produced plasma (LLP) sources are generally considered attractive for high power EUV production in next generation lithography equipment. Such plasmas are most efficiently excited by the relatively long, infrared wavelengths of CO2-lasers, but a significant part of the rotational-vibrational excitation lines of the CO2 radiation will be backscattered by the plasma's critical density surface and consequently will be present as parasitic radiation in the spectrum of such sources. Since most optical elements in the EUV collecting and imaging train have a high reflection coefficient for IR radiation, undesirable heating phenomena at the resist level are likely to occur. In this study a completely new principle is employed to obtain full separation of EUV and IR radiation from the source by a single optical component. While the application of a transmission filter would come at the expense of EUV throughput, this technique potentially enables wavelength separation without loosing reflectance compared to a conventional Mo/Si multilayer coated element. As a result this method provides full spectral purity from the source without loss in EUV throughput. Detailed calculations on the principal of functioning are presented.
NASA Astrophysics Data System (ADS)
Seely, J. F.; McMullin, D. R.; Bremer, J.; Chang, C.; Sakdinawat, A.; Jones, A. R.; Vest, R.
2014-12-01
Two solar instrument designs are presented that utilize newly developed miniature free-standing zone plates having interconnected Au opaque bars and no support membrane resulting in excellent long-term stability in space. Both instruments are based on a zone plate having 4 mm outer diameter and 1 to 2 degree field of view. The zone plate collects EUV radiation and focuses a narrow bandpass through a pinhole aperture and onto a silicon photodiode detector. As a miniature radiometer, EUV irradiance is accurately determined from the zone plate efficiency and the photodiode responsivity that are calibrated at the NIST SURF synchrotron facility. The EUV radiometer is pointed to the Sun and measures the absolute solar EUV irradiance in high time cadence suitable for solar physics and space weather applications. As a limb-scanning instrument in low earth orbit, a miniature zone-plate monochromator measures the extinction of solar EUV radiation by scattering through the upper atmosphere which is a measure of the variability of the ionosphere. Both instruments are compact and light-weight and are attractive for CubeSats and other missions where resources are extremely limited.
Solar Coronal Jets Extending to High Altitudes Observed during the 2017 August 21 Total Eclipse
NASA Astrophysics Data System (ADS)
Hanaoka, Yoichiro; Hasuo, Ryuichi; Hirose, Tsukasa; Ikeda, Akiko C.; Ishibashi, Tsutomu; Manago, Norihiro; Masuda, Yukio; Morita, Sakuhiro; Nakazawa, Jun; Ohgoe, Osamu; Sakai, Yoshiaki; Sasaki, Kazuhiro; Takahashi, Koichi; Toi, Toshiyuki
2018-06-01
Coronal jets, which extend from the solar surface to beyond 2 R ⊙, were observed in the polar coronal hole regions during the total solar eclipse on 2017 August 21. In a time-series of white-light images of the corona spanning 70 minutes taken with our multi-site observations of this eclipse, six jets were found as narrow structures upwardly ejected with an apparent speed of about 450 km s‑1 in polar plumes. On the other hand, extreme-ultraviolet (EUV) images taken with the Atmospheric Image Assembly of the Solar Dynamics Observatory show that all of the eclipse jets were preceded by EUV jets. Conversely, all the EUV jets whose brightnesses are comparable to ordinary soft X-ray jets and that occurred in the polar regions near the eclipse period, were observed as eclipse jets. These results suggest that ordinary polar jets generally reach high altitudes and escape from the Sun as part of the solar wind.
Design requirements for a stand alone EUV interferometer
NASA Astrophysics Data System (ADS)
Michallon, Ph.; Constancias, C.; Lagrange, A.; Dalzotto, B.
2008-03-01
EUV lithography is expected to be inserted for the 32/22 nm nodes with possible extension below. EUV resist availability remains one of the main issues to be resolved. There is an urgent need to provide suitable tools to accelerate resist development and to achieve resolution, LER and sensitivity specifications simultaneously. An interferometer lithography tool offers advantages regarding conventional EUV exposure tool. It allows the evaluation of resists, free from the deficiencies of optics and mask which are limiting the achieved resolution. Traditionally, a dedicated beam line from a synchrotron, with limited access, is used as a light source in EUV interference lithography. This paper identifies the technology locks to develop a stand alone EUV interferometer using a compact EUV source. It will describe the theoretical solutions adopted and especially look at the feasibility according to available technologies. EUV sources available on the market have been evaluated in terms of power level, source size, spatial coherency, dose uniformity, accuracy, stability and reproducibility. According to the EUV source characteristics, several optic designs were studied (simple or double gratings). For each of these solutions, the source and collimation optic specifications have been determined. To reduce the exposure time, a new grating technology will also be presented allowing to significantly increasing the transmission system efficiency. The optical grating designs were studied to allow multi-pitch resolution print on the same exposure without any focus adjustment. Finally micro mechanical system supporting the gratings was studied integrating the issues due to vacuum environment, alignment capability, motion precision, automation and metrology to ensure the needed placement control between gratings and wafer. A similar study was carried out for the collimation-optics mechanical support which depends on the source characteristics.
EUV near normal incidence collector development at SAGEM
NASA Astrophysics Data System (ADS)
Mercier Ythier, R.; Bozec, X.; Geyl, R.; Rinchet, A.; Hecquet, Christophe; Ravet-Krill, Marie-Françoise; Delmotte, Franck; Sassolas, Benoît; Flaminio, Raffaele; Mackowski, Jean-Marie; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pinard, Laurent; Roméo, Elodie
2008-03-01
Through its participation to European programs, SAGEM has worked on the design and manufacturing of normal incidence collectors for EUV sources. By opposition to grazing incidence, normal incidence collectors are expected to collect more light with a simpler and cheaper design. Designs are presented for the two current types of existing sources: Discharge Produced Plasma (DPP) and Laser Produced Plasma (LPP). Collection efficiency is calculated in both cases. It is shown that these collectors can achieve about 10 % efficiency for DPP sources and 40 % for LPP sources. SAGEM works on the collectors manufacturability are also presented, including polishing, coating and cooling. The feasibility of polishing has been demonstrated with a roughness better than 2 angstroms obtained on several materials (glass, silicon, Silicon Carbide, metals...). SAGEM is currently working with the Institut d'Optique and the Laboratoire des Materiaux Avancés on the design and the process of EUV coatings for large mirrors. Lastly, SAGEM has studied the design and feasibility of an efficient thermal control, based on a liquid cooling through slim channels machined close to the optical surface.
Extreme ultraviolet performance of a multilayer coated high density toroidal grating
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Keski-Kuha, Ritva A. M.; Neupert, Werner M.; Condor, Charles E.; Gum, Jeffrey S.
1991-01-01
The performance of a multilayer coated diffraction grating has been evaluated at EUV wavelengths both in terms of absolute efficiency and spectral resolution. The application of ten-layer Ir/Si multilayer coating to a 3600-lines/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength of about 30 nm in first order, without degrading its excellent quasistigmatic spectral resolution. The measured EUV efficiency peaked at 3.3 percent and was improved over the full spectral range between 25 and 35 nm compared with the premultilayer replica which had a standard gold coating. In addition, the grating's spectral resolution of greater than 5000 was maintained.
The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.
1992-01-01
We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.
The Extreme Ultraviolet Explorer Mission
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1991-01-01
The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled from launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation with the use of three EUV telescope, each sensitive to a different segment of the EUV band. A fourth telescope is planned to perform a high-sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey is planned to be carried out in the first six months of the mission in four bands, or colors, 70-180 A, 170-250 A, 400-600 A, and 500-700 A. The second phase of the mission is devoted to spectroscopic observations of EUV sources. A high-efficiency grazing-incidence spectrometer using variable line-space gratings is planned to provide spectral data with about 1-A resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, is presented. Hypothetical data from astronomical sources were processed through this model and are shown.
NASA Technical Reports Server (NTRS)
Jelinsky, P.; Jelinsky, S. R.; Miller, A.; Vallerga, J.; Malina, R. F.
1988-01-01
The Extreme Ultraviolet Explorer (EUVE) has a spectrometer which utilizes variable line-spaced, plane diffraction gratings in the converging beam of a Wolter-Schwarzschild type II mirror. The gratings, microchannel plate detector, and thin film filters have been calibrated with continuum radiation provided by the NBS SURF II facility. These were calibrated in a continuum beam to find edges or other sharp spectral features in the transmission of the filters, quantum efficiency of the microchannel plate detector, and efficiency of the gratings. The details of the calibration procedure and the results of the calibration are presented.
EUV observation from the Earth-orbiting satellite, EXCEED
NASA Astrophysics Data System (ADS)
Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.
2010-01-01
An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.
NASA Astrophysics Data System (ADS)
Nikutowski, B.; Brunner, R.; Erhardt, Ch.; Knecht, St.; Schmidtke, G.
2011-09-01
In the field of terrestrial climatology the continuous monitoring of the solar irradiance with highest possible accuracy is an important goal. SolACES as a part of the ESA mission SOLAR on the ISS is measuring the short-wavelength solar EUV irradiance from 16-150 nm. This data will be made available to the scientific community to investigate the impact of the solar irradiance variability on the Earth's climate as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program. Since the successful launch with the shuttle mission STS-122 on February 7th, 2008, SolACES initially recorded the low EUV irradiance during the extended solar activity minimum. Thereafter it has been observing the EUV irradiance during the increasing solar activity with enhanced intensity and changing spectral composition. SolACES consists of three grazing incidence planar grating spectrometers. In addition there are two three-signal ionisation chambers, each with exchangeable band-pass filters to determine the absolute EUV fluxes repeatedly during the mission. One important problem of space-borne instrumentation recording the solar EUV irradiance is the degradation of the spectrometer sensitivity. The two double ionisation chambers of SolACES, which could be re-filled with three different gases for each recording, allow the recalibration of the efficiencies of the three SolACES spectrometers from time to time.
NASA Astrophysics Data System (ADS)
Bartnik, A.
2015-06-01
In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.
Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering
NASA Astrophysics Data System (ADS)
Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven
2014-09-01
Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.
Final Report, January 1991 - July 1992
NASA Astrophysics Data System (ADS)
Ferrara, Jon
1992-07-01
This report covers final schedules, expenses and billings, monthly reports, testing, and deliveries for this contract. The goal of the detector development program for the Solar and Heliospheric Spacecraft (SOHO) EUV Imaging Telescope (EIT) is an Extreme UltraViolet (EUV) CCD (Change Collecting Device) camera. As a part of the CCD screening effort, the quantum efficiency (QE) of a prototype CCD has been measured in the NRL EUV laboratory over the wavelength range of 256 to 735 Angstroms. A simplified model has been applied to these QE measurements to illustrate the relevant physical processes that determine the performance of the detector. The charge transfer efficiency (CTE) characteristics of the Tektronix 1024 X 1024 CCD being developed for STIS/SOHO space imaging applications have been characterized at different signal levels, operating conditions, and temperatures using a variety of test methods. A number of CCD's have been manufactured using processing techniques developed to improve CTE, and test results on these devices will be used in determining the final chip design. In this paper, we discuss the CTE test methods used and present the results and conclusions of these tests.
Study on the lifetime of Mo/Si multilayer optics with pulsed EUV-source at the ETS
NASA Astrophysics Data System (ADS)
Schürmann, Mark; Yulin, Sergiy; Nesterenko, Viatcheslav; Feigl, Torsten; Kaiser, Norbert; Tkachenko, Boris; Schürmann, Max C.
2011-06-01
As EUV lithography is on its way into production stage, studies of optics contamination and cleaning under realistic conditions become more and more important. Due to this fact an Exposure Test Stand (ETS) has been constructed at XTREME technologies GmbH in collaboration with Fraunhofer IOF and with financial support of Intel Corporation. This test stand is equipped with a pulsed DPP source and allows for the simultaneous exposure of several samples. In the standard set-up four samples with an exposed area larger than 35 mm2 per sample can be exposed at a homogeneous intensity of 0.25 mW/mm2. A recent update of the ETS allows for simultaneous exposures of two samples with intensities up to 1.0 mW/mm2. The first application of this alternative set-up was a comparative study of carbon contamination rates induced by EUV radiation from the pulsed source with contamination rates induced by quasicontinuous synchrotron radiation. A modified gas-inlet system allows for the introduction of a second gas to the exposure chamber. This possibility was applied to investigate the efficiency of EUV-induced cleaning with different gas mixtures. In particular the enhancement of EUV-induced cleaning by addition of a second gas to the cleaning gas was studied.
Extreme Ultraviolet Imaging Telescope (EIT)
NASA Technical Reports Server (NTRS)
Lemen, J. R.; Freeland, S. L.
1997-01-01
Efforts concentrated on development and implementation of the SolarSoft (SSW) data analysis system. From an EIT analysis perspective, this system was designed to facilitate efficient reuse and conversion of software developed for Yohkoh/SXT and to take advantage of a large existing body of software developed by the SDAC, Yohkoh, and SOHO instrument teams. Another strong motivation for this system was to provide an EIT analysis environment which permits coordinated analysis of EIT data in conjunction with data from important supporting instruments, including Yohkoh/SXT and the other SOHO coronal instruments; CDS, SUMER, and LASCO. In addition, the SSW system will support coordinated EIT/TRACE analysis (by design) when TRACE data is available; TRACE launch is currently planned for March 1998. Working with Jeff Newmark, the Chianti software package (K.P. Dere et al) and UV /EUV data base was fully integrated into the SSW system to facilitate EIT temperature and emission analysis.
Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn
2017-01-10
We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile gettingmore » significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.« less
The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1987-01-01
A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.
High efficiency spectrographs for the EUV and soft X-rays
NASA Technical Reports Server (NTRS)
Cash, W.
1983-01-01
The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.
Advanced EUV mask and imaging modeling
NASA Astrophysics Data System (ADS)
Evanschitzky, Peter; Erdmann, Andreas
2017-10-01
The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masnavi, Majid; Nakajima, Mitsuo; Hotta, Eiki
Extreme ultraviolet (EUV) discharge-based lamps for EUV lithography need to generate extremely high power in the narrow spectrum band of 13.5{+-}0.135 nm. A simplified collisional-radiative model and radiative transfer solution for an isotropic medium were utilized to investigate the wavelength-integrated light outputs in tin (Sn) plasma. Detailed calculations using the Hebrew University-Lawrence Livermore atomic code were employed for determination of necessary atomic data of the Sn{sup 4+} to Sn{sup 13+} charge states. The result of model is compared with experimental spectra from a Sn-based discharge-produced plasma. The analysis reveals that considerably larger efficiency compared to the so-called efficiency of amore » black-body radiator is formed for the electron density {approx_equal}10{sup 18} cm{sup -3}. For higher electron density, the spectral efficiency of Sn plasma reduces due to the saturation of resonance transitions.« less
MAMA detector systems - A status report
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.
1989-01-01
Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.
Data indexing techniques for the EUVE all-sky survey
NASA Technical Reports Server (NTRS)
Lewis, J.; Saba, V.; Dobson, C.
1992-01-01
This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C.
2012-01-01
We have developed new, corrosion-resistant Mg/SiC multilayer coatings which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation is achieved through the use of partially amorphous Al-Mg thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Unprotected Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nmmore » with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiplewavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.« less
Demonstration of the First 4H-SiC EUV Detector with Large Detection Area
NASA Technical Reports Server (NTRS)
Xin, Xiaobin; Yan, Feng; Koeth, Timothy W.; Hu, Jun; Zhao, Jian H.
2005-01-01
Ultraviolet (UV) and Extreme Ultraviolet (EUV) detectors are very attractive in astronomy, photolithography and biochemical applications. For EUV applications, most of the semiconductor detectors based on PN or PIN structures suffer from the very short penetration depth. Most of the carries are absorbed at the surface and recombined there due to the high surface recombination before reach the depletion region, resulting very low quantum efficiency. On the other hand, for Schottky structures, the active region starts from the surface and carriers generated from the surface can be efficiently collected. 4H-Sic has a bandgap of 3.26eV and is immune to visible light background noise. Also, 4H-Sic detectors usually have very good radiation hardness and very low noise, which is very important for space applications where the signal is very weak. The E W photodiodes presented in this paper are based on Schottky structures. Platinum (Pt) and Nickel (Ni) are selected as the Schottky contact metals, which have the highest electron work functions (5.65eV and 5.15eV, respectively) among all the known metals on 4H-Sic.
Prospect of space-based interferometry at EUV and soft X-ray wavelengths
NASA Technical Reports Server (NTRS)
Welsh, Barry Y.; Chakrabarti, Supriya
1992-01-01
We review the current capabilities of high-resolution, spectroscopic, space-borne instrumentation available for both solar and stellar observations in the EUV and soft X-ray wavelength regimes, and describe the basic design of a compact, all-reflection interferometer based on the spatial heterodyne technique; this is capable of producing a resolving power (lambda/Delta-lambda) of about 20,000 in the 100-200 A region using presently available multilayer optical components. Such an instrument can be readily constructed with existing technology. Due to its small size and lack of moving parts, it is ideally suited to spaceborne applications. Based on best estimates of the efficiency of this instrument at soft X-ray wavelengths, we review the possible use of this high-resolution interferometer in obtaining high-resolution full-disk spectroscopy of the sun. We also discuss its possible use for observations of diffuse sources such as the EUV interstellar background radiation.
A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan
2014-05-10
Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup –1}) and a lateral surface wave (554 km s{sup –1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments andmore » the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup –1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ∼10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.« less
NASA Technical Reports Server (NTRS)
Vallerga, J.; Lampton, M.
1988-01-01
While microchannel plates (MCPs) have been established as imaging photon counters in the EUV and FUV for some years, CCDs are associated with low light level sensing at visible and near-IR wavelengths. Attention is presently given to recent proposals for CCDs' use as EUV and FUV detectors with quantum efficiencies sometimes exceeding those of MCPs; quantum resolution, format size, dynamic range, and long-term stability are also used as bases of comparison, for the cases of both space-based astronomical and spectroscopic applications.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin
2016-03-01
Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity (S or best energy BE) and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (LRS trade-off) among these parameters for chemically amplified resists (CARs). Here we present early proof-of-principle results for a multi-exposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a Photosensitized Chemically Amplified Resist (PSCAR). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV flood exposure (λ = 365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR and EL high performance requirements with the aim of resolving line space (L/S) features for the 7 and 5 nm logic node (16 nm and 13 nm half-pitch HP, respectively) for HVM. Several CARs were additionally found to be well resolved down to 12 nm and 11 nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and below 16 nm HP resolution, demonstrating the need for alternative resist solutions at 13 nm resolution and below. EUV interference lithography (IL) has provided and continues to provide a simple yet powerful platform for academic and industrial research enabling the characterization and development of new resist materials before commercial EUV exposure tools become available. Our experiments have been performed at the EUV-IL set-up in the Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI).
EUV emission stimulated by use of dual laser pulses from continus liquid microjet targets
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Rajyaguru, Chirag; Sasaki, Wataru; Kubodera, Shoichi
2004-11-01
A continuous water-jet or water-jet mixed with LiF with several tens μm diameter was formed in a vacuum chamber through a small capillary nozzle. Usage of two laser pulses is an efficient way to produce EUV emission, since a density and temperature of a plasma formed by the first laser pulse are regulated by the second laser pulse. By adjusting the delay of the second pulse, one could maximize the EUV emission. A subpicosecond Ti:Sapphire laser at a wavelength of 800 nm produced a maximum energy around 30 mJ. The beam was divided by a Michelson interferometer, which produced two laser pulses with energies of 5 mJ. The pulse duration was adjusted around 300 fs (FWHM). Both beams were focused on a micro-jet using a lens with a focal length of 15 cm. The delay time between the two pulses was varied from 100 to 800 ps by use of an optical delay line. Clear enhancement of the EUV emission yield was observed when the delay between the two pulses was around 500 ps. The experimentally observed delay agrees reasonably well with that of a plasma to expand to its critical density of 10^21 cm-3.
Prospective EUV observations of hot DA white dwarfs with the EUV Explorer
NASA Technical Reports Server (NTRS)
Finley, David S.; Malina, Roger F.; Bowyer, Stuart
1987-01-01
The Extreme Ultraviolet Explorer (EUVE) will perform a high sensitivity EUV all-sky survey. A major category of sources which will be detected with the EUVE instruments consists of hot white dwarfs. Detailed preliminary studies of synthetic EUV observations of white dwarfs have been carried out using the predicted EUVE instrumental response functions. Using available information regarding space densities of white dwarfs and the distribution of neutral hydrogen in the interstellar medium, the numbers of DA white dwarfs which will be detectable in the different EUV bandpasses have been estimated.
Negative-tone imaging with EUV exposure toward 13nm hp
NASA Astrophysics Data System (ADS)
Tsubaki, Hideaki; Nihashi, Wataru; Tsuchihashi, Toru; Yamamoto, Kei; Goto, Takahiro
2016-03-01
Negative-tone imaging (NTI) with EUV exposure has major advantages with respect to line-width roughness (LWR) and resolution due in part to polymer swelling and favorable dissolution mechanics. In NTI process, both resist and organic solvents play important roles in determining lithography performances. The present study describes novel chemically amplified resist materials based on NTI technology with EUV using a specific organic solvents. Lithographic performances of NTI process were described in this paper under exposures using ASML NXE:3300 EUV scanner at imec. It is emphasized that 14 nm hp was nicely resolved under exposure dose of 37 mJ/cm2 without any bridge and collapse, which are attributed to the low swelling character of NTI process. Although 13 nm hp resolution was potentially obtained, a pattern collapse still restricts its resolution in case coating resist film thickness is 40 nm. Dark mask limitation due mainly to mask defectivity issue makes NTI with EUV favorable approach for printing block mask to produce logic circuit. A good resolution of CD-X 21 nm/CD-Y 32 nm was obtained for block mask pattern using NTI with usable process window and dose of 49 mJ/cm2. Minimum resolution now reaches CD-X 17 nm / CD-Y 23 nm for the block. A 21 nm block mask resolution was not affected by exposure dose and explored toward low dose down to 18 mJ/cm2 by reducing quencher loading. In addition, there was a negligible amount of increase in LCDU for isolated dot pattern when decreasing exposure dose from 66 mJ/cm2 to 24 mJ/cm2. On the other hand, there appeared tradeoff relationship between LCDU and dose for dense dot pattern, indicating photon-shot noise restriction, but strong dependency on patterning features. Design to improve acid generation efficiency was described based on acid generation mechanism in traditional chemically amplified materials which contains photo-acid generator (PAG) and polymer. Conventional EUV absorber comprises of organic compounds is expected to have 1.6 times higher EUV absorption than polyhydroxystyrene based on calculation. However, observed value of acid amount was comparable or significantly worse than polyhydroxystyrene.
NASA Technical Reports Server (NTRS)
Wilkinson, Erik; Green, James C.; Cash, Webster
1993-01-01
The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.
Effect of SPM-based cleaning POR on EUV mask performance
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.
2011-11-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)
1991-01-01
Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.
Responses of Solar Irradiance and the Ionosphere to an Intense Activity Region
NASA Astrophysics Data System (ADS)
Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing
2018-03-01
Solar rotation (SR) variation dominates solar extremely ultraviolet (EUV) changes on the timescale of days. The F10.7 index is usually used as an indicator for solar EUV. The SR variation of F10.7 significantly enhanced during the 2008th-2009th Carrington rotations (CRs) owing to an intense active region; F10.7 increased about 180 units during that SR period. That was the most prominent SR variation of F10.7 during solar cycle 23. In this paper, global electron content (GEC) is used to investigate ionospheric response to that strong variation of solar irradiance indicated by F10.7. The variation of GEC with F10.7 was anomalous (GEC-F10.7 slope significantly decreased) during the 2008th-2009th CRs; however, GEC versus EUV variation during that period was consistent with that during adjacent time intervals when using Solar Heliospheric Observatory/Solar EUV Monitor 26-34 nm EUV measurements. The reason is that F10.7 response to that intense active region was much stronger than EUV response; thus, the EUV-F10.7 slope decreased. We confirmed decreased EUV-F10.7 slope during the 2008th-2009th CRs for different wavelengths within 27-120 nm using Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Solar EUV Experiment high spectral resolution EUV measurements. And on the basis of Solar Heliospheric Observatory/Solar EUV Monitor EUV measurements during solar cycle 23, we further presented that EUV-F10.7 slope statistically tends to decrease when the SR variation of F10.7 significantly enhances. Moreover, we found that ionospheric time lag effect to EUV is exaggerated when using F10.7, owing to the time lag effect of EUV to F10.7.
NASA Astrophysics Data System (ADS)
Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo
2017-07-01
In extreme ultraviolet (EUV) lithography, development of review tools for EUV mask pattern and phase defect at working wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern (50 - 70 nm thick) and Mo/Si multilayer (280 nm thick) on a glass substrate. This mask pattern seems three-dimensional (3D) structure. This 3D structure would modulate EUV reflection phase, which would cause focus and pattern shifts. Thus, EUV phase imaging is important to evaluate this phase modulation. We have developed coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. EUV phase and intensity image are reconstructed with diffraction images by ptychography with coherent EUV illumination. The high-harmonic-generation (HHG) EUV source was employed for standalone CSM system. In this study, we updated HHG system of pump-laser reduction and gas-pressure control. Two types of EUV mask absorber patterns were observed. An 88-nm lines-and-spaces and a cross-line patterns were clearly reconstructed by ptychography. In addition, a natural defect with 2-μm diameter on the cross-line was well reconstructed. This demonstrated the high capability of the standalone CSM, which system will be used in the factories, such as mask shops and semiconductor fabrication plants.
NASA Technical Reports Server (NTRS)
Mcdonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Fruscione, A.; Vallerga, J. V.; Malina, R. F.
1994-01-01
We report the detection of 114 extreme ultraviolet (EUV; 58 - 740 A) sources, of which 99 are new serendipitous sources, based on observations made with the imaging telescopes on board the Extreme Ultraviolet Explorer (EUVE) during the Right Angle Program (RAP). These data were obtained using the survey scanners and the Deep Survey instrument during the first year of the spectroscopic guest observer phase of the mission, from January 1993 to January 1994. The data set consists of 162 discrete pointings whose exposure times are typically two orders of magnitude longer than the average exposure times during the EUVE all-sky survey. Based on these results, we can expect that EUVE will serendipitously detect approximately 100 new EUV sources per year, or about one new EUV source per 10 sq deg, during the guest observer phase of the EUVE mission. New EUVE sources of note include one B star and three extragalactic objects. The B star (HR 2875, EUVE J0729 - 38.7) is detected in both the Lexan/B (approximately 100 A) and Al/Ti/C (approximately 200 A) bandpasses, and the detection is shown not to be a result of UV leaks. We suggest that we are detecting EUV and/or soft x rays from a companion to the B star. Three sources, EUVE J2132+10.1, EUVE J2343-14.9, and EUVE J2359-30.6 are identified as the active galactic nuclei MKN 1513, MS2340.9-1511, and 1H2354-315, respectively.
Exploring the readiness of EUV photo materials for patterning advanced technology nodes
NASA Astrophysics Data System (ADS)
De Simone, Danilo; Vesters, Yannick; Shehzad, Atif; Vandenberghe, Geert; Foubert, Philippe; Beral, Christophe; Van Den Heuvel, Dieter; Mao, Ming; Lazzarino, Fred
2017-03-01
Imec is currently driving the extreme ultraviolet (EUV) photo material development within the imec material and equipment supplier hub. EUV baseline processes using the ASML NXE3300 full field scanner have been setup for the critical layers of the imec N7 (iN7) BEOL process modules with a resist sensitivity of 35mJ/cm2, 40mJ/cm2 and 60mJ/cm2 for metal, block and vias layer, respectively. A feasibility study on higher sensitivity resists for HVM has been recently conducted looking at 16nm dense line-space at a targeted exposure dose of 20mJ/cm2. Such a study reveals that photoresist formulations with a cost-effective resist sensitivity are feasible today. Moreover, recent advances in enhanced underlayers are further offering novel development opportunities to increase the resist sensitivity. However, line width roughness (LWR) and pattern defectivity at nano scale are the major limiting factors of the lithographic process window and further efforts are needed to reach a HVM maturity level. We will present the results of the photo material screening and we examine in detail the lithography patterning results for the best performing photoresists. We further discuss the fundamental aspects of photo materials from a light-matter interaction standpoint looking at the photo emission yield at the EUV light for different photo materials towards a better understanding of the relation between photon efficiency and patterning performance. Finally, as metal containing resists are becoming part of the EUV material landscape, we also review the manufacturing aspects of a such class of resists looking at metal cross contamination pattern and defectivity on the process equipment.
High sensitivity microchannel plate detectors for space extreme ultraviolet missions.
Yoshioka, K; Homma, T; Murakami, G; Yoshikawa, I
2012-08-01
Microchannel plate (MCP) detectors have been widely used as two-dimensional photon counting devices on numerous space EUV (extreme ultraviolet) missions. Although there are other choices for EUV photon detectors, the characteristic features of MCP detectors such as their light weight, low dark current, and high spatial resolution make them more desirable for space applications than any other detector. In addition, it is known that the photocathode can be tailored to increase the quantum detection efficiency (QDE) especially for longer UV wavelengths (100-150 nm). There are many types of photocathode materials available, typically alkali halides. In this study, we report on the EUV (50-150 nm) QDE evaluations for MCPs that were coated with Au, MgF(2), CsI, and KBr. We confirmed that CsI and KBr show 2-100 times higher QDEs than the bare photocathode MCPs, while Au and MgF(2) show reduced QDEs. In addition, the optimal geometrical parameters for the CsI deposition were also studied experimentally. The best CsI thickness was found to be 150 nm, and it should be deposited on the inner wall of the channels only where the EUV photons initially impinge. We will also discuss the techniques and procedures for reducing the degradation of the photocathode while it is being prepared on the ground before being deployed in space, as adopted by JAXA's EXCEED mission which will be launched in 2013.
Vacuum compatible, high-speed, 2-D mirror tilt stage
Denham; Paul E.
2007-09-25
A compact and vacuum compatible magnetic-coil driven tiltable stage that is equipped with a high efficiency reflective coating can be employed as a scanner in EUV applications. The drive electronics for the scanner is fully in situ programmable and rapidly switchable.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin
2016-07-01
Extreme ultraviolet lithography (EUVL, λ=13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high-power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity [S or best energy (BE)], and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (line width roughness, resolution and sensitivity trade-off) among these parameters for chemically amplified resists (CARs). We present early proof-of-principle results for a multiexposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a "Photosensitized Chemically Amplified Resist™" (PSCAR™). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV-flood exposure (λ=365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR, and EL high-performance requirements with the aim of resolving line space (L/S) features for the 7- and 5-nm logic node [16- and 13-nm half-pitch (HP), respectively] for HVM. Several CARs were additionally found to be well resolved down to 12- and 11-nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and below 16-nm HP resolution, demonstrating the need for alternative resist solutions at 13-nm resolution and below. EUV interference lithography (IL) has provided and continues to provide a simple yet powerful platform for academic and industrial research, enabling the characterization and development of resist materials before commercial EUV exposure tools become available. Our experiments have been performed at the EUV-IL set-up in the Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI).
Quality control of EUVE databases
NASA Technical Reports Server (NTRS)
John, L. M.; Drake, J.
1992-01-01
The publicly accessible databases for the Extreme Ultraviolet Explorer include: the EUVE Archive mailserver; the CEA ftp site; the EUVE Guest Observer Mailserver; and the Astronomical Data System node. The EUVE Performance Assurance team is responsible for verifying that these public EUVE databases are working properly, and that the public availability of EUVE data contained therein does not infringe any data rights which may have been assigned. In this poster, we describe the Quality Assurance (QA) procedures we have developed from the approach of QA as a service organization, thus reflecting the overall EUVE philosophy of Quality Assurance integrated into normal operating procedures, rather than imposed as an external, post facto, control mechanism.
Effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance
NASA Astrophysics Data System (ADS)
Dietze, Uwe; Dress, Peter; Waehler, Tobias; Singh, Sherjang; Jonckheere, Rik; Baudemprez, Bart
2011-03-01
Extreme Ultraviolet Lithography (EUVL) is considered the leading lithography technology choice for semiconductor devices at 16nm HP node and beyond. However, before EUV Lithography can enter into High Volume Manufacturing (HVM) of advanced semiconductor devices, the ability to guarantee mask integrity at point-of-exposure must be established. Highly efficient, damage free mask cleaning plays a critical role during the mask manufacturing cycle and throughout the life of the mask, where the absence of a pellicle to protect the EUV mask increases the risk of contamination during storage, handling and use. In this paper, we will present effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance, which employs an intelligent, holistic approach to maximize Mean Time Between Cleans (MBTC) and extend the useful life span of the reticle. The data presented will demonstrate the protection of the capping and absorber layers, preservation of pattern integrity as well as optical and mechanical properties to avoid unpredictable CD-linewidth and overlay shifts. Experiments were performed on EUV blanks and pattern masks using various process conditions. Conditions showing high particle removal efficiency (PRE) and minimum surface layer impact were then selected for durability studies. Surface layer impact was evaluated over multiple cleaning cycles by means of UV reflectivity metrology XPS analysis and wafer prints. Experimental results were compared to computational models. Mask life time predictions where made using the same computational models. The paper will provide a generic overview of the cleaning sequence which yielded best results, but will also provide recommendations for an efficient in-fab mask maintenance scheme, addressing handling, storage, cleaning and inspection.
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
NASA Astrophysics Data System (ADS)
Wang, L.; Kirk, E.; Wäckerlin, C.; Schneider, C. W.; Hojeij, M.; Gobrecht, J.; Ekinci, Y.
2014-06-01
We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.
A Search for EUV Emission from the O4f Star Zeta Puppis
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Vallerga, John
1996-01-01
We obtained a 140 ks EUVE observation of the O4f star, zeta Puppis. Because of its low ISM column density and highly ionized stellar wind, a unique EUV window is accessible for viewing between 128 to 140 A, suggesting that this star may he the only O star observable with the EUVE. Although no SW spectrometer wavelength bin had a signal to noise greater than 3, a bin at 136 A had a signal to noise of 2.4. This bin is where models predict the brightest line due to OV emission should occur. We present several EUV line emission models. These models were constrained by fitting the ROSAT PSPC X-ray data and our EUVE data. If the OV emission is real, the best fits to the data suggest that there are discrepancies in our current understanding of EUV/X-ray production mechanisms. In particular, the emission measure of the EUV source is found to be much greater than the total wind emission measure, suggesting that the EUV shock must produce a very large density enhancement. In addition, the location of the EUV and X-ray shocks are found to be separated by approx. 0.3 stellar radii, but the EUV emission region is found to be approx. 400 times larger than the X-ray emission region. We also discuss the implications of a null detection and present relevant upper limits.
PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, R.; Fulara, A.; Chen, P. F.
We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less
Extreme Ultraviolet Explorer. Long look at the next window
NASA Technical Reports Server (NTRS)
Maran, Stephen P.
1991-01-01
The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.
Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
NASA Astrophysics Data System (ADS)
Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo
2016-03-01
We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.
Monolithic pattern-sensitive detector
Berger, Kurt W.
2000-01-01
Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.
Selected highlights from the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1995-01-01
We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.
Analytical techniques for mechanistic characterization of EUV photoresists
NASA Astrophysics Data System (ADS)
Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg
2017-03-01
Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.
Mask fabrication and its applications to extreme ultra-violet diffractive optics
NASA Astrophysics Data System (ADS)
Cheng, Yang-Chun
Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist materials.
Surface Inhomogeneities of the White Dwarf in the Binary EUVE J2013+400
NASA Astrophysics Data System (ADS)
Vennes, Stephane
We propose to study the white dwarf in the binary EUVE J2013+400. The object is paired with a dMe star and new extreme ultraviolet (EUV) observations will offer critical insights into the properties of the white dwarf. The binary behaves, in every other aspects, like its siblings EUVE J0720-317 and EUVE J1016-053 and new EUV observations will help establish their class properties; in particular, EUV photometric variations in 0720-317 and 1016-053 over a period of 11 hours and 57 minutes, respectively, are indicative of surface abundance inhomogeneities coupled with the white dwarfs rotation period. These variations and their large photospheric helium abundance are best explained by a diffusion-accretion model in which time-variable accretion and possible coupling to magnetic poles contribute to abundance variations across the surface and possibly as a function of depth. EUV spectroscopy will also enable a study of the helium abundance as a function of depth and a detailed comparison with theoretical diffusion profile.
Contrast matching of line gratings obtained with NXE3XXX and EUV- interference lithography
NASA Astrophysics Data System (ADS)
Tasdemir, Zuhal; Mochi, Iacopo; Olvera, Karen Garrido; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Fallica, Roberto; Vockenhuber, Michaela; Ekinci, Yasin
2017-10-01
Extreme UV lithography (EUVL) has gained considerable attention for several decades as a potential technology for the semiconductor industry and it is now close to being adopted in high-volume manufacturing. At Paul Scherrer Institute (PSI), we have focused our attention on EUV resist performance issues by testing available high-performance EUV resists in the framework of a joint collaboration with ASML. For this purpose, we use the grating-based EUV-IL setup installed at the Swiss Light Source (SLS) at PSI, in which a coherent beam with 13.5 nm wavelength is used to produce a periodic aerial image with virtually 100% contrast and large depth of focus. Interference lithography is a relatively simple technique and it does not require many optical components, therefore the unintended flare is minimized and the aerial image is well-defined sinusoidal pattern. For the collaborative work between PSI and ASML, exposures are being performed on the EUV-IL exposure tool at PSI. For better quantitative comparison to the NXE scanner results, it is targeted to determine the actual NILS of the EUV-IL exposure tool at PSI. Ultimately, any resist-related metrology must be aligned and compared with the performance of EUV scanners. Moreover, EUV-IL is a powerful method for evaluating the resist performance and a resist which performs well with EUV-IL, shows, in general, also good performance with NXE scanners. However, a quantitative prediction of the performance based on EUV-IL measurements has not been possible due to the differences in aerial image formation. In this work, we aim to study the performance of EUV resists with different aerial images. For this purpose, after the real interference pattern exposure, we overlay a flat field exposure to emulate different levels of contrast. Finally, the results are compared with data obtained from EUV scanner. This study will enable not only match the data obtained from EUV- IL at PSI with the performance of NXE scanners, but also a better understanding of resist fundamentals by studying the effects of the aerial image on resist performance by changing the aerial image contrast in a controlled manner using EUV-IL.
A new mask exposure and analysis facility
NASA Astrophysics Data System (ADS)
te Sligte, Edwin; Koster, Norbert; Deutz, Alex; Staring, Wilbert
2014-10-01
The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at high EUV powers and intensities, and capable of exposing and analyzing EUV masks. The proposed system architecture is similar to the EBL system which has been operated jointly by TNO and Carl Zeiss SMT since 2005. EBL2 contains an EUV Beam Line, in which samples can be exposed to EUV irradiation in a controlled environment. Attached to this Beam Line is an XPS system, which can be reached from the Beam Line via an in-vacuum transfer system. This enables surface analysis of exposed masks without breaking vacuum. Automated handling with dual pods is foreseen so that exposed EUV masks will still be usable in EUV lithography tools to assess the imaging impact of the exposure. Compared to the existing system, large improvements in EUV power, intensity, reliability, and flexibility are proposed. Also, in-situ measurements by e.g. ellipsometry is foreseen for real time monitoring of the sample condition. The system shall be equipped with additional ports for EUVR or other analysis tools. This unique facility will be open for external customers and other research groups.
EUVE and IR observations of the Polars HU Aqr and AR UMa
NASA Astrophysics Data System (ADS)
Howell, S.; Ciardi, D.
1999-12-01
Simultaneous EUVE and ground-based near-infrared J and K observations of the magnetic CV HU Aqr were performed. The observations occurred during a super-high state never before observed in HU Aqr. The average EUVE count-rate was 30-60 times higher than had been measured previously, allowing us to present the first ever EUV spectra of HU Aqr. The near-infrared observations show a corresponding flux increase of 2-3 times over previous J and K observations. However, the near-infrared eclipse minimum during this super-high state are the same as seen in previous observations, indicating that the eclipse in the near-infrared is total. We present a detailed comparison of the EUV and near-infrared emission of HU Aqr as a function of orbital phase and discuss the geometry and physical properties of the high energy and infrared emitting regions. AR UMa is the brightest EUV source yet observed with the EUVE satellite and is also the polar with the largest magnetic field, 250 MG. EUVE observations of the polar AR UMa have allowed, for the first time, EUV time-resolved spectral analysis and radial velocity measurements. We present EUV phase-resolved photometry and spectroscopy and show that the He 304 emission line is not produced on the heated face of the secondary star, but emanates from the inner illuminated regions of the coupling region and accretion stream. We comment on the overall structure of the accretion geometry as well. The authors acknowledge partial support of the research by NASA cooperative agreement NCC5-138 via an EUVE guest Observer mini-grant.
Wang, L; Kirk, E; Wäckerlin, C; Schneider, C W; Hojeij, M; Gobrecht, J; Ekinci, Y
2014-06-13
We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.
Universal EUV in-band intensity detector
Berger, Kurt W.
2004-08-24
Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.
The extreme ultraviolet explorer mission
NASA Technical Reports Server (NTRS)
Malina, R. F.; Bowyer, S.
1988-01-01
The science design goals and engineering implementation for the Extreme Ultraviolet Explorer (EUVE) science payload are discussed. The primary scientific goal of the EUVE payload is to carry out an all-sky survey in the 100- to 900-A band of the spectrum. Another goal of the mission is to demonstrate the use of a scientific platform in near-earth orbit. EUVE data will be used to study the distribution of EUV stars in the neighborhood of the sun and the emission physics responsible for the EUV mission.
Optical coating technology for the EUV
NASA Astrophysics Data System (ADS)
Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.
Adavaces in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.
Optical coating technology for the EUV
NASA Technical Reports Server (NTRS)
Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.
1991-01-01
Advances in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.
NASA Astrophysics Data System (ADS)
Fan, Yu-Jen; Maruyama, Ken; Ayothi, Ramakrishnan; Naruoka, Takehiko; Chakraborty, Tonmoy; Ashworth, Dominic; Chun, Jun Sung; Montgomery, Cecilia; Jen, Shih-Hui; Neisser, Mark; Cummings, Kevin
2015-03-01
In this paper, we present the first results of witness sample based outgas resist family test to improve the efficiency of outgas testing using EUV resists that have shown proven imaging performance. The concept of resist family testing is to characterize the boundary conditions of outgassing scale from three major components for each resist family. This achievement can significantly reduce the cost and improve the resist outgas learning cycle. We also report the imaging performance and outgas test results of state of the art resists and discuss the consequence of the resist development with recent change of resist outgassing specifications. Three chemically amplified resists selected from higher outgassing materials are investigated, but no significant improvement in resist performance is observed.
EUV Cross-Calibration Strategies for the GOES-R SUVI
NASA Astrophysics Data System (ADS)
Darnel, Jonathan; Seaton, Daniel
2016-10-01
The challenges of maintaining calibration for solar EUV instrumentation is well-known. The lack of standard calibration sources and the fact that most solar EUV telescopes are incapable of utilizing bright astronomical EUV sources for calibration make knowledge of instrument performance quite difficult. In the recent past, calibration rocket underflights have helped establish a calibration baseline. The EVE instrument on SDO for a time provided well-calibrated, high spectral resolution solar spectra for a broad range of the EUV, but has suffered a loss of coverage at the shorter wavelengths. NOAA's Solar UltraViolet Imager (SUVI), a solar EUV imager with similarities to SDO/AIA, will provide solar imagery over nearly an entire solar cycle. In order to maintain the scientific value of the SUVI's dataset, novel approaches to calibration are necessary. Here we demonstrate a suite of methods to cross-calibrate SUVI against other solar EUV instruments through the use of proxy solar spectra.
Plasma cleaning of nanoparticles from EUV mask materials by electrostatics
NASA Astrophysics Data System (ADS)
Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.
2008-03-01
Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.
Particle protection capability of SEMI-compliant EUV-pod carriers
NASA Astrophysics Data System (ADS)
Huang, George; He, Long; Lystad, John; Kielbaso, Tom; Montgomery, Cecilia; Goodwin, Frank
2010-04-01
With the projected rollout of pre-production extreme ultraviolet lithography (EUVL) scanners in 2010, EUVL pilot line production will become a reality in wafer fabrication companies. Among EUVL infrastructure items that must be ready, EUV mask carriers remain critical. To keep non-pellicle EUV masks free from particle contamination, an EUV pod concept has been extensively studied. Early prototypes demonstrated nearly particle-free results at a 53 nm PSL equivalent inspection sensitivity during EUVL mask robotic handling, shipment, vacuum pump-purge, and storage. After the passage of SEMI E152, which specifies the EUV pod mechanical interfaces, standards-compliant EUV pod prototypes, including a production version inner pod and prototype outer pod, were built and tested. Their particle protection capability results are reported in this paper. A state-of-the-art blank defect inspection tool was used to quantify their defect protection capability during mask robotic handling, shipment, and storage tests. To ensure the availability of an EUV pod for 2010 pilot production, the progress and preliminary test results of pre-production EUV outer pods are reported as well.
Objective for EUV microscopy, EUV lithography, and x-ray imaging
Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip
2016-05-03
Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.
Initial results from the extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1993-01-01
Data obtained during the first five months of calibration and science operation of the Extreme Ultraviolet Explorer (EUVE) are presented. Spectra of an extragalactic object were obtained; the object is detectable to wavelenghts longer than 100 A, demonstrating that extragalactic EUV astronomy is possible. Spectra of a hot white dwarf, and a late-type star in quiescence and flaring are shown as examples of the type of spectrographic data obtainable with EUVE. Other objects for which broad band photometric mode data have been obtained and analyzed include an RS CVn star and several late-type stars. The backgrounds in the EUVE detectors are quite low and the character of the diffuse astronomical EUV background has been investigated using these very low rates. Evidence is presented showing that, contrary to previously published reports, EUVE is about three times more sensitive than the English Wide Field Camera in the short wavelength bandpass covered by both instruments. Only limited information has been extracted from the longer bandpasses coered only by EUVE. Nonetheless, the brightest EUV source in the sky, a B star, has been discovered and is detected only in these longer bandpasses.
Surface roughness control by extreme ultraviolet (EUV) radiation
NASA Astrophysics Data System (ADS)
Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot
2017-10-01
Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.
EUV mask pilot line at Intel Corporation
NASA Astrophysics Data System (ADS)
Stivers, Alan R.; Yan, Pei-Yang; Zhang, Guojing; Liang, Ted; Shu, Emily Y.; Tejnil, Edita; Lieberman, Barry; Nagpal, Rajesh; Hsia, Kangmin; Penn, Michael; Lo, Fu-Chang
2004-12-01
The introduction of extreme ultraviolet (EUV) lithography into high volume manufacturing requires the development of a new mask technology. In support of this, Intel Corporation has established a pilot line devoted to encountering and eliminating barriers to manufacturability of EUV masks. It concentrates on EUV-specific process modules and makes use of the captive standard photomask fabrication capability of Intel Corporation. The goal of the pilot line is to accelerate EUV mask development to intersect the 32nm technology node. This requires EUV mask technology to be comparable to standard photomask technology by the beginning of the silicon wafer process development phase for that technology node. The pilot line embodies Intel's strategy to lead EUV mask development in the areas of the mask patterning process, mask fabrication tools, the starting material (blanks) and the understanding of process interdependencies. The patterning process includes all steps from blank defect inspection through final pattern inspection and repair. We have specified and ordered the EUV-specific tools and most will be installed in 2004. We have worked with International Sematech and others to provide for the next generation of EUV-specific mask tools. Our process of record is run repeatedly to ensure its robustness. This primes the supply chain and collects information needed for blank improvement.
EUVE GO Survey: High Levels of User Satisfaction
NASA Astrophysics Data System (ADS)
Stroozas, B. A.
2000-12-01
This paper describes the results of a detailed customer survey of Guest Observers (GOs) for NASA's Extreme Ultraviolet Explorer (EUVE) astronomy satellite observatory. The purpose of the research survey was to (1) measure the levels of GO customer satisfaction with respect to EUVE observing services, and (2) compare the observing experiences of EUVE GOs with their experiences using other satellite observatories. This survey was conducted as a business research project -- part of the author's graduate work as an MBA candidate. A total sample of 38 respondents, from a working population of 101 "active" EUVE GOs, participated in this survey. The results, which provided a profile of the "typical" EUVE GO, showed in a statistically significant fashion that these GOs were more than satisfied with the available EUVE observing services. In fact, the sample GOs generally rated their EUVE observing experiences to be better than average as compared to their experiences as GOs on other missions. These relatively high satisfaction results are particularly pleasing to the EUVE Project which, given its significantly reduced staffing environment at U.C. Berkeley, has continued to do more with less. This paper outlines the overall survey process: the relevant background and previous research, the survey design and methodology, and the final results and their interpretation. The paper also points out some general limitations and weaknesses of the study, along with some recommended actions for the EUVE Project and for NASA in general. This work was funded by NASA/UCB Cooperative Agreement NCC5-138.
Temporal variations of solar EUV, UV, and 10,830-A radiations
NASA Technical Reports Server (NTRS)
Donnelly, R. F.; Hinteregger, H. E.; Heath, D. F.
1986-01-01
The temporal characteristics of the full-disk chromospheric EUV fluxes agree well with those of the ground-based measurements of the chromospheric He I absorption line at 10,830 A and differ systematically from those of the coronal EUV and 10.7-cm flux. The ratio of the flux increase during the rise of solar cycle 21 to that during solar rotation variations is uniformly high for the chromospheric EUV and corroborating 10,830-A fluxes, highest for the transition region and 'cool' coronal EUV fluxes (T less than 2 x 10 to the 6th K), and lowest for the 'hot' coronal EUV and 10.7-cm flux. The rise and decay rates of episodes of major activity progress from those for the hot coronal EUV lines and the 10.7-cm flux to slower values for the chromospheric H Lyman alpha line, 10,830-A line, and photospheric 2050-A UV flux. It is suggested that active region remnants contribute significantly to the solar cycle increase and during the decay of episodes of major activity. The ratio of power in 13-day periodicity to that for 27 days in high (1/3) for the photospheric UV flux, medium (1/6) for the chromospheric EUV and 10,830-A fluxes, and small to negligible for the hot coronal EUV fluxes. These ratios are used to estimate the dependence of active region emission on the solar central meridian distance for chromospheric and coronal EUV flux.
Fundamentals of EUV resist-inorganic hardmask interactions
NASA Astrophysics Data System (ADS)
Goldfarb, Dario L.; Glodde, Martin; De Silva, Anuja; Sheshadri, Indira; Felix, Nelson M.; Lionti, Krystelle; Magbitang, Teddie
2017-03-01
High resolution Extreme Ultraviolet (EUV) patterning is currently limited by EUV resist thickness and pattern collapse, thus impacting the faithful image transfer into the underlying stack. Such limitation requires the investigation of improved hardmasks (HMs) as etch transfer layers for EUV patterning. Ultrathin (<5nm) inorganic HMs can provide higher etch selectivity, lower post-etch LWR, decreased defectivity and wet strippability compared to spin-on hybrid HMs (e.g., SiARC), however such novel layers can induce resist adhesion failure and resist residue. Therefore, a fundamental understanding of EUV resist-inorganic HM interactions is needed in order to optimize the EUV resist interfacial behavior. In this paper, novel materials and processing techniques are introduced to characterize and improve the EUV resist-inorganic HM interface. HM surface interactions with specific EUV resist components are evaluated for open-source experimental resist formulations dissected into its individual additives using EUV contrast curves as an effective characterization method to determine post-development residue formation. Separately, an alternative adhesion promoter platform specifically tailored for a selected ultrathin inorganic HM based on amorphous silicon (aSi) is presented and the mitigation of resist delamination is exemplified for the cases of positive-tone and negative-tone development (PTD, NTD). Additionally, original wafer priming hardware for the deposition of such novel adhesion promoters is unveiled. The lessons learned in this work can be directly applied to the engineering of EUV resist materials and processes specifically designed to work on such novel HMs.
NASA Astrophysics Data System (ADS)
Schmidtke, G.; Jacobi, Ch.; Nikutowski, B.; Erhardt, Ch.
2014-11-01
After a historical survey of space related EUV measurements in Germany and the role of Karl Rawer in pursuing this work, we describe present developments in EUV spectroscopy and provide a brief outlook on future activities. The group of Karl Rawer has performed the first scientific space project in Western Europe on 19th October 1954. Then it was decided to include the field of solar EUV spectroscopy in ionospheric investigations. Starting in 1957 an intensified development of instrumentation was going on to explore solar EUV radiation, atmospheric airglow and auroral emissions until the institute had to stop space activities in the early nineteen-eighties. EUV spectroscopy was continued outside of the institute during eight years. This area of work was supported again by the institute developing the Auto-Calibrating Spectrometers (SolACES) for a mission on the International Space Station (ISS). After more than six years in space the instrument is still in operation. Meanwhile the work on the primary task also to validate EUV data available from other space missions has made good progress. The first results of validating those data and combine them into one set of EUV solar spectral irradiance are very promising. It will be recommended for using it by the science and application community. Moreover, a new low-cost type of an EUV spectrometer is presented for monitoring the solar EUV radiation. It shall be further developed for providing EUV-TEC data to be applied in ionospheric models replacing the Covington index F10.7. Applying these data for example in the GNSS signal evaluation a more accurate determination of GNSS receiver positions is expected for correcting the propagation delays of navigation signals traveling through the ionosphere from space to earth. - Latest results in the field of solar EUV spectroscopy are discussed, too.
Is the Linear Mode Conversion Theory Viable for Generating Kilometric Continuum?
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Green, James L.; Hashimoto, K.; Gallagher, Dennis L.; Webb, P. A.
2006-01-01
Kilometric Continuum (KC) usually exhibits a complicated banded radiation pattern observed in frequency time spectrograms. Can the number of bands, the frequency range over which the bands are observed, and their time variation be explained with Linear Mode Conversion Theory (LMCT) using realistic plasmapause models and Extreme Ultraviolet (EUV) plasmaspheric observations? In this paper we compare KC observations with simulated frequency emission bands based on LMCT for a number of cases. In LMCT the allowed frequency range across the equatorial plasmapause is restricted to frequencies much greater than the electron cyclotron frequency (fce) and less than the maximum plasma frequency in this region. Fce also determines the number of allowed bands in this range. Is the observed frequency range and number of bands consistent with the predications of LMCT? Can irregularities in the shape of plasmaspheric structures like notches be observed in the time variations of KC emissions? We will investigate these and other questions. Simulated radiation patterns will be generated by ray tracing calculations in the L-O mode from the radio window at the near equatorial plasmapause. The KC observations used in this study are from the Plasma Wave Instrument on the Geotail spacecraft and from the Radio Plasma Imager on the IMAGE spacecraft. The plasmasphere and plasmapause will be derived either from plasmasphere simulations, from images by the EUV imager on the IMAGE spacecraft, and by using empirical models. In situ plasma density measurements from a number of spacecraft will also be used in order to reconstruct the plasmasphere for these case studies.
Efficient place and route enablement of 5-tracks standard-cells through EUV compatible N5 ruleset
NASA Astrophysics Data System (ADS)
Matti, L.; Gerousis, V.; Berekovic, M.; Debacker, P.; Sherazi, S. M. Y.; Milojevic, D.; Baert, R.; Ryckaert, J.; Kim, Ryoung-han; Verkest, Diederik; Raghavan, P.
2018-03-01
In imec predictive N5 technology platform (poly pitch 42nm, metal pitch 32nm), enabling cell height reduction from 6 to 5 tracks constitutes an interesting opportunity to reduce area of digital IP-blocks without increasing wafer cost. From a physical point of view, the two main challenges of reducing the number of tracks are posed by the increased difficulty of completing inter-cell connections in standard cell design, and by increased pin density that makes more challenging for the router to maintain high placement densities. Both these issues can potentially result into cell and chip area enlargement, thus mitigating or canceling the benefits of moving to 5-Tracks. In this study this side effect was avoided through a careful Design-Technology Co-Optimization approach (DTCO) [1], where a set of design arcs was used in conjunction with an EUV compatible ruleset that allowed efficient 5-Tracks standard cell design, resulting in final area gains up to 17% that were validated through a commercial state-of-the-art Place and Route (P&R) flow.
Development of a EUV Test Facility at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy
2011-01-01
This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.
Design and progress in the fabrication of an EUV micro exposure tool optics for PREUVE
NASA Astrophysics Data System (ADS)
Geyl, Roland; Tanne, Jean-Francois
2001-12-01
SAGEM, through its REOSC product line, is participating since November 1999 to PREUVE, the French EUV initiative, and work within this program especially in the field of EUV illumination and projection optics. After a short description of the PREUVE main lines of activity, we will detail our contributions to this program and work progress. This is mainly focused on basic EUV optics fabrication technology in order to ensure the fabrication of the entire optics assembly of an EUV micro exposure tool.
Status of EUVL mask development in Europe (Invited Paper)
NASA Astrophysics Data System (ADS)
Peters, Jan H.
2005-06-01
EUV lithography is the prime candidate for the next generation lithography technology after 193 nm immersion lithography. The commercial onset for this technology is expected for the 45 nm half-pitch technology or below. Several European and national projects and quite a large number of companies and research institutions in Europe work on various aspects of the technological challenges to make EUV a commercially viable technology in the not so far future. Here the development of EUV sources, the development of an EUV exposure tools, metrology tools dedicated for characterization of mask, the production of EUV mask blanks and the mask structuring itself are the key areas in which major activities can be found. In this talk we will primarily focus on those activities, which are related to establish an EUV mask supply chain with all its ingredients from substrate production, polishing, deposition of EUV layers, blank characterization, mask patterning process and the consecutive metrology and defect inspection as well as shipping and handling from blank supply to usage in the wafer fab. The EUV mask related projects on the national level are primarily supported by the French Ministry of Economics and Finance (MinEFi) and the German Ministry of Education and Research (BMBF).
Kantsyrev, V L; Safronova, A S; Williamson, K M; Wilcox, P; Ouart, N D; Yilmaz, M F; Struve, K W; Voronov, D L; Feshchenko, R M; Artyukov, I A; Vinogradov, A V
2008-10-01
New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.
Mechanisms of EUV exposure: electrons and holes
NASA Astrophysics Data System (ADS)
Narasimhan, Amrit; Grzeskowiak, Steven; Ackerman, Christian; Flynn, Tracy; Denbeaux, Greg; Brainard, Robert L.
2017-03-01
In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Current EUV photoresists are composed of photoacid generators (PAGs) in polymer matrices. Secondary electrons (2 - 80 eV) created in resists during EUV exposure play large role in acid-production. There are several proposed mechanisms for electron-resist interactions: internal excitation, electron trapping, and hole-initiated chemistry. Here, we will address two central questions in EUV resist research: (1) How many electrons are generated per EUV photon absorption? (2) By which mechanisms do these electrons interact and react with molecules in the resist? We will use this framework to evaluate the contributions of electron trapping and hole initiated chemistry to acid production in chemically amplified photoresists, with specific emphasis on the interdependence of these mechanisms. We will show measurements of acid yield from direct bulk electrolysis of PAGs and EUV exposures of PAGs in phenolic and nonphenolic polymers to narrow down the mechanistic possibilities in chemically amplified resists.
Solar EUV irradiance for space weather applications
NASA Astrophysics Data System (ADS)
Viereck, R. A.
2015-12-01
Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.
First environmental data from the EUV engineering test stand
NASA Astrophysics Data System (ADS)
Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.
2001-08-01
The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.
Design and pitch scaling for affordable node transition and EUV insertion scenario
NASA Astrophysics Data System (ADS)
Kim, Ryoung-han; Ryckaert, Julien; Raghavan, Praveen; Sherazi, Yasser; Debacker, Peter; Trivkovic, Darko; Gillijns, Werner; Tan, Ling Ee; Drissi, Youssef; Blanco, Victor; Bekaert, Joost; Mao, Ming; Larivière, Stephane; McIntyre, Greg
2017-04-01
imec's DTCO and EUV achievement toward imec 7nm (iN7) technology node which is industry 5nm node equivalent is reported with a focus on cost and scaling. Patterning-aware design methodology supports both iArF multiple patterning and EUV under one compliant design rule. FinFET device with contacted poly pitch of 42nm and metal pitch of 32nm with 7.5-track, 6.5-track, and 6-track standard cell library are explored. Scaling boosters are used to provide additional scaling and die cost benefit while lessening pitch shrink burden, and it makes EUV insertion more affordable. EUV pattern fidelity is optimized through OPC, SMO, M3D, mask sizing and SRAF. Processed wafers were characterized and edge-placement-error (EPE) variability is validated for EUV insertion. Scale-ability and cost of ownership of EUV patterning in aligned with iN7 standard cell design, integration and patterning specification are discussed.
CXRO - Mi-Young Im, Staff Scientist
X-Ray Database Zone Plate Education Nanomagnetism X-Ray Microscopy LDJIM EUV Lithography EUV Mask Publications Contact The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkeley -Ray Optics X-Ray Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Imaging
NASA Astrophysics Data System (ADS)
Thorstensen, J. R.; Vennes, S.
1993-12-01
The binary system EUVE J2013+40.0 (= RE 2013+400) was discovered in the EUV-selected sample of white dwarfs identified in the course of the ROSAT Wide Field Camera (WFC) all-sky survey (Pounds et al. 1993, MNRAS, 260, 77). The intense extreme ultraviolet (EUV) emission from the hot white dwarf (DAO type) was also detected in the course of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (Bowyer et al. 1993, ApJ, submitted), and the subsequent optical identification campaign suggested the association of EUVE J2013+40.0 with the Feige 24 class of binary systems (see Vennes & Thorstensen, these proceedings). Such systems consist of a hot H-rich white dwarf (DA/DAO) and a red dwarf companion (dM) and are characterized by strong, narrow, variable Balmer emission. We obtained spectroscopy with 4 Angstroms resolution at the Michigan-Dartmouth-MIT Hiltner 2.4 m, covering the Hα and Hβ range. The Hα emission line velocity and equivalent widths varied with a period of 0.708 +/- 0.003 d; the velocity semiamplitude is 89 +/- 3 km s(-1) . The emission equivalent width reaches maximum strength 0.251 +/- 0.007 cycle after maximum emission-line velocity, that is, when the emission source reaches superior conjunction. This is just as expected if the emission arises from reprocessing of the EUV radiation incident upon the face of the dM star facing the white dwarf, as proposed for Feige 24 by Thorstensen et al. (1978, ApJ, 223, 260). EUVE J2013+40.0 is one of a handful of WD+dM binary systems in which the illumination effect is observed with unambiguous clarity. By comparing Feige 24 and EUVE J2013+40.0, and modelling the white dwarf EUV emission and red dwarf Balmer emission, we constrain the orbital inclinations. Additional spectroscopy of EUVE J2013+40.0 is being scheduled to determine the component masses. These are important input data for the study of the close binary systems which arise from common envelope evolution. This work is supported by a forthcoming NASA Guest Observer grant.
EUV mask manufacturing readiness in the merchant mask industry
NASA Astrophysics Data System (ADS)
Green, Michael; Choi, Yohan; Ham, Young; Kamberian, Henry; Progler, Chris; Tseng, Shih-En; Chiou, Tsann-Bim; Miyazaki, Junji; Lammers, Ad; Chen, Alek
2017-10-01
As nodes progress into the 7nm and below regime, extreme ultraviolet lithography (EUVL) becomes critical for all industry participants interested in remaining at the leading edge. One key cost driver for EUV in the supply chain is the reflective EUV mask. As of today, the relatively few end users of EUV consist primarily of integrated device manufactures (IDMs) and foundries that have internal (captive) mask manufacturing capability. At the same time, strong and early participation in EUV by the merchant mask industry should bring value to these chip makers, aiding the wide-scale adoption of EUV in the future. For this, merchants need access to high quality, representative test vehicles to develop and validate their own processes. This business circumstance provides the motivation for merchants to form Joint Development Partnerships (JDPs) with IDMs, foundries, Original Equipment Manufacturers (OEMs) and other members of the EUV supplier ecosystem that leverage complementary strengths. In this paper, we will show how, through a collaborative supplier JDP model between a merchant and OEM, a novel, test chip driven strategy is applied to guide and validate mask level process development. We demonstrate how an EUV test vehicle (TV) is generated for mask process characterization in advance of receiving chip maker-specific designs. We utilize the TV to carry out mask process "stress testing" to define process boundary conditions which can be used to create Mask Rule Check (MRC) rules as well as serve as baseline conditions for future process improvement. We utilize Advanced Mask Characterization (AMC) techniques to understand process capability on designs of varying complexity that include EUV OPC models with and without sub-resolution assist features (SRAFs). Through these collaborations, we demonstrate ways to develop EUV processes and reduce implementation risks for eventual mass production. By reducing these risks, we hope to expand access to EUV mask capability for the broadest community possible as the technology is implemented first within and then beyond the initial early adopters.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Fallica, Roberto; Fan, Daniel; Karim, Waiz; Vockenhuber, Michaela; van Bokhoven, Jeroen A.; Ekinci, Yasin
2016-09-01
Extreme ultraviolet interference lithography (EUV-IL, λ = 13.5 nm) has been shown to be a powerful technique not only for academic, but also for industrial research and development of EUV materials due to its relative simplicity yet record high-resolution patterning capabilities. With EUV-IL, it is possible to pattern high-resolution periodic images to create highly ordered nanostructures that are difficult or time consuming to pattern by electron beam lithography (EBL) yet interesting for a wide range of applications such as catalysis, electronic and photonic devices, and fundamental materials analysis, among others. Here, we will show state-of the-art research performed using the EUV-IL tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). For example, using a grating period doubling method, a diffraction mask capable of patterning a world record in photolithography of 6 nm half-pitch (HP), was produced. In addition to the description of the method, we will give a few examples of applications of the technique. Well-ordered arrays of suspended silicon nanowires down to 6.5 nm linewidths have been fabricated and are to be studied as field effect transistors (FETs) or biosensors, for instance. EUV achromatic Talbot lithography (ATL), another interference scheme that utilizes a single grating, was shown to yield well-defined nanoparticles over large-areas with high uniformity presenting great opportunities in the field of nanocatalysis. EUV-IL is in addition, playing a key role in the future introduction of EUV lithography into high volume manufacturing (HVM) of semiconductor devices for the 7 and 5 nm logic node (16 nm and 13 nm HP, respectively) and beyond while the availability of commercial EUV-tools is still very much limited for research.
NASA Astrophysics Data System (ADS)
Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.
2016-07-01
The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.
SAQP and EUV block patterning of BEOL metal layers on IMEC's iN7 platform
NASA Astrophysics Data System (ADS)
Bekaert, Joost; Di Lorenzo, Paolo; Mao, Ming; Decoster, Stefan; Larivière, Stéphane; Franke, Joern-Holger; Blanco Carballo, Victor M.; Kutrzeba Kotowska, Bogumila; Lazzarino, Frederic; Gallagher, Emily; Hendrickx, Eric; Leray, Philippe; Kim, R. Ryoung-han; McIntyre, Greg; Colsters, Paul; Wittebrood, Friso; van Dijk, Joep; Maslow, Mark; Timoshkov, Vadim; Kiers, Ton
2017-03-01
The imec N7 (iN7) platform has been developed to evaluate EUV patterning of advanced logic BEOL layers. Its design is based on a 42 nm first-level metal (M1) pitch, and a 32 nm pitch for the subsequent M2 layer. With these pitches, the iN7 node is an `aggressive' full-scaled N7, corresponding to IDM N7, or foundry N5. Even in a 1D design style, single exposure of the 16 nm half-pitch M2 layer is very challenging for EUV lithography, because of its tight tip-to-tip configurations. Therefore, the industry is considering the hybrid use of ArFi-based SAQP combined with EUV Block as an alternative to EUV single exposure. As a consequence, the EUV Block layer may be one of the first layers to adopt EUV lithography in HVM. In this paper, we report on the imec iN7 SAQP + Block litho performance and process integration, targeting the M2 patterning for a 7.5 track logic design. The Block layer is exposed on an ASML NXE:3300 EUV-scanner at imec, using optimized illumination conditions and state-of-the-art metal-containing negative tone resist (Inpria). Subsequently, the SAQP and block structures are characterized in a morphological study, assessing pattern fidelity and CD/EPE variability. The work is an experimental feasibility study of EUV insertion, for SAQP + Block M2 patterning on an industry-relevant N5 use-case.
Extreme Ultraviolet Explorer Bright Source List
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick
1994-01-01
Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.
How active was solar cycle 22?
NASA Technical Reports Server (NTRS)
Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.
1993-01-01
Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.
NASA Astrophysics Data System (ADS)
Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon
2015-10-01
This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.
NASA Astrophysics Data System (ADS)
Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo
2017-06-01
In extreme-ultraviolet (EUV) lithography, the development of a review apparatus for the EUV mask pattern at an exposure wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern and a Mo/Si multilayer on a glass substrate. This mask pattern has a three-dimensional (3D) structure. The 3D structure would modulate the EUV reflection phase, which would cause focus and pattern shifts. Thus, the review of the EUV phase image is also important. We have developed a coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. The EUV phase and intensity images were reconstructed with diffraction images by ptychography. For a standalone mask review, the high-harmonic-generation (HHG) EUV source was employed. In this study, we updated the sample stage, pump-laser reduction system, and gas-pressure control system to reconstruct the image. As a result, an 88 nm line-and-space pattern and a cross-line pattern were reconstructed. In addition, a particle defect of 2 µm diameter was well reconstructed. This demonstrated the high capability of the standalone CSM, which can hence be used in factories, such as mask shops and semiconductor fabrication plants.
NASA Technical Reports Server (NTRS)
Fruscione, Antonella; Drake, Jeremy J.; Mcdonald, Kelley; Malina, Roger F.
1995-01-01
We present the results of a complete survey, at extreme-ultraviolet (EUV) wavelengths (58-234 A), of the high Galactic latitude (absolute value of b greater than or = to 20 deg) planetary nebulae (PNs) with at least one determination of the distance within 1 kpc of the Sun. The sample comprises 27 objects observed during the Extreme Ultraviolet Explorer (EUVE) all-sky survey and represents the majority of PN likely to be accessible at EUV wavelengths. Six PNs (NGC 246, NGC 1360, K1-16, LoTr 5, NGC 4361, and NGC 3587) were detected in the shortest EUV band (58-174 A). A seventh PN (NGC 6853), not included in the sample, was also detected during the survey. The emission is consistent in all cases with that of a point source and therefore most probably originates from the PN central star. Accurate EUV count rates or upper limits in the two shorter EUVE bands (centered at approximately 100 and 200 A) are given for all the sources in the sample. NGC 4361 and NGC 3587 are reported here for the first time as sources of EUV radiation. As might be expected, attenuation by the interstellar medium dominates the PN distribution in the EUV sky.
Gaballah, A E H; Nicolosi, P; Ahmed, Nadeem; Jimenez, K; Pettinari, G; Gerardino, A; Zuppella, P
2018-01-01
The knowledge and the manipulation of light polarization state in the vacuum ultraviolet and extreme ultraviolet (EUV) spectral regions play a crucial role from materials science analysis to optical component improvements. In this paper, we present an EUV spectroscopic ellipsometer facility for polarimetry in the 90-160 nm spectral range. A single layer aluminum mirror to be used as a quarter wave retarder has been fully characterized by deriving the optical and structural properties from the amplitude component and phase difference δ measurements. The system can be suitable to investigate the properties of thin films and optical coatings and optics in the EUV region.
``Big Bang" for NASA's Buck: Nearly Three Years of EUVE Mission Operations at UCB
NASA Astrophysics Data System (ADS)
Stroozas, B. A.; Nevitt, R.; McDonald, K. E.; Cullison, J.; Malina, R. F.
1999-12-01
After over seven years in orbit, NASA's Extreme Ultraviolet Explorer (EUVE) satellite continues to perform flawlessly and with no significant loss of science capabilities. EUVE continues to produce important and exciting science results and, with reentry not expected until 2003-2004, many more such discoveries await. In the nearly three years since the outsourcing of EUVE from NASA's Goddard Space Flight Center, the small EUVE operations team at the University of California at Berkeley (UCB) has successfully conducted all aspects of the EUVE mission -- from satellite operations, science and mission planning, and data processing, delivery, and archival, to software support, systems administration, science management, and overall mission direction. This paper discusses UCB's continued focus on automation and streamlining, in all aspects of the Project, as the means to maximize EUVE's overall scientific productivity while minimizing costs. Multitasking, non-traditional work roles, and risk management have led to expanded observing capabilities while achieving significant cost reductions and maintaining the mission's historical 99 return. This work was funded under NASA Cooperative Agreement NCC5-138.
NASA Astrophysics Data System (ADS)
Goldberg, Kenneth A.; Naulleau, Patrick P.; Bokor, Jeffrey; Chapman, Henry N.
2002-07-01
As the quality of optical systems for extreme ultraviolet lithography improves, high-accuracy wavefront metrology for alignment and qualification becomes ever more important. To enable the development of diffraction-limited EUV projection optics, visible-light and EUV interferometries must work in close collaboration. We present a detailed comparison of EUV and visible-light wavefront measurements performed across the field of view of a lithographic-quality EUV projection optical system designed for use in the Engineering Test Stand developed by the Virtual National Laboratory and the EUV Limited Liability Company. The comparisons reveal that the present level of RMS agreement lies in the 0.3-0.4-nm range. Astigmatism is the most significant aberration component for the alignment of this optical system; it is also the dominant term in the discrepancy, and the aberration with the highest measurement uncertainty. With EUV optical systems requiring total wavefront quality in the (lambda) EUV/50 range, and even higher surface-figure quality for the individual mirror elements, improved accuracy through future comparisons, and additional studies, are required.
Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.
1988-01-01
Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.
Enabling laboratory EUV research with a compact exposure tool
NASA Astrophysics Data System (ADS)
Brose, Sascha; Danylyuk, Serhiy; Tempeler, Jenny; Kim, Hyun-su; Loosen, Peter; Juschkin, Larissa
2016-03-01
In this work we present the capabilities of the designed and realized extreme ultraviolet laboratory exposure tool (EUVLET) which has been developed at the RWTH-Aachen, Chair for the Technology of Optical Systems (TOS), in cooperation with the Fraunhofer Institute for Laser Technology (ILT) and Bruker ASC GmbH. Main purpose of this laboratory setup is the direct application in research facilities and companies with small batch production, where the fabrication of high resolution periodic arrays over large areas is required. The setup can also be utilized for resist characterization and evaluation of its pre- and post-exposure processing. The tool utilizes a partially coherent discharge produced plasma (DPP) source and minimizes the number of other critical components to a transmission grating, the photoresist coated wafer and the positioning system for wafer and grating and utilizes the Talbot lithography approach. To identify the limits of this approach first each component is analyzed and optimized separately and relations between these components are identified. The EUV source has been optimized to achieve the best values for spatial and temporal coherence. Phase-shifting and amplitude transmission gratings have been fabricated and exposed. Several commercially available electron beam resists and one EUV resist have been characterized by open frame exposures to determine their contrast under EUV radiation. Cold development procedure has been performed to further increase the resist contrast. By analyzing the exposure results it can be demonstrated that only a 1:1 copy of the mask structure can be fully resolved by the utilization of amplitude masks. The utilized phase-shift masks offer higher 1st order diffraction efficiency and allow a demagnification of the mask structure in the achromatic Talbot plane.
EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs
NASA Astrophysics Data System (ADS)
Putna, E. Steve; Younkin, Todd R.; Leeson, Michael; Caudillo, Roman; Bacuita, Terence; Shah, Uday; Chandhok, Manish
2011-04-01
The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. According to recent assessments made at the 2010 EUVL Symposium, the readiness of EUV materials remains one of the top risk items for EUV adoption. The main development issue regarding EUV resists has been how to simultaneously achieve high resolution, high sensitivity, and low line width roughness (LWR). This paper describes our strategy, the current status of EUV materials, and the integrated post-development LWR reduction efforts made at Intel Corporation. Data collected utilizing Intel's Micro- Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <=11.3mJ/cm2 with <=3nm LWR.
Mask technology for EUV lithography
NASA Astrophysics Data System (ADS)
Bujak, M.; Burkhart, Scott C.; Cerjan, Charles J.; Kearney, Patrick A.; Moore, Craig E.; Prisbrey, Shon T.; Sweeney, Donald W.; Tong, William M.; Vernon, Stephen P.; Walton, Christopher C.; Warrick, Abbie L.; Weber, Frank J.; Wedowski, Marco; Wilhelmsen, Karl C.; Bokor, Jeffrey; Jeong, Sungho; Cardinale, Gregory F.; Ray-Chaudhuri, Avijit K.; Stivers, Alan R.; Tejnil, Edita; Yan, Pei-yang; Hector, Scott D.; Nguyen, Khanh B.
1999-04-01
Extreme UV Lithography (EUVL) is one of the leading candidates for the next generation lithography, which will decrease critical feature size to below 100 nm within 5 years. EUVL uses 10-14 nm light as envisioned by the EUV Limited Liability Company, a consortium formed by Intel and supported by Motorola and AMD to perform R and D work at three national laboratories. Much work has already taken place, with the first prototypical cameras operational at 13.4 nm using low energy laser plasma EUV light sources to investigate issues including the source, camera, electro- mechanical and system issues, photoresists, and of course the masks. EUV lithograph masks are fundamentally different than conventional photolithographic masks as they are reflective instead of transmissive. EUV light at 13.4 nm is rapidly absorbed by most materials, thus all light transmission within the EUVL system from source to silicon wafer, including EUV reflected from the mask, is performed by multilayer mirrors in vacuum.
Degradation-Free Spectrometers for Solar EUV Measurements: A Progress Report
NASA Astrophysics Data System (ADS)
Wieman, S. R.; Judge, D. L.; Didkovsky, L. V.
2009-12-01
Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for Summer 2010. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS is designed to provide solar irradiance at Lyman-alpha and He II to overlap EUV observations from SOHO/SEM and SDO/EVE. Electronic and mechanical designs for the flight prototype instruments and results of tests performed with the instruments in the laboratory are reported. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA’s Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.
Single-expose patterning development for EUV lithography
NASA Astrophysics Data System (ADS)
De Silva, Anuja; Petrillo, Karen; Meli, Luciana; Shearer, Jeffrey C.; Beique, Genevieve; Sun, Lei; Seshadri, Indira; Oh, Taehwan; Han, Seulgi; Saulnier, Nicole; Lee, Joe; Arnold, John C.; Hamieh, Bassem; Felix, Nelson M.; Furukawa, Tsuyoshi; Singh, Lovejeet; Ayothi, Ramakrishnan
2017-03-01
Initial readiness of EUV (extreme ultraviolet) patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. With the substantial cost of EUV exposure there is significant interest in extending the capability to do single exposure patterning with EUV. To enable this, emphasis must be placed on the aspect ratios, adhesion, defectivity reduction, etch selectivity, and imaging control of the whole patterning process. Innovations in resist materials and processes must be included to realize the full entitlement of EUV lithography at 0.33NA. In addition, enhancements in the patterning process to enable good defectivity, lithographic process window, and post etch pattern fidelity are also required. Through this work, the fundamental material challenges in driving down the effective k1 factor will be highlighted.
Plans for the extreme ultraviolet explorer data base
NASA Technical Reports Server (NTRS)
Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart
1988-01-01
The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.
An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure
NASA Astrophysics Data System (ADS)
Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang
2018-05-01
Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.
Extreme ultraviolet spectral irradiance measurements since 1946
NASA Astrophysics Data System (ADS)
Schmidtke, G.
2015-03-01
In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial irradiance camera (STI-Cam) and also be used investigating real-time space weather effects and deriving more detailed correction procedures for the evaluation of Global Navigation Satellite System (GNSS) signals. Progress in physics goes with achieving higher accuracy in measurements. This review historically guides the reader on the ways of exploring the impact of the variable solar radiation in the extreme ultraviolet spectral region on our upper atmosphere in the altitude regime from 80 to 1000 km.
NASA Astrophysics Data System (ADS)
Čížková, Klára; Láska, Kamil; Metelka, Ladislav; Staněk, Martin
2018-02-01
This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964-2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004-2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.
NASA Astrophysics Data System (ADS)
Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel
2017-06-01
Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.
Coordinated XTE/EUVE Observations of Algol
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1997-01-01
EUVE, ASCA, and XTE observed the eclipsing binary Algol (Beta Per) from 1-7 Feb. 96. The coordinated observation covered approximately 2 binary orbits of the system, with a net exposure of approximately 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointing), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the Fe abundance in the Algol system.
Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations
NASA Astrophysics Data System (ADS)
Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F.; Andersson, L.; Mitchell, D.; Jakosky, B. M.
2017-04-01
We study the Mars Atmosphere and Volatile Evolution spacecraft observations of Martian planetary ion escape during two time periods: 11 November 2014 to 19 March 2015 and 4 June 2015 to 24 October 2015, with the focus on understanding the seasonal variability of Martian ion escape in response to the solar extreme ultraviolet (EUV) flux. We organize the >6 eV O+ ion data by the upstream electric field direction to estimate the escape rates through the plume and tail. To investigate the ion escape dependence on the solar EUV flux, we constrain the solar wind dynamic pressure and interplanetary magnetic filed strength and compare the ion escape rates through the plume and tail in different energy ranges under high and low EUV conditions. We found that the total >6 eV O+ escape rate increases from 2 to 3 × 1024 s-1 as the EUV irradiance increases by almost the same factor, mostly on the <1 keV tailward escape. The plume escape rate does not vary significantly with EUV. The relative contribution from the plume to the total escape varies between 30% and 20% from low to high EUV. Our results suggest that the Martian ion escape is sensitive to the seasonal EUV variation, and the contribution from plume escape becomes more important under low EUV conditions.
Update on EUV radiometry at PTB
NASA Astrophysics Data System (ADS)
Laubis, Christian; Barboutis, Annett; Buchholz, Christian; Fischer, Andreas; Haase, Anton; Knorr, Florian; Mentzel, Heiko; Puls, Jana; Schönstedt, Anja; Sintschuk, Michael; Soltwisch, Victor; Stadelhoff, Christian; Scholze, Frank
2016-03-01
The development of technology infrastructure for EUV Lithography (EUVL) still requires higher levels of technology readiness in many fields. A large number of new materials will need to be introduced. For example, development of EUV compatible pellicles to adopt an approved method from optical lithography for EUVL needs completely new thin membranes which have not been available before. To support these developments, PTB with its decades of experience [1] in EUV metrology [2] provides a wide range of actinic and non actinic measurements at in-band EUV wavelengths as well as out of band. Two dedicated, complimentary EUV beamlines [3] are available for radiometric [4,5] characterizations benefiting from small divergence or from adjustable spot size respectively. The wavelength range covered reaches from below 1 nm to 45 nm [6] for the EUV beamlines [7] to longer wavelengths if in addition the VUV beamline is employed. The standard spot size is 1 mm by 1 mm with an option to go as low as 0.1 mm to 0.1 mm. A separate beamline offers an exposure setup. Exposure power levels of 20 W/cm2 have been employed in the past, lower fluencies are available by attenuation or out of focus exposure. Owing to a differential pumping stage, the sample can be held under defined gas conditions during exposure. We present an updated overview on our instrumentation and analysis capabilities for EUV metrology and provide data for illustration.
NASA Astrophysics Data System (ADS)
Crouse, Michael; Liebmann, Lars; Plachecki, Vince; Salama, Mohamed; Chen, Yulu; Saulnier, Nicole; Dunn, Derren; Matthew, Itty; Hsu, Stephen; Gronlund, Keith; Goodwin, Francis
2017-03-01
The initial readiness of EUV patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. Thus, Design Technology Co-optimization (DTCO) has become a critical part of technology enablement as scaling has become more challenging and the industry pushes the limits of EUV lithography. The working partnership between the design teams and the process development teams typically involves an iterative approach to evaluate the manufacturability of proposed designs, subsequent modifications to those designs and finally a design manual for the technology. While this approach has served the industry well for many generations, the challenges at the Beyond 7nm node require a more efficient approach. In this work, we describe the use of "Design Intent" lithographic layout optimization where we remove the iterative component of DTCO and replace it with an optimization that achieves both a "patterning friendly" design and minimizes the well-known EUV stochastic effects. Solved together, this "design intent" approach can more quickly achieve superior lithographic results while still meeting the original device's functional specifications. Specifically, in this work we will demonstrate "design intent" optimization for critical BEOL layers using design tolerance bands to guide the source mask co-optimization. The design tolerance bands can be either supplied as part of the original design or derived from some basic rules. Additionally, the EUV stochastic behavior is mitigated by enhancing the image log slope (ILS) for specific key features as part of the overall optimization. We will show the benefit of the "design intent approach" on both bidirectional and unidirectional 28nm min pitch standard logic layouts and compare the more typical iterative SMO approach. Thus demonstrating the benefit of allowing the design to float within the specified range. Lastly, we discuss how the evolution of this approach could lead to layout optimization based entirely on some minimal set of functional requirements and process constraints.
Classification and printability of EUV mask defects from SEM images
NASA Astrophysics Data System (ADS)
Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.
2017-10-01
Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM-to-Aerial printability) analysis of every defect. First, a defect-free or reference mask SEM is rendered from the post-OPC design, and the defective signature is detected from the defect-reference difference image. These signatures help assess the true nature of the defect as evident in e-beam imaging; for example, excess or missing absorber, line-edge roughness, contamination, etc. Next, defect and reference contours are extracted from the grayscale SEM images and fed into the simulation engine with an EUV scanner model to generate corresponding EUV defect and reference aerial images. These are then analyzed for printability and dispositioned using an Aerial Image Analyzer (AIA) application to automatically measure and determine the amount of CD errors. Thus by integrating EUV ADC and S2A applications together, every defect detection is characterized for its type and printability which is essential for not only determining which defects to repair, but also in monitoring the performance of EUV mask process tools. The accuracy of the S2A print modeling has been verified with other commercially-available simulators, and will also be verified with actual wafer print results. With EUV lithography progressing towards volume manufacturing at 5nm technology, and the likelihood of EBMI inspectors approaching the horizon, the EUV ADC-S2A system will continue serving an essential role of dispositioning defects off e-beam imaging.
Nebula-based Primordial Atmospheres of Planets Around Solar-Like Stars Revised
NASA Astrophysics Data System (ADS)
Scherf, Manuel; Lammer, H.; Leitzinger, M.; Odert, P.; Güdel, M.; Hanslmeier, A.
2012-05-01
At the beginning of a planetary system, in the stage of the stellar nebula and the growing-phase of the planets, planetesimals and Earth-like proto-planets accumulate a remarkable amount of gas, mainly consisting of hydrogen and helium. The mass of such a primordial atmosphere was first estimated for the proto-Earth by Hayashi et al. (1979), with up to 1026 g accumulated within 106 years. Furthermore it is commonly expected that these primordial atmospheres will be completely dissipated due to irradiation of the stellar EUV-flux during the first 108 years. Recent observations of young solar-like stars indicate that the efficiency and effect of the EUV-flux after the nebula disappeared, was highly overestimated by previous studies. We show that parts of these dense hydrogen/helium-gas envelopes may sustain this early active stage of a young star. Implications on the habitability are also discussed.
EUV Spectroscopy of High-redshift X-ray Objects
NASA Astrophysics Data System (ADS)
Kowalski, Michael Paul; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.
2010-03-01
As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGNs for example, will have their maxima redshifted into the EUV waveband ( 90-912 Å/0.1-0.01 keV). Consequently, a wealth of spectral diagnostics, provided by, for example, the Fe L-shell complex ( 60-6 Å/0.2-2.0 keV) and the O VII/VIII lines ( 20 Å/0.5 keV), will be lost to X-ray instruments operating at traditional ( 0.5-10 keV) and higher X-ray energies. There are precedents in other wavebands. For example, HST evolutionary studies will become largely the province of JWST. Despite the successes of EUVE, the ROSAT WFC, and the Chandra LETG, the EUV continues to be unappreciated and under-utilized, partly because of a preconception that absorption by neutral galactic Hydrogen in the ISM prevents any useful extragalactic measurements at all EUV wavelengths and, until recently, by a lack of a suitable enabling technology. Thus, if future planned X-ray missions (e.g., IXO, Gen-X) are optimized again for traditional X-ray energies, their performance (effective area, resolving power) will be cut off at ultrasoft X-ray energies or at best be radically reduced in the EUV. This opens up a critical gap in performance located right at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nano-laminate fabrication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs.
NASA Technical Reports Server (NTRS)
Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.;
2010-01-01
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.
EUV Waves Driven by the Sudden Expansion of Transequatorial Loops Caused by Coronal Jets
NASA Astrophysics Data System (ADS)
Shen, Yuandeng; Tang, Zehao; Miao, Yuhu; Su, Jiangtao; Liu, Yu
2018-06-01
We present two events to study the driving mechanism of extreme-ultraviolet (EUV) waves that are not associated with coronal mass ejections (CMEs), by using high-resolution observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Observational results indicate that the observed EUV waves were accompanied by flares and coronal jets, but not the CMEs that were regarded as drivers of most EUV waves in previous studies. In the first case, it is observed that a coronal jet is ejected along a transequatorial loop system at a plane-of-the-sky (POS) speed of 335 ± 22 km s{}-1; in the meantime, an arc-shaped EUV wave appeared on the eastern side of the loop system. In addition, the EUV wave further interacted with another interconnecting loop system and launched a fast propagating (QFP) magnetosonic wave along the loop system, which had a period of 200 s and a speed of 388 ± 65 km s{}-1, respectively. In the second case, we observed a coronal jet that ejected at a POS speed of 282 ± 44 km s{}-1 along a transequatorial loop system as well as the generation of bright EUV waves on the eastern side of the loop system. Based on the observational results, we propose that the observed EUV waves on the eastern side of the transequatorial loop systems are fast-mode magnetosonic waves and that they are driven by the sudden lateral expansion of the transequatorial loop systems due to the direct impingement of the associated coronal jets, while the QFP wave in the fist case formed due to the dispersive evolution of the disturbance caused by the interaction between the EUV wave and the interconnecting coronal loops. It is noted that EUV waves driven by sudden loop expansions have shorter lifetimes than those driven by CMEs.
Maskless EUV lithography: an already difficult technology made even more complicated?
NASA Astrophysics Data System (ADS)
Chen, Yijian
2012-03-01
In this paper, we present the research progress made in maskless EUV lithography and discuss the emerging opportunities for this disruptive technology. It will be shown nanomirrors based maskless approach is one path to costeffective and defect-free EUV lithography, rather than making it even more complicated. The focus of our work is to optimize the existing vertical comb process and scale down the mirror size from several microns to sub-micron regime. The nanomirror device scaling, system configuration, and design issues will be addressed. We also report our theoretical and simulation study of reflective EUV nanomirror based imaging behavior. Dense line/space patterns are formed with an EUV nanomirror array by assigning a phase shift of π to neighboring nanomirrors. Our simulation results show that phase/intensity imbalance is an inherent characteristic of maskless EUV lithography while it only poses a manageable challenge to CD control and process window. The wafer scan and EUV laser jitter induced image blur phenomenon is discussed and a blurred imaging theory is constructed. This blur effect is found to degrade the image contrast at a level that mainly depends on the wafer scan speed.
Radiative cooling efficiencies and predicted spectra of species of the Io plasma torus
NASA Technical Reports Server (NTRS)
Shemansky, D. E.
1980-01-01
Calculations of the physical condition of the Io plasma torus have been made based on the recent Voyager EUV observations. The calculations represent an assumed thin plasma collisional ionization equilibrium among the states within each species. The observations of the torus are all consistent with this condition. The major energy loss mechanism is radiative cooling in discrete transitions. Calculations of radiative cooling efficiencies of the identified species leads to an estimated energy loss rate of at least 1.5 x 10 to the 12th watts. The mean electron temperature and density of the plasma are estimated to be 100,000 K and 2100/cu cm. The estimated number densities of S III, S IV, and O III are roughly 95, 80, and 190-740/cu cm. Upper limits have been placed on a number of other species based on the first published Voyager EUV spectrum of the torus. The assumption that energy is supplied to the torus through injection of neutral particles from Io leads to the conclusion that ion loss rates are controlled by diffusion, and relative species abundances consequently are not controlled by collisional ionization equilibrium.
Modeling 13.3nm Fe XXIII Flare Emissions Using the GOES-R EXIS Instrument
NASA Astrophysics Data System (ADS)
Rook, H.; Thiemann, E.
2017-12-01
The solar EUV spectrum is dominated by atomic transitions in ionized atoms in the solar atmosphere. As solar flares evolve, plasma temperatures and densities change, influencing abundances of various ions, changing intensities of different EUV wavelengths observed from the sun. Quantifying solar flare spectral irradiance is important for constraining models of Earth's atmosphere, improving communications quality, and controlling satellite navigation. However, high time cadence measurements of flare irradiance across the entire EUV spectrum were not available prior to the launch of SDO. The EVE MEGS-A instrument aboard SDO collected 0.1nm EUV spectrum data from 2010 until 2014, when the instrument failed. No current or future instrument is capable of similar high resolution and time cadence EUV observation. This necessitates a full EUV spectrum model to study EUV phenomena at Earth. It has been recently demonstrated that one hot flare EUV line, such as the 13.3nm Fe XXIII line, can be used to model cooler flare EUV line emissions, filling the role of MEGS-A. Since unblended measurements of Fe XXIII are typically unavailable, a proxy for the Fe XXIII line must be found. In this study, we construct two models of this line, first using the GOES 0.1-0.8nm soft x-ray (SXR) channel as the Fe XXIII proxy, and second using a physics-based model dependent on GOES emission measure and temperature data. We determine that the more sophisticated physics-based model shows better agreement with Fe XXIII measurements, although the simple proxy model also performs well. We also conclude that the high correlation between Fe XXIII emissions and the GOES 0.1-0.8nm band is because both emissions tend to peak near the GOES emission measure peak despite large differences in their contribution functions.
ILT optimization of EUV masks for sub-7nm lithography
NASA Astrophysics Data System (ADS)
Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin
2017-06-01
The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.
Actinic defect counting statistics over 1-cm2 area of EUVL mask blank
NASA Astrophysics Data System (ADS)
Jeong, Seongtae; Lai, Chih-wei; Rekawa, Senajith; Walton, Christopher C.; Bokor, Jeffrey
2000-07-01
As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm2 of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.
The Extreme Ultraviolet Flux of Very Low Mass Stars
NASA Astrophysics Data System (ADS)
Drake, Jeremy
2017-09-01
The X-ray and EUV emission of stars is vital for understanding the atmospheres and evolution of their planets. The coronae of dwarf stars later than M6 behave differently to those of earlier spectral types and are more X-ray dim and radio bright. Too faint to have been observed by EUVE, their EUV behavior is currently highly uncertain. We propose to observe a small sample of late M dwarfs using the off-axis HRC-S thin Al" filter that is sensitive to EUV emission in the 50-200 A range. The measured fluxes will be used to understand the amount of cooler coronal plasma present, and extend X-ray-EUV flux relations to the latest stellar types.
JPEG2000 Image Compression on Solar EUV Images
NASA Astrophysics Data System (ADS)
Fischer, Catherine E.; Müller, Daniel; De Moortel, Ineke
2017-01-01
For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.
Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Tomoko Gowa, E-mail: ohyama.tomoko@qst.go.jp; Oshima, Akihiro; Tagawa, Seiichi, E-mail: tagawa@sanken.osaka-u.ac.jp
2016-08-15
It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, wemore » calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).« less
AWARE - The Automated EUV Wave Analysis and REduction algorithm
NASA Astrophysics Data System (ADS)
Ireland, J.; Inglis; A. R.; Shih, A. Y.; Christe, S.; Mumford, S.; Hayes, L. A.; Thompson, B. J.
2016-10-01
Extreme ultraviolet (EUV) waves are large-scale propagating disturbances observed in the solar corona, frequently associated with coronal mass ejections and flares. Since their discovery over two hundred papers discussing their properties, causes and physics have been published. However, their fundamental nature and the physics of their interactions with other solar phenomena are still not understood. To further the understanding of EUV waves, and their relation to other solar phenomena, we have constructed the Automated Wave Analysis and REduction (AWARE) algorithm for the detection of EUV waves over the full Sun. The AWARE algorithm is based on a novel image processing approach to isolating the bright wavefront of the EUV as it propagates across the corona. AWARE detects the presence of a wavefront, and measures the distance, velocity and acceleration of that wavefront across the Sun. Results from AWARE are compared to results from other algorithms for some well known EUV wave events. Suggestions are also give for further refinements to the basic algorithm presented here.
Ionospheric Change and Solar EUV Irradiance
NASA Astrophysics Data System (ADS)
Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.
2011-12-01
The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.
NASA Technical Reports Server (NTRS)
Gladstone, G. R.; Mcdonald, J. S.; Boyd, W. T.
1993-01-01
During its all-sky survey, the Extreme Ultraviolet Explorer (EUVE) satellite observed the Moon several times at first and last quarters, and once near the Dec. 10, 1992 lunar eclipse. We present a preliminary reduction and analysis of this data, in the form of EUV images of the Moon and derived albedos.
Coordinated ASCA/EUVE/XTE Observations of Algol
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1997-01-01
EUVE, Advanced Satellite for Cosmology and Astrophysics (ASCA), and X-ray Timing Explorer (XTE) observed the eclipsing binary Algol (Beta Per) from 1-7 Feb 1996. The coordinated observation covered approx. 2 binary orbits of the system, with a net exposure of approx. 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointings), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the abundance in the Algol system.
The Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Malina, R. F.; Bowyer, S.; Lampton, M.; Finley, D.; Paresce, F.; Penegor, G.; Heetderks, H.
1982-01-01
The Extreme Ultraviolet Explorer Mission is described. The purpose of this mission is to search the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation (100 to 1000 A). The search will be accomplished with the use of three EUV telescopes, each sensitive to different bands within the EUV band. A fourth telescope will perform a higher sensitivity search of a limited sample of the sky in a single EUV band. In six months, the entire sky will be scanned at a sensitivity level comparable to existing surveys in other more traditional astronomical bandpasses.
EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs
NASA Astrophysics Data System (ADS)
Putna, E. Steve; Younkin, Todd R.; Chandhok, Manish; Frasure, Kent
2009-03-01
The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 32nm half-pitch node and beyond. Readiness of EUV materials is currently one high risk area according to assessments made at the 2008 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data is presented utilizing Intel's Micro-Exposure Tool (MET) examining the feasibility of establishing a resist process that simultaneously exhibits <=30nm half-pitch (HP) L/S resolution at <=10mJ/cm2 with <=4nm LWR.
EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs
NASA Astrophysics Data System (ADS)
Putna, E. Steve; Younkin, Todd R.; Caudillo, Roman; Chandhok, Manish
2010-04-01
The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. Readiness of EUV materials is currently one high risk area according to recent assessments made at the 2009 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data collected utilizing Intel's Micro-Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <= 12.5mJ/cm2 with <= 4nm LWR.
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.
Continued Analysis of EUVE Solar System Observations
NASA Technical Reports Server (NTRS)
Gladstone, G. Randall
2001-01-01
This is the final report for this project. We proposed to continue our work on extracting important results from the EUVE (Extreme UltraViolet Explorer) archive of lunar and jovian system observations. In particular, we planned to: (1) produce several monochromatic images of the Moon at the wavelengths of the brightest solar EUV emission lines; (2) search for evidence of soft X-ray emissions from the Moon and/or X-ray fluorescence at specific EUV wavelengths; (3) search for localized EUV and soft X-ray emissions associated with each of the Galilean satellites; (4) search for correlations between localized Io Plasma Torus (IPT) brightness and volcanic activity on Io; (5) search for soft X-ray emissions from Jupiter; and (6) determine the long term variability of He 58.4 nm emissions from Jupiter, and relate these to solar variability. However, the ADP review panel suggested that the work concentrate on the Jupiter/IPT observations, and provided half the requested funding. Thus we have performed no work on the first two tasks, and instead concentrated on the last three. In addition we used funds from this project to support reduction and analysis of EUVE observations of Venus. While this was not part of the original statement of work, it is entirely in keeping with extracting important results from EUVE solar system observations.
Electrical comparison of iN7 EUV hybrid and EUV single patterning BEOL metal layers
NASA Astrophysics Data System (ADS)
Larivière, Stéphane; Wilson, Christopher J.; Kutrzeba Kotowska, Bogumila; Versluijs, Janko; Decoster, Stefan; Mao, Ming; van der Veen, Marleen H.; Jourdan, Nicolas; El-Mekki, Zaid; Heylen, Nancy; Kesters, Els; Verdonck, Patrick; Béral, Christophe; Van den Heuvel, Dieter; De Bisschop, Peter; Bekaert, Joost; Blanco, Victor; Ciofi, Ivan; Wan, Danny; Briggs, Basoene; Mallik, Arindam; Hendrickx, Eric; Kim, Ryoung-han; McIntyre, Greg; Ronse, Kurt; Bömmels, Jürgen; Tőkei, Zsolt; Mocuta, Dan
2018-03-01
The semiconductor scaling roadmap shows the continuous node to node scaling to push Moore's law down to the next generations. In that context, the foundry N5 node requires 32nm metal pitch interconnects for the advanced logic Back- End of Line (BEoL). 193immersion usage now requires self-aligned and/or multiple patterning technique combinations to enable such critical dimension. On the other hand, EUV insertion investigation shows that 32nm metal pitch is still a challenge but, related to process flow complexity, presents some clear motivations. Imec has already evaluated on test chip vehicles with different patterning approaches: 193i SAQP (Self-Aligned Quadruple Patterning), LE3 (triple patterning Litho Etch), tone inversion, EUV SE (Single Exposure) with SMO (Source-mask optimization). Following the run path in the technology development for EUV insertion, imec N7 platform (iN7, corresponding node to the foundry N5) is developed for those BEoL layers. In this paper, following technical motivation and development learning, a comparison between the iArF SAQP/EUV block hybrid integration scheme and a single patterning EUV flow is proposed. These two integration patterning options will be finally compared from current morphological and electrical criteria.
Clean induced feature CD shift of EUV mask
NASA Astrophysics Data System (ADS)
Nesládek, Pavel; Schedel, Thorsten; Bender, Markus
2016-05-01
EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber/ARC layer, as the quartz substrate can be hardly modified by the wet process. For EUV Masks chemical modification of the Ru capping layer - thinning, oxidization etc. are rather more probable and we need to take into account, how this effects can influence the CD measurement process. CD changes measured can be interpreted as either change in the feature size, or modification of the chemical nature of both absorber/ARC layer stack and the Ru capping layer. In our work we try to separate the effect of absorber and Ru/capping layer on the CD shift observed and propose independent way of estimation both parameters.
EUV-induced oxidation of carbon on TiO2.
Faradzhev, Nadir S; Hill, Shannon B
2016-10-01
Previously we reported estimates of the maximum etch rates of C on TiO 2 by oxidizers including NO, O 3 and H 2 O 2 when irradiated by a spatially-non-uniform beam of extreme ultraviolet (EUV) radiation at 13.5 nm (Faradzhev et al., 2013). Here we extend that work by presenting temporally and spatially resolved measurements of the C etching by these oxidizers as a function of EUV intensity in the range (0.3 to 3) mW/mm 2 [(0.2 to 2) × 10 16 photons s -1 cm -2 ]. We find that the rates for NO scale linearly with intensity and are smaller than those for O 3 , which exhibit a weak, sub-linear intensity dependence in this range. We demonstrate that these behaviors are consistent with adsorption of the oxidizing precursor on the C surface followed by a photon-stimulated reaction resulting in volatile C-containing products. The kinetics of photon-induced C etching by hydrogen peroxide, however, appear to be more complex. The spatially resolved measurements reveal that C removal by H 2 O 2 begins at the edges of the C spot, where the light intensity is the lowest, and proceeds toward the center of the spot. This localization of the reaction may occur because hydroxyl radicals are produced efficiently on the catalytically active TiO 2 surface.
NASA Astrophysics Data System (ADS)
Singh, Vikram; Satyanarayana, Vardhineedi Sri Venkata; Batina, Nikola; Reyes, Israel Morales; Sharma, Satinder K.; Kessler, Felipe; Scheffer, Francine R.; Weibel, Daniel E.; Ghosh, Subrata; Gonsalves, Kenneth E.
2014-10-01
Although extreme ultraviolet (EUV) lithography is being considered as one of the most promising next-generation lithography techniques for patterning sub-20 nm features, the development of suitable EUV resists remains one of the main challenges confronting the semiconductor industry. The goal is to achieve sub-20 nm line patterns having low line edge roughness (LER) of <1.8 nm and a sensitivity of 5 to 20 mJ/cm2. The present work demonstrates the lithographic performance of two nonchemically amplified (n-CARs) negative photoresists, MAPDST homopolymer and MAPDST-MMA copolymer, prepared from suitable monomers containing the radiation sensitive sulfonium functionality. Investigations into the effect of several process parameters are reported. These include spinning conditions to obtain film thicknesses <50 nm, baking regimes, exposure conditions, and the resulting surface topographies. The effect of these protocols on sensitivity, contrast, and resolution has been assessed for the optimization of 20 nm features and the corresponding LER/line width roughness. These n-CARs have also been found to possess high etch resistance. The etch durability of MAPDST homopolymer and MAPDST-MMA copolymer (under SF6 plasma chemistry) with respect to the silicon substrate are 7.2∶1 and 8.3∶1, respectively. This methodical investigation will provide guidance in designing new resist materials with improved efficiency for EUVL through polymer microstructure engineering.
EUV focus sensor: design and modeling
NASA Astrophysics Data System (ADS)
Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander
2005-05-01
We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wave-lengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput opti-mizing the signal-to-noise ratio in the measured intensity contrast.
EUV Focus Sensor: Design and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander
We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using amore » single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wavelengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput optimizing the signal-to-noise ratio in the measured intensity contrast.« less
Progress in coherent lithography using table-top extreme ultraviolet lasers
NASA Astrophysics Data System (ADS)
Li, Wei
Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution interference pattern whose lattice is modified by a custom designed Talbot mask. In other words, this method enables filling the arbitrary Talbot cell with ultra-fine interference nanofeatures. Detailed optics modeling, system design and experiment results using He-Ne laser and table top EUV laser are included. The last part of chapter IV will analyze its exclusive advantages over traditional Talbot or interference lithography.
NASA Astrophysics Data System (ADS)
Dai, Yu; Ding, Mingde
2018-04-01
Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.
EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts
NASA Astrophysics Data System (ADS)
Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.
2017-06-01
Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).
A study of EUV emission from the O4f star Zeta Puppis
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Vallerga, John
1995-01-01
Our 20 ks observation did not allow us to carry out our primary objective, i.e., to test the limitations of deeply embedded EUV and X-ray sources. However, it did provide a very useful constraint in our analysis of a newly acquired high S/N ROSAT PSPC X-ray spectrum of Zeta Pup. In addition, modifications to our stellar wind opacity code have been preformed to investigate the sensitivity of the EUV opacity energy range to different photospheric model flux inputs and different wind structures. These analyses provided the justification for a 140 ks follow up EUVE Cycle III observation of this star. We have recently been informed that our requested observation has been accepted as a Type 1 target for Cycle III. The remainder of this report focuses on the following: (1) a brief background on the status of X-ray emission from OB stars; (2) a discussion on the importance of EUV observations; (3) a discussion of our scientific objectives; and (4) a summary of our technical approach for our Cycle III observation (including the predicted EUV counts for various lines.)
NASA Astrophysics Data System (ADS)
Kandel, Yudhishthir; Chandonait, Jonathan; Melvin, Lawrence S.; Marokkey, Sajan; Yan, Qiliang; Grzeskowiak, Steven; Painter, Benjamin; Denbeaux, Gregory
2017-03-01
Extreme ultraviolet (EUV) lithography at 13.5 nm stands at the crossroads of next generation patterning technology for high volume manufacturing of integrated circuits. Photo resist models that form the part of overall pattern transform model for lithography play a vital role in supporting this effort. The physics and chemistry of these resists must be understood to enable the construction of accurate models for EUV Optical Proximity Correction (OPC). In this study, we explore the possibility of improving EUV photo-resist models by directly correlating the parameters obtained from experimentally measured atomic scale physical properties; namely, the effect of interaction of EUV photons with photo acid generators in standard chemically amplified EUV photoresist, and associated electron energy loss events. Atomic scale physical properties will be inferred from the measurements carried out in Electron Resist Interaction Chamber (ERIC). This study will use measured physical parameters to establish a relationship with lithographically important properties, such as line edge roughness and CD variation. The data gathered from these measurements is used to construct OPC models of the resist.
Availability of underlayer application to EUV process
NASA Astrophysics Data System (ADS)
Kosugi, Hitoshi; Fonseca, Carlos; Iwao, Fumiko; Marumoto, Hiroshi; Kim, Hyun-Woo; Cho, Kyoungyong; Park, Cheol-Hong; Park, Chang-Min; Na, Hai-Sub; Koh, Cha-Won; Cho, Hanku
2011-04-01
EUV lithography is one of the most promising technologies for the fabrication of beyond 30nm HP generation devices. However, it is well-known that EUV lithography still has significant challenges. A great concern is the change of resist material for EUV resist process. EUV resist material formulations will likely change from conventional-type materials. As a result, substrate dependency needs to be understood. TEL has reported that the simulation combined with experiments is a good way to confirm the substrate dependency. In this work the application of HMDS treatment and SiON introduction, as an underlayer, are studied to cause a footing of resist profile. Then, we applied this simulation technique to Samsung EUV process. We will report the benefit of this simulation work and effect of underlayer application. Regarding the etching process, underlayer film introduction could have significant issues because the film that should be etched off increases. For that purpose, thinner films are better for etching. In general, thinner films may have some coating defects. We will report the coating coverage performance and defectivity of ultra thin film coating.
NASA Astrophysics Data System (ADS)
Christian, C. A.; Olson, E. C.
1993-01-01
The proposal database and scheduling system for the Extreme Ultraviolet Explorer is described. The proposal database has been implemented to take input for approved observations selected by the EUVE Peer Review Panel and output target information suitable for the scheduling system to digest. The scheduling system is a hybrid of the SPIKE program and EUVE software which checks spacecraft constraints, produces a proposed schedule and selects spacecraft orientations with optimal configurations for acquiring star trackers, etc. This system is used to schedule the In Orbit Calibration activities that took place this summer, following the EUVE launch in early June 1992. The strategy we have implemented has implications for the selection of approved targets, which have impacted the Peer Review process. In addition, we will discuss how the proposal database, founded on Sybase, controls the processing of EUVE Guest Observer data.
Spectroscopy and Photometry of EUVE J1429-38.0:An Eclipsing Magnetic Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Craig, Nahide; Roberts, Bryce; McGee, Paddy; Sirk, Martin
1997-06-01
EUVE J1429-38.0 was originally discovered as a variable source by the Extreme Ultraviolet Explorer (EUVE) satellite. We present new optical observations which unambiguously confirm this star to be an eclipsing magnetic system with an orbital period of 4() h 46() m. The photometric data are strongly modulated by ellipsoidal variations during low states which allow a system inclination of near 80 degrees to be determined. Our time-resolved optical spectra, which cover only about one-third of the orbital cycle, indicate the clear presence of a gas stream. During high states, EUVE J1429-38.0 shows ~ 1 mag deep eclipses and the apparent formation of a partial accretion disk. EUVE J1429-38.0 presents the observer with properties of both the AM Herculis and the DQ Herculis types of magnetic cataclysmic variable.
EUV Irradiance Inputs to Thermospheric Density Models: Open Issues and Path Forward
NASA Astrophysics Data System (ADS)
Vourlidas, A.; Bruinsma, S.
2018-01-01
One of the objectives of the NASA Living With a Star Institute on "Nowcasting of Atmospheric Drag for low Earth orbit (LEO) Spacecraft" was to investigate whether and how to increase the accuracy of atmospheric drag models by improving the quality of the solar forcing inputs, namely, extreme ultraviolet (EUV) irradiance information. In this focused review, we examine the status of and issues with EUV measurements and proxies, discuss recent promising developments, and suggest a number of ways to improve the reliability, availability, and forecast accuracy of EUV measurements in the next solar cycle.
The patterning center of excellence (CoE): an evolving lithographic enablement model
NASA Astrophysics Data System (ADS)
Montgomery, Warren; Chun, Jun Sung; Liehr, Michael; Tittnich, Michael
2015-03-01
As EUV lithography moves toward high-volume manufacturing (HVM), a key need for the lithography materials makers is access to EUV photons and imaging. The SEMATECH Resist Materials Development Center (RMDC) provided a solution path by enabling the Resist and Materials companies to work together (using SUNY Polytechnic Institute's Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) -based exposure systems), in a consortium fashion, in order to address the need for EUV photons. Thousands of wafers have been processed by the RMDC (leveraging the SUNY Poly CNSE/SEMATECH MET, SUNY Poly CNSE Alpha Demo Tool (ADT) and the SEMATECH Lawrence Berkeley MET) allowing many of the questions associated with EUV materials development to be answered. In this regard the activities associated with the RMDC are continuing. As the major Integrated Device Manufacturers (IDMs) have continued to purchase EUV scanners, Materials companies must now provide scanner based test data that characterizes the lithography materials they are producing. SUNY Poly CNSE and SEMATECH have partnered to evolve the RMDC into "The Patterning Center of Excellence (CoE)". The new CoE leverages the capability of the SUNY Poly CNSE-based full field ASML 3300 EUV scanner and combines that capability with EUV Microexposure (MET) systems resident in the SEMATECH RMDC to create an integrated lithography model which will allow materials companies to advance materials development in ways not previously possible.
SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liheng; Zhang, Jun; Li, Ting
2013-09-20
We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wavemore » transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.« less
Kr photoionized plasma induced by intense extreme ultraviolet pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A., E-mail: andrzej.bartnik@wat.edu.pl; Wachulak, P.; Fiedorowicz, H.
Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Krmore » plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.« less
Nanoplasmonic generation of ultrashort EUV pulses
NASA Astrophysics Data System (ADS)
Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo
2012-10-01
Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.
Kr photoionized plasma induced by intense extreme ultraviolet pulses
NASA Astrophysics Data System (ADS)
Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.
2016-04-01
Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.
Solar Demon: near real-time Flare, Dimming and EUV wave monitoring
NASA Astrophysics Data System (ADS)
Kraaikamp, Emil; Verbeeck, Cis
Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.
EUV mirror based absolute incident flux detector
Berger, Kurt W.
2004-03-23
A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Jelinsky, Patrick; Bowyer, Stuart
1986-01-01
The calibration facilities and techniques for the Extreme Ultraviolet Explorer (EUVE) from 44 to 2500 A are described. Key elements include newly designed radiation sources and a collimated monochromatic EUV beam. Sample results for the calibration of the EUVE filters, detectors, gratings, collimators, and optics are summarized.
Challenges of anamorphic high-NA lithography and mask making
NASA Astrophysics Data System (ADS)
Hsu, Stephen D.; Liu, Jingjing
2017-06-01
Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10.1117/12.2086074). To ensure no assist feature printing, the assist feature sizes need to be scaled with λ/NA. The extremely small SRAF width (below 25 nm on the reticle) is difficult to fabricate across the full reticle. In this paper, we introduce an innovative `attenuated SRAF' to improve SRAF manufacturability and still maintain the process window benefit. A new mask fabrication process is proposed to use existing mask-making capability to manufacture the attenuated SRAFs. The high-NA EUV system utilizes anamorphic reduction; 4× in the horizontal (slit) direction and 8× in the vertical (scanning) direction (J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150; B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in `Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94221G (2015) doi: 10.1117/12.2175488). For an anamorphic system, the magnification has an angular dependency, and thus, familiar mask specifications such as mask error factor (MEF) need to be redefined. Similarly, mask-manufacturing rule check (MRC) needs to consider feature orientation.
Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA
NASA Technical Reports Server (NTRS)
Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.
2014-01-01
We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV) spicules.
Novel EUV mask black border and its impact on wafer imaging
NASA Astrophysics Data System (ADS)
Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Watanabe, Genta; Ito, Shin; Yoshida, Itaru; Maruyama, Shingo; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi
2016-03-01
EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The EUV mask is a key element in the lithographic scanner optical path. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the EUV light reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. To reduce this effect an etched multilayer type black border was developed, and it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light which is emitted from EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel black border called Hybrid Black Border has been developed which allows to eliminate EUV and DUV OOB light reflection. Direct measurements of OOB light from HBB and Normal BB are performed on NXE:3300B ASML EUV scanner; it is shown that HBB OOB reflection is 3x lower than that of Normal BB. Finally, we state that HBB is a promising technology allowing for CD control at die edges.
Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina
2002-07-01
The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.
Prospects of DUV OoB suppression techniques in EUV lithography
NASA Astrophysics Data System (ADS)
Park, Chang-Min; Kim, Insung; Kim, Sang-Hyun; Kim, Dong-Wan; Hwang, Myung-Soo; Kang, Soon-Nam; Park, Cheolhong; Kim, Hyun-Woo; Yeo, Jeong-Ho; Kim, Seong-Sue
2014-04-01
Though scaling of source power is still the biggest challenge in EUV lithography (EUVL) technology era, CD and overlay controls for transistor's requirement are also precondition of adopting EUVL in mass production. Two kinds of contributors are identified as risks for CDU and Overlay: Infrared (IR) and deep ultraviolet (DUV) out of band (OOB) radiations from laser produced plasma (LPP) EUV source. IR from plasma generating CO2 laser that causes optics heating and wafer overlay error is well suppressed by introducing grating on collector to diffract IR off the optical axis and is the effect has been confirmed by operation of pre-production tool (NXE3100). EUV and DUV OOB which are reflected from mask black boarder (BB) are root causes of EUV-specific CD error at the boundaries of exposed shots which would result in the problem of CDU out of spec unless sufficiently suppressed. Therefore, control of DUV OOB reflection from the mask BB is one of the key technologies that must be developed prior to EUV mass production. In this paper, quantitative assessment on the advantage and the disadvantage of potential OOB solutions will be discussed. EUV and DUV OOB impacts on wafer CDs are measured from NXE3100 & NXE3300 experiments. Significant increase of DUV OOB impact on CD from NXE3300 compared with NXE3100 is observed. There are three ways of technology being developed to suppress DUV OOB: spectral purity filter (SPF) as a scanner solution, multi-layer etching as a solution on mask, and resist top-coating as a process solution. PROs and CONs of on-scanner, on-mask, and on-resist solution for the mass production of EUV lithography will be discussed.
Free-electron laser emission architecture impact on extreme ultraviolet lithography
NASA Astrophysics Data System (ADS)
Hosler, Erik R.; Wood, Obert R.; Barletta, William A.
2017-10-01
Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.
Evidence for a New Class of Extreme Ultraviolet Sources
NASA Technical Reports Server (NTRS)
Maoz, Dan; Ofek, Eran O.; Shemi, Amotz
1997-01-01
Most of the sources detected in the extreme ultraviolet (EUV; 100-600 A) by the ROSAT/WFC and EUVE all-sky surveys have been identified with active late-type stars and hot white dwarfs that are near enough to the Earth to escape absorption by interstellar gas. However, about 15 per cent of EUV sources are as yet unidentified with any optical counterparts. We examine whether the unidentified EUV sources may consist of the same population of late-type stars and white dwarfs. We present B and R photometry of stars in the fields of seven of the unidentified EUV sources. We detect in the optical the entire main-sequence and white dwarf population out to the greatest distances where they could still avoid absorption. We use color-magnitude diagrams to demonstrate that, in most of the fields, none of the observed stars has the colours and magnitudes of late-type dwarfs at distances less than 100 pc. Similarly, none of the observed stars is a white dwarf within 500 pc that is hot enough to be a EUV emitter. The unidentified EUV sources we study are not detected in X-rays, while cataclysmic variables, X-ray binaries, and active galactic nuclei generally are. We conclude that some of the EUV sources may be a new class of nearby objects, which are either very faint at optical bands or which mimic the colours and magnitudes of distant late-type stars or cool white dwarfs. One candidate for optically faint objects is isolated old neutron stars, slowly accreting interstellar matter. Such neutron stars are expected to be abundant in the Galaxy, and have not been unambiguously detected.
NASA Technical Reports Server (NTRS)
Malina, R. F.; Cash, W.
1978-01-01
Measured reflection efficiencies are presented for flat samples of diamond-turned aluminum, nickel, and evaporated gold surfaces fabricated by techniques suited for EUV telescopes. The aluminum samples were 6.2-cm-diameter disks of 6061-T6, the electroless nickel samples were formed by plating beryllium disks with 7.5-microns of Kanigen. Gold samples were produced by coating the aluminum and nickel samples with 5 strips of evaporated gold. Reflection efficiencies are given for grazing angles in the 5-75 degree range. The results indicate that for wavelengths over about 100 A, the gold-coated nickel samples yield highest efficiencies. For shorter wavelengths, the nickel samples yield better efficiencies. 500 A is found to be the optimal gold thickness.
Method of fabricating reflection-mode EUV diffraction elements
Naulleau, Patrick P.
2002-01-01
Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.
EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.
2014-11-01
We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.
Actinic imaging and evaluation of phase structures on EUV lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin
2010-09-28
The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less
The Nature of the Flaring EUVE Companion to HD 43162
NASA Technical Reports Server (NTRS)
Kulkarni, Shrinivas R.
2005-01-01
The purpose of our program was to observe and characterize the companion to HD 43162, EUVE J0614-2354, which (serendipitously) experienced an enormous flare event during our EUVE observation of HD 43162, one of the nearby solar analogs that we observed during our survey of this population. Our observation was carried out and the data have been received and reduced. We are able to identify EUVE J0614-2354 in both the X-ray (EPIC MOS + PN) and the UV (OM) data, which provides a sub-arcsecond position for this source. Our findings are consistent with the analysis of Christian et al. (2003a,b), who identify EUVE J0614-2354 with a coronally-active M-dwarf star at distance d = 15 plus or minus 5pc. The X-ray spectrum from the EPIC data are also consistent with this identification.
Hemispherical Nature of EUV Shocks Revealed by SOHO, STEREO, and SDO Observations
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk; Nitta, N.; Akiyama, S.; Makela, P.; Yashiro, S.
2011-01-01
EUV wave transients associated with type II radio bursts are manifestation of CME-driven shocks in the solar corona. We use recent EUV wave observations from SOHO, STEREO, and SDO for a set of CMEs to show that the EUV transients have a spherical shape in the inner corona. We demonstrate this by showing that the radius of the EUV transient on the disk observed by one instrument is approximately equal to the height of the wave above the solar surface in an orthogonal view provided by another instrument. The study also shows that the CME-driven shocks often form very low in the corona at a heliocentric distance of 1.2 Rs, even smaller than the previous estimates from STEREO/CORl data (Gopalswamy et aI., 2009, Solar Phys. 259, 227). These results have important implications for the acceleration of solar energetic particles by CMEs
Aryl sulfonates as neutral photoacid generators (PAGs) for EUV lithography
NASA Astrophysics Data System (ADS)
Sulc, Robert; Blackwell, James M.; Younkin, Todd R.; Putna, E. Steve; Esswein, Katherine; DiPasquale, Antonio G.; Callahan, Ryan; Tsubaki, Hideaki; Tsuchihashi, Tooru
2009-03-01
EUV lithography (EUVL) is a leading candidate for printing sub-32 nm hp patterns. In order for EUVL to be commercially viable at these dimensions, a continuous evolution of the photoresist material set is required to simultaneously meet the aggressive specifications for resolution, resist sensitivity, LWR, and outgassing rate. Alternative PAG designs, especially if tailored for EUVL, may aid in the formation of a material set that helps achieve these aggressive targets. We describe the preparation, characterization, and lithographic evaluation of aryl sulfonates as non-ionic or neutral photoacid generators (PAGs) for EUVL. Full lithographic characterization is reported for our first generation resist formulation using compound H, MAP-1H-2.5. It is benchmarked against MAP-1P-5.0, which contains the well-known sulfonium PAG, triphenylsulfonium triflate (compound P). Z-factor analysis indicates nZ32 = 81.4 and 16.8 respectively, indicating that our first generation aryl sulfonate formulations require about 4.8x improvement to match the results achieved with a model onium PAG. Improving the acid generation efficiency and use of the generated byproducts is key to the continued optimization of this class of PAGs. To that end, we believe EI-MS fragmentation patterns and molecular simulations can be used to understand and optimize the nature and efficiency of electron-induced PAG fragmentation.
EUV wavefront metrology system in EUVA
NASA Astrophysics Data System (ADS)
Hasegawa, Takayuki; Ouchi, Chidane; Hasegawa, Masanobu; Kato, Seima; Suzuki, Akiyoshi; Sugisaki, Katsumi; Murakami, Katsuhiko; Saito, Jun; Niibe, Masahito
2004-05-01
An Experimental extreme ultraviolet (EUV) interferometer (EEI) using an undulator as a light source was installed in New SUBARU synchrotron facility at Himeji Institute of Technology (HIT). The EEI can evaluate the five metrology methods reported before. (1) A purpose of the EEI is to determine the most suitable method for measuring the projection optics of EUV lithography systems for mass production tools.
The extreme ultraviolet explorer archive
NASA Astrophysics Data System (ADS)
Polomski, E.; Drake, J. J.; Dobson, C.; Christian, C.
1993-09-01
The Extreme Ultrviolet Explorer (EUVE) public archive was created to handle the storage, maintenance, and distribution of EUVE data and ancillary documentation, information, and software. Access to the archive became available to the public on July 17, 1992, only 40 days after the launch of the EUVE satellite. A brief overview of the archive's contents and the various methods of access will be described.
EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics
NASA Astrophysics Data System (ADS)
Patsourakos, S.
2015-12-01
Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.
NASA Astrophysics Data System (ADS)
Sitterly, Jacob; Murphy, Michael; Grzeskowiak, Steven; Denbeaux, Greg; Brainard, Robert L.
2018-03-01
This paper describes the photoreactivity of six organometallic complexes of the type PhnMX2 containing bismuth, antimony and tellurium, where n = 3 for bismuth and antimony and n = 2 for tellurium, and where X = acetate (O2CCH3) or pivalate (O2CC(CH3)3). These compounds were exposed to EUV light to monitor photodecomposition via in situ mass spectral analysis of the primary outgassing products of CO2, benzene and phenol. This paper explores the effect of metal center and carboxylate ligand on the EUV reactivity of these EUV photoresists.
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
EUV spectroscopy of high-redshift x-ray objects
NASA Astrophysics Data System (ADS)
Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.
2010-07-01
As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.
Registration performance on EUV masks using high-resolution registration metrology
NASA Astrophysics Data System (ADS)
Steinert, Steffen; Solowan, Hans-Michael; Park, Jinback; Han, Hakseung; Beyer, Dirk; Scherübl, Thomas
2016-10-01
Next-generation lithography based on EUV continues to move forward to high-volume manufacturing. Given the technical challenges and the throughput concerns a hybrid approach with 193 nm immersion lithography is expected, at least in the initial state. Due to the increasing complexity at smaller nodes a multitude of different masks, both DUV (193 nm) and EUV (13.5 nm) reticles, will then be required in the lithography process-flow. The individual registration of each mask and the resulting overlay error are of crucial importance in order to ensure proper functionality of the chips. While registration and overlay metrology on DUV masks has been the standard for decades, this has yet to be demonstrated on EUV masks. Past generations of mask registration tools were not necessarily limited in their tool stability, but in their resolution capabilities. The scope of this work is an image placement investigation of high-end EUV masks together with a registration and resolution performance qualification. For this we employ a new generation registration metrology system embedded in a production environment for full-spec EUV masks. This paper presents excellent registration performance not only on standard overlay markers but also on more sophisticated e-beam calibration patterns.
EUV tools: hydrogen gas purification and recovery strategies
NASA Astrophysics Data System (ADS)
Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah
2015-03-01
The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.
On the Absence of EUV Emission from Comet C/2012 S1 (ISON)
NASA Technical Reports Server (NTRS)
Bryans, Paul; Pesnell, W. Dean
2016-01-01
When the sungrazing comet C2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun's surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This null result is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. By comparing these properties with those of sungrazing comet C2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C2012 S1 (ISON) was at least a factor of four less than that of C2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.
The EUV Helium Spectrum in the Quiet Sun: A By-Product of Coronal Emission?
NASA Technical Reports Server (NTRS)
Andretta, Vincenzo; DelZanna, Giulio; Jordan, Stuart D.; Oegerle, William (Technical Monitor)
2002-01-01
In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionizing flux in the wavelength range below 504 A (the photoionisation threshold for He(I)), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV helium lines: He(II) lambda304, He(I) lambda584, and He(I) lambda537. We find that there are not enough EUV photons to account for the observed helium line intensities. More specifically, we conclude that He(II) intensities cannot be explained by the P-R mechanism. Our results, however, leave open the possibility that the He(I) spectrum could be formed by the P-R mechanism, with the He(II) lambda304 line as a significant photoionizating source.
ON THE ABSENCE OF EUV EMISSION FROM COMET C/2012 S1 (ISON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryans, Paul; Pesnell, W. Dean
2016-05-10
When the sungrazing comet C/2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun’s surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This “null result” is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. Bymore » comparing these properties with those of sungrazing comet C/2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C/2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C/2012 S1 (ISON) was at least a factor of four less than that of C/2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.« less
Radiation source with shaped emission
Kubiak, Glenn D.; Sweatt, William C.
2003-05-13
Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.
Improvements in resist performance towards EUV HVM
NASA Astrophysics Data System (ADS)
Yildirim, Oktay; Buitrago, Elizabeth; Hoefnagels, Rik; Meeuwissen, Marieke; Wuister, Sander; Rispens, Gijsbert; van Oosten, Anton; Derks, Paul; Finders, Jo; Vockenhuber, Michaela; Ekinci, Yasin
2017-03-01
Extreme ultraviolet (EUV) lithography with 13.5 nm wavelength is the main option for sub-10nm patterning in the semiconductor industry. We report improvements in resist performance towards EUV high volume manufacturing. A local CD uniformity (LCDU) model is introduced and validated with experimental contact hole (CH) data. Resist performance is analyzed in terms of ultimate printing resolution (R), line width roughness (LWR), sensitivity (S), exposure latitude (EL) and depth of focus (DOF). Resist performance of dense lines at 13 nm half-pitch and beyond is shown by chemical amplified resist (CAR) and non-CAR (Inpria YA Series) on NXE scanner. Resolution down to 10nm half pitch (hp) is shown by Inpria YA Series resist exposed on interference lithography at the Paul Sherrer Institute. Contact holes contrast and consequent LCDU improvement is achieved on a NXE:3400 scanner by decreasing the pupil fill ratio. State-of-the-art imaging meets 5nm node requirements for CHs. A dynamic gas lock (DGL) membrane is introduced between projection optics box (POB) and wafer stage. The DGL membrane will suppress the negative impact of resist outgassing on the projection optics by 100%, enabling a wider range of resist materials to be used. The validated LCDU model indicates that the imaging requirements of the 3nm node can be met with single exposure using a high-NA EUV scanner. The current status, trends, and potential roadblocks for EUV resists are discussed. Our results mark the progress and the improvement points in EUV resist materials to support EUV ecosystem.
EUV spectroscopy in astrophysics: The role of compact objects
NASA Astrophysics Data System (ADS)
Wood, K. S.; Kowalski, M. P.; Cruddace, R. G.; Barstow, M. A.
2006-01-01
The bulk of radiation from million-degree plasmas is emitted at EUV wavelengths. Such plasmas are ubiquitous in astrophysics, and examples include the atmospheres of white dwarfs, accretion phenomena in cataclysmic variables (CVs) and some active galactic nuclei (AGN), the coronae of active stars, and the interstellar medium (ISM) of our own galaxy as well as of others. Internally, white dwarfs are formally analogous to neutron stars, being stellar configurations where the thermal contribution to support is secondary. Both stellar types have various intrinsic and environmental parameters. Comparison of such analogous systems using scaled parameters can be fruitful. Source class characterization is mature enough that such analogies can be used to compare theoretical ideas across a wide dynamic range in parameters, one example being theories of quasiperiodic oscillations. However, the white dwarf side of this program is limited by the available photometry and spectroscopy at EUV wavelengths, where there exist critical spectral features that contain diagnostic information often not available at other wavelengths. Moreover, interstellar absorption makes EUV observations challenging. Results from an observation of the hot white dwarf G191-B2B are presented to demonstrate the promise of high-resolution EUV spectroscopy. Two types of CVs, exemplified by AM Her and EX Hya, are used to illustrate blending of spectroscopy and timing measurements. Dynamical timescales and envisioned performance parameters of next-generation EUV satellites (effective area >20 cm 2, spectral resolution >10,000) make possible a new level of source modeling. The importance of the EUV cannot be overlooked given that observations are continually being pushed to cosmological distances, where the spectral energy distributions of X-ray bright AGNs, for example, will have their maxima redshifted into the EUV. Sometimes wrongly dismissed for limitations of small bandwidth or local view from optical depth limitations, the EUV is instead a gold mine of information bearing upon key issues in compact objects, but it is information that must be won through the triple combination of high-spectral resolution, large area, and application of advanced theory.
Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor
NASA Astrophysics Data System (ADS)
Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team
2017-10-01
Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.
Time-Resolved Spectroscopy of Active Binary Stars
NASA Technical Reports Server (NTRS)
Brown, Alexander
2000-01-01
This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.
Exploring dynamic events in the solar corona
NASA Astrophysics Data System (ADS)
Downs, Cooper James
With the advent of modern computational technology it is now becoming the norm to employ detailed 3D computer models as empirical tools that directly account for the inhomogeneous nature of the Sun-Heliosphere environment. The key advantage of this approach lies in the ability to compare model results directly to observational data and to use a successful comparison (or lack thereof) to glean information on the underlying physical processes. Using extreme ultraviolet waves (EUV waves) as the overarching scientific driver, we apply this observation modeling approach to study the complex dynamics of the magnetic and thermodynamic structures that are observed in the low solar corona. Representing a highly non-trivial effort, this work includes three main scientific thrusts: an initial modeling effort and two EUV wave case-studies. First we document the development of the new Low Corona (LC) model, a 3D time-dependent thermodynamic magnetohydrodynamic (MHD) model implemented within the Space Weather Modeling Framework (SWMF). Observation synthesis methods are integrated within the LC model, which provides the ability to compare model results directly to EUV imaging observations taken by spacecraft. The new model is then used to explore the dynamic interplay between magnetic structures and thermodynamic energy balance in the corona that is caused by coronal heating mechanisms. With the model development complete, we investigate the nature of EUV waves in detail through two case-studies. Starting with the 2008 March 25 event, we conduct a series of numerical simulations that independently vary fundamental parameters thought to govern the physical mechanisms behind EUV waves. Through the subsequent analysis of the 3D data and comparison to observations we find evidence for both wave and non-wave mechanisms contributing to the EUV wave signal. We conclude with a comprehensive observation and modeling analysis of the 2010 June 13 EUV wave event, which was observed by the recently launched Solar Dynamics Observatory. We use a high resolution simulation of the transient to unambiguously characterize the globally propagating front of EUV wave as a fast-mode magnetosonic wave, and use the rich set of observations to place the many other facets of the EUV transient within a unified scenario involving wave and non-wave components.
The lithographer's dilemma: shrinking without breaking the bank
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2013-10-01
It can no longer be assumed that the lithographic scaling which has previously driven Moore's Law will lead in the future to reduced cost per transistor. Until recently, higher prices for lithography tools were offset by improvements in scanner productivity. The necessity of using double patterning to extend scaling beyond the single exposure resolution limit of optical lithography has resulted in a sharp increase in the cost of patterning a critical construction layer that has not been offset by improvements in exposure tool productivity. Double patterning has also substantially increased the cost of mask sets. EUV lithography represents a single patterning option, but the combination of very high exposure tools prices, moderate throughput, high maintenance costs, and expensive mask blanks makes this a solution more expensive than optical double patterning but less expensive than triple patterning. Directed self-assembly (DSA) could potentially improve wafer costs, but this technology currently is immature. There are also design layout and process integration issues associated with DSA that need to be solved in order to obtain full benefit from tighter pitches. There are many approaches for improving the cost effectiveness of lithography. Innovative double patterning schemes lead to smaller die. EUV lithography productivity can be improved with higher power light sources and improved reliability. There are many technical and business challenges for extending EUV lithography to higher numerical apertures. Efficient contact hole and cut mask solutions are needed, as well as very tight overlay control, regardless of lithographic solution.
Nanoimaging using soft X-ray and EUV laser-plasma sources
NASA Astrophysics Data System (ADS)
Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk
2018-01-01
In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.
Development of EUV mask handling technology at MIRAI-Selete
NASA Astrophysics Data System (ADS)
Ota, Kazuya; Amemiya, Mitsuaki; Taguchi, Takao; Kamono, Takashi; Kubo, Hiroyoshi; Takikawa, Tadahiko; Usui, Yoichi; Suga, Osamu
2007-03-01
We, MIRAI-Selete, started a new EUV mask program in April, 2006. Development of EUV mask handling technology is one of the key areas of the program. We plan to develop mask handling technology and to evaluate EUV mask carriers using Lasertec M3350, a particle inspection tool with the defect sensitivity less than 50nm PSL, and Mask Protection Engineering Tool (named "MPE Tool"). M3350 is a newly developed tool based on a conventional M1350 for EUV blanks inspection. Since our M3350 has a blank flipping mechanism in it, we can inspect the front and the back surface of the blank automatically. We plan to use the M3350 for evaluating particle adders during mask shipping, storage and handling. MPE Tool is a special tool exclusively developed for demonstration of pellicleless mask handling. It can handle a mask within a protective enclosure, which Canon and Nikon have been jointly proposing1, and also, can be modified to handle other type of carrier as the need arises.
EB and EUV lithography using inedible cellulose-based biomass resist material
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2016-03-01
The validity of our approach of inedible cellulose-based resist material derived from woody biomass has been confirmed experimentally for the use of pure water in organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques of eco-conscious electron beam (EB) and extreme-ultraviolet (EUV) lithography. The water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB and EUV lithography was developed for environmental affair, safety, easiness of handling, and health of the working people. The inedible cellulose-based biomass resist material was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB and EUV sensitive groups. The 50-100 nm line and space width, and little footing profiles of cellulose-based biomass resist material on hardmask and layer were resolved at the doses of 10-30 μC/cm2. The eco-conscious lithography techniques was referred to as green EB and EUV lithography using inedible cellulose-based biomass resist material.
Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.
2018-05-01
The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.
Pattern Inspection of EUV Masks Using DUV Light
NASA Astrophysics Data System (ADS)
Liang, Ted; Tejnil, Edita; Stivers, Alan R.
2002-12-01
Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkarimi, Paul B.; Bajt, Sasa; Wall, Mark A.
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decreasemore » more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar. (c) 2000 Optical Society of America.« less
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.
Mirkarimi, P B; Bajt, S; Wall, M A
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.
The extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Bowyer, Stuart; Malina, Roger F.
1990-01-01
The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled for launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of Extreme Ultraviolet (EUV) radiation. The survey will be accomplished with the use of three EUV telescopes, each sensitive to a different segment of the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all sky survey will be carried out in the first six months of the mission and will be made in four bands, or colors. The second phase of the mission, conducted entirely by guest observers selected by NASA, will be devoted to spectroscopic observations of EUV sources. The performance of the instrument components is described. An end to end model of the mission, from a stellar source to the resulting scientific data, was constructed. Hypothetical data from astronomical sources processed through this model are shown.
Optical inspection of NGL masks
NASA Astrophysics Data System (ADS)
Pettibone, Donald W.; Stokowski, Stanley E.
2004-12-01
For the last five years KLA-Tencor and our joint venture partners have pursued a research program studying the ability of optical inspection tools to meet the inspection needs of possible NGL lithographies. The NGL technologies that we have studied include SCALPEL, PREVAIL, EUV lithography, and Step and Flash Imprint Lithography. We will discuss the sensitivity of the inspection tools and mask design factors that affect tool sensitivity. Most of the work has been directed towards EUV mask inspection and how to optimize the mask to facilitate inspection. Our partners have succeeded in making high contrast EUV masks ranging in contrast from 70% to 98%. Die to die and die to database inspection of EUV masks have been achieved with a sensitivity that is comparable to what can be achieved with conventional photomasks, approximately 80nm defect sensitivity. We have inspected SCALPEL masks successfully. We have found a limitation of optical inspection when applied to PREVAIL stencil masks. We have run inspections on SFIL masks in die to die, reflected light, in an effort to provide feedback to improve the masks. We have used a UV inspection system to inspect both unpatterned EUV substrates (no coatings) and blanks (with EUV multilayer coatings). These inspection results have proven useful in driving down the substrate and blank defect levels.
NASA Technical Reports Server (NTRS)
Richon, K.; Hashmall, J.; Lambertson, M.; Phillips, T.
1988-01-01
The Explorer Platform (EP) program currently comprises two missions, the Extreme Ultraviolet Explorer (EUVE) and the X-ray Timing Explorer (XTE), each of which consists of a scientific payload mounted to the EP. The EP has no orbit maintenance capability. The EP with the EUVE payload will be launched first. At the end of the EUVE mission, the spacecraft will be serviced by the Space Transportation System (STS), and the EUVE instrument will be exchanged for the XTE. The XTE mission will continue until reentry or reservicing by the STS. Because the missions will be using the EP sequentially, the orbit requirements are unusually constrained by orbit decay rates. The initial altitude must be selected so that, by the end of the EUVE mission (2.5 years), the spacecraft will have decayed to an altitude within the STS capabilities. In addition, the payload exchange must occur at an altitude that ensures meeting the minimum XTE mission lifetime (3 years) because no STS reboost will be available. Studies were performed using the Goddard Mission Analysis System to estimate the effects of mass, cross-sectional area, and solar flux on the fulfillment of mission requirements. In addition to results from these studies, conclusions are presented as to the accuracy of the Marshall Space Flight Center solar flux predictions.
Reconstruction of Solar EUV Flux 1740-2015
NASA Astrophysics Data System (ADS)
Svalgaard, L.
2015-12-01
Solar Extreme Ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the 'Magnetic Crusade' of the 1830s and less reliable, but still usable, data are available for portions of the hundred years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F10.7 flux and the sunspot number, and find that the reconstructed EUV flux reproduces the F10.7 flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant 'solar magnetic ground state'.
The extreme ultraviolet spectra of low-redshift radio-loud quasars
NASA Astrophysics Data System (ADS)
Punsly, Brian; Reynolds, Cormac; Marziani, Paola; O'Dea, Christopher P.
2016-07-01
This paper reports on the extreme ultraviolet (EUV) spectrum of three low-redshift (z ˜ 0.6) radio-loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope. The bolometric thermal emission, Lbol, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long-term time-averaged jet power, overline{Q}, for the three sources. overline{Q}/L_{bol}, is shown to lie along the correlation of overline{Q}/L_{bol}, and αEUV found in previous studies of the EUV continuum of intermediate and high-redshift quasars, where the EUV continuum flux density between 1100 and 700 Å is defined by F_{ν } ˜ ν ^{-α _{EUV}}. The high Eddington ratios of the three quasars extend the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely, the correlation of overline{Q}/L_{bol} and αEUV is fundamental, and the correlation of overline{Q} and αEUV is spurious at a very high statistical significance level (99.8 per cent). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multifrequency and multiresolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.
SEMATECH EUVL mask program status
NASA Astrophysics Data System (ADS)
Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick
2009-04-01
As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been made but a continued collaborative effort will be needed along with timely infrastructure investments to meet these challenging goals.
NASA Astrophysics Data System (ADS)
Brux, O.; van der Walle, P.; van der Donck, J. C. J.; Dress, P.
2011-11-01
Extreme Ultraviolet Lithography (EUVL) is the most promising solution for technology nodes 16nm (hp) and below. However, several unique EUV mask challenges must be resolved for a successful launch of the technology into the market. Uncontrolled introduction of particles and/or contamination into the EUV scanner significantly increases the risk for device yield loss and potentially scanner down-time. With the absence of a pellicle to protect the surface of the EUV mask, a zero particle adder regime between final clean and the point-of-exposure is critical for the active areas of the mask. A Dual Pod concept for handling EUV masks had been proposed by the industry as means to minimize the risk of mask contamination during transport and storage. SuSS-HamaTech introduces MaskTrackPro InSync as a fully automated solution for the handling of EUV masks in and out of this Dual Pod System and therefore constitutes an interface between various tools inside the Fab. The intrinsic cleanliness of each individual handling and storage step of the inner shell (EIP) of this Dual Pod and the EUV mask inside the InSync Tool has been investigated to confirm the capability for minimizing the risk of cross-contamination. An Entegris Dual Pod EUV-1000A-A110 has been used for the qualification. The particle detection for the qualification procedure was executed with the TNO's RapidNano Particle Scanner, qualified for particle sizes down to 50nm (PSL equivalent). It has been shown that the target specification of < 2 particles @ 60nm per 25 cycles has been achieved. In case where added particles were measured, the EIP has been identified as a potential root cause for Ni particle generation. Any direct Ni-Al contact has to be avoided to mitigate the risk of material abrasion.
It's Time For A New EUV Mission
NASA Astrophysics Data System (ADS)
Kowalski, Michael Paul; Wood, K. S.; Barstow, M. A.; Cruddace, R. G.
2010-01-01
The J-PEX high-resolution EUV spectrometer has made a breakthrough in capability with an effective area of 7 cm2 (220-245 Å) and resolving power of 4000, which exceed EUVE by factors of 7 and 20 respectively, and cover a range beyond the 170-Å cutoff of the Chandra LETG. The EUV includes critical spectral features containing diagnostic information often not available at other wavelengths (e.g., He II Ly series), and the bulk of radiation from million degree plasmas is emitted in the EUV. Such plasmas are ubiquitous, and examples include the atmospheres of white dwarfs; accretion phenomena in young stars, CVs and AGN; stellar coronae; and the ISM of our own galaxy and of others. However, sensitive EUV spectroscopy of high resolving power is required to resolve source spectral lines and edges unambiguously, to identify features produced by the intervening ISM, and to measure line profiles and Doppler shifts. This allows exploitation of the full range of plasma diagnostic techniques developed in laboratory and solar physics. J-PEX has flown twice on NASA sounding rockets. In 2001 we observed the isolated white dwarf G191-B2B and detected both ISM and photospheric lines. In 2008 we successfully observed the binary white dwarf Feige 24, but observation time is severely limited with sounding rockets. NASA has approved no new EUV mission, but it is time for one. Here we describe the scientific case for high-resolution EUV spectroscopy, summarize the technology that makes such measurements practical, and present a concept for a 3-month orbital mission, in which J-PEX is modified for a low-cost orbital mission to acquire sensitive high-resolution spectra for 30 white dwarfs, making an important contribution to the study of white dwarf evolution and hence the chemical balance of the Galaxy, and to the understanding of structure in the LISM.
EUV and X-ray spectroheliograph study
NASA Technical Reports Server (NTRS)
Knox, E. D.; Pastor, R. A.; Salamon, A. L.; Sterk, A. A.
1975-01-01
The results of a program directed toward the definition of an EUV and X-ray spectroheliograph which has significant performance and operational improvements over the OSO-7 instrument are documented. The program investigated methods of implementing selected changes and incorporated the results of the study into a set of drawings which defines the new instrument. The EUV detector performance degradation observed during the OSO-7 mission was investigated and the most probable cause of the degradation identified.
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1993-01-01
The region of the UV between 500 and 1200 A is a rich one for the study of planetary and astrophysical targets. EUV atmospheric spectroscopy opens up an important window on ion and neutral nitrogen, oxygen, and noble gas emissions. In this document we describe the specific scientific background and motivations for this Venus EUV rocket observation along with experiment design and mission parameters.
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.; ...
2018-02-05
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
NASA Astrophysics Data System (ADS)
Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro
2010-09-01
In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.
Coater/developer based techniques to improve high-resolution EUV patterning defectivity
NASA Astrophysics Data System (ADS)
Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Liu, Eric; Ko, Akiteru; Kawakami, Shinichiro; Shimoaoki, Takeshi; Hashimoto, Yusaku; Tanaka, Koichiro; Petrillo, Karen; Meli, Luciana; De Silva, Anuja; Xu, Yongan; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex
2017-10-01
Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates under consideration for enabling the next generation of devices, for 7nm node and beyond. As the focus shifts to driving down the 'effective' k1 factor and enabling the full scaling entitlement of EUV patterning, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse, and eliminate film-related defects. In addition, CD uniformity and LWR/LER must be improved in terms of patterning performance. Tokyo Electron Limited (TEL™) and IBM Corporation are continuously developing manufacturing quality processes for EUV. In this paper, we review the ongoing progress in coater/developer based processes (coating, developing, baking) that are required to enable EUV patterning.
Ultra-low roughness magneto-rheological finishing for EUV mask substrates
NASA Astrophysics Data System (ADS)
Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath
2013-09-01
EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.
Thin film filter lifetesting results in the extreme ultraviolet
NASA Technical Reports Server (NTRS)
Vedder, P. W.; Vallerga, J. V.; Gibson, J. L.; Stock, J.; Siegmund, O. H. W.
1993-01-01
We present the results of the thin film filter lifetesting program conducted as part of the NASA Extreme Ultraviolet Explorer (EUVE) satellite mission. This lifetesting program is designed to monitor changes in the transmission and mechanical properties of the EUVE filters over the lifetime of the mission (fabrication, assembly, launch and operation). Witness test filters were fabricated from thin film foils identical to those used in the flight filters. The witness filters have been examined and calibrated periodically over the past seven years. The filters have been examined for evidence of pinholing, mechanical degradation, and oxidation. Absolute transmissions of the flight and witness filters have been measured in the extreme ultraviolet (EUV) over six orders of magnitude at numerous wavelengths using the Berkeley EUV Calibration Facility.
Solar EUV irradiance from the San Marco ASSI - A reference spectrum
NASA Technical Reports Server (NTRS)
Schmidtke, Gerhard; Woods, Thomas N.; Worden, John; Rottman, Gary J.; Doll, Harry; Wita, Claus; Solomon, Stanley C.
1992-01-01
The only satellite measurement of the solar EUV irradiance during solar cycle 22 has been obtained with the Airglow Solar Spectrometer Instrument (ASSI) aboard the San Marco 5 satellite flown in 1988. The ASSI in-flight calibration parameters are established by using the internal capabilities of ASSI and by comparing ASSI results to the results from other space-based experiments on the ASSI calibration rocket and the Solar Mesospheric Explorer (SME). A solar EUV irradiance spectrum derived from ASSI observations on November 10, 1988 is presented as a reference spectrum for moderate solar activity for the aeronomy community. This ASSI spectrum should be considered as a refinement and extension of the solar EUV spectrum published for the same day by Woods and Rottman (1990).
Ultimate patterning limits for EUV at 5nm node and beyond
NASA Astrophysics Data System (ADS)
Ali, Rehab Kotb; Hamed Fatehy, Ahmed; Lafferty, Neal; Word, James
2018-03-01
The 5nm technology node introduces more aggressive geometries than previous nodes. In this paper, we are introducing a comprehensive study to examine the pattering limits of EUV at 0.33NA. The study is divided into two main approaches: (A) Exploring pattering limits of Single Exposure EUV Cut/Block mask in Self-Aligned-Multi-Patterning (SAMP) process, and (B) Exploring the pattering limits of a Single Exposure EUV printing of metal Layers. The printability of the resulted OPC masks is checked through a model based manufacturing flow for the two pattering approaches. The final manufactured patterns are quantified by Edge Placement Error (EPE), Process Variation Band (PVBand), soft/hard bridging and pinching, Image Log Slope (ILS) and Common Depth of Focus (CDOF)
Mask-induced aberration in EUV lithography
NASA Astrophysics Data System (ADS)
Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko
2009-04-01
We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.
Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi
2018-01-17
Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.
Integrated approach to improving local CD uniformity in EUV patterning
NASA Astrophysics Data System (ADS)
Liang, Andrew; Hermans, Jan; Tran, Timothy; Viatkina, Katja; Liang, Chen-Wei; Ward, Brandon; Chuang, Steven; Yu, Jengyi; Harm, Greg; Vandereyken, Jelle; Rio, David; Kubis, Michael; Tan, Samantha; Dusa, Mircea; Singhal, Akhil; van Schravendijk, Bart; Dixit, Girish; Shamma, Nader
2017-03-01
Extreme ultraviolet (EUV) lithography is crucial to enabling technology scaling in pitch and critical dimension (CD). Currently, one of the key challenges of introducing EUV lithography to high volume manufacturing (HVM) is throughput, which requires high source power and high sensitivity chemically amplified photoresists. Important limiters of high sensitivity chemically amplified resists (CAR) are the effects of photon shot noise and resist blur on the number of photons received and of photoacids generated per feature, especially at the pitches required for 7 nm and 5 nm advanced technology nodes. These stochastic effects are reflected in via structures as hole-to-hole CD variation or local CD uniformity (LCDU). Here, we demonstrate a synergy of film stack deposition, EUV lithography, and plasma etch techniques to improve LCDU, which allows the use of high sensitivity resists required for the introduction of EUV HVM. Thus, to improve LCDU to a level required by 5 nm node and beyond, film stack deposition, EUV lithography, and plasma etch processes were combined and co-optimized to enhance LCDU reduction from synergies. Test wafers were created by depositing a pattern transfer stack on a substrate representative of a 5 nm node target layer. The pattern transfer stack consisted of an atomically smooth adhesion layer and two hardmasks and was deposited using the Lam VECTOR PECVD product family. These layers were designed to mitigate hole roughness, absorb out-of-band radiation, and provide additional outlets for etch to improve LCDU and control hole CD. These wafers were then exposed through an ASML NXE3350B EUV scanner using a variety of advanced positive tone EUV CAR. They were finally etched to the target substrate using Lam Flex dielectric etch and Kiyo conductor etch systems. Metrology methodologies to assess dimensional metrics as well as chip performance and defectivity were investigated to enable repeatable patterning process development. Illumination conditions in EUV lithography were optimized to improve normalized image log slope (NILS), which is expected to reduce shot noise related effects. It can be seen that the EUV imaging contrast improvement can further reduce post-develop LCDU from 4.1 nm to 3.9 nm and from 2.8 nm to 2.6 nm. In parallel, etch processes were developed to further reduce LCDU, to control CD, and to transfer these improvements into the final target substrate. We also demonstrate that increasing post-develop CD through dose adjustment can enhance the LCDU reduction from etch. Similar trends were also observed in different pitches down to 40 nm. The solutions demonstrated here are critical to the introduction of EUV lithography in high volume manufacturing. It can be seen that through a synergistic deposition, lithography, and etch optimization, LCDU at a 40 nm pitch can be improved to 1.6 nm (3-sigma) in a target oxide layer and to 1.4 nm (3-sigma) at the photoresist layer.
Novel EUV mask black border suppressing EUV and DUV OoB light reflection
NASA Astrophysics Data System (ADS)
Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi
2016-05-01
EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (<0.05%) have been proposed; such an image border is referred to as a black border. In particular, an etched multilayer type black border was developed; it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change in the die influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light from the EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel BB called `Hybrid Black Border' (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including impact of OOB light in the die edge area is evaluated which shows that the OOB impact from HBB becomes comparable with other CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.
Extreme ultraviolet interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Kenneth A.
EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for themore » measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the measured wavefront to guide the phase unwrapping in the presence of noise; and, finally, an expedient method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave-front surface fitting procedures.« less
Characterization and control of EUV scanner dose uniformity and stability
NASA Astrophysics Data System (ADS)
Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick
2018-03-01
The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr
2016-02-20
By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less
NASA Astrophysics Data System (ADS)
Kouloumvakos, A.; Patsourakos, S.; Hillaris, A.; Vourlidas, A.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.
2014-06-01
On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet (EUV) wave front recorded by the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the Appareil de Routine pour le Traitement et l'Enregistrement Magnetique de l'Information Spectral (ARTEMIS IV) radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wave front and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indicate that the expansion of the CME ejecta is the source for both EUV and radio shock emissions. Early in the CME expansion phase, the Type-II burst seems to originate in the sheath region between the EUV bubble and the EUV shock front in both radial and lateral directions. This suggests that both the nose and the flanks of the expanding bubble could have driven the shock.
Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges
NASA Astrophysics Data System (ADS)
Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos
2016-09-01
Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).
Recent solar extreme ultraviolet irradiance observations and modeling: A review
NASA Technical Reports Server (NTRS)
Tobiska, W. Kent
1993-01-01
For more than 90 years, solar extreme ultraviolet (EUV) irradiance modeling has progressed from empirical blackbody radiation formulations, through fudge factors, to typically measured irradiances and reference spectra was well as time-dependent empirical models representing continua and line emissions. A summary of recent EUV measurements by five rockets and three satellites during the 1980s is presented along with the major modeling efforts. The most significant reference spectra are reviewed and threee independently derived empirical models are described. These include Hinteregger's 1981 SERF1, Nusinov's 1984 two-component, and Tobiska's 1990/1991/SERF2/EUV91 flux models. They each provide daily full-disk broad spectrum flux values from 2 to 105 nm at 1 AU. All the models depend to one degree or another on the long time series of the Atmosphere Explorer E (AE-E) EUV database. Each model uses ground- and/or space-based proxies to create emissions from solar atmospheric regions. Future challenges in EUV modeling are summarized including the basic requirements of models, the task of incorporating new observations and theory into the models, the task of comparing models with solar-terrestrial data sets, and long-term goals and modeling objectives. By the late 1990s, empirical models will potentially be improved through the use of proposed solar EUV irradiance measurements and images at selected wavelengths that will greatly enhance modeling and predictive capabilities.
Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography
NASA Astrophysics Data System (ADS)
Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.
2006-12-01
One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.
NASA Astrophysics Data System (ADS)
Buntoung, Sumaman; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Promsen, Worrapass; Tohsing, Korntip; Janjai, Serm
2013-05-01
Islands on the southern coasts of Thailand are famous attractions for local and foreign tourists. Tourists usually expose their skins to solar radiation for tanning. Thus information on solar ultraviolet radiation (UV) is of importance for tourists to protect themselves from adverse effects of UV. In this work, solar erythemal ultraviolet radiation (EUV) at two touristic sites namely Samui island (9.451°N, 100.033°E) and Phuket island (8.104°N, 98.304°E) was investigated. In investigating EUV, broadband UV radiometers (Kipp & Zonen, model UVS-B-C) were installed at existing meteorological stations in Samui and Phuket islands. A one-year period of EUV data from these two sites was analyzed. The level of UV index at these sites was studied. The values of UV index higher than 12 at noon time of clear days are usually found in the summer at both sites. Seasonal variation of EUV at both sites was investigated. It was found that the tropical monsoons have strong influence on this variation. Finally, global broadband radiation measured at the sites was also used to establish a correlation between EUV and global broadband radiation. Higher correlation was found for the case of clear sky, as compared to the case of cloudy sky. The correlation obtained from this analysis can be used to estimate EUV from global broadband radiation at these two sites.
NASA Astrophysics Data System (ADS)
Brunner, Raimund; Schmidtke, Gerhard; Konz, Werner; Pfeffer, Wilfried
A low-cost monitor to measure the EUV and plasma environment in space is presented. The device consists of three (or more) isolated spheres, a metallic sphere, one or more highly trans-parent Inner Grids and Outer Grids. Each one is being connected to a sensitive floating elec-trometer. By setting different potentials to the grids as well as to the sphere and varying one or more of their voltages, measurements of spectral solar EUV irradiance (15-200 nm), of local plasma parameters such as electron and ion densities, electron energies and temperatures as well as ion compositions and debris events can be derived from the current recordings. This detector does not require any (solar) pointing device. The primary goal is to study the impact of solar activity events (e.g. CMEs) as well as subsequent reactions of the ionospheric/thermospheric systems (including space weather occurences). The capability of SEPS for measuring EUV pho-ton fluxes as well as plasma parameters in the energy range from 0 to +/-70 eV is demonstrated by laboratory measurements as performed in the IPM laboratory, at BESSY-PTB electron syn-chrotron in Berlin and at ESA/ESTEC plasma chamber. Based on the laboratory recording of plasma recombination EUV emission the sensor is suitable to detect also auroral and airglow radiations. -The state of the art in the development of this device is reported.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro
2018-02-01
Metal oxide nanoparticle resists have attracted much attention as the next-generation resist used for the high-volume production of semiconductor devices. However, the sensitization mechanism of the metal oxide nanoparticle resists is unknown. Understanding the sensitization mechanism is important for the efficient development of resist materials. In this study, the energy deposition in a zirconium oxide (ZrO2) nanoparticle resist was investigated. The numbers of electron-hole pairs generated in a ZrO2 core and an methacrylic acid (MAA) ligand shell upon exposure to 1 mJ cm-2 (exposure dose) extreme ultraviolet (EUV) radiations were theoretically estimated to be 0.16 at most and 0.04-0.17 cm2 mJ-1, respectively. By comparing the calculated distribution of electron-hole pairs with the line-and-space patterns of the ZrO2 nanoparticle resist fabricated by an EUV exposure tool, the number of electron-hole pairs required for the solubility change of the resist films was estimated to be 1.3-2.2 per NP. NP denotes a nanoparticle consisting of a metal oxide core with a ligand shell. In the material design of metal oxide nanoparticle resists, it is important to efficiently use the electron-hole pairs generated in the metal oxide core for the chemical change of ligand molecules.
The Origin of the EUV Emission in Her X-1
NASA Technical Reports Server (NTRS)
Leahy, D. A.; Marshall, H.
1999-01-01
Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A.; Wachulak, P.; Fiedorowicz, H.
2013-11-15
In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less
Relationship between hard X-ray and EUV sources in solar flares
NASA Technical Reports Server (NTRS)
Kane, S. R.; Frost, K. J.; Donnelly, R. F.
1979-01-01
The high time resolution hard X-ray (not less than 15 keV) observations of medium and large impulsive solar flares made with the OSO 5 satellite are compared with the simultaneous ground-based observations of 10-1030 A EUV flux made via sudden frequency deviations (SFD) at Boulder. For most flares the agreement between the times of maxima of the impulsive hard X-ray and EUV emissions is found to be consistent with earlier studies (not less than 1 s). The rise and decay times of the EUV emission are larger than the corresponding times for X-rays not less than 30 keV. When OSO 5 hard X-ray measurements are combined with those made by OGO1, OGO 3, OGO 5, and TD 1A satellites, it is found that there is a nearly linear relationship between the energy fluxes of impulsive EUV emission and X-rays not less than 10 keV over a wide range of flare magnitudes. A model involving only a 'partial precipitation' of energetic electrons and consisting of both thick and thin target hard X-ray sources is examined.
Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut
2018-01-01
The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755
Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut
2018-01-01
The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.
Understanding and reduction of defects on finished EUV masks
NASA Astrophysics Data System (ADS)
Liang, Ted; Sanchez, Peter; Zhang, Guojing; Shu, Emily; Nagpal, Rajesh; Stivers, Alan
2005-05-01
To reduce the risk of EUV lithography adaptation for the 32nm technology node in 2009, Intel has operated a EUV mask Pilot Line since early 2004. The Pilot Line integrates all the necessary process modules including common tool sets shared with current photomask production as well as EUV specific tools. This integrated endeavor ensures a comprehensive understanding of any issues, and development of solutions for the eventual fabrication of defect-free EUV masks. Two enabling modules for "defect-free" masks are pattern inspection and repair, which have been integrated into the Pilot Line. This is the first time we are able to look at real defects originated from multilayer blanks and patterning process on finished masks over entire mask area. In this paper, we describe our efforts in the qualification of DUV pattern inspection and electron beam mask repair tools for Pilot Line operation, including inspection tool sensitivity, defect classification and characterization, and defect repair. We will discuss the origins of each of the five classes of defects as seen by DUV pattern inspection tool on finished masks, and present solutions of eliminating and mitigating them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Windt, D L; Robinson, J C
2006-02-09
Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamlinemore » X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.« less
Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)
NASA Astrophysics Data System (ADS)
Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil
2016-10-01
The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.
A stand-alone compact EUV microscope based on gas-puff target source.
Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk
2017-02-01
We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; ...
2015-03-27
An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitlymore » analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.« less
Exploring EUV and SAQP pattering schemes at 5nm technology node
NASA Astrophysics Data System (ADS)
Hamed Fatehy, Ahmed; Kotb, Rehab; Lafferty, Neal; Jiang, Fan; Word, James
2018-03-01
For years, Moore's law keeps driving the semiconductors industry towards smaller dimensions and higher density chips with more devices. Earlier, the correlation between exposure source's wave length and the smallest resolvable dimension, mandated the usage of Deep Ultra-Violent (DUV) optical lithography system which has been used for decades to sustain Moore's law, especially when immersion lithography was introduced with 193nm ArF laser sources. As dimensions of devices get smaller beyond Deep Ultra-Violent (DUV) optical resolution limits, the need for Extremely Ultra-Violent (EUV) optical lithography systems was a must. However, EUV systems were still under development at that time for the mass-production in semiconductors industry. Theretofore, Multi-Patterning (MP) technologies was introduced to swirl about DUV optical lithography limitations in advanced nodes beyond minimum dimension (CD) of 20nm. MP can be classified into two main categories; the first one is to split the target itself across multiple masks that give the original target patterns when they are printed. This category includes Double, Triple and Quadruple patterning (DP, TP, and QP). The second category is the Self-Aligned Patterning (SAP) where the target is divided into Mandrel patterns and non-Mandrel patterns. The Mandrel patterns get printed first, then a self-aligned sidewalls are grown around these printed patterns drawing the other non-Mandrel targets, afterword, a cut mask(s) is used to define target's line-ends. This approach contains Self-Aligned-Double Pattering (SADP) and Self-Aligned- Quadruple-Pattering (SAQP). DUV and MP along together paved the way for the industry down to 7nm. However, with the start of development at the 5nm node and the readiness of EUV, the differentiation question is aroused again, which pattering approach should be selected, direct printing using EUV or DUV with MP, or a hybrid flow that contains both DUV-MP and EUV. In this work we are comparing two potential pattering techniques for Back End Of Line (BEOL) metal layers in the 5nm technology node, the first technique is Single Exposure EUV (SE-EUV) with a Direct Patterning EUV lithography process, and the second one is Self-Aligned Quadruple Patterning (SAQP) with a hybrid lithography processes, where the drawn metal target layer is decomposed into a Mandrel mask and Blocks/Cut mask, Mandrel mask is printed using DUV 193i lithography process, while Block/Cut Mask is printed using SE-EUV lithography process. The pros and cons of each technique are quantified based on Edge-Placement-Error (EPE) and Process Variation Band (PVBand) measured at 1D and 2D edges. The layout used in this comparison is a candidate layout for Foundries 5nm process node.
An EUV Study of the Eclipsing M-Dwarf Binary System YY GEM
NASA Technical Reports Server (NTRS)
Drake, Jeremy
2000-01-01
EUVE, SW, MW and LW spectra have been reduced and line fluxes measured. The Deep Survey data has been analyzed and light curves have been derived. The spectra around the HE II 304 region show some evidence of emission from the bright A companion star, Castor. Preliminary results for the metallicity of the corona of YY Gem were derived from the EUVE spectra and photometry and were presented at the AAS HEAD meeting; results are being finalized for publication in a referred journal.
Cleaning process for EUV optical substrates
Weber, Frank J.; Spiller, Eberhard A.
1999-01-01
A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.
NASA Technical Reports Server (NTRS)
Chapman, R. D.; Neupert, W. M.
1974-01-01
A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.
Monitoring of solar far ultraviolet radiation from the OSO-5 satellite
NASA Technical Reports Server (NTRS)
Rense, W. A.; Parker, R.
1972-01-01
A spectrophotometer for monitoring the solar EUV in three broad wavelength bands is described. The kind of data obtained, along with sources of error, are presented. The content of the tape library which contains the data is outlined. The scientific results are discussed. These include the following: solar flares in the EUV, solar eclipse observations in the EUV, SFD's and relationship to solar flares, and the application of satellite sunrise and sunset data for the study of model upper atmospheres for the earth.
The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.
2017-06-01
Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.
Well-defined EUV wave associated with a CME-driven shock
NASA Astrophysics Data System (ADS)
Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.
2018-05-01
Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.
Stability and imaging of the ASML EUV alpha demo tool
NASA Astrophysics Data System (ADS)
Hermans, Jan V.; Baudemprez, Bart; Lorusso, Gian; Hendrickx, Eric; van Dijk, Andre; Jonckheere, Rik; Goethals, Anne-Marie
2009-03-01
Extreme Ultra-Violet (EUV) lithography is the leading candidate for semiconductor manufacturing of the 22nm technology node and beyond, due to the very short wavelength of 13.5nm. However, reducing the wavelength adds complexity to the lithographic process. The impact of the EUV specific conditions on lithographic performance needs to be understood, before bringing EUV lithography into pre-production. To provide early learning on EUV, an EUV fullfield scanner, the Alpha Demo Tool (ADT) from ASML was installed at IMEC, using a Numerical Aperture (NA) of 0.25. In this paper we report on different aspects of the ADT: the imaging and overlay performance and both short and long-term stability. For 40nm dense Lines-Spaces (LS), the ADT shows an across field overlapping process window of 270nm Depth Of Focus (DOF) at 10% Exposure Latitude (EL) and a wafer CD Uniformity (CDU) of 3nm 3σ, without any corrections for process or reticle. The wafer CDU is correlated to different factors that are known to influence the CD fingerprint from traditional lithography: slit intensity uniformity, focus plane deviation and reticle CD error. Taking these contributions into account, the CD through slit fingerprint for 40nm LS is simulated with excellent agreement to experimental data. The ADT shows good CD stability over 9 months of operation, both intrafield and across wafer. The projection optics reflectivity has not degraded over 9 months. Measured overlay performance with respect to a dry tool shows |Mean|+3σ below 20nm with more correction potential by applying field-by-field corrections (|Mean|+3σ <=10nm). For 22nm SRAM application, both contact hole and metal layer were printed in EUV with 10% CD and 15nm overlay control. Below 40nm, the ADT shows good wafer CDU for 30nm dense and isolated lines (on the same wafer) and 38nm dense Contact Holes (CH). First 28nm dense line CDU data are achieved. The results indicate that the ADT can be used effectively for EUV process development before installation of the pre-production tool, the ASML NXE Gen. 1 at IMEC.
Investigation of large format microchannel plate Z configurations
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Coburn, K.; Malina, R. F.
1985-01-01
The performance of triplet (Z) stacks of microchannel plates (MCPs) has been studied as a part of the instrument development for the Extreme Ultraviolet Explorer (EUVE) satellite mission. Relatively large MCPs with a 60-mm diameter and having a large 80:1 channel length to diameter (L:D) ratio were used in several configurations. The MCPs were used in the EUVE prototype imaging detector to provide more than 512 x 512 pixels with low image distortion (less than 1 percent). The gain and pulse height characteristics of the MCPs were examined, showing that both high gains (more than 2 x 10 to the 7th) and tight output pulse height distributions (less than 30 percent FWHM) may be achieved. Simple distribution techniques have also allowed low intrinsic background event rates (less than 0.15 events per sq cm/s) to be obtained. Variation of the quantum efficiency of the MCPs over the wavelength range 160-1216 A has been investigated for a range of angles of incidence. The effect of temperature variations on MCP operating characteristics has also been evaluated.
Development of a 1m-normal-incidence-EUV-Telescope
NASA Technical Reports Server (NTRS)
Grewing, M.; Kraemer, G.; Schulz-Luepertz, E.; Wulf-Mathies, C.; Bowyer, S.; Jacobsen, P.; Jelinsky, P.; Kimble, R.
1982-01-01
A brief description is given of the 1m-EUV-Telescope and its focal plane instrumentation, namely an EUV spectrometer and six EUV/FUV photometers. The telescope is scheduled for launch on an Aries rocket on June 17, 1982. The principal goals are the white dwarf HZ43 and a photometric scan across the sky in an area of the sky where 21 cm line observations reveal a steep density gradient. The optical bench of the telescope is a cylinder made of a graphite epoxy compound. Despite its low specific weight, the bench shows an excellent mechanical performance, with an elasticity modulus of approximately 70,000 N/cu mm. It is pointed out that by carefully combining layers with different winding angles of the carbon fiber, the thermal expansion along the cylinder axis is almost negligible, even under severe thermal loads
The novel top-coat material for RLS trade-off reduction in EUVL
NASA Astrophysics Data System (ADS)
Onishi, Ryuji; Sakamoto, Rikimaru; Fujitani, Noriaki; Endo, Takafumi; Ho, Bang-ching
2012-03-01
For the next generation lithography (NGL), several technologies have been proposed to achieve the 22nm-node devices and beyond. Extreme ultraviolet (EUV) lithography is one of the candidates for the next generation lithography. In EUV light source development, low power is one of the critical issue because of the low throughput, and another issue is Out of Band (OoB) light existing in EUV light. OoB is concerned to be the cause of deterioration for the lithography performance. In order to avoid this critical issue, we focused on development of the resist top coat material with OoB absorption property as Out of Band Protection Layer (OBPL). We designed this material having high absorbance around 240nm wavelength and high transmittance for EUV light. And this material aimed to improve sensitivity, resolution and LWR performance.
NASA Astrophysics Data System (ADS)
Didkovsky, L. V.; Wieman, S. R.; Judge, D. L.
2014-12-01
Sounding rocket mission NASA 36.289 Didkovsky provided solar EUV irradiance measurements from four instruments built at the USC Space Sciences Center: the Rare Gas Ionization Cell (RGIC), the Solar Extreme ultraviolet Monitor (SEM), the Dual Grating Spectrometer (DGS), and the Optics-Free Spectrometer (OFS), thus meeting the mission comprehensive success criteria. These sounding rocket data allow us to inter-compare the observed absolute EUV irradiance with the data taken at the same time from the SOHO and SDO solar observatories. The sounding rocket data from the two degradation-free instruments (DGS and OFS) can be used to verify the degradation rates of SOHO and SDO EUV channels and serve as a flight-proven prototypes for future improvements of degradation-free instrumentation for solar physics.
Design of the Extreme Ultraviolet Explorer long-wavelength grazing incidence telescope optics
NASA Technical Reports Server (NTRS)
Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.
1988-01-01
Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400-900) A) poses different problems from those arising for optics, operating shortward of 400 A. The available filter materials which transmit radiation longward of 400 A are also highly transparent at wavelengths shortward of 100 A. Conventional EUV optics, with grazing engles of less than about 10 deg, have very high throughput in the EUV, which persists to wavelengths shortward of 100 A. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft X-ray leak. This problem is overcome by developing a mirror design with larger graze angles of not less than 20 deg, which has high throughput at wavelengths longer than 400 A but at the same time very little throughput shortward of 100 A.
A New Relationship Between Soft X-Rays and EUV Flare Light Curves
NASA Astrophysics Data System (ADS)
Thiemann, Edward
2016-05-01
Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, it emits radiation at different EUV wavelengths when the dropping temperature passes a line’s temperature of formation. This results in a delay in the emissions from cooler EUV lines relative to hotter EUV lines. Therefore, characterizing how this hot plasma cools is important for understanding how the corresponding geo-effective extreme ultraviolet (EUV) irradiance evolves in time. I present a simple new framework in which to study flare cooling by using a Lumped Element Thermal Model (LETM). LETM is frequently used in science and engineering to simplify a complex multi-dimensional thermal system by reducing it to a 0-D thermal circuit. For example, a structure that conducts heat out of a system is simplified with a resistive element and a structure that allows a system to store heat is simplified with a capacitive element. A major advantage of LETM is that the specific geometry of a system can be ignored, allowing for an intuitive analysis of the major thermal processes. I show that LETM is able to accurately reproduce the temporal evolution of cooler flare emission lines based on hotter emission line evolution. In particular, it can be used to predict the evolution of EUV flare light curves using the NOAA X-Ray Sensor (XRS).
NASA Astrophysics Data System (ADS)
Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han
2017-08-01
We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.
Active galaxies observed during the Extreme Ultraviolet Explorer all-sky survey
NASA Technical Reports Server (NTRS)
Marshall, H. L.; Fruscione, A.; Carone, T. E.
1995-01-01
We present observations of active galactic nuclei (AGNs) obtained with the Extreme Ultraviolet Explorer (EUVE) during the all-sky survey. A total of 13 sources were detected at a significance of 2.5 sigma or better: seven Seyfert galaxies, five BL Lac objects, and one quasar. The fraction of BL Lac objects is higher in our sample than in hard X-ray surveys but is consistent with the soft X-ray Einstein Slew Survey, indicating that the main reason for the large number of BL Lac objects in the extreme ulktraviolet (EUV) and soft X-ray bands is their steeper X-ray spectra. We show that the number of AGNs observed in both the EUVE and ROSAT Wide Field Camera surveys can readily be explained by modelling the EUV spectra with a simple power law in the case of BL Lac objects and with an additional EUV excess in the case of Seyferts and quasars. Allowing for cold matter absorption in Seyfert galaxy hosts drive up the inferred average continuum slope to 2.0 +/- 0.5 (at 90% confidence), compared to a slope of 1.0 usually found from soft X-ray data. If Seyfert galaxies without EUV excesses form a significant fraction of the population, then the average spectrum of those with bumps should be even steeper. We place a conservative limit on neutral gas in BL Lac objects: N(sub H) less than 10(exp 20)/sq cm.
NASA Astrophysics Data System (ADS)
Odert, P.; Lammer, H.; Erkaev, N. V.; Nikolaou, A.; Lichtenegger, H. I. M.; Johnstone, C. P.; Kislyakova, K. G.; Leitzinger, M.; Tosi, N.
2018-06-01
Planetary embryos form protoplanets via mutual collisions, which can lead to the development of magma oceans. During their solidification, significant amounts of the mantles' volatile contents may be outgassed. The resulting H2O/CO2 dominated steam atmospheres may be lost efficiently via hydrodynamic escape due to the low gravity of these Moon- to Mars-sized objects and the high stellar EUV luminosities of the young host stars. Protoplanets forming from such degassed building blocks after nebula dissipation could therefore be drier than previously expected. We model the outgassing and subsequent hydrodynamic escape of steam atmospheres from such embryos. The efficient outflow of H drags along heavier species like O, CO2, and noble gases. The full range of possible EUV evolution tracks of a young solar-mass star is taken into account to investigate the atmospheric escape from Mars-sized planetary embryos at different orbital distances. The estimated envelopes are typically lost within a few to a few tens of Myr. Furthermore, we study the influence on protoplanetary evolution, exemplified by Venus. In particular, we investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with present observations. Isotope ratios of Ne and Ar can be reproduced, starting from solar values, under hydrodynamic escape conditions. Solutions can be found for different solar EUV histories, as well as assumptions about the initial atmosphere, assuming either a pure steam atmosphere or a mixture with accreted hydrogen from the protoplanetary nebula. Our results generally favor an early accretion scenario with a small amount of residual hydrogen from the protoplanetary nebula and a low-activity Sun, because in other cases too much CO2 is lost during evolution, which is inconsistent with Venus' present atmosphere. Important issues are likely the time at which the initial steam atmosphere is outgassed and/or the amount of CO2 which may still be delivered at later evolutionary stages. A late accretion scenario can only reproduce present isotope ratios for a highly active young Sun, but then unrealistically massive steam atmospheres (few kbar) would be required.
NASA Astrophysics Data System (ADS)
Chu, Wei-Chun; Lin, C. D.
2013-01-01
An extreme ultraviolet (EUV) single attosecond pulse passing through a laser-dressed dense gas is studied theoretically. The weak EUV pulse pumps the helium gas from the ground state to the 2s2p(1P) autoionizing state, which is coupled to the 2s2(1S) autoionizing state by a femtosecond infrared laser with the intensity in the order of 1012 W/cm2. The simulation shows how the transient absorption and emission of the EUV are modified by the coupling laser. A simple analytical expression for the atomic response derived for δ-function pulses reveals the strong modification of the Fano lineshape in the spectra, where these features are quite universal and remain valid for realistic pulse conditions. We further account for the propagation of pulses in the medium and show that the EUV signal at the atomic resonance can be enhanced in the gaseous medium by more than 50% for specifically adjusted laser parameters, and that this enhancement persists as the EUV propagates in the gaseous medium. Our result demonstrates the high-level control of nonlinear optical effects that are achievable with attosecond pulses.
Design decisions from the history of the EUVE science payload
NASA Technical Reports Server (NTRS)
Marchant, W.
1993-01-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
Design decisions from the history of the EUVE science payload
NASA Astrophysics Data System (ADS)
Marchant, W.
1993-09-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
NASA Astrophysics Data System (ADS)
Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.
2007-05-01
Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.
State-of-the-art EUV materials and processes for the 7nm node and beyond
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Vockenhuber, Michaela; Mochi, Iacopo; Fallica, Roberto; Tasdemir, Zuhal; Ekinci, Yasin
2017-03-01
Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) being the most likely candidate to manufacture electronic devices for future technology nodes is to be introduced in high volume manufacturing (HVM) at the 7 nm logic node, at least at critical lithography levels. With this impending introduction, it is clear that excellent resist performance at ultra-high printing resolutions (below 20 nm line/space L/S) is ever more pressing. Nonetheless, EUVL has faced many technical challenges towards this paradigm shift to a new lithography wavelength platform. Since the inception of chemically amplified resists (CARs) they have been the base upon which state-of-the art photoresist technology has been developed from. Resist performance as measured in terms of printing resolution (R), line edge roughness (LER), sensitivity (D or exposure dose) and exposure latitude (EL) needs to be improved but there are well known trade-off relationships (LRS trade-off) among these parameters for CARs that hamper their simultaneous enhancement. Here, we present some of the most promising EUVL materials tested by EUV interference lithography (EUV-IL) with the aim of resolving features down to 11 nm half-pitch (HP), while focusing on resist performance at 16 and 13 nm HP as needed for the 7 and 5 nm node, respectively. EUV-IL has enabled the characterization and development of new resist materials before commercial EUV exposure tools become available and is therefore a powerful research and development tool. With EUV-IL, highresolution periodic images can be printed by the interference of two or more spatially coherent beams through a transmission-diffraction grating mask. For this reason, our experiments have been performed by EUV-IL at Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI). Having the opportunity to test hundreds of EUVL materials from vendors and research partners from all over the world, PSI is able to give a global update on some of the most promising materials tested.
NASA Astrophysics Data System (ADS)
Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.
2012-10-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.
Recent status of resist outgas testing for metal containing resists at EIDEC
NASA Astrophysics Data System (ADS)
Shiobara, Eishi; Mikami, Shinji; Yamada, Kenji
2018-03-01
The metal containing resist is one of the strong candidates for high lithographic performance Extreme Ultraviolet (EUV) resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation [2]. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [3, 4]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing in hydrogen, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. We are considering a new platform of outgas testing for metal containing resists based on the electron-beam irradiation system as one of the solutions for these issues. The concept is presented in this paper.
Simultaneous ASCA and EUVE Observations of Capella
NASA Astrophysics Data System (ADS)
Brickhouse, N. S.; Dupree, A. K.; Edgar, R. J.; Drake, S. A.; White, N. E.; Liedahl, D. A.; Singh, K. P.
1997-05-01
We present simultaneous observations taken in Mar 1996 of the bright stellar coronal source Capella (HD 34029) with the ASCA and EUVE satellites. Previous EUVE observations of Fe emission lines (Fe VIII --- XXIV, excluding XVII) revealed a narrow emission measure feature at 6 x 10(6) K, which has proven to be remarkably stable over several years (flux from Fe XVIII and XIX has not varied by more than 30%), while lines formed at higher temperatures have shown intensity variations up to factors of 4. Furthermore, extremely high signal-to-noise spectra obtained by summing all EUVE measurements show that the Fe/H abundance ratio is consistent with solar photospheric. (See Dupree et al. 1993, ApJ, 418, L41; Brickhouse, Raymond, & Smith 1995, ApJSupp, 97, 551; Brickhouse 1996, IAU Coll. 152, Astrophysics in the Extreme Ultraviolet, Bowyer & Malina, eds (Kluwer), 141.) Meanwhile, the ASCA data of Capella have proven notoriously difficult to analyze. The performance verification (PV) phase data suggested a somewhat subsolar Fe abundance, but models were in poor agreement with the data (chi (2red) ~ 6). (See Drake 1996, Conf. on Cosmic Abundances, U. Maryland). Since the emission lines observed by EUVE are formed at the same emitting temperatures as the X-ray spectrum (Capella is ``soft'' such that very little flux is observed above 2 keV), the emission measure distribution derived from EUVE lines should provide a direct prediction of the X-ray spectrum, with only the relative abundances of species other than Fe as free parameters. Like the PV data, the new ASCA spectrum is not well fit by any of the standard models. Applying the constraints imposed by EUVE does not make a major improvement in the fit --- multi-thermal, variable abundance models such as Raymond-Smith and MEKAL do not provide any acceptable fit (chi (2red) > 5). We discuss our efforts to understand the X-ray spectrum, including studies of the uncertainties in the atomic data and of the underlying assumptions of the source models.
NASA Astrophysics Data System (ADS)
Tang, Qisheng; Guo, Xuewu; Sun, Yao; Zhang, Bo
2007-09-01
The ecological conversion efficiencies in twelve species of fish in the Yellow Sea Ecosystem, i.e., anchovy ( Engraulis japonicus), rednose anchovy ( Thrissa kammalensis), chub mackerel ( Scomber japonicus), halfbeak ( Hyporhamphus sajori), gizzard shad ( Konosirus punctatus), sand lance ( Ammodytes personatus), red seabream ( Pagrus major), black porgy ( Acanthopagrus schlegeli), black rockfish ( Sebastes schlegeli), finespot goby ( Chaeturichthys stigmatias), tiger puffer ( Takifugu rubripes), and fat greenling ( Hexagrammos otakii), were estimated through experiments conducted either in situ or in a laboratory. The ecological conversion efficiencies were significantly different among these species. As indicated, the food conversion efficiencies and the energy conversion efficiencies varied from 12.9% to 42.1% and from 12.7% to 43.0%, respectively. Water temperature and ration level are the main factors influencing the ecological conversion efficiencies of marine fish. The higher conversion efficiency of a given species in a natural ecosystem is acquired only under the moderate environment conditions. A negative relationship between ecological conversion efficiency and trophic level among ten species was observed. Such a relationship indicates that the ecological efficiency in the upper trophic levels would increase after fishing down marine food web in the Yellow Sea ecosystem.
Designing a Small-Sized Engineering Model of Solar EUV Telescopr for a Korean Satellite
NASA Astrophysics Data System (ADS)
Han, Jung-Hoon; Jang, Min-Hwan; Kim, Sang-Joon
2001-11-01
For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sized engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV solar telescope was designed to observe the sun at 584.3Å (He¥°) and 629.7Å (O¥´). The optical system is an f/8 Ritchey-Chrètien, and the effective diameter and focal length are 80§® and 640§®, respectively. The He¥°and O¥´ filters are loaded in a filter wheel. In the detection part, the MCP (MicroChannel Plate) type is Z-stack, and the channel-to-diameter ratio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.
NASA Astrophysics Data System (ADS)
Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.
2017-10-01
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linker, J. A.; Caplan, R. M.; Downs, C.
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Inmore » this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.« less
Reconstruction of Solar Extreme Ultraviolet Flux 1740 - 2015
NASA Astrophysics Data System (ADS)
Svalgaard, Leif
2016-11-01
Solar extreme ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo-ionization of molecular oxygen. Solar heating of the ionosphere creates thermal winds, which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and falls with the Sun, and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us to deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the "Magnetic Crusade" of the 1830s and less reliable, but still usable, data are available for portions of the 100 years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F_{10.7} flux and the sunspot number, and we find that the reconstructed EUV flux reproduces the F_{10.7} flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant "solar magnetic ground state".
Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huadong; Ma, Suli; Zhang, Jun, E-mail: hdchen@upc.edu.cn
2013-11-20
Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along withmore » the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.« less
NASA Technical Reports Server (NTRS)
Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.
2012-01-01
We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.
Hot interstellar gas and ionization of embedded clouds
NASA Technical Reports Server (NTRS)
Cheng, K.-P.; Bruhweiler, F.
1990-01-01
Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sebban, Stéphane
2017-05-01
We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.
Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics
NASA Astrophysics Data System (ADS)
Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred
2017-03-01
Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.
EUV/soft x-ray spectra for low B neutron stars
NASA Technical Reports Server (NTRS)
Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.
1995-01-01
Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.
Method and apparatus for inspecting an EUV mask blank
Goldberg, Kenneth A.
2005-11-08
An apparatus and method for at-wavelength EUV mask-blank characterization for inspection of moderate and low spatial frequency coating uniformity using a synchrotron or other source of EUV light. The apparatus provides for rapid, non-destruction, non-contact, at-wavelength qualification of large mask areas, and can be self-calibrating or be calibrated to well-characterized reference samples. It can further check for spatial variation of mask reflectivity or for global differences among masks. The apparatus and method is particularly suited for inspection of coating uniformity and quality and can detect defects in the order of 50 .mu.m and above.
Nanoparticle photoresist studies for EUV lithography
NASA Astrophysics Data System (ADS)
Kasahara, Kazuki; Xu, Hong; Kosma, Vasiliki; Odent, Jeremy; Giannelis, Emmanuel P.; Ober, Christopher K.
2017-03-01
EUV (extreme ultraviolet) lithography is one of the most promising candidates for next generation lithography. The main challenge for EUV resists is to simultaneously satisfy resolution, LWR (line-width roughness) and sensitivity requirements according to the ITRS roadmap. Though polymer type CAR (chemically amplified resist) is the currently standard photoresist, entirely new resist platforms are required due to the performance targets of smaller process nodes. In this paper, recent progress in nanoparticle photoresists which Cornell University has intensely studied is discussed. Lithography performance, especially scum elimination, improvement studies with the dissolution rate acceleration concept and new metal core applications are described.
Research on vacuum utraviolet calibration technology
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang
2014-11-01
Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.
SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager
NASA Astrophysics Data System (ADS)
Bonte, K.; Berghmans, D.; De Groof, A.; Steed, K.; Poedts, S.
2013-08-01
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA's Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.
[Activities of Bay Area Research Corporation
NASA Technical Reports Server (NTRS)
2003-01-01
During the final year of this effort the HALFSHEL code was converted to work on a fast single processor workstation from it s parallel configuration. This was done because NASA Ames NAS facility stopped supporting space science and we no longer had access to parallel computer time. The single processor version of HALFSHEL was upgraded to address low density cells by using a a 3-D SOR solver to solve the equation Delta central dot E = 0. We then upgraded the ionospheric load packages to provide a multiple species load of the ionosphere out to 1.4 Rm. With these new tools we began to perform a series of simulations to address the major topic of this research effort; determining the loss rate of O(sup +) and O2(sup +) from Mars. The simulations used the nominal Parker spiral field and in one case used a field perpendicular to the solar wind flow. The simulations were performed for three different solar EUV fluxes consistent with the different solar evolutionary states believed to exist before today. The 1 EUV case is the nominal flux of today. The 3 EUV flux is called Epoch 2 and has three times the flux of todays. The 6 EUV case is Epoch 3 and has 6 times the EUV flux of today.
A 1kW EUV source for lithography based on FEL emission in a compact storage ring
NASA Astrophysics Data System (ADS)
Feser, Michael; Ruth, Ron; Loewen, Rod
2017-10-01
EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.
Response of inorganic materials to laser - plasma EUV radiation focused with a lobster eye collector
NASA Astrophysics Data System (ADS)
Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Havlikova, Radka; Pína, Ladislav; Švéda, Libor; Inneman, Adolf
2007-05-01
A single photon of EUV radiation carries enough energy to break any chemical bond or excite electrons from inner atomic shells. It means that the radiation regardless of its intensity can modify chemical structure of molecules. It is the reason that the radiation even with low intensity can cause fragmentation of long chains of organic materials and desorption of small parts from their surface. In this work interaction of EUV radiation with inorganic materials was investigated. Different inorganic samples were irradiated with a 10 Hz laser - plasma EUV source based on a gas puff target. The radiation was focused on a sample surface using a lobster eye collector. Radiation fluence at the surface reached 30 mJ/cm2 within a wavelength range 7 - 20 nm. In most cases there was no surface damage even after several minutes of irradiation. In some cases there could be noticed discolouration of an irradiated surface or evidences of thermal effects. In most cases however luminescent and scattered radiation was observed. The luminescent radiation was emitted in different wavelength ranges. It was recorded in a visible range of radiation and also in a wide wavelength range including UV, VUV and EUV. The radiation was especially intense in a case of non-metallic chemical compounds.
Magnetron sputtering for the production of EUV mask blanks
NASA Astrophysics Data System (ADS)
Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank
2015-03-01
Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.
Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahzad, M.; Culfa, O.; Rossall, A. K.
2015-02-15
We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV).more » A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi
2013-03-01
The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.
Ptychographic imaging with partially coherent plasma EUV sources
NASA Astrophysics Data System (ADS)
Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa
2017-12-01
We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.
Development status of EUV sources for use in beta-tools and high-volume chip manufacturing tools
NASA Astrophysics Data System (ADS)
Stamm, U.; Kleinschmidt, J.; Bolshukhin, D.; Brudermann, J.; Hergenhan, G.; Korobotchko, V.; Nikolaus, B.; Schürmann, M. C.; Schriever, G.; Ziener, C.; Borisov, V. M.
2006-03-01
In the paper we give an update about the development status of gas discharge produced plasma (GDPP) EUV sources at XTREME technologies. Already in 2003 first commercial prototypes of xenon GDPP sources of the type XTS 13-35 based on the Z-pinch with 35 W power in 2π sr have been delivered and integrated into micro-exposure tools from Exitech, UK. The micro-exposure tools with these sources have been installed in industry in 2004. The first tool has made more than 100 million pulses without visible degradation of the source collector optics. For the next generation of full-field exposure tools (we call it Beta-tools) we develop GDPP sources with power of > 10 W in intermediate focus. Also these sources use xenon as fuel which has the advantage of not introducing additional contaminations. Here we describe basic performance of these sources as well as aspects of collector integration and debris mitigation and optics lifetime. To achieve source performance data required for high volume chip manufacturing we consider tin as fuel for the source because of its higher conversion efficiency compared to xenon. While we had earlier reported an output power of 400 W in 2π sr from a tin source we could reach meanwhile 800 W in 2π sr from the source in burst operation. Provided a high power collector is available with a realistic collector module efficiency of between 9% and 15 % these data would support 70-120 W power in intermediate focus. However, we do not expect that the required duty cycle and the required electrode lifetimes can be met with this standing electrode design Z-pinch approach. To overcome lifetime and duty cycle limitations we have investigated GDPP sources with tin fuel and rotating disk electrodes. Currently we can generate more than 200 W in 2π sr with these sources at 4 kHz repetition rate. To achieve 180 W power in intermediate focus which is the recent requirement of some exposure tool manufacturers this type of source needs to operate at 21-28 kHz repetition rate which may be not possible by various reasons. In order to make operation at reasonable repetition rates with sufficient power possible we have investigated various new excitation concepts of the rotating disk electrode configurations. With one of the concepts pulse energies above 170 mJ in 2π sr could be demonstrated. This approach promises to support 180 W intermediate focus power at repetition rates in the range between 7 and 10 kHz. It will be developed to the next power level in the following phase of XTREME technologies' high volume manufacturing source development program.
NASA Technical Reports Server (NTRS)
Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.
2013-01-01
Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.
NASA Astrophysics Data System (ADS)
Pollentier, I.; Tirumala Venkata, A.; Gronheid, R.
2014-04-01
EUV photoresists are considered as a potential source of optics contamination, since they introduce irradiation-induced outgassing in the EUV vacuum environment. Therefore, before these resists can be used on e.g. ASML NXE:3100 or NXE:3300, they need to be tested in dedicated equipment according to a well-defined procedure, which is based on exposing a witness sample (WS) in the vicinity of a simultaneously exposed resist as it outgasses. Different system infrastructures are used at multiple sites (e.g. NIST, CNSE, Sematech, EIDEC, and imec) and were calibrated to each other by a detailed test plan. Despite this detailed tool qualifications, a first round robin comparison of identical materials showed inconsistent outgas test results, and required further investigation by a second round robin. Since the resist exposure mode is different at the various locations (some sites are using EUV photons while others use E-gun electrons), this difference has always a point of concern for variability of test results. In this work we compare the outgas test results from EUV photon and electron exposure using the resist materials of the second round robin. Since the imec outgas tester allows both exposure methods on the resist, a within-system comparison is possible and showed limited variation between photon and electron exposure mode. Therefore the system-to-system variability amongst the different outgas test sites is expected to be related to other parameters than the electron/photon exposure mode. Initial work showed that the variability might be related to temperature, E-gun emission excursion, and/or residual outgassing scaled by different wafer areas at the different sites.
NASA Astrophysics Data System (ADS)
Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.
2013-11-01
extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.
Ionization in the local interstellar and intergalactic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, K.
1990-01-01
Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less
NASA Astrophysics Data System (ADS)
Laska, K.; Prosek, P.; Budik, L.; Budikova, M.
2009-04-01
The results of global solar and erythemally effective ultraviolet (EUV) radiation measurements are presented. The radiation data were collected within the period of 2006-2007 at the Czech Antarctic station J. G. Mendel, James Ross Island (63°48'S, 57°53'W). Global solar radiation was measured by a Kipp&Zonen CM11 pyranometer. EUV radiation was measured according to the McKinley and Diffey Erythemal Action Spectrum with a Solar Light broadband UV-Biometer Model 501A. The effects of stratospheric ozone concentration and cloudiness (estimated as cloud impact factor from global solar radiation) on the intensity of incident EUV radiation were calculated by a non-linear regression model. The total ozone content (TOC) and cloud/surface reflectivity derived from satellite-based measurements were applied into the model for elimination of the uncertainties in measured ozone values. There were two input data of TOC used in the model. The first were taken from the Dobson spectrophotometer measurements (Argentinean Antarctic station Marambio), the second was acquired for geographical coordinates of the Mendel Station from the EOS Aura Ozone Monitoring Instrument and V8.5 algorithm. Analysis of measured EUV data showed that variable cloudiness affected rather short-term fluctuations of the radiation fluxes, while ozone declines caused long-term UV radiation increase in the second half of the year. The model predicted about 98 % variability of the measured EUV radiation. The residuals between measured and modeled EUV radiation intensities were evaluated separately for the above-specified two TOC datasets, parts of seasons and cloud impact factor (cloudiness). The mean average prediction error was used for model validation according to the cloud impact factor and satellite-based reflectivity data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn
2015-08-15
Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less
Optimization of Neutral Atom Imagers
NASA Technical Reports Server (NTRS)
Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.
2008-01-01
The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.
NASA Astrophysics Data System (ADS)
Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long
2018-05-01
In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.
Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI
2012-05-29
A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
Extreme ultraviolet patterning of tin-oxo cages
NASA Astrophysics Data System (ADS)
Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.
2017-07-01
We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.
EUV process improvement with novel litho track hardware
NASA Astrophysics Data System (ADS)
Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya
2017-03-01
Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.
NASA Technical Reports Server (NTRS)
Halpern, Jules P.
1996-01-01
Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.
NASA Astrophysics Data System (ADS)
Garg, M.; Kim, H. Y.; Goulielmakis, E.
2018-05-01
Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.
The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications
NASA Astrophysics Data System (ADS)
Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.
2017-11-01
Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.
NASA Astrophysics Data System (ADS)
Keens, Simon; Rossa, Bernhard; Frei, Marcel
2016-03-01
As the semiconductor industry proceeds to develop ever better sources of extreme ultraviolet (EUV) light for photolithography applications, two distinct technologies have come to prominence: Tin-plasma and free electron laser (FEL) sources. Tin plasma sources have been in development within the industry for many years, and have been widely reported. Meanwhile, FELs represent the most promising alternative to create high power EUV frequencies and, while tin-plasma source development has been ongoing, such lasers have been continuously developed by academic institutions for use in fundamental research programmes in conjunction with universities and national scientific institutions. This paper follows developments in the field of academic FELs, and presents information regarding novel technologies, specifically in the area of RF design strategy, that may be incorporated into future industrial FEL systems for EUV lithography in order to minimize the necessary investment and operational costs. It goes on to try to assess the cost-benefit of an alternate RF design strategy, based upon previous studies.
The future of EUV lithography: enabling Moore's Law in the next decade
NASA Astrophysics Data System (ADS)
Pirati, Alberto; van Schoot, Jan; Troost, Kars; van Ballegoij, Rob; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos; Finders, Jo; Meiling, Hans; van Setten, Eelco; Mika, Niclas; Dredonx, Jeannot; Stamm, Uwe; Kneer, Bernhard; Thuering, Bernd; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha
2017-03-01
While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their development activities on a EUV exposure tool with Numerical Aperture greater than 0.5. The purpose of this scanner, targeting a resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, has been developed to provide the required Numerical Aperture; this lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling, and possibly in the metrology concepts. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the key technology innovations and infrastructure requirements for the next generation EUV systems.
NASA Technical Reports Server (NTRS)
Vennes, Stephane
1992-01-01
An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.
Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M
2016-02-18
We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.
EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-11-01
With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.
Comparative lifetesting results for microchannel plates in windowless EUV photon detectors
NASA Technical Reports Server (NTRS)
Malina, R. F.; Coburn, K. R.
1984-01-01
Microchannel plates (MCPs) from seven manufacturers were subjected to a series of tests to determine their suitability for the Extreme Ultraviolet Explorer satellite. Comparative data are presented for sixteen MCP tandem pairs with channel length to diameter ratios (l/d) ranging from 40:1 to 60:1 and for two saturable (curved channel) MCPs with l/d's of 80:1. Results for MCPs with funnelled channel throats are also discussed. Properties of the MCPs which were monitored include: background count rate, output charge pulse height distribution (PHD), modal gain, PHD full width half maximum (FWHM), and extreme ultraviolet (EUV) photon quantum efficiency. Five detectors were chosen for further lifetime testing consisting of a mild bake to 100 C, and charge extraction to 0.01 coulombs, repeated high voltage cycling and reexposure to one atmosphere conditions. The results of these tests and their implications for the flight detectors are discussed. Erratic events in the detector background were recorded, probably due to field emission from high voltage surfaces or the absorption of water vapor into the electrode following exposure to air. The steps taken to control the detector background are discussed.
Evaluation results of a new EUV reticle pod based on SEMI E152
NASA Astrophysics Data System (ADS)
Ota, Kazuya; Yonekawa, Masami; Taguchi, Takao; Suga, Osamu
2010-04-01
To protect the reticle during shipping, storage and tool handling, various reticle pod concepts have been proposed and evaluated in the last 10 years. MIRAI-Selete has been developing EUV reticle handling technology and evaluating EUV reticle pods designed using "Dual Pod Concept" for four years. The concept was jointly proposed by Canon and Nikon at the EUV mask technology and standards workshop at Miyazaki in November 2004; a mask is doubly protected by an inner pod and an outer pod and the mask is carried into an exposure tool with the inner pod. Canon, Nikon and Entegris have started collaboration in 2005 and developed three types of EUV pod prototypes, alpha, beta and gamma. The gamma pods were evaluated by MIRAI-Selete and the superiority of the dual pod concept has been verified with many experimental data on shipping, storage and tool handling. The dual pod concept was standardized as SEMI E152-0709 "Mechanical Specification of EUV Pods for 150mm EUVL Reticles" in 2009. Canon, Nikon and Entegris have developed a new pod design compatible with SEMI E152; it has a Type A inner baseplate for uses with EUV exposure tools. The baseplate has two alignment windows, a window for a data matrix symbol and five pockets as the front edge grip exclusion volumes. In addition to the new features, there are some differences between the new SEMI compliant pod design and the former design "CNE-gamma", e.g. the material of the inner cover was changed to metal to reduce outgassing rate and the gap between the reticle and the side supports were widened to satisfy a requirement of the standard. MIRAI-Selete has evaluated the particle protective capability of the new SEMI compliant pods "cnPod" during shipping, storage and tool handling in vacuum and found the "cnPod" has the excellent particle protective capability and the dual pod concept can be used not only for EUVL pilot line but also for EUVL high volume manufacturing.
Single exposure EUV patterning of BEOL metal layers on the IMEC iN7 platform
NASA Astrophysics Data System (ADS)
Blanco Carballo, V. M.; Bekaert, J.; Mao, M.; Kutrzeba Kotowska, B.; Larivière, S.; Ciofi, I.; Baert, R.; Kim, R. H.; Gallagher, E.; Hendrickx, E.; Tan, L. E.; Gillijns, W.; Trivkovic, D.; Leray, P.; Halder, S.; Gallagher, M.; Lazzarino, F.; Paolillo, S.; Wan, D.; Mallik, A.; Sherazi, Y.; McIntyre, G.; Dusa, M.; Rusu, P.; Hollink, T.; Fliervoet, T.; Wittebrood, F.
2017-03-01
This paper summarizes findings on the iN7 platform (foundry N5 equivalent) for single exposure EUV (SE EUV) of M1 and M2 BEOL layers. Logic structures within these layers have been measured after litho and after etch, and variability was characterized both with conventional CD-SEM measurements as well as Hitachi contouring method. After analyzing the patterning of these layers, the impact of variability on potential interconnect reliability was studied by using MonteCarlo and process emulation simulations to determine if current litho/etch performance would meet success criteria for the given platform design rules.
Responses of the Jovian Atmosphere to Cometary Particles and Photon Impacts
NASA Technical Reports Server (NTRS)
Dalgarno, A.
1998-01-01
Spectra of soft x-ray and EUV emissions of oxygen ions, precipitating into the Jovian atmosphere, are calculated, taking into account the dynamical character of the energy and charge distributions of the ions as they propagate. Monte-Carlo simulations are performed using experimental and theoretical cross sections of ion collisions with the atmospheric gases. The numbers of x-ray and EUV photons produced per precipitating oxygen ion are calculated as functions of the initial ion energy and charge. The energy and charge distribution functions are used to evaluate the intensities of characteristic x-ray and EUV spectral emission lines of oxygen ions in the Jovian aurora.
ROSAT EUV and soft X-ray studies of atmospheric composition and structure in G191-B2B
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Fleming, T. A.; Finley, D. S.; Koester, D.; Diamond, C. J.
1993-01-01
Previous studies of the hot DA white dwarf GI91-B2B have been unable to determine whether the observed soft X-ray and EUV opacity arises from a stratified hydrogen and helium atmosphere or from the presence of trace metals in the photosphere. New EUV and soft X-ray photometry of this star, made with the ROSAT observatory, when analyzed in conjunction with the earlier data, shows that the stratified models cannot account for the observed fluxes. Consequently, we conclude that trace metals must be a substantial source of opacity in the photosphere of G191-B2B.
Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R
1998-03-01
Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.
EUV via hole pattern fidelity enhancement through novel resist and post-litho plasma treatment
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Koike, Kyohei; Fonseca, Carlos; Yamashita, Fumiko; Kaushik, Kumar; Morikita, Shinya; Ito, Kiyohito; Yoshimura, Shota; Timoshkov, Vadim; Maslow, Mark; Jee, Tae Kwon; Reijnen, Liesbeth; Choi, Peter; Feng, Mu; Spence, Chris; Schoofs, Stijn
2018-03-01
Extreme UV(EUV) technology must be potential solution for sustainable scaling, and its adoption in high volume manufacturing(HVM) is getting realistic more and more. This technology has a wide capability to mitigate various technical problem in Multi-patterning (LELELE) for via hole patterning with 193-i. It induced local pattern fidelity error such like CDU, CER, Pattern placement error. Exactly, EUV must be desirable scaling-driving tool, however, specific technical issue, named RLS (Resolution-LER-Sensitivity) triangle, obvious remaining issue. In this work, we examined hole patterning sensitizing (Lower dose approach) utilizing hole patterning restoration technique named "CD-Healing" as post-Litho. treatment.
Microchannel plate EUV detectors for the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Malina, R. F.; Coburn, K.; Werthimer, D.
1984-01-01
The design and operating characteristics of the prototype imaging microchannel plate (MCP) detector for the Extreme Ultraviolet Explorer (EUVE) Satellite are discussed. It is shown that this detector has achieved high position resolution performance (greater than 512 x 512 pixels) and has low (less than one percent) image distortion. In addition, the channel plate scheme used has tight pulse height distributions (less than 40 percent FWHM) for UV radiation and displays low (less than 0.2 cnt/sq cm-s) dark background counting rates. Work that has been done on EUV filters in relation to the envisaged filter and photocathode complement is also described.
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.
1994-01-01
We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied also. To understand the saturation levels for these stars, we have compiled a large number of IPC luminosities for stars with a wide variety of spectral types and luminosity classes. We show quantitatively that if the Sun were completely covered with X-ray-emitting coronal loops, it would be near the saturation limit implied by this compilation, supporting the idea that stars near upper limits in coronal activity are completely covered with active regions.
Use of molecular oxygen to reduce EUV-induced carbon contamination of optics
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Grunow, Philip A.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.
2001-08-01
Carbon deposition and removal experiments on Mo/Si multilayer mirror (MLM) samples were performed using extreme ultraviolet (EUV) light on Beamline 12.0.1.2 of the Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL). Carbon (C) was deposited onto Mo/Si multilayer mirror (MLM) samples when hydrocarbon vapors where intentionally introduced into the MLM test chamber in the presence of EUV at 13.44 nm (92.3eV). The carbon deposits so formed were removed by molecular oxygen + EUV. The MLM reflectivities and photoemission were measured in-situ during these carbon deposition and cleaning procedures. Auger Electron Spectroscopy (AES) sputter-through profiling of the samples was performed after experimental runs to help determine C layer thickness and the near-surface compositional-depth profiles of all samples studied. EUV powers were varied from ~0.2mW/mm2 to 3mW/mm2(at 13.44 nm) during both deposition and cleaning experiments and the oxygen pressure ranged from ~5x10-5 to 5x10-4 Torr during the cleaning experiments. C deposition rates as high as ~8nm/hr were observed, while cleaning rates as high as ~5nm/hr could be achieved when the highest oxygen pressure were used. A limited set of experiments involving intentional oxygen-only exposure of the MLM samples showed that slow oxidation of the MLM surface could occur.
Probing the Quiet Solar Atmosphere from the Photosphere to the Corona
NASA Astrophysics Data System (ADS)
Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas
2018-04-01
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.
Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere
NASA Astrophysics Data System (ADS)
Mahajan, K. K.; Lodhi, Neelesh K.; Upadhayaya, Arun K.
2010-12-01
Most studies dealing with solar flare effects in the upper ionosphere, where ionization is caused by EUV photons, have been based upon X-ray fluxes measured by the SOLRAD and GOES series of satellites. To check the validity of such studies, we compare simultaneous observations of GOES X-ray fluxes and SOHO EUV fluxes for 10 X-class solar flares which occurred during the maximum phase of sunspot cycle 23. These include the greatest flare of 4 November 2003, the fourth greatest flare of 28 October 2003 and the 14 July 2000 Bastille Day flare. We find that the peak intensities of the X-ray and EUV fluxes for these flares are poorly correlated, and this poor correlation is again seen when larger data containing 70 X-class flares, which occurred during the period January 1996 to December 2006, are examined. However, this correlation improves vastly when the central meridian distance (CMD) of the flare location is taken into account. We also study the response of the upper ionosphere to these fluxes by using the midday total electron content (TEC), observed for these flares by Liu et al. (2006). We find that peak enhancement in TEC is highly correlated with peak enhancement in EUV flux. The correlation, though poor with the X-ray flux, improves greatly when the CMD of flare location is considered.
NASA Astrophysics Data System (ADS)
Gupta, Vaibhav; Wieman, Seth; Didkovsky, Leonid; Haiges, Ralf; Yao, Yuhan; Wu, Wei; Gruntman, Mike; Erwin, Dan
2015-09-01
Thin-film aluminum filters degrade in space with significant reduction of their Extreme Ultraviolet (EUV) transmission. This degradation was observed on the EUV Spectrophotometer (ESP) onboard the Solar Dynamics Observatory's EUV Variability Experiment and the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory. One of the possible causes for deterioration of such filters over time is contamination of their surfaces from plumes coming from periodic firing of their satellite's Monomethylhydrazine (MMH) - Nitrogen Tetroxide (NTO) thrusters. When adsorbed by the filters, the contaminant molecules are exposed to solar irradiance and could lead to two possible compositions. First, they could get polymerized leading to a permanent hydrocarbon layer buildup on the filter's surface. Second, they could accelerate and increase the depth of oxidation into filter's bulk aluminum material. To study the phenomena we experimentally replicate contamination of such filters in a simulated environment by MMH-NTO plumes. We apply, Scanning Electron Microscopy and X-Ray photoelectron spectroscopy to characterize the physical and the chemical changes on these contaminated sample filter surfaces. In addition, we present our first analysis of the effects of additional protective layer coatings based on self-assembled carbon monolayers for aluminum filters. This coverage is expected to significantly decrease their susceptibility to contamination and reduce the overall degradation of filter-based EUV instruments over their mission life.
NASA Astrophysics Data System (ADS)
Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk
2017-03-01
Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.
NASA Astrophysics Data System (ADS)
Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Uno, T.; Kondo, T.; Morioka, A.
2012-12-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent intensive observations of JSR revealed short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed a scenario for the short term variations; i.e, the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. The purpose of this study is to investigate whether sufficient solar UV/EUV heating in Jupiter's upper atmosphere can actually causes variation in the JSR total flux and brightness distribution. Previous JSR observations using the Giant Metrewave Radio Telescope (GMRT) suggested important characteristics of short term variations; relatively low energy particles are accelerated by some acceleration processes which might be driven by solar UV/EUV heating and/or Jupiter's own magnetic activities. In order to evaluate the effect of solar UV/EUV heating on JSR variations, we made coordinated observations using the GMRT and NASA Infra-Red Telescope Facility (IRTF). By using IRTF, we can estimate the temperature of Jupiter's upper atmosphere from spectroscopic observation of H_3^+ infrared emission. Hence, we can evaluate the relationship between variations in Jupiter's upper atmosphere initiated by the solar UV/EUV heating and its linkage with the JSR. The GMRT observations were made during Nov. 6-17, 2011 at the frequency of 235/610MHz. The H_3^+ 3.953 micron line was observed using the IRTF during Nov. 7-12, 2011. During the observation period, the solar UV/EUV flux variations expected on Jupiter showed monotonic increase. A preliminary analysis of GMRT 610MHz band showed a radio flux variation similar to that in the solar UV/EUV. Radio images showed that the emission intensity increased at the outer region and the position of equatorial peak emission moved in the outward direction. If radial diffusion increases globally by the solar UV/EUV heating, it is expected that the peak intensity would increase and the peak position move inwards. However, our results are not consistent with the global enhancement of radial diffusion. In addition to that, the equatorial H_3^+ emission indicated that emission intensity decreased from the first day of observation to the last day. It is expected that equatorial temperature of Jupiter's atmosphere decreases during this observation period. Therefore, we propose that radial diffusion increased not globally but only at the outer region around L=2-3 during this period. From this hypothesis, it is expected that enhancement of radial diffusion at the outer region is caused by high latitude temperature enhancement. We discuss possible causes of the short term variations of JSR from the IRTF observation results at high latitude.
Short term variations in Jupiter's synchrotron radiation derived from VLA data analysis
NASA Astrophysics Data System (ADS)
Kita, H.; Misawa, H.; Tsuchiya, F.; Morioka, A.
2011-12-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons in the strong magnetic field of the inner magnetosphere, and it is the most effective prove for remote sensing of Jupiter's radiation belt from the Earth. Although JSR has been thought to be stable for a long time, intensive observations for JSR have made after the collisions of comet P/SL9 to Jupiter in 1994, and these observations revealed short term variations of JSR on time scale of days to weeks. However, the mechanisms which cause the short term variations of total flux density and brightness distribution have not been revealed well. In order to reveal the mechanism of short term variations of JSR more precisely, we have made radio image analysis using the NRAO (National Radio Astronomy Observatory) archived data of the VLA [*]. Brice and McDonough [1973, Icarus] proposed a scenario for the short term variations: i.e, the solar UV/EUV heating for Jupiter's upper atmosphere drives neutral wind perturbations and then the induced dynamo electric field leads to enhancement of radial diffusion. It is also suggested that induced dynamo electric field produce dawn-dusk electric potential difference, which cause dawn-dusk asymmetry in electron spatial distribution and emission distribution. So far the following results have been indicated for the short term variations. Miyoshi et al. [1999, GRL] showed that a short term variation event at 2.3GHz is well correlate to solar UV/EUV flux variations. Tsuchiya et al. [2010, Adv. Geosci.] showed that JSR at 325MHz and 785MHz have short term variations. These JSR observations confirmed the existence of the short term variation which is caused by solar UV/EUV. However, the effect of solar UV/EUV heating on the spatial distribution of JSR has never been confirmed, so this study is the first attempt to confirm the solar UV/EUV effect on spatial distribution of JSR. We have selected the data observed from 28th Jan. to 5th Feb. 2000 at 327MHz. During the period, solar UV/EUV flux expected on Jupiter showed almost monotonic increase. It is expected from the analysis for the period that the enhancement of radial diffusion caused by solar UV/EUV heating produces total flux enhancement and dawn-dusk asymmetry of the emission distribution of the JSR. We can therefore examine the scenario by measuring total flux density and dawn-dusk peak emission ratio of JSR, and their relationships to the variation of solar UV/EUV activity. A preliminary result shows that total flux density variations occurred corresponding to the solar UV/EUV variations, but we couldn't find variations in the dawn-dusk asymmetry above the one rms level calculated from the background image. *The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Intense X-ray and EUV light source
Coleman, Joshua; Ekdahl, Carl; Oertel, John
2017-06-20
An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.
Prototype through-pellicle coherent imaging using a 30nm tabletop EUV source
NASA Astrophysics Data System (ADS)
Bevis, Charles S.; Karl, Robert M.; Wang, Bin; Esashi, Yuka; Tanksalvala, Michael; Porter, Christina L.; Johnsen, Peter; Adams, Daniel E.; Murnane, Margaret M.; Kapteyn, Henry C.
2018-03-01
We present preliminary through-pellicle imaging using a 30nm tabletop extreme ultraviolet (EUV) coherent diffractive imaging microscope. We show that even in a non-optimized setup, this technique enables through-pellicle imaging of a sample with no detectable impact on image fidelity or resolution.
Analyses of conversion efficiency in high-speed clock recovery based on Mach-Zehnder modulator
NASA Astrophysics Data System (ADS)
Dong, H.; Sun, H.; Zhu, G.; Dutta, N. K.
2006-09-01
In this paper, detailed analyses of the conversion efficiency in high-speed clock recovery based on Mach-Zehnder (MZ) modulator has been carried out. The theoretical results show the conversion efficiency changes with RF driving power and the mixing order. For high order clock recovery, the cascaded MZ modulator provides higher conversion efficiency. A study of clock recovery at 160 Gb/s using the cascaded MZ modulator has been carried out. The experimental results agree with the results of the analysis.
NXE pellicle: offering a EUV pellicle solution to the industry
NASA Astrophysics Data System (ADS)
Brouns, Derk; Bendiksen, Aage; Broman, Par; Casimiri, Eric; Colsters, Paul; Delmastro, Peter; de Graaf, Dennis; Janssen, Paul; van de Kerkhof, Mark; Kramer, Ronald; Kruizinga, Matthias; Kuntzel, Henk; van der Meulen, Frits; Ockwell, David; Peter, Maria; Smith, Daniel; Verbrugge, Beatrijs; van de Weg, David; Wiley, Jim; Wojewoda, Noelie; Zoldesi, Carmen; van Zwol, Pieter
2016-03-01
Towards the end of 2014, ASML committed to provide a EUV pellicle solution to the industry. Last year, during SPIE Microlithography 2015, we introduced the NXE pellicle concept, a removable pellicle solution that is compatible with current and future patterned mask inspection methods. This paper shows results of how we took this concept to a complete EUV pellicle solution for the industry. We will highlight some technical design challenges we faced developing the NXE pellicle and how we solved them. We will also present imaging results of pellicle exposures on a 0.33 NA NXE scanner system. In conjunction with the NXE pellicle, we will also present the supporting tooling we have developed to enable pellicle use.
Method of fabricating reflection-mode EUV diffusers
Anderson, Erik; Naulleau, Patrick P.
2005-03-01
Techniques for fabricating well-controlled, random relief, engineered surfaces that serve as substrates for EUV optical devices are accomplished with grayscale exposure. The method of fabricating a multilevel EUV optical element includes: (a) providing a substrate; (b) depositing a layer of curable material on a surface of the substrate; (c) creating a relief profile in a layer of cured material from the layer of curable material wherein the relief profile comprises multiple levels of cured material that has a defined contour; and (d) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. The curable material can comprise photoresist or a low dielectric constant material.
The Extreme-ultraviolet Emission from Sun-grazing Comets
NASA Technical Reports Server (NTRS)
Bryans, Paul; Pesnell, William D.
2012-01-01
The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses.We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.
Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide
Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; ...
2015-02-11
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO 2 film with EUV diffraction from the optically excited sample. The VO 2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separatemore » the two features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel
2006-12-15
We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.
High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure
Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo
2016-01-01
Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374
Rosat sky survey observations of the eclipsing binary V471 Tauri
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Schmitt, J. H. M. M.; Clemens, J. C.; Pye, J. P.; Denby, M.; Harris, A. W.; Pankiewicz, G. S.
1992-01-01
Rosat observations of the DA white dwarf + K2V binary system V471 Tauri, obtained during the sky survey phase of the mission, are presented. A lower amplitude shorter time-scale variability is seen in both the soft X-ray and EUV bands. This is associated with the white dwarf pulsations previously discovered by Exosat and also observed at optical wavelengths. The minimum in the EUV light curve is found to coincide with the maximum in the optical. This direct comparison of the phases of the optical and EUV pulses confirms the prediction made by an earlier indirect comparison and shows conclusively that the V471 Tau oscillations cannot arise from nonradial g-mode pulsations in the white dwarf. They are argued to be caused by rotation of the white dwarf with accretion-darkened magnetic poles. On the basis of the EUV and optical pulse shapes, the accretion geometry is studied, and it is estimated that the rate of accretion onto the white dwarf is about (4-11) x 10 exp -13 solar mass/yr.
Web-based Tool Suite for Plasmasphere Information Discovery
NASA Astrophysics Data System (ADS)
Newman, T. S.; Wang, C.; Gallagher, D. L.
2005-12-01
A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).
The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4 - 6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e1 plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.
The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.
1996-01-01
We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4-6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e(+/-) plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.
Theoretical modeling of PEB procedure on EUV resist using FDM formulation
NASA Astrophysics Data System (ADS)
Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo
2018-03-01
Semiconductor manufacturing industry has reduced the size of wafer for enhanced productivity and performance, and Extreme Ultraviolet (EUV) light source is considered as a promising solution for downsizing. A series of EUV lithography procedures contain complex photo-chemical reaction on photoresist, and it causes technical difficulties on constructing theoretical framework which facilitates rigorous investigation of underlying mechanism. Thus, we formulated finite difference method (FDM) model of post exposure bake (PEB) process on positive chemically amplified resist (CAR), and it involved acid diffusion coupled-deprotection reaction. The model is based on Fick's second law and first-order chemical reaction rate law for diffusion and deprotection, respectively. Two kinetic parameters, diffusion coefficient of acid and rate constant of deprotection, which were obtained by experiment and atomic scale simulation were applied to the model. As a result, we obtained time evolutional protecting ratio of each functional group in resist monomer which can be used to predict resulting polymer morphology after overall chemical reactions. This achievement will be the cornerstone of multiscale modeling which provides fundamental understanding on important factors for EUV performance and rational design of the next-generation photoresist.
Use of gas-phase ethanol to mitigate extreme UV/water oxidation of extreme UV optics
NASA Astrophysics Data System (ADS)
Klebanoff, L. E.; Malinowski, M. E.; Clift, W. M.; Steinhaus, C.; Grunow, P.
2004-03-01
A technique is described that uses a gas-phase species to mitigate the oxidation of a Mo/Si multilayer optic caused by either extreme UV (EUV) or electron-induced dissociation of adsorbed water vapor. It is found that introduction of ethanol (EtOH) into a water-rich gas-phase environment inhibits oxidation of the outermost Si layer of the Mo/Si EUV reflective coating. Auger electron spectroscopy, sputter Auger depth profiling, EUV reflectivity, and photocurrent measurements are presented that reveal the EUV/water- and electron/water-derived optic oxidation can be suppressed at the water partial pressures used in the tests (~2×10-7-2×10-5 Torr). The ethanol appears to function differently in two time regimes. At early times, ethanol decomposes on the optic surface, providing reactive carbon atoms that scavenge reactive oxygen atoms before they can oxidize the outermost Si layer. At later times, the reactive carbon atoms form a thin (~5 Å), possibly self-limited, graphitic layer that inhibits water adsorption on the optic surface. .
Studies of Solar EUV Irradiance from SOHO
NASA Technical Reports Server (NTRS)
Floyd, Linton
2002-01-01
The Extreme Ultraviolet (EUV) irradiance central and first order channel time series (COC and FOC) from the Solar EUV Monitor aboard the Solar and Heliospheric observatory (SOHO) issued in early 2002 covering the time period 1/1/96-31/1201 were analyzed in terms of other solar measurements and indices. A significant solar proton effect in the first order irradiance was found and characterized. When this effect is removed, the two irradiance time series are almost perfectly correlated. Earlier studies have shown good correlation between the FOC and the Hall core-to-wing ratio and likewise, it was the strongest component of the COC. Analysis of the FOC showed dependence on the F10.7 radio flux. Analysis of the CDC signals showed additional dependences on F10.7 and the GOES x-ray fluxes. The SEM FOC was also well correlated with thein 30.4 nm channel of the SOHO EUV Imaging Telescope (EIT). The irradiance derived from all four EIT channels (30.4 nm, 17.1 nm, 28.4 nm, and 19.5 nm) showed better correlation with MgII than F10.7.
High-NA EUV lithography enabling Moore's law in the next decade
NASA Astrophysics Data System (ADS)
van Schoot, Jan; Troost, Kars; Bornebroek, Frank; van Ballegoij, Rob; Lok, Sjoerd; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos P.; Finders, Jo; Meiling, Hans; van Setten, Eelco; Kneer, Bernhard; Kuerz, Peter; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha; Neumann, Jens Timo
2017-10-01
While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their activities on a EUV exposure tool with Numerical Aperture of 0.55. The purpose of this scanner, targeting an ultimate resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, capable of providing the required Numerical Aperture has been investigated; This lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the target specifications, key technology innovations and imaging simulations demonstrating the advantages as compared to 0.33NA and showing the capabilities of the next generation EUV systems.
Lifetime estimation of extreme-ultraviolet pellicle at 500 W source power by thermal stress analysis
NASA Astrophysics Data System (ADS)
Park, Eun-Sang; Ban, Chung-Hyun; Park, Jae-Hun; Oh, Hye-Keun
2017-10-01
The analysis of the thermal stress and the extreme-ultraviolet (EUV) pellicle is important since the pellicle could be easily damaged since the thickness of the pellicle is 50 nm thin due to 90% required EUV transmission. One of the solution is using a high emissivity metallic material on the both sides of the pellicle and it can lower the thermal stress. However, using a metallic coating on pellicle core which is usually consist of silicon group can decrease the EUV transmission compared to using a single core layer pellicle only. Therefore, we optimized thermal and optical properties of the pellicle and elect three types of the pellicle. In this paper we simulated our optimized pellicles with 500W source power. The result shows that the difference of the thermal stress is small for each case. Therefore, our result also shows that using a high emissivity coating is necessary since the cooling of the pellicle strongly depends on emissivity and it can lower the stress effectively even at high EUV source power.
Evidence of the Dynamics of Relativistic Jet Launching in Quasars
NASA Astrophysics Data System (ADS)
Punsly, Brian
2015-06-01
Hubble Space Telescope (HST) spectra of the EUV, the optically thick emission from the innermost accretion flow onto the central supermassive black hole, indicate that radio loud quasars (RLQs) tend to be EUV weak compared to the radio-quiet quasars; yet the remainder of the optically thick thermal continuum is indistinguishable. The deficit of EUV emission in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. This article is an examination of the evidence for a distribution of magnetic flux tubes in the innermost accretion flow that results in magnetically arrested accretion (MAA) and creates the EUV deficit. These same flux tubes and possibly the interior magnetic flux that they encircle are the sources of the jet power as well. In the MAA scenario, islands of large-scale vertical magnetic flux perforate the innermost accretion flow of RLQs. The first prediction of the theory that is supported by the HST data is that the strength of the (large-scale poloidal magnetic fields) jets in the MAA region is regulated by the ram pressure of the accretion flow in the quasar environment. The second prediction that is supported by the HST data is that the rotating magnetic islands remove energy from the accretion flow as a Poynting flux dominated jet in proportion to the square of the fraction of the EUV emitting gas that is displaced by these islands.
NASA Technical Reports Server (NTRS)
Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.
1994-01-01
We present a method to retrieve neutral thermospheric composition and the solar EUV flux from ground-based twilight optical measurements of the O(+) ((exp 2)P) 7320 A and O((exp 1)D) 6300 A airglow emissions. The parameters retrieved are the neutral temperature, the O, O2, N2 density profiles, and a scaling factor for the solar EUV flux spectrum. The temperature, solar EUV flux scaling factor, and atomic oxygen density are first retrieved from the 7320-A emission, which are then used with the 6300-A emission to retrieve the O2 and N2 densities. The retrieval techniques have been verified by computer simulations. We have shown that the retrieval technique is able to statistically retrieve values, between 200 and 400 km, within an average error of 3.1 + or - 0.6% for thermospheric temperature, 3.3 + or - 2.0% for atomic oxygen, 2.3 + or - 1.3% for molecular oxygen, and 2.4 + or - 1.3% for molecular nitrogen. The solar EUV flux scaling factor was found to have a retrieval error of 5.1 + or - 2.3%. All the above errors have a confidence level of 95%. The purpose of this paper is to prove the viability and usefulness of the retrieval technique by demonstrating the ability to retrieve known quantities under a realistic simulation of the measurement process, excluding systematic effects.
Early evolution of an energetic coronal mass ejection and its relation to EUV waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Rui; Wang, Yuming; Shen, Chenglong, E-mail: rliu@ustc.edu.cn
2014-12-10
We study a coronal mass ejection (CME) associated with an X-class flare whose initiation is clearly observed in the low corona with high-cadence, high-resolution EUV images, providing us a rare opportunity to witness the early evolution of an energetic CME in detail. The eruption starts with a slow expansion of cool overlying loops (∼1 MK) following a jet-like event in the periphery of the active region. Underneath the expanding loop system, a reverse S-shaped dimming is seen immediately above the brightening active region in hot EUV passbands. The dimming is associated with a rising diffuse arch (∼6 MK), which wemore » interpret as a preexistent, high-lying flux rope. This is followed by the arising of a double hot channel (∼10 MK) from the core of the active region. The higher structures rise earlier and faster than lower ones, with the leading front undergoing extremely rapid acceleration up to 35 km s{sup –2}. This suggests that the torus instability is the major eruption mechanism and that it is the high-lying flux rope rather than the hot channels that drives the eruption. The compression of coronal plasmas skirting and overlying the expanding loop system, whose aspect ratio h/r increases with time as a result of the rapid upward acceleration, plays a significant role in driving an outward-propagating global EUV wave and a sunward-propagating local EUV wave, respectively.« less
NASA Astrophysics Data System (ADS)
Raley, Angélique; Lee, Joe; Smith, Jeffrey T.; Sun, Xinghua; Farrell, Richard A.; Shearer, Jeffrey; Xu, Yongan; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton; Arnold, John; Felix, Nelson
2018-04-01
We report a sub-30nm pitch self-aligned double patterning (SADP) integration scheme with EUV lithography coupled with self-aligned block technology (SAB) targeting the back end of line (BEOL) metal line patterning applications for logic nodes beyond 5nm. The integration demonstration is a validation of the scalability of a previously reported flow, which used 193nm immersion SADP targeting a 40nm pitch with the same material sets (Si3N4 mandrel, SiO2 spacer, Spin on carbon, spin on glass). The multi-color integration approach is successfully demonstrated and provides a valuable method to address overlay concerns and more generally edge placement error (EPE) as a whole for advanced process nodes. Unbiased LER/LWR analysis comparison between EUV SADP and 193nm immersion SADP shows that both integrations follow the same trend throughout the process steps. While EUV SADP shows increased LER after mandrel pull, metal hardmask open and dielectric etch compared to 193nm immersion SADP, the final process performance is matched in terms of LWR (1.08nm 3 sigma unbiased) and is only 6% higher than 193nm immersion SADP for average unbiased LER. Using EUV SADP enables almost doubling the line density while keeping most of the remaining processes and films unchanged, and provides a compelling alternative to other multipatterning integrations, which present their own sets of challenges.
TESIS experiment on EUV imaging spectroscopy of the Sun
NASA Astrophysics Data System (ADS)
Kuzin, S. V.; Bogachev, S. A.; Zhitnik, I. A.; Pertsov, A. A.; Ignatiev, A. P.; Mitrofanov, A. M.; Slemzin, V. A.; Shestov, S. V.; Sukhodrev, N. K.; Bugaenko, O. I.
2009-03-01
TESIS is a set of solar imaging instruments in development by the Lebedev Physical Institute of the Russian Academy of Science, to be launched aboard the Russian spacecraft CORONAS-PHOTON in December 2008. The main goal of TESIS is to provide complex observations of solar active phenomena from the transition region to the inner and outer solar corona with high spatial, spectral and temporal resolution in the EUV and Soft X-ray spectral bands. TESIS includes five unique space instruments: the MgXII Imaging Spectroheliometer (MISH) with spherical bent crystal mirror, for observations of the Sun in the monochromatic MgXII 8.42 Å line; the EUV Spectoheliometer (EUSH) with grazing incidence difraction grating, for the registration of the full solar disc in monochromatic lines of the spectral band 280-330 Å; two Full-disk EUV Telescopes (FET) with multilayer mirrors covering the band 130-136 and 290-320 Å; and the Solar EUV Coronagraph (SEC), based on the Ritchey-Chretien scheme, to observe the inner and outer solar corona from 0.2 to 4 solar radii in spectral band 290-320 Å. TESIS experiment will start at the rising phase of the 24th cycle of solar activity. With the advanced capabilities of its instruments, TESIS will help better understand the physics of solar flares and high-energy phenomena and provide new data on parameters of solar plasma in the temperature range 10-10K. This paper gives a brief description of the experiment, its equipment, and its scientific objectives.
Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun
2016-06-15
Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large TiO₂ NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO₂ NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO₂ NPs. By introducing Ag NPs and/or large TiO₂ NPs to open-ended freestanding TiO₂ nanotube array-based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO₂ NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO₂ NPs. Moreover, compared to closed-ended freestanding TiO₂ nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO₂ nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component-Ag NPs, TiO₂ NPs, and open-ended freestanding TiO₂ nanotube arrays-enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency.
Limits to solar power conversion efficiency with applications to quantum and thermal systems
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.
1983-01-01
An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.
Latest developments on EUV reticle and pellicle research and technology at TNO
NASA Astrophysics Data System (ADS)
Verberk, Rogier; Koster, Norbert; te Sligte, Edwin; Staring, Wilbert
2017-06-01
At TNO an extensive EUV optics life time program has been running for over 15 years together with our partners ASML and Carl Zeiss. This has contributed to the upcoming introduction of EUV High Volume Manufacturing (HVM). To further help the industry with the introduction of EUV, TNO has worked on extending their facilities with a number of reticle and pellicle research infrastructure facilities. In this paper we will show some of the facilities that are available at TNO and shortly introduce their capabilities. Recently we have opened our EBL2 facility, which is an EUV Beam Line (EBL2) meant for studying the effects of high power EUV illumination on optics, reticles and pellicles up to the power roadmap of 500 W at intermediate Focus (IF). This facility is open to users from all over the world and is beneficial for the industry in helping developing alternative capping layers and contamination control strategies for optics lifetime, new absorber materials, pellicles and resists. The EBL2 system has seen first light in December 2016 and is now in the final stage of acceptance testing and qualification. It is expected that the system will be fully operational in the third quarter of 2017, and available for users. It is possible to transfer reticles to and from the EBL2 by means of the reticle handler using the dual pod interface. This secures backside cleanliness to NXE standards and thus enables wafer printing on a NXE tool in a later stage after the exposures and inspection at EBL2. Besides EBL2, a high performance and ultra-clean reticle handler is available at TNO. This handler incorporates our particle scanner Rapid Nano 4 for front side inspection of reticle blanks with a detection limit down to 20 nm particles. Attached to the handler is also an Optical Coherence Tomography (OCT) inspection tool for back-side reticle or pellicle inspection with a resolution down to 1 micron.
NASA Technical Reports Server (NTRS)
Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.;
1995-01-01
We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryaev, F.; Slemzin, V.; Vainshtein, L.
2014-02-01
Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ☉}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 Rmore » {sub ☉}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ☉}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ☉} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ☉} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ≳ 2 R {sub ☉}.« less
Mask characterization for CDU budget breakdown in advanced EUV lithography
NASA Astrophysics Data System (ADS)
Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho
2012-11-01
As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget Breakdown per product/process and Litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps to extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.
Topside Ionospheric Response to Solar EUV Variability
NASA Astrophysics Data System (ADS)
Anderson, P. C.; Hawkins, J.
2015-12-01
We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated, DMSP may be much less than a scale height above the F2 peak while when it is O+ dominated, DMSP may be several scale heights above the F2 peak.
Investigation for all polarization conversions of the guided-modes in a bending waveguide
NASA Astrophysics Data System (ADS)
Shi, Yunjie; Shang, Hongpeng; Sun, DeGui
2018-03-01
In this work, a new solution to the partial differential Maxwell equations is first derived to investigate all polarization conversions of the transverse and the longitudinal components of guided-modes in a bending waveguide. Then, for the silica-waveguides, the polarization conversion efficiencies are numerical calculated and a significant finding is that the transverse-longitudinal polarization conversion efficiency is much higher than that of transverse-transverse polarization conversion. Furthermore, the dependences of all the conversion efficiencies on waveguide parameters are found. The agreeable results between the numerical calculation and the finite difference time-domain (FDTD) simulation show that for two 100 μm long bending waveguides of 0.75 and 1.50% index contrasts, the amplitude conversion efficiencies from ∼10-3 to ∼10-2 can be realized for the transverse-transverse polarization components and that of ∼10-1 can be realized for the transverse-longitudinal polarization components.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77
Compact 2D OPC modeling of a metal oxide EUV resist for a 7nm node BEOL layer
NASA Astrophysics Data System (ADS)
Lyons, Adam; Rio, David; Lee, Sook; Wallow, Thomas; Delorme, Maxence; Fumar-Pici, Anita; Kocsis, Michael; de Schepper, Peter; Greer, Michael; Stowers, Jason K.; Gillijns, Werner; De Simone, Danilo; Bekaert, Joost
2017-03-01
Inpria has developed a directly patternable metal oxide hard-mask as a high-resolution photoresist for EUV lithography1. In this contribution, we describe a Tachyon 2D OPC full-chip model for an Inpria resist as applied to an N7 BEOL block mask application.
SUMER: Solar Ultraviolet Measurements of Emitted Radiation
NASA Technical Reports Server (NTRS)
Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.
1992-01-01
The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.
Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-04-01
Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.
NASA Technical Reports Server (NTRS)
Donnelly, R. F.; Wood, A. T., Jr.; Noyes, R. W.
1973-01-01
The time structure and intensity of OSO-6 observations of EUV bursts were studied in relation to the corresponding 10-1030 A enhancements deduced from SFD data. Impulsive EUV emissions from lines normally emitted from either the chromosphere or from the chromosphere-corona transition region rise simultaneously with the 10-1030 A flash, to within the time resolution of the OSO-6 observations. Mg X 625 A also showed concurrent impulsive emissions and a close intensity relation to the 10-1030 A enhancement. The observational results are consistent with the hypothesis that most of the EUV radiation is being produced thermally in a region of chromospheric density, which is being heated by collisional losses of nonthermal electrons.
The ancient oxygen exosphere of Mars - Implications for atmosphere evolution
NASA Technical Reports Server (NTRS)
Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.
1993-01-01
The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.
Production of EUV mask blanks with low killer defects
NASA Astrophysics Data System (ADS)
Antohe, Alin O.; Kearney, Patrick; Godwin, Milton; He, Long; John Kadaksham, Arun; Goodwin, Frank; Weaver, Al; Hayes, Alan; Trigg, Steve
2014-04-01
For full commercialization, extreme ultraviolet lithography (EUVL) technology requires the availability of EUV mask blanks that are free of defects. This remains one of the main impediments to the implementation of EUV at the 22 nm node and beyond. Consensus is building that a few small defects can be mitigated during mask patterning, but defects over 100 nm (SiO2 equivalent) in size are considered potential "killer" defects or defects large enough that the mask blank would not be usable. The current defect performance of the ion beam sputter deposition (IBD) tool will be discussed and the progress achieved to date in the reduction of large size defects will be summarized, including a description of the main sources of defects and their composition.
The ancient oxygen exosphere of Mars - Implications for atmosphere evolution
NASA Astrophysics Data System (ADS)
Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.
1993-06-01
The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.
Quantitative Evaluation of Hard X-ray Damage to Biological Samples using EUV Ptychography
NASA Astrophysics Data System (ADS)
Baksh, Peter; Odstrcil, Michal; Parsons, Aaron; Bailey, Jo; Deinhardt, Katrin; Chad, John E.; Brocklesby, William S.; Frey, Jeremy G.
2017-06-01
Coherent diffractive imaging (CDI) has become a standard method on a variety of synchrotron beam lines. The high brilliance short wavelength radiation from these sources can be used to reconstruct attenuation and relative phase of a sample with nanometre resolution via CDI methods. However, the interaction between the sample and high energy ionising radiation can cause degradation to sample structure. We demonstrate, using a laboratory based high harmonic generation (HHG) based extreme ultraviolet (EUV) source, imaging a sample of hippocampal neurons using the ptychography method. The significant increase in contrast of the sample in the EUV light allows identification of damage induced from exposure to 7.3 keV photons, without causing any damage to the sample itself.
Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.
Embedded top-coat for reducing the effect out of band radiation in EUV lithography
NASA Astrophysics Data System (ADS)
Du, Ke; Siauw, Meiliana; Valade, David; Jasieniak, Marek; Voelcker, Nico; Trefonas, Peter; Thackeray, Jim; Blakey, Idriss; Whittaker, Andrew
2017-03-01
Out of band (OOB) radiation from the EUV source has significant implications for the performance of EUVL photoresists. Here we introduce a surface-active polymer additive, capable of partitioning to the top of the resist film during casting and annealing, to protect the underlying photoresist from OOB radiation. Copolymers were prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, and rendered surface active by chain extension with a block of fluoro-monomer. Films were prepared from the EUV resist with added surface-active Embedded Barrier Layer (EBL), and characterized using measurements of contact angles and spectroscopic ellipsometry. Finally, the lithographic performance of the resist containing the EBL was evaluated using Electron Beam Lithography exposure
NASA Astrophysics Data System (ADS)
Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka
2018-04-01
In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.
Estimating Hardwood Sawmill Conversion Efficiency Based on Sawing Machine and Log.
Michael W. Wade; Steven H. Bullard; Philip H. Steele; Philip A. Araman
1992-01-01
Increased problems of hardwood timber availability have caused many sawmillers, industry analysts, and planners to recognize the importance of sawmill conversion efficiency. Conversion efficiency not only affects sawmill profits, but is also important on a much broader level. Timber supply issues have caused resource planners and policy makers to consider the effects...
Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen
2013-11-04
A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.
INFRARED STUDY OF UV/EUV IRRADIATION OF NAPHTHALENE IN
NASA Astrophysics Data System (ADS)
Chen, Y.-J.; Nuevo, M.; Yeh, F.-C.; Yih, T.-S.; Sun, W.-H.; Ip, W.-H.; Fung, H.-S.; Lee, Y.-Y.; Wu, C.-Y. R.
We have carried out photon irradiation study of naphthalene (C10H8), the smallest polycyclic aromatic hydrocarbon (PAH) in water and ammonia ice mixtures. Photons provided by a synchrotron radiation light source in two broad-band energy ranges in the ultraviolet/near extreme ultraviolet (4-20 eV) and the extreme ultraviolet (13-45 eV) ranges were used for the irradiation of H2O+NH3+C10H8 = 1:1:1 ice mixtures at 15K. We could identify several photo-products, namely CH4, C2H6, C3H8, CO, CO2, HNCO, OCN-, and probably quinoline (C9H7N) and phenanthridine (C13H9N). We found that the light hydrocarbons are preferably produced for the ice mixture subjected to 4-20 eV photons. However, the production yields of CO, CO2, and OCN- species seem to be higher for the mixture subjected to EUV photons (13-45 eV). Therefore, naphthalene and its photo-products appear to be more efficiently destroyed when high energy photons (E > 20 eV) are used. This has important consequences on the photochemical evolution of PAHs in astrophysical environments.
Ionization Efficiency in the Dayside Martian Upper Atmosphere
NASA Astrophysics Data System (ADS)
Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.
2018-04-01
Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.
MAVEN observations of electron temperatures in the dayside ionosphere at Mars
NASA Astrophysics Data System (ADS)
Sakai, S.; Cravens, T.; Andersson, L.; Fowler, C. M.; Thiemann, E.; Eparvier, F. G.; Bougher, S. W.; Rahmati, A.; Reedy, N. L.; Mitchell, D. L.; Mazelle, C. X.; Mahaffy, P. R.; Jakosky, B. M.
2016-12-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) have observed the ionospheric electron temperature at Mars since November 2014. The only in-situ measurements of plasma temperatures were provided by the two Viking landers in 1976 before the MAVEN mission. The ionospheric electron temperatures are particularly important for determining the neutral escape rate from the atmosphere of Mars. We have investigated the electron temperatures on the dayside ionosphere using the Langmuir Probe and Waves instrument onboard MAVEN. The temperatures are studied in two regions of (1) the crustal magnetic field and (2) the solar wind/induced (or draped) magnetic field. We also focused on how temperatures vary with solar zenith angle (SZA) and the solar extreme ultraviolet (EUV) irradiances. The electron temperatures did not vary much due to the SZA variation, but increased when the solar EUV irradiances are high. This means the ionospheric temperatures are sensitive to the solar activity. Furthermore, we investigated the correlation of electron temperatures against magnetic field configurations under the same EUV irradiances. The electron temperatures in the crustal region were lower than those in the draped region. One possible explanation is that the energy input from high altitude, which is related to the tail and solar wind electrons, might control the temperatures in the draped region. Vertical heat conductance in the draped region could also affect the electron temperatures (with a greater effect in the draped region), so that electrons cooled at low altitude tend to transport to high altitude. However, the electron heating is more local in the draped region, and the electrons would be heated efficiently. Therefore, the electron temperatures in the draped region were higher than those in the crustal region. It is implied that the rate of atmospheric escape, which is attributed to photochemical escape, depends on the topology of the magnetic fields.
In-line phase retarder and polarimeter for conversion of linear to circular polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kortright, J.B.; Smith, N.V.; Denlinger, J.D.
1997-04-01
An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structuralmore » (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.« less
Postlaunch calibration of spacecraft attitude instruments
NASA Technical Reports Server (NTRS)
Davis, W.; Hashmall, J.; Garrick, J.; Harman, R.
1993-01-01
The accuracy of both onboard and ground attitude determination can be significantly enhanced by calibrating spacecraft attitude instruments (sensors) after launch. Although attitude sensors are accurately calibrated before launch, the stresses of launch and the space environment inevitably cause changes in sensor parameters. During the mission, these parameters may continue to drift requiring repeated on-orbit calibrations. The goal of attitude sensor calibration is to reduce the systematic errors in the measurement models. There are two stages at which systematic errors may enter. The first occurs in the conversion of sensor output into an observation vector in the sensor frame. The second occurs in the transformation of the vector from the sensor frame to the spacecraft attitude reference frame. This paper presents postlaunch alignment and transfer function calibration of the attitude sensors for the Compton Gamma Ray Observatory (GRO), the Upper Atmosphere Research Satellite (UARS), and the Extreme Ultraviolet Explorer (EUVE).
GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschwanden, Markus J., E-mail: aschwanden@lmsal.com
2016-11-01
This study entails the fourth part of a global flare energetics project, in which the mass m {sub cme}, kinetic energy E {sub kin}, and the gravitational potential energy E {sub grav} of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The modelmore » derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R {sub ⊙}, while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.« less
EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures
NASA Astrophysics Data System (ADS)
Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank
2018-03-01
The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.
SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaton, Daniel B.; De Groof, Anik; Berghmans, David
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was tomore » remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.« less
Overcoming etch challenges related to EUV based patterning (Conference Presentation)
NASA Astrophysics Data System (ADS)
Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter
2017-04-01
Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.
NASA Technical Reports Server (NTRS)
Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger
1994-01-01
The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Yoshikawa, Shoji; Suematsu, Kenichi; Terao, Kenji
2015-07-01
High-sensitivity EUV mask pattern defect detection is one of the major issues in order to realize the device fabrication by using the EUV lithography. We have already designed a novel Projection Electron Microscope (PEM) optics that has been integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code), and which seems to be quite promising for 16 nm hp generation EUVL Patterned mask Inspection (PI). Defect inspection sensitivity was evaluated by capturing an electron image generated at the mask by focusing onto an image sensor. The progress of the novel PEM optics performance is not only about making an image sensor with higher resolution but also about doing a better image processing to enhance the defect signal. In this paper, we describe the experimental results of EUV patterned mask inspection using the above-mentioned system. The performance of the system is measured in terms of defect detectability for 11 nm hp generation EUV mask. To improve the inspection throughput for 11 nm hp generation defect detection, it would require a data processing rate of greater than 1.5 Giga- Pixel-Per-Second (GPPS) that would realize less than eight hours of inspection time including the step-and-scan motion associated with the process. The aims of the development program are to attain a higher throughput, and enhance the defect detection sensitivity by using an adequate pixel size with sophisticated image processing resulting in a higher processing rate.
Effects of Solar Irradiance on Ion Fluxes at Mars. MARS EXPRESS and MAVEN Observations
NASA Astrophysics Data System (ADS)
Dubinin, E.; Fraenz, M.; McFadden, J. P.; Eparvier, F. G.; Brain, D. A.; Jakosky, B. M.; Andrews, D. J.; Barbash, S.
2016-12-01
Recent observations by Mars Express and MAVEN spacecraft have shown that the Martian atmosphere/ionosphere is exposed to the impact of solar wind which results in losses of volatiles from Mars. This erosion is an important factor for the evolution of the Martian atmosphere and its water inventory. To estimate the escape forced by the solar wind during the early Solar system conditions we need to know how the ionosphere of Mars and escape fluxes depend on variations in the strength of the external drivers, in particularly, of solar wind and solar EUV flux. We present multi-instrument observations of the influence of the solar irradiance on the Martian ionosphere and escape fluxes. We use data obtained by the ASPERA-3 and MARSIS experiments on Mars Express and by the STATIC instrument and EUV monitor on MAVEN. Observations by Mars Express supplemented by the EUV monitoring at Earth orbit and translated to Mars orbit provide us information about this dependence over more than 10 years whereas the measurements made by MAVEN provide us for the first time the opportunity to study these processes with simultaneous monitoring of the ionospheric variations, planetary ion fluxes and solar irradiance. We can show that fluxes of planetary ions through different escape channels (trans-terminator fluxes, ion plume, plasma sheet) respond differently on the EUV variations. The most significant effect on the ion scavenging with increase of the solar irradiance is observed for low energy ions extracted from the ionosphere while the ion fluxes in the plume are almost insensitive to the EUV variations.
NASA Astrophysics Data System (ADS)
Sahin, Mehmet
2018-05-01
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS
NASA Technical Reports Server (NTRS)
Cotton, D. M.; Chakrabarti, S.
1992-01-01
The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.
Soft x-ray imaging with incoherent sources
NASA Astrophysics Data System (ADS)
Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.
2017-05-01
In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E., E-mail: pankaj@kasi.re.kr
2016-09-01
This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{supmore » −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.« less
Studying electron-PAG interactions using electron-induced fluorescence
NASA Astrophysics Data System (ADS)
Narasimhan, Amrit; Grzeskowiak, Steven; Ostrander, Jonathan; Schad, Jonathon; Rebeyev, Eliran; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Gregory; Brainard, Robert L.
2016-03-01
In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Typical EUV resists are organic-based and chemically amplified using photoacid generators (PAGs). Upon exposure, PAGs produce acids which catalyze reactions that result in changes in solubility. In EUV lithography, photo- and secondary electrons (energies of 10- 80 eV) play a large role in PAG acid-production. Several mechanisms for electron-PAG interactions (e.g. electron trapping, and hole-initiated chemistry) have been proposed. The aim of this study is to explore another mechanism - internal excitation - in which a bound PAG electron can be excited by receiving energy from another energetic electron, causing a reaction that produces acid. This paper explores the mechanism of internal excitation through the analogous process of electron-induced fluorescence, in which an electron loses energy by transferring that energy to a molecule and that molecule emits a photon rather than decomposing. We will show and quantify electron-induced fluorescence of several fluorophores in polymer films to mimic resist materials, and use this information to refine our proposed mechanism. Relationships between the molecular structure of fluorophores and fluorescent quantum yield may aid in the development of novel PAGs for EUV lithography.
Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space
NASA Technical Reports Server (NTRS)
Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.
1995-01-01
Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naulleau, Patrick; Mochi, Iacopo; Goldberg, Kenneth A.
Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modelingmore » software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes rou tinely used in the synchrotron community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.
Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modelingmore » software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.« less
Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles
1993-01-01
The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.
Villalobos-Hernández, J R; Müller-Goymann, C C
2007-01-01
This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.
Relation between electron- and photon-caused oxidation in EUVL optics
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa
2003-06-01
Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 µA of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.
Relation between electron- and photon-caused oxidation in EUVL optics
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa
2003-06-01
Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 ´A of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.
The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations
NASA Astrophysics Data System (ADS)
Bogachev, Sergey
The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.
Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory (more » STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.« less
A very small and super strong zebra pattern burst at the beginning of a solar flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Baolin; Tan, Chengming; Zhang, Yin
2014-08-01
Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that ofmore » the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.« less
Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Innes, D. E.
2015-04-01
We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s-1 within ˜3-4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s-1, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.
Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation
NASA Astrophysics Data System (ADS)
Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya
2015-11-01
The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.
Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew; Chinn, Steve
2018-02-01
We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.
Earth-orbiting extreme ultraviolet spectroscopic mission: SPRINT-A/EXCEED
NASA Astrophysics Data System (ADS)
Yoshikawa, I.; Tsuchiya, F.; Yamazaki, A.; Yoshioka, K.; Uemizu, K.; Murakami, G.; Kimura, T.; Kagitani, M.; Terada, N.; Kasaba, Y.; Sakanoi, T.; Ishii, H.; Uji, K.
2012-09-01
The EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) mission is an Earth-orbiting extreme ultraviolet (EUV) spectroscopic mission and the first in the SPRINT series being developed by ISAS/JAXA. It will be launched in the summer of 2013. EUV spectroscopy is suitable for observing tenuous gases and plasmas around planets in the solar system (e.g., Mercury, Venus, Mars, Jupiter, and Saturn). Advantage of remote sensing observation is to take a direct picture of the plasma dynamics and distinguish between spatial and temporal variability explicitly. One of the primary observation targets is an inner magnetosphere of Jupiter, whose plasma dynamics is dominated by planetary rotation. Previous observations have shown a few percents of the hot electron population in the inner magnetosphere whose temperature is 100 times higher than the background thermal electrons. Though the hot electrons have a significant impact on the energy balance in the inner magnetosphere, their generation process has not yet been elucidated. In the EUV range, a number of emission lines originate from plasmas distributed in Jupiter's inner magnetosphere. The EXCEED spectrograph is designed to have a wavelength range of 55-145 nm with minimum spectral resolution of 0.4 nm, enabling the electron temperature and ion composition in the inner magnetosphere to be determined. Another primary objective is to investigate an unresolved problem concerning the escape of the atmosphere to space. Although there have been some in-situ observations by orbiters, our knowledge is still limited. The EXCEED mission plans to make imaging observations of plasmas around Venus and Mars to determine the amounts of escaping atmosphere. The instrument's field of view (FOV) is so wide that we can get an image from the interaction region between the solar wind and planetary plasmas down to the tail region at one time. This will provide us with information about outward-flowing plasmas, e.g., their composition, rate, and dependence on solar activity. EXCEED has two mission instruments: the EUV spectrograph and a target guide camera that is sensitive to visible light. The EUV spectrograph is designed to have a wavelength range of 55-145 nm with a spectral resolution of 0.4-1.0 nm. The spectrograph slits have a FOV of 400 x 140 arcseconds (maximum). The optics of the instrument consists of a primary mirror with a diameter of 20cm, a laminar type grating, and a 5-stage micro-channel plate assembly with a resistive anode encoder. To achieve high efficiencies, the surfaces of the primary mirror and the grating are coated with CVD-SiC. Because of the large primary mirror and high efficiencies, good temporal resolution and complete spatial coverage for Io plasma torus observation is expected. Based on a feasibility study using the spectral diagnosis method, it is shown that EXCEED can determine the Io plasma torus parameters, such as the electron density, temperatures, hot electron fraction and so on, using an exposure time of 50 minutes. The target guide camera will be used to capture the target and guide the observation area of interest to the slit. Emissions from outside the slit's FOV will be reflected by the front of the slit and guided to the target guide camera. The guide camera's FOV is 240" x 240". The camera will take an image every 3 seconds and the image is sent to a mission data processor (MDP), which calculates the centroid of the image. During an observation, the bus system controls the attitude to keep the centroid position of the target in the guide camera with an accuracy of ±5 arc-seconds. With the help of the target guide camera, we will take spectral images with a long exposure time of 50 minutes and good spatial resolution of 20 arc-seconds.
TIMED/GUVI Observations of Aurora, Ionosphere, Thermosphere and Solar EUV Variations
NASA Astrophysics Data System (ADS)
Zhang, Y.; Paxton, L. J.; Schaefer, R. K.
2017-12-01
The FUV (100-200 nm) emissions from the ionosphere and thermosphere carry rich information of the density and composition of the IT system, aurora and solar EUV flux. The key emissions include atomic hydrogen line (121.6nm), atomic oxygen lines (e.g. 130.4, 135.6, 164.1 nm), atomic nitrogen lines (e.g. 120.0, 149.3, 174.3 nm), molecular nitrogen bands (LBH and VK bands) and nitric oxide ɛ bands. TIMED/GUVI data cover the nearly full FUV range and generate many space weather products (ionosphere, thermosphere, aurora and solar EUV) that extend the products from other missions (such as NASA GOLD and ICON) and help to solve some of MIT (Magnetosphere-Ionosphere-Thermosphere) science problems and serve as validation data sources for models.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi
2010-11-01
The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.
EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures
NASA Astrophysics Data System (ADS)
Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander
2007-12-01
Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.
EUV phase-shifting masks and aberration monitors
NASA Astrophysics Data System (ADS)
Deng, Yunfei; Neureuther, Andrew R.
2002-07-01
Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, Regina; Baker, Sherry L.; Windt, David L.
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less
Status of photoelectrochemical production of hydrogen and electrical energy
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Walker, G. H.
1976-01-01
The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.
Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.
Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan
2017-10-01
Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
X ray, extreme and far ultraviolet optical thin films for space applications
NASA Technical Reports Server (NTRS)
Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin
1993-01-01
Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.
Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light
NASA Astrophysics Data System (ADS)
Hernandez Charpak, Jorge Nicolas
Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (<10pm vertical) resolution, including the smallest heat sources probed (20nm) and thinnest film (10.9nm) fully mechanically characterized to date. By probing nanoscale thermal transport (i.e. cooling) of periodic hot nanostructures down to 20nm in characteristic dimension in both 1D (nanolines) and 2D (nanocubes) geometries, I uncovered a new surprising regime of nanoscale thermal transport called the "collectively-diffusive regime". In this regime, nanoscale hot spots cool faster when placed closer together than when farther apart. This is a consequence of the interplay between both the size and spacing of the nanoscale heat sources with the phonon spectrum of a material. This makes our technique one of the only experimental routes to directly probe the dynamics of phonons in complex materials, which is critical to both technological applications and fundamental condensed matter physics. I developed a proof of concept model and used it to extract the first experimental differential conductivity phonon mean free path (MFP) spectra for silicon and sapphire, which compare well with first-principles calculations. However, a complete picture of the physics is still elusive. Thus, I developed a computational solver for the phonon Boltzmann transport equation in realistic experimental geometries. Using this approach, I successfully found confirmation of the influence of the period in thermal transport from periodic heat sources: a smaller periodicity can enhance the heat dissipation efficiency. This result is qualitatively consistent with the results of the "collectively-diffusive regime", but more work is needed for a full theoretical quantitative picture of the experimental results. In other work, I used coherent EUV nanometrology to simultaneously measure, in a non-contact and non-destructive way, Young's modulus and, for the first time, Poisson's ratio of ultra-thin films. I successfully extracted the full elastic tensor of the thinnest films to date (10.9nm). Moreover, by using our technique on a series of low-k dielectric sub-100 nm SiC:H films, I uncovered an unexpected transition from compressible to non-compressible behavior. This new behavior is observed for materials whose network connectivity had been modified through hydrogenation (that breaks bonds in order to decrease the dielectric constant of these materials). This finding demonstrates that coherent EUV nanometrology provides a valuable, quantitative new tool for measuring nanomaterial properties with dimensions an order of magnitude smaller than what was possible with traditional techniques. I also present here some of my written work on science and technology policy studies. I present my thoughts on the Kuhnian model of scientific revolutions and how it relates to my own experience. I also discuss two case studies to illustrate the critical importance of defining appropriate metrics to measure science policies by looking at the design of metrics for the American Reinvestment and Recovery Act, and the results of exploring a novel modality of funding for large complex scientific and technological challenges: the US Department of Energy Innovation HUBs. Coherent EUV nanometrology presents an exciting new window into nanoscale phonon dynamics, making measurements of the phonon MFP spectrum of materials and the full elastic tensor of ultra-thin films possible. It is now a robust technique that is already having impact in many areas of materials science and condensed matter physics, and it will continue to do so in the future.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Haitjema, Jarich; Liu, Xiaomeng; Johansson, Fredrik; Lindblad, Andreas; Castellanos, Sonia; Ottosson, Niklas; Brouwer, Albert M.
2017-03-01
Several metal-containing molecular inorganic materials are currently considered as photoresists for extreme ultraviolet lithography (EUVL). This is primarily due to their high EUV absorption cross section and small building block size, properties which potentially allow both high sensitivity and resolution as well as low line-edge roughness. The photochemical reaction mechanisms that allow these kinds of materials to function as photoresists, however, are still poorly understood. As a step in this direction, we here discuss photochemical reactions upon deep UV (DUV) irradiation of a model negative-tone EUV photoresist material, namely the well-defined molecular tin-oxo cage compound [(SnR)12O14(OH)6]X2 (R = organic group; X = anion) which is spin coated to thin layers of 20 nm. The core electronic structure (Sn 3d, O 1s and C 1s) of fresh and DUV exposed films were then investigated using synchrotron radiationbased hard X-ray photoelectron spectroscopy (HAXPES). This method provides information about the structure and chemical state of the respective atoms in the material. We performed a comparative HAXPES study of the composition of the tin-oxo cage compound [(SnR)12O14(OH)6](OH)2, either fresh directly after spin-coated vs. DUV-exposed materials under either ambient condition or under a dry N2 atmosphere. Different chemical oxidation states and concentrations of atoms and atom types in the fresh and exposed films were found. We further found that the chemistry resulting from exposure in air and N2 is strikingly different, clearly illustrating the influence of film-gas interactions on the (photo)chemical processes that eventually determine the photoresist. Finally, a mechanistic hypothesis for the basic DUV photoreactions in molecular tin-oxo cages is proposed.
CHROMOSPHERIC EVAPORATION IN AN X1.0 FLARE ON 2014 MARCH 29 OBSERVED WITH IRIS AND EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ding, M. D.; Qiu, J.
Chromospheric evaporation refers to dynamic mass motions in flare loops as a result of rapid energy deposition in the chromosphere. These motions have been observed as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines corresponding to upward motions at a few tens to a few hundreds of km s{sup −1}. Past spectroscopic observations have also revealed a dominant stationary component, in addition to the blueshifted component, in emission lines formed at high temperatures (∼10 MK). This is contradictory to evaporation models predicting predominant blueshifts in hot lines. The recently launched Interface Region Imaging Spectrograph (IRIS) provides high-resolution imaging and spectroscopicmore » observations that focus on the chromosphere and transition region in the UV passband. Using the new IRIS observations, combined with coordinated observations from the EUV Imaging Spectrometer, we study the chromospheric evaporation process from the upper chromosphere to the corona during an X1.0 flare on 2014 March 29. We find evident evaporation signatures, characterized by Doppler shifts and line broadening, at two flare ribbons that are separating from each other, suggesting that chromospheric evaporation takes place in successively formed flaring loops throughout the flare. More importantly, we detect dominant blueshifts in the high-temperature Fe xxi line (∼10 MK), in agreement with theoretical predictions. We also find that, in this flare, gentle evaporation occurs at some locations in the rise phase of the flare, while explosive evaporation is detected at some other locations near the peak of the flare. There is a conversion from gentle to explosive evaporation as the flare evolves.« less
The update of resist outgas testing for metal containing resists at EIDEC
NASA Astrophysics Data System (ADS)
Shiobara, Eishi; Mikami, Shinji
2017-10-01
The metal containing resist is one of the candidates for high sensitivity resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [2], [3]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing by HPEUV, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. The investigation and improvement for these issues are ongoing. The updates will be presented in the conference. This work was supported by Ministry of Economy, Trade and Industry (METI) and New Energy and Industrial Technology Development Organization (NEDO). [1] Eishi Shiobara, Shinji Mikami, Satoshi Tanaka, International Symposium on EUV Lithography, Hiroshima, Japan, P-RE-01, (2016). [2] Mark van de Kerkhof, Hans Jasper, Leon Levasier, Rudy Peeters, Roderik van Es, Jan-Willem Bosker, Alexander Zdravkov, Egbert Lenderink, Fabrizio Evangelista, Par Broman, Bartosz Bilski, Thorsten Last, Proc. of SPIE Vol. 10143, 101430D (2017). [3] Oktay Yildirim, Elizabeth Buitrago, Rik Hoefnagels, Marieke Meeuwissen, Sander Wuister, Gijsbert Rispens, Anton van Oosten, Paul Derks, Jo Finders, Michaela Vockenhuber, Yasin Ekinci, Proc. of SPIE Vol. 10143, 101430Q (2017).
Extreme Ultraviolet Spectroscopy of the Thermosphere from the RAIDS Experiment on the ISS
NASA Astrophysics Data System (ADS)
Bishop, R. L.; Stephan, A. W.; Christensen, A. B.; Budzien, S. A.; Straus, P. R.; van Epps, Z.
2009-12-01
The RAIDS experiment is a suite of eight instruments to be flown aboard the Japanese Experiment Module-Exposed Facility on the International Space Station (ISS) in 2009. One of the sensors is the Extreme Ultraviolet Spectrograph (EUVS). The EUVS measures the radiance of the Earth’s airglow with a f/5 Wadsworth spectrograph fronted by a mechanical grid collimator. The 0.1 x 2.3 degree field of view is imaged onto a wedge-and-strip two dimensional detector and collapsed into a one-dimensional spectrum. The vertical profile is assembled from a series of these spectra obtained as the RAIDS platform scans in altitude. Two grating positions provide coverage of the 50.0-85.0 nm region or the 77.0-110.0 nm region at 1.2 nm spectral resolution. We will present a discussion of the scientific targets for the RAIDS EUVS and, if launched on schedule, also the first spectra observed from this sensor. The EUVS is sensitive to a number of emissions in the Earth’s dayglow including atomic and ionized oxygen and argon, ionized nitrogen, and atomic helium. One of the primary RAIDS science objectives is to use the EUVS to obtain simultaneous OII 83.4 nm and 61.7 nm limb profiles to perform an in-depth investigation of the OII excitation and emission processes in the daytime ionosphere. Some of the more dominant spectral features such as the OI (98.9, 102.7 nm), OII (83.4, 61.7 nm), and NII (108.5, 91.6 nm) lines will provide the opportunity to develop new methods to monitor thermospheric O and N2. The OI (102.7 nm) observations may also be used, in conjunction with other RAIDS measurements, to retrieve the spectrally unresolved H Lyman beta and thus a measure of atomic hydrogen. The argon emissions Ar I (104.8, 106.7 nm) and Ar II (91.96, 93.21 nm) will provide information on its relative abundance in the lower thermosphere. . Combinations of measurements, such as the EUVS OI (98.9 nm) and the RAIDS Near Infrared Spectrometer OI (799.0 nm) emission can be used to probe the details of their associated branching ratios and excitation cross sections. Finally, the very quiet solar minimum period provides a unique opportunity to observe the He I 58.4 nm emission at these altitudes. The initial RAIDS EUVS spectra will highlight this potential wealth of future ionospheric and thermospheric studies that can be accomplished using such a unique dataset.
Letsou, Anthea; Liskay, R. Michael
1987-01-01
With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159
Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials
NASA Astrophysics Data System (ADS)
Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung
2018-03-01
The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the electron transfer and the performance of the resist system. The implications to the performances of EUV resists and key engineering requirements for improved resist systems will also be discussed in this work. Our results shed light on the fundamental structure dependence of photoacid generation and the control of the nanoscale structures as well as base polymer-PAG interactions in EVU resist systems, and we expect these knowledge will be useful for the future development of improved EUV resist systems.
3D structure and kinematics characteristics of EUV wave front
NASA Astrophysics Data System (ADS)
Podladchikova, T.; Veronig, A.; Dissauer, K.
2017-12-01
We present 3D reconstructions of EUV wave fronts using multi-point observations from the STEREO-A and STEREO-B spacecraft. EUV waves are large-scale disturbances in the solar corona that are initiated by coronal mass ejections, and are thought to be large-amplitude fast-mode MHD waves or shocks. The aim of our study is to investigate the dynamic evolution of the 3D structure and wave kinematics of EUV wave fronts. We study the events on December 7, 2007 and February 13, 2009 using data from the STEREO/EUVI-A and EUVI-B instruments in the 195 Å filter. The proposed approach is based on a complementary combination of epipolar geometry of stereo vision and perturbation profiles. We propose two different solutions to the matching problem of the wave crest on images from the two spacecraft. One solution is suitable for the early and maximum stage of event development when STEREO-A and STEREO-B see the different facets of the wave, and the wave crest is clearly outlined. The second one is applicable also at the later stage of event development when the wave front becomes diffuse and is faintly visible. This approach allows us to identify automatically the segments of the diffuse front on pairs of STEREO-A and STEREO-B images and to solve the problem of identification and matching of the objects. We find that the EUV wave observed on December 7, 2007 starts with a height of 30-50 Mm, sharply increases to a height of 100-120 Mm about 10 min later, and decreases to 10-20 Mm in the decay phase. Including the 3D evolution of the EUV wave front allowed us to correct the wave kinematics for projection and changing height effects. The velocity of the wave crest (V=215-266 km/s) is larger than the trailing part of the wave pulse (V=103-163 km/s). For the February 9, 2009 event, the upward movement of the wave crest shows an increase from 20 to 100 Mm over a period of 30 min. The velocity of wave crest reaches values of 208-211 km/s.
Atomic hydrogen cleaning of EUV multilayer optics
NASA Astrophysics Data System (ADS)
Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa
2003-06-01
Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Ê/hr for sputtered carbon and 40 Ê/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.
Atomic hydrogen cleaning of EUV multilayer optics
NASA Astrophysics Data System (ADS)
Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa
2003-06-01
Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.
NASA Astrophysics Data System (ADS)
Neupert, W. M.
2005-05-01
Solar observations over more than twenty years (e.g., Gaizauskas and Svestka, 1987, summarizing the "Flare Build-up Study", Feynman and Martin, 1995, and more recently, Wang and Sheeley, 1999) have demonstrated that emergence of new magnetic flux in the vicinity of quiescent filament fields frequently leads to the eruption of those filaments, given polarity orientations favorable for magnetic reconnection. Concurrently, models of the interaction of such magnetic flux configurations have been developed to explain the initiation of flares (e.g., Priest and Forbes, 2002) and coronal mass ejections (Chen et al., 2002). We have used observations made in the 195 Angstrom (Fe XII) band by the EUV imaging Telescope (EIT) on SOHO to identify instances of emerging flux, indicated by new EUV emission, and subsequent eruption of a quiescent filament in a search for coronal changes that might appear as a result of merging magnetic fields. Limiting our study to quiescent filaments distant from active regions, we have identified events in which a slow increase in filament height begins shortly (a few hours) after first appearance of an EUV emission source either within or beside the filament channel. For long filaments, the apex of the rising filament appears to lie above the developing EUV source, implying that the field supporting the filament is locally interacting with the emerging field. Transient EUV features at onset of the eruptive phase include low-lying loops over the neutral line and, more rarely, localized sources apparently associated with the rising filament. No evidence of reconfiguring of an overlying corona (only faintly detected by the EIT) prior to CME initiation has been found. Our results support the hypothesis that at least in some instances the emergence of new magnetic field leads to a loss of filament equilibrium and a coronal mass ejection. This work is supported by NASA Intergovernmental Transfer W-10118 to NOAA's Space Environment Center. SOHO is a project of international cooperation between ESA and NASA.
Sahin, Mehmet
2018-05-23
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
NASA Astrophysics Data System (ADS)
Wan, Linfeng; Cheng, Xin; Shi, Tong; Su, Wei; Ding, M. D.
2016-08-01
In this paper, we study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Interestingly, both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25-50 keV hard X-ray flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover, we find that, when the velocity of the CME reaches ˜600 km s-1, the EUV wave starts to evolve into a shock wave, which is evidenced by the appearance of a type II radio burst. The shock’s formation height is estimated to be ˜0.2 R sun, which is much lower than the height derived previously. Finally, we also study the thermal properties of the CME and the EUV wave. We find that the plasma in the CME leading front and the wave front has a temperature of ˜2 MK, while that in the CME core region and the flare region has a much higher temperature of ≥8 MK.
Fibrillar Chromospheric Spicule-Like Counterparts to an EUV and Soft X-Ray Blowout Coronal Jet
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.
2010-01-01
We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/SOT, EIS, and XRT, with supplemental data from STEREO/EUVI. From EUV and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with bright base, and in EUV it appears as an eruption of relatively cool (approximately 50,000 K) material of horizontal size scale approximately 30" originating from the base of the SXR jet. In SOT Ca II H images the most pronounced analog is a pair of thin (approximately 1") ejections, at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45", leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of "type II" spicules, approximately 100 kilometers per second, and they appear to have spicule-like substructures splitting off from them with horizontal velocity approximately 50 kilometers per second, similar to the velocities of splitting spicules measured by Sterling et al. (2010). Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggests that a sub-population of Ca II type II spicules are the Ca II manifestation of portions of larger-scale erupting magnetic jets. A different sub-population of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here.
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
This program involves analysis and interpretation of EUVE spectrometer observations of the active stars Algol (beta Per) and 71 Tauri. The EUVE satellite spectrometers observed the prototype eclipsing binary Algol over nearly 1.5 orbital periods. Effective exposure times were 100 ksec and 89 ksec in the short wave (70-180 A) and medium wave (140-370 A) channels. High temperature (up to 20 MK) Fe XVI-XXIV emission lines are clearly detected in the overall spectrum. In addition, a quiescent continuum is present which increases towards shorter wavelengths. Using synthesized spectra of optically thin line and continuum emission folded through the instrumental response, we have examined constraints on the (Fe/H) coronal abundance in Algol. We find that the coronal Fe is underabundant by factors that approximately equal 2-4 relative to solar photospheric values, unless an unreasonably large quantity of coronal plasma at T greater than 30 MK is present in the quiescent spectrum. The latter possibility is, however, inconsistent with available X-ray data. Lightcurves of the high temperature EUV lines compared to line emission at He II 304 A show considerable differences, with much deeper minima present in the He II line during both primary and secondary eclipses. Toward the end of the observation a moderate flare lasting approximately 6 hours was detected in the high temperature Fe emission lines. The 71 Tau observation, for about the same exposure time, revealed only a handful of weak emission lines; however, the strongest lines were also those of Fe XXIII/XX, suggesting a hot coronal plasma. No obvious flaring or other variation was present in the 71 Tau Deep Survey lightcurve.
EUV lithography: NXE platform performance overview
NASA Astrophysics Data System (ADS)
Peeters, Rudy; Lok, Sjoerd; Mallman, Joerg; van Noordenburg, Martijn; Harned, Noreen; Kuerz, Peter; Lowisch, Martin; van Setten, Eelco; Schiffelers, Guido; Pirati, Alberto; Stoeldraijer, Judon; Brandt, David; Farrar, Nigel; Fomenkov, Igor; Boom, Herman; Meiling, Hans; Kool, Ron
2014-04-01
The first NXE3300B systems have been qualified and shipped to customers. The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33. It succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. Good overlay and imaging performance has been shown on the NXE:3300B system in line with 22nm device requirements. Full wafer CDU performance of <1.5nm for 22nm dense and iso lines at a dose of ~16mJ/cm2 has been achieved. Matched machine overlay (NXE to immersion) of around 3.5nm has been demonstrated on multiple systems. Dense lines have been exposed down to 13nm half pitch, and contact holes down to 17nm half pitch. 10nm node Metal-1 layers have been exposed with a DOF of 120nm, and using single spacer assisted double patterning flow a resolution of 9nm has been achieved. Source power is the major challenge to overcome in order to achieve cost-effectiveness in EUV and enable introduction into High Volume Manufacturing. With the development of the MOPA+prepulse operation of the source, steps in power have been made, and with automated control the sources have been prepared to be used in a preproduction fab environment. Flexible pupil formation is under development for the NXE:3300B which will extend the usage of the system in HVM, and the resolution for the full system performance can be extended to 16nm. Further improvements in defectivity performance have been made, while in parallel full-scale pellicles are being developed. In this paper we will discuss the current NXE:3300B performance, its future enhancements and the recent progress in EUV source performance.
Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV
NASA Astrophysics Data System (ADS)
van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent
2014-10-01
The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.
NASA Astrophysics Data System (ADS)
Liewer, P. C.; Qiu, J.; Lindsey, C.
2017-10-01
Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jun; Niu, Hai-jun; Wen, Hai-lin
2013-03-15
Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor ofmore » electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.« less
Manufacturability improvements in EUV resist processing toward NXE:3300 processing
NASA Astrophysics Data System (ADS)
Kuwahara, Yuhei; Matsunaga, Koichi; Shimoaoki, Takeshi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie; Shimura, Satoru
2014-03-01
As the design rule of semiconductor process gets finer, extreme ultraviolet lithography (EUVL) technology is aggressively studied as a process for 22nm half pitch and beyond. At present, the studies for EUV focus on manufacturability. It requires fine resolution, uniform, smooth patterns and low defectivity, not only after lithography but also after the etch process. In the first half of 2013, a CLEAN TRACKTM LITHIUS ProTMZ-EUV was installed at imec for POR development in preparation of the ASML NXE:3300. This next generation coating/developing system is equipped with state of the art defect reduction technology. This tool with advanced functions can achieve low defect levels. This paper reports on the progress towards manufacturing defectivity levels and latest optimizations towards the NXE:3300 POR for both lines/spaces and contact holes at imec.
Measurement of EUV lithography pupil amplitude and phase variation via image-based methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Zachary; Verduijn, Erik; Wood, Obert R.
2016-04-01
Here, an approach to image-based EUV aberration metrology using binary mask targets and iterative model-based solutions to extract both the amplitude and phase components of the aberrated pupil function is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms. We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase components of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil amplitude variation was expanded in three different bases: Zernike polynomials,more » Legendre polynomials, and Hermite polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the three.« less
Interferometric at-wavelength flare characterization of EUV optical systems
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2001-01-01
The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.
Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.
2010-11-02
Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.
The initial data products from the EUVE software - A photon's journey through the End-to-End System
NASA Technical Reports Server (NTRS)
Antia, Behram
1993-01-01
The End-to-End System (EES) is a unique collection of software modules created for use at the Center for EUV Astrophysics. The 'pipeline' is a shell script which executes selected EES modules and creates initial data products: skymaps, data sets for individual sources (called 'pigeonholes') and catalogs of sources. This article emphasizes the data from the all-sky survey, conducted between July 22, 1992 and January 21, 1993. A description of each of the major data products will be given and, as an example of how the pipeline works, the reader will follow a photon's path through the software pipeline into a pigeonhole. These data products are the primary goal of the EUVE all-sky survey mission, and so their relative importance for the follow-up science will also be discussed.
Inhomogeneity of PAGs in resist film studied by molecular-dynamics simulations for EUV lithography
NASA Astrophysics Data System (ADS)
Toriumi, Minoru; Itani, Toshiro
2014-03-01
EUV resist materials are requested simultaneously to improve the resolution, line-edge roughness (LER), and sensitivity (RLS). In a resist film inhomogeneous structures in nanometer region may have large effects on directly the resolution and LER and indirectly on sensitivity. Inhomogeneity of PAGs in a hybrid resist for EUV lithography was investigated using molecular dynamics simulations. The hybrid resist film showed the inhomogeneous positions and motions of PAG cations and anions. Free volumes in resist matrix influence the motions of PAGs. Molecular structure such as bulky phenyl groups of a PAG cation localize the positions and reduce the motion of a cation. Chemical properties such as ionic interactions and lone-pair interaction also play an important role to determine the inhomogeneity of PAGs. Fluorine interaction enables active motions of PAG anions.
Newell, M P; Keski-Kuha, R A
1997-08-01
Bidirectional reflectance distribution function (BRDF) measurements of a number of diffuse extreme ultraviolet (EUV) scatterers and EUV baffle materials have been performed with the Goddard EUV scatterometer. BRDF data are presented for white Spectralon SRS-99 at 121.6 nm; the data exhibit a non-Lambertian nature and a total hemispherical reflectance lower than 0.15. Data are also presented for an evaporated Cu black sample, a black Spectralon SRS-02 sample, and a Martin Optical Black sample at wavelengths of 58.4 and 121.6 nm and for angles of incidence of 15 degrees and 45 degrees. Overall Martin Optical Black exhibited the lowest BRDF characteristic, with a total hemispherical reflectance of the order of 0.01 and measured BRDF values as low as 2 x 10(-3) sr(-1).
Efficiency of Energy Harvesting in Ni-Mn-Ga Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Lindquist, Paul; Hobza, Tony; Patrick, Charles; Müllner, Peter
2018-03-01
Many researchers have reported on the voltage and power generated while energy harvesting using Ni-Mn-Ga shape memory alloys; few researchers report on the power conversion efficiency of energy harvesting. We measured the magneto-mechanical behavior and energy harvesting of Ni-Mn-Ga shape memory alloys to quantify the efficiency of energy harvesting using the inverse magneto-plastic effect. At low frequencies, less than 150 Hz, the power conversion efficiency is less than 0.1%. Power conversion efficiency increases with (i) increasing actuation frequency, (ii) increasing actuation stroke, and (iii) decreasing twinning stress. Extrapolating the results of low-frequency experiments to the kHz actuation regime yields a power conversion factor of about 20% for 3 kHz actuation frequency, 7% actuation strain, and 0.05 MPa twinning stress.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.
Decision-theoretic control of EUVE telescope scheduling
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1993-01-01
This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Etched-multilayer phase shifting masks for EUV lithography
Chapman, Henry N.; Taylor, John S.
2005-04-05
A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.
Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Robinson, J C; Spiller, E
2006-02-22
Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.
Telescience - Concepts and contributions to the Extreme Ultraviolet Explorer mission
NASA Technical Reports Server (NTRS)
Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.
1987-01-01
It is shown how the contradictory goals of low-cost and fast data turnaround characterizing the Extreme Ultraviolet Explorer (EUVE) mission can be achieved via the early use of telescience style transparent tools and simulations. The use of transparent tools reduces the parallel development of capability while ensuring that valuable prelaunch experience is not lost in the operations phase. Efforts made to upgrade the 'EUVE electronics' simulator are described.
Results from a new 193nm die-to-database reticle inspection platform
NASA Astrophysics Data System (ADS)
Broadbent, William H.; Alles, David S.; Giusti, Michael T.; Kvamme, Damon F.; Shi, Rui-fang; Sousa, Weston L.; Walsh, Robert; Xiong, Yalin
2010-05-01
A new 193nm wavelength high resolution reticle defect inspection platform has been developed for both die-to-database and die-to-die inspection modes. In its initial configuration, this innovative platform has been designed to meet the reticle qualification requirements of the IC industry for the 22nm logic and 3xhp memory generations (and shrinks) with planned extensions to the next generation. The 22nm/3xhp IC generation includes advanced 193nm optical lithography using conventional RET, advanced computational lithography, and double patterning. Further, EUV pilot line lithography is beginning. This advanced 193nm inspection platform has world-class performance and the capability to meet these diverse needs in optical and EUV lithography. The architecture of the new 193nm inspection platform is described. Die-to-database inspection results are shown on a variety of reticles from industry sources; these reticles include standard programmed defect test reticles, as well as advanced optical and EUV product and product-like reticles. Results show high sensitivity and low false and nuisance detections on complex optical reticle designs and small feature size EUV reticles. A direct comparison with the existing industry standard 257nm wavelength inspection system shows measurable sensitivity improvement for small feature sizes
Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank
2017-06-26
We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.
NASA Technical Reports Server (NTRS)
Kwon, Ryun Young; Chae, Jongchul; Davila, Joseph M.; Zhang, Jie; Moon, Yong-Jae; Poomvises, Watanachak; Jones, Shaela I.
2012-01-01
We unveil the three-dimensional structure of quiet-Sun EUV bright points and their temporal evolution by applying a triangulation method to time series of images taken by SECCHI/EUVI on board the STEREO twin spacecraft. For this study we examine the heights and lengths as the components of the three-dimensional structure of EUV bright points and their temporal evolutions. Among them we present three bright points which show three distinct changes in the height and length: decreasing, increasing, and steady. We show that the three distinct changes are consistent with the motions (converging, diverging, and shearing, respectively) of their photospheric magnetic flux concentrations. Both growth and shrinkage of the magnetic fluxes occur during their lifetimes and they are dominant in the initial and later phases, respectively. They are all multi-temperature loop systems which have hot loops (approx. 10(exp 6.2) K) overlying cooler ones (approx 10(exp 6.0) K) with cool legs (approx 10(exp 4.9) K) during their whole evolutionary histories. Our results imply that the multi-thermal loop system is a general character of EUV bright points. We conclude that EUV bright points are flaring loops formed by magnetic reconnection and their geometry may represent the reconnected magnetic field lines rather than the separator field lines.
High-Resolution EUV Spectroscopy of White Dwarfs
NASA Astrophysics Data System (ADS)
Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.
2014-01-01
We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.
Association of 3He-rich solar energetic particles with large-scale coronal waves
NASA Astrophysics Data System (ADS)
Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark
2016-07-01
Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.
NASA Technical Reports Server (NTRS)
Lee, Michael
1995-01-01
Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.
Ion Traps at the Sun: Implications for Elemental Fractionation
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay
2018-04-01
Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.
NASA Astrophysics Data System (ADS)
Chunder, Anindarupa; Latypov, Azat; Chen, Yulu; Biafore, John J.; Levinson, Harry J.; Bailey, Todd
2017-03-01
Minimization and control of line-edge roughness (LER) and contact-edge roughness (CER) is one of the current challenges limiting EUV line-space and contact hole printability. One significant contributor to feature roughness and CD variability in EUV is photon shot noise (PSN); others are the physical and chemical processes in photoresists, known as resist stochastic effect. Different approaches are available to mitigate each of these contributions. In order to facilitate this mitigation, it is important to assess the magnitude of each of these contributions separately from others. In this paper, we present and test a computational approach based on the concept of an `ideal resist'. An ideal resist is assumed to be devoid of all resist stochastic effects. Hence, such an ideal resist can only be simulated as an `ideal resist model' (IRM) through explicit utilization of the Poisson statistics of PSN2 or direct Monte Carlo simulation of photon absorption in resist. LER estimated using IRM, thus quantifies the exclusive contribution of PSN to LER. The result of the simulation study done using IRM indicates higher magnitude of contribution (60%) from PSN to LER with respect to total or final LER for a sufficiently optimized high dose `state of the art' EUV chemically amplified resist (CAR) model.
Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data
NASA Astrophysics Data System (ADS)
Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.
2014-12-01
Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.
Generation of warm dense matter using an argon based capillary discharge laser
NASA Astrophysics Data System (ADS)
Rossall, A. K.; Tallents, G. J.
2015-06-01
Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.