Sample records for euv focus sensor

  1. Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peth, Christian; Kranzusch, Sebastian; Mann, Klaus

    2004-10-01

    A table top extreme ultraviolet (EUV)-source was developed at Laser-Laboratorium Goettingen for the characterization of optical components and sensoric devices in the wavelength region from 11 to 13 nm. EUV radiation is generated by focusing the beam of a Q-switched Nd:YAG laser into a pulsed xenon gas jet. Since a directed gas jet with a high number density is needed for an optimal performance of the source, conical nozzles with different cone angles were drilled with an excimer laser to produce a supersonic gas jet. The influence of the nozzle geometry on the gas jet was characterized with a Hartmann-Shackmore » wave front sensor. The deformation of a planar wave front after passing the gas jet was analyzed with this sensor, allowing a reconstruction of the gas density distribution. Thus, the gas jet was optimized resulting in an increase of EUV emission by a factor of two and a decrease of the plasma size at the same time.« less

  2. The future of EUV lithography: enabling Moore's Law in the next decade

    NASA Astrophysics Data System (ADS)

    Pirati, Alberto; van Schoot, Jan; Troost, Kars; van Ballegoij, Rob; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos; Finders, Jo; Meiling, Hans; van Setten, Eelco; Mika, Niclas; Dredonx, Jeannot; Stamm, Uwe; Kneer, Bernhard; Thuering, Bernd; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha

    2017-03-01

    While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their development activities on a EUV exposure tool with Numerical Aperture greater than 0.5. The purpose of this scanner, targeting a resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, has been developed to provide the required Numerical Aperture; this lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling, and possibly in the metrology concepts. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the key technology innovations and infrastructure requirements for the next generation EUV systems.

  3. High-NA EUV lithography enabling Moore's law in the next decade

    NASA Astrophysics Data System (ADS)

    van Schoot, Jan; Troost, Kars; Bornebroek, Frank; van Ballegoij, Rob; Lok, Sjoerd; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos P.; Finders, Jo; Meiling, Hans; van Setten, Eelco; Kneer, Bernhard; Kuerz, Peter; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha; Neumann, Jens Timo

    2017-10-01

    While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their activities on a EUV exposure tool with Numerical Aperture of 0.55. The purpose of this scanner, targeting an ultimate resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, capable of providing the required Numerical Aperture has been investigated; This lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the target specifications, key technology innovations and imaging simulations demonstrating the advantages as compared to 0.33NA and showing the capabilities of the next generation EUV systems.

  4. EUV focus sensor: design and modeling

    NASA Astrophysics Data System (ADS)

    Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

    2005-05-01

    We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wave-lengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput opti-mizing the signal-to-noise ratio in the measured intensity contrast.

  5. EUV Focus Sensor: Design and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

    We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using amore » single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wavelengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput optimizing the signal-to-noise ratio in the measured intensity contrast.« less

  6. Remote sensing of the low-latitude daytime ionosphere: ICON simulations and retrievals

    NASA Astrophysics Data System (ADS)

    Stephan, A. W.; Korpela, E.; England, S.; Immel, T. J.

    2016-12-01

    The Ionospheric Connection Explorer (ICON) sensor suite includes a spectrograph that will provide altitude profiles of the OII 61.7 and 83.4 nm airglow features, from which the daytime F-region ionosphere can be inferred. To make the connection between these extreme-ultraviolet (EUV) airglow emissions and ionospheric densities, ICON will use a method that has matured significantly in the last decade with the analysis of data from the Remote Atmospheric and Ionospheric Detection System (RAIDS) on the International Space Station, and the Special Sensor Ultraviolet Limb Imager (SSULI) sensors on the Defense Meteorological Satellite Program (DMSP) series of satellites. We will present end-to-end simulations of ICON EUV airglow measurements and data inversion for the expected viewing geometry and sensor capabilities, including noise. While we will focus on the performance of the algorithm for ICON within the context of the current state of knowledge, we will also identify areas where fundamental information can be gained from the high-sensitivity ICON measurements that could be used as feedback to directly improve the overall performance of the algorithm itself.

  7. Patterned mask inspection technology with Projection Electron Microscope (PEM) technique for 11 nm half-pitch (hp) generation EUV masks

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Yoshikawa, Shoji; Suematsu, Kenichi; Terao, Kenji

    2015-07-01

    High-sensitivity EUV mask pattern defect detection is one of the major issues in order to realize the device fabrication by using the EUV lithography. We have already designed a novel Projection Electron Microscope (PEM) optics that has been integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code), and which seems to be quite promising for 16 nm hp generation EUVL Patterned mask Inspection (PI). Defect inspection sensitivity was evaluated by capturing an electron image generated at the mask by focusing onto an image sensor. The progress of the novel PEM optics performance is not only about making an image sensor with higher resolution but also about doing a better image processing to enhance the defect signal. In this paper, we describe the experimental results of EUV patterned mask inspection using the above-mentioned system. The performance of the system is measured in terms of defect detectability for 11 nm hp generation EUV mask. To improve the inspection throughput for 11 nm hp generation defect detection, it would require a data processing rate of greater than 1.5 Giga- Pixel-Per-Second (GPPS) that would realize less than eight hours of inspection time including the step-and-scan motion associated with the process. The aims of the development program are to attain a higher throughput, and enhance the defect detection sensitivity by using an adequate pixel size with sophisticated image processing resulting in a higher processing rate.

  8. High-NA metrology and sensing on Berkeley MET5

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan; Anderson, Chris; Naulleau, Patrick

    2017-03-01

    In this paper we compare two non-interferometric wavefront sensors suitable for in-situ high-NA EUV optical testing. The first is the AIS sensor, which has been deployed in both inspection and exposure tools. AIS is a compact, optical test that directly measures a wavefront by probing various parts of the imaging optic pupil and measuring localized wavefront curvature. The second is an image-based technique that uses an iterative algorithm based on simulated annealing to reconstruct a wavefront based on matching aerial images through focus. In this technique, customized illumination is used to probe the pupil at specific points to optimize differences in aberration signatures.

  9. Estimation of attitude sensor timetag biases

    NASA Technical Reports Server (NTRS)

    Sedlak, J.

    1995-01-01

    This paper presents an extended Kalman filter for estimating attitude sensor timing errors. Spacecraft attitude is determined by finding the mean rotation from a set of reference vectors in inertial space to the corresponding observed vectors in the body frame. Any timing errors in the observations can lead to attitude errors if either the spacecraft is rotating or the reference vectors themselves vary with time. The state vector here consists of the attitude quaternion, timetag biases, and, optionally, gyro drift rate biases. The filter models the timetags as random walk processes: their expectation values propagate as constants and white noise contributes to their covariance. Thus, this filter is applicable to cases where the true timing errors are constant or slowly varying. The observability of the state vector is studied first through an examination of the algebraic observability condition and then through several examples with simulated star tracker timing errors. The examples use both simulated and actual flight data from the Extreme Ultraviolet Explorer (EUVE). The flight data come from times when EUVE had a constant rotation rate, while the simulated data feature large angle attitude maneuvers. The tests include cases with timetag errors on one or two sensors, both constant and time-varying, and with and without gyro bias errors. Due to EUVE's sensor geometry, the observability of the state vector is severely limited when the spacecraft rotation rate is constant. In the absence of attitude maneuvers, the state elements are highly correlated, and the state estimate is unreliable. The estimates are particularly sensitive to filter mistuning in this case. The EUVE geometry, though, is a degenerate case having coplanar sensors and rotation vector. Observability is much improved and the filter performs well when the rate is either varying or noncoplanar with the sensors, as during a slew. Even with bad geometry and constant rates, if gyro biases are independently known, the timetag error for a single sensor can be accurately estimated as long as its boresight is not too close to the spacecraft rotation axis.

  10. Utilizing the EUVE Innovative Technology Testbed to Reduce Operations Cost for Present and Future Orbiting Mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.

  11. Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.

    2018-06-01

    In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.

  12. Design and progress in the fabrication of an EUV micro exposure tool optics for PREUVE

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tanne, Jean-Francois

    2001-12-01

    SAGEM, through its REOSC product line, is participating since November 1999 to PREUVE, the French EUV initiative, and work within this program especially in the field of EUV illumination and projection optics. After a short description of the PREUVE main lines of activity, we will detail our contributions to this program and work progress. This is mainly focused on basic EUV optics fabrication technology in order to ensure the fabrication of the entire optics assembly of an EUV micro exposure tool.

  13. Contrast matching of line gratings obtained with NXE3XXX and EUV- interference lithography

    NASA Astrophysics Data System (ADS)

    Tasdemir, Zuhal; Mochi, Iacopo; Olvera, Karen Garrido; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Fallica, Roberto; Vockenhuber, Michaela; Ekinci, Yasin

    2017-10-01

    Extreme UV lithography (EUVL) has gained considerable attention for several decades as a potential technology for the semiconductor industry and it is now close to being adopted in high-volume manufacturing. At Paul Scherrer Institute (PSI), we have focused our attention on EUV resist performance issues by testing available high-performance EUV resists in the framework of a joint collaboration with ASML. For this purpose, we use the grating-based EUV-IL setup installed at the Swiss Light Source (SLS) at PSI, in which a coherent beam with 13.5 nm wavelength is used to produce a periodic aerial image with virtually 100% contrast and large depth of focus. Interference lithography is a relatively simple technique and it does not require many optical components, therefore the unintended flare is minimized and the aerial image is well-defined sinusoidal pattern. For the collaborative work between PSI and ASML, exposures are being performed on the EUV-IL exposure tool at PSI. For better quantitative comparison to the NXE scanner results, it is targeted to determine the actual NILS of the EUV-IL exposure tool at PSI. Ultimately, any resist-related metrology must be aligned and compared with the performance of EUV scanners. Moreover, EUV-IL is a powerful method for evaluating the resist performance and a resist which performs well with EUV-IL, shows, in general, also good performance with NXE scanners. However, a quantitative prediction of the performance based on EUV-IL measurements has not been possible due to the differences in aerial image formation. In this work, we aim to study the performance of EUV resists with different aerial images. For this purpose, after the real interference pattern exposure, we overlay a flat field exposure to emulate different levels of contrast. Finally, the results are compared with data obtained from EUV scanner. This study will enable not only match the data obtained from EUV- IL at PSI with the performance of NXE scanners, but also a better understanding of resist fundamentals by studying the effects of the aerial image on resist performance by changing the aerial image contrast in a controlled manner using EUV-IL.

  14. Observation of EUVL mask using coherent EUV scatterometry microscope with high-harmonic-generation EUV source

    NASA Astrophysics Data System (ADS)

    Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo

    2017-07-01

    In extreme ultraviolet (EUV) lithography, development of review tools for EUV mask pattern and phase defect at working wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern (50 - 70 nm thick) and Mo/Si multilayer (280 nm thick) on a glass substrate. This mask pattern seems three-dimensional (3D) structure. This 3D structure would modulate EUV reflection phase, which would cause focus and pattern shifts. Thus, EUV phase imaging is important to evaluate this phase modulation. We have developed coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. EUV phase and intensity image are reconstructed with diffraction images by ptychography with coherent EUV illumination. The high-harmonic-generation (HHG) EUV source was employed for standalone CSM system. In this study, we updated HHG system of pump-laser reduction and gas-pressure control. Two types of EUV mask absorber patterns were observed. An 88-nm lines-and-spaces and a cross-line patterns were clearly reconstructed by ptychography. In addition, a natural defect with 2-μm diameter on the cross-line was well reconstructed. This demonstrated the high capability of the standalone CSM, which system will be used in the factories, such as mask shops and semiconductor fabrication plants.

  15. Nanoplasmonic generation of ultrashort EUV pulses

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  16. Cometary Plasma Probed by Rosetta

    NASA Astrophysics Data System (ADS)

    Galand, Marina; Vigren, Erik; Raghuram, Susarla; Schwartz, Steve; Eriksson, Anders; Edberg, Niklas; Lebreton, Jean-Pierre; Henri, Pierre; Burch, Jim; Fuselier, Stephen; Haessig, Myrtha; Mandt, Kathy; Altwegg, Kathrin; Tzou, Chia-You

    2015-04-01

    In Fall 2014, comet 67P/Churyumov-Gerasimenko, the main target of the Rosetta mission, was at 3 AU from the Sun. Its outgassing rate was only of the order of 5×1025 s-1 based on Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Cometary Pressure Sensor (COPS). Despite such a thin coma, a plasma of cometary origin has been detected by Rosetta Plasma Consortium (RPC) sensors and ROSINA/ Double Focusing Mass Spectrometer (DFMS). Close to the comet they have revealed the presence of a cometary ionosphere, with a hot electron population, consistent with the deposition of Extreme UltraViolet (EUV) solar radiation. We will present a comparison between RPC sensors and an energy deposition model in terms of suprathermal electron intensities [RPC/ Ion and Electron Sensor (IES)] and electron temperature and density [RPC/ LAngmuir Probe (LAP) and RPC/ Mutual Impedance Probe (MIP)]. We will also compare ion composition among the main species, between our ionospheric model and ROSINA/DFMS. We will discuss effects of the space environment on the cometary plasma. Finally, we will highlight any evolution in the cometary plasma as the comet is getting closer to perihelion.

  17. Design and pitch scaling for affordable node transition and EUV insertion scenario

    NASA Astrophysics Data System (ADS)

    Kim, Ryoung-han; Ryckaert, Julien; Raghavan, Praveen; Sherazi, Yasser; Debacker, Peter; Trivkovic, Darko; Gillijns, Werner; Tan, Ling Ee; Drissi, Youssef; Blanco, Victor; Bekaert, Joost; Mao, Ming; Larivière, Stephane; McIntyre, Greg

    2017-04-01

    imec's DTCO and EUV achievement toward imec 7nm (iN7) technology node which is industry 5nm node equivalent is reported with a focus on cost and scaling. Patterning-aware design methodology supports both iArF multiple patterning and EUV under one compliant design rule. FinFET device with contacted poly pitch of 42nm and metal pitch of 32nm with 7.5-track, 6.5-track, and 6-track standard cell library are explored. Scaling boosters are used to provide additional scaling and die cost benefit while lessening pitch shrink burden, and it makes EUV insertion more affordable. EUV pattern fidelity is optimized through OPC, SMO, M3D, mask sizing and SRAF. Processed wafers were characterized and edge-placement-error (EPE) variability is validated for EUV insertion. Scale-ability and cost of ownership of EUV patterning in aligned with iN7 standard cell design, integration and patterning specification are discussed.

  18. LPP-EUV light source for HVM lithography

    NASA Astrophysics Data System (ADS)

    Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.

    2017-01-01

    We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.

  19. EUV Irradiance Inputs to Thermospheric Density Models: Open Issues and Path Forward

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Bruinsma, S.

    2018-01-01

    One of the objectives of the NASA Living With a Star Institute on "Nowcasting of Atmospheric Drag for low Earth orbit (LEO) Spacecraft" was to investigate whether and how to increase the accuracy of atmospheric drag models by improving the quality of the solar forcing inputs, namely, extreme ultraviolet (EUV) irradiance information. In this focused review, we examine the status of and issues with EUV measurements and proxies, discuss recent promising developments, and suggest a number of ways to improve the reliability, availability, and forecast accuracy of EUV measurements in the next solar cycle.

  20. Carbon contamination topography analysis of EUV masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Y.-J.; Yankulin, L.; Thomas, P.

    2010-03-12

    The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.

  1. Spherical EUV and Plasma Spectrometer (seps) -a Monitor to Measure the Plasma and EUV Environment in Space

    NASA Astrophysics Data System (ADS)

    Brunner, Raimund; Schmidtke, Gerhard; Konz, Werner; Pfeffer, Wilfried

    A low-cost monitor to measure the EUV and plasma environment in space is presented. The device consists of three (or more) isolated spheres, a metallic sphere, one or more highly trans-parent Inner Grids and Outer Grids. Each one is being connected to a sensitive floating elec-trometer. By setting different potentials to the grids as well as to the sphere and varying one or more of their voltages, measurements of spectral solar EUV irradiance (15-200 nm), of local plasma parameters such as electron and ion densities, electron energies and temperatures as well as ion compositions and debris events can be derived from the current recordings. This detector does not require any (solar) pointing device. The primary goal is to study the impact of solar activity events (e.g. CMEs) as well as subsequent reactions of the ionospheric/thermospheric systems (including space weather occurences). The capability of SEPS for measuring EUV pho-ton fluxes as well as plasma parameters in the energy range from 0 to +/-70 eV is demonstrated by laboratory measurements as performed in the IPM laboratory, at BESSY-PTB electron syn-chrotron in Berlin and at ESA/ESTEC plasma chamber. Based on the laboratory recording of plasma recombination EUV emission the sensor is suitable to detect also auroral and airglow radiations. -The state of the art in the development of this device is reported.

  2. Single-expose patterning development for EUV lithography

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Petrillo, Karen; Meli, Luciana; Shearer, Jeffrey C.; Beique, Genevieve; Sun, Lei; Seshadri, Indira; Oh, Taehwan; Han, Seulgi; Saulnier, Nicole; Lee, Joe; Arnold, John C.; Hamieh, Bassem; Felix, Nelson M.; Furukawa, Tsuyoshi; Singh, Lovejeet; Ayothi, Ramakrishnan

    2017-03-01

    Initial readiness of EUV (extreme ultraviolet) patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. With the substantial cost of EUV exposure there is significant interest in extending the capability to do single exposure patterning with EUV. To enable this, emphasis must be placed on the aspect ratios, adhesion, defectivity reduction, etch selectivity, and imaging control of the whole patterning process. Innovations in resist materials and processes must be included to realize the full entitlement of EUV lithography at 0.33NA. In addition, enhancements in the patterning process to enable good defectivity, lithographic process window, and post etch pattern fidelity are also required. Through this work, the fundamental material challenges in driving down the effective k1 factor will be highlighted.

  3. Feasibility of using Extreme Ultraviolet Explorer (EUVE) reaction wheels to satisfy Space Infrared Telescope Facility (SIRTF) maneuver requirements

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.

    1990-01-01

    A digital computer simulation is used to determine if the extreme ultraviolet explorer (EUVE) reaction wheels can provide sufficient torque and momentum storage capability to meet the space infrared telescope facility (SIRTF) maneuver requirements. A brief description of the pointing control system (PCS) and the sensor and actuator dynamic models used in the simulation is presented. A model to represent a disturbance such as fluid sloshing is developed. Results developed with the simulation, and a discussion of these results are presented.

  4. Status of EUVL mask development in Europe (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Peters, Jan H.

    2005-06-01

    EUV lithography is the prime candidate for the next generation lithography technology after 193 nm immersion lithography. The commercial onset for this technology is expected for the 45 nm half-pitch technology or below. Several European and national projects and quite a large number of companies and research institutions in Europe work on various aspects of the technological challenges to make EUV a commercially viable technology in the not so far future. Here the development of EUV sources, the development of an EUV exposure tools, metrology tools dedicated for characterization of mask, the production of EUV mask blanks and the mask structuring itself are the key areas in which major activities can be found. In this talk we will primarily focus on those activities, which are related to establish an EUV mask supply chain with all its ingredients from substrate production, polishing, deposition of EUV layers, blank characterization, mask patterning process and the consecutive metrology and defect inspection as well as shipping and handling from blank supply to usage in the wafer fab. The EUV mask related projects on the national level are primarily supported by the French Ministry of Economics and Finance (MinEFi) and the German Ministry of Education and Research (BMBF).

  5. EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2015-12-01

    Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.

  6. ``Big Bang" for NASA's Buck: Nearly Three Years of EUVE Mission Operations at UCB

    NASA Astrophysics Data System (ADS)

    Stroozas, B. A.; Nevitt, R.; McDonald, K. E.; Cullison, J.; Malina, R. F.

    1999-12-01

    After over seven years in orbit, NASA's Extreme Ultraviolet Explorer (EUVE) satellite continues to perform flawlessly and with no significant loss of science capabilities. EUVE continues to produce important and exciting science results and, with reentry not expected until 2003-2004, many more such discoveries await. In the nearly three years since the outsourcing of EUVE from NASA's Goddard Space Flight Center, the small EUVE operations team at the University of California at Berkeley (UCB) has successfully conducted all aspects of the EUVE mission -- from satellite operations, science and mission planning, and data processing, delivery, and archival, to software support, systems administration, science management, and overall mission direction. This paper discusses UCB's continued focus on automation and streamlining, in all aspects of the Project, as the means to maximize EUVE's overall scientific productivity while minimizing costs. Multitasking, non-traditional work roles, and risk management have led to expanded observing capabilities while achieving significant cost reductions and maintaining the mission's historical 99 return. This work was funded under NASA Cooperative Agreement NCC5-138.

  7. A New Relationship Between Soft X-Rays and EUV Flare Light Curves

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward

    2016-05-01

    Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, it emits radiation at different EUV wavelengths when the dropping temperature passes a line’s temperature of formation. This results in a delay in the emissions from cooler EUV lines relative to hotter EUV lines. Therefore, characterizing how this hot plasma cools is important for understanding how the corresponding geo-effective extreme ultraviolet (EUV) irradiance evolves in time. I present a simple new framework in which to study flare cooling by using a Lumped Element Thermal Model (LETM). LETM is frequently used in science and engineering to simplify a complex multi-dimensional thermal system by reducing it to a 0-D thermal circuit. For example, a structure that conducts heat out of a system is simplified with a resistive element and a structure that allows a system to store heat is simplified with a capacitive element. A major advantage of LETM is that the specific geometry of a system can be ignored, allowing for an intuitive analysis of the major thermal processes. I show that LETM is able to accurately reproduce the temporal evolution of cooler flare emission lines based on hotter emission line evolution. In particular, it can be used to predict the evolution of EUV flare light curves using the NOAA X-Ray Sensor (XRS).

  8. The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers

    NASA Astrophysics Data System (ADS)

    Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.

    2017-06-01

    Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.

  9. A critical assessment of two types of personal UV dosimeters.

    PubMed

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  10. Imaging performance improvement of coherent extreme-ultraviolet scatterometry microscope with high-harmonic-generation extreme-ultraviolet source

    NASA Astrophysics Data System (ADS)

    Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo

    2017-06-01

    In extreme-ultraviolet (EUV) lithography, the development of a review apparatus for the EUV mask pattern at an exposure wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern and a Mo/Si multilayer on a glass substrate. This mask pattern has a three-dimensional (3D) structure. The 3D structure would modulate the EUV reflection phase, which would cause focus and pattern shifts. Thus, the review of the EUV phase image is also important. We have developed a coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. The EUV phase and intensity images were reconstructed with diffraction images by ptychography. For a standalone mask review, the high-harmonic-generation (HHG) EUV source was employed. In this study, we updated the sample stage, pump-laser reduction system, and gas-pressure control system to reconstruct the image. As a result, an 88 nm line-and-space pattern and a cross-line pattern were reconstructed. In addition, a particle defect of 2 µm diameter was well reconstructed. This demonstrated the high capability of the standalone CSM, which can hence be used in factories, such as mask shops and semiconductor fabrication plants.

  11. Extreme Ultraviolet Spectroscopy of the Thermosphere from the RAIDS Experiment on the ISS

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Stephan, A. W.; Christensen, A. B.; Budzien, S. A.; Straus, P. R.; van Epps, Z.

    2009-12-01

    The RAIDS experiment is a suite of eight instruments to be flown aboard the Japanese Experiment Module-Exposed Facility on the International Space Station (ISS) in 2009. One of the sensors is the Extreme Ultraviolet Spectrograph (EUVS). The EUVS measures the radiance of the Earth’s airglow with a f/5 Wadsworth spectrograph fronted by a mechanical grid collimator. The 0.1 x 2.3 degree field of view is imaged onto a wedge-and-strip two dimensional detector and collapsed into a one-dimensional spectrum. The vertical profile is assembled from a series of these spectra obtained as the RAIDS platform scans in altitude. Two grating positions provide coverage of the 50.0-85.0 nm region or the 77.0-110.0 nm region at 1.2 nm spectral resolution. We will present a discussion of the scientific targets for the RAIDS EUVS and, if launched on schedule, also the first spectra observed from this sensor. The EUVS is sensitive to a number of emissions in the Earth’s dayglow including atomic and ionized oxygen and argon, ionized nitrogen, and atomic helium. One of the primary RAIDS science objectives is to use the EUVS to obtain simultaneous OII 83.4 nm and 61.7 nm limb profiles to perform an in-depth investigation of the OII excitation and emission processes in the daytime ionosphere. Some of the more dominant spectral features such as the OI (98.9, 102.7 nm), OII (83.4, 61.7 nm), and NII (108.5, 91.6 nm) lines will provide the opportunity to develop new methods to monitor thermospheric O and N2. The OI (102.7 nm) observations may also be used, in conjunction with other RAIDS measurements, to retrieve the spectrally unresolved H Lyman beta and thus a measure of atomic hydrogen. The argon emissions Ar I (104.8, 106.7 nm) and Ar II (91.96, 93.21 nm) will provide information on its relative abundance in the lower thermosphere. . Combinations of measurements, such as the EUVS OI (98.9 nm) and the RAIDS Near Infrared Spectrometer OI (799.0 nm) emission can be used to probe the details of their associated branching ratios and excitation cross sections. Finally, the very quiet solar minimum period provides a unique opportunity to observe the He I 58.4 nm emission at these altitudes. The initial RAIDS EUVS spectra will highlight this potential wealth of future ionospheric and thermospheric studies that can be accomplished using such a unique dataset.

  12. Maskless EUV lithography: an already difficult technology made even more complicated?

    NASA Astrophysics Data System (ADS)

    Chen, Yijian

    2012-03-01

    In this paper, we present the research progress made in maskless EUV lithography and discuss the emerging opportunities for this disruptive technology. It will be shown nanomirrors based maskless approach is one path to costeffective and defect-free EUV lithography, rather than making it even more complicated. The focus of our work is to optimize the existing vertical comb process and scale down the mirror size from several microns to sub-micron regime. The nanomirror device scaling, system configuration, and design issues will be addressed. We also report our theoretical and simulation study of reflective EUV nanomirror based imaging behavior. Dense line/space patterns are formed with an EUV nanomirror array by assigning a phase shift of π to neighboring nanomirrors. Our simulation results show that phase/intensity imbalance is an inherent characteristic of maskless EUV lithography while it only poses a manageable challenge to CD control and process window. The wafer scan and EUV laser jitter induced image blur phenomenon is discussed and a blurred imaging theory is constructed. This blur effect is found to degrade the image contrast at a level that mainly depends on the wafer scan speed.

  13. Actinic imaging and evaluation of phase structures on EUV lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin

    2010-09-28

    The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less

  14. Response of inorganic materials to laser - plasma EUV radiation focused with a lobster eye collector

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Havlikova, Radka; Pína, Ladislav; Švéda, Libor; Inneman, Adolf

    2007-05-01

    A single photon of EUV radiation carries enough energy to break any chemical bond or excite electrons from inner atomic shells. It means that the radiation regardless of its intensity can modify chemical structure of molecules. It is the reason that the radiation even with low intensity can cause fragmentation of long chains of organic materials and desorption of small parts from their surface. In this work interaction of EUV radiation with inorganic materials was investigated. Different inorganic samples were irradiated with a 10 Hz laser - plasma EUV source based on a gas puff target. The radiation was focused on a sample surface using a lobster eye collector. Radiation fluence at the surface reached 30 mJ/cm2 within a wavelength range 7 - 20 nm. In most cases there was no surface damage even after several minutes of irradiation. In some cases there could be noticed discolouration of an irradiated surface or evidences of thermal effects. In most cases however luminescent and scattered radiation was observed. The luminescent radiation was emitted in different wavelength ranges. It was recorded in a visible range of radiation and also in a wide wavelength range including UV, VUV and EUV. The radiation was especially intense in a case of non-metallic chemical compounds.

  15. Coater/developer based techniques to improve high-resolution EUV patterning defectivity

    NASA Astrophysics Data System (ADS)

    Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Liu, Eric; Ko, Akiteru; Kawakami, Shinichiro; Shimoaoki, Takeshi; Hashimoto, Yusaku; Tanaka, Koichiro; Petrillo, Karen; Meli, Luciana; De Silva, Anuja; Xu, Yongan; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex

    2017-10-01

    Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates under consideration for enabling the next generation of devices, for 7nm node and beyond. As the focus shifts to driving down the 'effective' k1 factor and enabling the full scaling entitlement of EUV patterning, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse, and eliminate film-related defects. In addition, CD uniformity and LWR/LER must be improved in terms of patterning performance. Tokyo Electron Limited (TEL™) and IBM Corporation are continuously developing manufacturing quality processes for EUV. In this paper, we review the ongoing progress in coater/developer based processes (coating, developing, baking) that are required to enable EUV patterning.

  16. Ultimate patterning limits for EUV at 5nm node and beyond

    NASA Astrophysics Data System (ADS)

    Ali, Rehab Kotb; Hamed Fatehy, Ahmed; Lafferty, Neal; Word, James

    2018-03-01

    The 5nm technology node introduces more aggressive geometries than previous nodes. In this paper, we are introducing a comprehensive study to examine the pattering limits of EUV at 0.33NA. The study is divided into two main approaches: (A) Exploring pattering limits of Single Exposure EUV Cut/Block mask in Self-Aligned-Multi-Patterning (SAMP) process, and (B) Exploring the pattering limits of a Single Exposure EUV printing of metal Layers. The printability of the resulted OPC masks is checked through a model based manufacturing flow for the two pattering approaches. The final manufactured patterns are quantified by Edge Placement Error (EPE), Process Variation Band (PVBand), soft/hard bridging and pinching, Image Log Slope (ILS) and Common Depth of Focus (CDOF)

  17. Implementation of assist features in EUV lithography

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Burkhardt, Martin; Raghunathan, Ananthan; Torres, Andres; Gupta, Rachit; Word, James

    2015-03-01

    The introduction of EUV lithography will happen at a critical feature pitch which corresponds to a k1 factor of roughly 0.45. While this number seems not very aggressive compared to recent ArF lithography nodes, the number is sufficiently low that the introduction of assist features has to be considered. While the small NA makes the k1 factor larger, the depth of focus still needs to be scaled down with wavelength. However the exposure tool's focus control is not greatly improved over the ArF tools, so other solutions to improve the depth of focus, e.g. SRAFs, are needed. On the other hand, sub-resolution assist features (SRAFs) require very small mask dimensions, which make masks more costly to write and inspect. Another disadvantage of SRAFs is the fact that they may cause pattern-dependent best focus shift due to thick mask effects. Those effects can be predicted, but the shift of best focus and the associated tilt of Bossung curves make the process more difficult to control. We investigate the impact of SRAFs on printing in EUV lithography and evaluate advantages and disadvantages. By using image quality parameters such as best focus (BF), and depth of focus (DOF), respectively with and without SRAFs, we will answer the question if we can gain a net benefit for 1D and 2D patterns by adding SRAFs. SRAFs will only be introduced if any net improvement in process variation (PV) outweighs the additional expense of assist patterning on the mask. In this paper, we investigate the difference in printing behavior of symmetric and asymmetric SRAF placement and whether through slit effect needs to be considered in SRAF placement for EUV lithography.

  18. A study of EUV emission from the O4f star Zeta Puppis

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Vallerga, John

    1995-01-01

    Our 20 ks observation did not allow us to carry out our primary objective, i.e., to test the limitations of deeply embedded EUV and X-ray sources. However, it did provide a very useful constraint in our analysis of a newly acquired high S/N ROSAT PSPC X-ray spectrum of Zeta Pup. In addition, modifications to our stellar wind opacity code have been preformed to investigate the sensitivity of the EUV opacity energy range to different photospheric model flux inputs and different wind structures. These analyses provided the justification for a 140 ks follow up EUVE Cycle III observation of this star. We have recently been informed that our requested observation has been accepted as a Type 1 target for Cycle III. The remainder of this report focuses on the following: (1) a brief background on the status of X-ray emission from OB stars; (2) a discussion on the importance of EUV observations; (3) a discussion of our scientific objectives; and (4) a summary of our technical approach for our Cycle III observation (including the predicted EUV counts for various lines.)

  19. Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F.; Andersson, L.; Mitchell, D.; Jakosky, B. M.

    2017-04-01

    We study the Mars Atmosphere and Volatile Evolution spacecraft observations of Martian planetary ion escape during two time periods: 11 November 2014 to 19 March 2015 and 4 June 2015 to 24 October 2015, with the focus on understanding the seasonal variability of Martian ion escape in response to the solar extreme ultraviolet (EUV) flux. We organize the >6 eV O+ ion data by the upstream electric field direction to estimate the escape rates through the plume and tail. To investigate the ion escape dependence on the solar EUV flux, we constrain the solar wind dynamic pressure and interplanetary magnetic filed strength and compare the ion escape rates through the plume and tail in different energy ranges under high and low EUV conditions. We found that the total >6 eV O+ escape rate increases from 2 to 3 × 1024 s-1 as the EUV irradiance increases by almost the same factor, mostly on the <1 keV tailward escape. The plume escape rate does not vary significantly with EUV. The relative contribution from the plume to the total escape varies between 30% and 20% from low to high EUV. Our results suggest that the Martian ion escape is sensitive to the seasonal EUV variation, and the contribution from plume escape becomes more important under low EUV conditions.

  20. Update on EUV radiometry at PTB

    NASA Astrophysics Data System (ADS)

    Laubis, Christian; Barboutis, Annett; Buchholz, Christian; Fischer, Andreas; Haase, Anton; Knorr, Florian; Mentzel, Heiko; Puls, Jana; Schönstedt, Anja; Sintschuk, Michael; Soltwisch, Victor; Stadelhoff, Christian; Scholze, Frank

    2016-03-01

    The development of technology infrastructure for EUV Lithography (EUVL) still requires higher levels of technology readiness in many fields. A large number of new materials will need to be introduced. For example, development of EUV compatible pellicles to adopt an approved method from optical lithography for EUVL needs completely new thin membranes which have not been available before. To support these developments, PTB with its decades of experience [1] in EUV metrology [2] provides a wide range of actinic and non actinic measurements at in-band EUV wavelengths as well as out of band. Two dedicated, complimentary EUV beamlines [3] are available for radiometric [4,5] characterizations benefiting from small divergence or from adjustable spot size respectively. The wavelength range covered reaches from below 1 nm to 45 nm [6] for the EUV beamlines [7] to longer wavelengths if in addition the VUV beamline is employed. The standard spot size is 1 mm by 1 mm with an option to go as low as 0.1 mm to 0.1 mm. A separate beamline offers an exposure setup. Exposure power levels of 20 W/cm2 have been employed in the past, lower fluencies are available by attenuation or out of focus exposure. Owing to a differential pumping stage, the sample can be held under defined gas conditions during exposure. We present an updated overview on our instrumentation and analysis capabilities for EUV metrology and provide data for illustration.

  1. Microfabrication of through holes in polydimethylsiloxane (PDMS) sheets using a laser plasma EUV source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki

    2017-03-01

    Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.

  2. A stand-alone compact EUV microscope based on gas-puff target source.

    PubMed

    Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk

    2017-02-01

    We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  4. Stability and imaging of the ASML EUV alpha demo tool

    NASA Astrophysics Data System (ADS)

    Hermans, Jan V.; Baudemprez, Bart; Lorusso, Gian; Hendrickx, Eric; van Dijk, Andre; Jonckheere, Rik; Goethals, Anne-Marie

    2009-03-01

    Extreme Ultra-Violet (EUV) lithography is the leading candidate for semiconductor manufacturing of the 22nm technology node and beyond, due to the very short wavelength of 13.5nm. However, reducing the wavelength adds complexity to the lithographic process. The impact of the EUV specific conditions on lithographic performance needs to be understood, before bringing EUV lithography into pre-production. To provide early learning on EUV, an EUV fullfield scanner, the Alpha Demo Tool (ADT) from ASML was installed at IMEC, using a Numerical Aperture (NA) of 0.25. In this paper we report on different aspects of the ADT: the imaging and overlay performance and both short and long-term stability. For 40nm dense Lines-Spaces (LS), the ADT shows an across field overlapping process window of 270nm Depth Of Focus (DOF) at 10% Exposure Latitude (EL) and a wafer CD Uniformity (CDU) of 3nm 3σ, without any corrections for process or reticle. The wafer CDU is correlated to different factors that are known to influence the CD fingerprint from traditional lithography: slit intensity uniformity, focus plane deviation and reticle CD error. Taking these contributions into account, the CD through slit fingerprint for 40nm LS is simulated with excellent agreement to experimental data. The ADT shows good CD stability over 9 months of operation, both intrafield and across wafer. The projection optics reflectivity has not degraded over 9 months. Measured overlay performance with respect to a dry tool shows |Mean|+3σ below 20nm with more correction potential by applying field-by-field corrections (|Mean|+3σ <=10nm). For 22nm SRAM application, both contact hole and metal layer were printed in EUV with 10% CD and 15nm overlay control. Below 40nm, the ADT shows good wafer CDU for 30nm dense and isolated lines (on the same wafer) and 38nm dense Contact Holes (CH). First 28nm dense line CDU data are achieved. The results indicate that the ADT can be used effectively for EUV process development before installation of the pre-production tool, the ASML NXE Gen. 1 at IMEC.

  5. Debris- and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.

    2007-05-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  6. Compact and Light-Weight Solar Spaceflight Instrument Designs Utilizing Newly Developed Miniature Free-Standing Zone Plates: EUV Radiometer and Limb-Scanning Monochromator

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; McMullin, D. R.; Bremer, J.; Chang, C.; Sakdinawat, A.; Jones, A. R.; Vest, R.

    2014-12-01

    Two solar instrument designs are presented that utilize newly developed miniature free-standing zone plates having interconnected Au opaque bars and no support membrane resulting in excellent long-term stability in space. Both instruments are based on a zone plate having 4 mm outer diameter and 1 to 2 degree field of view. The zone plate collects EUV radiation and focuses a narrow bandpass through a pinhole aperture and onto a silicon photodiode detector. As a miniature radiometer, EUV irradiance is accurately determined from the zone plate efficiency and the photodiode responsivity that are calibrated at the NIST SURF synchrotron facility. The EUV radiometer is pointed to the Sun and measures the absolute solar EUV irradiance in high time cadence suitable for solar physics and space weather applications. As a limb-scanning instrument in low earth orbit, a miniature zone-plate monochromator measures the extinction of solar EUV radiation by scattering through the upper atmosphere which is a measure of the variability of the ionosphere. Both instruments are compact and light-weight and are attractive for CubeSats and other missions where resources are extremely limited.

  7. The novel top-coat material for RLS trade-off reduction in EUVL

    NASA Astrophysics Data System (ADS)

    Onishi, Ryuji; Sakamoto, Rikimaru; Fujitani, Noriaki; Endo, Takafumi; Ho, Bang-ching

    2012-03-01

    For the next generation lithography (NGL), several technologies have been proposed to achieve the 22nm-node devices and beyond. Extreme ultraviolet (EUV) lithography is one of the candidates for the next generation lithography. In EUV light source development, low power is one of the critical issue because of the low throughput, and another issue is Out of Band (OoB) light existing in EUV light. OoB is concerned to be the cause of deterioration for the lithography performance. In order to avoid this critical issue, we focused on development of the resist top coat material with OoB absorption property as Out of Band Protection Layer (OBPL). We designed this material having high absorbance around 240nm wavelength and high transmittance for EUV light. And this material aimed to improve sensitivity, resolution and LWR performance.

  8. Design requirements for a stand alone EUV interferometer

    NASA Astrophysics Data System (ADS)

    Michallon, Ph.; Constancias, C.; Lagrange, A.; Dalzotto, B.

    2008-03-01

    EUV lithography is expected to be inserted for the 32/22 nm nodes with possible extension below. EUV resist availability remains one of the main issues to be resolved. There is an urgent need to provide suitable tools to accelerate resist development and to achieve resolution, LER and sensitivity specifications simultaneously. An interferometer lithography tool offers advantages regarding conventional EUV exposure tool. It allows the evaluation of resists, free from the deficiencies of optics and mask which are limiting the achieved resolution. Traditionally, a dedicated beam line from a synchrotron, with limited access, is used as a light source in EUV interference lithography. This paper identifies the technology locks to develop a stand alone EUV interferometer using a compact EUV source. It will describe the theoretical solutions adopted and especially look at the feasibility according to available technologies. EUV sources available on the market have been evaluated in terms of power level, source size, spatial coherency, dose uniformity, accuracy, stability and reproducibility. According to the EUV source characteristics, several optic designs were studied (simple or double gratings). For each of these solutions, the source and collimation optic specifications have been determined. To reduce the exposure time, a new grating technology will also be presented allowing to significantly increasing the transmission system efficiency. The optical grating designs were studied to allow multi-pitch resolution print on the same exposure without any focus adjustment. Finally micro mechanical system supporting the gratings was studied integrating the issues due to vacuum environment, alignment capability, motion precision, automation and metrology to ensure the needed placement control between gratings and wafer. A similar study was carried out for the collimation-optics mechanical support which depends on the source characteristics.

  9. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    NASA Astrophysics Data System (ADS)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  10. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartnik, A., E-mail: andrzej.bartnik@wat.edu.pl; Wachulak, P.; Fiedorowicz, H.

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Krmore » plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.« less

  11. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  12. Experience from the in-flight calibration of the Extreme Ultraviolet Explorer (EUVE) and Upper Atmosphere Research Satellite (UARS) fixed head star trackers (FHSTs)

    NASA Technical Reports Server (NTRS)

    Lee, Michael

    1995-01-01

    Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.

  13. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less

  14. Improvements in resist performance towards EUV HVM

    NASA Astrophysics Data System (ADS)

    Yildirim, Oktay; Buitrago, Elizabeth; Hoefnagels, Rik; Meeuwissen, Marieke; Wuister, Sander; Rispens, Gijsbert; van Oosten, Anton; Derks, Paul; Finders, Jo; Vockenhuber, Michaela; Ekinci, Yasin

    2017-03-01

    Extreme ultraviolet (EUV) lithography with 13.5 nm wavelength is the main option for sub-10nm patterning in the semiconductor industry. We report improvements in resist performance towards EUV high volume manufacturing. A local CD uniformity (LCDU) model is introduced and validated with experimental contact hole (CH) data. Resist performance is analyzed in terms of ultimate printing resolution (R), line width roughness (LWR), sensitivity (S), exposure latitude (EL) and depth of focus (DOF). Resist performance of dense lines at 13 nm half-pitch and beyond is shown by chemical amplified resist (CAR) and non-CAR (Inpria YA Series) on NXE scanner. Resolution down to 10nm half pitch (hp) is shown by Inpria YA Series resist exposed on interference lithography at the Paul Sherrer Institute. Contact holes contrast and consequent LCDU improvement is achieved on a NXE:3400 scanner by decreasing the pupil fill ratio. State-of-the-art imaging meets 5nm node requirements for CHs. A dynamic gas lock (DGL) membrane is introduced between projection optics box (POB) and wafer stage. The DGL membrane will suppress the negative impact of resist outgassing on the projection optics by 100%, enabling a wider range of resist materials to be used. The validated LCDU model indicates that the imaging requirements of the 3nm node can be met with single exposure using a high-NA EUV scanner. The current status, trends, and potential roadblocks for EUV resists are discussed. Our results mark the progress and the improvement points in EUV resist materials to support EUV ecosystem.

  15. Postlaunch calibration of spacecraft attitude instruments

    NASA Technical Reports Server (NTRS)

    Davis, W.; Hashmall, J.; Garrick, J.; Harman, R.

    1993-01-01

    The accuracy of both onboard and ground attitude determination can be significantly enhanced by calibrating spacecraft attitude instruments (sensors) after launch. Although attitude sensors are accurately calibrated before launch, the stresses of launch and the space environment inevitably cause changes in sensor parameters. During the mission, these parameters may continue to drift requiring repeated on-orbit calibrations. The goal of attitude sensor calibration is to reduce the systematic errors in the measurement models. There are two stages at which systematic errors may enter. The first occurs in the conversion of sensor output into an observation vector in the sensor frame. The second occurs in the transformation of the vector from the sensor frame to the spacecraft attitude reference frame. This paper presents postlaunch alignment and transfer function calibration of the attitude sensors for the Compton Gamma Ray Observatory (GRO), the Upper Atmosphere Research Satellite (UARS), and the Extreme Ultraviolet Explorer (EUVE).

  16. Laser-plasma extreme ultraviolet and soft X-ray sources based on a double stream gas puff target: interaction of the radiation pulses with matter

    NASA Astrophysics Data System (ADS)

    Bartnik, A.

    2015-06-01

    In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.

  17. Ionising sources in the coma of 67P probed by Rosetta

    NASA Astrophysics Data System (ADS)

    Heritier, Kevin; Galand, Marina; Henri, Pierre; Eriksson, Anders; Odelstad, Elias; Altwegg, Kathrin; Beth, Arnaud; Broiles, Thomas; Burch, Jim; Carr, Christopher; Cupido, Emanuele; Glassmeier, Karl-Heinz; Nilsson, Hans; Richter, Ingo; Rubin, Martin; Vallieres, Xavier; Vigren, Erik

    2017-04-01

    An ionospheric model has been developed in order to quantify the ion number density in the coma of 67P/Churyumov-Gerasimenko. The model is driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Cometary Pressure Sensor (COPS) neutral density and assumes isentropic expansion for the neutral density profile. The two ionisation sources considered are photo-ionisation by solar extreme ultraviolet (EUV) radiation and electron-impact ionisation. The EUV radiation is estimated from fluxes measured by the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/ Solar EUV Experiment (SEE), taking into account the phase shift and the heliocentric distance ratio; between Earth and comet 67P. The electron-impact ionisation production rates are derived from Rosetta Plasma Consortium (RPC)-Ion and Electron Sensor (IES) integrated electron fluxes and corrected for the S/C potential from RPC/LAngmuir Probe (LAP) measurements. Our results are compared with in situ measurements of the plasma density from RPC-Mutual Impedance Probe (MIP) and RPC-LAP. There is a good agreement between the modelled and RPC observed electron densities. The ionospheric model enables to distinguish the relative contributions of the different sources to the total cometary plasma. At high heliocentric distances, electron-impact ionisation becomes the dominant ionisation source and is enhanced over the winter hemisphere. As the solar activity has decreased since the beginning of the mission in 2014, the relative importance of photo-ionisation has decreased as well. However, at low heliocentric distances, photo-ionisation seems to be the most dominant ionising source, in particular through the perihelion period in summer 2015.

  18. Extreme ultraviolet patterning of tin-oxo cages

    NASA Astrophysics Data System (ADS)

    Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.

    2017-07-01

    We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.

  19. EUV process improvement with novel litho track hardware

    NASA Astrophysics Data System (ADS)

    Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2017-03-01

    Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.

  20. Characterization and control of EUV scanner dose uniformity and stability

    NASA Astrophysics Data System (ADS)

    Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick

    2018-03-01

    The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.

  1. SEMATECH EUVL mask program status

    NASA Astrophysics Data System (ADS)

    Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick

    2009-04-01

    As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been made but a continued collaborative effort will be needed along with timely infrastructure investments to meet these challenging goals.

  2. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.

    1999-10-01

    The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.

  3. Efficient analysis of three dimensional EUV mask induced imaging artifacts using the waveguide decomposition method

    NASA Astrophysics Data System (ADS)

    Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas

    2009-10-01

    This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.

  4. Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sebban, Stéphane

    2017-05-01

    We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.

  5. Manufacturability improvements in EUV resist processing toward NXE:3300 processing

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Matsunaga, Koichi; Shimoaoki, Takeshi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie; Shimura, Satoru

    2014-03-01

    As the design rule of semiconductor process gets finer, extreme ultraviolet lithography (EUVL) technology is aggressively studied as a process for 22nm half pitch and beyond. At present, the studies for EUV focus on manufacturability. It requires fine resolution, uniform, smooth patterns and low defectivity, not only after lithography but also after the etch process. In the first half of 2013, a CLEAN TRACKTM LITHIUS ProTMZ-EUV was installed at imec for POR development in preparation of the ASML NXE:3300. This next generation coating/developing system is equipped with state of the art defect reduction technology. This tool with advanced functions can achieve low defect levels. This paper reports on the progress towards manufacturing defectivity levels and latest optimizations towards the NXE:3300 POR for both lines/spaces and contact holes at imec.

  6. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover the three pairs of SUVI bands. The complete system was designed to fit within the Black Brandt-IX 22.-diameter payload skin envelope. The basic optical path is that of a simple parabolic telescope in which EUV light is focused onto a slit and shutter assembly and imaged onto a normal-incidence diffraction grating, which then disperses the light onto a 2048 2048 CCD sensor. The CCD thus records 1D spatial information along one axis and spectral information along the other. The slit spans 40 arc-minutes in length, thus covering a solar diameter out to +/- 1.3 solar radii. Our operations concept includes imaging at three distinct positions: the north-south meridian, the northeast-southwest diagonal, and real-time pointing at an active region. Six 10-second images will be obtained at each position. Fine pointing is provided by the SPARCS-VII attitude control system typically employed on Black Brandt solar missions. Both before and after launch, all three telescopes will be calibrated with the EUV line emission source and monochromater system at NASA's Stray Light Facility at Marshall Spaceflight Center. Details of the payload design, operations concept, and data application will be presented.

  7. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    PubMed

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  8. MAMA detector systems - A status report

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.

    1989-01-01

    Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.

  9. State-of-the-art EUV materials and processes for the 7nm node and beyond

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Vockenhuber, Michaela; Mochi, Iacopo; Fallica, Roberto; Tasdemir, Zuhal; Ekinci, Yasin

    2017-03-01

    Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) being the most likely candidate to manufacture electronic devices for future technology nodes is to be introduced in high volume manufacturing (HVM) at the 7 nm logic node, at least at critical lithography levels. With this impending introduction, it is clear that excellent resist performance at ultra-high printing resolutions (below 20 nm line/space L/S) is ever more pressing. Nonetheless, EUVL has faced many technical challenges towards this paradigm shift to a new lithography wavelength platform. Since the inception of chemically amplified resists (CARs) they have been the base upon which state-of-the art photoresist technology has been developed from. Resist performance as measured in terms of printing resolution (R), line edge roughness (LER), sensitivity (D or exposure dose) and exposure latitude (EL) needs to be improved but there are well known trade-off relationships (LRS trade-off) among these parameters for CARs that hamper their simultaneous enhancement. Here, we present some of the most promising EUVL materials tested by EUV interference lithography (EUV-IL) with the aim of resolving features down to 11 nm half-pitch (HP), while focusing on resist performance at 16 and 13 nm HP as needed for the 7 and 5 nm node, respectively. EUV-IL has enabled the characterization and development of new resist materials before commercial EUV exposure tools become available and is therefore a powerful research and development tool. With EUV-IL, highresolution periodic images can be printed by the interference of two or more spatially coherent beams through a transmission-diffraction grating mask. For this reason, our experiments have been performed by EUV-IL at Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI). Having the opportunity to test hundreds of EUVL materials from vendors and research partners from all over the world, PSI is able to give a global update on some of the most promising materials tested.

  10. Challenges of anamorphic high-NA lithography and mask making

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D.; Liu, Jingjing

    2017-06-01

    Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10.1117/12.2086074). To ensure no assist feature printing, the assist feature sizes need to be scaled with λ/NA. The extremely small SRAF width (below 25 nm on the reticle) is difficult to fabricate across the full reticle. In this paper, we introduce an innovative `attenuated SRAF' to improve SRAF manufacturability and still maintain the process window benefit. A new mask fabrication process is proposed to use existing mask-making capability to manufacture the attenuated SRAFs. The high-NA EUV system utilizes anamorphic reduction; 4× in the horizontal (slit) direction and 8× in the vertical (scanning) direction (J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150; B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in `Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94221G (2015) doi: 10.1117/12.2175488). For an anamorphic system, the magnification has an angular dependency, and thus, familiar mask specifications such as mask error factor (MEF) need to be redefined. Similarly, mask-manufacturing rule check (MRC) needs to consider feature orientation.

  11. DUV or EUV: that is the question

    NASA Astrophysics Data System (ADS)

    Williamson, David M.

    2000-11-01

    Lord Rayleigh's well-known equations for resolution and depth of focus indicate that resolution is better improved by reducing the wavelength of light rather than by increasing the numerical aperture (NA) of the projection optics, particularly when NA is approaching its physical limit of 1.0 in air (or vacuum). Vector aerial image simulations of diffraction-limited Deep Ultraviolet (DUV) and Extreme Ultraviolet (EUV) lithographic systems verify this simple view, even though Rayleigh's constants in Microlithography are not constant because of a variety of image enhancement techniques that attempt to compensate for the shortcomings of the aerial image when it is pushed to the limit. The aerial image is not the whole story, however. The competition between DUV and EUV systems will be decided more by economic and technological factors such as risk, time and cost of development and cost of ownership. These in turn depend on cost, availability and quality of light sources, refracting materials, photoresists and reticles.

  12. The attitude accuracy consequences of on-orbit calibration of the Extreme Ultraviolet Explorer attitude sensors by the Flight Dynamics Facility at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hashmall, J.; Davis, W.; Harman, R.

    1993-01-01

    The science mission of the Extreme Ultraviolet Explorer (EUVE) requires attitude solutions with uncertainties of 27, 16.7, 16.7 arcseconds (3 sigma) around the roll, pitch, and yaw axes, respectively. The primary input to the attitude determination process is provided by two NASA standard fixed-head star trackers (FHSTs) and a Teledyne dry rotor inertial reference unit (DRIRU) 2. The attitude determination requirements approach the limits attainable with the FHSTs and DRIRU. The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) designed and executed calibration procedures that far exceeded the extent and the data volume of any other FDF-supported mission. The techniques and results of this attempt to obtain attitude accuracies at the limit of sensor capability and the results of analysis of the factors that limit the attitude accuracy are the primary subjects of this paper. The success of the calibration effort is judged by the resulting measurement residuals and comparisons between ground- and onboard-determined attitudes. The FHST star position residuals have been reduced to less tha 4 arcsec per axis -- a value that appears to be limited by the sensor capabilities. The FDF ground system uses a batch least-squares estimator to determine attitude. The EUVE onboard computer (OBC) uses an extended Kalman filter. Currently, there are systematic differences between the two attitude solutions that occasionally exceed the mission requirements for 3 sigma attitude uncertainty. Attempts to understand and reduce these differences are continuing.

  13. Prospective EUV observations of hot DA white dwarfs with the EUV Explorer

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Malina, Roger F.; Bowyer, Stuart

    1987-01-01

    The Extreme Ultraviolet Explorer (EUVE) will perform a high sensitivity EUV all-sky survey. A major category of sources which will be detected with the EUVE instruments consists of hot white dwarfs. Detailed preliminary studies of synthetic EUV observations of white dwarfs have been carried out using the predicted EUVE instrumental response functions. Using available information regarding space densities of white dwarfs and the distribution of neutral hydrogen in the interstellar medium, the numbers of DA white dwarfs which will be detectable in the different EUV bandpasses have been estimated.

  14. Removal of Tin from Extreme Ultraviolet Collector Optics by an In-Situ Hydrogen Plasma

    NASA Astrophysics Data System (ADS)

    Elg, Daniel Tyler

    Throughout the 1980s and 1990s, as the semiconductor industry upheld Moore's Law and continuously shrank device feature sizes, the wavelength of the lithography source remained at or below the resolution limit of the minimum feature size. Since 2001, however, the light source has been the 193nm ArF excimer laser. While the industry has managed to keep up with Moore's Law, shrinking feature sizes without shrinking the lithographic wavelength has required extra innovations and steps that increase fabrication time, cost, and error. These innovations include immersion lithography and double patterning. Currently, the industry is at the 14 nm technology node. Thus, the minimum feature size is an order of magnitude below the exposure wavelength. For the 10 nm node, triple and quadruple patterning have been proposed, causing potentially even more cost, fabrication time, and error. Such a trend cannot continue indefinitely in an economic fashion, and it is desirable to decrease the wavelength of the lithography sources. Thus, much research has been invested in extreme ultraviolet lithography (EUVL), which uses 13.5 nm light. While much progress has been made in recent years, some challenges must still be solved in order to yield a throughput high enough for EUVL to be commercially viable for high-volume manufacturing (HVM). One of these problems is collector contamination. Due to the 92 eV energy of a 13.5 nm photon, EUV light must be made by a plasma, rather than by a laser. Specifically, the industrially-favored EUV source topology is to irradiate a droplet of molten Sn with a laser, creating a dense, hot laser-produced plasma (LPP) and ionizing the Sn to (on average) the +10 state. Additionally, no materials are known to easily transmit EUV. All EUV light must be collected by a collector optic mirror, which cannot be guarded by a window. The plasmas used in EUV lithography sources expel Sn ions and neutrals, which degrade the quality of collector optics. The mitigation of this debris is one of the main problems facing potential manufacturers of EUV sources. which can damage the collector optic in three ways: sputtering, implantation, and deposition. The first two damage processes are irreversible and are caused by the high energies (1-10 keV) of the ion debris. Debris mitigation methods have largely managed to reduce this problem by using collisions with H2 buffer gas to slow down the energetic ions. However, deposition can take place at all ion and neutral energies, and no mitigation method can deterministically deflect all neutrals away from the collector. Thus, deposition still takes place, lowering the collector reflectivity and increasing the time needed to deliver enough EUV power to pattern a wafer. Additionally, even once EUV reaches HVM insertion, source power will need to be continually increased as feature sizes continue to shrink; this increase in source power may potentially come at a cost of increased debris. Thus, debris mitigation solutions that work for the initial generation of commercial EUVL systems may not be adequate for future generations. An in-situ technology to clean collector optics without source downtime is required. which will require an in-situ technology to clean collector optics. The novel cleaning solution described in this work is to create the radicals directly on the collector surface by using the collector itself to drive a capacitively-coupled hydrogen plasma. This allows for radical creation at the desired location without requiring any delivery system and without requiring any source downtime. Additionally, the plasma provides energetic radicals that aid in the etching process. This work will focus on two areas. First, it will focus on experimental collector cleaning and EUV reflectivity restoration. Second, it will focus on developing an understanding of the fundamental processes governing Sn removal. It will be shown that this plasma technique can clean an entire collector optic and restore EUV reflectivity to MLMs without damaging them. Additionally, it will be shown that, within the parameter space explored, the limiting factor in Sn etching is not hydrogen radical flux or SnH4 decomposition but ion energy flux. This will be backed up by experimental measurements, as well as a plasma chemistry model of the radical density and a 3D model of SnH4 transport and redeposition.

  15. Effect of SPM-based cleaning POR on EUV mask performance

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.

    2011-11-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.

  16. Film loss-free cleaning chemicals for EUV mask lifetime elongation developed through combinatorial chemical screening

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck; Kim, Jinsu; Lowe, Jeff; Dattilo, Davide; Koh, Soowan; Choi, Jun Yeol; Dietze, Uwe; Shoki, Tsutomu; Kim, Byung Gook; Jeon, Chan-Uk

    2015-10-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. SPM (Sulfuric acid peroxide mixture) which has been extensively used for acid cleaning of photomask and wafer has serious drawback for EUV mask cleaning. It shows severe film loss of tantalum-based absorber layers and limited removal efficiency of EUV-generated carbon contaminants on EUV mask surface. Here, we introduce such novel cleaning chemicals developed for EUV mask as almost film loss free for various layers of the mask and superior carbon removal performance. Combinatorial chemical screening methods allowed us to screen several hundred combinations of various chemistries and additives under several different process conditions of temperature and time, eventually leading to development of the best chemistry selections for EUV mask cleaning. Recently, there have been many activities for the development of EUV pellicle, driven by ASML and core EUV scanner customer companies. It is still important to obtain film-loss free cleaning chemicals because cleaning cycle of EUV mask should be much faster than that of optic mask mainly due to EUV pellicle lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality changes and film losses during 50 cleaning cycles using new chemicals as well as particle and carbon contaminant removal characteristics. We have observed that the performance of new chemicals developed is superior to current SPM or relevant cleaning chemicals for EUV mask cleaning and EUV mask lifetime elongation.

  17. EUV emission stimulated by use of dual laser pulses from continus liquid microjet targets

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Sasaki, Wataru; Kubodera, Shoichi

    2004-11-01

    A continuous water-jet or water-jet mixed with LiF with several tens μm diameter was formed in a vacuum chamber through a small capillary nozzle. Usage of two laser pulses is an efficient way to produce EUV emission, since a density and temperature of a plasma formed by the first laser pulse are regulated by the second laser pulse. By adjusting the delay of the second pulse, one could maximize the EUV emission. A subpicosecond Ti:Sapphire laser at a wavelength of 800 nm produced a maximum energy around 30 mJ. The beam was divided by a Michelson interferometer, which produced two laser pulses with energies of 5 mJ. The pulse duration was adjusted around 300 fs (FWHM). Both beams were focused on a micro-jet using a lens with a focal length of 15 cm. The delay time between the two pulses was varied from 100 to 800 ps by use of an optical delay line. Clear enhancement of the EUV emission yield was observed when the delay between the two pulses was around 500 ps. The experimentally observed delay agrees reasonably well with that of a plasma to expand to its critical density of 10^21 cm-3.

  18. Generation of warm dense matter using an argon based capillary discharge laser

    NASA Astrophysics Data System (ADS)

    Rossall, A. K.; Tallents, G. J.

    2015-06-01

    Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.

  19. EUV patterning improvement toward high-volume manufacturing

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Matsunaga, Koichi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie

    2015-03-01

    Extreme ultraviolet lithography (EUVL) technology is a promising candidate for a semiconductor process for 18nm half pitch and beyond. So far, the studies of EUV for manufacturability have been focused on particular aspects. It still requires fine resolution, uniform and smooth patterns, and low defectivity, not only after lithography but also after the etch process. Tokyo Electron Limited and imec are continuously collaborating to improve manufacturing quality of the process of record (POR) on a CLEAN TRACKTM LITHIUS ProTMZ-EUV. This next generation coating/developing system has been upgraded with defectivity reduction enhancements which are applied along with TELTM best known methods. We have evaluated process defectivity post lithography and post etch. Apart from defectivity, FIRMTM rinse material and application compatibility with sub 18nm patterning is improved to prevent line pattern collapse and increase process window on next generation resist materials. This paper reports on the progress of defectivity and patterning performance optimization towards the NXE:3300 POR.

  20. High-volume manufacturing compatible dry development rinse process (DDRP): patterning and defectivity performance for EUVL

    NASA Astrophysics Data System (ADS)

    Sayan, Safak; Vanelderen, Pieter; Hetel, Iulian; Chan, BT; Raghavan, Praveen; Blanco, Victor; Foubert, Philippe; D'urzo, Lucia; De Simone, Danilo; Vandenberghe, Geert

    2017-04-01

    There are many knobs available that change the chemical and physical properties of the photoresists to "break" the RLS (Resolution, Sensitivity, Line edge/width roughness) trade-off, however those are not enough today to realize a material to satisfy all requirements at once for 7nm technology and beyond. DDRP improves the ultimate achievable resolution via pattern collapse mitigation, hence the priority of requirements for the EUV photoresist development may be changed with more focus on Sensitivity and LWR. This may potentially provide a new conceptual approach towards EUV PR development for DDRP applications. We have previously demonstrated pattern collapse (PC) mitigation via DDRP on different EUVL photoresists (including different resist platforms), achieving ultimate resolution and exposure latitude improvements [1,2]. In this contribution, we report patterning and material defect performance of HVM compatible (all aqueous) dry development rinse material. We will also report on process window improvement on 2-dimensional metal structures towards standard cell size reduction with elimination of mask layer(s) using single EUV exposure.

  1. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  2. Responses of Solar Irradiance and the Ionosphere to an Intense Activity Region

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2018-03-01

    Solar rotation (SR) variation dominates solar extremely ultraviolet (EUV) changes on the timescale of days. The F10.7 index is usually used as an indicator for solar EUV. The SR variation of F10.7 significantly enhanced during the 2008th-2009th Carrington rotations (CRs) owing to an intense active region; F10.7 increased about 180 units during that SR period. That was the most prominent SR variation of F10.7 during solar cycle 23. In this paper, global electron content (GEC) is used to investigate ionospheric response to that strong variation of solar irradiance indicated by F10.7. The variation of GEC with F10.7 was anomalous (GEC-F10.7 slope significantly decreased) during the 2008th-2009th CRs; however, GEC versus EUV variation during that period was consistent with that during adjacent time intervals when using Solar Heliospheric Observatory/Solar EUV Monitor 26-34 nm EUV measurements. The reason is that F10.7 response to that intense active region was much stronger than EUV response; thus, the EUV-F10.7 slope decreased. We confirmed decreased EUV-F10.7 slope during the 2008th-2009th CRs for different wavelengths within 27-120 nm using Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Solar EUV Experiment high spectral resolution EUV measurements. And on the basis of Solar Heliospheric Observatory/Solar EUV Monitor EUV measurements during solar cycle 23, we further presented that EUV-F10.7 slope statistically tends to decrease when the SR variation of F10.7 significantly enhances. Moreover, we found that ionospheric time lag effect to EUV is exaggerated when using F10.7, owing to the time lag effect of EUV to F10.7.

  3. Latest developments on EUV reticle and pellicle research and technology at TNO

    NASA Astrophysics Data System (ADS)

    Verberk, Rogier; Koster, Norbert; te Sligte, Edwin; Staring, Wilbert

    2017-06-01

    At TNO an extensive EUV optics life time program has been running for over 15 years together with our partners ASML and Carl Zeiss. This has contributed to the upcoming introduction of EUV High Volume Manufacturing (HVM). To further help the industry with the introduction of EUV, TNO has worked on extending their facilities with a number of reticle and pellicle research infrastructure facilities. In this paper we will show some of the facilities that are available at TNO and shortly introduce their capabilities. Recently we have opened our EBL2 facility, which is an EUV Beam Line (EBL2) meant for studying the effects of high power EUV illumination on optics, reticles and pellicles up to the power roadmap of 500 W at intermediate Focus (IF). This facility is open to users from all over the world and is beneficial for the industry in helping developing alternative capping layers and contamination control strategies for optics lifetime, new absorber materials, pellicles and resists. The EBL2 system has seen first light in December 2016 and is now in the final stage of acceptance testing and qualification. It is expected that the system will be fully operational in the third quarter of 2017, and available for users. It is possible to transfer reticles to and from the EBL2 by means of the reticle handler using the dual pod interface. This secures backside cleanliness to NXE standards and thus enables wafer printing on a NXE tool in a later stage after the exposures and inspection at EBL2. Besides EBL2, a high performance and ultra-clean reticle handler is available at TNO. This handler incorporates our particle scanner Rapid Nano 4 for front side inspection of reticle blanks with a detection limit down to 20 nm particles. Attached to the handler is also an Optical Coherence Tomography (OCT) inspection tool for back-side reticle or pellicle inspection with a resolution down to 1 micron.

  4. Serendipitous EUV sources detected during the first year of the Extreme Ultraviolet Explorer right angle program

    NASA Technical Reports Server (NTRS)

    Mcdonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Fruscione, A.; Vallerga, J. V.; Malina, R. F.

    1994-01-01

    We report the detection of 114 extreme ultraviolet (EUV; 58 - 740 A) sources, of which 99 are new serendipitous sources, based on observations made with the imaging telescopes on board the Extreme Ultraviolet Explorer (EUVE) during the Right Angle Program (RAP). These data were obtained using the survey scanners and the Deep Survey instrument during the first year of the spectroscopic guest observer phase of the mission, from January 1993 to January 1994. The data set consists of 162 discrete pointings whose exposure times are typically two orders of magnitude longer than the average exposure times during the EUVE all-sky survey. Based on these results, we can expect that EUVE will serendipitously detect approximately 100 new EUV sources per year, or about one new EUV source per 10 sq deg, during the guest observer phase of the EUVE mission. New EUVE sources of note include one B star and three extragalactic objects. The B star (HR 2875, EUVE J0729 - 38.7) is detected in both the Lexan/B (approximately 100 A) and Al/Ti/C (approximately 200 A) bandpasses, and the detection is shown not to be a result of UV leaks. We suggest that we are detecting EUV and/or soft x rays from a companion to the B star. Three sources, EUVE J2132+10.1, EUVE J2343-14.9, and EUVE J2359-30.6 are identified as the active galactic nuclei MKN 1513, MS2340.9-1511, and 1H2354-315, respectively.

  5. Global Plasmaspheric Imaging: A New "Light" Focusing on Familiar Questions

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Until recently plasmaspheric physics, for that matter, magnetospheric physics as a whole, has relied primarily on single point in-situ measurement, theory, modeling, and a considerable amount of extrapolation in order to envision the global structure of the plasmasphere. This condition changed with the launch of the IMAGE satellite in March 2000. Using the Extreme Ultraviolet (EUV) imager on WAGE, we can now view the global structure of the plasmasphere bathed in the glow of resonantly scattered 30.4 nm radiation allowing the space physics community to view the dynamics of this global structure as never before. This talk will: (1) define the plasmasphere from the perspective of plasmaspheric physics prior to March 2000; (2) present a review of EUV imaging optics and the IMAGE mission; and focus on efforts to understand an old and familiar feature of plasmaspheric physics, embedded plasmaspheric density troughs, in this new global light with the assistance of forward modeling.

  6. Quality control of EUVE databases

    NASA Technical Reports Server (NTRS)

    John, L. M.; Drake, J.

    1992-01-01

    The publicly accessible databases for the Extreme Ultraviolet Explorer include: the EUVE Archive mailserver; the CEA ftp site; the EUVE Guest Observer Mailserver; and the Astronomical Data System node. The EUVE Performance Assurance team is responsible for verifying that these public EUVE databases are working properly, and that the public availability of EUVE data contained therein does not infringe any data rights which may have been assigned. In this poster, we describe the Quality Assurance (QA) procedures we have developed from the approach of QA as a service organization, thus reflecting the overall EUVE philosophy of Quality Assurance integrated into normal operating procedures, rather than imposed as an external, post facto, control mechanism.

  7. SEMATECH produces defect-free EUV mask blanks: defect yield and immediate challenges

    NASA Astrophysics Data System (ADS)

    Antohe, Alin O.; Balachandran, Dave; He, Long; Kearney, Patrick; Karumuri, Anil; Goodwin, Frank; Cummings, Kevin

    2015-03-01

    Availability of defect-free reflective mask has been one of the most critical challenges to extreme ultraviolet lithography (EUVL). To mitigate the risk, significant progress has been made on defect detection, pattern shifting, and defect repair. Clearly such mitigation strategies are based on the assumption that defect counts and sizes from incoming mask blanks must be below practical levels depending on mask specifics. The leading industry consensus for early mask product development is that there should be no defects greater than 80 nm in the quality area, 132 mm x 132 mm. In addition less than 10 defects smaller than 80 nm may be mitigable. SEMATECH has been focused on EUV mask blank defect reduction using Veeco Nexus TM IBD platform, the industry standard for mask blank production, and assessing if IBD technology can be evolved to a manufacturing solution. SEMATECH has recently announced a breakthrough reduction of defects in the mask blank deposition process resulting in the production of two defect-free EUV mask blanks at 54 nm inspection sensitivity (SiO2 equivalent). This paper will discuss the dramatic reduction of baseline EUV mask blank defects, review the current deposition process run and compare results with previous process runs. Likely causes of remaining defects will be discussed based on analyses as characterized by their compositions and whether defects are embedded in the multilayer stack or non-embedded.

  8. Experimental and theoretical study on emission spectra of a nitrogen photoionized plasma induced by intense EUV pulses

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemyslaw; Jarocki, Roman; Fiedorowicz, Henryk; Limpouch, Jiri

    2018-01-01

    Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm) laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis) range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE), the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.

  9. A Search for EUV Emission from the O4f Star Zeta Puppis

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Vallerga, John

    1996-01-01

    We obtained a 140 ks EUVE observation of the O4f star, zeta Puppis. Because of its low ISM column density and highly ionized stellar wind, a unique EUV window is accessible for viewing between 128 to 140 A, suggesting that this star may he the only O star observable with the EUVE. Although no SW spectrometer wavelength bin had a signal to noise greater than 3, a bin at 136 A had a signal to noise of 2.4. This bin is where models predict the brightest line due to OV emission should occur. We present several EUV line emission models. These models were constrained by fitting the ROSAT PSPC X-ray data and our EUVE data. If the OV emission is real, the best fits to the data suggest that there are discrepancies in our current understanding of EUV/X-ray production mechanisms. In particular, the emission measure of the EUV source is found to be much greater than the total wind emission measure, suggesting that the EUV shock must produce a very large density enhancement. In addition, the location of the EUV and X-ray shocks are found to be separated by approx. 0.3 stellar radii, but the EUV emission region is found to be approx. 400 times larger than the X-ray emission region. We also discuss the implications of a null detection and present relevant upper limits.

  10. PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, R.; Fulara, A.; Chen, P. F.

    We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less

  11. Extreme Ultraviolet Explorer. Long look at the next window

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.

  12. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  13. Selected highlights from the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1995-01-01

    We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.

  14. Analytical techniques for mechanistic characterization of EUV photoresists

    NASA Astrophysics Data System (ADS)

    Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg

    2017-03-01

    Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.

  15. Mask fabrication and its applications to extreme ultra-violet diffractive optics

    NASA Astrophysics Data System (ADS)

    Cheng, Yang-Chun

    Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist materials.

  16. Surface Inhomogeneities of the White Dwarf in the Binary EUVE J2013+400

    NASA Astrophysics Data System (ADS)

    Vennes, Stephane

    We propose to study the white dwarf in the binary EUVE J2013+400. The object is paired with a dMe star and new extreme ultraviolet (EUV) observations will offer critical insights into the properties of the white dwarf. The binary behaves, in every other aspects, like its siblings EUVE J0720-317 and EUVE J1016-053 and new EUV observations will help establish their class properties; in particular, EUV photometric variations in 0720-317 and 1016-053 over a period of 11 hours and 57 minutes, respectively, are indicative of surface abundance inhomogeneities coupled with the white dwarfs rotation period. These variations and their large photospheric helium abundance are best explained by a diffusion-accretion model in which time-variable accretion and possible coupling to magnetic poles contribute to abundance variations across the surface and possibly as a function of depth. EUV spectroscopy will also enable a study of the helium abundance as a function of depth and a detailed comparison with theoretical diffusion profile.

  17. Combined SDO/AIA, Hinode/XRT and FOXSI-2 microflare observations - DEM analysis and energetics

    NASA Astrophysics Data System (ADS)

    Panchapakesan, S. A.; Glesener, L.; Vievering, J. T.; Ryan, D.; Christe, S.; Inglis, A. R.; Buitrago-Casas, J. C.; Musset, S.; Krucker, S.

    2017-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket makes directimaging and spectral observation of the Sun in hard X-rays (HXRs) using highlysensitive focusing HXR optics. The second flight of FOXSI was launchedsuccessfully on 11 December 2014 and observed significant HXR emissions duringmicroflares. Some of these flares showed heating up to severalmillion Kelvin and were visible in the Extreme Ultraviolet (EUV) with the AtmosphericImaging Assembly (SDO/AIA). Spectral observations from FOXSI suggest emission upto 10-12 MK. We utilize SDO/AIA EUV, Hinode/XRT soft X-ray, and FOXSI-2 highenergy X-ray observations to derive the differential emission measure (DEM) ofthe microflares. The AIA and XRT observations provide broad temperaturecoverage but are poorly constrained at the hotter end. We therefore use FOXSI-2to better determine the high temperature component, thus producing a moreconstrained DEM than is possible with typically available observations. We usethis more highly constrained DEM to investigate the energetics of the observedmicroflares.

  18. Measurement And Modeling Of Fe VIII To Fe XVI M-shell Emission In The Extreme Ultraviolet

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Lepson, J. K.; Hurwitz, M.

    2007-05-01

    The solar EUV emission near 200 Å is presently being studied with high resolution with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS), which focuses on the emission between 90 and 270 Å, and with the EUV Imaging Spectrometer on Hinode, which focuses on the region 180 to 204 Å and 250 to 290 Å. The Solar EUV Experiment on the TIMED spacecraft also observes this spectral band but with greatly reduced resolution. The spectrum in this region is dominated by emission from moderate charge states of iron. The interpretation of the data relies on accurate and complete plasma emission models, notably CHIANTI. We have performed a series of laboratory measurements of the 3-3 emission from M-shell iron ions. The measurements cover the range 170 - 250 Å and are made at an electron density of about 1011 cm-3. Emission from Fe VIII through Fe XVI has been identified. Excellent agreement with CHIANTI predictions is found. A few weak transitions are noted in the laboratory data that are predicted by CHIANTI to be vanishingly small and should not have been observed. These are tentatively attributed to transitions in Fe XV. A comparison with observations from CHIPS is also presented. This work was supported in part by NASA's Solar and Heliospheric Physics Supporting Research and Technology Program. Work at UC-LLNL was performed under the auspices of the DOE by under Contract W-7405-Eng-48.

  19. A new mask exposure and analysis facility

    NASA Astrophysics Data System (ADS)

    te Sligte, Edwin; Koster, Norbert; Deutz, Alex; Staring, Wilbert

    2014-10-01

    The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at high EUV powers and intensities, and capable of exposing and analyzing EUV masks. The proposed system architecture is similar to the EBL system which has been operated jointly by TNO and Carl Zeiss SMT since 2005. EBL2 contains an EUV Beam Line, in which samples can be exposed to EUV irradiation in a controlled environment. Attached to this Beam Line is an XPS system, which can be reached from the Beam Line via an in-vacuum transfer system. This enables surface analysis of exposed masks without breaking vacuum. Automated handling with dual pods is foreseen so that exposed EUV masks will still be usable in EUV lithography tools to assess the imaging impact of the exposure. Compared to the existing system, large improvements in EUV power, intensity, reliability, and flexibility are proposed. Also, in-situ measurements by e.g. ellipsometry is foreseen for real time monitoring of the sample condition. The system shall be equipped with additional ports for EUVR or other analysis tools. This unique facility will be open for external customers and other research groups.

  20. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  1. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-12-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

  2. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  3. Atomic processes and equation of state of high Z plasmas for EUV sources and their effects on the spatial and temporal evolution of the plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro

    2016-03-01

    Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.

  4. Novel EUV photoresist for sub-7nm node (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Furukawa, Tsuyoshi; Naruoka, Takehiko; Nakagawa, Hisashi; Miyata, Hiromu; Shiratani, Motohiro; Hori, Masafumi; Dei, Satoshi; Ayothi, Ramakrishnan; Hishiro, Yoshi; Nagai, Tomoki

    2017-04-01

    Extreme ultraviolet (EUV) lithography has been recognized as a promising candidate for the manufacturing of semiconductor devices as LS and CH pattern for 7nm node and beyond. EUV lithography is ready for high volume manufacturing stage. For the high volume manufacturing of semiconductor devices, significant improvement of sensitivity and line edge roughness (LWR) and Local CD Uniformity (LCDU) is required for EUV resist. It is well-known that the key challenge for EUV resist is the simultaneous requirement of ultrahigh resolution (R), low line edge roughness (L) and high sensitivity (S). Especially high sensitivity and good roughness is important for EUV lithography high volume manufacturing. We are trying to improve sensitivity and LWR/LCDU from many directions. From material side, we found that both sensitivity and LWR/LCDU are simultaneously improved by controlling acid diffusion length and efficiency of acid generation using novel resin and PAG. And optimizing EUV integration is one of the good solution to improve sensitivity and LWR/LCDU. We are challenging to develop new multi-layer materials to improve sensitivity and LWR/LCDU. Our new multi-layer materials are designed for best performance in EUV lithography system. From process side, we found that sensitivity was substantially improved maintaining LWR applying novel type of chemical amplified resist (CAR) and process. EUV lithography evaluation results obtained for new CAR EUV interference lithography. And also metal containing resist is one possibility to break through sensitivity and LWR trade off. In this paper, we will report the recent progress of sensitivity and LWR/LCDU improvement of JSR novel EUV resist and process.

  5. EUVE and IR observations of the Polars HU Aqr and AR UMa

    NASA Astrophysics Data System (ADS)

    Howell, S.; Ciardi, D.

    1999-12-01

    Simultaneous EUVE and ground-based near-infrared J and K observations of the magnetic CV HU Aqr were performed. The observations occurred during a super-high state never before observed in HU Aqr. The average EUVE count-rate was 30-60 times higher than had been measured previously, allowing us to present the first ever EUV spectra of HU Aqr. The near-infrared observations show a corresponding flux increase of 2-3 times over previous J and K observations. However, the near-infrared eclipse minimum during this super-high state are the same as seen in previous observations, indicating that the eclipse in the near-infrared is total. We present a detailed comparison of the EUV and near-infrared emission of HU Aqr as a function of orbital phase and discuss the geometry and physical properties of the high energy and infrared emitting regions. AR UMa is the brightest EUV source yet observed with the EUVE satellite and is also the polar with the largest magnetic field, 250 MG. EUVE observations of the polar AR UMa have allowed, for the first time, EUV time-resolved spectral analysis and radial velocity measurements. We present EUV phase-resolved photometry and spectroscopy and show that the He 304 emission line is not produced on the heated face of the secondary star, but emanates from the inner illuminated regions of the coupling region and accretion stream. We comment on the overall structure of the accretion geometry as well. The authors acknowledge partial support of the research by NASA cooperative agreement NCC5-138 via an EUVE guest Observer mini-grant.

  6. Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks

    NASA Astrophysics Data System (ADS)

    Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.

    2012-03-01

    Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.

  7. Solar Demon: near real-time solar eruptive event detection on SDO/AIA images

    NASA Astrophysics Data System (ADS)

    Kraaikamp, Emil; Verbeeck, Cis

    Solar flares, dimmings and EUV waves have been observed routinely in extreme ultra-violet (EUV) images of the Sun since 1996. These events are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. The Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) generates such a massive dataset that it becomes impossible to find most of these eruptive events manually. Solar Demon is a set of automatic detection algorithms that attempts to solve this problem by providing both near real-time warnings of eruptive events and a catalog of characterized events. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on SDO/AIA data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data and synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will focus on the algorithm and its operational implementation. Examples of interesting flare, dimming and EUV wave events, and general statistics of the detections made so far during solar cycle 24 will be presented as well.

  8. Universal EUV in-band intensity detector

    DOEpatents

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  9. The extreme ultraviolet explorer mission

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.

    1988-01-01

    The science design goals and engineering implementation for the Extreme Ultraviolet Explorer (EUVE) science payload are discussed. The primary scientific goal of the EUVE payload is to carry out an all-sky survey in the 100- to 900-A band of the spectrum. Another goal of the mission is to demonstrate the use of a scientific platform in near-earth orbit. EUVE data will be used to study the distribution of EUV stars in the neighborhood of the sun and the emission physics responsible for the EUV mission.

  10. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Tyler; Kuznetsov, Ilya; Willingham, David

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less

  11. EUV Cross-Calibration Strategies for the GOES-R SUVI

    NASA Astrophysics Data System (ADS)

    Darnel, Jonathan; Seaton, Daniel

    2016-10-01

    The challenges of maintaining calibration for solar EUV instrumentation is well-known. The lack of standard calibration sources and the fact that most solar EUV telescopes are incapable of utilizing bright astronomical EUV sources for calibration make knowledge of instrument performance quite difficult. In the recent past, calibration rocket underflights have helped establish a calibration baseline. The EVE instrument on SDO for a time provided well-calibrated, high spectral resolution solar spectra for a broad range of the EUV, but has suffered a loss of coverage at the shorter wavelengths. NOAA's Solar UltraViolet Imager (SUVI), a solar EUV imager with similarities to SDO/AIA, will provide solar imagery over nearly an entire solar cycle. In order to maintain the scientific value of the SUVI's dataset, novel approaches to calibration are necessary. Here we demonstrate a suite of methods to cross-calibrate SUVI against other solar EUV instruments through the use of proxy solar spectra.

  12. Particle protection capability of SEMI-compliant EUV-pod carriers

    NASA Astrophysics Data System (ADS)

    Huang, George; He, Long; Lystad, John; Kielbaso, Tom; Montgomery, Cecilia; Goodwin, Frank

    2010-04-01

    With the projected rollout of pre-production extreme ultraviolet lithography (EUVL) scanners in 2010, EUVL pilot line production will become a reality in wafer fabrication companies. Among EUVL infrastructure items that must be ready, EUV mask carriers remain critical. To keep non-pellicle EUV masks free from particle contamination, an EUV pod concept has been extensively studied. Early prototypes demonstrated nearly particle-free results at a 53 nm PSL equivalent inspection sensitivity during EUVL mask robotic handling, shipment, vacuum pump-purge, and storage. After the passage of SEMI E152, which specifies the EUV pod mechanical interfaces, standards-compliant EUV pod prototypes, including a production version inner pod and prototype outer pod, were built and tested. Their particle protection capability results are reported in this paper. A state-of-the-art blank defect inspection tool was used to quantify their defect protection capability during mask robotic handling, shipment, and storage tests. To ensure the availability of an EUV pod for 2010 pilot production, the progress and preliminary test results of pre-production EUV outer pods are reported as well.

  13. Objective for EUV microscopy, EUV lithography, and x-ray imaging

    DOEpatents

    Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip

    2016-05-03

    Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.

  14. Initial results from the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1993-01-01

    Data obtained during the first five months of calibration and science operation of the Extreme Ultraviolet Explorer (EUVE) are presented. Spectra of an extragalactic object were obtained; the object is detectable to wavelenghts longer than 100 A, demonstrating that extragalactic EUV astronomy is possible. Spectra of a hot white dwarf, and a late-type star in quiescence and flaring are shown as examples of the type of spectrographic data obtainable with EUVE. Other objects for which broad band photometric mode data have been obtained and analyzed include an RS CVn star and several late-type stars. The backgrounds in the EUVE detectors are quite low and the character of the diffuse astronomical EUV background has been investigated using these very low rates. Evidence is presented showing that, contrary to previously published reports, EUVE is about three times more sensitive than the English Wide Field Camera in the short wavelength bandpass covered by both instruments. Only limited information has been extracted from the longer bandpasses coered only by EUVE. Nonetheless, the brightest EUV source in the sky, a B star, has been discovered and is detected only in these longer bandpasses.

  15. Surface roughness control by extreme ultraviolet (EUV) radiation

    NASA Astrophysics Data System (ADS)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  16. EUV mask pilot line at Intel Corporation

    NASA Astrophysics Data System (ADS)

    Stivers, Alan R.; Yan, Pei-Yang; Zhang, Guojing; Liang, Ted; Shu, Emily Y.; Tejnil, Edita; Lieberman, Barry; Nagpal, Rajesh; Hsia, Kangmin; Penn, Michael; Lo, Fu-Chang

    2004-12-01

    The introduction of extreme ultraviolet (EUV) lithography into high volume manufacturing requires the development of a new mask technology. In support of this, Intel Corporation has established a pilot line devoted to encountering and eliminating barriers to manufacturability of EUV masks. It concentrates on EUV-specific process modules and makes use of the captive standard photomask fabrication capability of Intel Corporation. The goal of the pilot line is to accelerate EUV mask development to intersect the 32nm technology node. This requires EUV mask technology to be comparable to standard photomask technology by the beginning of the silicon wafer process development phase for that technology node. The pilot line embodies Intel's strategy to lead EUV mask development in the areas of the mask patterning process, mask fabrication tools, the starting material (blanks) and the understanding of process interdependencies. The patterning process includes all steps from blank defect inspection through final pattern inspection and repair. We have specified and ordered the EUV-specific tools and most will be installed in 2004. We have worked with International Sematech and others to provide for the next generation of EUV-specific mask tools. Our process of record is run repeatedly to ensure its robustness. This primes the supply chain and collects information needed for blank improvement.

  17. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    DOEpatents

    Menoni, Carmen S [Fort Collins, CO; Rocca, Jorge J [Fort Collins, CO; Vaschenko, Georgiy [San Diego, CA; Bloom, Scott [Encinitas, CA; Anderson, Erik H [El Cerrito, CA; Chao, Weilun [El Cerrito, CA; Hemberg, Oscar [Stockholm, SE

    2011-04-26

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  18. EUVE GO Survey: High Levels of User Satisfaction

    NASA Astrophysics Data System (ADS)

    Stroozas, B. A.

    2000-12-01

    This paper describes the results of a detailed customer survey of Guest Observers (GOs) for NASA's Extreme Ultraviolet Explorer (EUVE) astronomy satellite observatory. The purpose of the research survey was to (1) measure the levels of GO customer satisfaction with respect to EUVE observing services, and (2) compare the observing experiences of EUVE GOs with their experiences using other satellite observatories. This survey was conducted as a business research project -- part of the author's graduate work as an MBA candidate. A total sample of 38 respondents, from a working population of 101 "active" EUVE GOs, participated in this survey. The results, which provided a profile of the "typical" EUVE GO, showed in a statistically significant fashion that these GOs were more than satisfied with the available EUVE observing services. In fact, the sample GOs generally rated their EUVE observing experiences to be better than average as compared to their experiences as GOs on other missions. These relatively high satisfaction results are particularly pleasing to the EUVE Project which, given its significantly reduced staffing environment at U.C. Berkeley, has continued to do more with less. This paper outlines the overall survey process: the relevant background and previous research, the survey design and methodology, and the final results and their interpretation. The paper also points out some general limitations and weaknesses of the study, along with some recommended actions for the EUVE Project and for NASA in general. This work was funded by NASA/UCB Cooperative Agreement NCC5-138.

  19. Temporal variations of solar EUV, UV, and 10,830-A radiations

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Hinteregger, H. E.; Heath, D. F.

    1986-01-01

    The temporal characteristics of the full-disk chromospheric EUV fluxes agree well with those of the ground-based measurements of the chromospheric He I absorption line at 10,830 A and differ systematically from those of the coronal EUV and 10.7-cm flux. The ratio of the flux increase during the rise of solar cycle 21 to that during solar rotation variations is uniformly high for the chromospheric EUV and corroborating 10,830-A fluxes, highest for the transition region and 'cool' coronal EUV fluxes (T less than 2 x 10 to the 6th K), and lowest for the 'hot' coronal EUV and 10.7-cm flux. The rise and decay rates of episodes of major activity progress from those for the hot coronal EUV lines and the 10.7-cm flux to slower values for the chromospheric H Lyman alpha line, 10,830-A line, and photospheric 2050-A UV flux. It is suggested that active region remnants contribute significantly to the solar cycle increase and during the decay of episodes of major activity. The ratio of power in 13-day periodicity to that for 27 days in high (1/3) for the photospheric UV flux, medium (1/6) for the chromospheric EUV and 10,830-A fluxes, and small to negligible for the hot coronal EUV fluxes. These ratios are used to estimate the dependence of active region emission on the solar central meridian distance for chromospheric and coronal EUV flux.

  20. Fundamentals of EUV resist-inorganic hardmask interactions

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Glodde, Martin; De Silva, Anuja; Sheshadri, Indira; Felix, Nelson M.; Lionti, Krystelle; Magbitang, Teddie

    2017-03-01

    High resolution Extreme Ultraviolet (EUV) patterning is currently limited by EUV resist thickness and pattern collapse, thus impacting the faithful image transfer into the underlying stack. Such limitation requires the investigation of improved hardmasks (HMs) as etch transfer layers for EUV patterning. Ultrathin (<5nm) inorganic HMs can provide higher etch selectivity, lower post-etch LWR, decreased defectivity and wet strippability compared to spin-on hybrid HMs (e.g., SiARC), however such novel layers can induce resist adhesion failure and resist residue. Therefore, a fundamental understanding of EUV resist-inorganic HM interactions is needed in order to optimize the EUV resist interfacial behavior. In this paper, novel materials and processing techniques are introduced to characterize and improve the EUV resist-inorganic HM interface. HM surface interactions with specific EUV resist components are evaluated for open-source experimental resist formulations dissected into its individual additives using EUV contrast curves as an effective characterization method to determine post-development residue formation. Separately, an alternative adhesion promoter platform specifically tailored for a selected ultrathin inorganic HM based on amorphous silicon (aSi) is presented and the mitigation of resist delamination is exemplified for the cases of positive-tone and negative-tone development (PTD, NTD). Additionally, original wafer priming hardware for the deposition of such novel adhesion promoters is unveiled. The lessons learned in this work can be directly applied to the engineering of EUV resist materials and processes specifically designed to work on such novel HMs.

  1. Extreme ultraviolet (EUV) solar spectral irradiance (SSI) for ionospheric application - history and contemporary state-of-art

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Jacobi, Ch.; Nikutowski, B.; Erhardt, Ch.

    2014-11-01

    After a historical survey of space related EUV measurements in Germany and the role of Karl Rawer in pursuing this work, we describe present developments in EUV spectroscopy and provide a brief outlook on future activities. The group of Karl Rawer has performed the first scientific space project in Western Europe on 19th October 1954. Then it was decided to include the field of solar EUV spectroscopy in ionospheric investigations. Starting in 1957 an intensified development of instrumentation was going on to explore solar EUV radiation, atmospheric airglow and auroral emissions until the institute had to stop space activities in the early nineteen-eighties. EUV spectroscopy was continued outside of the institute during eight years. This area of work was supported again by the institute developing the Auto-Calibrating Spectrometers (SolACES) for a mission on the International Space Station (ISS). After more than six years in space the instrument is still in operation. Meanwhile the work on the primary task also to validate EUV data available from other space missions has made good progress. The first results of validating those data and combine them into one set of EUV solar spectral irradiance are very promising. It will be recommended for using it by the science and application community. Moreover, a new low-cost type of an EUV spectrometer is presented for monitoring the solar EUV radiation. It shall be further developed for providing EUV-TEC data to be applied in ionospheric models replacing the Covington index F10.7. Applying these data for example in the GNSS signal evaluation a more accurate determination of GNSS receiver positions is expected for correcting the propagation delays of navigation signals traveling through the ionosphere from space to earth. - Latest results in the field of solar EUV spectroscopy are discussed, too.

  2. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  3. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.« less

  4. Gibbsian segregating alloys driven by thermal and concentration gradients: A potential grazing collector optics used in EUV lithography

    NASA Astrophysics Data System (ADS)

    Qiu, Huatan

    A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on the temperature and surface removal rate. The Mo-Au GS alloy could be effective at elevated temperature as the potential grazing mirror as EUV collector optics.

  5. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  6. Toward compact and ultra-intense laser-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Sebban, S.; Depresseux, A.; Oliva, E.; Gautier, J.; Tissandier, F.; Nejdl, J.; Kozlova, M.; Maynard, G.; Goddet, J. P.; Tafzi, A.; Lifschitz, A.; Kim, H. T.; Jacquemot, S.; Rousseau, P.; Zeitoun, P.; Rousse, A.

    2018-01-01

    We report here recent work on an optical field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by OFI when focusing a 1 J, 30 fs, circularly-polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94d (J = 0) → 3d94p (J = 1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs full width at half-maximum as the amplification peak rose from 150 to 1200 with an increase of the plasma density from 3 × 1018 to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 2 cm), yielding EUV outputs up to 14 μJ.

  7. EUV laser produced and induced plasmas for nanolithography

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2017-10-01

    EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.

  8. Extreme ultraviolet spectroscopy diagnostics of low-temperature plasmas based on a sliced multilayer grating and glass capillary optics.

    PubMed

    Kantsyrev, V L; Safronova, A S; Williamson, K M; Wilcox, P; Ouart, N D; Yilmaz, M F; Struve, K W; Voronov, D L; Feshchenko, R M; Artyukov, I A; Vinogradov, A V

    2008-10-01

    New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.

  9. Mechanisms of EUV exposure: electrons and holes

    NASA Astrophysics Data System (ADS)

    Narasimhan, Amrit; Grzeskowiak, Steven; Ackerman, Christian; Flynn, Tracy; Denbeaux, Greg; Brainard, Robert L.

    2017-03-01

    In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Current EUV photoresists are composed of photoacid generators (PAGs) in polymer matrices. Secondary electrons (2 - 80 eV) created in resists during EUV exposure play large role in acid-production. There are several proposed mechanisms for electron-resist interactions: internal excitation, electron trapping, and hole-initiated chemistry. Here, we will address two central questions in EUV resist research: (1) How many electrons are generated per EUV photon absorption? (2) By which mechanisms do these electrons interact and react with molecules in the resist? We will use this framework to evaluate the contributions of electron trapping and hole initiated chemistry to acid production in chemically amplified photoresists, with specific emphasis on the interdependence of these mechanisms. We will show measurements of acid yield from direct bulk electrolysis of PAGs and EUV exposures of PAGs in phenolic and nonphenolic polymers to narrow down the mechanistic possibilities in chemically amplified resists.

  10. Solar EUV irradiance for space weather applications

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  11. First environmental data from the EUV engineering test stand

    NASA Astrophysics Data System (ADS)

    Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.

    2001-08-01

    The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.

  12. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  13. Plasma cleaning of nanoparticles from EUV mask materials by electrostatics

    NASA Astrophysics Data System (ADS)

    Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.

    2008-03-01

    Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.

  14. CXRO - Mi-Young Im, Staff Scientist

    Science.gov Websites

    X-Ray Database Zone Plate Education Nanomagnetism X-Ray Microscopy LDJIM EUV Lithography EUV Mask Publications Contact The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkeley -Ray Optics X-Ray Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Imaging

  15. Discovery of Strong EUV-induced Balmer Emission in the New WD+dM Binary EUVE J2013+40.0 (RE 2013+400)

    NASA Astrophysics Data System (ADS)

    Thorstensen, J. R.; Vennes, S.

    1993-12-01

    The binary system EUVE J2013+40.0 (= RE 2013+400) was discovered in the EUV-selected sample of white dwarfs identified in the course of the ROSAT Wide Field Camera (WFC) all-sky survey (Pounds et al. 1993, MNRAS, 260, 77). The intense extreme ultraviolet (EUV) emission from the hot white dwarf (DAO type) was also detected in the course of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (Bowyer et al. 1993, ApJ, submitted), and the subsequent optical identification campaign suggested the association of EUVE J2013+40.0 with the Feige 24 class of binary systems (see Vennes & Thorstensen, these proceedings). Such systems consist of a hot H-rich white dwarf (DA/DAO) and a red dwarf companion (dM) and are characterized by strong, narrow, variable Balmer emission. We obtained spectroscopy with 4 Angstroms resolution at the Michigan-Dartmouth-MIT Hiltner 2.4 m, covering the Hα and Hβ range. The Hα emission line velocity and equivalent widths varied with a period of 0.708 +/- 0.003 d; the velocity semiamplitude is 89 +/- 3 km s(-1) . The emission equivalent width reaches maximum strength 0.251 +/- 0.007 cycle after maximum emission-line velocity, that is, when the emission source reaches superior conjunction. This is just as expected if the emission arises from reprocessing of the EUV radiation incident upon the face of the dM star facing the white dwarf, as proposed for Feige 24 by Thorstensen et al. (1978, ApJ, 223, 260). EUVE J2013+40.0 is one of a handful of WD+dM binary systems in which the illumination effect is observed with unambiguous clarity. By comparing Feige 24 and EUVE J2013+40.0, and modelling the white dwarf EUV emission and red dwarf Balmer emission, we constrain the orbital inclinations. Additional spectroscopy of EUVE J2013+40.0 is being scheduled to determine the component masses. These are important input data for the study of the close binary systems which arise from common envelope evolution. This work is supported by a forthcoming NASA Guest Observer grant.

  16. EUV mask manufacturing readiness in the merchant mask industry

    NASA Astrophysics Data System (ADS)

    Green, Michael; Choi, Yohan; Ham, Young; Kamberian, Henry; Progler, Chris; Tseng, Shih-En; Chiou, Tsann-Bim; Miyazaki, Junji; Lammers, Ad; Chen, Alek

    2017-10-01

    As nodes progress into the 7nm and below regime, extreme ultraviolet lithography (EUVL) becomes critical for all industry participants interested in remaining at the leading edge. One key cost driver for EUV in the supply chain is the reflective EUV mask. As of today, the relatively few end users of EUV consist primarily of integrated device manufactures (IDMs) and foundries that have internal (captive) mask manufacturing capability. At the same time, strong and early participation in EUV by the merchant mask industry should bring value to these chip makers, aiding the wide-scale adoption of EUV in the future. For this, merchants need access to high quality, representative test vehicles to develop and validate their own processes. This business circumstance provides the motivation for merchants to form Joint Development Partnerships (JDPs) with IDMs, foundries, Original Equipment Manufacturers (OEMs) and other members of the EUV supplier ecosystem that leverage complementary strengths. In this paper, we will show how, through a collaborative supplier JDP model between a merchant and OEM, a novel, test chip driven strategy is applied to guide and validate mask level process development. We demonstrate how an EUV test vehicle (TV) is generated for mask process characterization in advance of receiving chip maker-specific designs. We utilize the TV to carry out mask process "stress testing" to define process boundary conditions which can be used to create Mask Rule Check (MRC) rules as well as serve as baseline conditions for future process improvement. We utilize Advanced Mask Characterization (AMC) techniques to understand process capability on designs of varying complexity that include EUV OPC models with and without sub-resolution assist features (SRAFs). Through these collaborations, we demonstrate ways to develop EUV processes and reduce implementation risks for eventual mass production. By reducing these risks, we hope to expand access to EUV mask capability for the broadest community possible as the technology is implemented first within and then beyond the initial early adopters.

  17. From powerful research platform for industrial EUV photoresist development, to world record resolution by photolithography: EUV interference lithography at the Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Fallica, Roberto; Fan, Daniel; Karim, Waiz; Vockenhuber, Michaela; van Bokhoven, Jeroen A.; Ekinci, Yasin

    2016-09-01

    Extreme ultraviolet interference lithography (EUV-IL, λ = 13.5 nm) has been shown to be a powerful technique not only for academic, but also for industrial research and development of EUV materials due to its relative simplicity yet record high-resolution patterning capabilities. With EUV-IL, it is possible to pattern high-resolution periodic images to create highly ordered nanostructures that are difficult or time consuming to pattern by electron beam lithography (EBL) yet interesting for a wide range of applications such as catalysis, electronic and photonic devices, and fundamental materials analysis, among others. Here, we will show state-of the-art research performed using the EUV-IL tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). For example, using a grating period doubling method, a diffraction mask capable of patterning a world record in photolithography of 6 nm half-pitch (HP), was produced. In addition to the description of the method, we will give a few examples of applications of the technique. Well-ordered arrays of suspended silicon nanowires down to 6.5 nm linewidths have been fabricated and are to be studied as field effect transistors (FETs) or biosensors, for instance. EUV achromatic Talbot lithography (ATL), another interference scheme that utilizes a single grating, was shown to yield well-defined nanoparticles over large-areas with high uniformity presenting great opportunities in the field of nanocatalysis. EUV-IL is in addition, playing a key role in the future introduction of EUV lithography into high volume manufacturing (HVM) of semiconductor devices for the 7 and 5 nm logic node (16 nm and 13 nm HP, respectively) and beyond while the availability of commercial EUV-tools is still very much limited for research.

  18. Energy deposition in ultrathin extreme ultraviolet resist films: extreme ultraviolet photons and keV electrons

    NASA Astrophysics Data System (ADS)

    Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.

    2016-07-01

    The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.

  19. SAQP and EUV block patterning of BEOL metal layers on IMEC's iN7 platform

    NASA Astrophysics Data System (ADS)

    Bekaert, Joost; Di Lorenzo, Paolo; Mao, Ming; Decoster, Stefan; Larivière, Stéphane; Franke, Joern-Holger; Blanco Carballo, Victor M.; Kutrzeba Kotowska, Bogumila; Lazzarino, Frederic; Gallagher, Emily; Hendrickx, Eric; Leray, Philippe; Kim, R. Ryoung-han; McIntyre, Greg; Colsters, Paul; Wittebrood, Friso; van Dijk, Joep; Maslow, Mark; Timoshkov, Vadim; Kiers, Ton

    2017-03-01

    The imec N7 (iN7) platform has been developed to evaluate EUV patterning of advanced logic BEOL layers. Its design is based on a 42 nm first-level metal (M1) pitch, and a 32 nm pitch for the subsequent M2 layer. With these pitches, the iN7 node is an `aggressive' full-scaled N7, corresponding to IDM N7, or foundry N5. Even in a 1D design style, single exposure of the 16 nm half-pitch M2 layer is very challenging for EUV lithography, because of its tight tip-to-tip configurations. Therefore, the industry is considering the hybrid use of ArFi-based SAQP combined with EUV Block as an alternative to EUV single exposure. As a consequence, the EUV Block layer may be one of the first layers to adopt EUV lithography in HVM. In this paper, we report on the imec iN7 SAQP + Block litho performance and process integration, targeting the M2 patterning for a 7.5 track logic design. The Block layer is exposed on an ASML NXE:3300 EUV-scanner at imec, using optimized illumination conditions and state-of-the-art metal-containing negative tone resist (Inpria). Subsequently, the SAQP and block structures are characterized in a morphological study, assessing pattern fidelity and CD/EPE variability. The work is an experimental feasibility study of EUV insertion, for SAQP + Block M2 patterning on an industry-relevant N5 use-case.

  20. EUVS Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Stern, Alan S.

    1996-01-01

    During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).

  1. Extreme Ultraviolet Explorer Bright Source List

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  2. How active was solar cycle 22?

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.

    1993-01-01

    Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.

  3. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  4. A volume-limited survey of High Galactic latitude planetary nebulae with the Extrme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Drake, Jeremy J.; Mcdonald, Kelley; Malina, Roger F.

    1995-01-01

    We present the results of a complete survey, at extreme-ultraviolet (EUV) wavelengths (58-234 A), of the high Galactic latitude (absolute value of b greater than or = to 20 deg) planetary nebulae (PNs) with at least one determination of the distance within 1 kpc of the Sun. The sample comprises 27 objects observed during the Extreme Ultraviolet Explorer (EUVE) all-sky survey and represents the majority of PN likely to be accessible at EUV wavelengths. Six PNs (NGC 246, NGC 1360, K1-16, LoTr 5, NGC 4361, and NGC 3587) were detected in the shortest EUV band (58-174 A). A seventh PN (NGC 6853), not included in the sample, was also detected during the survey. The emission is consistent in all cases with that of a point source and therefore most probably originates from the PN central star. Accurate EUV count rates or upper limits in the two shorter EUVE bands (centered at approximately 100 and 200 A) are given for all the sources in the sample. NGC 4361 and NGC 3587 are reported here for the first time as sources of EUV radiation. As might be expected, attenuation by the interstellar medium dominates the PN distribution in the EUV sky.

  5. EUV polarimetry for thin film and surface characterization and EUV phase retarder reflector development.

    PubMed

    Gaballah, A E H; Nicolosi, P; Ahmed, Nadeem; Jimenez, K; Pettinari, G; Gerardino, A; Zuppella, P

    2018-01-01

    The knowledge and the manipulation of light polarization state in the vacuum ultraviolet and extreme ultraviolet (EUV) spectral regions play a crucial role from materials science analysis to optical component improvements. In this paper, we present an EUV spectroscopic ellipsometer facility for polarimetry in the 90-160 nm spectral range. A single layer aluminum mirror to be used as a quarter wave retarder has been fully characterized by deriving the optical and structural properties from the amplitude component and phase difference δ measurements. The system can be suitable to investigate the properties of thin films and optical coatings and optics in the EUV region.

  6. Honing the accuracy of extreme-ultraviolet optical system testing: at-wavelength and visible-light measurements of the ETS Set-2 projection optic

    NASA Astrophysics Data System (ADS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Bokor, Jeffrey; Chapman, Henry N.

    2002-07-01

    As the quality of optical systems for extreme ultraviolet lithography improves, high-accuracy wavefront metrology for alignment and qualification becomes ever more important. To enable the development of diffraction-limited EUV projection optics, visible-light and EUV interferometries must work in close collaboration. We present a detailed comparison of EUV and visible-light wavefront measurements performed across the field of view of a lithographic-quality EUV projection optical system designed for use in the Engineering Test Stand developed by the Virtual National Laboratory and the EUV Limited Liability Company. The comparisons reveal that the present level of RMS agreement lies in the 0.3-0.4-nm range. Astigmatism is the most significant aberration component for the alignment of this optical system; it is also the dominant term in the discrepancy, and the aberration with the highest measurement uncertainty. With EUV optical systems requiring total wavefront quality in the (lambda) EUV/50 range, and even higher surface-figure quality for the individual mirror elements, improved accuracy through future comparisons, and additional studies, are required.

  7. Efficient extreme-UV-to-extreme-UV conversion by four-wave mixing with intense near-IR pulses in highly charged ion plasmas

    NASA Astrophysics Data System (ADS)

    Chu, Hsu-hsin; Wang, Jyhpyng

    2018-05-01

    Nonlinear optics in the extreme-ultraviolet (EUV) has been limited by lack of transparent media and small conversion efficiency. To overcome this problem we explore the advantage of using multiply charged ion plasmas as the interacting media between EUV and intense near-infrared (NIR) pulses. Such media are transparent to EUV and can withstand intense NIR driving pulses without damage. We calculate the third-order nonlinear polarizabilities of Ar2 + and Ar3 + ions for EUV and NIR four-wave mixing by using the well-proven Cowan code and find that the EUV-to-EUV conversion efficiency as high as 26% can be expected for practical experimental configurations using multi-terawatt NIR lasers. Such a high efficiency is possible because the driving pulse intensity can be scaled up to several orders of magnitude higher than in conventional nonlinear media, and the group-velocity and phase mismatch are insignificant at the experimental plasma densities. This effective scheme of wave mixing can be utilized for ultrafast EUV waveform measurement and control as well as wavelength conversion.

  8. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Leeson, Michael; Caudillo, Roman; Bacuita, Terence; Shah, Uday; Chandhok, Manish

    2011-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. According to recent assessments made at the 2010 EUVL Symposium, the readiness of EUV materials remains one of the top risk items for EUV adoption. The main development issue regarding EUV resists has been how to simultaneously achieve high resolution, high sensitivity, and low line width roughness (LWR). This paper describes our strategy, the current status of EUV materials, and the integrated post-development LWR reduction efforts made at Intel Corporation. Data collected utilizing Intel's Micro- Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <=11.3mJ/cm2 with <=3nm LWR.

  9. Mask technology for EUV lithography

    NASA Astrophysics Data System (ADS)

    Bujak, M.; Burkhart, Scott C.; Cerjan, Charles J.; Kearney, Patrick A.; Moore, Craig E.; Prisbrey, Shon T.; Sweeney, Donald W.; Tong, William M.; Vernon, Stephen P.; Walton, Christopher C.; Warrick, Abbie L.; Weber, Frank J.; Wedowski, Marco; Wilhelmsen, Karl C.; Bokor, Jeffrey; Jeong, Sungho; Cardinale, Gregory F.; Ray-Chaudhuri, Avijit K.; Stivers, Alan R.; Tejnil, Edita; Yan, Pei-yang; Hector, Scott D.; Nguyen, Khanh B.

    1999-04-01

    Extreme UV Lithography (EUVL) is one of the leading candidates for the next generation lithography, which will decrease critical feature size to below 100 nm within 5 years. EUVL uses 10-14 nm light as envisioned by the EUV Limited Liability Company, a consortium formed by Intel and supported by Motorola and AMD to perform R and D work at three national laboratories. Much work has already taken place, with the first prototypical cameras operational at 13.4 nm using low energy laser plasma EUV light sources to investigate issues including the source, camera, electro- mechanical and system issues, photoresists, and of course the masks. EUV lithograph masks are fundamentally different than conventional photolithographic masks as they are reflective instead of transmissive. EUV light at 13.4 nm is rapidly absorbed by most materials, thus all light transmission within the EUVL system from source to silicon wafer, including EUV reflected from the mask, is performed by multilayer mirrors in vacuum.

  10. Degradation-Free Spectrometers for Solar EUV Measurements: A Progress Report

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Judge, D. L.; Didkovsky, L. V.

    2009-12-01

    Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for Summer 2010. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS is designed to provide solar irradiance at Lyman-alpha and He II to overlap EUV observations from SOHO/SEM and SDO/EVE. Electronic and mechanical designs for the flight prototype instruments and results of tests performed with the instruments in the laboratory are reported. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA’s Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.

  11. Plans for the extreme ultraviolet explorer data base

    NASA Technical Reports Server (NTRS)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  12. A multimission three-axis stabilized spacecraft flight dynamics ground support system

    NASA Technical Reports Server (NTRS)

    Langston, J.; Krack, K.; Reupke, W.

    1993-01-01

    The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) has been developed in an effort to minimize the costs of ground support systems. Unlike single-purpose ground support systems, which attempt to reduce costs by reusing software specifically developed for previous missions, the multimission support system is an intermediate step in the progression to a fully generalized mission support system in which numerous missions may be served by one general system. The benefits of multimission attitude ground support systems extend not only to the software design and coding process, but to the entire system environment, from specification through testing, simulation, operations, and maintenance. This paper reports the application of an MTASS FDSS to multiple scientific satellite missions. The satellites are the Upper Atmosphere Research Satellite (UARS), the Extreme Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set of attitude sensors. This paper centers on algorithm and design concepts for a multimission system and discusses flight experience from UARS.

  13. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  14. Extreme ultraviolet spectral irradiance measurements since 1946

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial irradiance camera (STI-Cam) and also be used investigating real-time space weather effects and deriving more detailed correction procedures for the evaluation of Global Navigation Satellite System (GNSS) signals. Progress in physics goes with achieving higher accuracy in measurements. This review historically guides the reader on the ways of exploring the impact of the variable solar radiation in the extreme ultraviolet spectral region on our upper atmosphere in the altitude regime from 80 to 1000 km.

  15. Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years

    NASA Astrophysics Data System (ADS)

    Čížková, Klára; Láska, Kamil; Metelka, Ladislav; Staněk, Martin

    2018-02-01

    This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964-2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004-2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.

  16. Phase measurements of EUV mask defects

    DOE PAGES

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; ...

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  17. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  18. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel

    2017-06-01

    Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.

  19. Performance upgrades in the EUV engineering test stand

    NASA Astrophysics Data System (ADS)

    Tichenor, Daniel A.; Replogle, William C.; Lee, Sang Hun; Ballard, William P.; Leung, Alvin H.; Kubiak, Glenn D.; Klebanoff, Leonard E.; Graham, Samual, Jr.; Goldsmith, John E. M.; Jefferson, Karen L.; Wronosky, John B.; Smith, Tony G.; Johnson, Terry A.; Shields, Harry; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Sweeney, Donald W.; Folta, James A.; Sommargren, Gary E.; Goldberg, Kenneth A.; Naulleau, Patrick P.; Attwood, David T., Jr.; Gullikson, Eric M.

    2002-07-01

    The EUV Engineering Test Stand (ETS) has demonstrated the printing of 100-nm-resolution scanned images. This milestone was first achieved while the ETS operated in an initial configuration using a low power laser and a developmental projection system, PO Box 1. The drive laser has ben upgraded to a single chain of the three-chain Nd:YAG laser developed by TRW. The result in exposure time is approximately 4 seconds for static exposures. One hundred nanometer dense features have been printed in step-and-scan operation with the same image quality obtained in static printing. These experiments are the first steps toward achieving operation using all three laser chains for a total drive laser power of 1500 watts. In a second major upgrade the developmental wafer stage platen, used to demonstrate initial full-field imaging, has been replaced with the final low-expansion platen made of Zerodur. Additional improvements in the hardware and control software have demonstrated combined x and jitter from 2 to 4 nm RMS Over most of the wafer stage travel range, while scanning at the design scan speed of 10 mm/s at the wafer. This value, less than half of the originally specified jitter, provides sufficient stability to support printing of 70 nm features as planned, when the upgraded projection system is installed. The third major upgrade will replace PO Box 1 with an improved projection system, PO Box 2, having lower figure error and lower flare. In addition to these upgrades, dose sensors at the reticle and wafer planes and an EUV- sensitive aerial image monitor have been integrated into the ETS. This paper reports on ETS system upgrades and the impact on system performance.

  20. Coordinated XTE/EUVE Observations of Algol

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1997-01-01

    EUVE, ASCA, and XTE observed the eclipsing binary Algol (Beta Per) from 1-7 Feb. 96. The coordinated observation covered approximately 2 binary orbits of the system, with a net exposure of approximately 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointing), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the Fe abundance in the Algol system.

  1. Classification and printability of EUV mask defects from SEM images

    NASA Astrophysics Data System (ADS)

    Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.

    2017-10-01

    Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM-to-Aerial printability) analysis of every defect. First, a defect-free or reference mask SEM is rendered from the post-OPC design, and the defective signature is detected from the defect-reference difference image. These signatures help assess the true nature of the defect as evident in e-beam imaging; for example, excess or missing absorber, line-edge roughness, contamination, etc. Next, defect and reference contours are extracted from the grayscale SEM images and fed into the simulation engine with an EUV scanner model to generate corresponding EUV defect and reference aerial images. These are then analyzed for printability and dispositioned using an Aerial Image Analyzer (AIA) application to automatically measure and determine the amount of CD errors. Thus by integrating EUV ADC and S2A applications together, every defect detection is characterized for its type and printability which is essential for not only determining which defects to repair, but also in monitoring the performance of EUV mask process tools. The accuracy of the S2A print modeling has been verified with other commercially-available simulators, and will also be verified with actual wafer print results. With EUV lithography progressing towards volume manufacturing at 5nm technology, and the likelihood of EBMI inspectors approaching the horizon, the EUV ADC-S2A system will continue serving an essential role of dispositioning defects off e-beam imaging.

  2. EUV Spectroscopy of High-redshift X-ray Objects

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael Paul; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.

    2010-03-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGNs for example, will have their maxima redshifted into the EUV waveband ( 90-912 Å/0.1-0.01 keV). Consequently, a wealth of spectral diagnostics, provided by, for example, the Fe L-shell complex ( 60-6 Å/0.2-2.0 keV) and the O VII/VIII lines ( 20 Å/0.5 keV), will be lost to X-ray instruments operating at traditional ( 0.5-10 keV) and higher X-ray energies. There are precedents in other wavebands. For example, HST evolutionary studies will become largely the province of JWST. Despite the successes of EUVE, the ROSAT WFC, and the Chandra LETG, the EUV continues to be unappreciated and under-utilized, partly because of a preconception that absorption by neutral galactic Hydrogen in the ISM prevents any useful extragalactic measurements at all EUV wavelengths and, until recently, by a lack of a suitable enabling technology. Thus, if future planned X-ray missions (e.g., IXO, Gen-X) are optimized again for traditional X-ray energies, their performance (effective area, resolving power) will be cut off at ultrasoft X-ray energies or at best be radically reduced in the EUV. This opens up a critical gap in performance located right at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nano-laminate fabrication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs.

  3. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  4. EUV Waves Driven by the Sudden Expansion of Transequatorial Loops Caused by Coronal Jets

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Tang, Zehao; Miao, Yuhu; Su, Jiangtao; Liu, Yu

    2018-06-01

    We present two events to study the driving mechanism of extreme-ultraviolet (EUV) waves that are not associated with coronal mass ejections (CMEs), by using high-resolution observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Observational results indicate that the observed EUV waves were accompanied by flares and coronal jets, but not the CMEs that were regarded as drivers of most EUV waves in previous studies. In the first case, it is observed that a coronal jet is ejected along a transequatorial loop system at a plane-of-the-sky (POS) speed of 335 ± 22 km s{}-1; in the meantime, an arc-shaped EUV wave appeared on the eastern side of the loop system. In addition, the EUV wave further interacted with another interconnecting loop system and launched a fast propagating (QFP) magnetosonic wave along the loop system, which had a period of 200 s and a speed of 388 ± 65 km s{}-1, respectively. In the second case, we observed a coronal jet that ejected at a POS speed of 282 ± 44 km s{}-1 along a transequatorial loop system as well as the generation of bright EUV waves on the eastern side of the loop system. Based on the observational results, we propose that the observed EUV waves on the eastern side of the transequatorial loop systems are fast-mode magnetosonic waves and that they are driven by the sudden lateral expansion of the transequatorial loop systems due to the direct impingement of the associated coronal jets, while the QFP wave in the fist case formed due to the dispersive evolution of the disturbance caused by the interaction between the EUV wave and the interconnecting coronal loops. It is noted that EUV waves driven by sudden loop expansions have shorter lifetimes than those driven by CMEs.

  5. Modeling and measurement of hydrogen radical densities of in situ plasma-based Sn cleaning source

    NASA Astrophysics Data System (ADS)

    Elg, Daniel T.; Panici, Gianluca A.; Peck, Jason A.; Srivastava, Shailendra N.; Ruzic, David N.

    2017-04-01

    Extreme ultraviolet (EUV) lithography sources expel Sn debris. This debris deposits on the collector optic used to focus the EUV light, lowering its reflectivity and EUV throughput to the wafer. Consequently, the collector must be cleaned, causing source downtime. To solve this, a hydrogen plasma source was developed to clean the collector in situ by using the collector as an antenna to create a hydrogen plasma and create H radicals, which etch Sn as SnH4. This technique has been shown to remove Sn from a 300-mm-diameter stainless steel dummy collector. The H radical density is of key importance in Sn etching. The effects of power, pressure, and flow on radical density are explored. A catalytic probe has been used to measure radical density, and a zero-dimensional model is used to provide the fundamental science behind radical creation and predict radical densities. Model predictions and experimental measurements are in good agreement. The trends observed in radical density, contrasted with measured Sn removal rates, show that radical density is not the limiting factor in this etching system; other factors, such as SnH4 redeposition and energetic ion bombardment, must be more fully understood in order to predict removal rates.

  6. EUV multilayer mirrors with enhanced stability

    NASA Astrophysics Data System (ADS)

    Benoit, Nicolas; Yulin, Sergiy; Feigl, Torsten; Kaiser, Norbert

    2006-08-01

    The application of multilayer optics in EUV lithography requires not only the highest possible normal-incidence reflectivity but also a long-term thermal and radiation stability at operating temperatures. This requirement is most important in the case of the collector mirror of the illumination system close to the EUV source where a short-time decrease in reflectivity is most likely. Mo/Si multilayer mirrors, designed for high normal reflectivity at the wavelength of 13.5 nm and deposited by dc magnetron sputtering, were directly exposed to EUV radiation without mitigation system. They presented a loss of reflectivity of more than 18% after only 8 hours of irradiation by a Xe-discharge source. Another problem of Mo/Si multilayers is the instability of reflectivity and peak wavelength under high heat load. It becomes especially critical at temperatures above 200°C, where interdiffusion between the molybdenum and the silicon layers is observed. The development of high-temperature multilayers was focused on two alternative Si-based systems: MoSi II/Si and interface engineered Mo/C/Si/C multilayer mirrors. The multilayer designs as well as the deposition parameters of all systems were optimized in terms of high peak reflectivity (>= 60 %) at a wavelength of 13.5 nm and high thermal stability. Small thermally induced changes of the MoSi II/Si multilayer properties were found but they were independent of the annealing time at all temperatures examined. A wavelength shift of -1.7% and a reflectivity drop of 1.0% have been found after annealing at 500°C for 100 hours. The total degradation of optical properties above 650°C can be explained by a recrystallization process of MoSi II layers.

  7. Prospect of EUV mask repair technology using e-beam tool

    NASA Astrophysics Data System (ADS)

    Kanamitsu, Shingo; Hirano, Takashi; Suga, Osamu

    2010-09-01

    Currently, repair machines used for advanced photomasks utilize principle method like as FIB, AFM, and EB. There are specific characteristic respectively, thus they have an opportunity to be used in suitable situation. But when it comes to EUV generation, pattern size is so small highly expected as under 80nm that higher image resolution and repair accuracy is needed for its machines. Because FIB machine has intrinsic damage problem induced by Ga ion and AFM machine has critical tip size issue, those machines are basically difficult to be applied for EUV generation. Consequently, we focused on EB repair tool for research work. EB repair tool has undergone practical milestone about MoSi based masks. We have applied same process which is used for MoSi to EUV blank and confirmed its reaction. Then we found some severe problems which show uncontrollable feature due to its enormously strong reaction between etching gas and absorber material. Though we could etch opaque defect with conventional method and get the edge shaped straight by top-down SEM viewing, there were problems like as sidewall undercut or local erosion depending on defect shape. In order to cope with these problems, the tool vender has developed a new process and reported it through an international conference [1]. We have evaluated the new process mentioned above in detail. In this paper, we will bring the results of those evaluations. Several experiments for repair accuracy, process stability, and other items have been done under estimation of practical condition assuming diversified size and shape defects. A series of actual printability tests will be also included. On the basis of these experiments, we consider the possibility of EB-repair application for 20nm pattern.

  8. High reflectance coatings for space applications in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Gum, Jeffrey S.; Osantowski, John F.; Fleetwood, Charles M.

    1993-01-01

    Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency and made possible to consider more complex optical designs in the EUV. The importance of recent developments in chemical vapor deposited silicon carbide (CVD-SiC), SiC films and multilayer coatings is discussed in the context of EUV instrumentation design. The EUV performance of these coatings as well as some strengths and problem areas for their use in space will be addressed.

  9. Modeling 13.3nm Fe XXIII Flare Emissions Using the GOES-R EXIS Instrument

    NASA Astrophysics Data System (ADS)

    Rook, H.; Thiemann, E.

    2017-12-01

    The solar EUV spectrum is dominated by atomic transitions in ionized atoms in the solar atmosphere. As solar flares evolve, plasma temperatures and densities change, influencing abundances of various ions, changing intensities of different EUV wavelengths observed from the sun. Quantifying solar flare spectral irradiance is important for constraining models of Earth's atmosphere, improving communications quality, and controlling satellite navigation. However, high time cadence measurements of flare irradiance across the entire EUV spectrum were not available prior to the launch of SDO. The EVE MEGS-A instrument aboard SDO collected 0.1nm EUV spectrum data from 2010 until 2014, when the instrument failed. No current or future instrument is capable of similar high resolution and time cadence EUV observation. This necessitates a full EUV spectrum model to study EUV phenomena at Earth. It has been recently demonstrated that one hot flare EUV line, such as the 13.3nm Fe XXIII line, can be used to model cooler flare EUV line emissions, filling the role of MEGS-A. Since unblended measurements of Fe XXIII are typically unavailable, a proxy for the Fe XXIII line must be found. In this study, we construct two models of this line, first using the GOES 0.1-0.8nm soft x-ray (SXR) channel as the Fe XXIII proxy, and second using a physics-based model dependent on GOES emission measure and temperature data. We determine that the more sophisticated physics-based model shows better agreement with Fe XXIII measurements, although the simple proxy model also performs well. We also conclude that the high correlation between Fe XXIII emissions and the GOES 0.1-0.8nm band is because both emissions tend to peak near the GOES emission measure peak despite large differences in their contribution functions.

  10. ILT optimization of EUV masks for sub-7nm lithography

    NASA Astrophysics Data System (ADS)

    Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin

    2017-06-01

    The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.

  11. Actinic defect counting statistics over 1-cm2 area of EUVL mask blank

    NASA Astrophysics Data System (ADS)

    Jeong, Seongtae; Lai, Chih-wei; Rekawa, Senajith; Walton, Christopher C.; Bokor, Jeffrey

    2000-07-01

    As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm2 of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.

  12. The Extreme Ultraviolet Flux of Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2017-09-01

    The X-ray and EUV emission of stars is vital for understanding the atmospheres and evolution of their planets. The coronae of dwarf stars later than M6 behave differently to those of earlier spectral types and are more X-ray dim and radio bright. Too faint to have been observed by EUVE, their EUV behavior is currently highly uncertain. We propose to observe a small sample of late M dwarfs using the off-axis HRC-S thin Al" filter that is sensitive to EUV emission in the 50-200 A range. The measured fluxes will be used to understand the amount of cooler coronal plasma present, and extend X-ray-EUV flux relations to the latest stellar types.

  13. Study on photochemical analysis system (VLES) for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sekiguchi, A.; Kono, Y.; Kadoi, M.; Minami, Y.; Kozawa, T.; Tagawa, S.; Gustafson, D.; Blackborow, P.

    2007-03-01

    A system for photo-chemical analysis of EUV lithography processes has been developed. This system has consists of 3 units: (1) an exposure that uses the Z-Pinch (Energetiq Tech.) EUV Light source (DPP) to carry out a flood exposure, (2) a measurement system RDA (Litho Tech Japan) for the development rate of photo-resists, and (3) a simulation unit that utilizes PROLITH (KLA-Tencor) to calculate the resist profiles and process latitude using the measured development rate data. With this system, preliminary evaluation of the performance of EUV lithography can be performed without any lithography tool (Stepper and Scanner system) that is capable of imaging and alignment. Profiles for 32 nm line and space pattern are simulated for the EUV resist (Posi-2 resist by TOK) by using VLES that hat has sensitivity at the 13.5nm wavelength. The simulation successfully predicts the resist behavior. Thus it is confirmed that the system enables efficient evaluation of the performance of EUV lithography processes.

  14. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Tomoko Gowa, E-mail: ohyama.tomoko@qst.go.jp; Oshima, Akihiro; Tagawa, Seiichi, E-mail: tagawa@sanken.osaka-u.ac.jp

    2016-08-15

    It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, wemore » calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).« less

  15. AWARE - The Automated EUV Wave Analysis and REduction algorithm

    NASA Astrophysics Data System (ADS)

    Ireland, J.; Inglis; A. R.; Shih, A. Y.; Christe, S.; Mumford, S.; Hayes, L. A.; Thompson, B. J.

    2016-10-01

    Extreme ultraviolet (EUV) waves are large-scale propagating disturbances observed in the solar corona, frequently associated with coronal mass ejections and flares. Since their discovery over two hundred papers discussing their properties, causes and physics have been published. However, their fundamental nature and the physics of their interactions with other solar phenomena are still not understood. To further the understanding of EUV waves, and their relation to other solar phenomena, we have constructed the Automated Wave Analysis and REduction (AWARE) algorithm for the detection of EUV waves over the full Sun. The AWARE algorithm is based on a novel image processing approach to isolating the bright wavefront of the EUV as it propagates across the corona. AWARE detects the presence of a wavefront, and measures the distance, velocity and acceleration of that wavefront across the Sun. Results from AWARE are compared to results from other algorithms for some well known EUV wave events. Suggestions are also give for further refinements to the basic algorithm presented here.

  16. Design intent optimization at the beyond 7nm node: the intersection of DTCO and EUVL stochastic mitigation techniques

    NASA Astrophysics Data System (ADS)

    Crouse, Michael; Liebmann, Lars; Plachecki, Vince; Salama, Mohamed; Chen, Yulu; Saulnier, Nicole; Dunn, Derren; Matthew, Itty; Hsu, Stephen; Gronlund, Keith; Goodwin, Francis

    2017-03-01

    The initial readiness of EUV patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. Thus, Design Technology Co-optimization (DTCO) has become a critical part of technology enablement as scaling has become more challenging and the industry pushes the limits of EUV lithography. The working partnership between the design teams and the process development teams typically involves an iterative approach to evaluate the manufacturability of proposed designs, subsequent modifications to those designs and finally a design manual for the technology. While this approach has served the industry well for many generations, the challenges at the Beyond 7nm node require a more efficient approach. In this work, we describe the use of "Design Intent" lithographic layout optimization where we remove the iterative component of DTCO and replace it with an optimization that achieves both a "patterning friendly" design and minimizes the well-known EUV stochastic effects. Solved together, this "design intent" approach can more quickly achieve superior lithographic results while still meeting the original device's functional specifications. Specifically, in this work we will demonstrate "design intent" optimization for critical BEOL layers using design tolerance bands to guide the source mask co-optimization. The design tolerance bands can be either supplied as part of the original design or derived from some basic rules. Additionally, the EUV stochastic behavior is mitigated by enhancing the image log slope (ILS) for specific key features as part of the overall optimization. We will show the benefit of the "design intent approach" on both bidirectional and unidirectional 28nm min pitch standard logic layouts and compare the more typical iterative SMO approach. Thus demonstrating the benefit of allowing the design to float within the specified range. Lastly, we discuss how the evolution of this approach could lead to layout optimization based entirely on some minimal set of functional requirements and process constraints.

  17. An operations and command systems for the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Korsmeyer, David J.; Olson, Eric C.; Wong, Gary

    1994-01-01

    About 40% of the budget of a scientific spacecraft mission is usually consumed by Mission Operations & Data Analysis (MO&DA) with MO driving these costs. In the current practice, MO is separated from spacecraft design and comes in focus relatively late in the mission life cycle. As a result, spacecraft may be designed that are very difficult to operate. NASA centers have extensive MO expertise but often lessons learned in one mission are not exploited for other parallel or future missions. A significant reduction of MO costs is essential to ensure a continuing and growing access to space for the scientific community. We are addressing some of these issues with a highly automated payload operations and command system for an existing mission, the Extreme Ultraviolet Explorer (EUVE). EUVE is currently operated jointly by the Goddard Space Flight Center (GSFC), responsible for spacecraft operations, and the Center for Extreme Ultraviolet Astrophysics (CEA) of the University of California, Berkeley, which controls the telescopes and scientific instruments aboard the satellite. The new automated system is being developed by a team including personnel from the NASA Ames Research Center (ARC), the Jet Propulsion Laboratory (JPL) and the Center for EUV Astrophysics (CEA). An important goal of the project is to provide AI-based technology that can be easily operated by nonspecialists in AI. Another important goal is the reusability of the techniques for other missions. Models of the EUVE spacecraft need to be built both for planning/scheduling and for monitoring. In both cases, our modeling tools allow the assembly of a spacecraft model from separate sub-models of the various spacecraft subsystems. These sub-models are reusable; therefore, building mission operations systems for another small satellite mission will require choosing pre-existing modules, reparametrizing them with respect to the actual satellite telemetry information, and reassembling them in a new model. We briefly describe the EUVE mission and indicate why it is particularly suitable for the task. Then we briefly outline our current work in mission planning/scheduling and spacecraft and instrument health monitoring.

  18. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  19. EUVE observations of the Moon

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Mcdonald, J. S.; Boyd, W. T.

    1993-01-01

    During its all-sky survey, the Extreme Ultraviolet Explorer (EUVE) satellite observed the Moon several times at first and last quarters, and once near the Dec. 10, 1992 lunar eclipse. We present a preliminary reduction and analysis of this data, in the form of EUV images of the Moon and derived albedos.

  20. Coordinated ASCA/EUVE/XTE Observations of Algol

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1997-01-01

    EUVE, Advanced Satellite for Cosmology and Astrophysics (ASCA), and X-ray Timing Explorer (XTE) observed the eclipsing binary Algol (Beta Per) from 1-7 Feb 1996. The coordinated observation covered approx. 2 binary orbits of the system, with a net exposure of approx. 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointings), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the abundance in the Algol system.

  1. The Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.; Lampton, M.; Finley, D.; Paresce, F.; Penegor, G.; Heetderks, H.

    1982-01-01

    The Extreme Ultraviolet Explorer Mission is described. The purpose of this mission is to search the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation (100 to 1000 A). The search will be accomplished with the use of three EUV telescopes, each sensitive to different bands within the EUV band. A fourth telescope will perform a higher sensitivity search of a limited sample of the sky in a single EUV band. In six months, the entire sky will be scanned at a sensitivity level comparable to existing surveys in other more traditional astronomical bandpasses.

  2. EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Chandhok, Manish; Frasure, Kent

    2009-03-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 32nm half-pitch node and beyond. Readiness of EUV materials is currently one high risk area according to assessments made at the 2008 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data is presented utilizing Intel's Micro-Exposure Tool (MET) examining the feasibility of establishing a resist process that simultaneously exhibits <=30nm half-pitch (HP) L/S resolution at <=10mJ/cm2 with <=4nm LWR.

  3. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Caudillo, Roman; Chandhok, Manish

    2010-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. Readiness of EUV materials is currently one high risk area according to recent assessments made at the 2009 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data collected utilizing Intel's Micro-Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <= 12.5mJ/cm2 with <= 4nm LWR.

  4. Continued Analysis of EUVE Solar System Observations

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. We proposed to continue our work on extracting important results from the EUVE (Extreme UltraViolet Explorer) archive of lunar and jovian system observations. In particular, we planned to: (1) produce several monochromatic images of the Moon at the wavelengths of the brightest solar EUV emission lines; (2) search for evidence of soft X-ray emissions from the Moon and/or X-ray fluorescence at specific EUV wavelengths; (3) search for localized EUV and soft X-ray emissions associated with each of the Galilean satellites; (4) search for correlations between localized Io Plasma Torus (IPT) brightness and volcanic activity on Io; (5) search for soft X-ray emissions from Jupiter; and (6) determine the long term variability of He 58.4 nm emissions from Jupiter, and relate these to solar variability. However, the ADP review panel suggested that the work concentrate on the Jupiter/IPT observations, and provided half the requested funding. Thus we have performed no work on the first two tasks, and instead concentrated on the last three. In addition we used funds from this project to support reduction and analysis of EUVE observations of Venus. While this was not part of the original statement of work, it is entirely in keeping with extracting important results from EUVE solar system observations.

  5. Protection efficiency of a standard compliant EUV reticle handling solution

    NASA Astrophysics Data System (ADS)

    He, Long; Lystad, John; Wurm, Stefan; Orvek, Kevin; Sohn, Jaewoong; Ma, Andy; Kearney, Patrick; Kolbow, Steve; Halbmaier, David

    2009-03-01

    For successful implementation of extreme ultraviolet lithography (EUVL) technology for late cycle insertion at 32 nm half-pitch (hp) and full introduction for 22 nm hp high volume production, the mask development infrastructure must be in place by 2010. The central element of the mask infrastructure is contamination-free reticle handling and protection. Today, the industry has already developed and balloted an EUV pod standard for shipping, transporting, transferring, and storing EUV masks. We have previously demonstrated that the EUV pod reticle handling method represents the best approach in meeting EUVL high volume production requirements, based on then state-of-the-art inspection capability at ~53nm polystyrene latex (PSL) equivalent sensitivity. In this paper, we will present our latest data to show defect-free reticle handling is achievable down to 40 nm particle sizes, using the same EUV pod carriers as in the previous study and the recently established world's most advanced defect inspection capability of ~40 nm SiO2 equivalent sensitivity. The EUV pod is a worthy solution to meet EUVL pilot line and pre-production exposure tool development requirements. We will also discuss the technical challenges facing the industry in refining the EUV pod solution to meet 22 nm hp EUVL production requirements and beyond.

  6. Electrical comparison of iN7 EUV hybrid and EUV single patterning BEOL metal layers

    NASA Astrophysics Data System (ADS)

    Larivière, Stéphane; Wilson, Christopher J.; Kutrzeba Kotowska, Bogumila; Versluijs, Janko; Decoster, Stefan; Mao, Ming; van der Veen, Marleen H.; Jourdan, Nicolas; El-Mekki, Zaid; Heylen, Nancy; Kesters, Els; Verdonck, Patrick; Béral, Christophe; Van den Heuvel, Dieter; De Bisschop, Peter; Bekaert, Joost; Blanco, Victor; Ciofi, Ivan; Wan, Danny; Briggs, Basoene; Mallik, Arindam; Hendrickx, Eric; Kim, Ryoung-han; McIntyre, Greg; Ronse, Kurt; Bömmels, Jürgen; Tőkei, Zsolt; Mocuta, Dan

    2018-03-01

    The semiconductor scaling roadmap shows the continuous node to node scaling to push Moore's law down to the next generations. In that context, the foundry N5 node requires 32nm metal pitch interconnects for the advanced logic Back- End of Line (BEoL). 193immersion usage now requires self-aligned and/or multiple patterning technique combinations to enable such critical dimension. On the other hand, EUV insertion investigation shows that 32nm metal pitch is still a challenge but, related to process flow complexity, presents some clear motivations. Imec has already evaluated on test chip vehicles with different patterning approaches: 193i SAQP (Self-Aligned Quadruple Patterning), LE3 (triple patterning Litho Etch), tone inversion, EUV SE (Single Exposure) with SMO (Source-mask optimization). Following the run path in the technology development for EUV insertion, imec N7 platform (iN7, corresponding node to the foundry N5) is developed for those BEoL layers. In this paper, following technical motivation and development learning, a comparison between the iArF SAQP/EUV block hybrid integration scheme and a single patterning EUV flow is proposed. These two integration patterning options will be finally compared from current morphological and electrical criteria.

  7. Clean induced feature CD shift of EUV mask

    NASA Astrophysics Data System (ADS)

    Nesládek, Pavel; Schedel, Thorsten; Bender, Markus

    2016-05-01

    EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber/ARC layer, as the quartz substrate can be hardly modified by the wet process. For EUV Masks chemical modification of the Ru capping layer - thinning, oxidization etc. are rather more probable and we need to take into account, how this effects can influence the CD measurement process. CD changes measured can be interpreted as either change in the feature size, or modification of the chemical nature of both absorber/ARC layer stack and the Ru capping layer. In our work we try to separate the effect of absorber and Ru/capping layer on the CD shift observed and propose independent way of estimation both parameters.

  8. Miniature Extreme Ultraviolet Solar Radiometers

    NASA Astrophysics Data System (ADS)

    McMullin, D. R.; Seely, J. F.; Bremer, J.; Jones, A. R.; Vest, R.; Sakdinawat, A.

    2015-12-01

    Free-standing zone plates for use in EUV solar radiometers have been fabricated using electron beam lithography and calibrated at the NIST SURF synchrotron facility. The radiometers that we are developing use zone plates (ZPs) to focus the total solar irradiance in narrow EUV spectral bands and measure it with negligible sensitivity to field angle and polarization, and with greater accuracy and greater long-term stability than radiometers that have alternative architectures. These radiometers are easy to accommodate on spacecraft due to their small size, low mass, low power requirements, low data rates, and modest pointing requirements. A proto-type instrument will be presented with performance characteristics and spacecraft resource requirements for hosting these new instruments. The compact size of the optical train make these zone plates attractive for small CubeSats. The robustness of the compact design makes these radiometers available for a large variety of applications.

  9. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield.

    PubMed

    Hammond, T J; Mills, Arthur K; Jones, David J

    2011-12-05

    We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30-100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.

  10. Progress in coherent lithography using table-top extreme ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Li, Wei

    Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution interference pattern whose lattice is modified by a custom designed Talbot mask. In other words, this method enables filling the arbitrary Talbot cell with ultra-fine interference nanofeatures. Detailed optics modeling, system design and experiment results using He-Ne laser and table top EUV laser are included. The last part of chapter IV will analyze its exclusive advantages over traditional Talbot or interference lithography.

  11. Probing the Production of Extreme-ultraviolet Late-phase Solar Flares Using the Model Enthalpy-based Thermal Evolution of Loops

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Ding, Mingde

    2018-04-01

    Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.

  12. EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.

    2017-06-01

    Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).

  13. EUV efficiency of a 6000-grooves per mm diffraction grating

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Bowyer, Stuart; Edelstein, Jerry; Harada, Tatsuo; Kita, Toshiaki

    1990-01-01

    In order to explore whether grooves ruled mechanically at a density of 6000 per mm can perform well at EUV wavelengths, a sample grating is measured with this density in an EUV calibration facility. Measurements are presented of the planar uniform line-space diffraction grating's efficiency and large-angle scattering.

  14. Correlation of experimentally measured atomic scale properties of EUV photoresist to modeling performance: an exploration

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Chandonait, Jonathan; Melvin, Lawrence S.; Marokkey, Sajan; Yan, Qiliang; Grzeskowiak, Steven; Painter, Benjamin; Denbeaux, Gregory

    2017-03-01

    Extreme ultraviolet (EUV) lithography at 13.5 nm stands at the crossroads of next generation patterning technology for high volume manufacturing of integrated circuits. Photo resist models that form the part of overall pattern transform model for lithography play a vital role in supporting this effort. The physics and chemistry of these resists must be understood to enable the construction of accurate models for EUV Optical Proximity Correction (OPC). In this study, we explore the possibility of improving EUV photo-resist models by directly correlating the parameters obtained from experimentally measured atomic scale physical properties; namely, the effect of interaction of EUV photons with photo acid generators in standard chemically amplified EUV photoresist, and associated electron energy loss events. Atomic scale physical properties will be inferred from the measurements carried out in Electron Resist Interaction Chamber (ERIC). This study will use measured physical parameters to establish a relationship with lithographically important properties, such as line edge roughness and CD variation. The data gathered from these measurements is used to construct OPC models of the resist.

  15. Availability of underlayer application to EUV process

    NASA Astrophysics Data System (ADS)

    Kosugi, Hitoshi; Fonseca, Carlos; Iwao, Fumiko; Marumoto, Hiroshi; Kim, Hyun-Woo; Cho, Kyoungyong; Park, Cheol-Hong; Park, Chang-Min; Na, Hai-Sub; Koh, Cha-Won; Cho, Hanku

    2011-04-01

    EUV lithography is one of the most promising technologies for the fabrication of beyond 30nm HP generation devices. However, it is well-known that EUV lithography still has significant challenges. A great concern is the change of resist material for EUV resist process. EUV resist material formulations will likely change from conventional-type materials. As a result, substrate dependency needs to be understood. TEL has reported that the simulation combined with experiments is a good way to confirm the substrate dependency. In this work the application of HMDS treatment and SiON introduction, as an underlayer, are studied to cause a footing of resist profile. Then, we applied this simulation technique to Samsung EUV process. We will report the benefit of this simulation work and effect of underlayer application. Regarding the etching process, underlayer film introduction could have significant issues because the film that should be etched off increases. For that purpose, thinner films are better for etching. In general, thinner films may have some coating defects. We will report the coating coverage performance and defectivity of ultra thin film coating.

  16. The EUVE Proposal Database

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Olson, E. C.

    1993-01-01

    The proposal database and scheduling system for the Extreme Ultraviolet Explorer is described. The proposal database has been implemented to take input for approved observations selected by the EUVE Peer Review Panel and output target information suitable for the scheduling system to digest. The scheduling system is a hybrid of the SPIKE program and EUVE software which checks spacecraft constraints, produces a proposed schedule and selects spacecraft orientations with optimal configurations for acquiring star trackers, etc. This system is used to schedule the In Orbit Calibration activities that took place this summer, following the EUVE launch in early June 1992. The strategy we have implemented has implications for the selection of approved targets, which have impacted the Peer Review process. In addition, we will discuss how the proposal database, founded on Sybase, controls the processing of EUVE Guest Observer data.

  17. Spectroscopy and Photometry of EUVE J1429-38.0:An Eclipsing Magnetic Cataclysmic Variable

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Craig, Nahide; Roberts, Bryce; McGee, Paddy; Sirk, Martin

    1997-06-01

    EUVE J1429-38.0 was originally discovered as a variable source by the Extreme Ultraviolet Explorer (EUVE) satellite. We present new optical observations which unambiguously confirm this star to be an eclipsing magnetic system with an orbital period of 4() h 46() m. The photometric data are strongly modulated by ellipsoidal variations during low states which allow a system inclination of near 80 degrees to be determined. Our time-resolved optical spectra, which cover only about one-third of the orbital cycle, indicate the clear presence of a gas stream. During high states, EUVE J1429-38.0 shows ~ 1 mag deep eclipses and the apparent formation of a partial accretion disk. EUVE J1429-38.0 presents the observer with properties of both the AM Herculis and the DQ Herculis types of magnetic cataclysmic variable.

  18. The patterning center of excellence (CoE): an evolving lithographic enablement model

    NASA Astrophysics Data System (ADS)

    Montgomery, Warren; Chun, Jun Sung; Liehr, Michael; Tittnich, Michael

    2015-03-01

    As EUV lithography moves toward high-volume manufacturing (HVM), a key need for the lithography materials makers is access to EUV photons and imaging. The SEMATECH Resist Materials Development Center (RMDC) provided a solution path by enabling the Resist and Materials companies to work together (using SUNY Polytechnic Institute's Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) -based exposure systems), in a consortium fashion, in order to address the need for EUV photons. Thousands of wafers have been processed by the RMDC (leveraging the SUNY Poly CNSE/SEMATECH MET, SUNY Poly CNSE Alpha Demo Tool (ADT) and the SEMATECH Lawrence Berkeley MET) allowing many of the questions associated with EUV materials development to be answered. In this regard the activities associated with the RMDC are continuing. As the major Integrated Device Manufacturers (IDMs) have continued to purchase EUV scanners, Materials companies must now provide scanner based test data that characterizes the lithography materials they are producing. SUNY Poly CNSE and SEMATECH have partnered to evolve the RMDC into "The Patterning Center of Excellence (CoE)". The new CoE leverages the capability of the SUNY Poly CNSE-based full field ASML 3300 EUV scanner and combines that capability with EUV Microexposure (MET) systems resident in the SEMATECH RMDC to create an integrated lithography model which will allow materials companies to advance materials development in ways not previously possible.

  19. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liheng; Zhang, Jun; Li, Ting

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wavemore » transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.« less

  20. Solar Demon: near real-time Flare, Dimming and EUV wave monitoring

    NASA Astrophysics Data System (ADS)

    Kraaikamp, Emil; Verbeeck, Cis

    Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.

  1. EUV mirror based absolute incident flux detector

    DOEpatents

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  2. Calibration techniques and results in the soft X-ray and extreme ultraviolet for components of the Extreme Ultraviolet Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Jelinsky, Patrick; Bowyer, Stuart

    1986-01-01

    The calibration facilities and techniques for the Extreme Ultraviolet Explorer (EUVE) from 44 to 2500 A are described. Key elements include newly designed radiation sources and a collimated monochromatic EUV beam. Sample results for the calibration of the EUVE filters, detectors, gratings, collimators, and optics are summarized.

  3. Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA

    NASA Technical Reports Server (NTRS)

    Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.

    2014-01-01

    We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV) spicules.

  4. Novel EUV mask black border and its impact on wafer imaging

    NASA Astrophysics Data System (ADS)

    Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Watanabe, Genta; Ito, Shin; Yoshida, Itaru; Maruyama, Shingo; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-03-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The EUV mask is a key element in the lithographic scanner optical path. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the EUV light reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. To reduce this effect an etched multilayer type black border was developed, and it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light which is emitted from EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel black border called Hybrid Black Border has been developed which allows to eliminate EUV and DUV OOB light reflection. Direct measurements of OOB light from HBB and Normal BB are performed on NXE:3300B ASML EUV scanner; it is shown that HBB OOB reflection is 3x lower than that of Normal BB. Finally, we state that HBB is a promising technology allowing for CD control at die edges.

  5. Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina

    2002-07-01

    The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.

  6. Prospects of DUV OoB suppression techniques in EUV lithography

    NASA Astrophysics Data System (ADS)

    Park, Chang-Min; Kim, Insung; Kim, Sang-Hyun; Kim, Dong-Wan; Hwang, Myung-Soo; Kang, Soon-Nam; Park, Cheolhong; Kim, Hyun-Woo; Yeo, Jeong-Ho; Kim, Seong-Sue

    2014-04-01

    Though scaling of source power is still the biggest challenge in EUV lithography (EUVL) technology era, CD and overlay controls for transistor's requirement are also precondition of adopting EUVL in mass production. Two kinds of contributors are identified as risks for CDU and Overlay: Infrared (IR) and deep ultraviolet (DUV) out of band (OOB) radiations from laser produced plasma (LPP) EUV source. IR from plasma generating CO2 laser that causes optics heating and wafer overlay error is well suppressed by introducing grating on collector to diffract IR off the optical axis and is the effect has been confirmed by operation of pre-production tool (NXE3100). EUV and DUV OOB which are reflected from mask black boarder (BB) are root causes of EUV-specific CD error at the boundaries of exposed shots which would result in the problem of CDU out of spec unless sufficiently suppressed. Therefore, control of DUV OOB reflection from the mask BB is one of the key technologies that must be developed prior to EUV mass production. In this paper, quantitative assessment on the advantage and the disadvantage of potential OOB solutions will be discussed. EUV and DUV OOB impacts on wafer CDs are measured from NXE3100 & NXE3300 experiments. Significant increase of DUV OOB impact on CD from NXE3300 compared with NXE3100 is observed. There are three ways of technology being developed to suppress DUV OOB: spectral purity filter (SPF) as a scanner solution, multi-layer etching as a solution on mask, and resist top-coating as a process solution. PROs and CONs of on-scanner, on-mask, and on-resist solution for the mass production of EUV lithography will be discussed.

  7. Free-electron laser emission architecture impact on extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-10-01

    Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.

  8. Evidence for a New Class of Extreme Ultraviolet Sources

    NASA Technical Reports Server (NTRS)

    Maoz, Dan; Ofek, Eran O.; Shemi, Amotz

    1997-01-01

    Most of the sources detected in the extreme ultraviolet (EUV; 100-600 A) by the ROSAT/WFC and EUVE all-sky surveys have been identified with active late-type stars and hot white dwarfs that are near enough to the Earth to escape absorption by interstellar gas. However, about 15 per cent of EUV sources are as yet unidentified with any optical counterparts. We examine whether the unidentified EUV sources may consist of the same population of late-type stars and white dwarfs. We present B and R photometry of stars in the fields of seven of the unidentified EUV sources. We detect in the optical the entire main-sequence and white dwarf population out to the greatest distances where they could still avoid absorption. We use color-magnitude diagrams to demonstrate that, in most of the fields, none of the observed stars has the colours and magnitudes of late-type dwarfs at distances less than 100 pc. Similarly, none of the observed stars is a white dwarf within 500 pc that is hot enough to be a EUV emitter. The unidentified EUV sources we study are not detected in X-rays, while cataclysmic variables, X-ray binaries, and active galactic nuclei generally are. We conclude that some of the EUV sources may be a new class of nearby objects, which are either very faint at optical bands or which mimic the colours and magnitudes of distant late-type stars or cool white dwarfs. One candidate for optically faint objects is isolated old neutron stars, slowly accreting interstellar matter. Such neutron stars are expected to be abundant in the Galaxy, and have not been unambiguously detected.

  9. Method of fabricating reflection-mode EUV diffraction elements

    DOEpatents

    Naulleau, Patrick P.

    2002-01-01

    Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.

  10. EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.

    2014-11-01

    We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.

  11. The Nature of the Flaring EUVE Companion to HD 43162

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    2005-01-01

    The purpose of our program was to observe and characterize the companion to HD 43162, EUVE J0614-2354, which (serendipitously) experienced an enormous flare event during our EUVE observation of HD 43162, one of the nearby solar analogs that we observed during our survey of this population. Our observation was carried out and the data have been received and reduced. We are able to identify EUVE J0614-2354 in both the X-ray (EPIC MOS + PN) and the UV (OM) data, which provides a sub-arcsecond position for this source. Our findings are consistent with the analysis of Christian et al. (2003a,b), who identify EUVE J0614-2354 with a coronally-active M-dwarf star at distance d = 15 plus or minus 5pc. The X-ray spectrum from the EPIC data are also consistent with this identification.

  12. Hemispherical Nature of EUV Shocks Revealed by SOHO, STEREO, and SDO Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Nitta, N.; Akiyama, S.; Makela, P.; Yashiro, S.

    2011-01-01

    EUV wave transients associated with type II radio bursts are manifestation of CME-driven shocks in the solar corona. We use recent EUV wave observations from SOHO, STEREO, and SDO for a set of CMEs to show that the EUV transients have a spherical shape in the inner corona. We demonstrate this by showing that the radius of the EUV transient on the disk observed by one instrument is approximately equal to the height of the wave above the solar surface in an orthogonal view provided by another instrument. The study also shows that the CME-driven shocks often form very low in the corona at a heliocentric distance of 1.2 Rs, even smaller than the previous estimates from STEREO/CORl data (Gopalswamy et aI., 2009, Solar Phys. 259, 227). These results have important implications for the acceleration of solar energetic particles by CMEs

  13. EUV wavefront metrology system in EUVA

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takayuki; Ouchi, Chidane; Hasegawa, Masanobu; Kato, Seima; Suzuki, Akiyoshi; Sugisaki, Katsumi; Murakami, Katsuhiko; Saito, Jun; Niibe, Masahito

    2004-05-01

    An Experimental extreme ultraviolet (EUV) interferometer (EEI) using an undulator as a light source was installed in New SUBARU synchrotron facility at Himeji Institute of Technology (HIT). The EEI can evaluate the five metrology methods reported before. (1) A purpose of the EEI is to determine the most suitable method for measuring the projection optics of EUV lithography systems for mass production tools.

  14. The extreme ultraviolet explorer archive

    NASA Astrophysics Data System (ADS)

    Polomski, E.; Drake, J. J.; Dobson, C.; Christian, C.

    1993-09-01

    The Extreme Ultrviolet Explorer (EUVE) public archive was created to handle the storage, maintenance, and distribution of EUVE data and ancillary documentation, information, and software. Access to the archive became available to the public on July 17, 1992, only 40 days after the launch of the EUVE satellite. A brief overview of the archive's contents and the various methods of access will be described.

  15. Molecular organometallic resists for EUV (MORE): Reactivity as a function of metal center (Bi, Sb, Te and Sn)

    NASA Astrophysics Data System (ADS)

    Sitterly, Jacob; Murphy, Michael; Grzeskowiak, Steven; Denbeaux, Greg; Brainard, Robert L.

    2018-03-01

    This paper describes the photoreactivity of six organometallic complexes of the type PhnMX2 containing bismuth, antimony and tellurium, where n = 3 for bismuth and antimony and n = 2 for tellurium, and where X = acetate (O2CCH3) or pivalate (O2CC(CH3)3). These compounds were exposed to EUV light to monitor photodecomposition via in situ mass spectral analysis of the primary outgassing products of CO2, benzene and phenol. This paper explores the effect of metal center and carboxylate ligand on the EUV reactivity of these EUV photoresists.

  16. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  17. EUV spectroscopy of high-redshift x-ray objects

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.

    2010-07-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.

  18. Registration performance on EUV masks using high-resolution registration metrology

    NASA Astrophysics Data System (ADS)

    Steinert, Steffen; Solowan, Hans-Michael; Park, Jinback; Han, Hakseung; Beyer, Dirk; Scherübl, Thomas

    2016-10-01

    Next-generation lithography based on EUV continues to move forward to high-volume manufacturing. Given the technical challenges and the throughput concerns a hybrid approach with 193 nm immersion lithography is expected, at least in the initial state. Due to the increasing complexity at smaller nodes a multitude of different masks, both DUV (193 nm) and EUV (13.5 nm) reticles, will then be required in the lithography process-flow. The individual registration of each mask and the resulting overlay error are of crucial importance in order to ensure proper functionality of the chips. While registration and overlay metrology on DUV masks has been the standard for decades, this has yet to be demonstrated on EUV masks. Past generations of mask registration tools were not necessarily limited in their tool stability, but in their resolution capabilities. The scope of this work is an image placement investigation of high-end EUV masks together with a registration and resolution performance qualification. For this we employ a new generation registration metrology system embedded in a production environment for full-spec EUV masks. This paper presents excellent registration performance not only on standard overlay markers but also on more sophisticated e-beam calibration patterns.

  19. EUV tools: hydrogen gas purification and recovery strategies

    NASA Astrophysics Data System (ADS)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  20. On the Absence of EUV Emission from Comet C/2012 S1 (ISON)

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, W. Dean

    2016-01-01

    When the sungrazing comet C2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun's surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This null result is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. By comparing these properties with those of sungrazing comet C2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C2012 S1 (ISON) was at least a factor of four less than that of C2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.

  1. Optical element for full spectral purity from IR-generated EUV light sources

    NASA Astrophysics Data System (ADS)

    van den Boogaard, A. J. R.; Louis, E.; van Goor, F. A.; Bijkerk, F.

    2009-03-01

    Laser produced plasma (LLP) sources are generally considered attractive for high power EUV production in next generation lithography equipment. Such plasmas are most efficiently excited by the relatively long, infrared wavelengths of CO2-lasers, but a significant part of the rotational-vibrational excitation lines of the CO2 radiation will be backscattered by the plasma's critical density surface and consequently will be present as parasitic radiation in the spectrum of such sources. Since most optical elements in the EUV collecting and imaging train have a high reflection coefficient for IR radiation, undesirable heating phenomena at the resist level are likely to occur. In this study a completely new principle is employed to obtain full separation of EUV and IR radiation from the source by a single optical component. While the application of a transmission filter would come at the expense of EUV throughput, this technique potentially enables wavelength separation without loosing reflectance compared to a conventional Mo/Si multilayer coated element. As a result this method provides full spectral purity from the source without loss in EUV throughput. Detailed calculations on the principal of functioning are presented.

  2. The EUV Helium Spectrum in the Quiet Sun: A By-Product of Coronal Emission?

    NASA Technical Reports Server (NTRS)

    Andretta, Vincenzo; DelZanna, Giulio; Jordan, Stuart D.; Oegerle, William (Technical Monitor)

    2002-01-01

    In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionizing flux in the wavelength range below 504 A (the photoionisation threshold for He(I)), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV helium lines: He(II) lambda304, He(I) lambda584, and He(I) lambda537. We find that there are not enough EUV photons to account for the observed helium line intensities. More specifically, we conclude that He(II) intensities cannot be explained by the P-R mechanism. Our results, however, leave open the possibility that the He(I) spectrum could be formed by the P-R mechanism, with the He(II) lambda304 line as a significant photoionizating source.

  3. ON THE ABSENCE OF EUV EMISSION FROM COMET C/2012 S1 (ISON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryans, Paul; Pesnell, W. Dean

    2016-05-10

    When the sungrazing comet C/2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun’s surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This “null result” is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. Bymore » comparing these properties with those of sungrazing comet C/2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C/2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C/2012 S1 (ISON) was at least a factor of four less than that of C/2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.« less

  4. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  5. EUV spectroscopy in astrophysics: The role of compact objects

    NASA Astrophysics Data System (ADS)

    Wood, K. S.; Kowalski, M. P.; Cruddace, R. G.; Barstow, M. A.

    2006-01-01

    The bulk of radiation from million-degree plasmas is emitted at EUV wavelengths. Such plasmas are ubiquitous in astrophysics, and examples include the atmospheres of white dwarfs, accretion phenomena in cataclysmic variables (CVs) and some active galactic nuclei (AGN), the coronae of active stars, and the interstellar medium (ISM) of our own galaxy as well as of others. Internally, white dwarfs are formally analogous to neutron stars, being stellar configurations where the thermal contribution to support is secondary. Both stellar types have various intrinsic and environmental parameters. Comparison of such analogous systems using scaled parameters can be fruitful. Source class characterization is mature enough that such analogies can be used to compare theoretical ideas across a wide dynamic range in parameters, one example being theories of quasiperiodic oscillations. However, the white dwarf side of this program is limited by the available photometry and spectroscopy at EUV wavelengths, where there exist critical spectral features that contain diagnostic information often not available at other wavelengths. Moreover, interstellar absorption makes EUV observations challenging. Results from an observation of the hot white dwarf G191-B2B are presented to demonstrate the promise of high-resolution EUV spectroscopy. Two types of CVs, exemplified by AM Her and EX Hya, are used to illustrate blending of spectroscopy and timing measurements. Dynamical timescales and envisioned performance parameters of next-generation EUV satellites (effective area >20 cm 2, spectral resolution >10,000) make possible a new level of source modeling. The importance of the EUV cannot be overlooked given that observations are continually being pushed to cosmological distances, where the spectral energy distributions of X-ray bright AGNs, for example, will have their maxima redshifted into the EUV. Sometimes wrongly dismissed for limitations of small bandwidth or local view from optical depth limitations, the EUV is instead a gold mine of information bearing upon key issues in compact objects, but it is information that must be won through the triple combination of high-spectral resolution, large area, and application of advanced theory.

  6. Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor

    NASA Astrophysics Data System (ADS)

    Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team

    2017-10-01

    Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.

  7. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  8. Exploring dynamic events in the solar corona

    NASA Astrophysics Data System (ADS)

    Downs, Cooper James

    With the advent of modern computational technology it is now becoming the norm to employ detailed 3D computer models as empirical tools that directly account for the inhomogeneous nature of the Sun-Heliosphere environment. The key advantage of this approach lies in the ability to compare model results directly to observational data and to use a successful comparison (or lack thereof) to glean information on the underlying physical processes. Using extreme ultraviolet waves (EUV waves) as the overarching scientific driver, we apply this observation modeling approach to study the complex dynamics of the magnetic and thermodynamic structures that are observed in the low solar corona. Representing a highly non-trivial effort, this work includes three main scientific thrusts: an initial modeling effort and two EUV wave case-studies. First we document the development of the new Low Corona (LC) model, a 3D time-dependent thermodynamic magnetohydrodynamic (MHD) model implemented within the Space Weather Modeling Framework (SWMF). Observation synthesis methods are integrated within the LC model, which provides the ability to compare model results directly to EUV imaging observations taken by spacecraft. The new model is then used to explore the dynamic interplay between magnetic structures and thermodynamic energy balance in the corona that is caused by coronal heating mechanisms. With the model development complete, we investigate the nature of EUV waves in detail through two case-studies. Starting with the 2008 March 25 event, we conduct a series of numerical simulations that independently vary fundamental parameters thought to govern the physical mechanisms behind EUV waves. Through the subsequent analysis of the 3D data and comparison to observations we find evidence for both wave and non-wave mechanisms contributing to the EUV wave signal. We conclude with a comprehensive observation and modeling analysis of the 2010 June 13 EUV wave event, which was observed by the recently launched Solar Dynamics Observatory. We use a high resolution simulation of the transient to unambiguously characterize the globally propagating front of EUV wave as a fast-mode magnetosonic wave, and use the rich set of observations to place the many other facets of the EUV transient within a unified scenario involving wave and non-wave components.

  9. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories.

  10. Physical resist models and their calibration: their readiness for accurate EUV lithography simulation

    NASA Astrophysics Data System (ADS)

    Klostermann, U. K.; Mülders, T.; Schmöller, T.; Lorusso, G. F.; Hendrickx, E.

    2010-04-01

    In this paper, we discuss the performance of EUV resist models in terms of predictive accuracy, and we assess the readiness of the corresponding model calibration methodology. The study is done on an extensive OPC data set collected at IMEC for the ShinEtsu resist SEVR-59 on the ASML EUV Alpha Demo Tool (ADT), with the data set including more than thousand CD values. We address practical aspects such as the speed of calibration and selection of calibration patterns. The model is calibrated on 12 process window data series varying in pattern width (32, 36, 40 nm), orientation (H, V) and pitch (dense, isolated). The minimum measured feature size at nominal process condition is a 32 nm CD at a dense pitch of 64 nm. Mask metrology is applied to verify and eventually correct nominal width of the drawn CD. Cross-sectional SEM information is included in the calibration to tune the simulated resist loss and sidewall angle. The achieved calibration RMS is ~ 1.0 nm. We show what elements are important to obtain a well calibrated model. We discuss the impact of 3D mask effects on the Bossung tilt. We demonstrate that a correct representation of the flare level during the calibration is important to achieve a high predictability at various flare conditions. Although the model calibration is performed on a limited subset of the measurement data (one dimensional structures only), its accuracy is validated based on a large number of OPC patterns (at nominal dose and focus conditions) not included in the calibration; validation RMS results as small as 1 nm can be reached. Furthermore, we study the model's extendibility to two-dimensional end of line (EOL) structures. Finally, we correlate the experimentally observed fingerprint of the CD uniformity to a model, where EUV tool specific signatures are taken into account.

  11. Increasing EUV source efficiency via recycling of radiation power

    NASA Astrophysics Data System (ADS)

    Hassanein, Ahmed; Sizyuk, Valeryi; Sizyuk, Tatyana; Johnson, Kenneth C.

    2018-03-01

    EUV source power is critical for advanced lithography, for achieving economical throughput performance and also for minimizing stochastic patterning effects. Power conversion efficiency can be increased by recycling plasma-scattered laser radiation and other out-of-band radiation back to the plasma via retroreflective optics. Radiation both within and outside of the collector light path can potentially be recycled. For recycling within the collector path, the system uses a diffractive collection mirror that concomitantly filters all laser and out-of-band radiation out of the EUV output. In this paper we review the optical design concept for power recycling and present preliminary plasma-physics simulation results showing a potential gain of 60% in EUV conversion efficiency.

  12. Application of Laser Plasma Sources of Soft X-rays and Extreme Ultraviolet (EUV) in Imaging, Processing Materials and Photoionization Studies

    NASA Astrophysics Data System (ADS)

    Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.

    In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.

  13. Nanoimaging using soft X-ray and EUV laser-plasma sources

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2018-01-01

    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  14. Development of EUV mask handling technology at MIRAI-Selete

    NASA Astrophysics Data System (ADS)

    Ota, Kazuya; Amemiya, Mitsuaki; Taguchi, Takao; Kamono, Takashi; Kubo, Hiroyoshi; Takikawa, Tadahiko; Usui, Yoichi; Suga, Osamu

    2007-03-01

    We, MIRAI-Selete, started a new EUV mask program in April, 2006. Development of EUV mask handling technology is one of the key areas of the program. We plan to develop mask handling technology and to evaluate EUV mask carriers using Lasertec M3350, a particle inspection tool with the defect sensitivity less than 50nm PSL, and Mask Protection Engineering Tool (named "MPE Tool"). M3350 is a newly developed tool based on a conventional M1350 for EUV blanks inspection. Since our M3350 has a blank flipping mechanism in it, we can inspect the front and the back surface of the blank automatically. We plan to use the M3350 for evaluating particle adders during mask shipping, storage and handling. MPE Tool is a special tool exclusively developed for demonstration of pellicleless mask handling. It can handle a mask within a protective enclosure, which Canon and Nikon have been jointly proposing1, and also, can be modified to handle other type of carrier as the need arises.

  15. EB and EUV lithography using inedible cellulose-based biomass resist material

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2016-03-01

    The validity of our approach of inedible cellulose-based resist material derived from woody biomass has been confirmed experimentally for the use of pure water in organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques of eco-conscious electron beam (EB) and extreme-ultraviolet (EUV) lithography. The water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB and EUV lithography was developed for environmental affair, safety, easiness of handling, and health of the working people. The inedible cellulose-based biomass resist material was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB and EUV sensitive groups. The 50-100 nm line and space width, and little footing profiles of cellulose-based biomass resist material on hardmask and layer were resolved at the doses of 10-30 μC/cm2. The eco-conscious lithography techniques was referred to as green EB and EUV lithography using inedible cellulose-based biomass resist material.

  16. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    PubMed

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  17. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  18. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  19. Pattern Inspection of EUV Masks Using DUV Light

    NASA Astrophysics Data System (ADS)

    Liang, Ted; Tejnil, Edita; Stivers, Alan R.

    2002-12-01

    Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.

  20. Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirkarimi, Paul B.; Bajt, Sasa; Wall, Mark A.

    2000-04-01

    Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decreasemore » more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar. (c) 2000 Optical Society of America.« less

  1. Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.

    PubMed

    Mirkarimi, P B; Bajt, S; Wall, M A

    2000-04-01

    Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.

  2. The extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Malina, Roger F.

    1990-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled for launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of Extreme Ultraviolet (EUV) radiation. The survey will be accomplished with the use of three EUV telescopes, each sensitive to a different segment of the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all sky survey will be carried out in the first six months of the mission and will be made in four bands, or colors. The second phase of the mission, conducted entirely by guest observers selected by NASA, will be devoted to spectroscopic observations of EUV sources. The performance of the instrument components is described. An end to end model of the mission, from a stellar source to the resulting scientific data, was constructed. Hypothetical data from astronomical sources processed through this model are shown.

  3. EUNIS; Extreme-Ultraviolet Normal-Incidence Spectrometer

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    GSFC is in the process of assembling an Extreme-Ultraviolet Normal Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. The instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment, which has now flown a total of ten times, most recently last summer. The new design will have somewhat improved spatial and spectral resolutions, as well as two orders of magnitude greater sensitivity, permitting high signal/noise EUV spectroscopy with a temporal resolution near 1 second for the first time ever. In order to achieve such high time cadence, a novel detector system is being developed, based on Active-Pixel-Sensor electronics, a key component of our design.

  4. Optical inspection of NGL masks

    NASA Astrophysics Data System (ADS)

    Pettibone, Donald W.; Stokowski, Stanley E.

    2004-12-01

    For the last five years KLA-Tencor and our joint venture partners have pursued a research program studying the ability of optical inspection tools to meet the inspection needs of possible NGL lithographies. The NGL technologies that we have studied include SCALPEL, PREVAIL, EUV lithography, and Step and Flash Imprint Lithography. We will discuss the sensitivity of the inspection tools and mask design factors that affect tool sensitivity. Most of the work has been directed towards EUV mask inspection and how to optimize the mask to facilitate inspection. Our partners have succeeded in making high contrast EUV masks ranging in contrast from 70% to 98%. Die to die and die to database inspection of EUV masks have been achieved with a sensitivity that is comparable to what can be achieved with conventional photomasks, approximately 80nm defect sensitivity. We have inspected SCALPEL masks successfully. We have found a limitation of optical inspection when applied to PREVAIL stencil masks. We have run inspections on SFIL masks in die to die, reflected light, in an effort to provide feedback to improve the masks. We have used a UV inspection system to inspect both unpatterned EUV substrates (no coatings) and blanks (with EUV multilayer coatings). These inspection results have proven useful in driving down the substrate and blank defect levels.

  5. EUVE/XTE orbit decay study

    NASA Technical Reports Server (NTRS)

    Richon, K.; Hashmall, J.; Lambertson, M.; Phillips, T.

    1988-01-01

    The Explorer Platform (EP) program currently comprises two missions, the Extreme Ultraviolet Explorer (EUVE) and the X-ray Timing Explorer (XTE), each of which consists of a scientific payload mounted to the EP. The EP has no orbit maintenance capability. The EP with the EUVE payload will be launched first. At the end of the EUVE mission, the spacecraft will be serviced by the Space Transportation System (STS), and the EUVE instrument will be exchanged for the XTE. The XTE mission will continue until reentry or reservicing by the STS. Because the missions will be using the EP sequentially, the orbit requirements are unusually constrained by orbit decay rates. The initial altitude must be selected so that, by the end of the EUVE mission (2.5 years), the spacecraft will have decayed to an altitude within the STS capabilities. In addition, the payload exchange must occur at an altitude that ensures meeting the minimum XTE mission lifetime (3 years) because no STS reboost will be available. Studies were performed using the Goddard Mission Analysis System to estimate the effects of mass, cross-sectional area, and solar flux on the fulfillment of mission requirements. In addition to results from these studies, conclusions are presented as to the accuracy of the Marshall Space Flight Center solar flux predictions.

  6. Reconstruction of Solar EUV Flux 1740-2015

    NASA Astrophysics Data System (ADS)

    Svalgaard, L.

    2015-12-01

    Solar Extreme Ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the 'Magnetic Crusade' of the 1830s and less reliable, but still usable, data are available for portions of the hundred years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F10.7 flux and the sunspot number, and find that the reconstructed EUV flux reproduces the F10.7 flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant 'solar magnetic ground state'.

  7. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki

    Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn{sup 5+} to Sn{sup 13+} are investigated, because of their importance for determining themore » conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 10{sup 18} cm{sup -3} and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.« less

  8. The extreme ultraviolet spectra of low-redshift radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Reynolds, Cormac; Marziani, Paola; O'Dea, Christopher P.

    2016-07-01

    This paper reports on the extreme ultraviolet (EUV) spectrum of three low-redshift (z ˜ 0.6) radio-loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope. The bolometric thermal emission, Lbol, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long-term time-averaged jet power, overline{Q}, for the three sources. overline{Q}/L_{bol}, is shown to lie along the correlation of overline{Q}/L_{bol}, and αEUV found in previous studies of the EUV continuum of intermediate and high-redshift quasars, where the EUV continuum flux density between 1100 and 700 Å is defined by F_{ν } ˜ ν ^{-α _{EUV}}. The high Eddington ratios of the three quasars extend the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely, the correlation of overline{Q}/L_{bol} and αEUV is fundamental, and the correlation of overline{Q} and αEUV is spurious at a very high statistical significance level (99.8 per cent). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multifrequency and multiresolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.

  9. Investigating the intrinsic cleanliness of automated handling designed for EUV mask pod-in-pod systems

    NASA Astrophysics Data System (ADS)

    Brux, O.; van der Walle, P.; van der Donck, J. C. J.; Dress, P.

    2011-11-01

    Extreme Ultraviolet Lithography (EUVL) is the most promising solution for technology nodes 16nm (hp) and below. However, several unique EUV mask challenges must be resolved for a successful launch of the technology into the market. Uncontrolled introduction of particles and/or contamination into the EUV scanner significantly increases the risk for device yield loss and potentially scanner down-time. With the absence of a pellicle to protect the surface of the EUV mask, a zero particle adder regime between final clean and the point-of-exposure is critical for the active areas of the mask. A Dual Pod concept for handling EUV masks had been proposed by the industry as means to minimize the risk of mask contamination during transport and storage. SuSS-HamaTech introduces MaskTrackPro InSync as a fully automated solution for the handling of EUV masks in and out of this Dual Pod System and therefore constitutes an interface between various tools inside the Fab. The intrinsic cleanliness of each individual handling and storage step of the inner shell (EIP) of this Dual Pod and the EUV mask inside the InSync Tool has been investigated to confirm the capability for minimizing the risk of cross-contamination. An Entegris Dual Pod EUV-1000A-A110 has been used for the qualification. The particle detection for the qualification procedure was executed with the TNO's RapidNano Particle Scanner, qualified for particle sizes down to 50nm (PSL equivalent). It has been shown that the target specification of < 2 particles @ 60nm per 25 cycles has been achieved. In case where added particles were measured, the EIP has been identified as a potential root cause for Ni particle generation. Any direct Ni-Al contact has to be avoided to mitigate the risk of material abrasion.

  10. It's Time For A New EUV Mission

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael Paul; Wood, K. S.; Barstow, M. A.; Cruddace, R. G.

    2010-01-01

    The J-PEX high-resolution EUV spectrometer has made a breakthrough in capability with an effective area of 7 cm2 (220-245 Å) and resolving power of 4000, which exceed EUVE by factors of 7 and 20 respectively, and cover a range beyond the 170-Å cutoff of the Chandra LETG. The EUV includes critical spectral features containing diagnostic information often not available at other wavelengths (e.g., He II Ly series), and the bulk of radiation from million degree plasmas is emitted in the EUV. Such plasmas are ubiquitous, and examples include the atmospheres of white dwarfs; accretion phenomena in young stars, CVs and AGN; stellar coronae; and the ISM of our own galaxy and of others. However, sensitive EUV spectroscopy of high resolving power is required to resolve source spectral lines and edges unambiguously, to identify features produced by the intervening ISM, and to measure line profiles and Doppler shifts. This allows exploitation of the full range of plasma diagnostic techniques developed in laboratory and solar physics. J-PEX has flown twice on NASA sounding rockets. In 2001 we observed the isolated white dwarf G191-B2B and detected both ISM and photospheric lines. In 2008 we successfully observed the binary white dwarf Feige 24, but observation time is severely limited with sounding rockets. NASA has approved no new EUV mission, but it is time for one. Here we describe the scientific case for high-resolution EUV spectroscopy, summarize the technology that makes such measurements practical, and present a concept for a 3-month orbital mission, in which J-PEX is modified for a low-cost orbital mission to acquire sensitive high-resolution spectra for 30 white dwarfs, making an important contribution to the study of white dwarf evolution and hence the chemical balance of the Galaxy, and to the understanding of structure in the LISM.

  11. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  12. Optical design of a stigmatic spectroheliometer for photometric studies of dynamic phenomena at extreme-ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Timothy, J. G.

    1977-01-01

    The design of a stigmatic spectroheliometer for photometric studies of dynamic phenomena in the solar atmosphere at extreme ultraviolet (EUV) wavelengths is described. The normal-incidence spectrometer requires only one reflective surface, and is equipped with a series of exit slits and associated one-dimensional detector arrays that are mounted at the secondary (vertical) foci of the concave diffraction grating. It is shown that such a spectrometer mounted at the focus of an off-axis paraboloid telescope mirror of the size employed in the EUV spectroheliometer flown on Skylab could record monochromatic images of a 2 x 2 (arcmin) sq field-of-view with a spatial resolution element of 1 x 1 (arcsec) sq in a time of 4 s, 24 s, or 4 min, depending on whether the region studied is flaring, active, or quiet. The resulting spectroheliograms would have an average photometric precision of 10% and a spectral purity of 0.1 A.

  13. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  14. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  15. EUV and X-ray spectroheliograph study

    NASA Technical Reports Server (NTRS)

    Knox, E. D.; Pastor, R. A.; Salamon, A. L.; Sterk, A. A.

    1975-01-01

    The results of a program directed toward the definition of an EUV and X-ray spectroheliograph which has significant performance and operational improvements over the OSO-7 instrument are documented. The program investigated methods of implementing selected changes and incorporated the results of the study into a set of drawings which defines the new instrument. The EUV detector performance degradation observed during the OSO-7 mission was investigated and the most probable cause of the degradation identified.

  16. Principal investigators data package for Project Initiation Conference (PIC): EUVS sounding rocket no. 36.117CL. Target: Venus

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    The region of the UV between 500 and 1200 A is a rich one for the study of planetary and astrophysical targets. EUV atmospheric spectroscopy opens up an important window on ion and neutral nitrogen, oxygen, and noble gas emissions. In this document we describe the specific scientific background and motivations for this Venus EUV rocket observation along with experiment design and mission parameters.

  17. A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

    DOE PAGES

    Zastrau, U.; Rodel, C.; Nakatsutsumi, M.; ...

    2018-02-05

    We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less

  18. A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zastrau, U.; Rodel, C.; Nakatsutsumi, M.

    We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less

  19. Mask process correction (MPC) modeling and its application to EUV mask for electron beam mask writer EBM-7000

    NASA Astrophysics Data System (ADS)

    Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro

    2010-09-01

    In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.

  20. Ultra-low roughness magneto-rheological finishing for EUV mask substrates

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath

    2013-09-01

    EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.

  1. Thin film filter lifetesting results in the extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Vedder, P. W.; Vallerga, J. V.; Gibson, J. L.; Stock, J.; Siegmund, O. H. W.

    1993-01-01

    We present the results of the thin film filter lifetesting program conducted as part of the NASA Extreme Ultraviolet Explorer (EUVE) satellite mission. This lifetesting program is designed to monitor changes in the transmission and mechanical properties of the EUVE filters over the lifetime of the mission (fabrication, assembly, launch and operation). Witness test filters were fabricated from thin film foils identical to those used in the flight filters. The witness filters have been examined and calibrated periodically over the past seven years. The filters have been examined for evidence of pinholing, mechanical degradation, and oxidation. Absolute transmissions of the flight and witness filters have been measured in the extreme ultraviolet (EUV) over six orders of magnitude at numerous wavelengths using the Berkeley EUV Calibration Facility.

  2. Solar EUV irradiance from the San Marco ASSI - A reference spectrum

    NASA Technical Reports Server (NTRS)

    Schmidtke, Gerhard; Woods, Thomas N.; Worden, John; Rottman, Gary J.; Doll, Harry; Wita, Claus; Solomon, Stanley C.

    1992-01-01

    The only satellite measurement of the solar EUV irradiance during solar cycle 22 has been obtained with the Airglow Solar Spectrometer Instrument (ASSI) aboard the San Marco 5 satellite flown in 1988. The ASSI in-flight calibration parameters are established by using the internal capabilities of ASSI and by comparing ASSI results to the results from other space-based experiments on the ASSI calibration rocket and the Solar Mesospheric Explorer (SME). A solar EUV irradiance spectrum derived from ASSI observations on November 10, 1988 is presented as a reference spectrum for moderate solar activity for the aeronomy community. This ASSI spectrum should be considered as a refinement and extension of the solar EUV spectrum published for the same day by Woods and Rottman (1990).

  3. Mask-induced aberration in EUV lithography

    NASA Astrophysics Data System (ADS)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  4. EDITORIAL: Extreme Ultraviolet Light Sources for Semiconductor Manufacturing

    NASA Astrophysics Data System (ADS)

    Attwood, David

    2004-12-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] provides industry expectations for high volume computer chip fabrication a decade into the future. It provides expectations to anticipated performance and requisite specifications. While the roadmap provides a collective projection of what international industry expects to produce, it does not specify the technology that will be employed. Indeed, there are generally several competing technologies for each two or three year step forward—known as `nodes'. Recent successful technologies have been based on KrF (248 nm), and now ArF (193 nm) lasers, combined with ultraviolet transmissive refractive optics, in what are known as step and scan exposure tools. Less fortunate technologies in the recent past have included soft x-ray proximity printing and, it appears, 157 nm wavelength F2 lasers. In combination with higher numerical aperture liquid emersion optics, 193 nm is expected to be used for the manufacture of leading edge chip performance for the coming five years. Beyond that, starting in about 2009, the technology to be employed is less clear. The leading candidate for the 2009 node is extreme ultraviolet (EUV) lithography, however this requires that several remaining challenges, including sufficient EUV source power, be overcome in a timely manner. This technology is based on multilayer coated reflective optics [2] and an EUV emitting plasma. Following Moore's Law [3] it is expected, for example, that at the 2009 `32 nm node' (printable patterns of 32 nm half-pitch), isolated lines with 18 nm width will be formed in resist (using threshold effects), and that these will be further narrowed to 13 nm in transfer to metalized electronic gates. These narrow features are expected to provide computer chips of 19 GHz clock frequency, with of the order of 1.5 billion transistors per chip [1]. This issue of Journal of Physics D: Applied Physics contains a cluster of eight papers addressing the critical issue of available EUV power from electrical discharge pinch plasmas and laser produced plasmas, including the roots of these requirements, the relevant plasma and radiation physics, and current state-of-the-art commercial technology. In the first paper of the cluster, Vadim Banine and Roel Moors of ASML in the Netherlands provide a detailed review of the required EUV power based on an economically viable throughput of one hundred 300 mm diameter wafers per hour, projected resist sensitivity, number of finite reflectivity multilayer coated surfaces and their collective spectral bandwidth, and a collection solid angle set by optical phase-space constraints and plasma source size. Thomas Krücken and his colleagues from Philips and the Fraunhofer Institute in Aachen present a theoretical model of radiation generation and transport based on model density and temperature profiles in an electrical discharge plasma, providing valuable insights into radiation physics and the limits to achievable power. Kenneth Fahy and his colleagues at UCD in Dublin and NIST in the US, in their paper, describe in detail atomic physics calculations of emission from relevant lines and unresolved transition arrays (UTAs) of candidate xenon and tin ions, each of which radiate strongly within the acceptance bandwidth of the multilayer coatings. The different elements, Xe and Sn, however, raise significantly different implications for source debris production and thus of requisite debris mitigation requirements. Björn Hannson and Hans Hertz of KTH University in Stockholm present a substantial review of laser produced plasmas for the EUV, including those based on liquid jet technologies, leading to a path of mass limited target material, and significant stand-off distance from the solid nozzle, which maximize EUV power generation while minimizing debris production. In addition to an extensive review of EUV source related literature, they describe experiments with laser irradiated droplets and filaments, for both Xe and Sn. The embodiment of electrical discharge plasmas and laser-produced plasmas into commercially available EUV sources, with EUV powers that project to suitable levels, is presented in the fifth paper by Uwe Stamm of XTREME Technologies in Göttingen. For discharge produced plasmas, thermal loading and electrode erosion are significant issues. Vladimir Borisov and his colleagues, at the Troitsk Institute outside Moscow, address these issues and provide novel ideas for the multiplexing of several discharge plasmas feeding a single optical system. Igor Fomenkov and his colleagues at Cymer in San Diego describe issues associated with a dense plasma focus pinch, including a comparison of operations with both positive and negative polarity. In the eighth paper, Malcolm McGeoch of Plex in Massachusetts provides a theoretical description of the vaporization and ionization of spherical tin droplets in discharge plasma. Together this cluster of papers provides a broad review of the current status of high power EUV plasma sources for semiconductor manufacturing. This very current topic, of intense interest worldwide, is considered further in a book [4] of collected papers to become available in mid-2005. Additionally, a special journal issue emphasizing coherent EUV sources, albeit at lower average powers, is soon to appear [5]. References [1] http://public.itrsr.net [2] Attwood D 2000 Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge: Cambridge University Press) www.coe.Berkeley.edu/AST/sxreuv [3] Moore G E 1965 Cramming More Components onto Integrated Circuits Electronics Magazine 114 Moore G E 1995 Lithography and the Future of Moore's Law SPIE 243 2 [4] Bakshi V ed 2005 EUV Sources for Lithography (Bellingham WA:SPIE) at press [5] IEEE J. Special Topics in Quantum Electronics, Short Wavelength and EUV Lasers 10 Dec 2004 at press

  5. Integrated approach to improving local CD uniformity in EUV patterning

    NASA Astrophysics Data System (ADS)

    Liang, Andrew; Hermans, Jan; Tran, Timothy; Viatkina, Katja; Liang, Chen-Wei; Ward, Brandon; Chuang, Steven; Yu, Jengyi; Harm, Greg; Vandereyken, Jelle; Rio, David; Kubis, Michael; Tan, Samantha; Dusa, Mircea; Singhal, Akhil; van Schravendijk, Bart; Dixit, Girish; Shamma, Nader

    2017-03-01

    Extreme ultraviolet (EUV) lithography is crucial to enabling technology scaling in pitch and critical dimension (CD). Currently, one of the key challenges of introducing EUV lithography to high volume manufacturing (HVM) is throughput, which requires high source power and high sensitivity chemically amplified photoresists. Important limiters of high sensitivity chemically amplified resists (CAR) are the effects of photon shot noise and resist blur on the number of photons received and of photoacids generated per feature, especially at the pitches required for 7 nm and 5 nm advanced technology nodes. These stochastic effects are reflected in via structures as hole-to-hole CD variation or local CD uniformity (LCDU). Here, we demonstrate a synergy of film stack deposition, EUV lithography, and plasma etch techniques to improve LCDU, which allows the use of high sensitivity resists required for the introduction of EUV HVM. Thus, to improve LCDU to a level required by 5 nm node and beyond, film stack deposition, EUV lithography, and plasma etch processes were combined and co-optimized to enhance LCDU reduction from synergies. Test wafers were created by depositing a pattern transfer stack on a substrate representative of a 5 nm node target layer. The pattern transfer stack consisted of an atomically smooth adhesion layer and two hardmasks and was deposited using the Lam VECTOR PECVD product family. These layers were designed to mitigate hole roughness, absorb out-of-band radiation, and provide additional outlets for etch to improve LCDU and control hole CD. These wafers were then exposed through an ASML NXE3350B EUV scanner using a variety of advanced positive tone EUV CAR. They were finally etched to the target substrate using Lam Flex dielectric etch and Kiyo conductor etch systems. Metrology methodologies to assess dimensional metrics as well as chip performance and defectivity were investigated to enable repeatable patterning process development. Illumination conditions in EUV lithography were optimized to improve normalized image log slope (NILS), which is expected to reduce shot noise related effects. It can be seen that the EUV imaging contrast improvement can further reduce post-develop LCDU from 4.1 nm to 3.9 nm and from 2.8 nm to 2.6 nm. In parallel, etch processes were developed to further reduce LCDU, to control CD, and to transfer these improvements into the final target substrate. We also demonstrate that increasing post-develop CD through dose adjustment can enhance the LCDU reduction from etch. Similar trends were also observed in different pitches down to 40 nm. The solutions demonstrated here are critical to the introduction of EUV lithography in high volume manufacturing. It can be seen that through a synergistic deposition, lithography, and etch optimization, LCDU at a 40 nm pitch can be improved to 1.6 nm (3-sigma) in a target oxide layer and to 1.4 nm (3-sigma) at the photoresist layer.

  6. Novel EUV mask black border suppressing EUV and DUV OoB light reflection

    NASA Astrophysics Data System (ADS)

    Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-05-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (<0.05%) have been proposed; such an image border is referred to as a black border. In particular, an etched multilayer type black border was developed; it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change in the die influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light from the EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel BB called `Hybrid Black Border' (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including impact of OOB light in the die edge area is evaluated which shows that the OOB impact from HBB becomes comparable with other CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.

  7. Extreme ultraviolet interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for themore » measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the measured wavefront to guide the phase unwrapping in the presence of noise; and, finally, an expedient method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave-front surface fitting procedures.« less

  8. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less

  9. CME Expansion as the Driver of Metric Type II Shock Emission as Revealed by Self-consistent Analysis of High-Cadence EUV Images and Radio Spectrograms

    NASA Astrophysics Data System (ADS)

    Kouloumvakos, A.; Patsourakos, S.; Hillaris, A.; Vourlidas, A.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2014-06-01

    On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet (EUV) wave front recorded by the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the Appareil de Routine pour le Traitement et l'Enregistrement Magnetique de l'Information Spectral (ARTEMIS IV) radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wave front and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indicate that the expansion of the CME ejecta is the source for both EUV and radio shock emissions. Early in the CME expansion phase, the Type-II burst seems to originate in the sheath region between the EUV bubble and the EUV shock front in both radial and lateral directions. This suggests that both the nose and the flanks of the expanding bubble could have driven the shock.

  10. Enhancement of EUV emission from a liquid microjet target by use of dual laser pulses

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Koga, Masato; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi; Kikuchi, Takashi; Yugami, Noboru; Kawata, Shigeo; Andreev, Alexander A.

    2005-03-01

    Extreme ultraviolet (EUV) radiation at the wavelength of around 13nm waws observed from a laser-produced plasma using continuous water-jet. Strong dependence of the conversion efficiency (CE) on the laser focal spot size and jet diameter was observed. The EUV CE at a given laser spot size and jet diameter was further enhanced using double laser pulses, where a pre-pulse was used for initial heating of the plasma.

  11. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  12. Recent solar extreme ultraviolet irradiance observations and modeling: A review

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    1993-01-01

    For more than 90 years, solar extreme ultraviolet (EUV) irradiance modeling has progressed from empirical blackbody radiation formulations, through fudge factors, to typically measured irradiances and reference spectra was well as time-dependent empirical models representing continua and line emissions. A summary of recent EUV measurements by five rockets and three satellites during the 1980s is presented along with the major modeling efforts. The most significant reference spectra are reviewed and threee independently derived empirical models are described. These include Hinteregger's 1981 SERF1, Nusinov's 1984 two-component, and Tobiska's 1990/1991/SERF2/EUV91 flux models. They each provide daily full-disk broad spectrum flux values from 2 to 105 nm at 1 AU. All the models depend to one degree or another on the long time series of the Atmosphere Explorer E (AE-E) EUV database. Each model uses ground- and/or space-based proxies to create emissions from solar atmospheric regions. Future challenges in EUV modeling are summarized including the basic requirements of models, the task of incorporating new observations and theory into the models, the task of comparing models with solar-terrestrial data sets, and long-term goals and modeling objectives. By the late 1990s, empirical models will potentially be improved through the use of proposed solar EUV irradiance measurements and images at selected wavelengths that will greatly enhance modeling and predictive capabilities.

  13. Distinct EUV minimum of the solar irradiance (16-40 nm) observed by SolACES spectrometers onboard the International Space Station (ISS) in August/September 2009

    NASA Astrophysics Data System (ADS)

    Nikutowski, B.; Brunner, R.; Erhardt, Ch.; Knecht, St.; Schmidtke, G.

    2011-09-01

    In the field of terrestrial climatology the continuous monitoring of the solar irradiance with highest possible accuracy is an important goal. SolACES as a part of the ESA mission SOLAR on the ISS is measuring the short-wavelength solar EUV irradiance from 16-150 nm. This data will be made available to the scientific community to investigate the impact of the solar irradiance variability on the Earth's climate as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program. Since the successful launch with the shuttle mission STS-122 on February 7th, 2008, SolACES initially recorded the low EUV irradiance during the extended solar activity minimum. Thereafter it has been observing the EUV irradiance during the increasing solar activity with enhanced intensity and changing spectral composition. SolACES consists of three grazing incidence planar grating spectrometers. In addition there are two three-signal ionisation chambers, each with exchangeable band-pass filters to determine the absolute EUV fluxes repeatedly during the mission. One important problem of space-borne instrumentation recording the solar EUV irradiance is the degradation of the spectrometer sensitivity. The two double ionisation chambers of SolACES, which could be re-filled with three different gases for each recording, allow the recalibration of the efficiencies of the three SolACES spectrometers from time to time.

  14. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography

    NASA Astrophysics Data System (ADS)

    Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.

    2006-12-01

    One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.

  15. An investigation of solar erythemal ultraviolet radiation at two sites in tourist attraction areas of Thailand

    NASA Astrophysics Data System (ADS)

    Buntoung, Sumaman; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Promsen, Worrapass; Tohsing, Korntip; Janjai, Serm

    2013-05-01

    Islands on the southern coasts of Thailand are famous attractions for local and foreign tourists. Tourists usually expose their skins to solar radiation for tanning. Thus information on solar ultraviolet radiation (UV) is of importance for tourists to protect themselves from adverse effects of UV. In this work, solar erythemal ultraviolet radiation (EUV) at two touristic sites namely Samui island (9.451°N, 100.033°E) and Phuket island (8.104°N, 98.304°E) was investigated. In investigating EUV, broadband UV radiometers (Kipp & Zonen, model UVS-B-C) were installed at existing meteorological stations in Samui and Phuket islands. A one-year period of EUV data from these two sites was analyzed. The level of UV index at these sites was studied. The values of UV index higher than 12 at noon time of clear days are usually found in the summer at both sites. Seasonal variation of EUV at both sites was investigated. It was found that the tropical monsoons have strong influence on this variation. Finally, global broadband radiation measured at the sites was also used to establish a correlation between EUV and global broadband radiation. Higher correlation was found for the case of clear sky, as compared to the case of cloudy sky. The correlation obtained from this analysis can be used to estimate EUV from global broadband radiation at these two sites.

  16. The Origin of the EUV Emission in Her X-1

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Marshall, H.

    1999-01-01

    Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.

  17. Relationship between hard X-ray and EUV sources in solar flares

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Frost, K. J.; Donnelly, R. F.

    1979-01-01

    The high time resolution hard X-ray (not less than 15 keV) observations of medium and large impulsive solar flares made with the OSO 5 satellite are compared with the simultaneous ground-based observations of 10-1030 A EUV flux made via sudden frequency deviations (SFD) at Boulder. For most flares the agreement between the times of maxima of the impulsive hard X-ray and EUV emissions is found to be consistent with earlier studies (not less than 1 s). The rise and decay times of the EUV emission are larger than the corresponding times for X-rays not less than 30 keV. When OSO 5 hard X-ray measurements are combined with those made by OGO1, OGO 3, OGO 5, and TD 1A satellites, it is found that there is a nearly linear relationship between the energy fluxes of impulsive EUV emission and X-rays not less than 10 keV over a wide range of flare magnitudes. A model involving only a 'partial precipitation' of energetic electrons and consisting of both thick and thin target hard X-ray sources is examined.

  18. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    PubMed Central

    Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755

  19. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold.

    PubMed

    Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

  20. Studies on cryogenic Xe capillary jet target for laser-produced plasma EUV-light source

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Nica, P. E.; Kaku, K.; Shimoura, A.; Amano, S.; Miyamoto, S.; Mochizuki, T.

    2006-03-01

    In this paper, characterizations of a cryogenic Xe capillary jet target for a laser-produced plasma extreme ultraviolet (EUV) light source are reported. The capillary jet target is a candidate of fast-supplying targets for mitigating debris generation and target consumption in a vacuum chamber without reducing the EUV conversion efficiency. Xe capillary jets (jet velocity ~ 0.4 m/s) were generated in vacuum by using annular nozzles chilled to ~ 170 K at a Xe backing pressure of ~ 0.7 MPa. Forming mechanisms of the capillary jet targets were studied by using numerical calculations. Furthermore, laser-produced plasma EUV generation was performed by irradiating a Nd:YAG laser (1064 nm, ~ 0.5 J, 10 ns, 120 μmφ, ~ 4×10 11 W/cm2) on a Xe capillary jet target (outer / inner diameter = 100 / 70 μmφ). The angular distribution of EUV generation was approximately uniform around the Xe capillary jet target, and the peak kinetic energy of the fast-ions was evaluated to be ~ 2 keV.

  1. Understanding and reduction of defects on finished EUV masks

    NASA Astrophysics Data System (ADS)

    Liang, Ted; Sanchez, Peter; Zhang, Guojing; Shu, Emily; Nagpal, Rajesh; Stivers, Alan

    2005-05-01

    To reduce the risk of EUV lithography adaptation for the 32nm technology node in 2009, Intel has operated a EUV mask Pilot Line since early 2004. The Pilot Line integrates all the necessary process modules including common tool sets shared with current photomask production as well as EUV specific tools. This integrated endeavor ensures a comprehensive understanding of any issues, and development of solutions for the eventual fabrication of defect-free EUV masks. Two enabling modules for "defect-free" masks are pattern inspection and repair, which have been integrated into the Pilot Line. This is the first time we are able to look at real defects originated from multilayer blanks and patterning process on finished masks over entire mask area. In this paper, we describe our efforts in the qualification of DUV pattern inspection and electron beam mask repair tools for Pilot Line operation, including inspection tool sensitivity, defect classification and characterization, and defect repair. We will discuss the origins of each of the five classes of defects as seen by DUV pattern inspection tool on finished masks, and present solutions of eliminating and mitigating them.

  2. EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Windt, D L; Robinson, J C

    2006-02-09

    Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamlinemore » X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.« less

  3. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  4. The Extreme Ultraviolet Explorer Mission

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled from launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation with the use of three EUV telescope, each sensitive to a different segment of the EUV band. A fourth telescope is planned to perform a high-sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey is planned to be carried out in the first six months of the mission in four bands, or colors, 70-180 A, 170-250 A, 400-600 A, and 500-700 A. The second phase of the mission is devoted to spectroscopic observations of EUV sources. A high-efficiency grazing-incidence spectrometer using variable line-space gratings is planned to provide spectral data with about 1-A resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, is presented. Hypothetical data from astronomical sources were processed through this model and are shown.

  5. Exploring EUV and SAQP pattering schemes at 5nm technology node

    NASA Astrophysics Data System (ADS)

    Hamed Fatehy, Ahmed; Kotb, Rehab; Lafferty, Neal; Jiang, Fan; Word, James

    2018-03-01

    For years, Moore's law keeps driving the semiconductors industry towards smaller dimensions and higher density chips with more devices. Earlier, the correlation between exposure source's wave length and the smallest resolvable dimension, mandated the usage of Deep Ultra-Violent (DUV) optical lithography system which has been used for decades to sustain Moore's law, especially when immersion lithography was introduced with 193nm ArF laser sources. As dimensions of devices get smaller beyond Deep Ultra-Violent (DUV) optical resolution limits, the need for Extremely Ultra-Violent (EUV) optical lithography systems was a must. However, EUV systems were still under development at that time for the mass-production in semiconductors industry. Theretofore, Multi-Patterning (MP) technologies was introduced to swirl about DUV optical lithography limitations in advanced nodes beyond minimum dimension (CD) of 20nm. MP can be classified into two main categories; the first one is to split the target itself across multiple masks that give the original target patterns when they are printed. This category includes Double, Triple and Quadruple patterning (DP, TP, and QP). The second category is the Self-Aligned Patterning (SAP) where the target is divided into Mandrel patterns and non-Mandrel patterns. The Mandrel patterns get printed first, then a self-aligned sidewalls are grown around these printed patterns drawing the other non-Mandrel targets, afterword, a cut mask(s) is used to define target's line-ends. This approach contains Self-Aligned-Double Pattering (SADP) and Self-Aligned- Quadruple-Pattering (SAQP). DUV and MP along together paved the way for the industry down to 7nm. However, with the start of development at the 5nm node and the readiness of EUV, the differentiation question is aroused again, which pattering approach should be selected, direct printing using EUV or DUV with MP, or a hybrid flow that contains both DUV-MP and EUV. In this work we are comparing two potential pattering techniques for Back End Of Line (BEOL) metal layers in the 5nm technology node, the first technique is Single Exposure EUV (SE-EUV) with a Direct Patterning EUV lithography process, and the second one is Self-Aligned Quadruple Patterning (SAQP) with a hybrid lithography processes, where the drawn metal target layer is decomposed into a Mandrel mask and Blocks/Cut mask, Mandrel mask is printed using DUV 193i lithography process, while Block/Cut Mask is printed using SE-EUV lithography process. The pros and cons of each technique are quantified based on Edge-Placement-Error (EPE) and Process Variation Band (PVBand) measured at 1D and 2D edges. The layout used in this comparison is a candidate layout for Foundries 5nm process node.

  6. An EUV Study of the Eclipsing M-Dwarf Binary System YY GEM

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    2000-01-01

    EUVE, SW, MW and LW spectra have been reduced and line fluxes measured. The Deep Survey data has been analyzed and light curves have been derived. The spectra around the HE II 304 region show some evidence of emission from the bright A companion star, Castor. Preliminary results for the metallicity of the corona of YY Gem were derived from the EUVE spectra and photometry and were presented at the AAS HEAD meeting; results are being finalized for publication in a referred journal.

  7. Cleaning process for EUV optical substrates

    DOEpatents

    Weber, Frank J.; Spiller, Eberhard A.

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  8. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  9. Monitoring of solar far ultraviolet radiation from the OSO-5 satellite

    NASA Technical Reports Server (NTRS)

    Rense, W. A.; Parker, R.

    1972-01-01

    A spectrophotometer for monitoring the solar EUV in three broad wavelength bands is described. The kind of data obtained, along with sources of error, are presented. The content of the tape library which contains the data is outlined. The scientific results are discussed. These include the following: solar flares in the EUV, solar eclipse observations in the EUV, SFD's and relationship to solar flares, and the application of satellite sunrise and sunset data for the study of model upper atmospheres for the earth.

  10. Well-defined EUV wave associated with a CME-driven shock

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.

  11. Development of a 1m-normal-incidence-EUV-Telescope

    NASA Technical Reports Server (NTRS)

    Grewing, M.; Kraemer, G.; Schulz-Luepertz, E.; Wulf-Mathies, C.; Bowyer, S.; Jacobsen, P.; Jelinsky, P.; Kimble, R.

    1982-01-01

    A brief description is given of the 1m-EUV-Telescope and its focal plane instrumentation, namely an EUV spectrometer and six EUV/FUV photometers. The telescope is scheduled for launch on an Aries rocket on June 17, 1982. The principal goals are the white dwarf HZ43 and a photometric scan across the sky in an area of the sky where 21 cm line observations reveal a steep density gradient. The optical bench of the telescope is a cylinder made of a graphite epoxy compound. Despite its low specific weight, the bench shows an excellent mechanical performance, with an elasticity modulus of approximately 70,000 N/cu mm. It is pointed out that by carefully combining layers with different winding angles of the carbon fiber, the thermal expansion along the cylinder axis is almost negligible, even under severe thermal loads

  12. Inter-Comparison between July 24, 2014 EUV Data from NASA Sounding Rocket 36.289 and Concurrent Measurements from Orbital Solar Observatories

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Wieman, S. R.; Judge, D. L.

    2014-12-01

    Sounding rocket mission NASA 36.289 Didkovsky provided solar EUV irradiance measurements from four instruments built at the USC Space Sciences Center: the Rare Gas Ionization Cell (RGIC), the Solar Extreme ultraviolet Monitor (SEM), the Dual Grating Spectrometer (DGS), and the Optics-Free Spectrometer (OFS), thus meeting the mission comprehensive success criteria. These sounding rocket data allow us to inter-compare the observed absolute EUV irradiance with the data taken at the same time from the SOHO and SDO solar observatories. The sounding rocket data from the two degradation-free instruments (DGS and OFS) can be used to verify the degradation rates of SOHO and SDO EUV channels and serve as a flight-proven prototypes for future improvements of degradation-free instrumentation for solar physics.

  13. Design of the Extreme Ultraviolet Explorer long-wavelength grazing incidence telescope optics

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1988-01-01

    Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400-900) A) poses different problems from those arising for optics, operating shortward of 400 A. The available filter materials which transmit radiation longward of 400 A are also highly transparent at wavelengths shortward of 100 A. Conventional EUV optics, with grazing engles of less than about 10 deg, have very high throughput in the EUV, which persists to wavelengths shortward of 100 A. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft X-ray leak. This problem is overcome by developing a mirror design with larger graze angles of not less than 20 deg, which has high throughput at wavelengths longer than 400 A but at the same time very little throughput shortward of 100 A.

  14. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  15. Active galaxies observed during the Extreme Ultraviolet Explorer all-sky survey

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Fruscione, A.; Carone, T. E.

    1995-01-01

    We present observations of active galactic nuclei (AGNs) obtained with the Extreme Ultraviolet Explorer (EUVE) during the all-sky survey. A total of 13 sources were detected at a significance of 2.5 sigma or better: seven Seyfert galaxies, five BL Lac objects, and one quasar. The fraction of BL Lac objects is higher in our sample than in hard X-ray surveys but is consistent with the soft X-ray Einstein Slew Survey, indicating that the main reason for the large number of BL Lac objects in the extreme ulktraviolet (EUV) and soft X-ray bands is their steeper X-ray spectra. We show that the number of AGNs observed in both the EUVE and ROSAT Wide Field Camera surveys can readily be explained by modelling the EUV spectra with a simple power law in the case of BL Lac objects and with an additional EUV excess in the case of Seyferts and quasars. Allowing for cold matter absorption in Seyfert galaxy hosts drive up the inferred average continuum slope to 2.0 +/- 0.5 (at 90% confidence), compared to a slope of 1.0 usually found from soft X-ray data. If Seyfert galaxies without EUV excesses form a significant fraction of the population, then the average spectrum of those with bumps should be even steeper. We place a conservative limit on neutral gas in BL Lac objects: N(sub H) less than 10(exp 20)/sq cm.

  16. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, whichmore » is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.« less

  17. Surface characterization of tin-based inorganic EUV resists

    NASA Astrophysics Data System (ADS)

    Frederick, Ryan T.; Diulus, J. Trey; Lyubinetsky, Igor; Hutchison, Danielle C.; Olsen, Morgan R.; Nyman, May; Herman, Gregory S.

    2018-03-01

    Metal oxide nanomaterials have shown promise for use as EUV resists. Recently, significant efforts have focused on tinoxo clusters that have high absorption coefficient Sn centers and radiation sensitive organic ligands. In our studies, we have investigated a β-Keggin butyl-Sn cluster (β-NaSn13), which is charge-neutral and allows studying radiation induced chemistries without interference from counterions. We have used ambient pressure X-ray photoelectron spectroscopy (APXPS) to investigate the contrast properties of the β-NaSn13 in ultrahigh vacuum (UHV) and in the presence of ambient oxygen. These contrast studies indicate that ambient oxygen reduces the dose requirements for the solubility transition of the β-NaSn13 photoresists. APXPS spectra collected before and after the solubility transition shows that ambient oxygen causes a greater loss of butyl ligands from the samples and the formation of more tin oxide for larger doses, suggesting the presence of reactive oxygen species. APXPS was also used to study processes during the post exposure bake, where we compared the differences in film chemistries in ambient oxygen or in UHV. There were only very small differences in the APXPS spectra before exposure and after exposure and the post exposure bake. However, ambient oxygen resulted in some changes for unexposed regions during the post exposure bake; there was a greater ratio of tin oxide to other oxygen species (alkoxy ligands, hydroxyls) for samples annealed in oxygen. These results have significance for EUV and e-beam lithography processing parameters, as well as implications for cluster design and ligand chemistries.

  18. Etch bias inversion during EUV mask ARC etch

    NASA Astrophysics Data System (ADS)

    Lajn, Alexander; Rolff, Haiko; Wistrom, Richard

    2017-07-01

    The introduction of EUV lithography to high volume manufacturing is now within reach for 7nm technology node and beyond (1), at least for some steps. The scheduling is in transition from long to mid-term. Thus, all contributors need to focus their efforts on the production requirements. For the photo mask industry, these requirements include the control of defectivity, CD performance and lifetime of their masks. The mask CD performance including CD uniformity, CD targeting, and CD linearity/ resolution, is predominantly determined by the photo resist performance and by the litho and etch processes. State-of-the-art chemically amplified resists exhibit an asymmetric resolution for directly and indirectly written features, which usually results in a similarly asymmetric resolution performance on the mask. This resolution gap may reach as high as multiple tens of nanometers on the mask level in dependence of the chosen processes. Depending on the printing requirements of the wafer process, a reduction or even an increase of this gap may be required. A potential way of tuning via the etch process, is to control the lateral CD contribution during etch. Aside from process tuning knobs like pressure, RF powers and gases, which usually also affect CD linearity and CD uniformity, the simplest knob is the etch time itself. An increased over etch time results in an increased CD contribution in the normal case. , We found that the etch CD contribution of ARC layer etch on EUV photo masks is reduced by longer over etch times. Moreover, this effect can be demonstrated to be present for different etch chambers and photo resists.

  19. Next generation of Z* modelling tool for high intensity EUV and soft x-ray plasma sources simulations

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.

    2011-04-01

    In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.

  20. Absorption and emission of single attosecond light pulses in an autoionizing gaseous medium dressed by a time-delayed control field

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Chun; Lin, C. D.

    2013-01-01

    An extreme ultraviolet (EUV) single attosecond pulse passing through a laser-dressed dense gas is studied theoretically. The weak EUV pulse pumps the helium gas from the ground state to the 2s2p(1P) autoionizing state, which is coupled to the 2s2(1S) autoionizing state by a femtosecond infrared laser with the intensity in the order of 1012 W/cm2. The simulation shows how the transient absorption and emission of the EUV are modified by the coupling laser. A simple analytical expression for the atomic response derived for δ-function pulses reveals the strong modification of the Fano lineshape in the spectra, where these features are quite universal and remain valid for realistic pulse conditions. We further account for the propagation of pulses in the medium and show that the EUV signal at the atomic resonance can be enhanced in the gaseous medium by more than 50% for specifically adjusted laser parameters, and that this enhancement persists as the EUV propagates in the gaseous medium. Our result demonstrates the high-level control of nonlinear optical effects that are achievable with attosecond pulses.

  1. Design decisions from the history of the EUVE science payload

    NASA Technical Reports Server (NTRS)

    Marchant, W.

    1993-01-01

    Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.

  2. Design decisions from the history of the EUVE science payload

    NASA Astrophysics Data System (ADS)

    Marchant, W.

    1993-09-01

    Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.

  3. A Class for Teachers Featuring a NASA Satellite Mission

    NASA Astrophysics Data System (ADS)

    Battle, R.; Hawkins, I.

    1996-05-01

    As part of the NASA IDEA (Initiative to Develop Education through Astronomy) program, the UC Berkeley Center for EUV Astrophysics (CEA) received a grant to develop a self-contained teacher professional development class featuring NASA's Extreme Ultraviolet Explorer (EUVE) satellite mission. This class was offered in collaboration with the Physics/Astronomy Department and the Education Department of San Francisco State University during 1994, and in collaboration with the UCB Graduate School of Education in 1995 as an extension course. The class served as the foundation for the Science Education Program at CEA, providing valuable lessons and experience through a full year of intense collaboration with 50 teachers from the diverse school districts of the San Francisco Bay Area teaching in the 3rd--12th grade range. The underlying theme of the class focused on how scientists carry out research using a NASA satellite mission. Emphasis was given to problem-solving techniques, with specific examples taken from the pre- and post-launch stages of the EUVE mission. The two, semester-long classes were hosted by the CEA, so the teachers spent an average of 4 hours/week during 17 weeks immersed in astrophysics, collaborating with astronomers, and working with colleagues from the Lawrence Hall of Science and the Graduate School of Education. The teachers were taught the computer skills and space astrophysics concepts needed to perform hands-on analysis and interpretation of the EUVE satellite data and the optical identification program. As a final project, groups of teachers developed lesson plans based on NASA and other resources that they posted on the World Wide Web using html. This project's model treats teachers as professionals, and allows them to collaborate with scientists and to hone their curriculum development skills, an important aspect of their professional growth. We will summarize class highlights and showcase teacher-developed lesson plans. A detailed evaluation report will be made available. We acknowledge NASA contracts NAS5-30180 and NAS5-29298 to CEA/UCB and NASA grant ED-90033.01-94A to SSL/UCB.

  4. Studies of the extreme ultraviolet/soft x-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.A.

    1978-01-01

    The results of an extensive sky survey of the extreme ultraviolet (EUV)/soft x-ray background are reported. The data were obtained with a focusing telescope designed and calibrated at U.C. Berkeley which observed EUV sources and the diffuse background as part of the Apollo-Soyuz mission in July, 1975. With a primary field-of-view of 2.3 + 0.1/sup 0/ FWHM and four EUV bandpass filters (16 to 25, 20 to 73, 80 to 108, and 80 to 250 eV) the EUV telescope obtained background data included in the final observational sample for 21 discrete sky locations and 11 large angular scans, as wellmore » as for a number of shorter observations. Analysis of the data reveals as intense flux above 80 eV energy, with upper limits to the background intensity given for the lower energy filters Ca 2 x 10/sup 4/ and 6 x 10/sup 2/ ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at 21 and 45 eV respectively). The 80 to 108 eV flux agrees within statistical errors with the earlier results of Cash, Malina and Stern (1976): the Apollo-Soyuz average reported intensity is 4.0 +- 1.3 ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at Ca 100 eV, or roughly a factor of ten higher than the corresponding 250 eV intensity. The uniformity of the background flux is uncertain due to limitations in the statistical accuracy of the data; upper limits to the point-to-point standard deviation of the background intensity are (..delta..I/I approximately less than 0.8 +- 0.4 (80 to 108 eV) and approximately less than 0.4 +- 0.2 (80 to 250 eV). No evidence is found for a correlation between the telescope count rate and earth-based parameters (zenith angle, sun angle, etc.) for E approximately greater than 80 eV (the lower energy bandpasses are significantly affected by scattered solar radiation. Unlike some previous claims for the soft x-ray background, no simple dependence upon galactic latitude is seen.« less

  5. Observations and Operational Products from the Special Sensor Ultraviolet Limb Imager (SSULI)

    NASA Astrophysics Data System (ADS)

    Dandenault, Patrick; Nicholas, Andrew C.; Coker, Clayton; Budzien, Scott A.; Chua, Damien H.; Finne, Ted T.; Metzler, Christopher A.; Dymond, Kenneth F.

    The Naval Research Laboratory (NRL) has developed five ultraviolet remote sensing instru-ments for the Air Force Defense Meteorological Satellite Program (DMSP). These instruments known as SSULI (Special Sensor Ultraviolet Limb Imager) are on the DMSP block of 5D3 satellites, which first launched in 2003. The DMSP satellites are launched in a near-polar, sun-synchronous orbit at an altitude of approximately 830 km. SSULI measures vertical profiles of the natural airglow radiation from atoms, molecules and ions in the upper atmosphere and ionosphere by viewing the earth's limb at a tangent altitude of approximately 50 km to 750 km. Limb observations are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. An extensive operational data processing system, the SSULI Ground Data Analysis Software (GDAS), has been developed to generate environmental data products from SSULI spectral data in near-real time for use at the Air Force Weather Agency (AFWA). The operational software uses advanced science algorithms developed at NRL and was designed to calibrate data from USAF Raw Sensor Data Records (RSDR) and generate Environmental Data Records (EDRs). Data products from SSULI observations include vertical profiles of electron (Ne) densities, N2, O2, O, O+, Temperature and also vertical Total Electron Content (TEC). On October 18, 2009, the third SSULI sensor launched from Vandenberg Air Force Base, aboard the DMSP F18 spacecraft. An overview of the SSULI operational program and the status of the F18 sensor will be discussed.

  6. Solar EUV Irradiance Measurements by the Auto-Calibrating EUV Spectrometers (SolACES) Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Nikutowski, B.; Jacobi, C.; Brunner, R.; Erhardt, C.; Knecht, S.; Scherle, J.; Schlagenhauf, J.

    2014-05-01

    SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to > 8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.

  7. Effect of the Solar UV/EUV Heating on the Intensity and Spatial Distribution of Jupiter's Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2012-10-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.

  8. Recent status of resist outgas testing for metal containing resists at EIDEC

    NASA Astrophysics Data System (ADS)

    Shiobara, Eishi; Mikami, Shinji; Yamada, Kenji

    2018-03-01

    The metal containing resist is one of the strong candidates for high lithographic performance Extreme Ultraviolet (EUV) resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation [2]. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [3, 4]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing in hydrogen, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. We are considering a new platform of outgas testing for metal containing resists based on the electron-beam irradiation system as one of the solutions for these issues. The concept is presented in this paper.

  9. Simultaneous ASCA and EUVE Observations of Capella

    NASA Astrophysics Data System (ADS)

    Brickhouse, N. S.; Dupree, A. K.; Edgar, R. J.; Drake, S. A.; White, N. E.; Liedahl, D. A.; Singh, K. P.

    1997-05-01

    We present simultaneous observations taken in Mar 1996 of the bright stellar coronal source Capella (HD 34029) with the ASCA and EUVE satellites. Previous EUVE observations of Fe emission lines (Fe VIII --- XXIV, excluding XVII) revealed a narrow emission measure feature at 6 x 10(6) K, which has proven to be remarkably stable over several years (flux from Fe XVIII and XIX has not varied by more than 30%), while lines formed at higher temperatures have shown intensity variations up to factors of 4. Furthermore, extremely high signal-to-noise spectra obtained by summing all EUVE measurements show that the Fe/H abundance ratio is consistent with solar photospheric. (See Dupree et al. 1993, ApJ, 418, L41; Brickhouse, Raymond, & Smith 1995, ApJSupp, 97, 551; Brickhouse 1996, IAU Coll. 152, Astrophysics in the Extreme Ultraviolet, Bowyer & Malina, eds (Kluwer), 141.) Meanwhile, the ASCA data of Capella have proven notoriously difficult to analyze. The performance verification (PV) phase data suggested a somewhat subsolar Fe abundance, but models were in poor agreement with the data (chi (2red) ~ 6). (See Drake 1996, Conf. on Cosmic Abundances, U. Maryland). Since the emission lines observed by EUVE are formed at the same emitting temperatures as the X-ray spectrum (Capella is ``soft'' such that very little flux is observed above 2 keV), the emission measure distribution derived from EUVE lines should provide a direct prediction of the X-ray spectrum, with only the relative abundances of species other than Fe as free parameters. Like the PV data, the new ASCA spectrum is not well fit by any of the standard models. Applying the constraints imposed by EUVE does not make a major improvement in the fit --- multi-thermal, variable abundance models such as Raymond-Smith and MEKAL do not provide any acceptable fit (chi (2red) > 5). We discuss our efforts to understand the X-ray spectrum, including studies of the uncertainties in the atomic data and of the underlying assumptions of the source models.

  10. Designing a Small-Sized Engineering Model of Solar EUV Telescopr for a Korean Satellite

    NASA Astrophysics Data System (ADS)

    Han, Jung-Hoon; Jang, Min-Hwan; Kim, Sang-Joon

    2001-11-01

    For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sized engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV solar telescope was designed to observe the sun at 584.3Å (He¥°) and 629.7Å (O¥´). The optical system is an f/8 Ritchey-Chrètien, and the effective diameter and focal length are 80§® and 640§®, respectively. The He¥°and O¥´ filters are loaded in a filter wheel. In the detection part, the MCP (MicroChannel Plate) type is Z-stack, and the channel-to-diameter ratio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  12. X-ray and EUV Observations of CME Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2004-01-01

    Why Coronal Mass Ejections (CMEs) erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations from SOHO/EIT and from TRACE in EUV, and from Yohkoh/SXT in soft X-rays of the pre-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  13. Reconstruction of Solar Extreme Ultraviolet Flux 1740 - 2015

    NASA Astrophysics Data System (ADS)

    Svalgaard, Leif

    2016-11-01

    Solar extreme ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo-ionization of molecular oxygen. Solar heating of the ionosphere creates thermal winds, which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and falls with the Sun, and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us to deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the "Magnetic Crusade" of the 1830s and less reliable, but still usable, data are available for portions of the 100 years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F_{10.7} flux and the sunspot number, and we find that the reconstructed EUV flux reproduces the F_{10.7} flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant "solar magnetic ground state".

  14. Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Ma, Suli; Zhang, Jun, E-mail: hdchen@upc.edu.cn

    2013-11-20

    Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along withmore » the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.« less

  15. Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO-AIA

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.

    2012-01-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  16. Hot interstellar gas and ionization of embedded clouds

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, F.

    1990-01-01

    Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.

  17. Advanced EUV mask and imaging modeling

    NASA Astrophysics Data System (ADS)

    Evanschitzky, Peter; Erdmann, Andreas

    2017-10-01

    The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.

  18. Sensitivity enhancement of chemically amplified resists and performance study using EUV interference lithography

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-03-01

    Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity (S or best energy BE) and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (LRS trade-off) among these parameters for chemically amplified resists (CARs). Here we present early proof-of-principle results for a multi-exposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a Photosensitized Chemically Amplified Resist (PSCAR). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV flood exposure (λ = 365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR and EL high performance requirements with the aim of resolving line space (L/S) features for the 7 and 5 nm logic node (16 nm and 13 nm half-pitch HP, respectively) for HVM. Several CARs were additionally found to be well resolved down to 12 nm and 11 nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and below 16 nm HP resolution, demonstrating the need for alternative resist solutions at 13 nm resolution and below. EUV interference lithography (IL) has provided and continues to provide a simple yet powerful platform for academic and industrial research enabling the characterization and development of new resist materials before commercial EUV exposure tools become available. Our experiments have been performed at the EUV-IL set-up in the Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI).

  19. EUV/soft x-ray spectra for low B neutron stars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.

    1995-01-01

    Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.

  20. Method and apparatus for inspecting an EUV mask blank

    DOEpatents

    Goldberg, Kenneth A.

    2005-11-08

    An apparatus and method for at-wavelength EUV mask-blank characterization for inspection of moderate and low spatial frequency coating uniformity using a synchrotron or other source of EUV light. The apparatus provides for rapid, non-destruction, non-contact, at-wavelength qualification of large mask areas, and can be self-calibrating or be calibrated to well-characterized reference samples. It can further check for spatial variation of mask reflectivity or for global differences among masks. The apparatus and method is particularly suited for inspection of coating uniformity and quality and can detect defects in the order of 50 .mu.m and above.

  1. Nanoparticle photoresist studies for EUV lithography

    NASA Astrophysics Data System (ADS)

    Kasahara, Kazuki; Xu, Hong; Kosma, Vasiliki; Odent, Jeremy; Giannelis, Emmanuel P.; Ober, Christopher K.

    2017-03-01

    EUV (extreme ultraviolet) lithography is one of the most promising candidates for next generation lithography. The main challenge for EUV resists is to simultaneously satisfy resolution, LWR (line-width roughness) and sensitivity requirements according to the ITRS roadmap. Though polymer type CAR (chemically amplified resist) is the currently standard photoresist, entirely new resist platforms are required due to the performance targets of smaller process nodes. In this paper, recent progress in nanoparticle photoresists which Cornell University has intensely studied is discussed. Lithography performance, especially scum elimination, improvement studies with the dissolution rate acceleration concept and new metal core applications are described.

  2. Research on vacuum utraviolet calibration technology

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang

    2014-11-01

    Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.

  3. SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager

    NASA Astrophysics Data System (ADS)

    Bonte, K.; Berghmans, D.; De Groof, A.; Steed, K.; Poedts, S.

    2013-08-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA's Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.

  4. [Activities of Bay Area Research Corporation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    During the final year of this effort the HALFSHEL code was converted to work on a fast single processor workstation from it s parallel configuration. This was done because NASA Ames NAS facility stopped supporting space science and we no longer had access to parallel computer time. The single processor version of HALFSHEL was upgraded to address low density cells by using a a 3-D SOR solver to solve the equation Delta central dot E = 0. We then upgraded the ionospheric load packages to provide a multiple species load of the ionosphere out to 1.4 Rm. With these new tools we began to perform a series of simulations to address the major topic of this research effort; determining the loss rate of O(sup +) and O2(sup +) from Mars. The simulations used the nominal Parker spiral field and in one case used a field perpendicular to the solar wind flow. The simulations were performed for three different solar EUV fluxes consistent with the different solar evolutionary states believed to exist before today. The 1 EUV case is the nominal flux of today. The 3 EUV flux is called Epoch 2 and has three times the flux of todays. The 6 EUV case is Epoch 3 and has 6 times the EUV flux of today.

  5. A 1kW EUV source for lithography based on FEL emission in a compact storage ring

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Ruth, Ron; Loewen, Rod

    2017-10-01

    EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.

  6. Magnetron sputtering for the production of EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank

    2015-03-01

    Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.

  7. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahzad, M.; Culfa, O.; Rossall, A. K.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV).more » A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.« less

  8. Study on the lifetime of Mo/Si multilayer optics with pulsed EUV-source at the ETS

    NASA Astrophysics Data System (ADS)

    Schürmann, Mark; Yulin, Sergiy; Nesterenko, Viatcheslav; Feigl, Torsten; Kaiser, Norbert; Tkachenko, Boris; Schürmann, Max C.

    2011-06-01

    As EUV lithography is on its way into production stage, studies of optics contamination and cleaning under realistic conditions become more and more important. Due to this fact an Exposure Test Stand (ETS) has been constructed at XTREME technologies GmbH in collaboration with Fraunhofer IOF and with financial support of Intel Corporation. This test stand is equipped with a pulsed DPP source and allows for the simultaneous exposure of several samples. In the standard set-up four samples with an exposed area larger than 35 mm2 per sample can be exposed at a homogeneous intensity of 0.25 mW/mm2. A recent update of the ETS allows for simultaneous exposures of two samples with intensities up to 1.0 mW/mm2. The first application of this alternative set-up was a comparative study of carbon contamination rates induced by EUV radiation from the pulsed source with contamination rates induced by quasicontinuous synchrotron radiation. A modified gas-inlet system allows for the introduction of a second gas to the exposure chamber. This possibility was applied to investigate the efficiency of EUV-induced cleaning with different gas mixtures. In particular the enhancement of EUV-induced cleaning by addition of a second gas to the cleaning gas was studied.

  9. Study on dissolution behavior of polymer-bound and polymer-blended photo-acid generator (PAG) resists

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi

    2013-03-01

    The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.

  10. Performance of 100-W HVM LPP-EUV source

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi

    2015-08-01

    At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, `GL200E'. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.

  11. Ptychographic imaging with partially coherent plasma EUV sources

    NASA Astrophysics Data System (ADS)

    Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa

    2017-12-01

    We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.

  12. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  13. Relationship between resist outgassing and EUV witness sample contamination in NXE outgas qualification using electrons and EUV photons

    NASA Astrophysics Data System (ADS)

    Pollentier, I.; Tirumala Venkata, A.; Gronheid, R.

    2014-04-01

    EUV photoresists are considered as a potential source of optics contamination, since they introduce irradiation-induced outgassing in the EUV vacuum environment. Therefore, before these resists can be used on e.g. ASML NXE:3100 or NXE:3300, they need to be tested in dedicated equipment according to a well-defined procedure, which is based on exposing a witness sample (WS) in the vicinity of a simultaneously exposed resist as it outgasses. Different system infrastructures are used at multiple sites (e.g. NIST, CNSE, Sematech, EIDEC, and imec) and were calibrated to each other by a detailed test plan. Despite this detailed tool qualifications, a first round robin comparison of identical materials showed inconsistent outgas test results, and required further investigation by a second round robin. Since the resist exposure mode is different at the various locations (some sites are using EUV photons while others use E-gun electrons), this difference has always a point of concern for variability of test results. In this work we compare the outgas test results from EUV photon and electron exposure using the resist materials of the second round robin. Since the imec outgas tester allows both exposure methods on the resist, a within-system comparison is possible and showed limited variation between photon and electron exposure mode. Therefore the system-to-system variability amongst the different outgas test sites is expected to be related to other parameters than the electron/photon exposure mode. Initial work showed that the variability might be related to temperature, E-gun emission excursion, and/or residual outgassing scaled by different wafer areas at the different sites.

  14. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  15. Ionization in the local interstellar and intergalactic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.

    1990-01-01

    Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less

  16. Analysis of erythemally effective UV radiation at the Mendel Station, James Ross Island in the period of 2006-2007

    NASA Astrophysics Data System (ADS)

    Laska, K.; Prosek, P.; Budik, L.; Budikova, M.

    2009-04-01

    The results of global solar and erythemally effective ultraviolet (EUV) radiation measurements are presented. The radiation data were collected within the period of 2006-2007 at the Czech Antarctic station J. G. Mendel, James Ross Island (63°48'S, 57°53'W). Global solar radiation was measured by a Kipp&Zonen CM11 pyranometer. EUV radiation was measured according to the McKinley and Diffey Erythemal Action Spectrum with a Solar Light broadband UV-Biometer Model 501A. The effects of stratospheric ozone concentration and cloudiness (estimated as cloud impact factor from global solar radiation) on the intensity of incident EUV radiation were calculated by a non-linear regression model. The total ozone content (TOC) and cloud/surface reflectivity derived from satellite-based measurements were applied into the model for elimination of the uncertainties in measured ozone values. There were two input data of TOC used in the model. The first were taken from the Dobson spectrophotometer measurements (Argentinean Antarctic station Marambio), the second was acquired for geographical coordinates of the Mendel Station from the EOS Aura Ozone Monitoring Instrument and V8.5 algorithm. Analysis of measured EUV data showed that variable cloudiness affected rather short-term fluctuations of the radiation fluxes, while ozone declines caused long-term UV radiation increase in the second half of the year. The model predicted about 98 % variability of the measured EUV radiation. The residuals between measured and modeled EUV radiation intensities were evaluated separately for the above-specified two TOC datasets, parts of seasons and cloud impact factor (cloudiness). The mean average prediction error was used for model validation according to the cloud impact factor and satellite-based reflectivity data.

  17. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan

    2014-05-10

    Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup –1}) and a lateral surface wave (554 km s{sup –1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments andmore » the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup –1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ∼10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.« less

  18. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less

  19. Optical Design of the MOSES Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Kankelborg, Charles C.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket payload now being developed by Montana State University in collaboration with the Goddard Space Flight Center, Lockheed Martin Advanced Technology Center, and Mullard Space Science Laboratory. The instrument utilizes a unique optical design to provide solar EUV measurements with true 2-pixel resolutions of 1.0 arcsec and 60 mA over a full two-dimensional field of view of 1056 x 528 arcsec, all at a time cadence of 10 s. This unprecedented capability is achieved by means of an objective spherical grating 100 mm in diameter, ruled at 833 gr/mm. The concave grating focuses spectrally dispersed solar radiation onto three separate detectors, simultaneously recording the zero-order as well as the plus and minus first-spectral-order images. Data analysis procedures, similar to those used in X-ray tomography reconstructions, can then disentangle the mixed spatial and spectral information recorded by the multiple detectors. A flat folding mirror permits an imaging focal length of 4.74 m to be packaged within the payload's physical length of 2.82 m. Both the objective grating and folding flat have specialized, closely matched, multilayer coatings that strongly enhance their EUV reflectance while also suppressing off-band radiation that would otherwise complicate data inversion. Although the spectral bandpass is rather narrow, several candidate wavelength intervals are available to carry out truly unique scientific studies of the outer solar atmosphere. Initial flights of MOSES, scheduled to begin in 2004, will observe a 10 Angstrom band that covers very strong emission lines characteristic of both the sun's corona (Si XI 303 Angstroms) and transition-region (He II 304 Angstroms). The MOSES program is supported by a grant from NASA's Office of Space Science.

  20. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking

    NASA Astrophysics Data System (ADS)

    Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis

    2018-03-01

    The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.

  1. The Nearest Neutron Stars

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1996-01-01

    Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.

  2. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    NASA Astrophysics Data System (ADS)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  3. The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.

    2017-11-01

    Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.

  4. Free electron lasers for 13nm EUV lithography: RF design strategies to minimise investment and operational costs

    NASA Astrophysics Data System (ADS)

    Keens, Simon; Rossa, Bernhard; Frei, Marcel

    2016-03-01

    As the semiconductor industry proceeds to develop ever better sources of extreme ultraviolet (EUV) light for photolithography applications, two distinct technologies have come to prominence: Tin-plasma and free electron laser (FEL) sources. Tin plasma sources have been in development within the industry for many years, and have been widely reported. Meanwhile, FELs represent the most promising alternative to create high power EUV frequencies and, while tin-plasma source development has been ongoing, such lasers have been continuously developed by academic institutions for use in fundamental research programmes in conjunction with universities and national scientific institutions. This paper follows developments in the field of academic FELs, and presents information regarding novel technologies, specifically in the area of RF design strategy, that may be incorporated into future industrial FEL systems for EUV lithography in order to minimize the necessary investment and operational costs. It goes on to try to assess the cost-benefit of an alternate RF design strategy, based upon previous studies.

  5. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  6. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams.

    PubMed

    Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M

    2016-02-18

    We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.

  7. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  8. Negative-tone imaging with EUV exposure toward 13nm hp

    NASA Astrophysics Data System (ADS)

    Tsubaki, Hideaki; Nihashi, Wataru; Tsuchihashi, Toru; Yamamoto, Kei; Goto, Takahiro

    2016-03-01

    Negative-tone imaging (NTI) with EUV exposure has major advantages with respect to line-width roughness (LWR) and resolution due in part to polymer swelling and favorable dissolution mechanics. In NTI process, both resist and organic solvents play important roles in determining lithography performances. The present study describes novel chemically amplified resist materials based on NTI technology with EUV using a specific organic solvents. Lithographic performances of NTI process were described in this paper under exposures using ASML NXE:3300 EUV scanner at imec. It is emphasized that 14 nm hp was nicely resolved under exposure dose of 37 mJ/cm2 without any bridge and collapse, which are attributed to the low swelling character of NTI process. Although 13 nm hp resolution was potentially obtained, a pattern collapse still restricts its resolution in case coating resist film thickness is 40 nm. Dark mask limitation due mainly to mask defectivity issue makes NTI with EUV favorable approach for printing block mask to produce logic circuit. A good resolution of CD-X 21 nm/CD-Y 32 nm was obtained for block mask pattern using NTI with usable process window and dose of 49 mJ/cm2. Minimum resolution now reaches CD-X 17 nm / CD-Y 23 nm for the block. A 21 nm block mask resolution was not affected by exposure dose and explored toward low dose down to 18 mJ/cm2 by reducing quencher loading. In addition, there was a negligible amount of increase in LCDU for isolated dot pattern when decreasing exposure dose from 66 mJ/cm2 to 24 mJ/cm2. On the other hand, there appeared tradeoff relationship between LCDU and dose for dense dot pattern, indicating photon-shot noise restriction, but strong dependency on patterning features. Design to improve acid generation efficiency was described based on acid generation mechanism in traditional chemically amplified materials which contains photo-acid generator (PAG) and polymer. Conventional EUV absorber comprises of organic compounds is expected to have 1.6 times higher EUV absorption than polyhydroxystyrene based on calculation. However, observed value of acid amount was comparable or significantly worse than polyhydroxystyrene.

  9. Evaluation results of a new EUV reticle pod based on SEMI E152

    NASA Astrophysics Data System (ADS)

    Ota, Kazuya; Yonekawa, Masami; Taguchi, Takao; Suga, Osamu

    2010-04-01

    To protect the reticle during shipping, storage and tool handling, various reticle pod concepts have been proposed and evaluated in the last 10 years. MIRAI-Selete has been developing EUV reticle handling technology and evaluating EUV reticle pods designed using "Dual Pod Concept" for four years. The concept was jointly proposed by Canon and Nikon at the EUV mask technology and standards workshop at Miyazaki in November 2004; a mask is doubly protected by an inner pod and an outer pod and the mask is carried into an exposure tool with the inner pod. Canon, Nikon and Entegris have started collaboration in 2005 and developed three types of EUV pod prototypes, alpha, beta and gamma. The gamma pods were evaluated by MIRAI-Selete and the superiority of the dual pod concept has been verified with many experimental data on shipping, storage and tool handling. The dual pod concept was standardized as SEMI E152-0709 "Mechanical Specification of EUV Pods for 150mm EUVL Reticles" in 2009. Canon, Nikon and Entegris have developed a new pod design compatible with SEMI E152; it has a Type A inner baseplate for uses with EUV exposure tools. The baseplate has two alignment windows, a window for a data matrix symbol and five pockets as the front edge grip exclusion volumes. In addition to the new features, there are some differences between the new SEMI compliant pod design and the former design "CNE-gamma", e.g. the material of the inner cover was changed to metal to reduce outgassing rate and the gap between the reticle and the side supports were widened to satisfy a requirement of the standard. MIRAI-Selete has evaluated the particle protective capability of the new SEMI compliant pods "cnPod" during shipping, storage and tool handling in vacuum and found the "cnPod" has the excellent particle protective capability and the dual pod concept can be used not only for EUVL pilot line but also for EUVL high volume manufacturing.

  10. Single exposure EUV patterning of BEOL metal layers on the IMEC iN7 platform

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Bekaert, J.; Mao, M.; Kutrzeba Kotowska, B.; Larivière, S.; Ciofi, I.; Baert, R.; Kim, R. H.; Gallagher, E.; Hendrickx, E.; Tan, L. E.; Gillijns, W.; Trivkovic, D.; Leray, P.; Halder, S.; Gallagher, M.; Lazzarino, F.; Paolillo, S.; Wan, D.; Mallik, A.; Sherazi, Y.; McIntyre, G.; Dusa, M.; Rusu, P.; Hollink, T.; Fliervoet, T.; Wittebrood, F.

    2017-03-01

    This paper summarizes findings on the iN7 platform (foundry N5 equivalent) for single exposure EUV (SE EUV) of M1 and M2 BEOL layers. Logic structures within these layers have been measured after litho and after etch, and variability was characterized both with conventional CD-SEM measurements as well as Hitachi contouring method. After analyzing the patterning of these layers, the impact of variability on potential interconnect reliability was studied by using MonteCarlo and process emulation simulations to determine if current litho/etch performance would meet success criteria for the given platform design rules.

  11. Performance of multilayer coated diffraction gratings in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Gum, Jeffrey S.; Condor, Charles E.

    1990-01-01

    The effect of multilayer coating application on the performance of a diffraction grating in the EUV spectral region was evaluated by examining the performance of a 3600-line/mm and a 1200-line/mm replica blazed gratings, designed for operation in the 300-A spectral region in first order. A ten-layer IrSi multilayer optimized for 304 A was deposited using electron-beam evaporation. The grating efficiency was measured on the SURF II calibration beamline in a chamber designed for calibrating the solar EUV rocket telescope and spectrograph multilayer coatings. A significant (by a factor of about 7) enhancement in grating efficiency in the 300-A region was demonstrated.

  12. Responses of the Jovian Atmosphere to Cometary Particles and Photon Impacts

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1998-01-01

    Spectra of soft x-ray and EUV emissions of oxygen ions, precipitating into the Jovian atmosphere, are calculated, taking into account the dynamical character of the energy and charge distributions of the ions as they propagate. Monte-Carlo simulations are performed using experimental and theoretical cross sections of ion collisions with the atmospheric gases. The numbers of x-ray and EUV photons produced per precipitating oxygen ion are calculated as functions of the initial ion energy and charge. The energy and charge distribution functions are used to evaluate the intensities of characteristic x-ray and EUV spectral emission lines of oxygen ions in the Jovian aurora.

  13. ROSAT EUV and soft X-ray studies of atmospheric composition and structure in G191-B2B

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Fleming, T. A.; Finley, D. S.; Koester, D.; Diamond, C. J.

    1993-01-01

    Previous studies of the hot DA white dwarf GI91-B2B have been unable to determine whether the observed soft X-ray and EUV opacity arises from a stratified hydrogen and helium atmosphere or from the presence of trace metals in the photosphere. New EUV and soft X-ray photometry of this star, made with the ROSAT observatory, when analyzed in conjunction with the earlier data, shows that the stratified models cannot account for the observed fluxes. Consequently, we conclude that trace metals must be a substantial source of opacity in the photosphere of G191-B2B.

  14. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  15. EUV via hole pattern fidelity enhancement through novel resist and post-litho plasma treatment

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Koike, Kyohei; Fonseca, Carlos; Yamashita, Fumiko; Kaushik, Kumar; Morikita, Shinya; Ito, Kiyohito; Yoshimura, Shota; Timoshkov, Vadim; Maslow, Mark; Jee, Tae Kwon; Reijnen, Liesbeth; Choi, Peter; Feng, Mu; Spence, Chris; Schoofs, Stijn

    2018-03-01

    Extreme UV(EUV) technology must be potential solution for sustainable scaling, and its adoption in high volume manufacturing(HVM) is getting realistic more and more. This technology has a wide capability to mitigate various technical problem in Multi-patterning (LELELE) for via hole patterning with 193-i. It induced local pattern fidelity error such like CDU, CER, Pattern placement error. Exactly, EUV must be desirable scaling-driving tool, however, specific technical issue, named RLS (Resolution-LER-Sensitivity) triangle, obvious remaining issue. In this work, we examined hole patterning sensitizing (Lower dose approach) utilizing hole patterning restoration technique named "CD-Healing" as post-Litho. treatment.

  16. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source.

    PubMed

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 microm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2 x 10(11) Wcm(2) with a spot diameter of 175 microm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  17. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2×1011 W/cm2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  18. Microchannel plate EUV detectors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Malina, R. F.; Coburn, K.; Werthimer, D.

    1984-01-01

    The design and operating characteristics of the prototype imaging microchannel plate (MCP) detector for the Extreme Ultraviolet Explorer (EUVE) Satellite are discussed. It is shown that this detector has achieved high position resolution performance (greater than 512 x 512 pixels) and has low (less than one percent) image distortion. In addition, the channel plate scheme used has tight pulse height distributions (less than 40 percent FWHM) for UV radiation and displays low (less than 0.2 cnt/sq cm-s) dark background counting rates. Work that has been done on EUV filters in relation to the envisaged filter and photocathode complement is also described.

  19. Micro-bridge defects: characterization and root cause analysis

    NASA Astrophysics Data System (ADS)

    Santoro, Gaetano; Van den Heuvel, Dieter; Braggin, Jennifer; Rosslee, Craig; Leray, Philippe J.; Cheng, Shaunee; Jehoul, Christiane; Schreutelkamp, Robert; Hillel, Noam

    2010-03-01

    Defect review of advanced lithography processes is becoming more and more challenging as feature sizes decrease. Previous studies using a defect review SEM on immersion lithography generated wafers have resulted in a defect classification scheme which, among others, includes a category for micro-bridges. Micro-bridges are small connections between two adjacent lines in photo-resist and are considered device killing defects. Micro-bridge rates also tend to increase as feature sizes decrease, making them even more important for the next technology nodes. Especially because micro-bridge defects can originate from different root causes, the need to further refine and split up the classification of this type of defect into sub groups may become a necessity. This paper focuses on finding the correlation of the different types of micro-bridge defects to a particular root cause based on a full characterization and root cause analysis of this class of defects, by using advanced SEM review capabilities like high quality imaging in very low FOV, Multi Perspective SEM Imaging (MPSI), tilted column and rotated stage (Tilt&Rotation) imaging and Focused Ion Beam (FIB) cross sectioning. Immersion lithography material has been mainly used to generate the set of data presented in this work even though, in the last part of the results, some EUV lithography data will be presented as part of the continuing effort to extend the micro-bridge defect characterization to the EUV technology on 40 nm technology node and beyond.

  20. A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.

    1994-01-01

    We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied also. To understand the saturation levels for these stars, we have compiled a large number of IPC luminosities for stars with a wide variety of spectral types and luminosity classes. We show quantitatively that if the Sun were completely covered with X-ray-emitting coronal loops, it would be near the saturation limit implied by this compilation, supporting the idea that stars near upper limits in coronal activity are completely covered with active regions.

  1. Use of molecular oxygen to reduce EUV-induced carbon contamination of optics

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Grunow, Philip A.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.

    2001-08-01

    Carbon deposition and removal experiments on Mo/Si multilayer mirror (MLM) samples were performed using extreme ultraviolet (EUV) light on Beamline 12.0.1.2 of the Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL). Carbon (C) was deposited onto Mo/Si multilayer mirror (MLM) samples when hydrocarbon vapors where intentionally introduced into the MLM test chamber in the presence of EUV at 13.44 nm (92.3eV). The carbon deposits so formed were removed by molecular oxygen + EUV. The MLM reflectivities and photoemission were measured in-situ during these carbon deposition and cleaning procedures. Auger Electron Spectroscopy (AES) sputter-through profiling of the samples was performed after experimental runs to help determine C layer thickness and the near-surface compositional-depth profiles of all samples studied. EUV powers were varied from ~0.2mW/mm2 to 3mW/mm2(at 13.44 nm) during both deposition and cleaning experiments and the oxygen pressure ranged from ~5x10-5 to 5x10-4 Torr during the cleaning experiments. C deposition rates as high as ~8nm/hr were observed, while cleaning rates as high as ~5nm/hr could be achieved when the highest oxygen pressure were used. A limited set of experiments involving intentional oxygen-only exposure of the MLM samples showed that slow oxidation of the MLM surface could occur.

  2. Probing the Quiet Solar Atmosphere from the Photosphere to the Corona

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas

    2018-04-01

    We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.

  3. Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Lodhi, Neelesh K.; Upadhayaya, Arun K.

    2010-12-01

    Most studies dealing with solar flare effects in the upper ionosphere, where ionization is caused by EUV photons, have been based upon X-ray fluxes measured by the SOLRAD and GOES series of satellites. To check the validity of such studies, we compare simultaneous observations of GOES X-ray fluxes and SOHO EUV fluxes for 10 X-class solar flares which occurred during the maximum phase of sunspot cycle 23. These include the greatest flare of 4 November 2003, the fourth greatest flare of 28 October 2003 and the 14 July 2000 Bastille Day flare. We find that the peak intensities of the X-ray and EUV fluxes for these flares are poorly correlated, and this poor correlation is again seen when larger data containing 70 X-class flares, which occurred during the period January 1996 to December 2006, are examined. However, this correlation improves vastly when the central meridian distance (CMD) of the flare location is taken into account. We also study the response of the upper ionosphere to these fluxes by using the midday total electron content (TEC), observed for these flares by Liu et al. (2006). We find that peak enhancement in TEC is highly correlated with peak enhancement in EUV flux. The correlation, though poor with the X-ray flux, improves greatly when the CMD of flare location is considered.

  4. Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.

    2017-01-01

    The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.

  5. Investigation of contamination of thin-film aluminum filters by MMH-NTO plumes exposed to UV radiation

    NASA Astrophysics Data System (ADS)

    Gupta, Vaibhav; Wieman, Seth; Didkovsky, Leonid; Haiges, Ralf; Yao, Yuhan; Wu, Wei; Gruntman, Mike; Erwin, Dan

    2015-09-01

    Thin-film aluminum filters degrade in space with significant reduction of their Extreme Ultraviolet (EUV) transmission. This degradation was observed on the EUV Spectrophotometer (ESP) onboard the Solar Dynamics Observatory's EUV Variability Experiment and the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory. One of the possible causes for deterioration of such filters over time is contamination of their surfaces from plumes coming from periodic firing of their satellite's Monomethylhydrazine (MMH) - Nitrogen Tetroxide (NTO) thrusters. When adsorbed by the filters, the contaminant molecules are exposed to solar irradiance and could lead to two possible compositions. First, they could get polymerized leading to a permanent hydrocarbon layer buildup on the filter's surface. Second, they could accelerate and increase the depth of oxidation into filter's bulk aluminum material. To study the phenomena we experimentally replicate contamination of such filters in a simulated environment by MMH-NTO plumes. We apply, Scanning Electron Microscopy and X-Ray photoelectron spectroscopy to characterize the physical and the chemical changes on these contaminated sample filter surfaces. In addition, we present our first analysis of the effects of additional protective layer coatings based on self-assembled carbon monolayers for aluminum filters. This coverage is expected to significantly decrease their susceptibility to contamination and reduce the overall degradation of filter-based EUV instruments over their mission life.

  6. Investigation of the solar UV/EUV heating effect on the Jovian radiation belt by GMRT-IRTF observation

    NASA Astrophysics Data System (ADS)

    Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Uno, T.; Kondo, T.; Morioka, A.

    2012-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent intensive observations of JSR revealed short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed a scenario for the short term variations; i.e, the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. The purpose of this study is to investigate whether sufficient solar UV/EUV heating in Jupiter's upper atmosphere can actually causes variation in the JSR total flux and brightness distribution. Previous JSR observations using the Giant Metrewave Radio Telescope (GMRT) suggested important characteristics of short term variations; relatively low energy particles are accelerated by some acceleration processes which might be driven by solar UV/EUV heating and/or Jupiter's own magnetic activities. In order to evaluate the effect of solar UV/EUV heating on JSR variations, we made coordinated observations using the GMRT and NASA Infra-Red Telescope Facility (IRTF). By using IRTF, we can estimate the temperature of Jupiter's upper atmosphere from spectroscopic observation of H_3^+ infrared emission. Hence, we can evaluate the relationship between variations in Jupiter's upper atmosphere initiated by the solar UV/EUV heating and its linkage with the JSR. The GMRT observations were made during Nov. 6-17, 2011 at the frequency of 235/610MHz. The H_3^+ 3.953 micron line was observed using the IRTF during Nov. 7-12, 2011. During the observation period, the solar UV/EUV flux variations expected on Jupiter showed monotonic increase. A preliminary analysis of GMRT 610MHz band showed a radio flux variation similar to that in the solar UV/EUV. Radio images showed that the emission intensity increased at the outer region and the position of equatorial peak emission moved in the outward direction. If radial diffusion increases globally by the solar UV/EUV heating, it is expected that the peak intensity would increase and the peak position move inwards. However, our results are not consistent with the global enhancement of radial diffusion. In addition to that, the equatorial H_3^+ emission indicated that emission intensity decreased from the first day of observation to the last day. It is expected that equatorial temperature of Jupiter's atmosphere decreases during this observation period. Therefore, we propose that radial diffusion increased not globally but only at the outer region around L=2-3 during this period. From this hypothesis, it is expected that enhancement of radial diffusion at the outer region is caused by high latitude temperature enhancement. We discuss possible causes of the short term variations of JSR from the IRTF observation results at high latitude.

  7. Short term variations in Jupiter's synchrotron radiation derived from VLA data analysis

    NASA Astrophysics Data System (ADS)

    Kita, H.; Misawa, H.; Tsuchiya, F.; Morioka, A.

    2011-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons in the strong magnetic field of the inner magnetosphere, and it is the most effective prove for remote sensing of Jupiter's radiation belt from the Earth. Although JSR has been thought to be stable for a long time, intensive observations for JSR have made after the collisions of comet P/SL9 to Jupiter in 1994, and these observations revealed short term variations of JSR on time scale of days to weeks. However, the mechanisms which cause the short term variations of total flux density and brightness distribution have not been revealed well. In order to reveal the mechanism of short term variations of JSR more precisely, we have made radio image analysis using the NRAO (National Radio Astronomy Observatory) archived data of the VLA [*]. Brice and McDonough [1973, Icarus] proposed a scenario for the short term variations: i.e, the solar UV/EUV heating for Jupiter's upper atmosphere drives neutral wind perturbations and then the induced dynamo electric field leads to enhancement of radial diffusion. It is also suggested that induced dynamo electric field produce dawn-dusk electric potential difference, which cause dawn-dusk asymmetry in electron spatial distribution and emission distribution. So far the following results have been indicated for the short term variations. Miyoshi et al. [1999, GRL] showed that a short term variation event at 2.3GHz is well correlate to solar UV/EUV flux variations. Tsuchiya et al. [2010, Adv. Geosci.] showed that JSR at 325MHz and 785MHz have short term variations. These JSR observations confirmed the existence of the short term variation which is caused by solar UV/EUV. However, the effect of solar UV/EUV heating on the spatial distribution of JSR has never been confirmed, so this study is the first attempt to confirm the solar UV/EUV effect on spatial distribution of JSR. We have selected the data observed from 28th Jan. to 5th Feb. 2000 at 327MHz. During the period, solar UV/EUV flux expected on Jupiter showed almost monotonic increase. It is expected from the analysis for the period that the enhancement of radial diffusion caused by solar UV/EUV heating produces total flux enhancement and dawn-dusk asymmetry of the emission distribution of the JSR. We can therefore examine the scenario by measuring total flux density and dawn-dusk peak emission ratio of JSR, and their relationships to the variation of solar UV/EUV activity. A preliminary result shows that total flux density variations occurred corresponding to the solar UV/EUV variations, but we couldn't find variations in the dawn-dusk asymmetry above the one rms level calculated from the background image. *The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  8. Intense X-ray and EUV light source

    DOEpatents

    Coleman, Joshua; Ekdahl, Carl; Oertel, John

    2017-06-20

    An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.

  9. Prototype through-pellicle coherent imaging using a 30nm tabletop EUV source

    NASA Astrophysics Data System (ADS)

    Bevis, Charles S.; Karl, Robert M.; Wang, Bin; Esashi, Yuka; Tanksalvala, Michael; Porter, Christina L.; Johnsen, Peter; Adams, Daniel E.; Murnane, Margaret M.; Kapteyn, Henry C.

    2018-03-01

    We present preliminary through-pellicle imaging using a 30nm tabletop extreme ultraviolet (EUV) coherent diffractive imaging microscope. We show that even in a non-optimized setup, this technique enables through-pellicle imaging of a sample with no detectable impact on image fidelity or resolution.

  10. Deposition, characterization, patterning and mechanistic study of inorganic resists for next-generation nanolithography

    NASA Astrophysics Data System (ADS)

    Luo, Feixiang

    The semiconductor industry has witnessed a continuous decrease in the size of logic, memory and other computer chip components since its birth over half a century ago. The shrinking (scaling) of components has to a large extent been enabled by the development of micro- and now nano-lithographic techniques. This thesis focuses on one central component of lithography, the resist, which is essentially a thin film that when appropriately exposed enables a pattern to be printed onto a surface. Smaller features require an ever more precisely focused photon, electron or ion beam with which to expose the resist. The likely next generation source of radiation that will enable sub-20nm features to be written will employ extreme ultraviolet radiation (EUV), 92eV (13.5nm). The work discussed here involves a novel class of inorganic resists (including a solution processed Hf-based resist called HafSOx), as the organic resists that have dominated the microlithography industry for the past few decades have approached fundamental scaling limits. In order to maintain the high throughput required by high volume semiconductor manufacturing, metal oxide resists have been proposed and developed to meet the resolution and sensitivity in EUV lithography. One can think of our resists as the nano-lithographic analog to the silver halide film that dominated the photographic print industry for a century. In this thesis, we mainly describe our work on HafSOx, a "first generation" metal oxide EUV resist system. HafSOx thin films can be deposited by spin-coating a mixed solution of HfOCl2, H2O 2, and H2SO4. Various materials characterization techniques have been employed to achieve a comprehensive understanding of film composition and structure at both surface and bulk level, as well as a mechanistic understanding of the film radiation chemistry. Taking advantage of the high energy x-rays used in the XPS experiment, we developed an experiment to dynamically monitor the photochemistry within the HafSOx films. Based on this experiment, we found that an insoluble Hf-O-Hf network is eventually formed after film exposure and development by the removal of SOx, OH, and H2O, and the cross-linking of HfxOy nanoparticles. Using photoemission and complementary Raman results, and knowing that both free and bound peroxide co-exist in the precursor solution, we confirmed that there is a specific peroxide stoichiometry needed in the film to chelate to Hf. Sulfate groups were found to act as the spacers between metal oxide nanoparticles to prevent early stage nanoparticle aggregation in the as-deposited films. Too much sulfate sacrifices resist sensitivity, while too little promotes undesired nanoparticle cross-linking during film preparation. In EUV lithography, low energy secondary electron activation had been suggested as a mechanism explaining how film exposure to EUV photons through a mask can result in a patterned film, but this hypothesis lacked experimental evidence. We constructed a low energy electron beam exposure system, exposed HafSOx resists with electrons with energy ranging from 2 eV to 100 eV, and then characterized the film changes after the exposure. Surprisingly, we found electrons with an energy as low as 2 eV can activate the film if given a sufficient electron dose. Electrons with a lower energy require higher doses to fully activate the resist. Our results strongly support the hypothesis that relatively low energy secondary electrons are central in the mechanism responsible for patterning, in this case by interacting with peroxyl species bound to Hf in the films. With the recent arrival of a state-of-art Zeiss-Orion helium ion beam microscope at Rutgers, we also tested the patterning performance of a HafSOx resist with 30 keV He+ ions. (HIBL = helium ion beam lithography). 30 keV He ions were found to be 50-100 more sensitive than 30 keV electrons at patterning HafSOx, and this boost was attributed to the higher stopping power of helium ions compared with electrons. Sub-10 nm critical dimensions were achieved with fairly good line edge roughness (a key metric in assessing lithographic performance). Additionally, Monte Carlo simulations were conducted to compare the ion and electron trajectories in the solid films and to investigate energy loss in the HafSOx films. In summary, a systematic approach has been developed to understand the mechanism behind HafSOx as an EUV resist. Our work helps lead to a more comprehensive mechanistic understanding of how metal oxide EUV photoresists work in general, and suggests ways to optimize their performance.

  11. NXE pellicle: offering a EUV pellicle solution to the industry

    NASA Astrophysics Data System (ADS)

    Brouns, Derk; Bendiksen, Aage; Broman, Par; Casimiri, Eric; Colsters, Paul; Delmastro, Peter; de Graaf, Dennis; Janssen, Paul; van de Kerkhof, Mark; Kramer, Ronald; Kruizinga, Matthias; Kuntzel, Henk; van der Meulen, Frits; Ockwell, David; Peter, Maria; Smith, Daniel; Verbrugge, Beatrijs; van de Weg, David; Wiley, Jim; Wojewoda, Noelie; Zoldesi, Carmen; van Zwol, Pieter

    2016-03-01

    Towards the end of 2014, ASML committed to provide a EUV pellicle solution to the industry. Last year, during SPIE Microlithography 2015, we introduced the NXE pellicle concept, a removable pellicle solution that is compatible with current and future patterned mask inspection methods. This paper shows results of how we took this concept to a complete EUV pellicle solution for the industry. We will highlight some technical design challenges we faced developing the NXE pellicle and how we solved them. We will also present imaging results of pellicle exposures on a 0.33 NA NXE scanner system. In conjunction with the NXE pellicle, we will also present the supporting tooling we have developed to enable pellicle use.

  12. Method of fabricating reflection-mode EUV diffusers

    DOEpatents

    Anderson, Erik; Naulleau, Patrick P.

    2005-03-01

    Techniques for fabricating well-controlled, random relief, engineered surfaces that serve as substrates for EUV optical devices are accomplished with grayscale exposure. The method of fabricating a multilevel EUV optical element includes: (a) providing a substrate; (b) depositing a layer of curable material on a surface of the substrate; (c) creating a relief profile in a layer of cured material from the layer of curable material wherein the relief profile comprises multiple levels of cured material that has a defined contour; and (d) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. The curable material can comprise photoresist or a low dielectric constant material.

  13. The Extreme-ultraviolet Emission from Sun-grazing Comets

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, William D.

    2012-01-01

    The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses.We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

  14. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE PAGES

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; ...

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO 2 film with EUV diffraction from the optically excited sample. The VO 2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separatemore » the two features.« less

  15. Generation of sub-optical-cycle, carrier-envelope-phase--insensitive, extreme-uv pulses via nonlinear stabilization in a waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel

    2006-12-15

    We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.

  16. Model based high NA anamorphic EUV RET

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Wiaux, Vincent; Fenger, Germain; Clifford, Chris; Liubich, Vlad; Hendrickx, Eric

    2018-03-01

    With the announcement of the extension of the Extreme Ultraviolet (EUV) roadmap to a high NA lithography tool that utilizes anamorphic optics design, an investigation of design tradeoffs unique to the imaging of anamorphic lithography tool is shown. An anamorphic optical proximity correction (OPC) solution has been developed that models fully the EUV near field electromagnetic effects and the anamorphic imaging using the Domain Decomposition Method (DDM). Clips of imec representative for the N3 logic node were used to demonstrate the OPC solutions on critical layers that will benefit from the increased contrast at high NA using anamorphic imaging. However, unlike isomorphic case, from wafer perspective, OPC needs to treat x and y differently. In the paper, we show a design trade-off seen unique to Anamorphic EUV, namely that using a mask rule of 48nm (mask scale), approaching current state of the art, limitations are observed in the available correction that can be applied to the mask. The metal pattern has a pitch of 24nm and CD of 12nm. During OPC, the correction of the metal lines oriented vertically are being limited by the mask rule of 12nm 1X. The horizontally oriented lines do not suffer from this mask rule limitation as the correction is allowed to go to 6nm 1X. For this example, the masks rules will need to be more aggressive to allow complete correction, or design rules and wafer processes (wafer rotation) would need to be created that utilize the orientation that can image more aggressive features. When considering VIA or block level correction, aggressive polygon corner to corner designs can be handled with various solutions, including applying a 45 degree chop. Multiple solutions are discussed with the metrics of edge placement error (EPE) and Process Variation Bands (PVBands), together with all the mask constrains. Noted in anamorphic OPC, the 45 degree chop is maintained at the mask level to meet mask manufacturing constraints, but results in skewed angle edge in wafer level correction. In this paper, we used both contact (Via/block) patterns and metal patterns for OPC practice. By comparing the EPE of horizontal and vertical patterns with a fixed mask rule check (MRC), and the PVBand, we focus on the challenges and the solutions of OPC with anamorphic High-NA lens.

  17. Statistical and observational research of solar flare for total spectra and geometrical features

    NASA Astrophysics Data System (ADS)

    Nishimoto, S.; Watanabe, K.; Imada, S.; Kawate, T.; Lee, K. S.

    2017-12-01

    Impulsive energy release phenomena such as solar flares, sometimes affect to the solar-terrestrial environment. Usually, we use soft X-ray flux (GOES class) as the index of flare scale. However, the magnitude of effect to the solar-terrestrial environment is not proportional to that scale. To identify the relationship between solar flare phenomena and influence to the solar-terrestrial environment, we need to understand the full spectrum of solar flares. There is the solar flare irradiance model named the Flare Irradiance Spectral Model (FISM) (Chamberlin et al., 2006, 2007, 2008). The FISM can estimate solar flare spectra with high wavelength resolution. However, this model can not express the time evolution of emitted plasma during the solar flare, and has low accuracy on short wavelength that strongly effects and/or controls the total flare spectra. For the purpose of obtaining the time evolution of total solar flare spectra, we are performing statistical analysis of the electromagnetic data of solar flares. In this study, we select solar flare events larger than M-class from the Hinode flare catalogue (Watanabe et al., 2012). First, we focus on the EUV emission observed by the SDO/EVE. We examined the intensities and time evolutions of five EUV lines of 55 flare events. As a result, we found positive correlation between the "soft X-ray flux" and the "EUV peak flux" for all EVU lines. Moreover, we found that hot lines peaked earlier than cool lines of the EUV light curves. We also examined the hard X-ray data obtained by RHESSI. When we analyzed 163 events, we found good correlation between the "hard X-ray intensity" and the "soft X-ray flux". Because it seems that the geometrical features of solar flares effect to those time evolutions, we also looked into flare ribbons observed by SDO/AIA. We examined 21 flare events, and found positive correlation between the "GOES duration" and the "ribbon length". We also found positive correlation between the "ribbon length" and the "ribbon distance", however, there was no remarkable correlation of the "ribbon width". To understand physical process of flare emission, we performed numerical simulation (Imada et al., 2015), and compared with the observational flare model. We also discuss the flare numerical model which can be fitted to the observational flare model.

  18. The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1987-01-01

    A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.

  19. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure

    PubMed Central

    Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo

    2016-01-01

    Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374

  20. Rosat sky survey observations of the eclipsing binary V471 Tauri

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Schmitt, J. H. M. M.; Clemens, J. C.; Pye, J. P.; Denby, M.; Harris, A. W.; Pankiewicz, G. S.

    1992-01-01

    Rosat observations of the DA white dwarf + K2V binary system V471 Tauri, obtained during the sky survey phase of the mission, are presented. A lower amplitude shorter time-scale variability is seen in both the soft X-ray and EUV bands. This is associated with the white dwarf pulsations previously discovered by Exosat and also observed at optical wavelengths. The minimum in the EUV light curve is found to coincide with the maximum in the optical. This direct comparison of the phases of the optical and EUV pulses confirms the prediction made by an earlier indirect comparison and shows conclusively that the V471 Tau oscillations cannot arise from nonradial g-mode pulsations in the white dwarf. They are argued to be caused by rotation of the white dwarf with accretion-darkened magnetic poles. On the basis of the EUV and optical pulse shapes, the accretion geometry is studied, and it is estimated that the rate of accretion onto the white dwarf is about (4-11) x 10 exp -13 solar mass/yr.

  1. Web-based Tool Suite for Plasmasphere Information Discovery

    NASA Astrophysics Data System (ADS)

    Newman, T. S.; Wang, C.; Gallagher, D. L.

    2005-12-01

    A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).

  2. A double-stream Xe:He jet plasma emission in the vicinity of 6.7 nm

    NASA Astrophysics Data System (ADS)

    Chkhalo, N. I.; Garakhin, S. A.; Golubev, S. V.; Lopatin, A. Ya.; Nechay, A. N.; Pestov, A. E.; Salashchenko, N. N.; Toropov, M. N.; Tsybin, N. N.; Vodopyanov, A. V.; Yulin, S.

    2018-05-01

    We present the results of investigations of extreme ultraviolet (EUV) light emission in the range from 5 to 10 nm. The light source was a pulsed "double-stream" Xe:He gas jet target irradiated by a laser beam with a power density of ˜1011 W/cm2. The radiation spectra were measured with a Czerny-Turner monochromator with a plane diffraction grating. The conversion efficiency of the laser energy into EUV radiation caused by Xe+14…+16 ion emission in the range of 6-8 nm was measured using a calibrated power meter. The conversion efficiency of the laser radiation into EUV in the vicinity of 6.7 nm was (2.17 ± 0.13)% in a 1 nm spectral band. In the spectral band of the real optical system (0.7% for La/B multilayer mirrors) emitted into the half-space, it was (0.1 ± 0.006)%. The results of this study provide an impetus for further research on laser plasma sources for maskless EUV lithography at a wavelength of 6.7 nm.

  3. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4 - 6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e1 plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  4. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1996-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4-6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e(+/-) plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  5. Theoretical modeling of PEB procedure on EUV resist using FDM formulation

    NASA Astrophysics Data System (ADS)

    Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo

    2018-03-01

    Semiconductor manufacturing industry has reduced the size of wafer for enhanced productivity and performance, and Extreme Ultraviolet (EUV) light source is considered as a promising solution for downsizing. A series of EUV lithography procedures contain complex photo-chemical reaction on photoresist, and it causes technical difficulties on constructing theoretical framework which facilitates rigorous investigation of underlying mechanism. Thus, we formulated finite difference method (FDM) model of post exposure bake (PEB) process on positive chemically amplified resist (CAR), and it involved acid diffusion coupled-deprotection reaction. The model is based on Fick's second law and first-order chemical reaction rate law for diffusion and deprotection, respectively. Two kinetic parameters, diffusion coefficient of acid and rate constant of deprotection, which were obtained by experiment and atomic scale simulation were applied to the model. As a result, we obtained time evolutional protecting ratio of each functional group in resist monomer which can be used to predict resulting polymer morphology after overall chemical reactions. This achievement will be the cornerstone of multiscale modeling which provides fundamental understanding on important factors for EUV performance and rational design of the next-generation photoresist.

  6. Use of gas-phase ethanol to mitigate extreme UV/water oxidation of extreme UV optics

    NASA Astrophysics Data System (ADS)

    Klebanoff, L. E.; Malinowski, M. E.; Clift, W. M.; Steinhaus, C.; Grunow, P.

    2004-03-01

    A technique is described that uses a gas-phase species to mitigate the oxidation of a Mo/Si multilayer optic caused by either extreme UV (EUV) or electron-induced dissociation of adsorbed water vapor. It is found that introduction of ethanol (EtOH) into a water-rich gas-phase environment inhibits oxidation of the outermost Si layer of the Mo/Si EUV reflective coating. Auger electron spectroscopy, sputter Auger depth profiling, EUV reflectivity, and photocurrent measurements are presented that reveal the EUV/water- and electron/water-derived optic oxidation can be suppressed at the water partial pressures used in the tests (~2×10-7-2×10-5 Torr). The ethanol appears to function differently in two time regimes. At early times, ethanol decomposes on the optic surface, providing reactive carbon atoms that scavenge reactive oxygen atoms before they can oxidize the outermost Si layer. At later times, the reactive carbon atoms form a thin (~5 Å), possibly self-limited, graphitic layer that inhibits water adsorption on the optic surface. .

  7. Studies of Solar EUV Irradiance from SOHO

    NASA Technical Reports Server (NTRS)

    Floyd, Linton

    2002-01-01

    The Extreme Ultraviolet (EUV) irradiance central and first order channel time series (COC and FOC) from the Solar EUV Monitor aboard the Solar and Heliospheric observatory (SOHO) issued in early 2002 covering the time period 1/1/96-31/1201 were analyzed in terms of other solar measurements and indices. A significant solar proton effect in the first order irradiance was found and characterized. When this effect is removed, the two irradiance time series are almost perfectly correlated. Earlier studies have shown good correlation between the FOC and the Hall core-to-wing ratio and likewise, it was the strongest component of the COC. Analysis of the FOC showed dependence on the F10.7 radio flux. Analysis of the CDC signals showed additional dependences on F10.7 and the GOES x-ray fluxes. The SEM FOC was also well correlated with thein 30.4 nm channel of the SOHO EUV Imaging Telescope (EIT). The irradiance derived from all four EIT channels (30.4 nm, 17.1 nm, 28.4 nm, and 19.5 nm) showed better correlation with MgII than F10.7.

  8. Lifetime estimation of extreme-ultraviolet pellicle at 500 W source power by thermal stress analysis

    NASA Astrophysics Data System (ADS)

    Park, Eun-Sang; Ban, Chung-Hyun; Park, Jae-Hun; Oh, Hye-Keun

    2017-10-01

    The analysis of the thermal stress and the extreme-ultraviolet (EUV) pellicle is important since the pellicle could be easily damaged since the thickness of the pellicle is 50 nm thin due to 90% required EUV transmission. One of the solution is using a high emissivity metallic material on the both sides of the pellicle and it can lower the thermal stress. However, using a metallic coating on pellicle core which is usually consist of silicon group can decrease the EUV transmission compared to using a single core layer pellicle only. Therefore, we optimized thermal and optical properties of the pellicle and elect three types of the pellicle. In this paper we simulated our optimized pellicles with 500W source power. The result shows that the difference of the thermal stress is small for each case. Therefore, our result also shows that using a high emissivity coating is necessary since the cooling of the pellicle strongly depends on emissivity and it can lower the stress effectively even at high EUV source power.

  9. Evidence of the Dynamics of Relativistic Jet Launching in Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian

    2015-06-01

    Hubble Space Telescope (HST) spectra of the EUV, the optically thick emission from the innermost accretion flow onto the central supermassive black hole, indicate that radio loud quasars (RLQs) tend to be EUV weak compared to the radio-quiet quasars; yet the remainder of the optically thick thermal continuum is indistinguishable. The deficit of EUV emission in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. This article is an examination of the evidence for a distribution of magnetic flux tubes in the innermost accretion flow that results in magnetically arrested accretion (MAA) and creates the EUV deficit. These same flux tubes and possibly the interior magnetic flux that they encircle are the sources of the jet power as well. In the MAA scenario, islands of large-scale vertical magnetic flux perforate the innermost accretion flow of RLQs. The first prediction of the theory that is supported by the HST data is that the strength of the (large-scale poloidal magnetic fields) jets in the MAA region is regulated by the ram pressure of the accretion flow in the quasar environment. The second prediction that is supported by the HST data is that the rotating magnetic islands remove energy from the accretion flow as a Poynting flux dominated jet in proportion to the square of the fraction of the EUV emitting gas that is displaced by these islands.

  10. Simultaneous retrieval of the solar EUV flux and neutral thermospheric O, O2, N2, and temperature from twilight airglow

    NASA Technical Reports Server (NTRS)

    Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.

    1994-01-01

    We present a method to retrieve neutral thermospheric composition and the solar EUV flux from ground-based twilight optical measurements of the O(+) ((exp 2)P) 7320 A and O((exp 1)D) 6300 A airglow emissions. The parameters retrieved are the neutral temperature, the O, O2, N2 density profiles, and a scaling factor for the solar EUV flux spectrum. The temperature, solar EUV flux scaling factor, and atomic oxygen density are first retrieved from the 7320-A emission, which are then used with the 6300-A emission to retrieve the O2 and N2 densities. The retrieval techniques have been verified by computer simulations. We have shown that the retrieval technique is able to statistically retrieve values, between 200 and 400 km, within an average error of 3.1 + or - 0.6% for thermospheric temperature, 3.3 + or - 2.0% for atomic oxygen, 2.3 + or - 1.3% for molecular oxygen, and 2.4 + or - 1.3% for molecular nitrogen. The solar EUV flux scaling factor was found to have a retrieval error of 5.1 + or - 2.3%. All the above errors have a confidence level of 95%. The purpose of this paper is to prove the viability and usefulness of the retrieval technique by demonstrating the ability to retrieve known quantities under a realistic simulation of the measurement process, excluding systematic effects.

  11. Early evolution of an energetic coronal mass ejection and its relation to EUV waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rui; Wang, Yuming; Shen, Chenglong, E-mail: rliu@ustc.edu.cn

    2014-12-10

    We study a coronal mass ejection (CME) associated with an X-class flare whose initiation is clearly observed in the low corona with high-cadence, high-resolution EUV images, providing us a rare opportunity to witness the early evolution of an energetic CME in detail. The eruption starts with a slow expansion of cool overlying loops (∼1 MK) following a jet-like event in the periphery of the active region. Underneath the expanding loop system, a reverse S-shaped dimming is seen immediately above the brightening active region in hot EUV passbands. The dimming is associated with a rising diffuse arch (∼6 MK), which wemore » interpret as a preexistent, high-lying flux rope. This is followed by the arising of a double hot channel (∼10 MK) from the core of the active region. The higher structures rise earlier and faster than lower ones, with the leading front undergoing extremely rapid acceleration up to 35 km s{sup –2}. This suggests that the torus instability is the major eruption mechanism and that it is the high-lying flux rope rather than the hot channels that drives the eruption. The compression of coronal plasmas skirting and overlying the expanding loop system, whose aspect ratio h/r increases with time as a result of the rapid upward acceleration, plays a significant role in driving an outward-propagating global EUV wave and a sunward-propagating local EUV wave, respectively.« less

  12. Self-aligned blocking integration demonstration for critical sub-30nm pitch Mx level patterning with EUV self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Raley, Angélique; Lee, Joe; Smith, Jeffrey T.; Sun, Xinghua; Farrell, Richard A.; Shearer, Jeffrey; Xu, Yongan; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton; Arnold, John; Felix, Nelson

    2018-04-01

    We report a sub-30nm pitch self-aligned double patterning (SADP) integration scheme with EUV lithography coupled with self-aligned block technology (SAB) targeting the back end of line (BEOL) metal line patterning applications for logic nodes beyond 5nm. The integration demonstration is a validation of the scalability of a previously reported flow, which used 193nm immersion SADP targeting a 40nm pitch with the same material sets (Si3N4 mandrel, SiO2 spacer, Spin on carbon, spin on glass). The multi-color integration approach is successfully demonstrated and provides a valuable method to address overlay concerns and more generally edge placement error (EPE) as a whole for advanced process nodes. Unbiased LER/LWR analysis comparison between EUV SADP and 193nm immersion SADP shows that both integrations follow the same trend throughout the process steps. While EUV SADP shows increased LER after mandrel pull, metal hardmask open and dielectric etch compared to 193nm immersion SADP, the final process performance is matched in terms of LWR (1.08nm 3 sigma unbiased) and is only 6% higher than 193nm immersion SADP for average unbiased LER. Using EUV SADP enables almost doubling the line density while keeping most of the remaining processes and films unchanged, and provides a compelling alternative to other multipatterning integrations, which present their own sets of challenges.

  13. TESIS experiment on EUV imaging spectroscopy of the Sun

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Bogachev, S. A.; Zhitnik, I. A.; Pertsov, A. A.; Ignatiev, A. P.; Mitrofanov, A. M.; Slemzin, V. A.; Shestov, S. V.; Sukhodrev, N. K.; Bugaenko, O. I.

    2009-03-01

    TESIS is a set of solar imaging instruments in development by the Lebedev Physical Institute of the Russian Academy of Science, to be launched aboard the Russian spacecraft CORONAS-PHOTON in December 2008. The main goal of TESIS is to provide complex observations of solar active phenomena from the transition region to the inner and outer solar corona with high spatial, spectral and temporal resolution in the EUV and Soft X-ray spectral bands. TESIS includes five unique space instruments: the MgXII Imaging Spectroheliometer (MISH) with spherical bent crystal mirror, for observations of the Sun in the monochromatic MgXII 8.42 Å line; the EUV Spectoheliometer (EUSH) with grazing incidence difraction grating, for the registration of the full solar disc in monochromatic lines of the spectral band 280-330 Å; two Full-disk EUV Telescopes (FET) with multilayer mirrors covering the band 130-136 and 290-320 Å; and the Solar EUV Coronagraph (SEC), based on the Ritchey-Chretien scheme, to observe the inner and outer solar corona from 0.2 to 4 solar radii in spectral band 290-320 Å. TESIS experiment will start at the rising phase of the 24th cycle of solar activity. With the advanced capabilities of its instruments, TESIS will help better understand the physics of solar flares and high-energy phenomena and provide new data on parameters of solar plasma in the temperature range 10-10K. This paper gives a brief description of the experiment, its equipment, and its scientific objectives.

  14. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; hide

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  15. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryaev, F.; Slemzin, V.; Vainshtein, L.

    2014-02-01

    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ☉}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 Rmore » {sub ☉}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ☉}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ☉} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ☉} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ≳ 2 R {sub ☉}.« less

  16. Shot noise, LER, and quantum efficiency of EUV photoresists

    NASA Astrophysics Data System (ADS)

    Brainard, Robert L.; Trefonas, Peter; Lammers, Jeroen H.; Cutler, Charlotte A.; Mackevich, Joseph F.; Trefonas, Alexander; Robertson, Stewart A.

    2004-05-01

    The shot noise, line edge roughness (LER) and quantum efficiency of EUV interaction with seven resists related to EUV-2D (SP98248B) are studied. These resists were identical to EUV-2D except were prepared with seven levels of added base while keeping all other resist variables constant. These seven resists were patterned with EUV lithography, and LER was measured on 100-200 nm dense lines. Similarly, the resists were also imaged using DUV lithography and LER was determined for 300-500 nm dense lines. LER results for both wavelengths were plotted against Esize. Both curves show very similar LER behavior-the resists requiring low doses have poor LER, whereas the resists requiring high doses have good LER. One possible explanation for the observed LER response is that the added base improves LER by reacting with the photogenerated acid to control the lateral spread of acid, leading to better chemical contrast at the line edge. An alternative explanation to the observed relationship between LER and Esize is that shot-noise generated LER decreases as the number of photons absorbed at the line edge increases. We present an analytical model for the influence of shot noise based on Poisson statistics that preidicts that the LER is proportional to (Esize)-1/2. Indeed, both sets of data give straight lines when plotted this way (DUV r2 = 0.94; EUV r2 = 0.97). We decided to further evaluate this interpretation by constructing a simulation model for shot noise resulting from exposure and acid diffusion at the mask edge. In order to acquire the data for this model, we used the base titration method developed by Szmanda et al. to determine C-parameters and hence the quantum efficiency for producing photogenerated acid. This information, together with film absorptivity, allows the calculation of number and location of acid molecules generated at the mask edgte by assuming a stochastic distribution of individual photons corresponding to the aerial image function. The edge "roughness" of the acid molecule distribution in the film at the mask edge is then simulated as a function of acid diffusion length and compared to the experimental data. In addition, comparisoins between of the number of acid molecules generated and photons consumed leads to values of quantum efficiencies for these EUV resists.

  17. Sensitivity enhancement of chemically amplified resists and performance study using extreme ultraviolet interference lithography

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-07-01

    Extreme ultraviolet lithography (EUVL, λ=13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high-power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity [S or best energy (BE)], and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (line width roughness, resolution and sensitivity trade-off) among these parameters for chemically amplified resists (CARs). We present early proof-of-principle results for a multiexposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a "Photosensitized Chemically Amplified Resist™" (PSCAR™). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV-flood exposure (λ=365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR, and EL high-performance requirements with the aim of resolving line space (L/S) features for the 7- and 5-nm logic node [16- and 13-nm half-pitch (HP), respectively] for HVM. Several CARs were additionally found to be well resolved down to 12- and 11-nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and below 16-nm HP resolution, demonstrating the need for alternative resist solutions at 13-nm resolution and below. EUV interference lithography (IL) has provided and continues to provide a simple yet powerful platform for academic and industrial research, enabling the characterization and development of resist materials before commercial EUV exposure tools become available. Our experiments have been performed at the EUV-IL set-up in the Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI).

  18. Mask characterization for CDU budget breakdown in advanced EUV lithography

    NASA Astrophysics Data System (ADS)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2012-11-01

    As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget Breakdown per product/process and Litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps to extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.

  19. Topside Ionospheric Response to Solar EUV Variability

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.; Hawkins, J.

    2015-12-01

    We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated, DMSP may be much less than a scale height above the F2 peak while when it is O+ dominated, DMSP may be several scale heights above the F2 peak.

  20. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77

  1. Compact 2D OPC modeling of a metal oxide EUV resist for a 7nm node BEOL layer

    NASA Astrophysics Data System (ADS)

    Lyons, Adam; Rio, David; Lee, Sook; Wallow, Thomas; Delorme, Maxence; Fumar-Pici, Anita; Kocsis, Michael; de Schepper, Peter; Greer, Michael; Stowers, Jason K.; Gillijns, Werner; De Simone, Danilo; Bekaert, Joost

    2017-03-01

    Inpria has developed a directly patternable metal oxide hard-mask as a high-resolution photoresist for EUV lithography1. In this contribution, we describe a Tachyon 2D OPC full-chip model for an Inpria resist as applied to an N7 BEOL block mask application.

  2. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  3. Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-04-01

    Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.

  4. The extreme ultraviolet emissions of solar flares - A comparison between OSO-6 spectroheliograph observations and SFDs.

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Wood, A. T., Jr.; Noyes, R. W.

    1973-01-01

    The time structure and intensity of OSO-6 observations of EUV bursts were studied in relation to the corresponding 10-1030 A enhancements deduced from SFD data. Impulsive EUV emissions from lines normally emitted from either the chromosphere or from the chromosphere-corona transition region rise simultaneously with the 10-1030 A flash, to within the time resolution of the OSO-6 observations. Mg X 625 A also showed concurrent impulsive emissions and a close intensity relation to the 10-1030 A enhancement. The observational results are consistent with the hypothesis that most of the EUV radiation is being produced thermally in a region of chromospheric density, which is being heated by collisional losses of nonthermal electrons.

  5. The ancient oxygen exosphere of Mars - Implications for atmosphere evolution

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.

    1993-01-01

    The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.

  6. Production of EUV mask blanks with low killer defects

    NASA Astrophysics Data System (ADS)

    Antohe, Alin O.; Kearney, Patrick; Godwin, Milton; He, Long; John Kadaksham, Arun; Goodwin, Frank; Weaver, Al; Hayes, Alan; Trigg, Steve

    2014-04-01

    For full commercialization, extreme ultraviolet lithography (EUVL) technology requires the availability of EUV mask blanks that are free of defects. This remains one of the main impediments to the implementation of EUV at the 22 nm node and beyond. Consensus is building that a few small defects can be mitigated during mask patterning, but defects over 100 nm (SiO2 equivalent) in size are considered potential "killer" defects or defects large enough that the mask blank would not be usable. The current defect performance of the ion beam sputter deposition (IBD) tool will be discussed and the progress achieved to date in the reduction of large size defects will be summarized, including a description of the main sources of defects and their composition.

  7. The ancient oxygen exosphere of Mars - Implications for atmosphere evolution

    NASA Astrophysics Data System (ADS)

    Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.

    1993-06-01

    The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.

  8. Quantitative Evaluation of Hard X-ray Damage to Biological Samples using EUV Ptychography

    NASA Astrophysics Data System (ADS)

    Baksh, Peter; Odstrcil, Michal; Parsons, Aaron; Bailey, Jo; Deinhardt, Katrin; Chad, John E.; Brocklesby, William S.; Frey, Jeremy G.

    2017-06-01

    Coherent diffractive imaging (CDI) has become a standard method on a variety of synchrotron beam lines. The high brilliance short wavelength radiation from these sources can be used to reconstruct attenuation and relative phase of a sample with nanometre resolution via CDI methods. However, the interaction between the sample and high energy ionising radiation can cause degradation to sample structure. We demonstrate, using a laboratory based high harmonic generation (HHG) based extreme ultraviolet (EUV) source, imaging a sample of hippocampal neurons using the ptychography method. The significant increase in contrast of the sample in the EUV light allows identification of damage induced from exposure to 7.3 keV photons, without causing any damage to the sample itself.

  9. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory.

    PubMed

    Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.

  10. Embedded top-coat for reducing the effect out of band radiation in EUV lithography

    NASA Astrophysics Data System (ADS)

    Du, Ke; Siauw, Meiliana; Valade, David; Jasieniak, Marek; Voelcker, Nico; Trefonas, Peter; Thackeray, Jim; Blakey, Idriss; Whittaker, Andrew

    2017-03-01

    Out of band (OOB) radiation from the EUV source has significant implications for the performance of EUVL photoresists. Here we introduce a surface-active polymer additive, capable of partitioning to the top of the resist film during casting and annealing, to protect the underlying photoresist from OOB radiation. Copolymers were prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, and rendered surface active by chain extension with a block of fluoro-monomer. Films were prepared from the EUV resist with added surface-active Embedded Barrier Layer (EBL), and characterized using measurements of contact angles and spectroscopic ellipsometry. Finally, the lithographic performance of the resist containing the EBL was evaluated using Electron Beam Lithography exposure

  11. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    NASA Astrophysics Data System (ADS)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle has been removed from returned masks (after long term usage/exposure in the wafer fab), requires a very aggressive SPM wet clean, that drastically reduces the available budget for mask properties (CD, phase/transmission). We show that CO2aerosol cleaning can be utilized to remove the bulk of the glue residue effectively, while preserving the mask properties. This application required a differently designed nozzle to impart the required removal force for the sticky glue residue. A new nozzle was developed and qualified that resulted in PRE in the range of 92-98%. Results also include data on a patterned mask that was exposed in a lithography stepper in a wafer production environment. On EUV mask, our group has experimentally demonstrated that 50 CO2 cleaning cycles of Ru film on the EUV Front-side resulted in no appreciable reflectivity change, implying that no degradation of the Ru film occurs.

  12. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2016-11-01

    This study entails the fourth part of a global flare energetics project, in which the mass m {sub cme}, kinetic energy E {sub kin}, and the gravitational potential energy E {sub grav} of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The modelmore » derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R {sub ⊙}, while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.« less

  13. EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures

    NASA Astrophysics Data System (ADS)

    Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank

    2018-03-01

    The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.

  14. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was tomore » remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.« less

  15. Overcoming etch challenges related to EUV based patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter

    2017-04-01

    Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.

  16. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger

    1994-01-01

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  17. Effects of Solar Irradiance on Ion Fluxes at Mars. MARS EXPRESS and MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; McFadden, J. P.; Eparvier, F. G.; Brain, D. A.; Jakosky, B. M.; Andrews, D. J.; Barbash, S.

    2016-12-01

    Recent observations by Mars Express and MAVEN spacecraft have shown that the Martian atmosphere/ionosphere is exposed to the impact of solar wind which results in losses of volatiles from Mars. This erosion is an important factor for the evolution of the Martian atmosphere and its water inventory. To estimate the escape forced by the solar wind during the early Solar system conditions we need to know how the ionosphere of Mars and escape fluxes depend on variations in the strength of the external drivers, in particularly, of solar wind and solar EUV flux. We present multi-instrument observations of the influence of the solar irradiance on the Martian ionosphere and escape fluxes. We use data obtained by the ASPERA-3 and MARSIS experiments on Mars Express and by the STATIC instrument and EUV monitor on MAVEN. Observations by Mars Express supplemented by the EUV monitoring at Earth orbit and translated to Mars orbit provide us information about this dependence over more than 10 years whereas the measurements made by MAVEN provide us for the first time the opportunity to study these processes with simultaneous monitoring of the ionospheric variations, planetary ion fluxes and solar irradiance. We can show that fluxes of planetary ions through different escape channels (trans-terminator fluxes, ion plume, plasma sheet) respond differently on the EUV variations. The most significant effect on the ion scavenging with increase of the solar irradiance is observed for low energy ions extracted from the ionosphere while the ion fluxes in the plume are almost insensitive to the EUV variations.

  18. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  19. Soft x-ray imaging with incoherent sources

    NASA Astrophysics Data System (ADS)

    Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.

    2017-05-01

    In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  20. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E., E-mail: pankaj@kasi.re.kr

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{supmore » −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.« less

  1. Studying electron-PAG interactions using electron-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Narasimhan, Amrit; Grzeskowiak, Steven; Ostrander, Jonathan; Schad, Jonathon; Rebeyev, Eliran; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Gregory; Brainard, Robert L.

    2016-03-01

    In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Typical EUV resists are organic-based and chemically amplified using photoacid generators (PAGs). Upon exposure, PAGs produce acids which catalyze reactions that result in changes in solubility. In EUV lithography, photo- and secondary electrons (energies of 10- 80 eV) play a large role in PAG acid-production. Several mechanisms for electron-PAG interactions (e.g. electron trapping, and hole-initiated chemistry) have been proposed. The aim of this study is to explore another mechanism - internal excitation - in which a bound PAG electron can be excited by receiving energy from another energetic electron, causing a reaction that produces acid. This paper explores the mechanism of internal excitation through the analogous process of electron-induced fluorescence, in which an electron loses energy by transferring that energy to a molecule and that molecule emits a photon rather than decomposing. We will show and quantify electron-induced fluorescence of several fluorophores in polymer films to mimic resist materials, and use this information to refine our proposed mechanism. Relationships between the molecular structure of fluorophores and fluorescent quantum yield may aid in the development of novel PAGs for EUV lithography.

  2. Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.

    1995-01-01

    Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naulleau, Patrick; Mochi, Iacopo; Goldberg, Kenneth A.

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modelingmore » software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes rou tinely used in the synchrotron community.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modelingmore » software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.« less

  5. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  6. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2007-01-01

    This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.

  7. Relation between electron- and photon-caused oxidation in EUVL optics

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 µA of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.

  8. Relation between electron- and photon-caused oxidation in EUVL optics

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 ´A of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.

    Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory (more » STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.« less

  10. A very small and super strong zebra pattern burst at the beginning of a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Baolin; Tan, Chengming; Zhang, Yin

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that ofmore » the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.« less

  11. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.

    2015-04-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s-1 within ˜3-4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s-1, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  12. Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation

    NASA Astrophysics Data System (ADS)

    Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya

    2015-11-01

    The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.

  13. TIMED/GUVI Observations of Aurora, Ionosphere, Thermosphere and Solar EUV Variations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Schaefer, R. K.

    2017-12-01

    The FUV (100-200 nm) emissions from the ionosphere and thermosphere carry rich information of the density and composition of the IT system, aurora and solar EUV flux. The key emissions include atomic hydrogen line (121.6nm), atomic oxygen lines (e.g. 130.4, 135.6, 164.1 nm), atomic nitrogen lines (e.g. 120.0, 149.3, 174.3 nm), molecular nitrogen bands (LBH and VK bands) and nitric oxide ɛ bands. TIMED/GUVI data cover the nearly full FUV range and generate many space weather products (ionosphere, thermosphere, aurora and solar EUV) that extend the products from other missions (such as NASA GOLD and ICON) and help to solve some of MIT (Magnetosphere-Ionosphere-Thermosphere) science problems and serve as validation data sources for models.

  14. Resist Parameter Extraction from Line-and-Space Patterns of Chemically Amplified Resist for Extreme Ultraviolet Lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi

    2010-11-01

    The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.

  15. EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures

    NASA Astrophysics Data System (ADS)

    Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander

    2007-12-01

    Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.

  16. EUV phase-shifting masks and aberration monitors

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Neureuther, Andrew R.

    2002-07-01

    Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.

  17. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, Regina; Baker, Sherry L.; Windt, David L.

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less

  18. The update of resist outgas testing for metal containing resists at EIDEC

    NASA Astrophysics Data System (ADS)

    Shiobara, Eishi; Mikami, Shinji

    2017-10-01

    The metal containing resist is one of the candidates for high sensitivity resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [2], [3]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing by HPEUV, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. The investigation and improvement for these issues are ongoing. The updates will be presented in the conference. This work was supported by Ministry of Economy, Trade and Industry (METI) and New Energy and Industrial Technology Development Organization (NEDO). [1] Eishi Shiobara, Shinji Mikami, Satoshi Tanaka, International Symposium on EUV Lithography, Hiroshima, Japan, P-RE-01, (2016). [2] Mark van de Kerkhof, Hans Jasper, Leon Levasier, Rudy Peeters, Roderik van Es, Jan-Willem Bosker, Alexander Zdravkov, Egbert Lenderink, Fabrizio Evangelista, Par Broman, Bartosz Bilski, Thorsten Last, Proc. of SPIE Vol. 10143, 101430D (2017). [3] Oktay Yildirim, Elizabeth Buitrago, Rik Hoefnagels, Marieke Meeuwissen, Sander Wuister, Gijsbert Rispens, Anton van Oosten, Paul Derks, Jo Finders, Michaela Vockenhuber, Yasin Ekinci, Proc. of SPIE Vol. 10143, 101430Q (2017).

  19. The 2014 March 29 X-Flare: Results from the Best-Ever Flare Observation

    NASA Astrophysics Data System (ADS)

    Young, P.

    2014-12-01

    An X1 class solar flare occurred on 2014 March 29, peaking at 17:48 UT, and producing a filament eruption and EUV wave. It was observed as part of a Sac Peak-IRIS-Hinode observing program, delivering unprecedented coverage at all layers of the solar atmosphere. This talk will summarize new results obtained for this flare, with a particular focus on spectroscopic results obtained from IRIS and Hinode/EIS. Topics include mass flows prior and during the filament eruption, dynamics of 10 MK plasma during the flare rise phase, and the evolution of the flare ribbons

  20. Strong non-radial propagation of energetic electrons in solar corona

    NASA Astrophysics Data System (ADS)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others), which may explain the origin of widespread SEP events.

  1. MAVEN observations of electron temperatures in the dayside ionosphere at Mars

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Cravens, T.; Andersson, L.; Fowler, C. M.; Thiemann, E.; Eparvier, F. G.; Bougher, S. W.; Rahmati, A.; Reedy, N. L.; Mitchell, D. L.; Mazelle, C. X.; Mahaffy, P. R.; Jakosky, B. M.

    2016-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) have observed the ionospheric electron temperature at Mars since November 2014. The only in-situ measurements of plasma temperatures were provided by the two Viking landers in 1976 before the MAVEN mission. The ionospheric electron temperatures are particularly important for determining the neutral escape rate from the atmosphere of Mars. We have investigated the electron temperatures on the dayside ionosphere using the Langmuir Probe and Waves instrument onboard MAVEN. The temperatures are studied in two regions of (1) the crustal magnetic field and (2) the solar wind/induced (or draped) magnetic field. We also focused on how temperatures vary with solar zenith angle (SZA) and the solar extreme ultraviolet (EUV) irradiances. The electron temperatures did not vary much due to the SZA variation, but increased when the solar EUV irradiances are high. This means the ionospheric temperatures are sensitive to the solar activity. Furthermore, we investigated the correlation of electron temperatures against magnetic field configurations under the same EUV irradiances. The electron temperatures in the crustal region were lower than those in the draped region. One possible explanation is that the energy input from high altitude, which is related to the tail and solar wind electrons, might control the temperatures in the draped region. Vertical heat conductance in the draped region could also affect the electron temperatures (with a greater effect in the draped region), so that electrons cooled at low altitude tend to transport to high altitude. However, the electron heating is more local in the draped region, and the electrons would be heated efficiently. Therefore, the electron temperatures in the draped region were higher than those in the crustal region. It is implied that the rate of atmospheric escape, which is attributed to photochemical escape, depends on the topology of the magnetic fields.

  2. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  3. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials

    NASA Astrophysics Data System (ADS)

    Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung

    2018-03-01

    The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the electron transfer and the performance of the resist system. The implications to the performances of EUV resists and key engineering requirements for improved resist systems will also be discussed in this work. Our results shed light on the fundamental structure dependence of photoacid generation and the control of the nanoscale structures as well as base polymer-PAG interactions in EVU resist systems, and we expect these knowledge will be useful for the future development of improved EUV resist systems.

  4. 3D structure and kinematics characteristics of EUV wave front

    NASA Astrophysics Data System (ADS)

    Podladchikova, T.; Veronig, A.; Dissauer, K.

    2017-12-01

    We present 3D reconstructions of EUV wave fronts using multi-point observations from the STEREO-A and STEREO-B spacecraft. EUV waves are large-scale disturbances in the solar corona that are initiated by coronal mass ejections, and are thought to be large-amplitude fast-mode MHD waves or shocks. The aim of our study is to investigate the dynamic evolution of the 3D structure and wave kinematics of EUV wave fronts. We study the events on December 7, 2007 and February 13, 2009 using data from the STEREO/EUVI-A and EUVI-B instruments in the 195 Å filter. The proposed approach is based on a complementary combination of epipolar geometry of stereo vision and perturbation profiles. We propose two different solutions to the matching problem of the wave crest on images from the two spacecraft. One solution is suitable for the early and maximum stage of event development when STEREO-A and STEREO-B see the different facets of the wave, and the wave crest is clearly outlined. The second one is applicable also at the later stage of event development when the wave front becomes diffuse and is faintly visible. This approach allows us to identify automatically the segments of the diffuse front on pairs of STEREO-A and STEREO-B images and to solve the problem of identification and matching of the objects. We find that the EUV wave observed on December 7, 2007 starts with a height of 30-50 Mm, sharply increases to a height of 100-120 Mm about 10 min later, and decreases to 10-20 Mm in the decay phase. Including the 3D evolution of the EUV wave front allowed us to correct the wave kinematics for projection and changing height effects. The velocity of the wave crest (V=215-266 km/s) is larger than the trailing part of the wave pulse (V=103-163 km/s). For the February 9, 2009 event, the upward movement of the wave crest shows an increase from 20 to 100 Mm over a period of 30 min. The velocity of wave crest reaches values of 208-211 km/s.

  5. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Ê/hr for sputtered carbon and 40 Ê/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.

  6. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.

  7. Magnetic Flux Emergence and the Initiation of Filament Eruptions and CMEs as Observed by the EUV Imaging Telescope on SOHO

    NASA Astrophysics Data System (ADS)

    Neupert, W. M.

    2005-05-01

    Solar observations over more than twenty years (e.g., Gaizauskas and Svestka, 1987, summarizing the "Flare Build-up Study", Feynman and Martin, 1995, and more recently, Wang and Sheeley, 1999) have demonstrated that emergence of new magnetic flux in the vicinity of quiescent filament fields frequently leads to the eruption of those filaments, given polarity orientations favorable for magnetic reconnection. Concurrently, models of the interaction of such magnetic flux configurations have been developed to explain the initiation of flares (e.g., Priest and Forbes, 2002) and coronal mass ejections (Chen et al., 2002). We have used observations made in the 195 Angstrom (Fe XII) band by the EUV imaging Telescope (EIT) on SOHO to identify instances of emerging flux, indicated by new EUV emission, and subsequent eruption of a quiescent filament in a search for coronal changes that might appear as a result of merging magnetic fields. Limiting our study to quiescent filaments distant from active regions, we have identified events in which a slow increase in filament height begins shortly (a few hours) after first appearance of an EUV emission source either within or beside the filament channel. For long filaments, the apex of the rising filament appears to lie above the developing EUV source, implying that the field supporting the filament is locally interacting with the emerging field. Transient EUV features at onset of the eruptive phase include low-lying loops over the neutral line and, more rarely, localized sources apparently associated with the rising filament. No evidence of reconfiguring of an overlying corona (only faintly detected by the EIT) prior to CME initiation has been found. Our results support the hypothesis that at least in some instances the emergence of new magnetic field leads to a loss of filament equilibrium and a coronal mass ejection. This work is supported by NASA Intergovernmental Transfer W-10118 to NOAA's Space Environment Center. SOHO is a project of international cooperation between ESA and NASA.

  8. The Formation and Early Evolution of a Coronal Mass Ejection and its Associated Shock Wave on 2014 January 8

    NASA Astrophysics Data System (ADS)

    Wan, Linfeng; Cheng, Xin; Shi, Tong; Su, Wei; Ding, M. D.

    2016-08-01

    In this paper, we study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Interestingly, both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25-50 keV hard X-ray flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover, we find that, when the velocity of the CME reaches ˜600 km s-1, the EUV wave starts to evolve into a shock wave, which is evidenced by the appearance of a type II radio burst. The shock’s formation height is estimated to be ˜0.2 R sun, which is much lower than the height derived previously. Finally, we also study the thermal properties of the CME and the EUV wave. We find that the plasma in the CME leading front and the wave front has a temperature of ˜2 MK, while that in the CME core region and the flare region has a much higher temperature of ≥8 MK.

  9. Fibrillar Chromospheric Spicule-Like Counterparts to an EUV and Soft X-Ray Blowout Coronal Jet

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.

    2010-01-01

    We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/SOT, EIS, and XRT, with supplemental data from STEREO/EUVI. From EUV and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with bright base, and in EUV it appears as an eruption of relatively cool (approximately 50,000 K) material of horizontal size scale approximately 30" originating from the base of the SXR jet. In SOT Ca II H images the most pronounced analog is a pair of thin (approximately 1") ejections, at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45", leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of "type II" spicules, approximately 100 kilometers per second, and they appear to have spicule-like substructures splitting off from them with horizontal velocity approximately 50 kilometers per second, similar to the velocities of splitting spicules measured by Sterling et al. (2010). Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggests that a sub-population of Ca II type II spicules are the Ca II manifestation of portions of larger-scale erupting magnetic jets. A different sub-population of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here.

  10. The quiescent and flaring EUV spectrum of Algol and its relationship to other active coronae. EUV spectroscopy of bright hyades coronae: 71 Tauri and Theta 1 Tauri

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    This program involves analysis and interpretation of EUVE spectrometer observations of the active stars Algol (beta Per) and 71 Tauri. The EUVE satellite spectrometers observed the prototype eclipsing binary Algol over nearly 1.5 orbital periods. Effective exposure times were 100 ksec and 89 ksec in the short wave (70-180 A) and medium wave (140-370 A) channels. High temperature (up to 20 MK) Fe XVI-XXIV emission lines are clearly detected in the overall spectrum. In addition, a quiescent continuum is present which increases towards shorter wavelengths. Using synthesized spectra of optically thin line and continuum emission folded through the instrumental response, we have examined constraints on the (Fe/H) coronal abundance in Algol. We find that the coronal Fe is underabundant by factors that approximately equal 2-4 relative to solar photospheric values, unless an unreasonably large quantity of coronal plasma at T greater than 30 MK is present in the quiescent spectrum. The latter possibility is, however, inconsistent with available X-ray data. Lightcurves of the high temperature EUV lines compared to line emission at He II 304 A show considerable differences, with much deeper minima present in the He II line during both primary and secondary eclipses. Toward the end of the observation a moderate flare lasting approximately 6 hours was detected in the high temperature Fe emission lines. The 71 Tau observation, for about the same exposure time, revealed only a handful of weak emission lines; however, the strongest lines were also those of Fe XXIII/XX, suggesting a hot coronal plasma. No obvious flaring or other variation was present in the 71 Tau Deep Survey lightcurve.

  11. EUV lithography: NXE platform performance overview

    NASA Astrophysics Data System (ADS)

    Peeters, Rudy; Lok, Sjoerd; Mallman, Joerg; van Noordenburg, Martijn; Harned, Noreen; Kuerz, Peter; Lowisch, Martin; van Setten, Eelco; Schiffelers, Guido; Pirati, Alberto; Stoeldraijer, Judon; Brandt, David; Farrar, Nigel; Fomenkov, Igor; Boom, Herman; Meiling, Hans; Kool, Ron

    2014-04-01

    The first NXE3300B systems have been qualified and shipped to customers. The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33. It succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. Good overlay and imaging performance has been shown on the NXE:3300B system in line with 22nm device requirements. Full wafer CDU performance of <1.5nm for 22nm dense and iso lines at a dose of ~16mJ/cm2 has been achieved. Matched machine overlay (NXE to immersion) of around 3.5nm has been demonstrated on multiple systems. Dense lines have been exposed down to 13nm half pitch, and contact holes down to 17nm half pitch. 10nm node Metal-1 layers have been exposed with a DOF of 120nm, and using single spacer assisted double patterning flow a resolution of 9nm has been achieved. Source power is the major challenge to overcome in order to achieve cost-effectiveness in EUV and enable introduction into High Volume Manufacturing. With the development of the MOPA+prepulse operation of the source, steps in power have been made, and with automated control the sources have been prepared to be used in a preproduction fab environment. Flexible pupil formation is under development for the NXE:3300B which will extend the usage of the system in HVM, and the resolution for the full system performance can be extended to 16nm. Further improvements in defectivity performance have been made, while in parallel full-scale pellicles are being developed. In this paper we will discuss the current NXE:3300B performance, its future enhancements and the recent progress in EUV source performance.

  12. Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent

    2014-10-01

    The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.

  13. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  14. Exploring the readiness of EUV photo materials for patterning advanced technology nodes

    NASA Astrophysics Data System (ADS)

    De Simone, Danilo; Vesters, Yannick; Shehzad, Atif; Vandenberghe, Geert; Foubert, Philippe; Beral, Christophe; Van Den Heuvel, Dieter; Mao, Ming; Lazzarino, Fred

    2017-03-01

    Imec is currently driving the extreme ultraviolet (EUV) photo material development within the imec material and equipment supplier hub. EUV baseline processes using the ASML NXE3300 full field scanner have been setup for the critical layers of the imec N7 (iN7) BEOL process modules with a resist sensitivity of 35mJ/cm2, 40mJ/cm2 and 60mJ/cm2 for metal, block and vias layer, respectively. A feasibility study on higher sensitivity resists for HVM has been recently conducted looking at 16nm dense line-space at a targeted exposure dose of 20mJ/cm2. Such a study reveals that photoresist formulations with a cost-effective resist sensitivity are feasible today. Moreover, recent advances in enhanced underlayers are further offering novel development opportunities to increase the resist sensitivity. However, line width roughness (LWR) and pattern defectivity at nano scale are the major limiting factors of the lithographic process window and further efforts are needed to reach a HVM maturity level. We will present the results of the photo material screening and we examine in detail the lithography patterning results for the best performing photoresists. We further discuss the fundamental aspects of photo materials from a light-matter interaction standpoint looking at the photo emission yield at the EUV light for different photo materials towards a better understanding of the relation between photon efficiency and patterning performance. Finally, as metal containing resists are becoming part of the EUV material landscape, we also review the manufacturing aspects of a such class of resists looking at metal cross contamination pattern and defectivity on the process equipment.

  15. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  16. Solar XUV Imaging and Non-dispersive Spectroscopy for Solar-C Enabled by Scientific CMOS APS Arrays

    NASA Astrophysics Data System (ADS)

    Stern, Robert A.; Lemen, J. R.; Shing, L.; Janesick, J.; Tower, J.

    2009-05-01

    Monolithic CMOS Advanced Pixel Sensor (APS) arrays are showing great promise as eventual replacements for the current workhorse of solar physics focal planes, the scientific CCD. CMOS APS devices have individually addressable pixels, increased radiation tolerance compared to CCDs, and require lower clock voltages, and thus lower power. However, commercially available CMOS chips, while suitable for use with intensifiers or fluorescent coatings, are generally not optimized for direct detection of EUV and X-ray photons. A high performance scientific CMOS array designed for these wavelengths will have significant new capabilities compared to CCDs, including the ability to read out small regions of the solar disk at high (sub sec) cadence, count single X-ray photons with Fano-limited energy resolution, and even operate at room temperature with good noise performance. Such capabilities will be crucial for future solar X-ray and EUV missions such as Solar-C. Sarnoff Corporation has developed scientific grade, monolithic CMOS arrays for X-ray imaging and photon counting. One prototype device, the "minimal" array, has 8 um pixels, is 15 to 25 um thick, is fabricated on high-resistivity ( 10 to 20 kohm-cm) Si wafers, and can be back-illuminated. These characteristics yield high quantum efficiency and high spatial resolution with minimal charge sharing among pixels, making it ideal for the detection of keV X-rays. When used with digital correlated double sampling, the array has demonstrated noise performance as low as 2 e, allowing single photon counting of X-rays over a range of temperatures. We report test results for this device in X-rays, and discuss the implications for future solar space missions.

  17. EUNIS: An Extreme-Ultraviolet Normal-Incidence Spectrometer

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    GSFC is in the process of assembling an Extreme-Ultraviolet Normal-Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. This instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment over its past ten flights. The new design will have somewhat improved spatial and spectral resolutions, as well as 100 times greater sensitivity, permitting EUV spectroscopy with a temporal resolution near 1-second for the first time ever. To achieve such high time cadence, a novel Active-Pixel-Sensor detector is being developed as a key component of our design. The high sensitivity of EUNIS will allow entirely new studies of transient coronal phenomena, such as the rapid loop dynamics seen by TRACE, and searches for non-thermal motions indicative of magnetic reconnection or wave heating. The increased sensitivity will also permit useful EUV spectra at heights of 2-3-R$ \\odot$ above the limb, where the transition between the static corona and the solar wind might occur. In addition, the new design features two independent optical systems, more than doubling the spectral bandwidth covered on each flight. Its 300-370\\AA\\ bandpass includes He-II 304\\AA\\ and strong lines from Fe-XI-XVI, extending the current SERTS range of 300-355\\AA\\ to further improve our ongoing series of calibration under-flights for SOHO/CDS and EIT. The second bandpass of 170-230\\AA\\ has a sequence of very strong Fe-IX-XIV lines, and will allow under-flight support for two more channels on SOHO/EIT, two channels on TRACE, one on Solar-B/EIS, and all four channels on the STEREO/EUVI instrument. First flight of the new EUNIS payload is scheduled for 2002 October.

  18. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.

  19. High-efficiency spectral purity filter for EUV lithography

    DOEpatents

    Chapman, Henry N [Livermore, CA

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  20. Measurement of EUV lithography pupil amplitude and phase variation via image-based methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Zachary; Verduijn, Erik; Wood, Obert R.

    2016-04-01

    Here, an approach to image-based EUV aberration metrology using binary mask targets and iterative model-based solutions to extract both the amplitude and phase components of the aberrated pupil function is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms. We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase components of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil amplitude variation was expanded in three different bases: Zernike polynomials,more » Legendre polynomials, and Hermite polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the three.« less

  1. Interferometric at-wavelength flare characterization of EUV optical systems

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2001-01-01

    The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

  2. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  3. The initial data products from the EUVE software - A photon's journey through the End-to-End System

    NASA Technical Reports Server (NTRS)

    Antia, Behram

    1993-01-01

    The End-to-End System (EES) is a unique collection of software modules created for use at the Center for EUV Astrophysics. The 'pipeline' is a shell script which executes selected EES modules and creates initial data products: skymaps, data sets for individual sources (called 'pigeonholes') and catalogs of sources. This article emphasizes the data from the all-sky survey, conducted between July 22, 1992 and January 21, 1993. A description of each of the major data products will be given and, as an example of how the pipeline works, the reader will follow a photon's path through the software pipeline into a pigeonhole. These data products are the primary goal of the EUVE all-sky survey mission, and so their relative importance for the follow-up science will also be discussed.

  4. High efficiency spectrographs for the EUV and soft X-rays

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.

  5. Inhomogeneity of PAGs in resist film studied by molecular-dynamics simulations for EUV lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Itani, Toshiro

    2014-03-01

    EUV resist materials are requested simultaneously to improve the resolution, line-edge roughness (LER), and sensitivity (RLS). In a resist film inhomogeneous structures in nanometer region may have large effects on directly the resolution and LER and indirectly on sensitivity. Inhomogeneity of PAGs in a hybrid resist for EUV lithography was investigated using molecular dynamics simulations. The hybrid resist film showed the inhomogeneous positions and motions of PAG cations and anions. Free volumes in resist matrix influence the motions of PAGs. Molecular structure such as bulky phenyl groups of a PAG cation localize the positions and reduce the motion of a cation. Chemical properties such as ionic interactions and lone-pair interaction also play an important role to determine the inhomogeneity of PAGs. Fluorine interaction enables active motions of PAG anions.

  6. Bidirectional reflectance distribution function of diffuse extreme ultraviolet scatterers and extreme ultraviolet baffle materials.

    PubMed

    Newell, M P; Keski-Kuha, R A

    1997-08-01

    Bidirectional reflectance distribution function (BRDF) measurements of a number of diffuse extreme ultraviolet (EUV) scatterers and EUV baffle materials have been performed with the Goddard EUV scatterometer. BRDF data are presented for white Spectralon SRS-99 at 121.6 nm; the data exhibit a non-Lambertian nature and a total hemispherical reflectance lower than 0.15. Data are also presented for an evaporated Cu black sample, a black Spectralon SRS-02 sample, and a Martin Optical Black sample at wavelengths of 58.4 and 121.6 nm and for angles of incidence of 15 degrees and 45 degrees. Overall Martin Optical Black exhibited the lowest BRDF characteristic, with a total hemispherical reflectance of the order of 0.01 and measured BRDF values as low as 2 x 10(-3) sr(-1).

  7. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  8. Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Robinson, J C; Spiller, E

    2006-02-22

    Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

  9. Telescience - Concepts and contributions to the Extreme Ultraviolet Explorer mission

    NASA Technical Reports Server (NTRS)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-01-01

    It is shown how the contradictory goals of low-cost and fast data turnaround characterizing the Extreme Ultraviolet Explorer (EUVE) mission can be achieved via the early use of telescience style transparent tools and simulations. The use of transparent tools reduces the parallel development of capability while ensuring that valuable prelaunch experience is not lost in the operations phase. Efforts made to upgrade the 'EUVE electronics' simulator are described.

  10. Results from a new 193nm die-to-database reticle inspection platform

    NASA Astrophysics Data System (ADS)

    Broadbent, William H.; Alles, David S.; Giusti, Michael T.; Kvamme, Damon F.; Shi, Rui-fang; Sousa, Weston L.; Walsh, Robert; Xiong, Yalin

    2010-05-01

    A new 193nm wavelength high resolution reticle defect inspection platform has been developed for both die-to-database and die-to-die inspection modes. In its initial configuration, this innovative platform has been designed to meet the reticle qualification requirements of the IC industry for the 22nm logic and 3xhp memory generations (and shrinks) with planned extensions to the next generation. The 22nm/3xhp IC generation includes advanced 193nm optical lithography using conventional RET, advanced computational lithography, and double patterning. Further, EUV pilot line lithography is beginning. This advanced 193nm inspection platform has world-class performance and the capability to meet these diverse needs in optical and EUV lithography. The architecture of the new 193nm inspection platform is described. Die-to-database inspection results are shown on a variety of reticles from industry sources; these reticles include standard programmed defect test reticles, as well as advanced optical and EUV product and product-like reticles. Results show high sensitivity and low false and nuisance detections on complex optical reticle designs and small feature size EUV reticles. A direct comparison with the existing industry standard 257nm wavelength inspection system shows measurable sensitivity improvement for small feature sizes

  11. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering.

    PubMed

    Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank

    2017-06-26

    We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.

  12. Three-Dimensional Structure and Evolution of Extreme-Ultraviolet Bright Points Observed by STEREO/SECCHI/EUVI

    NASA Technical Reports Server (NTRS)

    Kwon, Ryun Young; Chae, Jongchul; Davila, Joseph M.; Zhang, Jie; Moon, Yong-Jae; Poomvises, Watanachak; Jones, Shaela I.

    2012-01-01

    We unveil the three-dimensional structure of quiet-Sun EUV bright points and their temporal evolution by applying a triangulation method to time series of images taken by SECCHI/EUVI on board the STEREO twin spacecraft. For this study we examine the heights and lengths as the components of the three-dimensional structure of EUV bright points and their temporal evolutions. Among them we present three bright points which show three distinct changes in the height and length: decreasing, increasing, and steady. We show that the three distinct changes are consistent with the motions (converging, diverging, and shearing, respectively) of their photospheric magnetic flux concentrations. Both growth and shrinkage of the magnetic fluxes occur during their lifetimes and they are dominant in the initial and later phases, respectively. They are all multi-temperature loop systems which have hot loops (approx. 10(exp 6.2) K) overlying cooler ones (approx 10(exp 6.0) K) with cool legs (approx 10(exp 4.9) K) during their whole evolutionary histories. Our results imply that the multi-thermal loop system is a general character of EUV bright points. We conclude that EUV bright points are flaring loops formed by magnetic reconnection and their geometry may represent the reconnected magnetic field lines rather than the separator field lines.

  13. High-Resolution EUV Spectroscopy of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  14. Association of 3He-rich solar energetic particles with large-scale coronal waves

    NASA Astrophysics Data System (ADS)

    Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark

    2016-07-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  15. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model

    PubMed Central

    Su, M. G.; Min, Q.; Cao, S. Q.; Sun, D. X.; Hayden, P.; O’Sullivan, G.; Dong, C. Z.

    2017-01-01

    One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging. PMID:28332621

  16. Ion Traps at the Sun: Implications for Elemental Fractionation

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay

    2018-04-01

    Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.

  17. Separating the optical contributions to line-edge roughness in EUV lithography using stochastic simulations

    NASA Astrophysics Data System (ADS)

    Chunder, Anindarupa; Latypov, Azat; Chen, Yulu; Biafore, John J.; Levinson, Harry J.; Bailey, Todd

    2017-03-01

    Minimization and control of line-edge roughness (LER) and contact-edge roughness (CER) is one of the current challenges limiting EUV line-space and contact hole printability. One significant contributor to feature roughness and CD variability in EUV is photon shot noise (PSN); others are the physical and chemical processes in photoresists, known as resist stochastic effect. Different approaches are available to mitigate each of these contributions. In order to facilitate this mitigation, it is important to assess the magnitude of each of these contributions separately from others. In this paper, we present and test a computational approach based on the concept of an `ideal resist'. An ideal resist is assumed to be devoid of all resist stochastic effects. Hence, such an ideal resist can only be simulated as an `ideal resist model' (IRM) through explicit utilization of the Poisson statistics of PSN2 or direct Monte Carlo simulation of photon absorption in resist. LER estimated using IRM, thus quantifies the exclusive contribution of PSN to LER. The result of the simulation study done using IRM indicates higher magnitude of contribution (60%) from PSN to LER with respect to total or final LER for a sufficiently optimized high dose `state of the art' EUV chemically amplified resist (CAR) model.

  18. Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data

    NASA Astrophysics Data System (ADS)

    Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.

    2014-12-01

    Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.

  19. Method for the manufacture of phase shifting masks for EUV lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton

    2006-04-04

    A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.

  20. Extreme Ultraviolet Explorer Science Operation Center

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.

    1993-01-01

    The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.

  1. Enhancement of conversion efficiency of extreme ultraviolet radiation from a liquid aqueous solution microjet target by use of dual laser pulses

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi

    2006-03-01

    We demonstrated a debris-free, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO II) nano-particles. By using a low SnO II concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.

  2. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-05-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.

  3. Million Degree Plasmas in Extreme Ultraviolet (EUV) Astrophysics. White Paper in Response to Astro2010 Science Call

    DTIC Science & Technology

    2010-01-01

    photometry , timing measurements of suitable cadence, and advanced theory are the keys to understanding the physics of million degree plasmas in...Disentangling these components requires time - and phase- resolved spectroscopic observations of a sample that spans a range of mass accretion rates...many narrow lines, or a continuum with strong, broad absorption features. Key Objective: Obtaining time - and phase- resolved high-resolution EUV

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chilese, Francis C.; Torczynski, John R.; Garcia, Rudy

    An apparatus for use with extreme ultraviolet (EUV) light comprising A) a duct having a first end opening, a second end opening and an intermediate opening intermediate the first end opening the second end opening, B) an optical component disposed to receive EUV light from the second end opening or to send light through the second end opening, and C) a source of low pressure gas at a first pressure to flow through the duct, the gas having a high transmission of EUV light, fluidly coupled to the intermediate opening. In addition to or rather than gas flow the apparatusmore » may have A) a low pressure gas with a heat control unit thermally coupled to at least one of the duct and the optical component and/or B) a voltage device to generate voltage between a first portion and a second portion of the duet with a grounded insulative portion therebetween.« less

  5. The solar flare extreme ultraviolet to hard X-ray ratio

    NASA Technical Reports Server (NTRS)

    Mcclymont, A. N.; Canfield, R. C.

    1986-01-01

    Simultaneous measurements of the peak 10-1030 A extreme ultraviolet (EUV) flux enhancement and more than 10 keV hard X-ray (HXR) peak flux of many solar flare bursts, ranging over about four orders of magnitude in HXR intensity, are studied. A real departure from linearity is found in the relationship between the peak EUV and HXR fluxes in impulsive flare bursts. This relationship is well described by a given power law. Comparison of the predictions of the impulsive nonthermal thick-target electron beam model with observations shows that the model satisfactorily predicts the observed time differences between the HXR and EUV peaks and explains the data very well under given specific assumptions. It is concluded that the high-energy fluxes implied by the invariant area thick-target model cannot be completely ruled out, while the invariant area model with smaller low cutoff requires impossibly large beam densities. A later alternative thick-target model is suggested.

  6. Extreme Ultraviolet Emission Spectrum of CO_2 Induced by Electron Impact at 200 eV

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Ajello, J. M.; James, G. K.

    1993-01-01

    We present the extreme ultraviolet (EUV) emission spectrum of CO_2 induced by electronimpact at 200 eV. There are 36 spectral features which are identified with a resolution of 0.5 nmover the wavelength range of 40 to 125 nm. Absolute emission cross sections were obtained for eachof these features. The EUV emission spectrum induced by electron impact consist of atomicmultiplets of CI,II and OI,II,III as well as CO and CO^+ molecular band systems produced bydissociative excitation. The CI (119.4 nm) multiplet is the strongest feature of CI with a peak crosssection of 3.61 x 10^(-19) cm^2 at 200 eV. The strongest feature of OI in the EUV spectrum is theOI (99.0 nm) multiplet with a peak cross section of 3.59 x 10^(-19) cm^2 at 200 eV.

  7. EUV emission, filament activation and magnetic fields in a slow-rise flare

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Nakagawa, Y.; Neupert, W. M.

    1975-01-01

    Results are reported for observations and analysis of synoptic data on a 1B flare that occurred on January 19, 1972. The observations include large-scale H-alpha movies of the flare and pre-flare developments, OSO-7 satellite data on soft X-ray and EUV developments, magnetograms, and hard X-ray observations. Theoretical force-free magnetic field configurations are compared with structures seen in the soft X-ray, EUV, and H-alpha images, and the evolution of the flare is described. The energy available for the flare is estimated from the change of magnetic field inferred from the H-alpha filtergrams and from force-free field calculations. It is suggested that the flare originated in a twisted filament where it was compressed by emerging fields, and it is shown that the flare started below the corona and appeared to derive its energy from the magnetic fields in or near the filament.

  8. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    PubMed Central

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-01-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams –or “structured attosecond light springs”– with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging. PMID:28281655

  9. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  10. The Origin of the EUV Late Phase: A Case Study of the C8.8 Flare on 2010 May 5

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Klimchuk, J. A.; Eparvier, F. G.; Jones, A. R.

    2012-01-01

    Since the launch of NASA's Solar Dynamics Observatory on 2010 February 11, the Extreme ultraviolet Variability Experiment (EVE) has observed numerous flares. One interesting feature observed by EVE is that a subset of flares exhibit an additional enhancement of the 2-3 million K emission several hours after the flares soft X-ray emission. From the Atmospheric Imaging Assembly (AIA) images, we observe that this secondary emission, dubbed the EUV late phase, occurs in the same active region as the flare but not in the same coronal loops. Here, we examine the C8.8 flare that occurred on 2010 May 5 as a case study of EUV late phase flares. In addition to presenting detailed observations from both AIA and EVE, we develop a physical model of this flare and test it using the Enthalpy Based Thermal Evolution of Loops (EBTEL) model.

  11. Prospect of space-based interferometry at EUV and soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Chakrabarti, Supriya

    1992-01-01

    We review the current capabilities of high-resolution, spectroscopic, space-borne instrumentation available for both solar and stellar observations in the EUV and soft X-ray wavelength regimes, and describe the basic design of a compact, all-reflection interferometer based on the spatial heterodyne technique; this is capable of producing a resolving power (lambda/Delta-lambda) of about 20,000 in the 100-200 A region using presently available multilayer optical components. Such an instrument can be readily constructed with existing technology. Due to its small size and lack of moving parts, it is ideally suited to spaceborne applications. Based on best estimates of the efficiency of this instrument at soft X-ray wavelengths, we review the possible use of this high-resolution interferometer in obtaining high-resolution full-disk spectroscopy of the sun. We also discuss its possible use for observations of diffuse sources such as the EUV interstellar background radiation.

  12. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  13. Dual-domain lateral shearing interferometer

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2004-03-16

    The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.

  14. Plasmaspheric Erosion via Plasmasphere Coupling to Ring Current Plasmas: EUV Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Khazanov, G. V.; Chsang, S. W.; Liemohn, M. W.; Perez, J. D.; Green, J. L.; Sandel, B. R.; Mitchell, D. G.; Mende, S. B.; hide

    2002-01-01

    During a geomagnetic storm on 24 May 2000, the IMAGE Extreme Ultraviolet (EUV) camera observed a plasmaspheric density trough in the evening sector at L-values inside the plasmapause. Forward modeling of this feature has indicated that plasmaspheric densities beyond the outer wall of the trough are well below model expectations. This diminished plasma condition suggests the presence of an erosion process due to the interaction of the plasmasphere with ring current plasmas. We present an overview of EUV, energetic neutral atom (ENA), and Far Ultraviolet (FUV) camera observations associated with the plasmaspheric density trough of 24 May 2000, as well as forward modeling evidence of the lie existence of a plasmaspheric erosion process during this period. FUV proton aurora image analysis, convolution of ENA observations, and ring current modeling are then presented in an effort to associate the observed erosion with coupling between the plasmasphere and ring-current plasmas.

  15. Solar Radio Burst Associated with the Falling Bright EUV Blob

    NASA Astrophysics Data System (ADS)

    Karlický, Marian; Zemanová, Alena; Dudík, Jaroslav; Radziszewski, Krzysztof

    2018-02-01

    At the beginning of the 2015 November 4 flare, in the 1300–2000 MHz frequency range, we observed a very rare slow positively drifting burst. We searched for associated phenomena in simultaneous EUV observations made by IRIS, SDO/AIA, and Hinode/XRT, as well as in H α observations. We found that this radio burst was accompanied with the bright blob, visible at transition region, coronal, and flare temperatures, falling down to the chromosphere along the dark loop with a velocity of about 280 km s‑1. The dark loop was visible in H α but disappeared afterward. Furthermore, we found that the falling blob interacted with the chromosphere as expressed by a sudden change of the H α spectra at the location of this interaction. Considering different possibilities, we propose that the observed slow positively drifting burst is generated by the thermal conduction front formed in front of the falling hot EUV blob.

  16. Generation of coherent magnons in NiO stimulated by EUV pulses from a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Lazzarino, M.; Masciovecchio, C.

    2017-12-01

    The full comprehension of magnetic phenomena at the femtosecond (fs) time scale is of high demand for current material science and technology. Here we report the observation of coherent collective modes in the antiferromagnetic insulator nickel oxide (NiO) identified by a frequency of 0.86 THz, which matches the expected out-of-plane single-mode magnon resonance. Such collective excitations are inelastically stimulated by extreme ultraviolet (EUV) pulses delivered by a seeded free-electron laser (FEL) and subsequently revealed probing the transient optical activity of NiO looking at the Faraday effect. Moreover, the unique capability of the employed FEL source to deliver circularly polarized pulses allows us to demonstrate optomagnetic control of such collective modes at EUV photon energies. These results may set a starting point for future investigations of magnetic materials at time scales comparable or faster than those typical of exchange interactions.

  17. Analysis of EUV/FUV dayglow and auroral measurements

    NASA Technical Reports Server (NTRS)

    Majeed, T.; Strickland, D. J.; Link, R.

    1994-01-01

    This report documents investigations carried out over the twelve month period which commenced in November 1992. The contract identifies the following three tasks: analysis of the O II 83.4 nm dayglow and comparison with incoherent scatter radar data, analysis of the EUV spectrum of an electron aurora, and analysis of the EUV spectrum of a proton-hydrogen-electron aurora. The analysis approach, data reduction methods, and results, including plots of O I 98.9 nm versus time and average spectra, are presented for the last two tasks. The appendices contain preprints of two papers written under the first task. The first paper examines the effect of new O(3P) photoionization cross sections, N2 photoabsorption cross sections, and O(+) oscillator strengths and transition probabilities on the O II 83.4 nm dayglow. The second addresses the problem of remotely sensing the dayside F2 region using limb O II 83.4 nm data.

  18. Unique Capabilities of the SUVI Telescopes For Both Space Weather Prediction and Fundamental Solar Physics

    NASA Astrophysics Data System (ADS)

    Slater, G. L.; Seaton, D. B.

    2017-12-01

    The recently launched Solar UltraViolet Imager (SUVI) aboard NOAA's GOES-16 satellite, provides image data that can potentially both improve earth effective solar storm predictions and contribute to fundamental research on structure and dynamics in what may be called the 'high EUV corona'. The wide field of view ( 53 x 53 arcmin) and passband set covering UV and EUV emission from plasmas ranging in temperature from 5000 K to 7 million K, allow for the detailed observation of structure and dynamics in the high EUV corona. Imaging this region is increasingly recognized as being critical to understanding how the low corona connects, disconnects from, and reconnects to, the high corona and heliosphere during transient events in the low corona. We will illustrate this claim with observations taken from the first few months on operation of the SUVI instrument.

  19. Spectral characteristics of quantum-cascade laser operating at 10.6 μm wavelength for a seed application in laser-produced-plasma extreme UV source.

    PubMed

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru; Endo, Akira

    2012-11-15

    In this Letter, we investigate, for the first time to our knowledge, the spectral properties of a quantum-cascade laser (QCL) from a point of view of a new application as a laser seeder for a nanosecond-pulse high-repetition frequency CO(2) laser operating at 10.6 μm wavelength. The motivation for this work is a renewed interest in such a pulse format and wavelength driven by a development of extreme UV (EUV) laser-produced-plasma (LPP) sources. These sources use pulsed multikilowatt CO(2) lasers to drive the EUV-emitting plasmas. Basic spectral performance characteristics of a custom-made QCL chip are measured, such as tuning range and chirp rate. The QCL is shown to have all essential qualities of a robust seed source for a high-repetition nanosecond-pulsed CO(2) laser required by EUV LPP sources.

  20. Alignment of a multilayer-coated imaging system using extreme ultraviolet Foucault and Ronchi interferometric testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray-Chaudhuri, A.K.; Ng, W.; Cerrina, F.

    1995-11-01

    Multilayer-coated imaging systems for extreme ultraviolet (EUV) lithography at 13 nm represent a significant challenge for alignment and characterization. The standard practice of utilizing visible light interferometry fundamentally provides an incomplete picture since this technique fails to account for phase effects induced by the multilayer coating. Thus the development of optical techniques at the functional EUV wavelength is required. We present the development of two EUV optical tests based on Foucault and Ronchi techniques. These relatively simple techniques are extremely sensitive due to the factor of 50 reduction in wavelength. Both techniques were utilized to align a Mo--Si multilayer-coated Schwarzschildmore » camera. By varying the illumination wavelength, phase shift effects due to the interplay of multilayer coating and incident angle were uniquely detected. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less

Top